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Foreword

It gives me great pleasure to write the foreword for the book by Prof. Aavishkar Katti
and Prof. R. A. Yadav.

Optical solitons, in general, have been researched since long in the past. In partic-
ular, photorefractive solitons or spatial solitons in photorefractive materials have
been quite attractive in recent times given their potential for practical applications in
optical networks, optical computing, navigation and waveguides.

This book is a timely addition to the literature of soliton optics. It acts as a bridge
between the discovery of photorefractive solitons back in the 90s and the current
research being carried out in this field. The book provides a theoretical approach to
understand the soliton formation phenomena in photorefractive materials. The theo-
retical foundation of diverse types of solitons supported by photorefractive media
has been laid out in terms of nonlinear partial differential equation systems. Wher-
ever the system cannot be solved exactly, numerical methods are resorted to and a
generalized mathematical formulation is built for the propagation and stability char-
acteristics of photorefractive solitons in diverse configurations. The mathematical
treatment for spatial photorefractive soliton starts from the simplest photorefrac-
tive material supporting screening solitons and then spans out to various different
configurations including pyroelectric crystals, photorefractive crystal circuits and
photorefractive waveguides.
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viii Foreword

The book will be useful for beginning researchers in the field of photorefractive
solitons since it contains a logical and easily understandable chronological devel-
opment of the theoretical formulation for the various characteristics of the solitons.
Graduate students in nonlinear optics in particular and nonlinear dynamics in general
can also benefit from this book.

I wish all success to the book, and hope that it will benefit the targeted readership.

Prof. (Dr.) R. K. Sharma
ConsenSys Block Chain Professor and Former

Head
Department of Mathematics

Indian Institute of Technology Delhi
New Delhi, India



Preface

The present book has been an effort which has been fructified as a result of a sincere
wish for advancement of research in nonlinear optical materials including photore-
fractive media. It has been a satisfying academic journey where there have been
moments when we have fallen in love with the subject again.

When the photorefractive effect was discovered, it was generally thought to be
damaging and unwanted because of the coupling away of energy by beam fanning.
But soon, it was found that photorefractive effect has tremendous applications in
holography, optical phase conjugation, wave mixing and optical storage. These
processes were all driven by the diffusion effect induced in the photorefractive crystal
due to the photogeneration of carriers. In the 1990s, it was discovered that photore-
fractive materials can support self-trapping, the exact opposite of the processes
mentioned above. An external field contributing a drift component of the current
of the photogenerated carriers could result in an index waveguide to form due to an
incident beam of light. Photorefractive crystals are unique because they exhibit a
saturable nonlinearity, and spatial solitons can be realized in the laboratory at rela-
tively low laser powers. Certain characteristics of spatial solitons in general were
discovered by studying the properties of spatial solitons in photorefractive crystals.

This treatise has been aimed at beginning researchers in thefield of optical solitons.
In particular, we have presented a detailed study of optical spatial solitons in a special
class of nonlinear optical crystals, which are photorefractive crystals. In Chap. 1, a
succinct but clear introduction of the photorefractive solitons has been presented in
this chapter. The electro-optic effect has been explained with a relevant example
which then leads to the explanation of the photorefractive effect and self-trapping
in photorefractive media. A brief experimental overview has also been given after
which we discuss a comprehensive theory for the simplest type of photorefractive
solitons, known as screening solitons. The derivation of the induced space charge
field is discussed, and the normalized intensity profiles are obtained along with the
soliton width existence curves for all three types of solitons, viz. bright, dark and
grey. The effect of the diffusion on the propagation of the soliton is investigated. The
diffusion effect results in a self-deflection of the soliton trajectory which follows a
parabolic curve now. Once the investigation of the simplest type of photorefractive
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soliton is completed, wemove on to discuss optical spatial solitons in photorefractive
crystals having a finite bulk photovoltaic coefficient and pyroelectric coefficient.

In Chap. 2, a theoretical formulation for optical spatial solitons in photovoltaic
photorefractive crystals is studied. The bulk photovoltaic effect is different from the
conventional “solar cell” photovoltaic effect and relates to anisotropic probabilities
of electron processes leading to a giant photovoltage. The band transport model
is used to obtain the space charge field and the dynamical evolution equation for
light beams propagating in biased photovoltaic photorefractive crystals. The general
formulation presented here branches out to systems of photorefractive crystal which
is open-circuited or closed-circuited and without the external bias field. Relevant
example is taken to show the dark and grey soliton states. Consequently, the theo-
retical formulation for self-trapping due to the pyroelectric effect is elucidated. The
pyroelectric effect relates to a temperature change induced transient electric field.
The temperature change can be externally controlled or due to incident beam energy
absorption. This transient pyroelectric field can self-trap a soliton in a photorefractive
crystal. The space charge field and the dynamical evolution equation are obtained
using simple considerations of charge transport and continuity equations. Finally,
the interplay between the pyroelectric field, photovoltaic field and the external bias
field is discussed.

The stability of optical spatial solitons is a crucial aspect to be studied since only
the stable optical spatial solitons have potential practical applications. In Chap. 3,
we shall be studying the stability of photorefractive solitons by using the modulation
instability theory. Modulation instability, also known as sideband instability, can be
said to be a phenomenon where certain perturbations of a periodic waveform get
strengthened consequently leading to the generation of spectral sidebands and the
ensuing breakup of the waveform into small filaments. A generalized theory for the
modulation instability gain for broad optical beams in photorefractive photovoltaic
crystals is elucidatedwhich can, in turn, be reduced to the cases of broadoptical beams
in biased and unbiased photovoltaic crystals, non-photovoltaic photorefractive crys-
tals and centrosymmetric photorefractive crystals. Lastly, the theoretical formulation
for the modulation instability gain for light beams in pyroelectric photorefractive
crystals is expounded.

The next logical question that should be addressed is the formation of the photore-
fractive solitons. A theory for time dependence and formation of optical spatial soli-
tons in photorefractive crystals have been discussed in Chap. 4. The temporal evolu-
tion of the induced space charge field is studied, and hence, the dynamical evolution
equation with an explicit temporal dependence is derived. A general theory for incor-
porating the temporal characteristics in the theoretical formulation for photorefractive
solitons is then discussed. This theory is illustrated to be valid for different types and
configurations of photorefractive crystals. The ratio of the maximum intensity to the
dark irradiance of the incident beam profoundly affects the temporal characteristics,
and hence, the temporal development of the soliton width has been studied as a
function of the intensity ratio. The relevant conditions for formation of steady state
and quasi-steady-state solitons are studied. The magnitude of the electro-optic coef-
ficients affects the temporal evolution of solitons which has been discussed. We then
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discuss how this theory can be reduced to study the temporal evolution of screening
solitons and centrosymmetric solitons. In addition, the theory for temporal evolu-
tion of solitons in biased photovoltaic photorefractive crystals is also considered. A
further reduction of this theory for screening solitons and photovoltaic solitons is
briefly commented upon.

In Chap. 5, a comprehensive theory for coupled soliton pairs in photorefractive
materials is presented for incoherent and coherent soliton pairs in various different
configurations and types of photorefractive crystals. The two beams need to have the
same polarization, wavelength and should be mutually incoherent for the coupled
soliton pairs to be realized. There exist diverse realizations of the soliton pairs like
bright-bright, dark-dark, grey-grey and bright-dark. A theory for coupled spatial
solitons in photovoltaic photorefractive crystals is illustrated first. The space charge
field is obtained and the conditions under which the system reduces to study open-
circuit photovoltaic and closed-circuit photovoltaic spatial soliton pairs is elucidated.
Subsequently, a theory for coupled spatial soliton pairs in non-photovoltaic photore-
fractive crystals is illustrated. This theory, in turn, is shown to reduce to the system
studying screening soliton pairs and centrosymmetric soliton pairs under appropriate
conditions. Coupled soliton pairs can be either incoherently coupled or coherently
coupled depending upon the mutual phase relationship between the two light beams,
and both of these are studied in detail. Lastly, a novel soliton pair known as Gaussian
or quasi-soliton pair is investigated in photorefractive materials. The condition for
existence of a vast set of such Gaussian or quasi-soliton pairs is delineated along with
the pertinent parameter space. The properties and dynamical evolution characteristics
of such Gaussian solitons pairs are studied in detail.

Another typeof couplingobserved inphotorefractive crystal circuits is the separate
coupling. In Chap. 6, we first delineate a general theory for optical spatial solitons
propagating in a biased photorefractive crystal circuit. We shall then investigate the
validity of the theory for various different types and configurations of the constituent
photorefractive crystals. The approach to derive the coupled space charge fields in
both the crystals of the photorefractive crystal circuit will be discussed. The intensity
profile and propagation of spatial soliton in each crystal can affect the intensity profile
and propagation of the spatial soliton in the other crystal. The input intensity of
each soliton and the temperature of each crystal exert a coupling effect between the
individual solitons in the two crystals. These phenomena are discussed in detail taking
relevant examples. This type of separate coupling for the two solitons exists because
of the light-induced current in eachphotorefractive crystal flowing through the circuit.
A brief idea about further reading for the stabilities and dynamical evolution of such
separately coupled solitons will be presented.

Finally, in Chap. 7, a general theory for the existence of bright solitons is studied
in a photorefractive waveguide under the paraxial and Wentzel–Kramers–Brillouin–
Jeffreys approximation. The planar waveguide structure increases the self-focussing
while decreasing the minimum or threshold power required for self-trapping. The
waveguide structure lowers the power required to form a soliton. The power required
to just self-trap a soliton keeps on reducing as the strength of thewaveguide increases.
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Distinct regions of power are identified in which the characteristics of the self-
trapping are discussed in detail. The propagation of the solitons is visualized with
and without the presence of the waveguide structure. This theory can be applied to
waveguides embedded in photorefractive crystals exhibiting the linear and quadratic
electro-optic effect simultaneously, which then reduces to centrosymmetric photore-
fractive waveguides and conventional photorefractive waveguides. The interesting
case of pyroelectric photorefractive waveguides is also discussed while photovoltaic
waveguides are briefly commented upon.

In summary, we have tried to present a clear theoretical formulation for different
types, configurations and characteristics of photorefractive solitons.We cannot claim
that this book covers all the topics related to photorefractive solitons, since it is a
vast field and further research in photorefractive solitons is going on at a fast pace.
What this book does is provide a useful knowledge of the theory behind impor-
tant aspects and characteristics of photorefractive solitons. The readers will find
themselves equipped very robustly for pursuing further research in this area after a
thorough reading.

Banasthali, Tonk, India Aavishkar Katti
R. A. Yadav
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Chapter 1
Introduction to Photorefractive Solitons

In linear optics, the index of refraction n is a constant depending upon the frequency
of light. The refraction and reflection are thus independent of the intensity of the
light beam. The index of refraction of a medium is, in general dependent upon the
distribution of electrons and arrangement of atoms. When a light beam illuminates a
crystal, the charges are driven up and down by the electric field of the incident light.
These moving electrons radiate light and generate an electric field proportional to
the incident field. Hence, there appears a phase shift in the transmitted field which is
equivalent to a slower propagation velocity. If the intensity of the field is small such
that the electric field of the light beam is much lesser than the intra-atomic field, this
phase shift will be independent of intensity. Therefore, the index of refraction is not
dependent on the intensity of light. This is the regime of linear optics.

When the intensity of the light beam is comparable to the intra-atomic electric
field, the electron distribution in the medium is modified by the incident radiation.
Hence, the index of refraction is indeed dependent on the intensity of the incident
beam. This is the regime of non-linear optics.

1.1 Electro-Optic Effect

The phenomenon of the electro-optic effect can be illustrated as a refractive index
change consequent to the application of an external electric field. This effect is
observed in solid or liquid medium with anisotropic properties. Electro-optic effect
can be broadly said to be of two types, the Pockels’ effect where the index change
is proportional to the electric field and the Kerr effect, where the index change is
proportional to the square of electric field. The Pockels effect is also known as the
linear electro-optic effect while the Kerr effect is also known as the quadratic electro-
optic effect. In noncentrosymmetricmedia, Pockel’s effect ismuch stronger thanKerr
effect. In centro-symmetric media (media with inversion symmetry), the Kerr Effect
dominates. Mathematically, the electro-optic effect can be defined by expressing the
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change in the impermeability tensor [1].

�ηi j = �

(
1

n2

)
i j

= ri jk Ek + si jkm Ek Em (1.1)

where Ek , Em are the components of the applied electric field. The first term on the
RHS of (1.1) represents the Pockels’ effect while the second term represents the
Kerr effect. The change in the dielectric tensor �ε is related to the change in the
impermeability tensor �η by,

�ε = −ε�ηε

ε0
(1.2)

Moving to a principal co-ordinate system, in which the dielectric tensor is
diagonal, the change can be expressed as,

�εi j = −ε0n
2
i n

2
j�ηi j (1.3)

Two examples, namely GaAs and LiNbO3 will be considered to illustrate the
mathematical formulation of the electro-optic effect.

1.2 Illustration of the Electro-Optic Effect: GaAs
and LiNbO3

GaAs has only the linear electro-optic effect. So sijkm = 0. The linear electro-optic
coefficients rijk are components of a tensor of rank 3. So there are 9 components
of this tensor. However, the symmetry properties of ε and η reduce the independent
components to 18. Also, the symmetry leads to an interchangeability in i and j,

ri jk = r jik

Due to this above mentioned symmetry, contracted indices will used henceforth
defined by,

1 = (11) = (xx), 2 = (22) = (yy), 3 = (33) = (zz), 4 = (23) = (32) = (yz) = (zy)

5 = (31) = (13) = (zx) = (xz), 6 = (12) = (21) = (xy) = (yx)

Using the contracted notation, we can express the electro-optic coefficients in
terms of a 6 × 3 matrix. It is important to realize here that these matrices do not
have the usual transformation property of a regular tensor. Although there are 18
independent components of the linear electro-optic coefficients, many of these are
zero or identical due to point group symmetry inmany of the photorefractive crystals.
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GaAshas a point group. The electro-optic coefficients in contracted notation are given
by [2],

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.4)

where r51 = r63 = r41. Let the applied electric field be �E = (
Ex , Ey, Ez

)
. The

change in the impermeability tensor can be written as,

�η =
⎡
⎣0 r41Ez r41Ey

r41Ez 0 r41Ex

r41Ey r41Ex 0

⎤
⎦ (1.5)

and the corresponding change in the dielectric tensor will be,

�ε = −ε0n
4

⎡
⎣0 r41Ez r41Ey

r41Ez 0 r41Ex

r41Ey r41Ex 0

⎤
⎦ (1.6)

where n denotes the index of refraction of the medium.
The index ellipsoid in contracted notation becomes,

(
1

n2x
+ r1k Ek

)
x2 +

(
1

n2y
+ r2k Ek

)
y2 +

(
1

n2z
+ r3k Ek

)
z2 + 2yzr4k Ek

+ 2zxr5k Ek + 2xyr6k Ek = 1 (1.7a)

(k = 1, 2, 3).
Using the equation (1.7a) for the index ellipsoid in contracted notation and (1.4),

the index ellipsoid can be written,

x2

n2
+ y2

n2
+ z2

n2
+ 2yzr41Ex + 2zxr41Ey + 2xyr41Ez = 1 (1.7b)

The cross terms are the terms containing xz, xy and yz. It can be inferred that the
ellipsoid’s major axes do not coincide with the x, y, and z crystal axes. Choosing the
case when the electric field is along the z-axis, the equation of the index ellipsoid
now is,
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x2

n2
+ y2

n2
+ z2

n2
+ 2xyr41Ez = 1 (1.8)

The equation (1.8) can be diagonalized by

x = x ′cos45◦ − y′sin45◦

y = x ′sin45◦ − y′cos45◦

z′ = z
(1.9)

Substituting (1.9) into (1.8) gives,

x ′2

n′2
x

+ y′2

n′2
y

+ z′2

n′2
z

(1.10)

with

n′
z = n (1.11)

and

1
n′2

x
= 1

n2 + r41Ez

1
n′2

y
= 1

n2 − r41Ez
(1.12)

Assuming that n2r41Ez << 1, the new principal indices of refraction are,

nx ′ = n − 1
2n

3r41Ez

ny′ = n + 1
2n

3r41Ez
(1.13)

where use has been made of the following equation,

�n = −1

2
n3�

(
1

n2

)
(1.14)

In the case of an LiNbO3 crystal, the electro-optic coefficients in contracted
notation are [1],

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 r12 r13
0 −r12 r13
0 0 r33
0 r42 0
r42 0 0
r12 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.15)
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Fig. 1.1 The modified index ellipsoid for the case of LiNbO3 crystal

Let the applied electric field be �E = (
Ex , Ey, Ez

)
. Choosing the case when the

electric field is along the z-axis, the equation of the index ellipsoid now is,

(
1

n20
+ r13Ez

)
x2 +

(
1

n20
+ r13Ez

)
y2 +

(
1

n2e
+ r33Ez

)
y2 (1.16)

Hence,

�

(
1

n2z

)
= −2

1

n3e
�(n1) = r13Ez (1.17)

�(nz) = −n3e
2
r33Ez (1.18)

The index ellipsoid is modified as shown in Fig. 1.1.

1.3 Photorefractive Effect

The photorefractive effect, which is a combination of the electro-optic effect
and photoconductivity has many applications in the fields of optoelectronics and
photonics [3–6]. This effect was first discovered in 1966 as a degradation of a linearly
polarized laser beam propagating in a plate of LiNbO3 by Ashkin et al. [7]. The
interesting observation here was that no change was observed for beams polarized
perpendicular to the c-axis, i.e., ordinary waves while the extraordinary waves or the
beams polarized parallel to the c-axis suffered a spreading along the same axis. This
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resulted in a broadened light spot on the observation screen. It can be reasonably
inferred that this phenomenon involved a light-induced refractive index change due
to the incident beam.

The photorefractive effect is an optical nonlinearity dependent on the induction of
a space charge field. The space charge field is formed due to transport of photogener-
ated charge carriers by diffusion or drift mechanisms and the consequent recombina-
tion. Photorefraction can be said to be a combination of the electro-optic effect and
photoconductivity. The photorefractive nonlinearity cannot be represented in terms
of m-order susceptibility χ(m). A theory which introduces an effective suscepti-
bility has been proposed [8], but it has very little practical use in photorefractive
optics as we are more concerned about the functional form of the refractive index
change induced by the intensity of the incident light beam. The magnitude of the
photorefractive effect is dependent on the magnitude of the electro-optic coefficients
because these electro-optic coefficients are responsible for converting the induced
space charge field into a quantifiable refractive index change. Since the photogen-
eration and recombination occurs at the donors and acceptors, so the concentration
of the defects and impurities is another factor which influences the magnitude of the
photorefractive effect. Under suitable conditions, the photorefractive effect can be
observed for intensities as low as mW/cm2. There is one drawback of the photore-
fractive nonlinearity that is its slow response time. The response time is related to
the time for buildup of the space charge field. Hence the photorefractive response
time is related to the carrier mobility and is typically of the order of the dielec-
tric response time. The induced photorefractive damage can be present for varying
amounts of time depending upon the photorefractive material. The induced space
charge field persists in the dark for about microseconds in case of semiconductors
while this can extend upto months and years in case of single crystals like LiNbO3.
The photorefractive effect is reversible and the space charge field can be erased by
an incident beam causing intense uniform illumination. To summarize, the photore-
fractive nonlinearity is nonlocal, depends upon the doping and imperfections in the
materials, has a high sensitivity, low response time, and the ensuing space charge
field is erasable by homogeneous illumination.

1.3.1 Physical Mechanism: Standard Microscopic Model

Themechanism behind the photorefractive effect can be explained lucidly by consid-
ering the Fig. 1.2. The electro-optic material has both donor and acceptor centers
denoted by ND and NA respectively. These may be the two valence states of the
same impurity or defect. When a light beam with a nonuniform spatial intensity
distribution illuminates a photorefractive crystal, the donor centres are ionized and
photogenerated carriers arise. These photogenerated carriers can be either electrons
or holes. Due to the nonuniform concentration gradient of charge carriers across the
spatial dimension of the PR crystal, a diffusion current is set up. In addition, there
can be a drift component also depending upon an externally applied electric field and
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Fig. 1.2 Graphical representation of the process of charge redistribution leading to photorefraction

a finite photovoltaic or pyroelectric coefficient. The photovoltaic and pyroelectric
component of drift current will be discussed later in this chapter. Now, these free
charge carriers move through the conduction band and then recombine at the accep-
tors. There is an ensuing charge redistribution between the regions of illumination
and the dark regionswhich creates a space charge field. This space charge field causes
a refractive index change through the electro-optic effect. We shall study the math-
ematical formulation detailing the photorefractive charge transport in subsequent
sections.

1.3.2 Photorefractive Solitons

Solitons, which can be defined to be solitary waves travelling unchanged for long
distances findmention in diverse fields of physics, including nonlinear optics, plasma
physics, string theory, hydrodynamics, statistical mechanics and biology [9–16].
The historical discovery of solitons took place in water and is very interesting. In
1834, near the Union Canal at Hermiston at the Herriott-Watt University, Edinburgh,
John Scott Russell observed that a pile of water in a canal proliferated without
any spreading or attenuation over several kilometers. His report, published in 1844,
detailed his observations [17]. It is notable that such waves were originally known as
solitary waves. The inverse scatteringmethod is a powerful method to understand the
theory behind these solitary waves in water [18, 19]. These solitary waves remain
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intact after mutual collisions and so, the term soliton has been coined for these
waves because of their particle-like nature [10]. In nonlinear optics, solitons can be
categorized as being either spatial or temporal. Spatial optical solitons result from an
exact balancing of the diffraction by the nonlinearity. Hence, spatial solitons can be
said to be confined in space. The exact analogous phenomenon in temporal domain
can be said to heral formation of temporal soliton. Temporal solitons are optical
pulses of light which propagate undistorted with time as the dispersion has been
balanced exactly by the nonlinearity. The phenomenon of the electro-optic effect
causes a nonlinear refractive change in the crystal being illuminated by an incident
light beam [20–22]. Self focussing or self defocussing can occur due to the intensity
dependence of the refractive index and temporal self-phase modulation. A spatial
soliton is realized when the diffraction of the beam is balanced exactly by the self-
focusing effects due to nonlinearity. The optical beam induces a dielectric waveguide
which then guides itself. The refractive index variation in this induced waveguide
would be much greater at the center of the beam than at its ends. The power of the
incident beam defines whether or not self trapping will occur. Low enough power not
capable of forming awaveguide implies diffraction of the beam, while a large enough
intensity implies spatial soliton formation via a self-induced waveguide due to the
change in the refractive index. The fundamental mode of the induced waveguide can
be understood to be the spatial soliton itself. Such a nonlinear waveguide can even
guide a weak probe beam of a different frequency or polarization [23]. In analogy, it
is the self phase modulation which is crucial in formation of temporal solitons since
it opposes the dispersion induced broadening of the light pulse [24].

A lens analogy can also be taken to understand the formation of spatial solitons.
Diffraction causes the wavefront of the incoming beam to become curved and hence
the beam spreads to a wide region. This is like a concave lens curving the wavefront.
Now, the self focusing induces a refractive index gradient which tries to focus the
wavefront like a convex lens. When these two aforementioned lensing effects cancel
out each other exactly, a stable self trapped beam can propagate and is known as a
spatial soliton [24]. The spatial intensity profile should be of specific shapes so as to
result in perfect and unchanging solitary wave. The set of such specific profiles can
be said to be the nonlinear equivalent of the linear waveguide modes of self-induced
refractive index variation. Optical spatial solitons can be of three types, namely
bright, dark and grey solitons. While the bright soliton is a Gaussian-like intensity
distribution with peak intensity, the dark soliton is a dark notch propagating on a
uniform background intensity. A grey soliton can be thought of as a general case of a
dark soliton where the dark notch is not entirely “dark”, i.e., the minimum intensity
is not zero but a small finite number. Figures 1.3 and 1.4 illustrate the dynamical
evolution of bright and dark solitons.

Now, to understand optical spatial solitons in photorefractives, we need to under-
stand a brief historical overview. The very first experimental observations of self
trapping are described in [25] and utilized an experimental apparatus available in
most modestly equipped laboratories. These were revolutionary results as there was
no hint of self focusing in any previous experiments in related media, neither any
theoretical understanding of the same. These experiments showed an unequivocal
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Fig. 1.3 Stable dynamical evolution of a bright soliton
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Fig. 1.4 Stable dynamical evolution of a dark soliton

self trapping of a light beam of visible wavelengths propagating in a biased photore-
fractive sample. The consequent spatial soliton was readily amenable to observation.
It was also established that narrow light beams launched in biased photorefractive
crystal would be able self-trap and in turn propagate robustly. Importantly, these
beams remained self trapped and undistorted by beam fanning and sources of noise
in the crystal. It was found that a 457 nm continuous wave of FWHM 15 μm could
self trap without experiencing beam fanning for an external bias of 500 V/cm. Large
deviances from optimal launch conditions also failed to distort these self trapped
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beams [26]. The initial observation of self trapping in photorefractive media led
to rapid advancements and experiments to further study photorefractive solitons
and provide the bedrock of phenomenological understanding of self trapping in
photorefractives [25, 27]. There were various questions which were posed by these
observations. Firstly, these observations pointed towards a transient self trapping
process which did not require rigorous existence conditions expected for self trap-
ping. Secondly, the beam intensity and applied electric field could be varied without
significantly changing the self trappingwhereas this is counterintuitive because these
two parameters are markers for the self trapping nonlinearity which must balance
the diffraction.

Another notable discovery was the stable self trapping achieved for two dimen-
sional beams which indicated that the self trapping was not Kerr like. The catas-
trophic collapse related to self focusing in Kerr like media is well known. These
aspects are still a matter of research even today. The quasi-steady state or the tran-
sient nature of the self trapping was a definite drawback. The transient nature of the
self trapping results from the effect of the charge accumulation screening field E0.
The induced electro-optic lens flattens or saturates as the charges continue to separate
until E0 is totally screened. For stable self trapping, a compensating mechanism is
needed throughwhich accumulated charge can be eliminated by homogeneously illu-
minating the photorefractive crystal, which results in increasing the effective dark
conductivity [3]. Depending on the relative intensity of the beam w.r.t the back-
ground, a dynamic equilibrium results in a steady state lensing effect. In Refs. [28]
and [29], the authors were able to observe this steady state self trapped stable soliton
in photorefractive crystals. A simple envisaged experimental setup for observing
steady state photorefractive solitons is shown in Fig. 1.5. These type of solitons are
called as “screening solitons” and will be discussed in the next section.

Fig. 1.5 Envisaged experimental setup for observing screening solitons [25, 27, 28, 30]
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1.4 Theoretical Model for Photorefractive Screening
Solitons

Screening solitons consist of the simplest type of optical spatial solitons in photore-
fractive media. They can be observed experimentally if the PR crystal is properly
oriented by coinciding its principal axes with the x, y, z axes, and additionally has
been externally biased. The drift current dominates in such a case and the space
charge field formed can induce an index waveguide through the Pockels effect. This
index waveguide then counteracts the effects of diffraction forming a stable spatial
soliton. The external electric field screens the initial space charge field and hence the
name “screening solitons”.

Consider an optical beam that propagates in the z-direction permitted to diffract
only in the x direction. For understanding a general theoretical foundation, let us
consider that the crystal can be either noncentrosymmetric (SBN) or centrosymmetric
(KLTN) or novel photorefractive crystals having both the linear and quadratic electro-
optic effect (PMN-0.33PT) for illustrative purposes. The crystal’s c-axis should
be oriented along the x-direction. Additionally, assume that the beam is linearly
polarized along the x direction and the external electric field is also applied in this
x-direction. The refractive index along the c-axis n

′
e is then given by [31, 32],

n′2
e = n2e − an4er33Esc − bn4egef f ε

2
0(εr − 1)2E2

sc (1.19)

where r33 is the electro-optic coefficient, ne is the unperturbed refractive index along
the extraordinary axis (or c-axis). �Esc = Esc x̂ is the space charge field induced in the
photorefractive crystal. The value of a and b is one or zero depending upon whether
thematerial exhibits the linear electro-optic effect or the quadratic electro-optic effect
or both. The electric field, as usual satisfies the Helmholtz equation,

∇2 �E + (k0n
′
e)

2 �E = 0 (1.20)

where k0 = 2π
λ0

is the wavenumber and λ0 is the free space wavelength of the light
beam.

Expressing �E = x̂φ(x, z)exp(ikz), and applying the slowly varying approxima-
tion to the envelope φ, one obtains the following paraxial equation,

iφz + 1

2k
φxx − k0

2

(
n3er33Esc

)
φ = 0 (1.21)

where k = k0ne, φz = ∂φ

∂z etc.
The Kukhtarev-Vinetskii [33] model is most commonly used to describe the

charge transport and derive a relation for the space charge field. Under steady state
conditions,

γRnN
+
D = si (I + Id)

(
ND − N+

D

)
(1.22)
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J = eμ

(
nEsc + kT

e

∂n

∂x

)
(1.23)

∂ J

∂x
= 0 (1.24)

∂Esc

∂x
= e

ε0εr

(
N+

D − NA − n
)

(1.25)

si is the photoionization cross section, J is the current density, γR is the carrier
recombination rate, n is the free electron density, μ is the electron mobility, kB is the
Boltzmann constant, T is the absolute temperature, εr is the static relative permittivity.
NA is the acceptor or trap density, ND is the donor concentration, ND

+ is the ionized
donor density. The thermally generated electrons also have a finite contribution to the
space charge field and hence, to account for this, a quantity Id is defined as the dark
irradiance. I = I(x,z) is the intensity profile of the optical beam. From the Poynting’s
theorem, we can express I = (ne/2η0)|φ|2 where η0 = (μ0/ε0)

1/2. The fact that
variables vary much more rapidly with x means that any spatial dependence on the
z-direction can be neglected. In essence, (1.22)-(1.25) can be simultaneously solved
to obtain the induced space charge field. In practice, this is quite difficult and certain
approximations need to be done to simplify the ensuing analysis. In characteristic
photorefractive media, ND, NA >> n and N+

D >> n. So, (1.22)-(1.25) yield,

N+
D = NA

(
1 + ε0εr

eNA

∂Esc

∂x

)
(1.26)

n = si (ND − NA)

γRNA
(I + Id)

(
1 + ε0εr

eNA

∂Esc

∂x

)−1

(1.27)

If the intensity I of the beam attains an asymptotically constant value at x → ±∞,
i.e., I (x → ±∞, z) = I∞. Hence, this is a region of constant illumination and the
space charge field has to be independent of x, i.e., Esc(x → ±∞, z) = E0. If the
spatial width of the optical beam is much less than the crystal width, then under a
constant bias V, E0 ≈ V/W . From (1.27), the free electron density in the regions
x → ±∞ can be written,

n0 = si (ND − NA)

γRNA
(I∞ + Id) (1.28)

Also, as current density J is constant everywhere, so

n0E0 = nEsc +
(
kBT

e

)(
∂n

∂x

)
(1.29)

from which we can get,
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Esc = n0E0

n
− kBT

e

1

n

∂n

∂x
(1.30)

Substitution of (1.28) into (1.30) gives,

Esc = E0
I∞ + Id
I + Id

(
1 + ε0εr

eNA

∂Esc

∂x

)
− kBT

e

(∂ I/∂x)

(I + Id)

+ kBT

e

ε0εr

eNA

(
1 + ε0εr

eNA

∂Esc

∂x

)−1
∂2Esc

∂x2
(1.31)

If the external bias is strong, the value of E0 will reach appreciable limits and
the drift component of the current will be dominant. Hence, all the terms related to
the diffusion, i.e., the terms with kBT/e dependence can be neglected as they can be
considered small as compared to the drift component. In addition, if the intensity
I(x, z) of the optical beam varies slowly with respect to x, then the term ε0εr

eNA

∂Esc
∂x will

be much less than unity in typical PR media. Thus, the space charge field can be
approximated to be,

Esc = E0
I∞ + Id
I + Id

(1.32)

Inserting (1.32) into (1.20), one can establish the soliton envelope evolution
equation. Using the following dimensionless co-ordinates,ξ = z/

(
kx20

)
, s = x/x0,

φ = (2η0 Id/ne)1/2U , U can be shown to satisfy the following equation,

iUξ + 1

2
Uss − β1(1 + ρ)U

1 + |U |2 − β2(1 + ρ)2U(
1 + |U |2)2 = 0 (1.33)

where x0 is an arbitrary scale parameter and intensity has been scaled with respect to
the dark irradiance as I = Id|U|2. Also, ρ = I∞/Id and β1 = a(k0x0)2

(
n4er33/2

)
E0

and β2 = b(k0x0)2(n4egef f ε0
(
εr − 1)2/2

)
E2
0 .

1.4.1 Bright Soliton States

For examining the bright spatial soliton states, let us assume a SBN crystal for which
we can observe only the Pockels’ or the linear electro-optic effect. Hence a = 1, b =
0. The optical beam intensity will vanish at s → ∞ and therefore I (∞) = ρ = 0.
So Eq. (1.15) becomes,

iUξ + 1

2
Uss − β1U

1 + |U |2 = 0 (1.34)
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Expressing the beam envelope as U = r1/2y(s)exp(iνξ) where ν represents a
nonlinear shift of the propagation constant and y(s) is a bounded function where
0 ≤ y(s) ≤ 1. For bright solitons, the following boundary conditions need to be
satisfied,

y(0) = 1, ẏ(0) = 0, y(s → ±∞) = 0, ẏ(s → ±∞) = 0.

Putting U into (1.34) leads to,

ÿ − 2νy − 2β1
y

1 + r y2
= 0 (1.35)

where ÿ = dy
ds .

By integrating (1.35) once, and using the boundary conditions for the bright
solitons as enumerated above,

ẏ2 = 2β1

r

[−y2ln(1 + r) + ln
(
1 + r y2

)]
(1.36)

ν = −β1

r
ln(1 + r) (1.37)

Integrating once more,

(2β1)
1/2s = ±

∫ 1

y

r1/2d ŷ

[ln(
1 + r ŷ2

) − ŷ2ln(1 + r)]1/2 (1.38)

Equation (1.38) does not have any closed form solution so simple numerical
integration can be used to find out the bright field profile y(s).

The RHS of (1.38) will be positive when β1 > 0 and hence E0 > 0 is the condition
for formation of a bright soliton. Considering the following parameters of the SBN
crystal [31], ne = 2.35, r33 = 224 × 10–12 m/V and λ0 = 0.5μm, x0 = 40μm, E0 =
1.9 × 105 V/m. Taking these into account, one can obtain, β1 ≈ 164.36. Figure 1.6
shows the normalized intensity profile of the bright soliton for r = 1. Figure 1.7
shows the existence curve for the bright soliton, i.e., the variation of FWHM of the
soliton intensity profile with r.

1.4.2 Dark and Grey Soliton States

Dark soliton beams have an antisymmetric field profile with respect to x, the spatial
co-ordinate. They embedded on a constant intensity background so I∞, ρ are finite.
Again, considering the case of a photorefractive crystal exhibiting the linear electro-
optic effect, the evolution eqn is,
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Fig. 1.6 Normalized intensity profile of the bright soliton for r = 1; β1 ≈ 164.36 [31]

Fig. 1.7 Existence curve for the bright soliton [31]
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iUξ + 1

2
Uss − β1(1 + ρ)U

1 + |U |2 = 0 (1.39)

LetU = ρ1/2y(s)exp(iνξ)where ν represents a nonlinear shift of the propagation
constant and y(s) is a bounded function where 0 ≤ y(s) ≤ 1. For dark solitons, the
following boundary conditions need to be satisfied,

y(0) = 0, ẏ(0) = 0, y(s → ±∞) = 1, ẏ(s → ±∞) = 0.

Substitution of the aforementioned ansatz of U into (1.39) leads to,

ÿ − 2νy − 2β1(1 + ρ)
y

1 + ρy2
= 0 (1.40)

where ÿ = dy
ds .

By using the boundary conditions for the dark solitons as enumerated above and
integrating (1.40) once, we get,

ẏ2 = (−2β1)

[(
y2 − 1

) − 1 + ρ

ρ
ln

(
1 + ρy2

1 + ρ

)]
(1.41)

ν = −β1 (1.42)

Equation (1.41) does not have any closed form solution so simple numerical
integration can be used to find out the dark field profile y(s). The RHS of (1.41) will
be positive when β < 0 and hence E0 < 0 is the condition for formation of a dark
soliton. This means that reversing the polarity of the external bias field can render the
same photorefractive crystal (SBN in this case) to support a dark screening soliton.
So we take E0 = −1.8 × 105 V/m and all other parameters are taken same as in the
previous case. Figure 1.8 shows the normalized intensity profile for the dark soliton.
Figure 1.9 shows the existence curve for the dark soliton.

There is another class of interesting soliton solutions, known as grey solitons.
This family is also expected to evolve according to (1.39) as they are also embedded
on a constant intensity background. The grey solitons can be thought of as a general
case of dark solitons where the dark notch is not completely “dark”. The envelope
U is expressed as,

U = ρ1/2y(s)exp

[
i

(
νξ +

∫ s Jds ′

y2(s ′)

)]
(1.43)

J is a real constant to be determined. Further, y(s → ±∞) = 1 and y2(0) = m,
ẏ(0) = 0. As usual, all derivatives of y at infinity are zero.

Substituting (1.43) in (1.39) results in,
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Fig. 1.8 Normalized intensity profile of the dark soliton for ρ = 1; β1 ≈ −164.36 [31]

Fig. 1.9 Existence curve for the dark soliton [31]
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ÿ − 2νy − J 2

y3
− 2β1(1 + ρ)

y

1 + ρy2
= 0 (1.44)

Using the boundary conditions of y at infinity,

J 2 = −2(ν + β1) (1.45)

Further integrating (1.45),

(ẏ)2 = 2ν
(
y2 − 1

) + 2β1

ρ
(1 + ρ)ln

(
1 + ρy2

1 + ρ

)
+ 2(ν + β1)

(
1 − y2

y2

)
(1.46)

ν = −β1

(m − 1)2

[
m(1 + ρ)

ρ
ln

(
1 + ρm

1 + ρ

)
+ (1 − m)

]
(1.47)

(1.47) can be solved numerically to find the envelope y(s). It is notable that the
parameters β1, ρ,m have to be selected such that RHS of (1.46) is positive and J2 is
positive. The condition for existence of grey solitons can be found out to be β1 < 0
and m < 1.

1.4.3 Self Deflection of Photorefractive Solitons

Till now, we have assumed that the diffusion effect is negligible if we use a relatively
strong external field. It is now quite pertinent to look for the effect of the diffu-
sion space charge field on the spatial soliton evolution. It has been observed that the
diffusion effect results in an asymmetric tilt in the induced waveguide in the photore-
fractive crystal which, in turn results in significant changes in how the dynamical
evolution of the soliton takes place. Assuming a slow variation of the intensity, i.e.,
we shall neglect the ε0εr

eNA

∂Esc
∂x terms but not the kBT terms, the expression for the space

charge field (1.31) becomes,

Esc = E0
Id

I + Id
− kBT

e

∂ I/∂x

I + Id
(1.48)

Of course, E0 can be approximated to ±V/W if the spatial extent of the wave is
less than the width of the photorefractive crystal. Also, as in the previous section, let
us consider a photorefractive crystal exhibiting the linear electro-optic effect only.
So, the dynamical evolution equation for the optical beam envelope becomes,

iUξ + 1

2
Uss − β1(1 + ρ)U

1 + |U |2 + γ

(|U |2)s
1 + |U |2 = 0 (1.49)
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where we have used the dimensionless co-ordinates and the symbols have their usual
meaning as defined before. Now, as we know, the diffusion effect is very small if
the external bias is relatively large and the drift component of the current dominates
over the diffusion component. Hence, we can treat the diffusion as a perturbation to
the dynamical evolution equation with γ = 0. So, we shall first numerically find out
the solution for y(s) satisfying (1.49) with γ = 0,

(2β1)
1/2s = ±

∫ 1

y

r1/2d ŷ

[ln(
1 + r ŷ2

) − ŷ2ln(1 + r)]1/2 (1.50)

Taking this solution for the soliton, now substituting this into (1.49) with finite γ ,
we can find the dynamical evolution of the soliton beam in the longitudinal direction.
Given the value of y(s) at the beginning, ξ = 0, we need to find y(s) at further values
of ξ. For this, a simple finite difference formulation will suffice and is known as the
finite difference beam propagation method [34]. There is another beam propagation
method based on Fourier transforms, known as the split step fourier method, for
which the reader is referred to [35].

Assuming the typical SBN crystal’s parameters are used [31], the dynamical
evolution of the bright soliton is shown in Fig. 1.10. We can infer a few things here.
Firstly, the center of the soliton beam follows a parabolic trajectory. Secondly, the
soliton’s intensity profile remains invariant when propagating implying an adiabatic
evolution.

In addition to the above approach, there are perturbative mathematical methods
to investigate the effect of the diffusion space charge field. Such methods have been
widely used in nonlinear fiber optics as well as photorefractive nonlinear optics.
Since, we can see an approximately adiabatic evolution of the beam, we start with

Fig. 1.10 Evolution of the intensity profile of the soliton, r = 10, β = 34.5, γ = 0.56. (Reprinted
fromM.I. Carvalho, S.R. Singh, D.N. Christodoulides, Self-deflection of steady-state bright spatial
solitons in biased photorefractive crystals. Opt. Commun. 120, 311–315. Copyright 1995, with
permission from Elsevier)
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the following ansatz for the soliton solution,

U (ξ, s) = r1/2y[s + v(ξ)] × exp(i{μξ + ω(ξ)[s + v(ξ)] + α(ξ)}) (1.51)

v(ξ) is the shift in the position of the beam center, ω(ξ) is the angle between the
central wave vector and the propagation axis, and α(ξ) is the variable phase of the
beam. For obtaining the equations of motion of these variables, substitute (1.51) into
the two complex conservation laws of (1.49). These complex conservation laws can
be easily found out by multiplying (1.49) by U and U* and iUs and iUs* and then
integrating over s. This yields,

dv/dξ = ω (1.52)

dα/dξ = ω2/2 (1.53)

dω/dξ = 4βγ K (r) (1.54)

where,

K (r) =
∞∫

−∞
ds

2r y2

1 + r y2(s)
× {

y2(s)ln(1 + r) − ln
[
1 + r y2(s)

]} ×
⎛
⎝

∞∫
−∞

dsry2(s)

⎞
⎠

−1

(1.55)

Since we cannot solve analytically for y(s), K(r) has to be found numerically.
Figure 1.11 shows the variation of K with r.

Equations (1.52)–(1.54) can be integrated to give,

ω(ξ) = 4βγ K (r)ξ (1.56)

Fig. 1.11 Dependence of K
function on r. (Reprinted
from M.I. Carvalho, S.R.
Singh, D.N. Christodoulides,
Self-deflection of
steady-state bright spatial
solitons in biased
photorefractive crystals. Opt.
Commun. 120, 311–315.
Copyright 1995, with
permission from Elsevier)
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v(ξ) = −2βγ K (r)ξ 2 (1.57)

α(ξ) = 8[βγ K (r)]2ξ 3/3 (1.58)

We can see clearly that in case of no diffusion, i.e., γ = 0, ω = α = v = 0.
In contrast, if diffusion is taken into account, (1.57) shows a parabolic trajectory
for the beam center. (1.56) shows that the central frequency shifts linearly with the
propagation distance. From these relations, we can immediately infer that the beam
has undergone a displacement of, xd = (n3er33k0)

2(kBT/2e)E0K (r)z2 where z is the
actual distance moved.

1.5 Concluding Remarks and Further Reading

We have tried to present a succinct but clear introduction of the photorefractive soli-
tons in the present chapter. The electro-optic effect has been explainedwith a relevant
example which then leads to the explanation of the photorefractive effect and self
trapping in photorefractivemedia.Abrief experimental overviewhas also been given.
Finally, we have discussed a comprehensive theory for the simplest type of photore-
fractive solitons, known as screening solitons. The derivation of the induced space
charge field is discussed taking into consideration the Kukhtarev charge transport
model. The normalized intensity profiles are obtained alongwith the soliton width
existence curves for all three types of solitos, viz. bright, dark and grey. The dynam-
ical evolution of these solitons is then discussed and the effect of the diffusion on
the propagation of the soliton is investigated.

It has been our intention to acquaint the reader with the basic concepts needed to
proceed onward for an understanding of photorefractive solitons. The photorefractive
effect has been around for much longer and many nonlinear optical phenomena
other than solitons, like the holographic storage, wave mixing, phase conjugation,
ring resonators etc. have been studied in photorefractive materials. If the reader
wishes to have an in depth understanding of the photorefractive effect and different
photorefractive materials, Refs. [1, 2, 36, 37] would be a good place to start for a
classical foundation. References [3, 4] provide a fresh perspective with many newer
discoveries in photorefractives explained and summarized. Reference [38] is a review
article also worth reading for the same reason.
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Chapter 2
Photovoltaic and Pyroelectric Solitons

2.1 The Photovoltaic Effect

The conventional photovoltaic effect is a phenomenonwhich describes the generation
of a voltage or electric current in a photovoltaic cell when sunlight is incident upon
it. The cells within a solar panel convert sunlight to electrical energy. The solar cells
are made of two joined p-type and n-type semiconductors which result in a p–n
junction. A space charge field is formed at the junction as electrons diffuse to the
p-side and holes diffuse to the n-side. This field causes a potential difference which
can be harnessed as electrical energy.

The photovoltaic effect in which we are interested is different from the above
described p–n junction photovoltaic effect described in solar cells. The bulk photo-
voltaic effect is known to occur in semiconductors and insulators. The bulk photo-
voltaic effect is also known to as “anomalous”. That is so because the typical
photovoltage produced by incident light is much greater than the band gap of the
semiconductor. In certain crystals, the photovoltage may be of the order of ~ 103 V.

The main phenomenon behind the bulk photovoltaic effect is that various electron
related processes occur with different rates in different directions. Photo-excitation,
scattering, and relaxation have a different probability of occuring in different direc-
tions with respect to the motion of the electron. This results in generation of a large
photovoltage [1, 2].

Another mechanism involves development of parallel stripes ferroelectric
domains in certain materials. Each domain acts like a photovoltaic and the domain
wall behaves like a contact connecting the adjacent photovoltaics. The domains add
in series, and hence the overall open-circuit voltage is quite large.

In Fig. 2.1, a simple system is illustrated through which we can understand the
bulk photovoltaic effect. Consider two electronic levels separated by an energy gap
of say, 3 eV in a unit cell. The blue and pink arrows show radiative and non radiative
transitions respectively. An electron can move from A to B by absorbing a photon.
Conversely, it may move from B to A by emitting a photon. The purple arrows
indicate non radiative transitions. Here, it is implied that an electron can move from

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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Fig. 2.1 The photovoltaic effect illustrated

B to C via lattice vibrations or emitting phonons, or vice versa by absorption of
phonons.

If a light beam is incident upon a photovoltaic crystal, considering the above
scenario, an electron can go fromA to B to C by absorbing photons. But, the electron
does not move in the opposite direction, i.e., from C to A through B, since the
shift from C to B proceeds if a large thermal variation is present which in turn is
improbable. Hence, we see a net rightward photocurrent.

There are many interesting features of the bulk photovoltaic effect distinguishing
it from the conventional photovoltaic effect. Within the region of power generation
in the characteristic I-V curve, electrons and holes are move towards higher and
lower fermi levels respectively. We expect the opposite based on the drift diffusion
equation. For example, power generation in a silicon solar cell is possible due to
splitting of the quasi-fermi levels which implies the fact that the motion of electrons
is towards the decreasing quasi Fermi level and the motion of holes is towards the
increasing quasi Fermi level as per the drift diffusion equation. In contrast, power is
generated in a bulk photovoltaic without any splitting of quasi-fermi levels.

The drift diffusion effect predicts that freely moving electrons will lessen the
photocurrent and consequently diminish the photovoltaic effect. So, appreciable
open-circuit voltages are observed only in crystals that exhibit very low dark
conductivity.

The net motion of electrons due to the bulk photovoltaic effect is in the opposite
direction to that expected due to the drift–diffusion equation. Hence, the quantum
efficiency lessens considerably even for a thick device. Large amount of photons (of
the order of 106) may be needed to transport an electron between the two electrodes.
An increase in thickness results in voltage going up and a decrease in current. Also,
the current may have different directions depending on the light polarization. Such
effects are unheard of in silicon or any other ordinary solar cell.
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2.2 Screening Photovoltaic Solitons

2.2.1 Theoretical Foundation

Until now, we have considered an externally biased non photovoltaic photorefrac-
tive crystal for studying steady state optical spatial solitons. However, if we take
a photorefractive crystal also having a finite photovoltaic coefficient, the question
arises as to whether it can support optical spatial solitons in the presence of an
external bias? In [3], the authors have studied this in detail and we shall study these
screening photovoltaic solitons in this section. Taking the electric field envelope as−→
E = x̂φ(x, z)exp(ikz), the paraxial equation of diffraction is [4],

i
∂φ

∂z
+ 1

2k

∂2φ

∂x2
− k0n3ere f f Esc

2
φ = 0 (2.1)

The induced space charge field can be derived from the set of rate equations,
continuity equations and Gauss law in one dimension for steady state [5],

γRnN
+
D = si (I + Id)

(
ND − N+

D

)
(2.2)

∂Esc

∂x
= e

ε0ε

(
N+

D − NA − n
)

(2.3)

J = eμnEsc + kBTμ
∂n

∂x
+ kpsi

(
ND − N+

D

)
I (2.4)

∂ J

∂x
= 0 (2.5)

where the symbols have their usual meanings. There is one change in these equations
if we compare them with those used in previous chapters. We have now considered
kp to be the photovoltaic constant which contributes the photovoltaic current term.
As usual, any z spatial dependence has been ignored assuming a much more rapid
variation in x. Now, in typical photovoltaic-photorefractive media, N+

D � n, ND �
n, and NA � n. Hence, (2.2) and (2.3) give,

N+
D = NA

(
1 + ε0εr

eNA

∂Esc

∂x

)
(2.6)

n = si (ND − NA)

γRNA
(I + Id)

(
1 + ε0εr

eNA

∂Esc

∂x

)−1

(2.7)

If the intensity of the light beam varies relatively slowly with respect to x, the
term ε0εr

eNA

∂Esc
∂x can be ignored, as it is of the order of much less than unity. So, from
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(2.6) and (2.7) it can be inferred that,

N+
D = NA (2.8)

n = si (ND − NA)

γRNA
(I + Id) (2.9)

In regions of constant illumination, we know, I (x → ±∞, z) =
I∞, Esc(x → ±∞, z) = E0 where E0 is the external bias field. From (2.7),
electron density at x → ±∞, i.e., n∞ can be obtained as,

n∞ = si (ND − NA)

γRNA
(I∞ + Id) (2.10)

From (2.4), we know that,

J∞ = J (x → ±∞, z) = eμn∞E0 + kpsi (ND − NA)I∞ (2.11)

Substituting (2.10) into (2.11),

J∞ = eμn∞
(
E0 + Ep

I∞
I∞ + Id

)
(2.12)

where, Ep = kpγRNA/(eμ).
Again, from (2.2) and (2.4), we get,

J = eμn

(
Esc + kBT

e

∂ ln n

∂x
+ Ep

I

I + Id

)
(2.13)

From (2.5), we can infer that the current is constant everywhere, so, from (2.12)
and (2.13),

n∞
(
E0 + Ep

I∞
I∞ + Id

)
= n

(
Esc + kBT

e

∂ ln n

∂x
+ Ep

I

I + Id

)
(2.14)

Finally, we can obtain the space charge field from (2.14) as,

Esc = E0
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
− kBT

e

1

I + Id

∂ I

∂x
(2.15)

The final dynamical evolution equation can now be setup by substituting (2.15)
into (2.1),
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i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β(ρ + 1)

1

1 + |U |2U − α

(
ρ − |U |2)

1 + |U |2 U + γ

(|U |2)
s

1 + |U |2U = 0

(2.16)

where we use the dimensionless co-ordinates, ξ = z/
(
kx20

)
, s = x/x0, φ =

(2η0 Id/ne)
1/2U with x0 to be an arbitrary spatial width and the intensity scaled

with the dark irradiance Id, ρ = I∞/Id , β = (k0x0)2
(
n4ere f f /2

)
E0, α =

(k0x0)2
(
n4ere f f /2

)
Ep, γ = (

k20x0n
4
ere f f

)
kBT/(2e).

2.2.2 Spatial Soliton States

Once the dynamical evolution (2.16) has been obtained, it is a simple matter now to
solve this get soliton states. As earlier, we proceed to solve the PDE by numerical
techniques. Considering first the bright solitons, ρ = 0, and hence, (2.16) becomes,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β

1

1 + |U |2U − α

(|U |2)

1 + |U |2U + γ

(|U |2)
s

1 + |U |2U = 0 (2.17)

Again, neglecting the effect of diffusion which is plausible if we consider a large
value of the photovoltaic and bias field,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β

1

1 + |U |2U − α

(|U |2)

1 + |U |2U = 0 (2.18)

Substituting the bright soliton solution ansatz U = r1/2y(s)exp(ivξ), where r =
I (0)/Id and 0 ≤ y(s) ≤ 1 along with the requisite boundary conditions of bright
solitons as discussed before in (2.18), we get,

ÿ − 2vy − 2β
y

1 + r y2
+ 2α

r y3

1 + r y2
= 0 (2.19)

where ÿ = d2 y
ds2 .

Integrating (2.19) once and applying the boundary conditions,

v = −β + α

r
ln(1 + r) + α (2.20)

(ẏ)2 = 2
(β + α)

r

[−y2ln(1 + r) + ln
(
1 + r y2

)]
(2.21)

The bright field profile can now found by numerical integration as follows,
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[2(β + α)]1/2s = ±
1∫

y

r1/2d ŷ
[
ln

(
1 + r ŷ2

) − ŷ2ln(1 + r)
]1/2 (2.22)

In (2.21), we can clearly see that the quantity in square brackets is positive since
y(s) is bounded between 0 and 1, and since the LHS is also necessarily positive, we
get the condition β + α > 0 for existence of screening photovoltaic bright solitons.

For the dark screening photovoltaic solitons, substituting the appropriate ansatz
U = ρ1/2y(s)exp(ivξ) along with the dark soliton boundary conditions as stated
before, y(0) = 0, ẏ(0) = 0, y(s → ±∞) = 1 in (2.16) and neglecting the diffusion
effect,

ÿ − 2vy − 2β(ρ + 1)
y

1 + ρy2
− 2αρ

ρy3

1 + ρy2
= 0 (2.23)

Using the boundary conditions, one can readily deduce that,

v = −β (2.24)

(ẏ)2 = 2(β + α)

[(
y2 − 1

) − ρ + 1

ρ
ln

(
1 + ρy2

1 + ρ

)]
(2.25)

The soliton field profile can be obtained by numerical integration of (2.25) as
follows,

[2(β + α)]1/2s = ±
0∫

y

d ŷ
[(
ŷ2 − 1

) − ρ+1
ρ
ln

(
1+ρ ŷ2

1+ρ

)]1/2 (2.26)

In (2.25), the quantity in square brackets is positive since y(s) is bounded below
one, and hence, we can see clearly that β + α < 0 should be satisfied for the RHS
to remain positive.

What we can infer from this discussion is that bright or dark solitons can be
obtained in photovoltaic photorefractive crystals for suitable conditions. For instance,
in Lithium Niobate crystals, where α < 0, if the external applied bias field is such
that |β| < |α|, then dark solitons can be observed irrespective of the polarity of
the external electric field. Again, there are some photovoltaic materials where the
photovoltaic constant changes sign under polarization rotation and hence α will
be positive or negative depending on the polarization of light. In case α > 0, the
polarity of the external electric field must be reversed to observe dark solitons. Using
the values of the Lithium Niobate Crystals as shown in Table 2.1, the normalized
intensities of the dark solitons using (2.26) are plotted in Fig. 2.2.

For the grey solitons, we shall employ the grey soliton ansatz, U (s, ξ) =
ρ1/2y(s)exp

[
i
(
vξ + ∫ Qds

y2(s)

)]
along with the grey soliton boundary conditions,
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Table 2.1 Typical
parameters used for lithium
niobate crystal in the
calculation [3]

Parameter Value Parameter Value

λ0 0.5 μm α −355.13

x0 40 μm E0 (a) 2 × 106 Vm−1

(b) −2 × 106

Vm−1

ne 2.2 β (a) 177.57,
(b) −177.57

(respective to
E0)

r33 30 × 10−12 mV−1 ρ 10

Ep 4 × 106 Vm−1

Fig. 2.2 Normalized spatial profiles for the dark screening photovoltaic soliton [3]

y2(s = 0) = m(0 < m < 1), y(s → ±∞) = 1, ẏ(0) = 0. Hence, (2.16)
becomes,

ÿ − 2vy − Q2

y3
− 2β(1 + ρ)

y

1 + ρy2
− 2αρ

ρ
(
1 − y2

)
y

1 + ρy2
= 0 (2.27)

or,

ÿ − 2(v − α)y − Q2

y3
− 2(α + β)(1 + ρ)

y

1 + ρy2
= 0 (2.28)
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Applying the boundary conditions of the grey solitons at infinity, we have,

Q2 = −2(v + β) (2.29)

(2.28) yields after an integration,

(ẏ)2 = 2(v − α)
(
y2 − 1

) + 2(v + β)

(
1 − y2

y2

)
+ 2(α + β)(1 + ρ)

ρ
ln

(
1 + ρy2

1 + ρ

)

(2.30)

Applying the boundary conditions of grey solitons at zero in (2.30), we get,

v = 1

(m − 1)2

[
m(m − 1)α + (m − 1)β − m(α + β)(1 + ρ)

ρ
ln

(
1 + ρm

1 + ρ

)]

(2.31)

From (2.29) and (2.31),

(α + β)

[
m(m − 1) − m(1 + ρ)

ρ
× ln

(
1 + ρm

1 + ρ

)]
< 0 (2.32)

Expanding ln
(
1+ρm
1+ρ

)
= ln

(
1+(m−1)ρ

1+ρ

)
in series,we can see that the quantity inside

the square bracket in (2.32) is positive. That in turn implies the condition for existence
of grey solitons in photorefractive photovoltaic media reduces to, (α + β) < 0.
Additionally, the values of (α, β, ρ,m) must be chosen judiciously so as to always
have ẏ2 > 0 and Q2 > 0. Integrating (2.32) once again gives the spatial profile,

[−2(α + β)]1/2s =

±
y∫

√
m

(1 − m)

⎡

⎣
m(1+ρ)

ρ
× ln

(
1+ρm
1+ρ

)(
ỹ2 + 1

ỹ2 − 2
)

+ (1 − m)
(
ỹ2 − 1

)+
m(1 − m)

(
1
ỹ2 − 1

)
− (m−1)2(1+ρ)

ρ
ln

(
1+ρ ỹ2

1+ρ

)

⎤

⎦

−1/2

d ỹ

(2.33)

Using (2.33), the normalized spatial profile of the grey soliton is plotted in Fig. 2.3
using typical parameters of the lithium niobate crystal as shown in Table 2.2. Also,
unlike the bright and dark screening photovoltaic solitons, the phase is not constant
across s. This is evident from the grey soliton ansatz and using (2.29) and (2.31).
Figure 2.4 shows the phase profile across the grey soliton.

The screening photovoltaic solitons have a different existential theoretical foun-
dation as compared to screening solitons. There is an inherent interplay of the photo-
voltaic field with the external bias field. It is interesting to note a few special cases
here. If α = 0, i.e., we take a non-photovoltaic crystal in (2.16), we retrieve the
bright, dark and grey screening solitons formulation. While if we set β = 0, i.e.,
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Fig. 2.3 Normalized spatial profiles for the grey screening photovoltaic soliton (reprinted from
Optics Communications, 181, Chunfeng Hou, Yan Li, Xiaofu Zhang, Baohong Yuan, Xiudong
Sun, Grey screening-photovoltaic spatial soliton in biased photovoltaic photorefractive crystals.,
141–144, Copyright 2000, with permission from Elsevier)

Table 2.2 Typical parameters used for lithium niobate crystal in the calculation [3]

Parameter Value Parameter Value

λ0 0.5 μm α −355

x0 40 μm E0 (a) 1 × 106 Vm−1

(b) 2 × 106 Vm−1

(c) 3 × 106 Vm−1

ne 2.2 β (a) 89, (b) 178, (c) 266 (respective to E0)

r33 30 × 10−12 mV−1 m 0.4

Ep 4 × 106 Vm−1 ρ 5

Fig. 2.4 Phase profiles for
the grey screening
photovoltaic soliton
(reprinted from Optics
Communications, 181,
Chunfeng Hou, Yan Li,
Xiaofu Zhang, Baohong
Yuan, Xiudong Sun, Grey
screening-photovoltaic
spatial soliton in biased
photovoltaic photorefractive
crystals, 141–144, Copyright
2000, with permission from
Elsevier)
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we switch off the external bias, we obtain the expressions for bright, dark and grey
photovoltaic solitons in closed circuit realization (J �= 0 within the crystal) under
suitable values of α. For bright photovoltaic solitons, we need α = r(J + 1)/2 while
for dark solitons we need α = −(J + 1)/[2(ρ + 1)].

2.2.3 Further Reading

The reader is referred to [6, 7] where the authors have detailed the photovoltaic
solitons. The general formulation presented here branches out to systems of photore-
fractive crystal which is open circuited or closed circuited and without the external
bias field.

2.3 The Pyroelectric Effect

Pyroelectricity is a phenomenon in which a transient voltage is induced in a material
when it is heated or cooled. The reason behind this is that when temperature changes
momentarily, atoms move around within the crystal lattice and their positions are
modified slightly resulting in a changeof net polarization.Thenet polarization change
results in a voltage appearing across the crystal. This induced voltage known is
known as the pyroelectric voltage and is transient. It will gradually vanish due to
leakage current if the temperature remains constant afterward. The leakage current
can be present due to a number of causes like movement of electrons through the
crystal, movement of ions through the air, or leakage current through a voltmeter
attached across the crystal. Contrasting temperature changes induce opposite charges.
If heating induces a positive charge on one face, coolingwill induce a negative charge
at the same face. Quantitatively, pyroelectricity can be said to be the change in net
polarization proportional to a change in temperature. The pyroelectric coefficient is
defined as,

pi = ∂P

∂T
(2.34)

The total pyroelectric coefficient depends upon the primary as well the secondary
pyroelectric effect. At constant stress, the piezoelectric contribution from thermal
expansion must be added to the pyroelectric coefficients at constant strain to obtain
the total pyroelectric coefficient.

All crystal structures can be classified to belong to a set of thirty-two crystal
classes, also known as point groups. Twenty-one of these thirty two are non-
centrosymmetric. Again, twenty of these twenty one display direct piezoelectricity.
In turn, ten of these twenty piezoelectric classes can be expressed to possess a spon-
taneous polarization, and hence are known as polar classes. Notable is the fact that
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these also contain a dipole in their unit cell in addition to exhibiting pyroelectricity.
Such a material is also ferroelectric if an applied electric field reverses the dipole.
In summary, out of the 32 crystal classes, 10 are polar. Since all polar crystals are
pyroelectric, so these crystal classes are also known as pyroelectric classes.

2.4 Pyroelectric Solitons (the “Pyroliton”)

Pyroelectric solitons, or pyrolitons have been subject of intense research in recent
times [8–10]. The transient pyroelectric field alone can cause a stable self trapping
as we will see in this section. Combing the transient pyroelectric field with the
photovoltaic field or the external electric field can yield interesting effects on the
self trapping. There are two conditions which need to be satisfied for the formation
of such pyroelectric solitons, firstly that the transient pyroelectric field magnitude
is relatively large and secondly, that the the pyroelectric field’s relaxation time be
greater than the soliton formation time. Assuming the homogeneous heating of a
crystal, the pyroelectric field can be expressed as,

Epy = 1

ε0εr

∂P

∂T
�T (2.35)

�T is the temperature change. The relaxation time for the pyroelectric field can
be given by,

�T
τ = ε0εr

σd

(2.36)

where σd is the dark conductivity of the crystal. Taking typical parameters of the
LiNbO3 crystal(εr = 28, σd ~ 10–17 (Ωcm)−1), we find that that the pyroelectric field
can remain at significant values for a fewweeks. For SBNcrystals, the relaxation time
is much less as compared to LiNbO3, but this increases considerably if the doping of
Ce in SBN crystals > 0.1 wt%. So these are among themost often used crystals which
are used for illustration and applications. If we consider a ferroelectric crystal, the
distribution of charge present on the crystal faces cancels out the electric field induced
due to spontaneous polarization and hence the net field inside a ferroelectric crystal is
zero at equilibrium. A temperature change can induces a change in the spontaneous
polarization resulting in an electric field Epy. This field is not immediately balanced
and consequently, a drift current is set up analogous to the effect an external bias
has on the crystal. The transient pyroelectric field Epy again induces a space charge
field which persist to form an index waveguide supporting a soliton. The transient
pyroelectric field can replace the external electric field used for screening solitons,
with multiple advantages, the main being no need of identifying the c-axis since the
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pyroelectric field automatically manifests along the c-axis and secondly, no need of
electrodes on the crystal among others [11, 12].

2.4.1 Theoretical Formulation

Consider a light beam propagating along the z-axis and assume the diffraction only
in x-direction. The soliton beam is polarized along the positive x-direction. The
crystal is kept such that its c-axis coincides with the positive x axis. A tempera-
ture controlled (via a Peltier cell) metal plate is kept in contact with the crystal. In
addition, a thermally insulating cover is kept on top of the crystal for minimizing
undesirable external effects on the temperature. The incident beam can be stated as
a slowly varying envelope E = x̂ A(x, z) exp(ikz) where k = k0ne, ne is the unper-
turbed refractive index, n′

e is the refractive index along the c-axis and λ0 is the free
space wavelength. Under these assumptions, the paraxial diffraction equation for the
dynamical evolution becomes,

i
∂φ

∂z
+ 1

2k

∂2φ

∂x2
− k0n3ere f f E pysc

2
φ = 0 (2.37)

where reff is the electro-optic coefficient, Epysc is the space charge field induced
solely by the pyroelectric effect [8]. It is essential to now obtain an expression for the
induced space charge field Epysc due to the pyroelectric effect. To this end, Ohm’s
law in differential form can be stated as,

	j = σ
−→
E (2.38)

The continuity equation is,

∂ρ

∂t
+ ∇. 	j = 0 (2.39)

While the Gauss Law states,

∇ · −→
D = ρ (2.40)

where 	j is the total current, σ = κ I+σd is the total conductivity,E is the total electric
field. P is the space charge field density, κ is the specific photoconductivity and D is
the electric displacement. The light intensity is I = (ne/2η0)|φ|2 and is a function of
x being expressed as, I (x) = I0exp

[−2(x/x1)
2
]
. x1 is the characteristic beam radius

and I0 is the maximum intensity at the beam center. Then, the total conductivity will
be stated as, σ = σ0

[
exp

[−2(x/x1)
2
] + η

]
with σ0 = κ I0 and η = Id/I0 and Id is the

dark irradiance. Since we consider an SBN crystal in open circuit, and considering
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the illuminated region to be narrow compared to the thickness of the crystal, total
current j can be expressed as,

j = jd = σd
V

H
= σd Epy (2.41)

where jd is the divergence less current which satisfies the boundary conditions.
Solving (2.38)-(2.40), we get,

∇ ·
[

ε0εr
∂
−→
E

∂t
+ σ

−→
E

]

= 0 (2.42)

Considering the boundary conditions and assuming negligible effect of diffusion
and photovoltaic effects,

ε0εr
∂
−→
E

∂t
+ σ

−→
E = 	jd (2.43)

Solving the partial differential Eq. (2.43),

E
(
t, x1

) = V

H

⎧
⎨

⎩

η

exp(−2x2/x21)+η
+

exp(−2x2/x21)
exp(−2x2/x21)+η

exp
[−t

(
exp

(−2x2/x21
) + η

)]

⎫
⎬

⎭
(2.44)

where t = t/td , τ = ε0εr/σ0 is known as the characteristic Maxwell time. Now,
two components constitute the total electric field, E = Epy + Epysc . Epy is the
homogeneous pyroelectric field induced by the homogeneous heating. This causes a
homogeneous refractive index change.Epysc is the inhomogeneous space charge field
which causes an inhomogeneous refractive index change. The origin of self trapping
lies in this refractive index waveguide. Hence,

Epysc = E − Epy = Epy
exp

(−2x2/x21
)

exp
(−2x2/x21

) + η

{
exp

[−t
(
exp

(−2x2/x21
) + η

)] − 1
}

(2.45)

For t = 0, it is plain that Epysc = 0 which implies that pyroelectric field has not
been screened yet in the illuminated region. At steady state, we know t � 1 and
hence the terms in the curly brackets in (2.45) tends to −1,

Epysc = −Epy
I

I + Id
(2.46)
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The value of the pyroelectric space charge field is dependent upon Epy and hence
the change in temperature�T .The expression is also similar to the space charge field
in open circuit photovoltaics.

Substituting (2.46) into (2.37), we have,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
+ α

|U |2
1 + |U |2U = 0 (2.47)

where we have used the usual dimensionless coordinates, ξ = z/
(
kx20

)
, s =

x/x0, φ = (2η0 Id/ne)
1/2U with x0 to be an arbitrary spatial width and the intensity

scaled with the dark irradiance Id, ρ = I∞/Id , α = (k0x0)2
(
n4ere f f /2

)
Epy .

2.4.2 Bright, Dark and Grey Solitons

For the solution of the bright solitons, it is now straightforward with the above
theoretical foundation. Using the bright soliton ansatz, U = r1/2y(s)exp(ivξ) with
the bright soliton boundary conditions, y(0) = 1, ẏ(0) = 0, y(s → ±∞) = 0. y(s)
a bounded function such that 0 ≤ y(s) ≤ 1 and r = I (0)/Id . Substituting the bright
soliton ansatz in (2.47), we get,

d2y

ds2
= 2vy − 2α

r y3

1 + r y2
(2.48)

Integrating (2.48), we can obtain the soliton field profile,

s = ±
1∫

y

{
2α

r

[
ln

(
1 + r ỹ2

) − ỹ2ln(1 + r)
]}−1/2

d ỹ (2.49)

For the dark soliton solution, using the equivalent dark soliton ansatz U =
ρ1/2y(s)exp(iμξ) along with the boundary conditions, we substitute in (2.47) and
integrate to obtain for the spatial profile,

s = ±
1∫

y

{
−2α

[
y2 − 1

1 + ρ
− 1

ρ
ln

(
1 + ρ ỹ2

1 + ρ

)]}−1/2

d ỹ (2.50)

Similarly, for the grey soliton, we shall substitute, U (s, ξ) =
ρ1/2y(s)exp

[
i
(
μξ + ∫ Qds

y2(s)

)]
into (2.47) and integrate once to yield,
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Table 2.3 Typical factors of
lithium niobate crystal used in
our calculation [8]

Parameter Value Parameter Value

λ0 532 nm ε0 8.85 × 10–12 F/m

x0 20 μm εr 3400

ne 2.35 ∂P
∂T −3 × 10–4 Cm−2

K−1

reff 237 × 10−12

mV−1
r,ρ 10

(
dy

ds

)2

= 2μ
(
y2 − 1

) −
(

1

y2
− 1

)
Q2 − 2α

ρ

[
ρ
(
y2 − 1

) − ln

(
1 + ρy2

1 + ρ

)]

(2.51)

The boundary conditions are, y2(s = 0) = m(0 < m < 1), ẏ(0) = 0,
y(s → ±∞) = 1.

Using the boundary conditions, we can easily find,

Q2 = 2α
ρ

1 + ρ
− 2μ (2.52)

μ = 1

2(m − 1)2

{
(1 − m)

(
2αρ

1 + ρ

)
+ 2mα

ρ

[
ρ(m − 1) − ln

(
1 + ρm

1 + ρ

)]}
(2.53)

The normalized intensity profile of the grey soliton can be obtained by numerically
integrating (2.51) alongwith (2.52) and (2.53). Table 2.3 shows the typical parameters
used for calculation. Using this and (2.48)–(2.52), the bright, dark and grey soliton
intensity profiles have been plotted in Figs. 2.5,2.6,2.7 (Table 2.4).

We can see clearly in (2.49) that the quantity within brackets is positive only if α >
0. So we need to take the change of temperature as positive, i.e.,�T > 0 and we need
a heating of the crystal. Similarly, for the dark solitons, the term inside brackets in

Fig. 2.5 Normalized spatial
profile of the bright soliton
for a �T = 10 °C b �T =
20 °C c �T = 30 °C
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)
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Fig. 2.6 Normalized spatial
profile of the grey soliton for
a �T = −10 °C, m = 0.5
b �T = −10 °C, m = 0.4
c �T = −10 °C, m = 0.3
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)

Fig. 2.7 Normalized spatial
profile of the dark soliton for
a �T = −10 °C b �T = −
20 °C c �T = −30 °C.
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)

Table 2.4 Values of α for
diverse values of the
temperature change using
Table 2.3

ΔT (oC) α

10 20.1

20 30.2

30 40.2

−10 −20.1

−20 −30.2

−30 −40.2

(2.50) is positive only if α < 0. Hence, we need a cooling of the crystal with �T < 0
for observing dark solitons. The same concept carries forward for grey solitons also
where again we need a cooling of the crystal for their observation. The important
thing to note here is that the nonlinearity is controlled by the term α which is in turn
dependent upon the temperature change, pyroelectric coefficient and electro-optic
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coefficient. Varying these values for different types of crystals can result in different
characteristics and spatial profiles of the pyrolectric solitons. (Fig. 2.6)

2.5 Photovoltaic Effect and Pyroelectric Solitons

Photorefractive solitons observed in steady state can be said to be broadly of
three types, i.e., screening solitons, photovoltaic solitons and screening–photovoltaic
solitons [3, 4, 7].

An external electric field leads to a screening of the induced space charge field
and hence the name “screening solitons”. The photorefractive effect is basically a
refractive index change by the electro-optic effect. The electro-optic effect comes
into play because of the induced space charge field due to the drift and diffusion of
photogenerated charge carriers. In case of photovoltaic solitons, the space chargefield
ismodulated by the bulk photovoltaic fieldwhile screeningphotovoltaic solitons form
in photorefractive photovoltaic crystals due to the combination of both the external
field and bulk photovoltaic field. Aswe havementioned before, replacing the external
electric fieldwith the pyroelectric field hasmany advantages. It is logical to now think
of the combination of the external bias field, photovoltaic field and pyroelectric field
andhow they canhave an interplaywhile inducing a space–chargefield and in turn self
trapping a light beam. Such type of solitons are screening photovoltaic pyroelectric
solitons. Also, the transient pyroelectric field can be induced by externally controlled
temperature changes or by absorption of the incident beam’s energy. The former case
has already been seen in the previous section. In the following, we now discuss the
effect of pyroelectricity due to the absorption of energy of the beam itself.

2.5.1 Theoretical Model

We consider the usual setup for the soliton beam as defined before. In addition, the
crystal is covered with a thermally insulating cover so as to stabilize the temperature
and avoid any temperature gradient. The slowly varying envelope for the incident
beam reads as, E = x̂ A(x, z)exp(ikz)where k= k0ne, ne is the unchanged refractive
index, n′

e is the perturbed refractive index along the direction of the extraordinary
or c-axis and λ0 is the wavelength in free space. Beginning with the usual paraxial
diffraction equation,

(
i

∂

∂z
+ 1

2k

∂2

∂x2
+ k

ne
�n

)
A(x, z) = 0 (2.54)

�n = −1

2
n3ereffEsc (2.55)
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Here, Esc is the space charge field resulting as a consequence of both, the photo-
voltaic drift and the pyroelectric field. Again there are three constituent components
of the total space charge field, which are the space charge field due to the external
bias, the photovoltaic contribution and the pyroelectric space charge field,

Esc = E1 + E2 + E3 (2.56)

The space charge field (E1 + E2) results in biased photorefractive crystals
supporting screening photovoltaic solitons. We have already studied it in detail in
the previous section,

E1 + E2 = E0
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
(2.57)

The value of Ep is reliant on the state of polarization of the beam and one can
infer the sign from the photovoltaic constant. Epysc is the space–charge field forming
as a consequence of the transient pyroelectric field Epy which results in turn from
a change in temperature. A pulse of light can transfer energy to the material and
hence induce the pyroelectric effect comparable to that brought about by a change in
temperature [8, 10, 13–16]. For a short pulse of light, the pyroelectric space charge
field Epysc can be expressed as, [8, 10, 13–16],

E3 = Epysc = − 1

εrε0

∂Ps
∂T

tp
2

σph

ε0εr
�T (t) = −Epy

tp
2

σph

ε0εr
(2.58)

Now, the value of Epysc is implicitly a function of the intensity of the beam. For
our calculation, we need an explicit dependence and hence we approximate the space
charge field as [8, 10],

Epysc = −Epy
tp
2

σph

ε0εr
≈ −Epy

ϑ I

Id
(2.59)

where, tp is the pulse duration, σph is the photoconductivity, ϑ is a material parameter
dependent on the crystal. Since the photoconductivity σph is proportional to the
intensity I., this approximation is reasonable. From the values of the parameters
Epy, tp,ε0, εr [8, 10, 13–16], we can say that λI

Id
< 1. Again, this can be verified

independently as the pyroelectric space charge field can reach a substantial fraction
of the pyroelectric field a under continuous wave laser beam [15]. The following
potential condition in steady state can be used to find the value of E0,

−
l/2∫

−l/2

Escdx = ε (2.60)
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where the transverse thickness of the crystal is represented by l, and the external bias
is denoted by ε. Substituting (2.57)–(2.60) in (2.56), we get,

Esc = −(
εη + Epση − Epyγ λη

) I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
− Epy

λI

Id
(2.61)

where η = 1
∫l/2

−l/2
I∞+Id
I+Id

dx
, σ = ∫ l/2

−l/2
I∞−I
I+Id

dx and γ = ∫ l/2
−l/2

I
Id
dx .

Using (2.61) in the paraxial diffraction equation, we obtain the dynamical
evolution equation as follows,

iUξ + 1

2
Uss + β

(|U |2)U − α(ρ − (|U |2)
(
1 + |U |2) U − δ

(1 + ρ)
(
1 + |U |2)U = 0 (2.62)

where we have used the previously defined dimensionless coordinates and, β = Epy,
τ = (k0x0)2n4ereff/2, α = τ Ep, δ = −(

εη + Epση − Epyγ λη
)
τ .

Other symbols have their meaning as defined before.

2.5.2 Spatial Soliton States

Using the bright soliton ansatz, U = r
1
2 f (s) exp(iμξ) and substituting in (2.62),

f̈ = 2μ f − 2β
(
r f 2

)
f − 2α

(
r f 2

)
f

1 + r f 2
+ 2δ

f

1 + r f 2
(2.63)

where f̈ = d2 f
ds2 .

Integrating (2.63), and by use of the boundary conditions for bright solitons,

ḟ 2 = 2μ f 2 − βr f 4 +
(
2(δ + α) log

(
1 + r f 2

) − 2αr f 2
)

r
+ c (2.64)

with

c = 0 (2.65)

μ = βr

2
−

(
δ

r
+ α

r

)
log(1 + r) + α (2.66)

Integrating (2.14) once again, we get the envelope,
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s = ±
1∫

f

rd f̃

2μr f̃ 2 − βr2 f̃ 4 + 2(δ + α) log
(
1 + r f̃ 2

)
− 2αr f̃ 2

(67a)

As ḟ has to be real and bounded like 0 ≤ f (s) ≤ 1, the sufficient condition to
keep RHS positive can be inferred from (2.64),

−βr

2
+ μ − α ≥ −δ + α

r
log(1 + r) (67b)

For bright spatial solitons, we need positive refractive index perturbation. If we
consider a lithium niobate crystal for illustration, the refractive index perturbation
is negative due to there being a self-defocussing due to its negative photovoltaic
coefficient. In open circuit crystals, a bright soliton can still be self trapped in the
event that the self focusing induced due to the pyroelectric effect more than offsets
the self-defocussing due to the photovoltaic effect [9].

If an external bias is applied, this condition is liable to be modified slightly. An
external electric field applied along the c-axis results in self focussing while leading
to self defocussing if applied in the opposite direction [4]. Hence, the photovoltaic
self defocussing can be boosted or reduced by controlling the direction of the voltage
bias. This, in turn has the tendency to change the degree of self focusing induced by
the pyroelectric effect. In summary, these changes to the nonlinearity will result in
an alteration of the FWHM of the soliton.

Now, with regards to the wavelength of incident light, we need to consider a
wavelength for which absorption of energy is relatively large so that the heating
of the crystal can take place [10]. The light absorption in LiNbO3 is significant
for the blue-violet light ~405 nm [11] and hence will be used in our simulation.
Now, the photoconductivity increases substantially when considering light in the
blue violet region as compared to the red light and hence the photovoltaic field also
decreases substantially as it is inversely proportional to the photoconductivity [17–
19]. Also, the photovoltaic field has a sub-linear dependence on the incident light
intensity in case of undoped LiNbO3[20]. At the chosen wavelength and intensity we
consider, we should use a lesser value of Ep than that considered before for LiNbO3

(in Sect. 2.4, as in [3, 6, 7]). So, a judicious conjecture would be Ep = −2 × 105

V/m [10]. The transient pyroelectric field is approximately taken to be ~40 kV/cm,
which correlates to a temperature change of the order of around ~10 K in the crystal
[12]. To summarize [10], λ0 = 405 nm, x0 = 20 μm., Ep = −2 × 105 V/m ~ −2
kV/cm, Epy = 4.0 × 106 V/m, reff = r33 ~ 35 × 10−12 m V−1, ne = 2.2, λ = 0.5, r
= 10.

With the above parameters, we obtain the value of α = −6.846 and β = 67.275.
The soliton profiles for an applied voltage ε = ± 4000 V are shown in Fig. 2.8.
The thickness of the crystal l = 10 mm. Again, if we consider (hypothetically)
the photovoltaic field constant Ep = + 2 kV/cm and rest of the parameters same as
before, we find that the photovoltaic effect will work to support the pyroelectric effect
augmenting the self trapping. This case is shown in Fig. 2.9. Hence, the interaction
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Fig. 2.8 Spatial intensity profile of the solitons when α = −6.846, β = 67.275, r = 10 (reprinted
from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased photovoltaic
photo refractive materials with the pyroelectric effect, 166–170, Copyright 2017, with permission
from Elsevier)

between the photovoltaic effect, external bias and the pyroelectric field can be clearly
seen [10].

For the dark soliton, we take the field profile, as usual, U = ρ
1
2 g(s) exp(iνξ)

where g(s) is a bounded function and along with the boundary conditions of dark
solitons as specified before. Substituting the dark soliton ansatz in in (2.62), we get,

g̈ = 2νg − 2β
(
ρg2

)
g + 2α

(
ρ − ρg2

)
g

1 + ρg2
+ 2δ

(ρ + 1)g

1 + ρg2
(2.68)

where g̈ = d2g
ds2 .

By using the boundary conditions at infinity in (2.68),

ν = βρ − δ (2.70)

Integrating (2.68) once,

ġ2 = 2νg2 − βρg4 + 2δ(1 + ρ) log
(
1 + ρg2

)

ρ
− 2αg2
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Fig. 2.9 Spatial intensity profile of the solitons when α = 6.846, β = 67.275, r = 10 (reprinted
from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased photovoltaic
photo refractive materials with the pyroelectric effect, 166–170, Copyright 2017, with permission
from Elsevier)

+ 2α(1 + ρ) log
(
1 + ρg2

)

ρ
+ 2c (2.71)

Using the boundary conditions in (2.71) at infinity, we can obtain c,

c = −ν + βρ

2
+ α − (α + δ)(1 + ρ) log(1 + ρ)

ρ
(2.72)

Integrating (2.71) using the value of c by (2.72), the soliton envelope can be
derived as,

s = ±
g∫

0

ρdg̃

2νρ g̃2 − βρ2 g̃4 + 2(δ + α)(1 + ρ) log
(
1 + ρ g̃2

) − 2αρ g̃2 + 2ρc

(2.73)

Analogous to the case of bright solitons, the refractive index change is expected to
be negative for self-defocussing to happen and dark solitons to form.The photovoltaic
induced self defocussing should counteract the self-focussing induced by the the
external bias field and the pyroelectric effect for a dark soliton to form. So, it is apt to
consider the external bias values as ε = 4000V and ε = 40,000V. If the voltage bias is
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Fig. 2.10 The normalized intensities of the solitons when α = −6.846, β = 6.7275, ρ = 10
(reprinted from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased
photovoltaic photorefractivematerials with the pyroelectric effect, 166–170, Copyright 2017, with
permission from Elsevier)

negative, the electric field is parallel to the c-axis. So the overwhelming self focussing
effect due to the induced pyroelectric space charge field prevents self defocussing.
Hence, we consider [10], the following parameters, λ0 = 405 nm, x0 = 20 μm., Ep

= −2.0 × 105 V/m, Epy = 4.0 × 105 V/m, reff = 35 × 10−12 m V−1, ne = 2.2, λ =
0.5, ρ = 10. Also, we have, α = −6.846, β = 6.7275. The soliton profiles are shown
in Fig. 2.10.

2.6 Concluding Remarks and Further Reading

We have studied a comprehensive theory for optical spatial solitons in photovoltaic
and pyroelectric photorefractive crystals. The band transport model is used to obtain
the space charge field due to photovoltaic effects and the dynamical evolution equa-
tion for light beams propagating in biased photovoltaic photorefractive crystals. The
general formulation presented here branches out to systems of photorefractive crystal
which is open circuited or closed circuited and without the external bias field. The
pyroelectric space charge field and the dynamical evolution equation is also obtained
using simple considerations of charge transport and continuity equations. Screening
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photovoltaic pyroelectric solitons are studied to investigate the interplay between the
pyroelectric field, external bias and photovoltaic field.

Buse [13–16] give an understanding of the different characteristics of the pyro-
electric effect in photorefractive crystals. Sincewe focus on the theory behind the self
trapping due to different configurations of pyroelectric photorefractive crystals, the
author is referred to [8, 9, 11, 21] for further details of pyroliton in the experimental
context. [10] has detailed exposition of screening photovoltaic pyroelectric solitons.
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Chapter 3
Stability and Dynamical Evolution

3.1 Introduction

Modulation instability is a distinctive feature associated with most nonlinear disper-
sive systems. It is a very common occurrence in nonlinear optics and fluid dynamics
[1–9]. Modulational instability, also known as sideband instability can be said to
be a phenomenon where certain perturbations of a periodic waveform get strength-
ened consequently leading to the generation of spectral-sidebands and the ensuing
breakup of the waveform into small filaments. The growth and evolution of the peri-
odic disturbances or noise on a continuous wave background has to be exponential
this makes modulation instability a form of amplification. It was first observed by T.
Brooke Benjamin and Jim E. Feir, in 1967 in case of periodic surface gravity waves
on deep water known [1, 7]. Hence, it is also known as Benjamin − Feir instability.

The instability is reliant on the frequency of the perturbation. It is possible that
at certain frequencies, the perturbation attenuates having a negligible effect on the
beam propagation. While at some other frequencies, the perturbation grows expo-
nentially resulting in breakup of the light beam. The complete gain spectrum can
be obtained analytically by the standard theoretical paraxial Helmholtz equation
solved for perturbed optical beam. Random perturbations contain a wide range of
frequencies and so the underlying gain spectrum has spectral sidebands.

Modulation Instability is said to herald the process of soliton formation. It shares
the same parameter space as that of spatial soliton formation [2]. The primary cause
is due to the local and global effects of the space charge field which forms due to drift
or diffusion [2, 4, 10, 11]. In this chapter, we shall study the modulation instability of
quasi-plane-wave optical beams in biased photorefractive photovoltaic crystals under
steady-state conditions. This formulation can act as a general formulation which can
be reduced for the case of non-photovoltaic photorefractive crystals(where Ep =
0) and photovoltaic crystals (no external bias). Also, we shall see how modulation
instability affects the quasi plane wave beams when the photorefractive crystal is
centrosymmetric or when the external bias is replaced by the transient pyroelectric
field.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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3.2 Theoretical Foundation

3.2.1 Biased Photovoltaic Photorefractive Crystals

Consider a broad optical beam propagating in a biased photovoltaic photorefrac-
tive crystal and investigate the modulation instability of such a configuration under
steady-state conditions. Consider a light beampropagating along the z axis in a photo-
voltaic photorefractive crystal. Further assume that the diffraction occurs along the
x axis only. The photovoltaic photorefractive crystal considered in the present illus-
tration will be LiNbO3. The crystal is kept so that its c-axis is parallel to the x-axis.
Also, the optical beam polarization is along the x-axis and the external electric field
is applied parallel to the x-axis. The induced space charge field in case of photo-
voltaic photorefractive crystals considering typical photorefractive approximations
is [4] (see Note 1 at the end of the chapter),

Esc =
(
E0

1

1 + |U |2 − Ep
|U |2

1 + |U |2 + Ep
|U |2

1 + |U |2 f LD
∂

∂x

Esc

Et

)

(
1 + LD

∂

∂x

Esc

Et

)(
1 − f LD

∂

∂x

Esc

Et

)−1

− KbT

e

{
∂

∂x
ln(1 + |U |2)

−
[(

1 + LD
∂

∂x

Esc

Et

)−1

+ f

(
1 − f LD

∂

∂x

Esc

Et

)−1
]
LD

∂2

∂x2
Esc

Et

}
(3.1)

where we assume a bright-like light beam U(x,z), i.e., |U|2 tends towards zero at
regions far away from the beam centre. LD = (∈0∈r kBT/e2NA)

1/2 is the Debye
length or the diffusion length,T is the temperature, Et = eNALD

∈0∈r
, f = NA

/
(ND − NA)

and Ep = κγ NA
/
eμ which is the photovoltaic field constant. μ is the elec-

tron mobility and other symbols have their usual meaning as defined before. E0

can be obtained from the potential condition,V0 = −∫l/2
−l/2 Escdx + RJ S. It is

approximately, E0 = −(V0χ + E0δχ − RJ Sχ) where,

χ = 1/
l/2∫

−l/2

[
1/(1 + |U |2)]dx

δ = −
l/2∫

−l/2

[|U |2/(1 + |U |2)]dx
ρ = −

l/2∫
−l/2

[
∂ln(1 + |U |2)/∂x]dx

Here, S is the surface area of the electrodes, l is the size of the width of the crystal
between the two electrodes, R is the value of the external resistance used in the
circuit, �J = J î is the total electric current density, and V 0 is the EMF of the source.
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As usual, the light beam envelope follows the paraxial diffraction equation,

i
∂U

∂z
+ 1

2k

∂2U

∂x2
− k0

2
n3er33EscU = 0 (3.2)

We shall consider quasi-plane wave planar waves, i.e., the amplitude |U| is rela-
tively constant over a large range of x. So 1

2k
∂2U
∂x2 term in (3.2) can be neglected, as

can the spatial derivatives of Esc and |U|2 in (3.1). Neglecting diffusion effects, the
space charge field approximately becomes,

Esc = E0

1 + |U |2 − Ep
|U |2

1 + |U |2 (3.3)

When (2k)−1
(
∂2U/∂x2

) = 0, (3.2) has a solution given by,

U = r1/2exp

[
−iβ

(
E0

1

1 + r
− Ep

r

1 + r

)]
(3.4)

with, β = k0n3er33/2 and r is the peak intensity ratio, i.e., the peak intensity divided
by the dark irradiance. To investigate the stability of this bright-like beam, we shall
consider perturbations of the form,

U = [
r1/2 + σ(x, z)

]
exp

[
−iβ

(
E0

1

1 + r
− Ep

r

1 + r

)]
(3.5)

where σ(x, z) is a weak complex perturbation and its amplitude is much smaller
than that of the quasi plane wave solution |σ(x, z)| << r1/2,

σ(x, z) = a(z)exp(i px) + b(z)exp(−i px) (3.6)

Putting (3.6) into (3.2) and along with (3.1), we get the following coupled
equations,

i
∂σ

∂z
+ 1

2k

∂2σ

∂x2
− βE

(
r1/2 + σ

) = 0 (3.7)

E − η
∂E

∂x
− α

∂2E

∂x2
= − r1/2

1 + r

[
E01(σ + σ∗) + kBT

e

(
∂σ

∂x
+ ∂σ∗

∂x

)]
(3.8)

where,
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E = Esc − E0[1/(1 + r)] + Ep[r/(1 + r)]
E01 = (

Ep + E0
)
/(1 + r)

η = {
E0[1/(1 + r)] − Ep[r/(1 + r)]

}
[ε0εr/(eNA)]

α = [ε0εr/(eNA)](kBT/e)

From (3.8) and (3.6), we can obtain the space charge field and perturbation in the
spatial frequency domain by means of a fourier transform,

Ê = − r1/2

1 + r

{
E01 + Epα + i

[
E01ηkx + kx (kBT/e)

(
1 + αk2x

)]
(1 + αk2x )

2 + η2k2x

}(
σ̂ + σ̂∗)

(3.9)

σ̂ = +∞∫
−∞

exp(−ikx x)
[
aexp(i px) + bexp(−i px)

]
dx (3.10)

From (3.10), we have,

σ̂ + σ̂∗ = 2π [(b + a∗)δ(kx + p) + (a + b∗)δ(kx − p)] (3.11)

where δ signifies a delta function here. Substituting (3.11) in (3.9), we can obtain
the space charge field in space by using the inverse Fourier transform,

E = − 1

βr1/2
[
G∗(p)(b + a∗)exp(−i px) + G(p)(a + b∗)exp(i px)

]
(3.12)

where,

G(p) = β
r

1 + r

{
E01 + Epα + i

[
(E01η + kBT/e)p + α(kBT/e)p3

]
(1 + αp2)2 + η2 p2

}
(3.13)

Substituting (3.6) and (3.12) in (3.7), a set of coupled differential equations is
obtained,

i
da

dz
− p2

2k
a + G(p)(a + b∗) = 0 (3.14)

i
db

dz
− p2

2k
b + G(p)(b + a∗) = 0 (3.15)

where only the linear terms have been considered.
From (3.14) and (3.15),

d2a

dz2
=

[
p2

k
G(p) − p4

4k2

]
a (3.16)
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d2b

dz2
=

[
p2

k
G(p) − p4

4k2

]
b (3.17)

We can see that the solution of the Eqs. (3.16) and (3.17) is exponential in nature.
For modulation instability, we need an exponential gain of the perturbation while no
modulation instability implies an attenuation of the perturbation. Hence, we can find
the global modulation instability gain,

�gl = Re

{[
p2

k
G(p) − p4

4k2

]1/2
}

(3.18)

We can see from (18) that the maximum global MI gain occurs for low spatial-
frequency. As an aside, note that there are certain photovoltaic materials which
reverse the sign of their photovoltaic constants κ(i.e. Ep) under polarization rotation
and hence the Γ gl can be modified by rotating the plane of polarization.

We have used the term, “global” when describing about the modulation insta-
bility gain till now in all of the above configurations. As opposed to this, the “local”
modulation instability gain can also be found out by treating the space charge field
locally. This implies that we consider a broad incident light beam and neglect any
diffusion effects while deriving the space charge field. In photovoltaic photore-
fractives, the space charge field reduces to (see Note 1 at the end of the chapter),

Esc =
(
E0

1
1+|U |2 − Ep

|U |2
1+|U |2

)
. The ensuing procedure for deriving the local modu-

lation instability gain remains similar to the one pursued till now by considering
the weak sideband perturbation to the plane wave solution and substituting it in
the dynamical evolution equation to obtain coupled differential equations for the
perturbations.

3.2.2 Biased Photorefractive Crystals

Now, it will be in order to discuss the modulation instability in non photovoltaic
photorefractive crystals, i.e., those photorefractives which have a negligible photo-
voltaic constant. This implies Ep = 0. For a short circuit, we also have R = 0 and
hence, E0 = E0S = −V0χ . So from (3.13) and (3.18),

GS(p) = β
r

1 + r

{
Es + i

[
(ESηS + kBT/e)p + α(kBT/e)p3

]
(1 + αp2)2 + η2

S p
2

}
(3.19)

�gl = Re

{[
p2

k
GS(p) − p4

4k2

]1/2
}

(3.20)

where, ES = E0S
1+r and ηS = E0S[1/(1 + r)][∈0∈r /(eNA)]
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3.2.3 Unbiased Photovoltaic Photorefractive Crystals

If the external bias is not present, this reduces to the case of either a closed circuit
photovoltaic crystal (J �= 0) or an open circuit photovoltaic crystal(J = 0). So, the
total electric current density can be represented as [12], Jp1 = Ep0

Ep
where Jp1 =

J
(ŝ Id NDκ)

and Ep0 = −(
Epδχ − RJ Sχ

)
where ŝ is the photoexcitation cross section

and other symbols have their usual meanings. If there is no external electric field or
voltage bias, then E0 = Ep0. So from (3.13) and (3.18),

G(p) = β
r

1 + r

{
Ep1 + i

[(
Ep1ηp + kBT/e

)
p + α(kBT/e)p3

]
(1 + αp2)2 + η2

p p
2

}
(3.21)

�gl = Re

{[
p2

k
G p(p) − p4

4k2

]1/2
}

(3.22)

where, Ep1 = Ep
(
Jp1 + 1

)
/(1 + r) and ηp =

Ep
(
Jp1 − r

)
[1/(1 + r)][∈0∈r /(eNA)].

3.2.4 Centrosymmetric Photorefractive Crystals

In photorefractive crystals with an inversion symmetry, i.e., centrosymmetric
photorefractive crystals, the nonlinearity is due to the quadratic electro-optic effect
and hence the refractive index change is,

�n = −1

2
n3egef f ∈2

0 (∈r −1)2E2
sc/2 (3.23)

Using (3.23), the light beam envelope follows the paraxial diffraction equation,

i
∂U

∂z
+ 1

2k

∂2U

∂x2
− k0

2
n3egef f ∈2

0 (εr − 1)2E2
scU = 0 (3.24)

We shall consider quasi-plane wave planar beams, i.e., the amplitude |U| is rela-
tively constant over a large range of x. So 1

2k
∂2U
∂x2 term in (3.24) can be neglected, as

can the spatial derivatives of Esc and |U|2 in (1). Without any approximations, the
global space charge field can be expressed (see (1.43) of Chap. 1),

Esc = E0
1

1 + |U |2
(
1 + ∈0∈r

eNA

∂Esc

∂x

)
− kBT

e

(∂|U |2/∂x)
(I + Id)

+ kBT

e

∈0∈r

eNA

(
1 + ∈0∈r

eNA

∂Esc

∂x

)−1
∂2Esc

∂x2
(3.25)
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when (2k)−1
(
∂2U/∂x2

) = 0, (3.24) has a solution given by,

U = r1/2exp

[
−iβ

(
E2
0

(1 + r)2

)
z

]
(3.26)

with, β = k0n3egef f ∈2
0 (∈r −1)2/2. For investigating the stability of this bright-

like beam, we shall consider perturbations of the form,

U =
(
r

1
2 + σ(x, z)

)
exp

[
−iβ

(
E2
0

(1 + r)2

)
z

]
(3.27)

where σ(x, z) is a weak complex perturbation and its amplitude is much smaller
than that of the quasi plane wave solution |σ(x, z)| << r1/2,

σ(x, z) = a(z)exp(i px) + b(z)exp(−i px) (3.28)

Putting (3.28) into (3.24) along with (3.27), the following coupled equations are
obtained,

i
∂σ

∂z
+ 1

2k

∂2σ

∂x2
− βE(E + 2E01)

(
r1/2 + σ

) = 0 (3.29)

E − α
∂E

∂x
− μ

∂2E

∂x2
= − r1/2

1 + r

[
E01(σ + σ∗) + kBT

e

(
∂σ

∂x
+ ∂σ∗

∂x

)]
(3.30)

where,

E = Esc − E01

E01 = E0/(1 + r)
α = E01[ε0εr/(eNA)]
μ = (kBT/e)[ε0εr/(eNA)]

.

From (3.30) and (3.28), we can obtain the space charge field and perturbation in
the spatial frequency domain by means of a fourier transform,

Ê = − r1/2

1 + r

{
E01 + i

[
E01αkx + kx (kBT/e)

(
1 + μk2x

)]
(1 + μk2x )

2 + α2k2x

}(
σ̂ + σ̂∗)

(3.31)

σ̂ = +∞∫
−∞

[
aexp(i px) + bexp(−i px)

]
exp(−ikx x)dx (3.32)

From (3.32), we have,

σ̂ + σ̂∗ = 2π [(b + a∗)δ(kx + p) + (a + b∗)δ(kx − p)] (3.33)

δ signifies a delta function in (3.33). Putting (3.33) into (3.31) and using the
inverse Fourier transform to obtain the induced space charge field in space,
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E = − 1

βr1/2
[
G∗(p)(b + a∗)exp(−i px) + G(p)(a + b∗)exp(i px)

]
(3.34)

where,

G(p) = β
r

1 + r

{
E01 + i

[
(E01α + kBT/e)p + μ(kBT/e)p3

]
(1 + μp2)2 + α2 p2

}
(3.35)

Substituting (3.28) and (3.34) in (3.29), the following coupled differential
equations are obtained in the linear approximation,

i
da

dz
− p2

2k
a + 2E01G(p)(a + b∗) = 0 (3.36)

i
db

dz
− p2

2k
b + 2E01G(p)(b + a∗) = 0 (3.37)

From (3.36) and (3.37),

d2a

dz2
=

[
2E01 p2

k
G(p) − p4

4k2

]
a (3.38)

d2b

dz2
=

[
2E01 p2

k
G(p) − p4

4k2

]
b (3.39)

We can see that the (3.38) and (3.39) have exponential solutions. For modulation
instability, an exponential gain of the perturbation is required while no modulation
instability needs an attenuation of the perturbation. Hence, the global modulation
instability gain is,

�gl = Re

{[
2E01 p2

k
G(p) − p4

4k2

]1/2
}

(3.40)

We have used the term, “global” when describing about the modulation instability
gain till now in all of the above configurations. As opposed to this, the “local” modu-
lation instability gain can also be found out by treating the space charge field locally.
This implies that we consider a broad incident light beam and neglect any diffusion
effects while deriving the space charge field. In centrosymmetric photorefractives,
the space charge field reduces to, Esc = E0

1
1+|U |2

The ensuing procedure for deriving the local modulation instability gain remains
similar to the one pursued till now by considering the weak sideband perturbation
to the plane wave solution and substituting it in the dynamical evolution to obtain
coupled differential equations for the perturbations. Figure 3.1 shows the global and
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Fig. 3.1 Global modulation instability gain(shown by the solid line) and local modulation
gain(shown by the dashed lines) versus p/k, r = 2 in a centrosymmetric photorefractive crystal
(Reprinted from Physics Letters A, 374, Kaiyun Zhan and Chunfeng Hou, One-dimensional modu-
lational instability of broad optical beams in biased centrosymmetric photorefractive crystals,
169–172, Copyright 2009, with permission from Elsevier)

Table. 3.1 Parameters of
KLTN crystal taken in the
present analysis [10]

ne 2.2 T 294 K

NA 1022 /m3 β 4.03 × 10–8 /V2

geff 0.12 m4/C2 k 2.76 × 107 m−1

εr 8000 λ0 0.5 μm

local modulation instability gain in case of centrosymmetric photorefractives taking
KLTN crystal parameters as in Table 3.1.

3.2.5 Pyroelectric Photorefractive Crystals

In this case, we consider a photorefractive crystal exhibiting the pyroelectric effect.
The refractive index change is now because of the pyroelectric space charge field
solely (see Section 2.4). The crystal has its temperature controlled by a metallic
plate in contact with it which is in turn connected to an external agency. An insu-
lating plastic cover is used to minimize any external influence on the crystal. Rest
of the configuration of the optical beam and diffraction compensation is similar
to the previous considerations. Strontium Barium Niobate, Sr0.6Ba0.4Nb2O6 (SBN)
henceforth can be considered as an excellent example for illustration [13, 14].

Esc is the induced space charge field which is now formed solely due to the
transient pyroelectric field. Hence Esc = Epysc and is [13],
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Epysc = −Epy
I

I + Id
(3.41)

Epy is the transient pyroelectric field and is given by [15],

Epy = − 1

ε0εr

∂P

∂T
�T (3.42)

where ∂P
∂T is the pyroelectric coefficient. Themagnitude of the temperature change

of the crystal is given by �T . Other symbols have their usual meanings. The value
and sign of Epy can be changed by adjusting the change in temperature, and so this
implies a strong correlation between the magnitude of heating or cooling and self
trapping including the modulation instability as we shall see further. Using (3.42),
we can easily obtain the following equation of dynamical evolution using the usual
dimensionless coordinates,

iUz + 1

2
Uxx + βEpy

|U |2
1 + |U |2U = 0 (3.43)

For studying the modulation instability, we need to take a plane wave broad beam
solution of (3.43),

U = r1/2exp

[
iβEpy

{
r

1 + r

}
z

]
(3.44)

and express the perturbed solution as,

U = [
r1/2 + σ(x, z)

]
exp

[
iβEpy

{
r

1 + r

}
z

]
(3.45)

σ(x, z) is a weak modulation term added to the steady state solution containing
two sideband plane waves. This weak perturbation satisfies

|σ(x, z)|2 << r1/2 (3.46)

The form of the weak perturbation can be expressed,

σ = a(z)exp(i px) + b(z)exp(−i px) (3.47)

The next step is to check whether this perturbation grows exponentially or is
attenuated with propagation. Hence, substituting (3.47) in (3.45) along with (3.46),
we obtain the evolution equation satisfied by the perturbation σ(x, z),

i
∂σ

∂z
+ 1

2k

∂2σ

∂x2
+ βEpy

r

(1 + r)2
(σ + σ∗) = 0 (3.48)
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Substituting (3.47) in (3.48), we obtain,

i
da

dz
− 1

2k
p2a + βEpy

r

(1 + r)2
(a + b∗) (3.49)

i
db

dz
− 1

2k
p2b + βEpy

r

(1 + r)2
(a∗ + b) (3.50)

Decoupling Eqs. (3.49) and (3.50) , we get,

d2a

dz2
=

[
βEpy

r

(1 + r)2
p2

k
− p4

4k2

]
a (3.51)

d2b

dz2
=

[
βEpy

r

(1 + r)2
p2

k
− p4

4k2

]
b (3.52)

Equations (3.51) and (3.52) are coupled differential equations. Therefore, their
general solution can be expressed as an exponential ~ exp(ωξ) with

ω =
[
βEpy

r

(1 + r)2
p2

k
− p4

4k2

]1/2

(3.53)

The local modulation instability gain can be found from (3.53),

g = Re

{[
βEpy

r

(1 + r)2
p2

k
− p4

4k2

]1/2
}

(3.54)

Also, the maximum modulation instability gain will be,

gmax =
[
1

2
k0Epyn

3
ere f f

r

(1 + r)2

]
(3.55)

and the spatial frequency associated with the maximum modulation instability
gain is,

pmax = k0n2e
1 + r

[
re f f E pyr

]1/2
(3.56)

Considering the SBN crystal’s parameters [13, 16, 17], ne = 2.35, λ0 = 532 nm.,
geff = 237 × 10–12 m/V, ε0 = 8.85 × 10–12 F/m, εr = 3400, ∂P

∂T = -3 × 10–4 Cm−2

K−1, r = 10. Using the parameters elucidated above, β = 0.018 and k = 2.774 ×
107. TheMI gain’s variation with p/k at a particular temperature is shown in Fig. 3.2.
p/k is the angle at which the plane wave components of the σ(x, z) perturbation
propagate with respect to the broad optical beam.
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Fig. 3.2 Modulation Instability gaing as a function of p/kwith�T = 20 °C. (Reprinted fromChaos,
Solitons and Fractals, 101,Aavishkar Katti and R.A.Yadav, Modulation instability of broad optical
beams in unbiasedphotorefractive pyroelectric crystals, 20–23, Copyright 2017, with permission
from Elsevier)

From (3.54) and (3.55), themodulation instability gain is a function of the temper-
ature change of the photorefractive pyroelectric crystal. Figure 3.3 shows the simul-
taneous plot showing the variation of the modulation instability gain g with �T
and p/k for r = 1. As the value of �T increases, the peak modulation instability
gain gmax increases. Again, as the value of �T increases, the range of values of p/k
corresponding to a finite gain increases with a rise in �T .

3.3 Concluding Remarks and Further Reading

A nice introduction to modulation instability and its beginning is given in [1]. As in
the case of solitons, modulation instability was first observed in water waves [7, 8].
The same concept was then found to be true for optical light beams. The reader is
referred to [2, 4, 9, 16–18] for a detailed study of modulation instability in different
types and configurations of photorefractive crystals.

Note 1:

The induced space charge field can be derived from the set of rate equations,
continuity equations and Gauss Law in one dimension for steady state [18],
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Fig. 3.3 Modulation Instability gain with respect to p/k and �T when r = 1. (p/k is scaled in
units of 104). (Reprinted from Chaos, Solitons and Fractals, 101,Aavishkar Katti and R.A.Yadav,
Modulation instability of broad optical beams in unbiasedphotorefractive pyroelectric crystals,
20–23, Copyright 2017, with permission from Elsevier)

γRnN
+
D = si (I + Id)

(
ND − N+

D

)
(3.57)

∂Esc

∂x
= e

∈0∈
(
N+

D − NA − n
)

(3.58)

J = eμnEsc + kBTμ
∂n

∂x
+ kpsi

(
ND − N+

D

)
I (3.59)

∂ J

∂x
= 0 (3.60)

where the symbols have their usual meanings. There is one change in these equations
if we compare them with those used in previous chapters. We have now considered
kp to be the photovoltaic constant which contributes the photovoltaic current term.
As usual, any z spatial dependence has been ignored assuming a much more rapid
variation in x. Now, in typical photovoltaic-photorefractivemedia,N+

D >> n,ND >>
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n, and NA >> n. Hence, (3.57) and (3.58) give,

N+
D = NA

(
1 + ∈0∈r

eNA

∂Esc

∂x

)
(3.61)

(3.61) can be represented as,

N+
D = NA

(
1 + LD

∂

∂x

Esc

Et

)
(3.62)

where,
Et = kBT/eLD = eNALD/ ∈0∈r and LD = (∈0∈r kBT/e2NA)

1/2 is the Debye
length.

Substituting (3.62) in (3.57),

n = si (ND − NA)(I + Id)

γRNA

(
1 + LD

∂

∂x

Esc

Et

)−1

(3.63)

In regions of constant illumination, x → ±∞, E(x → ±∞) = E0(constant),
∂E/∂x = 0. Also, in typical photorefractive materials, N+

D = NA. Hence, (3.59)
and (3.63) yield,

J∞ = J (x → ±∞, z) = eμn∞E0 + kpsi (ND − NA)I∞ (3.64)

With

n∞ = n(x → ±∞) = si (ND − NA)(I + Id)

γRNA
(3.65)

From equation, we can infer that the current is constant everywhere, J = J∞ and
so from (3.59) and (3.64) using (3.63) and (3.65),

Esc =
(
E0

1

1 + |U |2 − Ep
|U |2

1 + |U |2 + Ep
|U |2

1 + |U |2 f LD
∂

∂x

Esc

Et

)

(
1 + LD

∂

∂x

Esc

Et

)(
1 − f LD

∂

∂x

Esc

Et

)−1

− KbT

e

{
∂

∂x
ln(1 + |U |2)

−
[(

1 + LD
∂

∂x

Esc

Et

)−1

+ f

(
1 − f LD

∂

∂x

Esc

Et

)−1
]
LD

∂2

∂x2
Esc

Et

}
(3.66)

LD = (∈0∈r kBT/e2NA)
1/2 is the Debye length or the diffusion length, T is the

temperature, Et = eNALD
∈0∈r

, f = NA
/
(ND − NA)

and Ep = κγ NA
/
eμ which is the

photovoltaic field constant. μ is the electron mobility and other symbols have their
usual meaning as defined before.
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If the intensity of the light beam varies relatively slowly with respect to x, the term
LD

∂Esc
∂x can be ignored, as it is of the order of much less than unity. Also, the diffusion

terms can be neglected if the external electric field’s magnitude is moderately large
and the drift current terms dominate over the diffusion terms. Finally, we can obtain
the space charge field from (3.66) as,

Esc = E0
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
− kBT

e

1

I + Id

∂ I

∂x
(3.67)
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Chapter 4
Formation of Photorefractive Solitons

4.1 Introduction

The photorefractive nonlinearity has many advantages as discussed before like the
saturable nature of its nonlinearity and the easy realization in experiments due to
low laser power requirement. But one of the prime drawbacks of the photorefrac-
tive response is its very slow nature. The photorefractive response time can be
said to be approximately equivalent to the dielectric response time. Uptill now,
many investigations have been carried out for studying the formation characteris-
tics and temporal properties of photorefractive solitons in various different types of
photorefractive crystals, i.e., conventional photorefractive media [1–4], photovoltaic
media [5–7], photorefractive-photovoltaic media [8], centrosymmetric photorefrac-
tive media [9], photorefractive semiconductors [10, 11], and novel photorefractive
crystals exhibiting both the linear and quadratic electro-optic effect [12].

In this chapter, we shall discuss a general theory for characterising the temporal
response of photorefractive solitons. The time dependent dynamical evolution equa-
tion for photorefractive solitons will be derived. The temporal evolution of the soli-
tons can be inferred by studying the change in soliton width with respect to time for
different intensity ratios. The conditions under which quasi steady state solitons form
have been investigated. The dependence of temporal evolution characteristics of the
solitons on magnitude of the electro-optic coefficients is studied. We then illustrate
how this reduces to studying the temporal characteristics of photorefractive solitons
in noncentrosymmetric and centrosymmetric crystals. Finally, the temporal evolu-
tion of photovoltaic solitons and screening photovoltaic solitons is also discussed on
the basis of the previous analysis.
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4.2 Theoretical Formulation: Non-photovoltaic
Photorefractive Crystals

Consider an optical beampropagating in a photorefractive crystal along the z-axis.We
shall assume that the diffraction is along the x-direction only. The crystal is oriented
in such a way so that its c-axis coincides with the x-axis. The polarization of the light
beam is taken in the x-direction and the external electric field is also applied along
x-axis. In the slowly varying envelope approximation, the incident beam’s electric
field can be expressed as, E = x

∧

A(x, z)exp(ikz) where k = k0ne = (2π/λ0)ne.
λ0 is the wavelength in free space, ne is the unchanged refractive index. Hence, the
dynamical evolution equation becomes,

(

i
∂

∂z
+ 1

2k

∂2

∂x2
− b

k0n3egef f ∈2
0(∈r − 1)2Es

2

2
− a

k0n3ere f f Es

2

)

A(x, z) = 0

(4.1)

whereEs is the induced space charge field, reff and geff denote the linear and quadratic
electro-optic coefficient. a = 0, b = 1 represents the propagation equation for a
centrosymmetric photorefractive crystal, a = 1 and b = 0 represents the propagation
equation for a conventional photorefractive crystal exhibiting the linear electro-optic
effect, while a= 1, b= 1 represents the propagation equation in novel photorefractive
crystals exhibiting the linear and quadratic electro-optic effect simultaneously.

∈0 and ∈r are the vacuum permittivity and relative dielectric constant. The charge
transport model of Kukhtarev’s charge transport model [13] will serve as the starting
point to derive the space charge field,

∂

∂t
N+

D = (si I + β)(ND − N+
D ) − γ nN+

D (2a)

∂

∂x
(∈0∈r E) = ρi (2b)

∂ J

∂x
+ ∂ρi

∂t
= 0 (2c)

ρi = e(N+
D − n − NA) (2d)

J = eμnE + kBTμ
dn

dx
(2e)

where the beam intensity is I = |A|2, β is the generation rate of thermally generated
or dark carriers, si is the photoionization cross section, the recombination rate of
carriers is denoted by γ while the mobility of the electron is denoted by μ and e
denotes the electron’s charge. ρi is the total charge density while kB represents the
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Boltzmann’s constant. NA and ND are the concentrations of acceptors and donors
respectively. n is the electron density, T is the temperature and N+

D is the ionized
donor density.

In principle, (4.2a)–(4.2e) can be solved simultaneously to obtain a timedependent
space charge field. In practice, this is not so easy so a few approximations must be
made to simplify the charge transport equations as follows. Firstly, N+

D ≈ NA in
typical photorefractive materials. This is so because the electron density is very
small as compared to the ionized donor or acceptor density for moderate incident
intensity. Secondly, the carrier recombination time is negligible with respect to the
dielectric response time which gives us ∂N+

D/∂t = 0 [1]. Using these relations in
(4.2a), we get,

(si I + β)(ND − NA) = γ nNA (3a)

We can easily obtain the following differential equation connecting the space
charge field and the intensity,

eμ
∂

∂x
[(I + Id)E] + kBTμ

∂2 I

∂x2
+ ∈0∈r

γ NA

si (ND − NA)

∂2E

∂t∂x
= 0 (3b)

where Id = β/si is the dark irradiance. For obtaining (4.3b), substitute for ρ i from
(4.2b), J from (4.2e) in the continuity Eq. (4.2c) with n from (4.3a).

Integrating (4.3b) once, we get,

E + kbT

e(I + Id)

∂ I

∂x
+ C Id

(I + Id)

∂E

∂t
= E0

I∞ + Id
I + Id

(4.4)

where we have applied the condition [14], E(t → ∞) = E0(I∞+Id )
(I+Id )

− kBT
e

(∂ I/∂x)
(I+Id )

and
C = (∈0∈rγ NA)/[eμβ(ND−NA)], I∞ = I (x → ±∞, z) represents the intensity in
regions far away from the incident beam’s center, i.e., constant illumination regions.
E0 = E(x → ±∞, z) is the limiting value of the induced space charge field far
from the beam center, i.e., in constant illumination regions. E0 is approximately
equal to V0/W if the spatial width of the beam is much smaller than the x-width of the
photorefractive crystal. Supposing that the intensity changes slowly with progression
of time [1, 4, 5, 15] and remembering the fact that E(t → 0) = E0, we obtain, from
(4.4),

E = E0exp

[

− (I + Id)t

C Id

]

+ E0

(
(I∞ + Id)

I + Id
− kBT

e(I + Id)

∂ I

∂x

){

1 − exp

[

− (I + Id)t

C Id

]}

(4.5)

The (kBT/e) terms or the diffusion field terms can be ignored for a relatively strong
external bias. Hence (4.5) becomes,
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Table 4.1 Parameters
considered for PMN-0.33PT
crystal [16–20]

Parameter Value Parameter Value

λ0 632.8 nm V 1000 V

x0 20 μm l (crystal width) 1 cm

ne 2.562 β1 15.4612

re f f 182 × 10−12

m/V
β2 1.1724

gef f ∈2
0(∈r − 1)2 1.38 ×

10−16 m2/V2
ρ 0

E = E0

[
(I∞ + Id)

I + Id

]

+ E0

(
(I − I∞)

I + Id

){

exp

[

− (I + Id)t

C Id

]}

(4.6)

Substitute (4.6) in (4.1) to obtain dynamical evolution equation as an explicit
function of time,

iUξ + 1

2
Uss − β2

{
1 + ρ + (|U |2 − ρ

)
exp
[−(1 + |U |2)τ ]}2

(
1 + |U |2)2

U

− β1

{
1 + ρ + (|U |2 − ρ

)
exp
[−(1 + |U |2)τ ]}

(
1 + |U |2) U = 0 (4.7)

where, β1 = a (k0x0)
2n4ere f f
2 E0, β2 = b (k0x0)

2n4e gef f ∈2
0(∈r−1)2

2 E2
0 , ρ = I∞/Id and the

following dimensionless coordinates have been used,
τ = t/C, s = x/x0, ξ = z/kx20 , A = (2η0 Id/ne)

1/2U where, η0 = (μ0/∈0)
1/2

and x0 is the scale parameter. For illustration of the results, consider the parameters
for a PMN-0.33PT crystal as given in Table 4.1. Notably such a photorefractive has
been shown to exhibit both electro-optic effects simultaneously.

4.3 Bright Soliton Formation

For bright solitons, ρ = I∞
Id

= 0. Hence, (4.7) becomes,

iUξ + 1

2
Uss − β2

{
1 + (|U |2)exp[−(1 + |U |2)τ ]}2

(
1 + |U |2)2

U

− β1

{
1 + (|U |2)exp[−(1 + |U |2)τ ]}

(
1 + |U |2) U = 0 (4.8)

The envelope U is expressed as, U = r1/2y(s)exp(iνξ) where ν is the nonlinear
shift of the propagation constant, r is the intensity ratio, r = Imax

Id
= I (0)

Id
i.e., ratio of
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the maximum intensity to the dark irradiance; and y(s) is a real normalized bounded
function which satisfies 0 ≤ y(s) ≤ 1. The boundary conditions for a bright soliton
are, y(0) = 1, y(s → ±∞) = 0, ẏ(0) = 0, ẏ(±∞) = 0. Substitution U in (4.8)
gives,

d2y

ds2
= 2νy + 2β2

{
1 + r y2exp

[−(1 + r y2
)
τ
]}2

y
(
1 + r y2

)2

+ 2β1

{
1 + r y2exp

[−(1 + r y2
)
τ
]}
y

(
1 + r y2

) (4.9)

Equation (4.9) is a second order differential equation so integrating it once reduces
it to a first order differential equation. Along with the bright soliton boundary
conditions, we can obtain the value of the nonlinear shift of the propagation constant,

ν =
0∫

1

⎡

⎢
⎢
⎢
⎢
⎣

2β1

{
1 + r y2exp

[−(1 + r y2
)
τ
]}
y

(
1 + r y2

)

+ 2β2

{
1 + r y2exp

[−(1 + r y2
)
τ
]}2

y
(
1 + r y2

)2

⎤

⎥
⎥
⎥
⎥
⎦
dy (4.10)

Solving (4.9) numerically using (4.10) gives the spatial intensity profile of the
soliton at a particular scaled time τ for a given r. It can be seen from (4.9) that the
temporal evolution of the solitons depends explicitly on r and magnitude of both
electro-optic coefficients. A broad bifurcation can now be made for low and high r
to study the temporal evolution in detail.

4.3.1 Regime of High Intensity Ratio

Consider the intensity ratio r to be relatively high of the order of 102–103. As an
illustration, solving (4.9) takingparameters ofTable 4.1,we canderive the normalized
spatial profiles for the intensity of the soliton at different time intervals as shown in
Fig. 4.1.

Next, we shall study the temporal variation of the soliton width by plotting log-
linear graph between the soliton width and the scaled time in Figs. 4.2, 4.3, 4.4,
4.5. The main concept behind the obtained curves can be understood as follows:
Initially at τ = 0.005, a soliton with a large spatial width starts to form because of
the low magnitude of space charge field. As the induced space charge field builds
up with the passage of time, the photorefractive effect saturates rapidly. Hence, the
soliton’s width now becomes minimum. This minimum width soliton is denoted to
be a quasi-steady state soliton. Quasi steady state solitons have a historical precedent
in that they were the first signs of self trapping in photorefractives back in the 1990s.
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Fig. 4.1 Bright soliton formation at high intensity ratio r, τ = 0.005, 0. 02, 5 and r = 25. Reprinted
from Chaos, Solitons and Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in
photorefractive crystals having both the linear and quadratic electro-optic effect, 23–31, Copyright
2019, with permission from Elsevier

Fig. 4.2 Soliton width as a function of (scaled) time, r = 200. Reprinted from Chaos, Solitons and
Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier
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Fig. 4.3 Soliton width as a function of (scaled) time, r = 50. Reprinted from Chaos, Solitons and
Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier

Fig. 4.4 Soliton width as a function of (scaled) time, r = 25. Reprinted from Chaos, Solitons and
Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier



74 4 Formation of Photorefractive Solitons

Fig. 4.5 Soliton width as a function of (scaled) time, r = 5. Reprinted from Chaos, Solitons and
Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier

These quasi steady state solitons used to remain intact for a very short time interval
and disperse after that. What is happening here is that the soliton width increases
and reaches a perpetual value after τ = 1. This implies that a steady state has been
reached and the soliton width at this stage is called as the steady state soliton width.
The change from the quasi steady state soliton to the steady state soliton happens
when the screening of the external electric field commences and sets up an external
screening field. Quasi steady state solitons exist in the narrow time interval between
the time when the soliton width is minimum and the time at which the screening of
the electric field starts.

There is an important inference to be made from Figs. 4.2, 4.3, 4.4 and 4.5.
It is clear that the soliton width for the quasi steady state solitons approaches the
soliton width for the steady state solitons with a decrease in the intensity ratio to
approximately r = 5.

Also, it can be further inferred that with an increase in the intensity ratio r, the
initial soliton width (say, at τ = 0.001) decreases, while the steady state soliton width
reduces with a reduction in the intensity ratio.
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4.3.2 Regime of Low Intensity Ratio

Wehave seen earlier that the solitonwidth in case of quasi-steady state solitons comes
closer and closer to the soliton width at steady state when we keep on decreasing the
intensity ratio r till near about 5. So it is logical to now study how the soliton width
changes with time for the intensity ratio r < 5. These plots of soliton width versus
the scaled time are shown in Figs. 4.7, 4.8 and 4.9 while Fig. 4.6 shows the spatial
soliton profiles for the intensity at different scaled time intervals for r = 1.

It is notable that quasi steady state solitons do not exist in the regime of low
intensity ratio. The minimum value of the soliton width occurs in the steady state
itself. The reason behind this is that the photorefractive effect does not saturate for
low intensity ratios. For the current investigation, we consider r < 5 to be low and r >
5 to be high. The exact value of r at which we can bifurcate the low and high intensity
regime will be slightly different for different photorefractive crystals because of the
value of the linear or quadratic electro-optic coefficients and the interplay, if any,
between the two electro-optic effects.

Also, the initial soliton width increases with a decrease in the intensity ratio r
while the soliton width at steady state increases with a diminishing intensity ratio r.

Figure 4.10 shows the time to form for the quasi steady state solitons as a function
of the intensity ratio. Since the slope of the line is found as ≈1, the time to form

Fig. 4.6 Bright soliton formation in the regime of low intensity ratio r, τ = 0.005, 0.02, 5 and r =
1. Reprinted from Chaos, Solitons and Fractals, 126, Aavishkar Katti, Temporal behaviour of bright
solitons in photorefractive crystals having both the linear and quadratic electro-optic effect, 23–31,
Copyright 2019, with permission from Elsevier
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Fig. 4.7 Soliton width as a function of (scaled) time for r = 1. Reprinted from Chaos, Solitons and
Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier

quasi steady state solitons τ o is proportional to the inverse intensity ratio 1/r, i.e.,
r ∼ (τ0)

−1.

4.3.3 Influence and Interplay of Electro-optic Effects

In the previous section, the time evolution of the photorefractive solitons was inves-
tigated using parameters of PMN-0.33PT crystal which has the linear and quadratic
electro-optic effect simultaneously. We shall now investigate how the magnitude of
the electro-optic coefficients affect the formation characteristics. For such a study,
consider two general cases. The first case is when the linear electro-optic effect much
greater than the quadratic electro-optic effect, i.e., β1 � β2. The second case is when
the quadratic electro-optic effect is much greater than the linear electro-optic effect,
i.e., β1 	 β2. Figure 4.11 shows the plot of the soliton width versus scaled time for
both cases, β1 � β2 and β1 	 β2 in the high intensity ratio regime.The soliton width
at the initial time and the soliton width at steady state are lesser when the quadratic
electro-optic effect dominates while the soliton width at quasi steady state is very
nearly equal.
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Fig. 4.8 Soliton width as a function of (scaled) time for r = 2.5. Reprinted from Chaos, Solitons
and Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier

Figure 4.12 shows the plot of the soliton width versus scaled time for both cases,
β1 � β2 and β1 	 β2 in the low intensity regime. In this case, we can see that the
soliton width at the initial time is much lesser when the quadratic electro-optic effect
dominates. As discussed before, quasi steady state solitons cannot form if intensity
ratio remains low.

4.3.4 Time Evolution of Screening Solitons

The theoretical foundation carries forward but with β2 = 0 because now the
photorefractive crystal is non-centrosymmetric and hence the quadratic electro-optic
coefficient is zero. Hence, (4.8) becomes,

iUξ + 1

2
Uss − β1

{
1 + (|U |2) exp[−(1 + |U |2)τ ]}

(
1 + |U |2) U = 0 (4.11)

The ansatz for the field is again, U = r1/2y(s)exp(iνξ) where the symbols have
their usual meaning as mentioned before. Substitution of U in (4.11) gives,
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Fig. 4.9 Soliton width as a function of (scaled) time for r = 0.5. Reprinted from Chaos, Solitons
and Fractals, 126, Aavishkar Katti, Temporal behaviour of bright solitons in photorefractive crystals
having both the linear and quadratic electro-optic effect, 23–31, Copyright 2019, with permission
from Elsevier

d2y

ds2
= 2νy + 2β1

{1 + r y2exp[−(1 + r y2)τ ]}y
(1 + r y2)

(4.12)

Integrating (4.12) once, we obtain a first order differential equation. Using
the bright soliton boundary conditions, we can obtain the nonlinear shift of the
propagation constant,

v =
0∫

1

[

2β1

{
1 + r y2 exp

[−(1 + r y2
)
τ
]}
y

(
1 + r y2

)

]

dy (4.13)

Solving (4.12) numerically using (4.13) gives the spatial intensity profile of the
soliton at a particular scaled time τ for a given r.Again, we can infer that the temporal
characteristics of the bright screening solitons depend strongly on whether we are in
the high or low intensity ratio regime. An analogous study to that done in Sects. 4.3.1,
4.3.2, 4.3.3 and 4.3.4 can be performed to firstly study the temporal characteristics
at various intensity ratios and secondly, analyze the value of r below which quasi
steady state solitons do not form.
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Fig. 4.10 Time to form the quasi steady state solitons versus the inverse intensity ratio (solid
line = best fit, point = calculated). Reprinted from Chaos, Solitons and Fractals, 126, Aavishkar
Katti, Temporal behaviour of bright solitons in photorefractive crystals having both the linear and
quadratic electro-optic effect, 23–31, Copyright 2019, with permission from Elsevier

Fig. 4.11 Soliton width as a function of (scaled) time when β1 � β2 and β1 	 β2 for r = 25
(high intensity ratio). Reprinted from Chaos, Solitons and Fractals, 126, Aavishkar Katti, Temporal
behaviour of bright solitons in photorefractive crystals having both the linear and quadratic electro-
optic effect, 23–31, Copyright 2019, with permission from Elsevier
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Fig. 4.12 Soliton width as a function of (scaled) time when β1 � β2 and β1 	 β2 for r = 0.5
(low intensity ratio). Reprinted from Chaos, Solitons and Fractals, 126, Aavishkar Katti, Temporal
behaviour of bright solitons in photorefractive crystals having both the linear and quadratic electro-
optic effect, 23–31, Copyright 2019, with permission from Elsevier

4.3.5 Time Evolution of Centrosymmetric Solitons

The theoretical foundation elucidated in Eqs. (4.1)–(4.10) again carries forward but
with β1 = 0 because now the photorefractive crystal is centrosymmetric and hence
the linear electro-optic coefficient is zero. Equation (4.8) for the case of bright solitons
now becomes,

iUξ + 1

2
Uss − β2

{1 + (|U |2)exp[−(1 + |U |2)τ ]}2
(1 + |U |2)2 U = 0 (4.14)

Substitution of U = r1/2y(s)exp(iνξ) in (4.14) leads to,

d2y

ds2
= 2νy + 2β2

{
1 + r y2exp

[−(1 + r y2
)
τ
]}2

y
(
1 + r y2

)2 (4.15)

Integrating (4.15) once and using the bright soliton boundary conditions, we
obtain,
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v =
0∫

1

[

2β2

{
1 + r y2 exp

[−(1 + r y2
)
τ
]}2

y
(
1 + r y2

)2 dy

]

(4.16)

Solving (4.15) numerically using (4.16) gives the spatial intensity profile of the
soliton at a particular scaled time τ for a given r.Again, we can infer that the temporal
characteristics of the bright screening solitons depend strongly on whether the value
of r is high or low. An analogous study to that done in Sects. 4.3.1, 4.3.2, 4.3.3
and 4.3.4 can be performed to firstly study the temporal characteristics at various
intensity ratios and secondly, analyze the value of r below which quasi steady state
solitons do not form.

4.4 Theoretical Formulation: Photovoltaic Photorefractive
Crystals

Consider an optical beam propagating along the z-axis in a photorefractive crystal.
The crystal is kept so that its c-axis coincides with the x axis and the diffraction
is assumed to be in the same direction. The external electric field is applied along
the x-axis and the light beam is linearly polarized along the same direction. In the
slowly varying envelope approximation, the incident beam’s electric field is, E =
x
∧

A(x, z)exp(ikz) where k = k0ne = (2π/λ0)ne. λ0 is the wavelength in free space
and ne is the unchanged refractive index. Hence, the dynamical evolution equation
becomes,

(

i
∂

∂z
+ 1

2k

∂2

∂x2
− k0n3ere f f E

2

)

A(x, z) = 0 (4.17a)

where E is the induced space charge field. reff is the linear electro-optic coefficient.
The amplitude term can now be expressed,

A(x, z) = u(x)I 1/2d exp(i�z) (4.17b)

The model of Kukhtarev which we detailed in the previous section will again be
used to derive the time dependent space charge field but now the charge transport
equations contain contribution from the bulk photovoltaic field as follows [13],

∂

∂t
N+

D = (si I + β)(ND − N+
D ) − γ nN+

D (4.18a)

∂

∂x
(∈0∈r E) = ρi (4.18b)
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∂ J

∂x
+ ∂ρi

∂t
= 0 (4.18c)

ρi = e
(
N+

D − n − NA
)

(4.18d)

Ĵ = eμnEs + kBTμ
dn

dx
+ κsi

(
ND − N+

D

)
I (4.18e)

where the beam intensity is I = |A|2, β is the generation rate of thermally generated
or dark carriers, κ is the photovoltaic constant, the recombination rate of carriers
is denoted by γ , si is the photoionization cross section, while the mobility of the
electron is denoted by μ and e denotes the electron’s charge. ρi is the density of
the total charge while kB represents the Boltzmann’s constant. NA and ND are the
concentrations of acceptors and donors respectively. n is the electron density, N+

D

is the ionized donor density, Ĵ represents the electric current density and T is the
temperature.

In principle, (4.2a)–(4.2e) can be solved simultaneously to obtain a timedependent
space charge field. In practice, this is not so easy so a few approximations must be
made to simplify the charge transport equations. Usually, the electron density is
very small as compared to the density of ionized donors or acceptors if we consider
moderate incident intensity and hence N+

D ≈ NA. The carrier recombination time is
negligible with respect to the dielectric response time which gives us ∂N+

D/∂t = 0
[1]. Hence, (4.18d) becomes, ρ ≈ e(N+

D − NA). Substituting into the Gauss Law
(4.18b), gives us, ∈0∈r∂E/∂x = e(N+

D − NA). If x → ±∞, Es(x → ±∞, z) =
E0, then ∂Es/∂x = 0 and N+

D = NA. (4.18a) elucidates the charge generation
and recombination process and states that the characteristic recombination time for
carriers is 1/γ n. This is the response time for the buildup of free electron charge
carriers. (4.18c) and (4.18e) are the continuity and current equations respectively.We
can immediately infer that the dielectric response time of the buildup of ion charges
is ∈r∈0/eμn. Characteristically in photorefractive crystals, the recombination time
is much smaller as compared to the dielectric response time, i.e., 1/γ n/∈r∈0/eμn 	 1
and hence only (4.18a) can be genuinely said to be a steady state equation. Under
the above conditions,

n = s(ND − NA)(I + Id)

γ NA
(4.19)

where Id = β

si
. Putting (4.19) and N+

D ≈ NA into (4.18e),

J
∧

= eμsi (ND − NA)

γ NA

[

(I + Id)Es + kBT

e

∂ I

∂x
+ Ep I

]

(4.20)

where, EP =κγ NA /eμ is known as the photovoltaic field constant. Substituting (4.20)
and (4.18d) into (4.18b) gives,
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Td Id
∂2Es

∂x∂t
+ ∂[(I + Id)Es]

∂x
+ kBT

e

∂2 I

∂x2
+ EP

∂ I

∂x
= 0 (4.21)

where we have used, Td = (∈0∈r/eμ)[γ NA/β(ND − NA)]. Integrating (4.21), we
heve,

Td Id
∂Es

∂t
+ (I + Id)Es + kBT

e

∂ I

∂x
+ EP I = C1 (4.22)

C1 is a constant of integration. At steady state and in regions of constant illumi-
nation, x → ±∞, Es(x → ±∞, z) = E0, I (x → ±∞, z) = I∞ and hence, the
constant of integration can be found out from (4.22), C1 = (I∞ + Id)E0 + Ep I∞.
Using the initial conditions that Es = 0 and a slow variation of the intensity with
respect to time, (4.22) can be solved,

Es =
(

E0
I∞ + Id
I + Id

− Ep
I − I∞
I + Id

− kBT

e

1

I + Id

∂ I

∂x

)[

1 − exp

(

− I + Id
Td Id

t

)]

(4.23)

E0 can also be found out by using the potential condition,

V = −
l/2∫

−l/2

Esdx = RS Ĵ + ε (4.24)

where V is the potential between the electrodes on the photorefractive crystal and
are separated by a distance l. S is the surface area of the electrodes, ε represents the
EMF of the source while R is the load resistance. Substituting (4.23) in (4.24), we
get,

E0 = −[ε/χ + Epσ/χ − (kBT/e)(η/χ)
]

(4.25)

where,

χ =
l/2∫

−l/2

{
(I∞ + Id)

(I + Id)

}{

1 − exp

[

− (I + Id)

(Td Id)
t

]}

dx

σ =
l/2∫

−l/2

{
(I∞ − I )

(I + Id)

}{

1 − exp

[

− (I + Id)

(Td Id)
t

]}

dx

η =
l/2∫

−l/2

{
(∂ I/∂x)

(I + Id)

}{

1 − exp

[

− (I + Id)

(Td Id)
t

]}

dx
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Substituting (4.24) into (4.21), we have,

J = J0T − 1

Id
(
ε/χ + Ep

)

{(

Ep I + kBT

e

∂ I

∂x

)[

1 − exp

(

− I + Id
Td Id

t

)]

− kBT

e

∂ I

∂x
− Ep I

}

(4.26)

where,

J0T = − 1

Id
(
ε/χ + Ep

)

{
ε(I∞ + Id)

χ
+ Ep

[
σ(I∞ + Id)

χ
− I∞

]

− kBTη(I∞ + Id)

eχ

}

(4.27)

Also, J = J
∧

/[eμs(ND −NA)/γ NA]Id(ε/χ +Ep)which implies that the electric
current density has been transformed into dimensionless coordinates. The diffusion
terms ( kBTe terms) can be neglected for a strong bias. Hence, the time dependent
space charge field can be expressed as,

E
∧

s = J0 Id − α I

I + Id

[

1 − exp

(

− I + Id
Td Id

t

)]

(4.28)

where, J0 = −{1/[Id(ε/χ + Ep)]
}{

ε(I∞ + Id)/χ + Ep[σ(I∞ + Id)/χ − I∞]},
α = Ep/(ε/χ + Ep), E

∧

s = Es/(ε/χ + Ep).
Following the approach of [8, 21], we shall now evaluate the value of J0 for bright

solitons. We shall assume that J0 tends to approximately be equal to the steady state
current density. We can infer this clearly from (4.26) taking the exponential term to
be negligible. At steady state, the space charge field can be obtained by considering
the exponential term to vanish,

E
∧

s = (J0 Id − α I )/(I + Id) (4.29)

Adopting the dimensionless co-ordinates,
ξ = x/d, d = (±2kb)−1/2, b = (k/ne)[(1/2)n3ere f f (∈ /χ + Ep)], where d is the

scale length and the strength and sign of the nonlinearity can be inferred from b, and
substituting in (4.24), we get,

J0 = βC − β

l/2d∫

−l/2d

J0 − αu2

1 + u2
dξ (4.30)

where, β = γ NAd/[RSIdeμs(ND − NA)] and C = ε/d(ε/χ + Ep). Consider a
bright soliton which has a width �x and let u20 maximum intensity. Approximating
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its shape by a square shaped function, and in the limit l � �x , (4.17) becomes,

J0 ∼= βC(1 + u20) + (β�x/d)αu20
(1 + u20)[1 + (βl/d)] (4.31)

Now, there are two limiting cases which are important to understand here. If the
external resistance is very large or tends to infinity, i.e., R → ∞, then β → 0 and
J0 = 0. If the external resistance is vanishingly small or nonexistent, i.e., R → 0,
J0 → [ε(1+ u20)/(ε/χ + Ep) + α�xu20]/[(1+ u20)/ l] and if u20 << 1, or u20 >> 1
(4.21) reduces to,

J0 = ε

l(ε/χ + Ep)
+ α�x

l
(4.32)

We can now obtain the dynamical evolution equation by using (4.17) and (4.28),

d2u

dξ 2
= ±

{
�

b
+ J0 − αu2

1 + u2

[

1 − exp

(

−1 + u2

Td
t

)]}

u (4.33)

Integrating (4.33) once, we get,

(
du

dξ

)2

= ±

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
�
b − α

)(
u2 − u20

)+ (J0 + α)ln
(
1+u2

1+u20

)

−(J0 + α)

[

Ei

(

−1 + u2

Td
t

)

− Ei

(

−1 + u20
Td

t

)]

−αTd
t

[

exp

(

−1 + u2

Td
t

)

− exp

(

−1 + u20
Td

t

)]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

u (4.34)

For bright soliton solutions, the boundary conditions are,

u∞ = u′(∞) = u′′(∞) = 0, u′(0) = 0.

So, using the boundary condition at infinity,

�

b
= α + J0 + α

u20

[

ln

(
1

1 + u20

)

− Ei

(

− 1

Td
t

)

+ Ei

(

−1 + u20
Td

t

)]

− αTd
u20t

[

exp

(

− 1

Td
t

)

− exp

(

−1 + u20
Td

t

)]

(4.35)

Substituting (4.35) into (4.34), we finally get,
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(
du

dξ

)2

=

⎛

⎜
⎜
⎜
⎝

(J0 + α)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln
(
1 + u2

)+ Ei

(

− 1

Td
t

)

− Ei

(

−1 + u20
Td

t

)

− u2

u20

[

ln
(
1 + u20

)+ Ei

(

− 1

Td
t

)

− Ei

(

−1 + u20
Td

t

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+αTd
t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp

(

− 1

Td
t

)

− exp

(

−1 + u2

Td
t

)

− u2

u20

[

exp

(

− 1

Td
t

)

− exp

(

−1 + u20
Td

t

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎠

(4.36)

The bright soliton’s temporal evolution can be found out by numerically inte-
grating (4.36). As an example, we shall consider l = 1 cm, R = 0 and typical
LiNbO3 parameters [8] with Ep = 40 kV/cm. Figure 4.13 shows the variation of the
soliton FWHM with t / Td for u20 = 10 when ε = 30,000; 20,000; 10,000; −10,000;
−20,000 V for J0 = 0.43, 0.33, 0.20, −0.33, −0.99 respectively. Figure 4.14 shows
how the soliton width changes with t / Td for ε = 20,000 V with J0 = 0.33 when
u20 = 0.1, 1, 10 respectively. From Figs. 4.13 and 4.14, it is evident that the time to
form for the steady-state bright solitons reduces with an increase in u20 when electric
current density J0 is constant. Also, for a constant u20, J0 > 0 is needed to form for
steady-state bright solitons as the minimum formation time for steady state solitons
does not exist for J0 < 0.

Fig. 4.13 Soliton width versus t / Td for u20 = 10 when ε = 30,000; 20,000; 10,000; −10,000;
−20,000 V for J0 = 0.43, 0.33, 0.20, −0.33, −0.99. Temporal development of spatial solitons
in biased photorefractive-photovoltaic materials, Keqing Lu, Wei Zhao et al., Journal of Modern
Optics, Vol. 55, 10 June 2008, Taylor and Francis, reprinted by permission of the publisher (Taylor
&Francis Ltd, https://www.tandfonline.com)

https://www.tandfonline.com
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Fig. 4.14 SolitonWidth as a function of t / Td for ε= 20,000Vwith J0 = 0.33when u20 = 0.1, 1, 10.
Temporal development of spatial solitons in biased photorefractive-photovoltaic materials, Keqing
Lu, Wei Zhao et al., Journal of Modern Optics, Vol. 55, 10 June 2008, Taylor and Francis, reprinted
by permission of the publisher (Taylor &Francis Ltd, https://www.tandfonline.com)

4.5 Further Reading

In 4.4, when the external bias field is absent, ε = 0 and the system reduces to that
of photovoltaic solitons and (4.36) is modified accordingly by changing the value of
J0 to be that at ε = 0 [as found in (4.28)]. If the photovoltaic effect is negligible,
Ep = 0, and the system becomes that of screening solitons for R = 0. Substituting
Ep = 0 and modifying J0 for Ep = 0 in (4.36), we can get the soliton envelope
variation with time. Reference [8] treats these aspects relating to temporal evolution
of screening photovoltaic solitons in detail, including the evolution of both bright
and dark solitons.

In addition, Refs. [5–7, 9, 12] should be referred for an in depth understanding of
temporal dynamics of solitons in different types of photorefractive crystals.
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Chapter 5
Coupling of Photorefractive Solitons

5.1 Introduction

Coupling of optical solitons has been an attractive topic for research since around
1960s [1]. The pairing of optical spatiotemporal solitons has been studied previously
in Kerr media by solving two coupled NLS equations. The methodology was then
extended to optical spatial solitons. There has been previous research which theoret-
ically predicts bright and/or dark spatial soliton pairs containing two different wave-
lengths can be observed in a self-focusing or defocusing medium with a Kerr type
nonlinearity by cross phase modulation. The two superimposed soliton components
should have requisitely scaled relative intensities [2]. As an experimental confirma-
tion of the above, a bright–dark spatial soliton pair has been detected and observed in
a self focusing nonlinear mediumwith the Kerr nonlinearity with the two constituent
beams being of different colors [3]. In general, any two beams propagating collinearly
in a nonlinearmediumwill interact through cross phasemodulation. Hence one beam
affects the other through cross phase modulation. In case of coupled soliton pair, if
the two components have equivalent amplitude, cross phase modulation is almost
equivalent with the self-phase modulation of each beam, and both effects play a vital
role in the formation of a soliton pair. Therefore, one component of the soliton pair
cannot exist independently of the other. This is in direct contrast to the case where a
weak beam is guided by a induced waveguide due to a strong soliton beam. The cross
phase modulation is much smaller than the self phase modulation and the weaker
beam has relatively less effect on the stronger soliton beam in such a case. If the
weak beam is switched off, the stronger beam is not affected [4].

If we consider one dimensional spatial solitons, then there are three scenarios
in which they can interact with each other in a plane. The two solitons can either
overlap, propagate parallel to each other some distance apart, or cross each other.
If two mutually coherent self trapped beams are propagating parallel to each other
in a photorefractive crystal but not overlapping, then an attraction or repulsion is
observed between the two solitons, depending on their initial phase difference. In
this chapter, we shall be investigating the interaction between two incoherent or

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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coherent overlapping, collinearly propagating photorefractive solitons leading to
coupled spatial soliton pairs. We can consider two mutually incoherent or mutu-
ally coherent light beams possessing the same frequency and polarization. These
two light beams are responsible for an effective refractive index modulation being
produced in the photorefractive crystal. Each soliton beam is self trapped due to the
refractive index waveguide induced by a combination of intensities of both beams.
Hence, the coupled pair will collapse if any one light beam is switched off. In case
there are more than two incident soliton beams, this theory can be extended to study
incoherently coupled multicomponent solitons. The first theoretical studies on inco-
herently coupled spatial solitons were conducted by Christodoulides et al. [40] and
the experimental studies followed [5, 6]. Consequently, many investigations have
been performed for incoherently coupled soliton pairs and coupled multicomponent
solitons in numerous realizations.

The experimental apparatus for possible realization of incoherent or coherent
coupled soliton pairs and multicomponent solitons consists firstly, of a CW laser in
the range 400–600 nm. Then a beam splitter is used split the laser beam into two
soliton-like beams. If one wishes to have multicomponent coupled solitons, a series
of beam splitters can be used to form 2 N soliton like beams. A glass slide is inserted
between them. If one wishes to observe an incoherently coupled soliton pair, these
beams are made mutually incoherent at the crystal face by having their optical path
difference to be very much greater than the coherence length of the laser. For a
coherently coupled soliton pair, the optical path difference between the two beams
should be constant and within the coherence length of the laser. The output beam is
detected by a CCD camera.

Since the collinearly propagating soliton beams have the same frequency and
polarization, the way to distinguish one component in the output from the others is
by blocking the other components by means of a mechanical shutter and sampling
the desired soliton beam in a time interval less than the dielectric response time of
the crystal. What this does is it allows one to view the desired component of the
soliton, as a rapid change in intensity prevents any effect on the effective refractive
index induced due to all the beams [6, 7].

In this chapter, a theoretical foundation will be presented for both incoherent and
coherent coupled soliton pairs in photorefractive media. Finally, taking an approx-
imate solution for the coupled soliton pair reveals an entirely different parameter
space for unique Gaussian soliton pair which we then investigate in detail. The
theory behind incoherently and coherently coupled soliton pairs can be easily gener-
alized to study multicomponent incoherently or coherently coupled solitons which
we briefly comment upon at the end of the chapter.
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5.2 Theoretical Foundation: Photovoltaic Photorefractive
Crystals

Consider two incoherent light beams which are propagating along the z axis and
which can diffract along the x axis only. The two light light beams possess linear
polarization along the x axis while the external electric field is also applied in the
same direction. The total electric field for the two beams can now be written as,−→
E = −→

E 1 + −→
E 2.The total electric field satisfies the following Helmholtz equation,

∇2 �E + (
k0n

′
e

) �E = 0 (5.1)

where the symbols have their usual meaning as discussed previously. The indi-
vidual electric fields are expressed in terms of slowly varying envelopes, E1 =
iφ(x, z)exp(ikz) and E2 = iψ(x, z)exp(ikz) where k = k0ne. Substituting these
envelopes into the Helmholtz Eq. (5.1) along with the expression for the perturbed
extraordinary refractive index �n = n′

e − ne = − 1
2n

3
ere f f Esc, we get,

iφz + 1

2k
φxx − k0

(
n3ere f f Esc

)

2
φ = 0 (5.2)

iψz + 1

2k
ψxx − k0

(
n3ere f f Esc

)

2
ψ = 0 (5.3)

where, φz = ∂φ/∂z, etc.
Now the next step for solving (5.2) and (5.3) would be to calculate the space

charge field. The space charge field has already been obtained for photovoltaic
photorefractive crystals in previous chapters (see, for example, 3.1),

Esc =
(
E0

1

1 + |U |2 − Ep
|U |2

1 + |U |2 + Ep
|U |2

1 + |U |2 f LD
∂

∂x

Esc

Et

)

(
1 + LD

∂

∂x

Esc

Et

)(
1 − f LD

∂

∂x

Esc

Et

)−1

− KbT

e

{
∂

∂x
ln(1 + |U |2) −

[(
1 + LD

∂

∂x

Esc

Et

)−1

+ f

(
1 − f LD

∂

∂x

Esc

Et

)−1
]

LD
∂2

∂x2
Esc

Et

}
(5.4)

where, LD = (ε0εr kBT/e2NA)
1/2 is the Debye length or the diffusion length, T is

the temperature, Et = eNALD
ε0εr

, f = NA
/
(ND − NA) and Ep = κγ NA

/
eμ which

is the photovoltaic field constant. μ is the electron mobility and other symbols have
their usual meaning as defined before. If the intensity variation is relatively smooth,
the diffusion effect can be neglected relative to the photovoltaic effects in typical
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photorefractive materials. Hence, the term LD
∂Esc
∂x has a value much less than unity

[8, 9] and (5.4) reduces to,

Esc = E0
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
(5.5)

E0 can be obtained from the potential condition,

ε = −
l/2∫

−l/2

Edx (5.6)

ε is the external voltage applied to the crystal between the electrodes which are
separated by a distance l.

Using (5.5) and (5.6), we get,

Esc = −(εη + Epσ
∧

η)
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
(5.7)

where,

η = 1/
∫ l/2
−l/2[(I∞ + Id)/(I + Id)]dx

σ̂ = −
l/2∫

−l/2

(I∞−I )
(I+Id )

dx

If the two beams are coupled incoherently, i.e., there is no relation between the
phases of the two beams at any instant, then the total intensity of the two beams can
be found out by adding the two Poynting fluxes,

I = ne
2η0

(|φ|2 + |ψ |2) with η0 = (μ0/ε0)
1/2. Employing the usual dimensionless

coordinates where the intensity is scaled with respect to the dark irradiance, φ =
(2η0 Id/ne)

1/2U, ψ = (2η0 Id/ne)
1/2V , ξ = z/(kx20 ), s = x/x0, the normalized

envelopes U and V now satisfy,

iUξ + 1

2
Uss + (α + β)(ρ + 1)

U

1 + |U |2 + |V |2 − δ
[ρ − (|U |2 + |V |2)]U

1 + |U |2 + |V |2 = 0

(5.8)

iVξ + 1

2
Vss + (α + β)(ρ + 1)

V

1 + |U |2 + |V |2 − δ
[ρ − (|U |2 + |V |2)]V

1 + |U |2 + |V |2 = 0

(5.9)

where, β = (k20x
2
0 )(n

4
er33η/2)ε, α = (k20x

2
0 )(n

4
er33σ

∧

η/2)Ep, δ =
(k20x

2
0 )(n

4
er33/2)Ep.
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In case the two beams do have a phase relationship at all instants in time, they
constitute a coherently coupled soliton pair. The total intensity now becomes, I =
ne
2η0

(|φ + ψ |2)and the dynamical evolution equations are,

iUξ + 1

2
Uss + (α + β)(ρ + 1)

U

1 + |U + V |2 − δ
[ρ − (|U + V |2)]U

1 + |U + V |2 = 0 (5.10)

iVξ + 1

2
Vss + (α + β)(ρ + 1)

V

1 + |U + V |2 − δ
[ρ − (|U + V |2)]V

1 + |U + V |2 = 0 (5.11)

It is notable to observe here that the above theoryworkswhen the bulk photovoltaic
effect is negligible, i.e., Ep= 0. In this case, Eq. (5.5) becomes,

Esc = E0
I∞ + Id
I + Id

(5.12)

Substituting (5.12) in (5.2) and (5.3), the system reduces to the case of studying
coupled screening soliton pairs in nonphotovoltaic photorefractive solitons. Now, we
know the following relations for the current for a photovoltaic photorefractive crystal
at steady state, (see Note 1, Chap. 3),

J = eμnEsc + kBTμ
∂n

∂x
+ kpsi (ND − N+

D )I (5.13)

∂ J

∂x
= 0 (5.14)

n = si (ND − NA)(I + Id)

γRNA

(
1 + LD

∂

∂x

Esc

Et

)−1

(5.15)

(5.13) and (5.14) imply that J = J∞ and hence,

J = J∞ = eμnE0 + kpsi (ND − N+
D )I∞ (5.16)

Substituting the value of E0 from the potential condition as found in (5.7),

J = −eμn(εη + Epσ
∧

η) + kpsi (ND − N+
D )I∞ (5.17)

If there is no external bias, ε = 0, and using Ep = κγ NA
/
eμ, N+

D ∼ NA with
NA/ND � 1 in typical photorefractive materials, we get from (5.13)–(5.15),

J

s Id NDkp
= J

∧

= I∞ − σ
∧

η(I∞ + Id)

Id
(5.18)

Substituting in (5.7) with ε = 0 with I = |U |2 Id = u2 Id , we obtain,
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Esc

Ep
= J

∧

− u2

1 + u2
(5.19)

Hence, in (5.19), we have obtained the space charge field for the case of photovoltaic
photorefractive crystals without the external bias field. Now, the photovoltaic crystal
can be open circuit or closed circuit. For an open circuit, J

∧

= 0 and (5.19) becomes,

Esc = −Ep
I/Id

1 + I/Id
(5.20)

Substituting (5.19) in (5.2) and (5.3), we obtain a system for studying the coupled
soliton pairs in closed circuit photovoltaic crystals without an external bias field.
Similarly, substituting (5.20) in (5.2) and (5.3), we obtain a system for studying the
coupled soliton pairs in open circuit photovoltaic crystals without an external bias
field.

5.3 Theoretical Foundation: Non-photovoltaic
Photorefractive Crystals

Now, in non photovoltaic photorefractive materials, the change in extraordinary
refractive index is [8, 10–12],

�n = n′
e − ne = −1

2
an3ere f f Esc − 1

2
bn3egef f ε

2
0(εr − 1)2E2

sc (5.21)

where Esc is the space charge field induced in the photorefractive crystal. reff repre-
sents the linear electro-optic coefficient, geff represents the quadratic electro-optic
coefficient while ε0 and εr are the permittivity in vacuum and the dielectric constant
respectively.

a and b are nonzero depending upon whether the photorefractive crystal exhibits the
linear (a = 1, b = 0) or quadratic (a = 0, b = 1) both (a = 1, b = 1) electro-optic
effects.

Simplifying (5.21) to the first order, we get,

(n/
e)

2 = n2e − n4ere f f Esc − n4egef f ε
2
0(εr − 1)2E2

sc (5.22)

The total electric field is expressed as
−→
E = −→

E1 +−→
E2. E1 and E2 are the individual

components while the total field satisfies the Helmholtz equation. The slowly varying
envelopes are, E1 = iφ(x, z)exp(ikz) and E2 = iψ(x, z)exp(ikz) where k = k0ne.
Substituting these envelopes into the Helmholtz Eq. (5.1) and using (5.22), we get,
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(
i
∂

∂z
+ 1

2k

∂2

∂x2
+ k

ne
�n

)
φ(x, z) = 0 (5.23)

(
i
∂

∂z
+ 1

2k

∂2

∂x2
+ k

ne
�n

)
ψ(x, z) = 0 (5.24)

with

�n = −1

2
an3ere f f Esc − 1

2
bn3egef f ε

2
0(εr − 1)2E2

sc (5.25)

For a relatively broad beam and strong bias, the static space charge field has been
obtained previously by neglecting the effects of diffusion,

Esc = E0
I∞ + Id
I + Id

(5.26)

where the symbols have their usual meanings. For finding E0, refer to the circuit
shown in Fig. 5.1 from where the following potential condition is obtained,

ε = −
l/2∫

−l/2

Escdx + RJ S (5.27)

where ε is the EMF of the source, R is an external load, S is surface area of the
electrodes, and l is the width of the crystal between the electrodes [11]. Substitution
of (5.27) into (5.26) gives,

Fig. 5.1 Electrical circuit for observing coupled solitons in a biased photorefractive crystal. R is
the external resistance
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Esc = −(εα − RJ Sα)
I∞ + Id
I + Id

(5.28)

where,

α = 1
∫ l/2

−l/2(I∞ + Id)(I + Id)
−1dx

(5.29)

The total intensity for the two mutually incoherent beams is gotten by adding the
two Poynting fluxes, I = ne

2η0

(|A1|2 + |A2|2
)
with η0 = (μ0/ε0)

1/2.
Substituting Esc and�n in (5.2) and in terms of dimensionless variables specified

(see 5.2), one gets the following equation,

iUξ + 1

2
Uss − β1(1 + ρ)U

1 + |U |2 + |V |2 − β2(1 + ρ)2U

(1 + |U |2 + |V |2)2 (5.30)

iVξ + 1

2
Vss − β1(1 + ρ)V

1 + |U |2 + |V |2 − β2(1 + ρ)2V

(1 + |U |2 + |V |2)2 = 0 (5.31)

and β1 = (k0x0)
2n4ere f f

(RJ Sα−εα)2

2 , β2 = (k0x0)
2n4egef f ε

2
0(εr − 1)2 (RJ Sα−εα)2

2

5.4 Coupled Spatial Solitons

Considering first the case of a photovoltaic photorefractive crystal and a bright
incoherently coupled soliton pair, let us define the normalized envelopes [9],

U = r1/2y(s)cosθexp(iμξ) (5.32)

V = r1/2y(s)sinθexp(iμξ) (5.33)

where, θ is an arbitrary projection,μ represents the nonlinear shift of the propagation
constant, y(s) is a real bounded function such that 0 ≤ y(s) ≤ 1. Substituting (5.32)
and (5.33) in (5.10) and (5.11),

d2y

ds2
− 2μy + 2δ

r y3

1 + r y2
+ 2(α + β)

y

1 + r y2
= 0 (5.34)

With the boundary conditions for bright solitons to be y(0) = 1, y′(0) = 0, y(s →
±∞) = 0

Integrating (5.34) once and using the boundary conditions elucidated above,
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Table 5.1 Typical
parameters used for Lithium
Niobate crystal in the
calculation [13]

Parameter Value Parameter Value

λ0 0.5 μm l 1 cm

x0 40 μm Ep 40 kV/cm

ne 2.2 r 10

r33 30 × 10–12 mV−1 θ π/6

ε 10,000 V

μ = −δ − β − α

r
ln(1 + r) + δ (5.35)

(
dy

ds

)2

= 2
(δ − β − α)

r
[−y2ln(1 + r) + ln(1 + r y2)] (5.36)

Further integration gives the soliton profile,

[2(δ − β − α)]1/2s = ±
1∫

y

r1/2dy
∧

[ln(1 + r y
∧2

) − y
∧2ln(1 + r)]1/2 (5.37)

To illustrate a bright incoherently coupled soliton pair, we consider a typical
lithium niobate crystal whose parameters are shown in Table 5.1 and the normalized
spatial profile is shown in Fig. 5.2.

Fig. 5.2 Normalized intensity profile for bright–bright soliton pair predicted by (5.37) when r =
10, θ = π /6, ε = 10,000 V [9]
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Similarly, now considering the case of a non-photovoltaic photorefractive crystal
and a bright incoherently coupled soliton pair, let us define the normalized envelopes
[14],

U = r1/2y(s)cosθexp(iμξ) (5.38)

V = r1/2y(s)sinθexp(iμξ) (5.39)

where r = I (0)/Id = Imax/Id , μ represents the nonlinear shift of the propagation
constant, θ represents an arbitrary projection, y(s) is a real bounded function such
that 0 ≤ y(s) ≤ 1. Substituting (5.38) and (5.39) in (5.30) and (5.31), we get,

(
dy

ds

)2

− 2νy − 2β1
y

1 + r y2
− 2β2

y

(1 + r y2)2
= 0 (5.40)

Integrating (5.31) twice, we can get the spatial profile as follows,

s = ±
1∫

y

d ỹ
{
2β1

r

[
ln(1 + r ỹ2) − ỹ2ln(1 + r)

] + 2β2

1+r
r ỹ2(1−ỹ2)
1+r ỹ2

}1/2 (5.41)

ν = −β1

r
ln(1 + r) − β2

1 + r
(5.42)

Let us consider a PMN-0.33PTcrystalwhich exhibits both the linear and quadratic
electro-optic effect simultaneously. Parameters taken are mentioned in Table 5.2 and
the normalized spatial profile is shown in Fig. 5.3.

Lastly, we shall consider the coherently coupled bright soliton pair in photore-
fractive media. Since the beams are now coupled together along with a mutual phase
relationship between them, the normalized envelopes now become [15],

V = r1/22 y(s)exp(iμξ + θ2) (5.43)

Table 5.2 Typical
parameters used for
PMN-0.33PT crystal in the
calculation for incoherently
coupled soliton pairs [12]

Parameter Value Parameter Value

λ0 632.8 nm l 1 cm

x0 40 μm E0 5 × 105 V/m

ne 2.562 r 10

r33 182 × 10–12

mV−1
β1 309.23

gef f ε20(εr − 1)2 1.36 × 10–16

m2/V2
β2 115.79
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Fig. 5.3 Normalized
intensity profiles of the
coupled soliton pair
predicted in (5.41) when E0
= 5 × 105 V/m and r = 10.
(Reprinted From
“Incoherently coupled
spatial soliton pairs due to
both the linear and quadratic
electro-optic effects”, Lili
Hao, Qiang Wang, et al.,
Journal of Modern Optics,
62, 6 February 2015,
reprinted by permission of
the publisher (Taylor &
Francis Ltd., https://www.tan
dfonline.com)

U = r1/21 y(s)exp(iμξ + θ1) (5.44)

where ri = Ii (0)/Id = (Ii )max/Id; i = 1, 2, μ represents the nonlinear shift of the
propagation constant, θ1and θ2 represent the phases of the two beams respectively,
y(s) is a real bounded function such that 0 ≤ y(s) ≤ 1. Substituting (5.43) and (5.44)
in (5.30) and (5.31), we get,

(
dy

ds

)2

− 2νy − 2β1
y

1 + r y2
− 2β2

y

(1 + r y2)2
= 0 (5.45)

Integrating (5.45) twice, we can get the spatial profile as follows,

s = ±
1∫

y

d ỹ
{
2β1

r

[
ln(1 + r ỹ2) − ỹ2ln(1 + r)

] + 2β2

1+r
r ỹ2(1−ỹ2)
1+r ỹ2

}1/2 (5.46)

ν = −β1

r
ln(1 + r) − β2

1 + r
(5.47)

with,
r = r1 + r2 + 2

√
r1r2cos(�θ) and �θ = θ2 − θ1 being the phase difference

between the two beams. We again consider the PMN-0.33PT crystal to illustrate the
coherently coupled bright soliton pair. Table 5.3 encapsulates the parameters taken
in this particular calculation and Fig. 5.4 shows the normalized spatial profiles of the
coherently coupled soliton pair. Now, since there is mutual phase difference between
the two beams, it is evident that the nonlinearity will be affected by the modification
in mutual phase difference. Hence, in Fig. 5.5, we plot how the spatial width of the

https://www.tandfonline.com
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Table 5.3 Typical
parameters used for
PMN-0.33PT crystal in the
calculation for coherently
coupled soliton pairs [12, 15]

Parameter Value Parameter Value

λ0 632.8 nm l 1 cm

x0 40 μm E0 3 × 105 V/m

ne 2.562 r1 5

r33 182 × 10–12

mV−1

gef f ε20(εr − 1)2 1.36 × 10–16

m2/V2

Fig. 5.4 Normalized intensity profiles for the coherently coupled soliton pair when a �θ = π/4
b Δθ = 3π/4 and E0 = 3 × 10 5 V/m. (Reprinted from Optik---International Journal for Light
and Electron Optics, 127, Lili Hao, Chunfeng Hou,Qiang Wang, Haiwei Mu, Coherently coupled
spatial soliton pairs in biased photorefractive crystals with both the linear and quadratic electro-optic
effects, 4339–4344, Copyright 2016, with permission from Elsevier)

soliton pair behaves for different values of �θ. Figure 5.6 shows the variation of the
spatial width with the beam intensity ratio r2/r1.

5.5 Gaussian Soliton Pairs

Recently, a novel type of soliton pair has been investigated known as “Gaussian”
soliton pairs or “quasi-soliton” pairs. The primary difference between these soliton
pairs and the previously considered soliton pairs is the fact that these soliton pairs
have aGaussian profile. It is notable that photorefractive solitons are neitherGaussian
nor hyperbolic secant and usually we have to perform numerical calculations to solve
the paraxial Helmholtz equation for obtaining the spatial profile. However, in Refs.
[16–21], it has been shown how the Gaussian ansatz can used to solve the paraxial
Helmholtz equation and is a good approximation to the exact numerical solutions.
Such Gaussian soliton pairs uncover a unique parameter space for existence of a
new type of coupled soliton pairs which possess distinct characteristics relating
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Fig. 5.5 Coherently coupled bright soliton pair width as a function of phase difference �θ for
various beam intensity ratios. E0 = 3 × 105 V/m. (Reprinted from Optik—International Journal
for Light and Electron Optics, 127, Lili Hao, Chunfeng Hou,Qiang Wang,Haiwei Mu, Coherently
coupled spatial soliton pairs in biased photorefractivecrystals with both the linear and quadratic
electro-optic effects, 4339–4344, Copyright 2016, with permission from Elsevier) (Reprinted by
permission from Springer Nature: Springer Applied Physics B: Lasers and Optics, Incoherently
coupled Gaussian soliton pairs in biased photorefractive crystal having both the linear and quadratic
electro-optic effect, Aavishkar Katti, Copyright 2018)

Fig. 5.6 The spatial width
of the coherently coupled
soliton pair as a function of
the beam intensity ratio for
different mutual phase
differences. (Reprinted by
permission from Springer
Nature: Springer Applied
Physics B: Lasers and
Optics, Incoherently coupled
Gaussian soliton pairs in
biased photorefractive
crystal having both the linear
and quadratic electro-optic
effect, Aavishkar Katti,
Copyright 2018)

to dynamical evolution and stability. Since these pertain to approximate solutions,
these solitons should be understood to be “quasi-solitons”. It is notable that a full
numerical simulation has indeed confirmed the validity of such an approximation
[16]. To begin an investigation into these quasi soliton pairs, let us recapitulate the
evolution equations first,
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i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β1

1 + ρ

1 + |U |2 + |V |2U − β2

(
1 + ρ

1 + |U |2 + |V |2
)2

U = 0 (5.48)

i
∂V

∂ξ
+ 1

2

∂2V

∂s2
− β1

1 + ρ

1 + |U |2 + |V |2 V − β2

(
1 + ρ

1 + |U |2 + |V |2
)2

V = 0 (5.49)

where
β1 = a (k0x0)

2n4ere f f
2 E0, β2 = b (k0x0)

2n4e gef f ε
2
0(εr−1)2

2 E2
0 with ρ = I∞/Id .

The value of a and b can be one or zero depending upon the nonlinearity exhibited
by the photorefractive crystal. Equation (5.48) and (5.49) cannot be solved to obtain
exact solution. Hence, one has to resort to numerical methods and there are many
different types of approximate methods which work quite well for this. Segev’s
method [22], Akhmanov’s paraxial method [23], Anderson’s variational method [24]
and Vlasov’s moment method [25] are some of the approximate methods which can
be used. The paraxial approximation shall be considered using a variational solution
in order to obtain soliton states. Of course, for bright solitons, ρ = 0. Additionally,
the slowly varying beam envelope is expressed in terms of a general plane wave
ansatz,

U1(ξ, s) = A1(ξ, s)e−iν1(s,ξ) (5.50)

U2(ξ, s) = A2(ξ, s)e−iν2(s,ξ) (5.51)

A1(ξ, s) and A2(ξ, s) are real functions and ν(ξ, s) represents the phase. Using
(5.50) and (5.51) in (5.34) and (5.35) gives,

∂A1

∂ξ
− ∂A1

∂s

∂ν1

∂s
− 1

2
A1

∂2ν1

∂s2
= 0 (5.52)

∂A2

∂ξ
− ∂A2

∂s

∂ν2

∂s
− 1

2
A2

∂2A2

∂s2
= 0 (5.53)

A1
∂ν1

∂ξ
+ 1

2

∂2A1

∂s2
− 1

2
A1

(
∂ν1

∂s

)2

− β1�1(ξ, s)A1 − β2�2(ξ, s)A1 = 0 (5.54)

A2
∂ν2

∂ξ
+ 1

2

∂2A2

∂s2
− 1

2
A2

(
∂ν2

∂s

)2

− β1�1(ξ, s)A2 − β2�2(ξ, s)A2 = 0 (5.55)

where,

�1(ξ, s) = 1

1 + |A1|2 + |A2|2 (5.56)

�2(ξ, s) =
(

1

1 + |A1|2 + |A2|2
)2

(5.57)
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�1(ξ, s) and �2(ξ, s) represent the non-linearity due to the linear and quadratic
electro-optic effect. These terms represent counteraction of diffraction leading to
formation of a stable soliton.

Now, we need to solve for obtaining bright spatial soliton solutions for (5.52)–
(5.55). Since, these equations are non integrable, modified gaussian solutions will
be used as approximate solutions [24, 26–31]. The quasi-soliton ansatz will be taken
as,

A1(ξ, s) =
√
P1√
f1(ξ)

exp

[ −s2

2r21 f
2
1 (ξ)

]
(5.58)

ν1(ξ, s) = s2

2
η1(ξ) + φ1(ξ) (5.59)

η1(ξ) = − 1

f1(ξ)

d f1(ξ)

dξ
(5.60)

A2(ξ, s) =
√
P2√
f2(ξ)

exp

[ −s2

2r22 f
2
2 (ξ)

]
(5.61)

ν2(ξ, s) = s2

2
η2(ξ) + φ2(ξ) (5.62)

η2(ξ) = − 1

f2(ξ)

d f2(ξ)

dξ
(5.63)

where P1 and P2 signify the peak powers of these solitons, r1, f1(ξ), f2(ξ), η1(ξ),
η2(ξ)are the variational parameters needed to define a solution in (5.58) and (5.61).
The product r1 f1(ξ), r2 f2(ξ) indicates the spatial width of the respective solitons.
Expanding �1,�2 by Taylor series expansion and approximating to the first order,

�1
∼= 1

(1 + (P1/ f1) + (P2/ f2))
+ s2

(
P1

r21 f
3
1

+ P2
r22 f

3
2

)
1

(1 + (P1/ f1) + (P2/ f2))
2

(5.64)

�2
∼= 1

(1 + (P1/ f1) + (P2/ f2))
2 + 2s2

(
P1

r21 f
3
1

+ P2
r22 f

3
2

)
1

(1 + (P1/ f1) + (P2/ f2))
3

(5.65)

Using (5.58)–(5.65) in (5.54) and (5.55), we obtain a polynomial equation which
has terms of various powers of s. Equating the coefficients of s2 of the ensuing
equation, we have,

d2 f1
dξ 2

= 1

r41 f
3
1

− 2β1

(
P1

r21 f
2
1

+ P2 f1
r22 f

3
2

)
1

(
1 + P1

f1
+ P2

f2

)2
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− 4β2

(
P1

r21 f
2
1

+ P2 f1
r22 f

3
2

)
1

(
1 + P1

f1
+ P2

f2

)3 (5.66)

d2 f2
dξ 2

= 1

r42 f
3
2

− 2β1

(
P1 f2
r21 f

3
1

+ P2
r22 f

2
2

)
1

(
1 + P1

f1
+ P2

f2

)2

− 4β2

(
P1 f2
r21 f

3
1

+ P2
r22 f

2
2

)
1

(
1 + P1

f1
+ P2

f2

)3 (5.67)

The change in spatial width of both the solitons with propagation can be inferred
from (5.66) and (5.67). For a stable soliton pair, it is necessary to look for non-
diverging solutions. Hence, d2 f1

dξ 2 = d2 f2
dξ 2 = 0 for points of equilibrium of (5.66) and

(5.67) and so,

1

r41
− 2β1

(
P1
r21

+ P2
r22

)
1

(1 + P1 + P2)
2 − 4β2

(
P1
r21

+ P2
r22

)
1

(1 + P1 + P2)
3 = 0

(5.68)

1

r42
− 2β1

(
P1
r21

+ P2
r22

)
1

(1 + P1 + P2)
2 − 4β2

(
P1
r21

+ P2
r22

)
1

(1 + P1 + P2)
3 = 0

(5.69)

Since (5.68) and (5.69) are coupled equations, we shall look for common solutions
by equating the LHS of both equations. This in turn implies that r1 = r2 from which
we can infer that each soliton in the coupled soliton pair has identical spatial width.
An important observation here is that spatial width of each soliton in the coupled
soliton pair should be same for stable propagation. Putting r1 = r2 = r in (5.68) and
(5.69), we obtain,

1

r2
= 2β1(P1 + P2)

(1 + P1 + P2)
2 + 4β2(P1 + P2)

(1 + P1 + P2)
3 (5.70)

The Eq. (5.56) validates the existence of a bright incoherently coupled soliton
pair in photorefractive materials. To keep r positive, LHS also has to be positive.

As an example, consider the PMN-0.33PT crystal. Since we consider a photore-
fractive crystal exhibiting both the linear and quadratic electro-optic effect simulta-
neously, a = 1, b = 1. The parameters used in the calculation are shown in Table
5.4.

The existence curves for the coupled soliton pairs have been plotted in Figs. 5.6
and 5.7 for both, low and high powers respectively. Stably propagating coupled
soliton pairs with a given peak power and spatial width exist for peak power values
of each soliton component lying on the existence curve for the respective r. From
the existence curves, it can be inferred that the power of any one soliton component
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Table 5.4 Parameters
considered for PMN-0.33PT
crystal (Reprinted by
permission from Springer
Nature: Springer Applied
Physics B: Lasers and Optics,
Incoherently coupled
Gaussian soliton pairs in
biased photorefractive crystal
having both the linear and
quadratic electro-optic effect,
Aavishkar Katti, Copyright
2018) [32–35]

Parameter Value Parameter Value

ne 2.562 l (crystal width) 1 cm

x0 20 μm V (bias emf ) 1000 V

λ0 632.8 nm β1 15.4612

re f f 182 × 10−12

m/V
β2 1.1724

gef f ε20(εr − 1)2 1.38 ×
10−16m2/V2

ρ 0

Fig. 5.7 The plot of peak power of one component versus the peak power of the other signifying the
existence curve for the bright coupled soliton pairs for high powers. (Reprinted by permission from
Springer Nature: Springer Applied Physics B: Lasers and Optics, Incoherently coupled Gaussian
soliton pairs in biased photorefractive crystal having both the linear and quadratic electro-optic
effect, Aavishkar Katti, Copyright 2018)

can be much lesser than that of the other soliton component. Hence, a light beam of
a particular spatial width can be self trapped by making another strong optical beam
to propagate collinearly with it (Fig. 5.8).

Figures 5.9 and 5.10 plot the spatial soliton width versus any one soliton compo-
nent’s peak power with the other component’s peak power fixed for low and high
powers respectively.

If both constituent components of the coupled soliton pair have equal power, i.e.,
P1 = P2 = P, we get, from (5.28),

1

r2
= 4β1P

(1 + 2P)2
+ 8β2P

(1 + 2P)3
(5.71)
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Fig. 5.8 The plot of peak power of one component versus the peak power of the other signifying the
existence curve for the bright coupled soliton pairs for low powers. (Reprinted by permission from
Springer Nature: Springer Applied Physics B: Lasers and Optics, Incoherently coupled Gaussian
soliton pairs in biased photorefractive crystal having both the linear and quadratic electro-optic
effect, Aavishkar Katti, Copyright 2018)

Fig. 5.9 Variation of the gaussian soliton pair width with the peak power of one component (P1)
when the peak power of the other (P2) is constant (for high powers). (Reprinted by permission from
Springer Nature: Springer Applied Physics B: Lasers and Optics, Incoherently coupled Gaussian
soliton pairs in biased photorefractive crystal having both the linear and quadratic electro-optic
effect, Aavishkar Katti, Copyright 2018)
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Fig. 5.10 Variation of the gaussian soliton pair width with the peak power of one component (P1)
when the peak power of the other (P2) is constant(for low powers). (Reprinted by permission from
Springer Nature: Springer Applied Physics B: Lasers and Optics, Incoherently coupled Gaussian
soliton pairs in biased photorefractive crystal having both the linear and quadratic electro-optic
effect, Aavishkar Katti, Copyright 2018)

The spatial width of the Gaussian soliton pair as a function of the peak power
is shown Fig. 5.11. Bistable states can been observed very clearly, i.e., two distinct
coupled soliton pairs can exist with dissimilar peak power but identical spatial width.

Fig. 5.11 Gaussian soliton pair’s width as a function of peak power, under the condition P1 =
P2 = P. (Reprinted by permission from Springer Nature: Springer Applied Physics B: Lasers and
Optics, Incoherently coupled Gaussian soliton pairs in biased photorefractive crystal having both
the linear and quadratic electro-optic effect, Aavishkar Katti, Copyright 2018)
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Fig. 5.12 Propagation of the coupled soliton pair with normalized distance ξ . P1 = 10.00 and P2
= 19.04 and r = 1. (Reprinted by permission from Springer Nature: Springer Applied Physics B:
Lasers and Optics, Incoherently coupled Gaussian soliton pairs in biased photorefractive crystal
having both the linear and quadratic electro-optic effect, Aavishkar Katti, Copyright 2018)

For investigating the propagation of these incoherently coupled quasi-solitons, an
arbitrary value of r is chosen. The value of r corresponds to a unique existence curve
for P1 and P2. If any point on the existence curve is selected, Eqs. (5.66) and (5.67)
can be solved numerically with the particular P1 and P2 values for f 1 and f 2 with the
initial conditions f1(0) = f2(0) = 1 and d f1

dξ
= d f2

dξ
= 0 at ξ = 0. Of course, this

implies that f 1 and f 2 remain constant during propagation. The propagation of the
bright incoherently coupled gaussian soliton pair with normalized distance is shown
in Fig. 5.12.

5.6 Concluding Remarks and Further Reading

We have seen a comprehensive theoretical formulation for coupled solitons in
different types of photorefractive media including photovoltaic and non-photovoltaic
photorefractive media with linear or quadratic nonlinearites. Coupled soliton pairs
can be either incoherently coupled or coherently coupled depending upon the mutual
phase relationship between the two light beams and both of these are studied in detail.
A unique type of coupled soliton pair, known as Gaussian or quasi soliton pair have
also been illustrated which belong to new parameter space and are quite different in
characteristics from the conventional coupled soliton pairs.

The reader is referred to Ref. [9] where an extension of the theory to incorporate
coupled multi component solitons has been undertaken. The analysis in Sects. 5.2
or 5.3 carries forward exactly but the soliton components’ ansatz are now taken
as extended theta projections. References [4, 6, 7, 9, 11, 12, 14, 36–39] provide a
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thorough study of incoherently coupled spatial soliton pairs in diverse configurations
of photorefractive crystals. Similarly, Refs. [40–43] study the coherent coupling of
solitons in different configurations of photorefractive media.

In case of Gaussian soliton pairs, the fact that existence of solitons allows for an
infinite choice of each soliton component’s power is a very important distinguishing
property. References [18, 44–46] deal with the theoretical formulation for these
unique type of soliton pairs in diverse photorefractive systems.
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Chapter 6
Photorefractive Crystal Circuits

6.1 Introduction

We have seen, in the previous chapter about coupling of optical spatial solitons in
photorefractive crystals. Various types of coupled soliton pairs and coupled soliton
families can be observed in photorefractive crystals, viz. bright, dark, bright-dark,
grey and even grey-bright and grey-dark. The mechanism of such coupling of soliton
is abundantly clear as being due to a formation of an effective index waveguide due to
both components of a soliton pair which then guides the coupled soliton pair [1, 2].

In contrast to this, a phenomenon known as separate coupling is quite interesting
and has been studied quite extensively recently [3–7]. A circuit is considered which
consists of two photorefractive crystals connected in series. The circuit may be biased
or unbiased.A light beam ismade to propagate along each crystal and the self trapping
of the light beams in each crystal is studied. The soliton in each crystal induces a
current, and this light induced current can flow into the other crystal and hence the
solitons in both crystals can affect each other. The spatial profiles of the solitons,
their dynamical evolution and stabilities are affected by each other [5]. Normally,
non photovoltaic photorefractive crystal circuits have to be biased with an external
voltage while photovoltaic crystal circuits need not be biased as photovoltaic crystals
themselves act as a current source.

In this chapter, we shall first formulate a general theory for finding out the numer-
ical solutions proving the existenceof such separate coupled solitons in different types
of configurations of photorefractive crystals. The approach to deriving the coupled
space charge fields in both the crystals of the photorefractive crystal circuit will be
discussed. The theoretical formulation for different types of separately coupled soli-
tons will be elucidated. Taking a specific case of a centrosymmetric photorefractive
crystal circuit, the coupling effect of input intensity and the crystal temperature on
the solitons in both crystals of the circuit will be studied. The reader shall be given
a brief idea and referred to suitable literature for further reading about the effect on
dynamical evolutions and stabilities of the separately coupled solitons.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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6.2 Theoretical Foundations

To study the separate spatial solitons in a biased photorefractive crystal circuit, we
know that there exists a self trapped soliton beam in each crystal. For different
orientations of the external bias field with the crystal optical axis, we can find the
corresponding circumstances to form bright or dark solitons in the individual crystals
and hence, the bright, dark or grey or bright-dark separately coupled soliton pairs.We
illustrate this in Fig. 6.1. For example, if we consider conventional photorefractive
crystals with the linear electro-optic effect, then in Fig. 6.1, we can clearly see that
both the crystals can support dark solitons if c-axis is parallel to the x-axis and ĉ-axis
is anti-parallel to the x̂ axis. Both crystals can support bright solitons if the c-axis is
anti-parallel to the x-axis and ĉ-axis is parallel to the x̂ axis. And finally, one crystal
supports a bright soliton while the other supports a dark soliton if the c-axis is parallel
to the x-axis and ĉ-axis is parallel to the x̂ axis. Similar considerations can be applied
to photorefractive crystals having the quadratic electro-optic effect or exhibiting both
the linear and quadratic electro-optic effect simultaneously. We shall be discussing
these eventually. For now, we shall assume that the two conventional photorefractive
crystals have a soliton beam propagating in each. The intensities of the two beams
are I and Î . The propagation direction is labeled to be the z and ẑ axes and we shall
assume diffraction of the two individual beams to be along the x and x̂ directions. The
two photorefractive crystals will be designated byP and P̂ . In continuation, .̂ denotes
the parameters in the crystal P̂ . The c-axis of the photorefractive crystals P and P̂
are kept either parallel or anti parallel to the x axis and x̂ axis. The direction of c-axis
depends onwhich type of soliton is supported by the crystal. For instance, considering
a photorefractive crystal with the linear electro-optic effect, the c-axis parallel to the

Fig. 6.1 Circuit for realization of separately coupled solitons in biased photorefractive crystal series
circuits
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x-axis and antiparallel to the electric field direction supports the formation of a dark
or grey soliton while a c-axis antiparallel to the x-axis and parallel to the electric
field supports a bright soliton. In contrast, for a centrosymmetric photorefractive
crystal, the parallel or antiparallel nature of the c-axis with the x-axis and electric
field does not matter since we now have a quadratic electro-optic effect and the
change in refractive index depends upon the square of the space charge field. Similar
considerations work for photorefractive crystals having both quadratic and linear
electro-optic effect simultaneously and photovoltaic photorefractive crystals andwill
be discussed eventually. The electric field envelopes in the respective crystals are
expressed as, E1 = x̂ϕ(x, z)exp(ikz), E2 = x̂

∧

ϕ
(
x̂, ẑ

)
exp

(
ikẑ

)
. The dynamical

evolution equation for the soliton in the crystal P is,
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(6.2)

a and b are constants which can be either individually zero or one or both
depending uponwhether the photorefractive crystal has the linear electro-optic effect,
quadratic electro-optic effect or exhibits both electro-optic effects simultaneously. r33
is the linear electro-optic coefficient and geff is the quadratic electro-optic coefficient.
Other symbols have their usual meaning. The space charge field Esc can be derived
using the charge transport equations exactly following the approach discussed in
Chap. 1,

γRnN
+
D = si (I + Ib + Id)

(
ND − N+

D

)
(6.3)

∂Esc

∂x
= e

ε0ε

(
N+

D − NA − n
)

(6.4)

J = eμnEsc + kBTμ
∂n

∂x
(6.5)

∂ J

∂x
= 0 (6.6)

where Ib is the background intensity and other symbols have their usual meaning
as defined before. In a photorefractive crystal, we work under the approximation
N+

D ≈ NA and hence, from (6.3),

n = si (ND − NA)

γRNA
(I + Ib + Id) (6.7)

The electron density in regions of uniform illumination x → ±∞ is, from (6.7),
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n∞ = si (ND − NA)

γRNA
(I∞ + Ib + Id) (6.8)

From (6.6), we get to know that the current density is constant, and hence,
J∞(x → ±∞, z) = J .

So from (6.5),

J∞ = eμn∞E0 (6.9)

where, as usual E0 is the electric field in regions of uniform illumination E0 =
Esc(x → ±∞).

Now, we can derive these same relations for the crystal P̂ ,

n̂∞ =
ŝi

(
N̂D − N̂A

)

γ̂R N̂A

(
Î∞ + Îb + Îd

)
(6.10)

Ĵ∞ = êμ̂n̂∞ Ê0 (6.11)

V, V̂ are the voltages measured between the electrodes of the crystals P, P̂
respectively having width W, Ŵ . If S, Ŝ denote the surface area of the electrodes
at crystal P, P̂ respectively, then SJ = Ŝ Ĵ since the crystals are connected in
series. The soliton beam’s spatial extent is assumed to be much smaller than the
x-width of the crystals and hence we have, Esc(x → ∞) = Eo = V/W and
Êsc

(
x̂ → ∞) = Ê0 = V̂ /Ŵ . Here again, since the two crystals are connected

in series, V + V̂ = VA where VA the source voltage. From these aforesaid conditions
and using (6.10) and (6.11), we can deduce the expressions for Ê0 and E0,

E0 = gEA (6.12)

Ê0 = ĝ Ê A (6.13)

with,

g =
δ̂
(
Î∞ + Îb + Îd

)

δ(I∞ + Ib + Id) + δ̂
(
Î∞ + Îb + Îd

) (6.14)

ĝ = δ(I∞ + Ib + Id)

δ(I∞ + Ib + Id) + δ̂
(
Î∞ + Îb + Îd

) (6.15)

where, δ = Sμsi (ND − NA)/(γRNAW ), EA = VA/W , I∞ = I (x → ∞), δ̂ =
Ŝμ̂ŝi

(
N̂D − N̂A

)
/
(
γ̂R N̂AŴ

)
, ÊA = VA/Ŵ , Î∞ = Î (x → ∞), g and ĝ are known
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as coupling coefficients. It is interesting to note that ĝ + g = 1 indicating a perfect
coupling of the space charge field of the two crystals. As J∞(x → ∞, z) = J ,

Esc = E0
I∞ + Ib + Id
I + Ib + Id

= gEA
I∞ + Ib + Id
I + Ib + Id

(6.16)

Êsc = Ê0
Î∞ + Îb + Îd

Î + Îb + Îd
= ĝ Ê A

Î∞ + Îb + Îd

Î + Îb + Îd
(6.17)

We can see clearly from Eqs. (6.16) and (6.17) that the space charge fields are
coupled to each other. Putting (6.16) into (6.2) and (6.1), we can obtain the evolution
equation for the soliton in the crystal P,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β1(1 + ρ)

1

1 + |U |2U − β2(1 + ρ)2
1

(1 + |U |2)2U = 0 (6.18)

Similarly, using (6.17), we can derive an evolution equation for the soliton in
crystal P̂ ,

i
∂Û

∂ξ̂
+ 1

2

∂2Û

∂ ŝ2
− β̂1

(
1 + ρ̂

) 1

1 + |Û |2 Û − β̂2(1 + ρ̂)2
1

(1 + |Û |2)2 Û = 0 (6.19)

where,
U = [2η0(Ib + Id)/ne]−1/2ϕ, ρ = I∞/(Id + Ib), β1 = a(k0x0)2n4er33gEA/2,

β2 = b(k0x0)2n4egef f ε
2
0(εr − 1)2(gEA)

2/2, s = x/x0, ξ = z/(kx0)2.
and,
Û = [2η0

(
Îb + Îd

)
/ne]−1/2ϕ, ρ̂ = Î∞/

(
Îd + Îb

)
, β̂1 = â(k̂0 x̂0)2n̂4er̂33ĝEA/2,

β2 = b̂(k̂0 x̂0)2n̂4e ĝe f f ε
2
0(εr − 1)2(ĝEA)

2/2, ŝ = x̂/x̂0, ξ̂ = ẑ/(kx̂0)2.

6.3 Biased Series Centrosymmetric Photorefractive Crystal
Circuit

As an illustration of theoretical model as described in Sect. 6.2, consider a case of
separate coupling of grey spatial solitons in a biased centrosymmetric photorefractive
crystal circuit [3]. If we consider the Fig. 6.1, we can have any orientation of the
c-axis for both crystals since the refractive index change is now dependent upon the
square of the space charge field. Since we consider centrosymmetric photorefractive
crystals, i.e., having only the quadratic electro-optic effect, so we take a = 0 and
b = 1. For such a photorefractive crystal circuit, we have the following dynamical
evolution equations in crystal P and P̂ from (6.18) and (6.19),
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i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β2(1 + ρ)2

U

(1 + |U |2)2 = 0 (6.20)

i
∂Û

∂ξ̂
+ 1

2

∂2Û

∂ ŝ2
− β̂2(1 + ρ̂)2

Û

(1 + |Û |2)2 = 0 (6.21)

Here, the intensity scales as I = (Ib + Id)|U |2. The total intensity Î =(
Îb + Îd

)
|Û |2. Ib denotes the background intensity and Id denotes the dark irra-

diance. The expressions for Ê0 and E0 are as given in (6.12) and (6.13) and the space
charge field is as given in (6.16) and (6.17) along with g and ĝ are the coupling
coefficients in (6.14) and (6.15) satisfying ĝ + g = 1.

6.3.1 Grey-Grey Separate Soliton Pair

Expressing the grey soliton solution in crystal P as,

U = ρ1/2y(s)exp

⎡

⎣i

⎛

⎝cξ +
s∫

0

Qds̃

y2(s̃)

⎞

⎠

⎤

⎦ (6.22)

In (6.22),Q is a constant while y(s) is a real and bounded function such that it lies
between 0 and 1. The boundary conditions for y(s) would those applicable to grey
solitons,

y(s → ±∞) = 1, ẏ(0) = 0, y2(0) = m(0 < m < 1),
··
y(∞) = 0, ẏ(∞) = 0

Putting (6.22) in (6.20), we find the differential equation satisfied by y(s),

··
y −2cy − Q2

y3
− 2β2(1 + ρ)2

y

(1 + ρy2)2
= 0 (6.23)

Using the boundary conditions at infinity, in (6.23), we can obtain the value of Q,

Q2 = −2c − 2β2 (6.24)

Now, integrating (6.23) once, we get

ẏ2 = 2c
(
y2

) − Q2

(
1

y2

)

− 2β2(1 + ρ)2

ρ

(
1

1 + ρy2

)

+ d (6.25)
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where d is a constant of integration. We have two constants we need to find, c and d.
These can be found out by using the boundary conditions of y(s) at s= 0 and s → ∞
in (6.23) and (6.25).

Taking y= y(0) in (6.25), and remembering the fact that y(0)2 = m and ẏ(0) = 0
gives,

2cm − Q2

m
− 2β2

(1 + ρ)2

ρ

(
1

1 + ρm

)

+ d = 0 (6.26)

Again, considering the boundary conditions at infinity in (6.25),

2c − Q2 − 2β2
(1 + ρ)

ρ
+ d = 0 (6.27)

Solving (6.26) and (6.27),

c =
−2β2

m + 2β2 + 2β2(1+ρ)2

ρ(1+ρm ) − 2β2
1+ρ

ρ

2(m − 1) + 2
m − 2

(6.28)

d =
Q2

m − Q2m − 2β2(1+ρ)m
ρ

+ 2β2(1+ρ)2

ρ(1+ρm)

1 − m
(6.29)

Finally, the soliton envelope can be obtained by integrating (6.25) once again, and
using (6.28) and (6.29),

s = ±
√
m∫

y

(

2c
(
ỹ2

) − Q2

(
1

ỹ2

)

− 2β2(1 + ρ)2

ρ

(
1

1 + ρ ỹ2

)

+ d

)−1/2

d ỹ (6.30)

We can easily infer from (6.25) that β2 < 0 must be true for the realization of
grey solitons. This is similar to the case of dark solitons.

We can perform an exactly similar derivation for the crystal P̂ where we take the
grey soliton solution as,

Û = ρ̂1/2 ŷ(s)exp

⎡

⎣i

⎛

⎝ĉξ̂ +
s∫

0

Q̂d ˜̂s
y2

( ˜̂s
)

⎞

⎠

⎤

⎦ (6.31)

and we get the soliton envelope as,

ŝ = ±
√
m̂∫

ŷ

(

2ĉ
( ˜̂y2

)
− Q̂2

(
1
˜̂y2

)

− 2β̂2(1 + ρ̂)2

ρ̂

(
1

1 + ρ̂ ˜̂y2

)

+ d̂

)−1/2

d ˜̂y (6.32)
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with,

ĉ =
−2β̂2

m̂ + 2β̂2 + 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂ ) − 2β̂2
1+ρ̂

ρ̂

2
(
m̂ − 1

) + 2
m̂ − 2

(6.33)

d̂ =
Q̂2

m̂ − Q̂2m̂ − 2β̂2(1+ρ̂)m̂
ρ̂

+ 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂)

1 − m̂
(6.34)

As previously found for the crystal P, β̂2 < 0 must be true for the existence of
grey solitons in crystal P̂ . Here, it is apt to note that β2 and β̂2 are a function of
the coupling factors g and ĝ and hence, the grey soliton in each crystal in the series
centrosymmetric photorefractive crystal circuit is coupled to the other.

6.3.2 Bright-Grey Separate Soliton Pair

In this case, let us consider that a bright soliton propagates in the crystal P while a
grey soliton propagates in the crystal P̂ . In crystal P, the beam envelope solution for
the bright soliton can be expressed as,

U = r1/2y(s)exp(iμξ) (6.35)

where, r = I (0)/(Ib + Id) and y(s) is a bounded function which satisfies 0 ≤ y(s) ≤
1 and the respective boundary conditions for bright solitons ẏ(0) = 0, y(±∞) =
0, ẏ(±∞) = 0, y(0) = 1,

··
y(±∞) = 0, while μ is propagation constant’s nonlinear

shift.
Substituting (6.35) in (6.20), we get,

··
y = 2μy + 2β2

(1 + r y2)2
y (6.36)

Integrating (6.36) once, we get,

ẏ2 = 2μy2 − 2β2

r

(
1

1 + r y2

)

+ c (6.37)

where c is a constant of integration.
Evaluating the function y(s) at s→∞ by using the boundary conditions ẏ(±∞) =

0, y(±∞) = 0 in (6.37), we get,

c = 2β2

r
(6.38)
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Now, substituting y= y(s=0) andusing the boundary conditions y(0) = 1,ẏ(0) =
0 in (6.37), we get,

μ = − β2

1 + r
(6.39)

Putting the value of μ and c from (6.38) and (6.39) in (6.37), we get,

ẏ2 = −2β2
(
y2

)

1 + r
− 2β2

r

(
1

1 + r y2

)

+ 2β2

r
(6.40)

We can get the soliton profile by integrating (6.40) once again,

(
2β2

r

)1/2

s = ±
1∫

y

(1 − r ỹ2

1 + r
− 1

1 + r ỹ2
)−1/2d ỹ (6.41)

We also infer from (6.37) that β2 > 0 for existence of bright solitons.
Turning our attention towards the crystal P̂ , we need to assume a grey soliton

ansatz,

Û = ρ̂1/2 ŷ(s)exp

⎡

⎣i

⎛

⎝ĉξ̂ +
s∫

0

Q̂d ˜̂s
y2

( ˜̂s
)

⎞

⎠

⎤

⎦ (6.42)

The procedure for solving to obtain grey soliton solutions has been detailed in
Sect. 6.3.1 where we have solved for a grey grey separately coupled soliton pair.
Proceeding similarly by substituting (6.42) in (6.20) and solving, we get the soliton
envelope,

ŝ = ±
√
m̂∫

ŷ

(

2ĉ
( ˜̂y2

)
− Q̂2

(
1
˜̂y2

)

− 2β̂2(1 + ρ̂)2

ρ̂

(
1

1 + ρ̂ ˜̂y2

)

+ d̂

)−1/2

d ˜̂y (6.43)

with,

ĉ =
−2β̂2

m̂ + 2β̂2 + 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂ ) − 2β̂2
1+ρ̂

ρ̂

2
(
m̂ − 1

) + 2
m̂ − 2

(6.44)

d̂ =
Q̂2

m̂ − Q̂2m̂ − 2β̂2(1+ρ̂)m̂
ρ̂

+ 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂)

1 − m̂
(6.45)

in crystal P̂ , β̂2 < 0 for existence of grey solitons.
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6.3.3 Grey-Dark Separate Soliton Pair

Consider a dark soliton propagating in crystal P. The dark soliton solution is
expressed as,

U = ρ1/2y(s)exp(iμξ) (6.46)

where μ is a nonlinear shift of the propagation constant, ρ = I∞/(Ib + Id), and y(s)
is a bounded function such that 0 ≤ y(s) ≤ 1. The boundary conditions satisfied by

y(s) will be y(±∞) = ±1, ẏ(±∞) = 0, y(0) = 0,
··
y(±∞) = 0.

Putting (6.46) in (6.20), we obtain,

1

2

··
y −μy − β2(1 + ρ)2

(1 + ρy2)2
y = 0 (6.47)

Integrating once, we get,

1

2
ẏ2 = μy2 − β2(1 + ρ)2

ρ
(
1 + ρy2

) + c (6.48)

c is an integration constant. Using the boundary conditions at infinity in (6.47),
we obtain,

μ = −β2 (6.49)

Obtain the constant c by using the boundary conditions at infinity from (6.48) as,

c = β2

(
2ρ + 1

ρ

)

(6.50)

Substituting c in (6.48), we have,

ẏ2 = (−2β2)

(

y2 + (1 + ρ)2

ρ
(
1 + ρy2

) − 2ρ + 1

ρ

)

(6.51)

from which we integrate once more to get,

(−2β2)
1/2s =

0∫

y

[(

ỹ2 + (1 + ρ)2

ρ
(
1 + ρ ỹ2

) − 2ρ + 1

ρ

)]−1/2

d ỹ (6.52)

(6.52) gives us the spatial profile of the dark soliton. From (6.51), it can be inferred
clearly that β < 0 must be satisfied for a dark soliton to form in P.
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Now, considering a grey soliton propagating in crystal P̂ , the normalized field
profile is,

Û = ρ̂1/2 ŷ(s)exp

⎡

⎣i

⎛

⎝ĉξ̂ +
s∫

0

Q̂d ˜̂s
y2

( ˜̂s
)

⎞

⎠

⎤

⎦ (6.53)

The procedure for solving to obtain grey soliton solutions has been detailed in
Sect. 6.3.1 where we have solved for a grey grey separately coupled soliton pair.
Proceeding similarly by substituting (6.53) in (6.20) and solving, we get the soliton
envelope,

ŝ = ±
√
m̂∫

ŷ

(

2ĉ
( ˜̂y2

)
− Q̂2

(
1
˜̂y2

)

− 2β̂2(1 + ρ̂)2

ρ̂

(
1

1 + ρ̂ ˜̂y2

)

+ d̂

)−1/2

d ˜̂y (6.54)

with,

ĉ =
−2β̂2

m̂ + 2β̂2 + 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂ ) − 2β̂2
1+ρ̂

ρ̂

2
(
m̂ − 1

) + 2
m̂ − 2

(6.55)

d̂ =
Q̂2

m̂ − Q̂2m̂ − 2β̂2(1+ρ̂)m̂
ρ̂

+ 2β̂2(1+ρ̂)2

ρ̂(1+ρ̂m̂)

1 − m̂
(6.56)

It can be seen that β̂2 < 0 must be satisfied for a grey soliton to form in P̂ .

6.3.4 Intensity Effects on Separate Coupling

For illustration of the coupling effects, we assume the crystals to be both KLTN.
There has to be one exception to consider here because of the condition β2 < 0 for
existence of grey and dark solitons. Hence, the value of geff < 0 will be taken for
crystals supporting grey and dark solitons keeping all other parameters same.

For a grey-grey separate coupled soliton pair, we will consider the following
parameters [3], W = Ŵ = 1cm.,gef f = ĝe f f = −0.12m4/C2, δ = δ̂, Id = Îd .
Other parameters are taken, λ0 = λ̂0 = 0.5μm., x0 = x̂0 = 20μm., ne = 2.2,
εr = 8000 and VA = 1000 V. Also, we take, Ib = Îb and EA = ÊA = 1000 V/cm.

For studying the coupling effects due to intensity amongst the individual solitons
in the crystals P and P̂ , we need to investigate how the spatial profile of both solitons
change due to amodification in intensity of any one of them.Hence, we shall consider
three different cases, ρ = ρ̂, ρ > ρ̂, ρ < ρ̂ as shown in Table 6.1 and with these
parameters plot the intensity profile for each soliton. The normalized intensities of
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Table 6.1 Calculations pertaining to different intensities in crystal P and P̂ [3]

ρ ρ̂ g ĝ β β̂

Curve 1 1 1 0.5 0.5 −1.11 −1.11

Curve 2 5 1 0.25 0.75 −0.28 −2.5

Curve 3 1 10 0.85 0.15 −3.18 −0.11

the soliton in crystal P and P̂ are shown in Figs. 6.2 and 6.3 respectively. The soliton
FWHM rises in crystal P with an increase in its intensity while the soliton FWHM
reduces in crystal P̂ even if its intensity is kept constant. Similarly, an increase the
intensity of the soliton in crystal P̂ increases the soliton FWHM in crystal P̂ while
reducing the FWHM of the soliton in crystal P.

The above analysis is performedwhen the background intensities are equal in both
the crystals, i.e., assuming Ib = Îb. The effect of the background intensities is non
trivial and hence, we shall now consider the case in which the soliton intensities in the
two crystals are constant and consider a change in the background intensities. Table
6.2 summarizes the parameters for the aforementioned situation. The normalized
intensity for the soliton in both crystals is shown in Figs. 6.4 and 6.5.

Consider a bright soliton propagating in crystal P and a grey soliton propagating
in crystal P̂ for a grey bright separate coupled soliton pair. In this case, we can obtain
the coupling factors,

Fig. 6.2 Normalized spatial profiles of the intensity for the grey soliton in P considering various
values for the intensities as shown in Table 6.1 (Reprinted by permission from Springer Nature:
Springer European Physical Journal D, Coupling effects for separate spatial solitons in a biased
series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar Katti
and Ram Anjore Yadav, Copyright 2018)
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Fig. 6.3 Normalized spatial profiles of the intensity for the grey soliton in P̂ considering various
values for the intensities as shown in Table 6.1 (Reprinted by permission from Springer Nature:
Springer European Physical Journal D, Coupling effects for separate spatial solitons in a biased
series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar Katti
and Ram Anjore Yadav, Copyright 2018)

Table 6.2 Calculations pertaining to different background intensities in crystal P and P̂[3]

Ib Îb ρ ρ̂ g ĝ β β̂

Curve 1 = Id = I∞/2 = Îd = Î∞/2 1 1 0.5 0.5 −1.11 −1.11

Curve 2 = Id/2 = I∞/4 = Îd = Î∞/2 1.33 1 0.53 0.47 −1.25 −0.98

Curve 3 = Id = I∞/2 = Îd/10 = Î∞/20 1 1.82 0.44 0.56 −0.86 −1.40

g =
δ̂
(
Î∞ + Îb + Îd

)

δ(Ib + Id) + δ̂
(
Î∞ + Îb + Îd

) (6.57)

ĝ = δ(Ib + Id)

δ(Ib + Id) + δ̂
(
Î∞ + Îb + Îd

) (6.58)

From (6.57) and (6.58), we can see that the coupling factor g and ĝ are functions
of the intensity in crystal P̂ only. Since we consider a bright soliton propagating in
crystalP and a grey soliton propagating in crystal P̂ , any change in the characteristics
of the grey soliton can profoundly affect the characteristics of bright soliton but the
reverse is not true, i.e., the grey soliton in P̂ cannot be affected by any change in the
characteristics of the bright soliton in P.

Now again, we take, Ib = Îb. For studying the coupling effects due to intensity,
we need to see how the change in intensity of the soliton in one crystal affects the
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Fig. 6.4 Normalized spatial profiles of the intensity for the grey soliton in P considering various
values for the background intensities as shown in Table 6.2 (Reprinted by permission from Springer
Nature: Springer European Physical Journal D, Coupling effects for separate spatial solitons in a
biased series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar
Katti and Ram Anjore Yadav, Copyright 2018)

Fig. 6.5 Normalized spatial profiles of the intensity for the grey soliton in P̂ considering various
values for the background intensities as shown in Table 6.2 (Reprinted by permission from Springer
Nature: Springer European Physical Journal D, Coupling effects for separate spatial solitons in a
biased series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar
Katti and Ram Anjore Yadav, Copyright 2018)
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soliton profile in the other crystal. Hence, we shall consider three different cases, r
= ρ̂, r > ρ̂, r < ρ̂ as shown in Table 6.3 and with these parameters plot the intensity
profile for each soliton. The normalized intensities of the soliton in crystal P and P̂
are shown in Figs. 6.6 and 6.7 respectively. We can see from Curve 2 that the grey
soliton affects the bright soliton but the bright soliton cannot affect the grey soliton.

Lastly, we shall study the grey dark separate coupled soliton pair. Again, consider
Ib = Îb. For studying the coupling effects due to intensity of the individual soliton
in each crystal, we shall consider three different cases, ρ = ρ̂, ρ > ρ̂, ρ < ρ̂ as shown
in Table 6.4 and with these parameters plot the intensity profile for each soliton.
The normalized spatial profiles for the intensity of the soliton in crystal P and P̂ are
shown in Figs. 6.8 and 6.9 respectively. The effect of the background intensities for
the grey-dark and grey-bright separately coupled solitons can be proceeded exactly
as shown previously for the grey grey separately coupled soliton case. It will not be
shown here, and the reader is referred to [3] for detailed calculations.

Table 6.3 Calculations pertaining to different intensities in crystal P and P̂[3]

r ρ̂ g ĝ β β̂

Curve 1 1 1 2/3 1/3 1.97 −0.49

Curve 2 5 1 2/3 1/3 1.97 −0.49

Curve 3 1 10 6/7 1/7 3.27 −0.09

Fig. 6.6 Normalized spatial profiles of the intensity for the bright soliton in P considering various
values for the intensities as shown in Table 6.3 (Reprinted by permission from Springer Nature:
Springer European Physical Journal D, Coupling effects for separate spatial solitons in a biased
series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar Katti
and Ram Anjore Yadav, Copyright 2018)
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Fig. 6.7 Normalized spatial profiles of the intensity for the grey soliton in P̂ considering various
values for the intensities as shown in Table 6.3 (Reprinted by permission from Springer Nature:
Springer European Physical Journal D, Coupling effects for separate spatial solitons in a biased
series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar Katti
and Ram Anjore Yadav, Copyright 2018)

Table 6.4 Calculations pertaining to different intensities in crystal P and P̂[3]

ρ ρ̂ g ĝ β β̂

Curve 1 1 1 0.5 0.5 −1.11 −1.11

Curve 2 5 1 0.25 0.75 −0.28 −2.5

Curve 3 1 10 0.85 0.15 −3.18 −0.11

6.3.5 Temperature Effects

The temperature of a photorefractive crystal can have a profound effect on self
trapping of each soliton. This follows from the fact that the dark irradiance Id and
Îd is a function of the temperature of the crystal. Since the photorefractive crystals
are connected in series, the temperature of each crystal can affect the self trapping
in the other crystal. Cheng and Partovi [8] formulated a model of one level and
one carrier to explain how temperature affects the photorefractive mechanism. Any
modification in the respective dark irradiances influences the ratio of background
intensity to dark irradiance ρ and ρ̂. Considering Ib = Îb = 0, and also ρ0 = I∞/Id0
and ρ̂0 = Î∞/ Îd0 which represent ρ and ρ̂ at a given temperature of 300 K for both
crystals. The parameters ρ and ρ̂ are written as [8, 9],

ρ = I∞/Id = ρ0

(
T

300

)−3/2

exp

[

− Et

kB

(
1

300
− 1

T

)]

(6.59)
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Fig. 6.8 Normalized spatial profiles of the intensity for the grey soliton in P considering various
values for the background intensities as shown in Table 6.4 (Reprinted by permission from Springer
Nature: Springer European Physical Journal D, Coupling effects for separate spatial solitons in a
biased series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar
Katti and Ram Anjore Yadav, Copyright 2018)

Fig. 6.9 Normalized spatial profiles of the intensity for the grey soliton in P̂ considering various
values for the background intensities as shown in Table 6.4 (Reprinted by permission from Springer
Nature: Springer European Physical Journal D, Coupling effects for separate spatial solitons in a
biased series centrosymmetric photorefractive crystal circuit considering grey solitons, Aavishkar
Katti and Ram Anjore Yadav, Copyright 2018)
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ρ̂ = Î∞/ Îd = ρ̂0

(
T̂

300

)−3/2

exp

[

− Et

kB

(
1

300
− 1

T̂

)]

(6.60)

where Et = 10–19 J is the level location in the energy gap and kB is the Boltzmann
constant.

Now, consider a case where T, the temperature of the crystal P is modified while
the temperature T̂ of the crystal P̂ remains unchanged. Using the fact that δ̂ = δ,
Id = Îd and Ib = Îb = 0 and substituting (6.59) and (6.60) into (6.14) and (6.15), we
obtain,

g =
[
1 + ρ̂

]

[
1 + ρ̂ + 1 + ρ0

(
T
300

)−3/2
exp

[
− Et

kB

(
1

300 − 1
T

)]] (6.61)

ĝ =
1 + ρ0

(
T
300

)−3/2
exp

[
− Et

kB

(
1

300 − 1
T

)]

[
1 + ρ̂0 + 1 + ρ0

(
T
300

)−3/2
exp

[
− Et

kB

(
1

300 − 1
T

)]] (6.62)

Since the respective coupling factors are functions of the crystal temperature, it is
clear that β and β̂ will also get modified if the temperature of the crystal is modified
and in turn alter the self trapping.

Moreover, the dielectric constant is a function of temperature in a paraelectric
material. Using the Curie–Weiss law, the dielectric constant can be expressed as the
following assuming the mean field approximation is valid [3, 9],

εr = εr0
T0 − TC
T − TC

(6.63)

where, εr0 = εr (T = T0).
The typical parameters for KLTN are, TC = 279.2 K, εr0 = 7.21 × 103 at T 0 =

300 K [9, 10]. Other parameters of KLTN will be taken as mentioned previously.
Since the mean field approximation has to be valid, the working point is selected in
such a way that it is far from the phase transition (Tp= 283 K). Hence, a temperature
range of 290–350 K will be considered for examining the coupling effects of the
temperature on the soliton in each crystal. Table 6.5 shows the various calculations
as per (6.61)–(6.63) for different temperatures of P and P̂ .

Table 6.5 Parameters taken for studying the temperature effects on separate coupling [3]

T (Crystal P) T (Crystal P̂) ρ ρ̂ g ĝ

290 300 2.420 1 0.631 0.369

325 300 0.138 1 0.363 0.637

350 300 0.026 1 0.339 0.661
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Fig. 6.10 Spatial profiles of the soliton in crystalP for different temperatures of crystalP (Reprinted
by permission from Springer Nature: Springer European Physical Journal D, Coupling effects
for separate spatial solitons in a biased series centrosymmetric photorefractive crystal circuit
considering grey solitons, Aavishkar Katti and Ram Anjore Yadav, Copyright 2018)

Figures 6.10 and 6.11 show the normalized spatial profiles for the intensities of
each soliton in P and P̂ for the diverse temperature values of crystal P. Each soliton’s
FWHM is an increasing function of temperature (of P) revealing a weakening of the
nonlinearity.

Changing the temperature of P̂ and keeping the temperature of P constant will
give similar results due to symmetry.

6.3.6 Some Alternate Configurations

In this chapter till now, we have illustrated a theory which can explain a wide range of
permutations for separate coupled solitons in different configurations of photorefrac-
tive crystals. Separately coupled solitons can be bright-bright, dark-dark, bright-dark,
grey-grey, grey-bright and grey-dark. The respective ansatz for the bright, dark or
grey solitons can be used to solve the paraxialHelmholtz equation in the samemanner
as illustrated in this chapter. We can consider the photorefractive crystal circuit in
which the photorefractive crystals are having the linear electro-optic effect [a = 1,
b = 0 in (6.2)], quadratic electro-optic effect [a = 0, b = 1 in (6.2)] or exhibiting
both simultaneously( a = 1, b = 1). The reader is referred to Refs.[3–7] for detailed
investigations in the aforementioned cases. A fundamentally similar but quantita-
tively different case is that of a photovoltaic crystal circuit which we shall discuss
briefly below.
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Fig. 6.11 Spatial profiles of the soliton in crystal P̂ for different temperatures of crystal P.
(Reprinted by permission from Springer Nature: Springer European Physical Journal D, Coupling
effects for separate spatial solitons in a biased series centrosymmetric photorefractive crystal circuit
considering grey solitons, Aavishkar Katti and Ram Anjore Yadav, Copyright 2018)

6.4 Photovoltaic Crystal Circuits [10]

The photorefractive crystal has a finite photovoltaic coefficient and hence the circuit
can be unbiased because the photovoltaic field can provide the current. The charge
transport equations are slightly modified [11],

γRnN
+
D = si (I + Id)

(
ND − N+

D

)
(6.64)

∂Esc

∂x
= e

ε0ε

(
N+

D − NA − n
)

(6.65)

J = eμnEsc + kBTμ
∂n

∂x
+ kpsi

(
ND − N+

D

)
I (6.66)

∂ J

∂x
= 0 (6.67)

These are the same as Eqs. (2.2)–(2.5) of Chap. 2. Following the approach of
Sect. 2.2.1, we have, for the crystal P,

n∞ = si (ND − NA)

γRNA
(I∞ + Id) (6.68)
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J∞ = eμn∞
(

E0 + Ep
I∞

I∞ + Id

)

(6.69)

with, Ep = kpγRNA/(eμ).
Similarly for the crystal P̂ , we have,

n̂∞ =
ŝi

(
N̂D − N̂A

)

γ̂R N̂A

(
Î∞ + Îd

)
(6.70)

Ĵ∞ = êμ̂n̂∞

(

Ê0 + Ê p
Î∞

Î∞ + Îd

)

(6.71)

with, Ê p = k̂ pγ̂R N̂A/
(
êμ̂

)
.

V, V̂ are the voltagesmeasured between the electrodes of the crystals P, P̂ respec-
tively having widthW, Ŵ . If S, Ŝ denote the surface area of the electrodes at crystal
P, P̂ respectively, then SJ = Ŝ Ĵ since the crystals are connected in series. Within
the approximation of the x-width of the crystals being much greater than the spatial
extent of the soliton, Êsc

(
x̂ → ∞) = Ê0 = V̂ /Ŵ .and Esc(x → ∞) = Eo = V/W .

Again, since the two photorefractive crystals are connected in series and the crys-
tals c-axes are oriented in the right handed screw sense (Fig. 6.12a), SJ = Ŝ Ĵ and
V + V̂ = 0. Hence,

WE0 + Ŵ Ê0 = 0 (6.72)

Again, since the current density is constant in x [from (6.67)]. So,
J∞(x → ∞, z) = J . Similarly, Ĵ∞

(
x̂ → ∞, ẑ

) = Ĵ . For SJ = Ŝ Ĵ , we have,

SJ∞ = Ŝ Ĵ∞. Substituting (6.69) and (6.71),

Sμn∞
(

E0 + Ep
I∞

I∞ + Id

)

= Ŝμ̂n̂∞

(

Ê0 + Ê p
Î∞

Î∞ + Îd

)

(6.73)

From (6.72) and (6.73), we can easily infer that,

E0 = gÊ p − �Ep (6.74)

Ê0 = ĝE p − �
∧

Ê p (6.75)

where,

g = δ̂ Î∞Ŵ

W
[
δ(I∞ + Id) + δ̂

(
Î∞ + Îd

)] , � = δ I∞
[
δ(I∞ + Id) + δ̂

(
Î∞ + Îd

)] ,
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Fig. 6.12 Configuration for
unbiased photovoltaic crystal
circuit (Reprinted from
Physics Letters A, 300,
Jinsong Liu, Separate spatial
soliton pairs and solitons
interaction in an unbiased
series photorefractive crystal
circuit, 213–220, Copyright
2002, with permission from
Elsevier)

ĝ = δ I∞W

Ŵ
[
δ(I∞ + Id) + δ̂

(
Î∞ + Îd

)]

δ = Sμsi (ND − NA)/(γRNAW ), δ̂ = Ŝμ̂ŝi
(
N̂D − N̂A

)
/
(
γ̂R N̂AŴ

)

g and ĝ are identified as gain factors while �,�
∧

are identified as the coupling
factors. Now if the c-axes are oriented in the opposite screw senses (Fig. 6.12b), V +
V̂ = 0 and SJ = −Ŝ Ĵ . This is because an illuminated photovoltaic photorefractive
crystal is like a current source where current flows out from its positive electrode.
As in the previous case, we have,

E0 = −gÊ p − �Ep (6.76)
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Ê0 = −ĝE p − �
∧

Ê p (6.77)

When all the parameters of the two crystals are equal for this case, it is notable
that the current in the circuit will be zero. From (6.64) and (6.66),

J = eμn

(

Esc + kBT

e

∂lnn

∂x
+ Ep

I

I + Id

)

(6.78)

Since J (x, z) = J∞, from (6.69) and (6.78),

n∞
(

Ep
I∞

I∞ + Id
+ E0

)

= n

(

Esc + kBT

e

∂lnn

∂x
+ Ep

I

I + Id

)

(6.79)

If the diffusion effect is neglected,

Esc = Ep
I∞ − I

I + Id
+ E0

I∞ + Id
I + Id

(6.80)

And, for the crystal P̂ ,

Êsc = Ep
Î∞ − Î

Î + Îd
+ Ê0

Î∞ + Îd

Î + Îd
(6.81)

Esc and Êsc are not independent of each other as we can see from (6.74) and (6.75).
As done in [10], we can now use the space charge fields in the paraxial Helmholtz
equation to solve for bright, dark and bright-dark separately coupled photovoltaic
solitons following a similar approach as elucidated in this chapter before.

6.5 Concluding Remarks and Further Reading

In conclusion, we have delineated a general theory for optical spatial solitons prop-
agating in a biased photorefractive crystal circuit. We have then extended and inves-
tigated the validity of the theory for various different types and configurations of
the constituent photorefractive crystals. The coupled space charge fields in both the
crystals of the photorefractive crystal circuit have been derived. The input intensity
of each soliton and the temperature of each crystal exert a coupling effect between
the individual solitons in the two crystals. These phenomena are discussed in detail
taking relevant examples.

Further investigations of separately coupled solitons include the study of dynam-
ical evolution and the stability of these solitons. For studying the dynamical evolu-
tion, we shall first consider the field profiles as found in (6.23), i.e., y0(s) as
found in (6.30) for the soliton in crystal P and ŷ0(s) from (6.32) for the soliton
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in crystal P̂ . The grey solitary states will be, U0 = √
1y0(s)exp

[
i
(∫ s

0
Qds̃
y2(s̃)

)]
and

Û0 = √
1ŷ0

(
ŝ
)
exp

[
i
(∫ ŝ

0
Qds̃
y2(s̃)

)]
with ρ = ρ̂ = 1, β = β̂ = −1.11. Consider these

two solitary states as input beams. The dynamical evolution of both solitons can
be investigated by solving Eqs. (6.20) and (6.21) by using a finite difference beam
propagation method or a split step fourier method as has been performed in [5].

For considering the stabilities, we can consider a similar beam profile but with

a increased amplitude, i.e., U1 = √
10y0(s)exp

[
i
(∫ s

0
Qds̃
y2(s̃)

)]
. We need to see the

dynamical evolution of this beamU1 in crystal P andU0 = √
1y0(s)exp

[
i
(∫ s

0
Qds̃
y2(s̃)

)]

in crystal P̂ simultaneously by taking these as input beams and applying a beam
propagation method in (6.20) and (6.21). Since U1 is not a solitary state of (6.30),
we have included a perturbation from which we can investigate whether it grows or
decays while propagating [5].

With regards to the different configurations of the photorefractive crystal circuits
in which separate coupled solitons have been studied, the reader is referred to Refs.
[4, 7], where the authors investigate separate coupling in novel photorefractive crystal
circuit consisting of both linear and quadratic nonlinearity, Ref. [10] in which the
author studies photovoltaic crystal circuits in much more detail, also Refs. [6, 12,
13].
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Chapter 7
Photorefractive Waveguides

7.1 Introduction

We have seen previously that a spatial soliton traversing in a photorefractive crystal
induces a waveguide which then guides the soliton beam itself [1, 2]. An interesting
case arises if we embed a planar waveguide inside a photorefractive crystal. The
diffraction effect will be counteracted due to the waveguiding of the planar waveg-
uide. So, in a photorefractive waveguide, the minimum power required for soliton
formation or the threshold power is much lower as compared to that in conventional
photorefractive media. There has been a recent upsurge in interest in such photore-
fractive waveguides because of the potential important implications for practical
applications [3–7]. Optical spatial solitons have important uses in various applica-
tions such as optical switching, routing, waveguiding and navigations etc. Also, in
contrast to temporal solitons, the threshold power required is quite large for spatial
solitons. This difficulty can be overcome simply if the spatial solitons are created in a
waveguide. The self defocusing is partly eliminated due to the self focusing effect of
the waveguide and the formation of optical spatial solitons takes place with relatively
lower powers.

In this chapter, we shall study the propagation characteristics of bright spatial soli-
tons in a biased planar photorefractivewaveguide having both the linear and quadratic
electro-optic effect under the WKBJ approximation. We shall use the paraxial wave
equation incorporating the waveguiding effect through a waveguide parameter. Then
we shall assume a variational solution of a quasi-soliton and proceed towards deter-
mining the variational parameters. Finally, we assign a physical interpretation to
each parameter and analyze the quasi-soliton characteristics and the effect of the
waveguide parameter on the self trapping.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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7.2 Mathematical Formulation

We shall consider an optical beam propagating along the z direction in a photore-
fractive crystal. In addition, a waveguide has been embedded in the photorefrac-
tive crystal. The photorefractive crystal exhibits the linear electro-optic effect, the
quadratic electro-optic effect or both the linear and quadratic electro-optic effect
simultaneously. The optical c-axis of the photorefractive waveguide is considered
to be along the x-axis. The beam is polarized along the x-direction we consider the
diffraction along the same axis. The external bias is along the x-direction and hence
a space charge field

−→
E sc = x̂ Esc is set up in the photorefractive waveguide.

The electric field
−→
E of the incident beam propagating through the photorefractive

waveguide satisfies the following wave equation [5, 6],

∇2−→E + (k0n
′
e)

2−→E − gx2
−→
E = 0 (7.1)

where n′
e is the perturbed extraordinary index of refraction,k0 is the wave number in

free space. Since, �n = n′
e − ne = − 1

2an
3
ere f f Esc − 1

2bn
3
egef f ε

2
0(εr − 1)2E2

sc, n
′
e

can be expressed in first order approximation as [8],

n′2
e = n2e − an4ere f f Esc − bn4egef f ∈2

0 (∈r −1)2E2
sc (7.2)

re f f and gef f are the linear and quadratic electro-optic coefficients respectively. a
and b will be non zero depending on the presence of the linear or quadratic electro-
optic effect respectively. g is a real and positive parameterwhichwe call as thewaveg-
uide parameter. This waveguide parameter represents the strength of thewaveguiding
which counteracts the diffraction of the light beam. In (7.1), the third term which is
a function of g is a permanent change of the extraordinary refractive index due to the
embedded waveguide. The incident beam envelope is,

−→
E (x, z) = x̂�(x, z)eikz (7.3)

where�(x, z) is the slowly varying envelope of the wave and k = k0n′
e. Applying

the paraxial approximation and putting (7.2) and (7.3) in (7.1), (see Note 1 at the end
of the chapter),

i
∂�

∂z
+ 1

2k0ne

∂2�

∂x2
− 1

2
k0n

3
ere f f Esc� − 1

2
k0n

3
egef f ∈2

0 (∈r −1)2E2
sc� − gx2� = 0

(7.4)

The space charge field disregarding the diffusion effect is [9],

Esc = I∞ + Id
I + Id

E0 (7.5)
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where the symbols have their usual meaning as defined previously.
Using the usual dimensionless coordinates specified before, the space charge field

becomes,

Esc = 1 + ρ

1 + |U |2 E0 (7.6)

and the evolution equation is obtained,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β1

1 + ρ

1 + |U |2U − β2

(
1 + ρ

1 + |U |2
)2

U − δs2U = 0 (7.7)

where,
β1 = a (k0x0)2n4ere f f

2 E0, β2 = b (k0x0)2n4e gef f ∈2
0(∈r−1)2

2 E2
0 and δ = gk0x40ne along with

ρ = I∞/Id . The origin of the refractive index perturbation lies in the nonlinear
terms in (7.7). Equation (7.7) does not have an exact solution so we have to resort to
approximate methods. There are several methods like Akhmanov’s paraxial method
[10], Segev’smethod [11], Anderson’s variational method [12] andVlasov’smoment
method [9] which can be used to solve (7.7). We use a variational solution along with
a paraxial approximation to obtain soliton solutions which are acceptable physically.
Also ρ = 0 since bright solitons will be considered. The slowly varying beam
envelope to be expressed as,

U (ξ, s) = U0(ξ, s)e−i 
(ξ,s) (7.8)

U0(ξ, s) is a real quantity and 
(ξ, s) gives the phase. Substituting (7.8) in (7.7)
we obtain,

(
i
∂U0

∂ξ
+U0

∂


∂ξ

)
+ 1

2

{
∂2U0

∂s2
− 2i

∂U0

∂s

∂


∂s
− iU0

∂2


∂s2
−U0

(
∂


∂s

)2
}

− β1
1 + ρ(
1 +U 2

0

)U0 − β2

(
1 + ρ

1 +U 2
0

)2

U0 − δs2U0 = 0 (7.9)

(7.9) is an equation which is a combination of real and imaginary terms. For the LHS
to be zero, we need to equate the real and imaginary parts separately to zero,

∂U0

∂ξ
− ∂U0

∂s

∂


∂s
− 1

2
U0

∂2


∂s2
= 0 (7.10)

U0
∂


∂ξ
+ 1

2

∂2U

∂s2
− 1

2
U0

(
∂


∂s

)2

− β1�1(ξ, s)U0 − β2�2(ξ, s)U0 − δs2U0 = 0

(7.11)
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where,

�1(ξ, s) = 1

1 + |U0|2 (7.12)

�2(ξ, s) = 1

(1 + |U0|2)2 (7.13)

�1(ξ, s) and�2(ξ, s) represent the contributionof the linear andquadratic electro-
optic effect to the refractive index change. As mentioned previously, the last term
in Eq. (7.11) represents the effect of the embedded planar waveguide. The interplay
between the refractive index waveguide and the planar waveguide structure can be
seen clearly from the last three terms in (7.11).

7.3 Spatial Solitons

We need to search for physically acceptable bright soliton states, which implies an
intensity profile which peaks at the center of the beam and falls off with distance.
Following the approach in Chap. 5 (Sect. 5.5), we shall assume a quasi soliton
solution, i.e., a modifiedGaussian ansatz for the soliton envelope in (7.11) as follows,

U0(ξ, s) = U00√
f (ξ)

e−s2/2r2 f 2(ξ) (7.14)


(ξ, s) = s2

2
�(ξ) (7.15)

�(ξ) = − 1

f (ξ)

d f (ξ)

dξ
(7.16)

where P0 = U 2
00 is the normalized peak power of the soliton, r is a constant which is

always positive, f (ξ) is the variable parameter proportional to the beam width. The
spatial width of the soliton is expressed as the product r f (ξ). We term the solution
(7.14) as a variational solution where the variable parameters to be found are r, f (ξ),
�(ξ). In general, we shall assume that d f

dξ
= 0 at ξ = 0, i.e., the soliton beam is

non-diverging at the entry point of the crystal. Also, we can assume that f = 1 at
ξ = 0. The next step is to simplify the non-linear terms �1 and �2. Expanding both
in a Taylor series, we get, (see Note 2 at the end of chapter)

�1(ξ, s) ≈ 1(
1 + U 2

00
f

) + s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)2 (7.17)
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�2(ξ, s) ≈ 1(
1 + U 2

00
f

)2 + 2s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)3 (7.18)

where we approximate to the first order.
Substituting (7.14)–(7.18) in (7.11), we obtain an equation in various powers of

s2. Considering the coefficients of s2 in LHS and RHS and equating them, we get,

d2 f (ξ)

dξ 2
= 1

r4 f 3(ξ)
− 2β1

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)2 − 4β2

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)3 − 2δ f (ξ) (7.19)

(7.19) can said to be an equation which details the spatial evolution of the parameter
f (ξ). Higher order terms of s, i.e., s3, s4 will not be considered since we take the first
order approximation [r f(ξ )] > s in (7.17)–(7.18). Now, the light beam’s propagation
in the photorefractive crystal may proceed in the following three ways: it may travel
stably with an unchanging intensity profile, it may diverge, or it may be compressed.
From (7.19), we can see that this depends upon the magnitudes of the power P0 and
the parameters β1, β2. A soliton, or a stable self trapped beam needs the beam width
parameter f (ξ) to remains constant with propagation. Hence equating the LHS in
(7.19) to zero,

1

r4
= 2δ + 2β1P0t

r2(1 + P0t )2
+ 4β2P0t

r2(1 + P0t )3
(7.20)

In (7.20), we see an equilibrium condition which is known as quartic equilibrium
condition because it is a polynomial equation of fourth order and has four roots. From
(7.20), we can find out the threshold power P0t needed for stationary propagation of
the optical beam. The region of existence of optical spatial solitons in the photore-
fractive waveguide can be found from (7.20) and hence it is known as the existence
equation. Examining the solutions of the above equation, two roots are imaginary,
one root is negative and only one root is positive. Neglecting the imaginary and
negative values of r for spatial solitons as being unphysical, we are left with only
one solution.

7.3.1 Waveguides in Photorefractive Crystals Having Both
Electro-Optic Effects

For illustration of soliton behavior in such waveguides, PMN-0.33PT crystal will be
considered which exhibits both electro-optic effects simultaneously. The parameters
taken for the aforementioned crystal are shown in Table 7.1. Figure 7.1 shows the
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Table 7.1 Parameters taken
in the our calculation [5]a

ne 2.562 l (crystal width) 1 cm

x0 20μm V(bias) 2000 V

λ0 632.8 nm ρ 0

re f f 182 × 10−12

m/V
β1 30.9224

gef f ∈2
0 (∈r

−1)2
1.38 ×
10−16 m2/V2

β2 4.6896

aReprinted from Katti [5], Copyright 2018, with permission from
Elsevier

Fig. 7.1 The dependence of the r the stable spatial width of the soliton on the threshold power
of the spatial solitons,β1 = 30.9224, β2 = 4.6896. (Reprinted from Wave Motion, 77, Aavishkar
Katti, R.A. Yadav, Awadhesh Prasad, Bright optical spatial solitons in photorefractive waveguides
having both the linear and quadratic electro-optic effect, 64–76, Copyright 2018, with permission
from Elsevier)

graph of r versus the threshold power P0t for various strengths of the waveguide. The
spatial width of the soliton first decreases with an increase in power when the power
is low, while the soliton width increases with an increase in power when the power is
high. A similar dependence remains for each value of the waveguide parameter but
the curve becomes less steep as the waveguide parameter increases. The presence of
bistable states is clear from Fig. 7.1 since we can infer two values for the threshold
powers for a single value of r and f (ξ ) is constant. The two values of the threshold
power at which a soliton can just form are known as P0t1 and P0t2.

In the absence of waveguiding, we shall see the behavior of solitons
in distinct power regions. Consider four values of power, P1(= 0.0999) <
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P0t1,P2(= 0.2692) = P0t1,P0t1 < P3(= 1) < P0t2, P4(= 26.92) > P0t2. In Fig. 7.2,
the change in f (which is a parameter related to the soliton width) with the scaled
propagation distance ξ is plotted in the four power regimes. Figure 7.2 shows that
the beam width deviates to a large value with propagation when P = P1. Since P1 is
less than the threshold power, so we do not expect the soliton to form. If the power
exactly equals the threshold power,= P0t1, the parameter f = 1 and hence the soliton
width rf is constant in Fig. 7.2. So we obtain a spatial soliton which travels without
changing its shape, i.e., a stable self trapping. If the value of the peak power P lies
between the two threshold powers, i.e., P0t2 < P < P0t1, we find from Fig. 7.2 that
the soliton’s width oscillates. This oscillation is with amplitude less than unity so
we can conclude that there is a reasonable amount of self trapping and this is in fact
a “soliton”. If the soliton peak power P is larger than P0t2, the soliton width again
oscillates with propagation but now the oscillation amplitude is greater than unity
and hence it cannot be termed as a soliton. As rf is the soliton width, we use it to
plot the soliton’s propagation in Figs. 7.3, 7.4, 7.5 and 7.6 using (7.14).

In order to investigate what effect waveguiding has on the self trapping, we shall
now take a finite nonzero value for the waveguide parameter and investigate the prop-
agation of the soliton. How the soliton width parameter f changes while propagating
is plotted in Fig. 7.3 considering various values of the waveguide parameters δ. If
we take, δ = 0 implying no waveguide effect at all, the wave diverges as seen in
Fig. 7.3. Again, as the value δ increases, we can see in Fig. 7.3 that the behavior of f
changes. For a certain value of δ, the value of f is seen to be oscillatory with respect

Fig. 7.2 Variable beam width parameter f (ξ) versus the normalized distance of propagation ξ

considering various peak powers of the soliton, β1 = 30.9224, β2 = 4.6896, r = 0.2793. (Reprinted
from Katti [5], Copyright 2018, with permission from Elsevier)
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Fig. 7.3 Propagation of the soliton when there is no embedded waveguide. P = 0.0999. β1 =
30.9224, β2 = 4.6896, r = 0.2793. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A.
Yadav, Awadhesh Prasad, Bright optical spatial solitons in photorefractive waveguides having both
the linear and quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)

Fig. 7.4 Propagation of the soliton when there is no embedded waveguide. P = 0.2692. β1 =
30.9224, β2 = 4.6896, r = 0.2793. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A.
Yadav, Awadhesh Prasad, Bright optical spatial solitons in photorefractive waveguides having both
the linear and quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)
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Fig. 7.5 Propagation of the soliton when there is no embedded waveguide. P = 1. β1 = 30.9224,
β2 = 4.6896, r=0.2793. (Reprinted fromKatti [5], Copyright 2018,with permission fromElsevier)

Fig. 7.6 Propagation of the soliton when there is no embedded waveguide. P = 26.92. β1 =
30.9224, β2 = 4.6896, r = 0.2793. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A.
Yadav, Awadhesh Prasad, Bright optical spatial solitons in photorefractive waveguides having both
the linear and quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)
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Fig. 7.7 Beam width parameter f (ξ) versus propagation distance ξ for different waveguide
strengths, β1 = 30.9224, β2 = 4.6896, P0 = 0.055 and r = 0.2831. (Reprinted fromWaveMotion,
77, Aavishkar Katti, R.A. Yadav, Awadhesh Prasad, Bright optical spatial solitons in photorefractive
waveguides having both the linear and quadratic electro-optic effect, 64–76, Copyright 2018, with
permission from Elsevier)

Fig. 7.8 Propagation of soliton in the absence of the waveguide when P = 0.055 and r = 0.2831.
(Reprinted from Wave Motion, 77, Aavishkar Katti, R.A. Yadav, Awadhesh Prasad, Bright optical
spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic
effect, 64-76, Copyright 2018, with permission from Elsevier)
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Fig. 7.9 Propagation of soliton when the waveguding parameter is augmented to δ = 10. P = 0.055
and r = 0.2831. (Reprinted fromWaveMotion, 77, Aavishkar Katti, R.A. Yadav, Awadhesh Prasad,
Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic
electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)

Fig. 7.10 Propagation of soliton when the waveguding parameter is augmented to δ = 30. P =
0.055 and r = 0.2831. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A. Yadav, Awadhesh
Prasad, Bright optical spatial solitons in photorefractive waveguides having both the linear and
quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)
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Fig. 7.11 Propagation of soliton when the waveguding parameter is augmented to δ = 50. P =
0.055 and r = 0.2831. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A. Yadav, Awadhesh
Prasad, Bright optical spatial solitons in photorefractive waveguides having both the linear and
quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)

to increasing distance of propagation but the oscillation amplitude is less than one.
This indicates very clearly that self trapping can occur even at peak powers much
less than the threshold power due to the waveguiding effect of the embedded planar
waveguide. With even greater values of δ, the power required to self trap the soliton
reduces even more. Considering the case when the power of the light beam is less
than the threshold power, i.e. P < P0t1, the propagation of the light beam is shown in
Figs. 7.8, 7.9, 7.10, 7.11 and 7.12 for various strengths of the waveguide.

7.3.2 Photorefractive Waveguides with the Linear
Electro-Optic Effect

In (7.19), we shall put b = 0 since we consider conventional non centrosymmetric
photorefractive media which does not have the quadratic electro-optic effect,

d2 f (ξ)

dξ 2
= 1

r4 f 3(ξ)
− 2β1

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)2 − 2δ f (ξ) (7.21)

We have to look for points of equilibrium of (7.21) as a soliton forms when the
beam width f (ξ) remains constant. Hence, in (7.21), putting LHS equal to zero we
obtain,
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Fig. 7.12 Propagation of soliton when the waveguding parameter is augmented to δ = 100. P =
0.055 and r = 0.2831. (Reprinted from Wave Motion, 77, Aavishkar Katti, R.A. Yadav, Awadhesh
Prasad, Bright optical spatial solitons in photorefractive waveguides having both the linear and
quadratic electro-optic effect, 64–76, Copyright 2018, with permission from Elsevier)

1

r4
= 2δ + 2β1P0t

r2(1 + P0t )2
(7.22)

(7.22) signifies an equilibrium condition containing four roots and hence which is
quartic. The threshold power P0t for stationary propagation of the light beam as a
soliton can be inferred from (7.22)which serves to identify the existence for screening
solitons in a photorefractive waveguide. As in the previous case, only one of the four
solutions is real and positive so is physically acceptable.

We now need to consider a Lithium Niobate (LN) crystal for illustrating the
characteristics of solitons in this case. The parameters taken in our investigation are
shown clearly in Table 7.2. Bistable states can again be inferred from Fig. 7.13.

We shall proceed similarly to the previous case to predict the behavior of spatial
solitons in absence of the waveguiding effect. For illustration, we take four different
values of power, P1(= 0.0999) < P0t1,P2(= 0.3225) = P0t1,P0t1 < P3(= 1) <

P0t2, P4(= 32.25) > P0t2. The variation in the variable beam width parameter with
propagation is plotted inFig. 7.14.As explainedpreviously,weobserve a self trapping
if the power of the light beam falls within the two threshold powers. Self trapping
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Table 7.2 Parameters for LN
crystal taken in our
theoretical investigation [13]

ne 2.35 V (bias emf) 2000 V

x0 40μm l (crystal width) 1 cm

λ0 500 nm ρ 0

re f f 224 × 10−12 m/V β1 173

Fig. 7.13 Equilibrium spatial width r versus the threshold power P0t of the spatial solitons, β1 =
173. (Reprinted by permission from Springer Nature: Springer Optical and Quantum Electronics
Bright screening solitons in a photorefractive waveguide, Aavishkar Katti, Copyright 2018)

is not observed for powers below the threshold power. The change induced by the
embedded waveguide in the self trapping is investigated in Fig. 7.15 where the
change in the variable beamwidth parameter is plotted with propagation considering
diverse waveguide strengths. The conclusions remain same that a soliton of peak
power lesser than the threshold power can still be self trapped by the use of an
embedded waveguide in the photorefractive crystal.

7.3.3 Centrosymmetric Photorefractive Waveguides

In (7.19), we shall put a= 0 sincewe consider centrosymmetric non centrosymmetric
photorefractive media which does not exhibit the linear electro-optic effect,

d2 f (ξ)

dξ 2
= 1

r4 f 3(ξ)
− 4β2

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)3 − 2δ f (ξ) (7.23)
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Fig. 7.14 Variable beam width parameter f (ξ) versus the distance of propagation ξ for ddiverse
values of soliton peak powers, β1 = 173, r = 0.125. (Reprinted by permission from Springer
Nature: Springer Optical and Quantum Electronics Bright screening solitons in a photorefractive
waveguide, Aavishkar Katti, Copyright 2018)

We have to look for points of equilibrium of (7.23) as a soliton forms when the
beam width f (ξ) remains constant. Hence, in (7.23), putting LHS equal to zero, we
obtain,

1

r4
= 2δ + 4β2P0t

r2(1 + P0t )3
(7.24)

(7.24) signifies an equilibrium condition containing four roots and hence which is
quartic. The threshold power P0t for stationary propagation of the light beam as a
soliton can be inferred from (7.24)which serves to identify the existence for screening
solitons in a photorefractive waveguide. As in the previous case, only one of the four
solutions is real and positive so is physically acceptable [7].

We now need to consider a Potassium Lithium Tantalate Niobate (KLTN) crystal
for illustrating the characteristics of solitons in this case. Taking typical parameters
[7], we get,β2 = 157.9. The value of the equilibrium spatial width is plotted with
respect to the threshold power in Fig. 7.16. Bistable states can again be inferred from
Fig. 7.16.

We shall now proceed to predict the propagation behavior of spatial solitons when
there is no waveguide. Consider four different values of power,P1(= 0.0999) <

P0t1,P2(= 0.3341) = P0t1,P0t1 < P3(= 1) < P0t2, P4(= 33.41) > P0t2.Weplot the
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Fig. 7.15 Variable beam width parameter f (ξ) versus distance of propagation ξ for different
waveguide strengths,β1 = 173, P0 = 0.075and r = 0.161. (Reprintedbypermission fromSpringer
Nature: Springer Optical and Quantum Electronics Bright screening solitons in a photorefractive
waveguide, Aavishkar Katti, Copyright 2018)

Fig. 7.16 Equilibrium
spatial width r as a function
of the threshold peak power
P0t of the spatial solitons, β2
= 157.9. (Reprinted by
permission from Springer
Nature: Springer Journal of
Optics, Waveguiding effect
on optical spatial solitons in
centrosymmetric
photorefractive materials,
Binay P Akhouri et al,
Copyright 2016)



7.3 Spatial Solitons 155

variation in f with the normalized propagation distance ξ in Fig. 7.17. As explained
previously, we observe a self trapping if the power of the light beam falls within the
two threshold powers. Self trapping is not observed for powers below the threshold
power. For investigating the effect of waveguide embedded in the photorefractive
crystal, we plot the beam width parameter as a function of the scaled distance of
propagation for various strengths of the waveguide in Fig. 7.18. The conclusions
remain same that a soliton of peak power lesser than the threshold power can still be
self trapped by the use of an embedded waveguide in the photorefractive crystal.

Fig. 7.17 Variable beam
width parameter f (ξ ) versus
distance of propagation ξ at
four different soliton peak
powers, β = 157.9.
(Reprinted by permission
from Springer Nature:
Springer Journal of Optics,
Waveguiding effect on
optical spatial solitons in
centrosymmetric
photorefractive materials,
Binay P Akhouri et al,
Copyright 2016)

Fig. 7.18 Variable beam
width parameter f (ξ ) versus
the distance of propagation ξ

at different waveguide
strengths, β = 157.9, P0 =
0.06947, r = 0.1489.
(Reprinted by permission
from Springer Nature:
Springer Journal of Optics,
Waveguiding effect on
optical spatial solitons in
centrosymmetric
photorefractive materials,
Binay P Akhouri et al,
Copyright 2016)
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7.3.4 Pyroelectric Photorefractive Waveguides

We shall now consider waveguide embedded in a photorefractive crystal with a finite
pyroelectric coefficient. If the photorefractive crystal is unbiased, then we can say
that the external bias has been replaced by the transient pyroelectric field which in
turn induces a space charge field modulating the refractive index resulting in self
trapping.

As before, we consider an optical beam propagating along the z-direction in a
pyroelectric photorefractive waveguide embedded in a photorefractive crystal. The
photorefractive crystal is placed between an insulating cover and a metallic plate
whose temperature is precisely controlled by a Peltier cell. The optical c-axis of the
photorefractive waveguide is along the x-direction and the beam is polarized along
the x-direction. Also it is assumed diffraction is allowed along the x-direction only.
Here the space charge field which is formed is due to the pyroelectric effect only and
hence, Esc = Epysc. The slowly varying envelope of the electric field of the incident
beam is expressed as, 	E(x, z) = x̂ �(x, z)eikz where �(x, z) is the slowly varying
envelope of the wave. Proceeding as previously, we obtain the dynamical evolution
equation,

i
∂�

∂z
+ 1

2k0ne

∂2�

∂x2
− 1

2
k0n

3
ere f f E pysc� − gx2� = 0 (7.25)

The induced space charge field in a photorefractive material due to exclusively
the pyroelectric effect has been derived previously in Chap. 2,

Epysc = −Epy
I

I + Id
(7.26)

where we also neglect the diffusion effects.
Epy is the transient pyroelectric field which is expressed as,

Epy = − 1

∈0∈r

∂P

∂T
�T (7.27)

In (7.27), ∂P
∂T is the pyroelectric coefficient, ∈0 is the vacuum permittivity, �T is

the temperature change of the photorefractive crystal, ∈r is the dielectric constant.
Using dimensionless coordinates mentioned before, the evolution equation becomes,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
+ α

|U |2
1 + |U |2U − δs2U = 0 (7.28)

where,
α = (k0x0)2n4er33

2 Epy and δ = gk0x40ne.
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Equation (7.28) cannot be solved exactly, so we have to resort to the variational
method using the paraxial approximation. The light beam envelope can be expressed
as,

U (ξ, s) = U0(ξ, s)e−i 
(ξ,s) (7.29)

U0(ξ, s) is a real quantity and 
(ξ, s) represents the phase. Substituting (7.29) in
(7.28) gives,

(
i
∂U0

∂ξ
+U0

∂


∂ξ

)
+ 1

2

{
∂2U0

∂s2
− 2i

∂U0

∂s

∂


∂s
− iU0

∂2


∂s2
−U0

(
∂


∂s

)2
}

+ α
U 2

0(
1 +U 2

0

)U0 − δs2U0 = 0 (7.30)

The real and imaginary parts can be separately equated to give,

∂U0

∂ξ
− ∂U0

∂s

∂


∂s
− 1

2
U0

∂2


∂s2
= 0 (7.31)

U0
∂


∂ξ
+ 1

2

∂2U0

∂s2
− 1

2
U0

(
∂


∂s

)2

+ α�1(ξ, s)U0 − δs2U0 = 0 (7.32)

where

�1(ξ, s) = |U0|2
1 + |U0|2 (7.33)

The last term in (7.32) refers to the contribution of the embedded planar waveg-
uide. The last two terms represent the counteracting effect on diffraction leading to a
stable self trapping.Again, following our previous analysis and taking the following
Gaussian ansatz for a quasi soliton in our investigation,

U0(ξ, s) = U00√
f (ξ)

e−s2/2r2 f 2(ξ) (7.34)


(ξ, s) = s2

2
�(ξ) (7.35)

�(ξ) = − 1

f (ξ)

d f (ξ)

dξ
(7.36)

where the symbols have their usual meanings as defined in Sect. 7.3.1. We define
the spatial width of the soliton as the product r f (ξ). We term the solution (7.34)
as a variational solution where the variable parameters to be found are are r, f (ξ),
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�(ξ). In general, we shall assume that d f
dξ

= 0 at ξ = 0, i.e., the soliton beam is
non-diverging at the entry point of the crystal. Also, we can assume that f = 1 at
ξ = 0. The next step is to simplify the non-linear term �1. Expanding in a Taylor
series to first order, we get,

�1(ξ, s) ≈
U 2

00
f (ξ)(

1 + U 2
00
f

) + s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)2 (7.37)

Substituting (7.34)–(7.37) in (7.28) results in an equation in several powers of s2.
Equating the coefficients of various powers of s2, we obtain an evolution equation
for f (ξ),

d2 f (ξ)

dξ 2
= 1

r4 f 3(ξ)
− 2α

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)2 − 2δ f (ξ) (7.38)

The normalized power of the soliton is P0 = U 2
00. Higher order terms of s, i.e., s3,

s4 will not be considered since we take the first order approximation [r f(ξ )] > s in
(7.37). Now, the light beam’s propagation in the photorefractive crystal may proceed
in the following three ways: it may travel stably with an unchanging intensity profile,
it may diverge, or it may be compressed. From (7.38), we can see that this depends
upon the magnitudes of the power P0 and the parameters α. A soliton will be formed
when the variable beamwidth parameter f (ξ) remains unchanged with propagation.
Hence equating the LHS in (7.38) to zero,

1

r4
= 2δ + 2αP0t

r2(1 + P0t )2
(7.39)

In (7.39), we see an equilibrium condition which is known as quartic equilibrium
condition because it is a polynomial equation of fourth order and has four roots.
From (7.39), we can find out the threshold power P0t needed for stationary propa-
gation of the optical beam. (7.39) is the existence equation for pyroelectric solitons
travelling in a pyroelectric photorefractive waveguide. Examining the solutions of
the above equation, two roots are imaginary, one root is negative and only one root
is positive. Neglecting the imaginary and negative values of r for spatial solitons as
being unphysical, we have one solution which remains physical.

For illustration of dynamical evolution of the solitons in such waveguides, SBN
crystal will be considered which exhibits a strong pyroelectric effect. The parameters
taken for the aforementioned crystal are shown in Table 7.3. Figure 7.19 shows the
graph of r versus the threshold power P0t for various strengths of the waveguide. We
can see that the soliton width decreases with an increase in power for low powers,
while the it increaseswith an increase in power for high powers.A similar dependence
remains for each value of the waveguide parameter but the curve becomes less steep
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Table 7.3 Parameters for
SBN crystal taken in our
theoretical investigation[4]

ne 2.35 �T 20 °C

x0 20μm ∈0 8.85 × 10–12 F/m

λ0 532 nm ∈r 3400

re f f 237 × 10−12 m/V α 40.2
∂P
∂T −3 × 10−4 C m−2 K−1

Fig. 7.19 The variation of
equilibrium spatial width
r with threshold peak power
P0t of the spatial
solitons.α = 40.2.
(Reprinted from Optik -
International Journal for
Light and Electron Optics,
156, Aavishkar Katti, Bright
pyroelectric quasi-solitons in
a photorefractive waveguide,
433-438, Copyright 2018,
with permission from
Elsevier)

as the waveguide parameter increases. The existence of bistable states is clear from
Fig. 7.19 since we can infer two values for the threshold powers for a single value
of r and f (ξ ) is constant. The two values of the threshold power at which a soliton
can just form are known as P0t1 and P0t2. Also, the soliton width decreases with an
increase in power in the low power region while the soliton width increases with an
increase in power in the high power region.

It is worthwhile to first investigate the behaviour of the quasi-solitons when there
is no waveguide present. As before, take four different values of power, below the
first threshold power, at the first threshold power, between the two threshold powers
and above the second threshold power, P1(= 0.0999) < P0t1, P2(= 0.2435) =
P0t1, P0t1 < P3(= 1) < P0t2, P4(= 24.35) > P0t2. The change in f with the
normalized propagation distance ξ is plotted in Fig. 7.20. To investigate the effect
of the waveguide structure embedded in the photorefractive crystal, we plot the
variation of the beam width parameter f with the normalized distance of propagation
for different waveguide parameter δ in Fig. 7.21.

7.3.5 Photovoltaic Photorefractive Waveguides

If we consider the photorefractive crystal with a finite photovoltaic coefficient, the
space charge field responsible for screening photovoltaic solitons has been found
previously as,
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Fig. 7.20 The variation of variable beam width parameter f (ξ) with normalized distance of prop-
agation ξ at four different soliton peak powers α = 40.2. (Reprinted from Optik - International
Journal for Light and Electron Optics, 156, Aavishkar Katti, Bright pyroelectric quasi-solitons in a
photorefractive waveguide, 433–438, Copyright 2018, with permission from Elsevier)

Fig. 7.21 Variable beam width parameter f (ξ) versus the propagation distance ξ for different
waveguide strengths, α = 40.2,P0 = 0.055, r = 0.2810. (Reprinted from Optik - International
Journal for Light and Electron Optics, 156, Aavishkar Katti, Bright pyroelectric quasi-solitons in a
photorefractive waveguide, 433–438, Copyright 2018, with permission from Elsevier)

Esc = I∞ + Id
I + Id

E0 + I∞ − Id
I + Id

Ep (7.40)

Substituting this in (7.4) alongwith b = 0,
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i
∂U

∂ξ
+ 1

2

∂2U

∂s2
− β

(
1 + ρ

1 + |U |2
)
U − α

(
ρ − |U |2
1 + |U |2

)
U − δs2U = 0 (7.41)

where,
β1 = a (k0x0)2n4ere f f

2 E0, α = (k0x0)2n4ere f f
2 Ep and δ = gk0x40ne alongwith ρ = I∞/Id .

Also ρ = 0 since bright solitons will be considered. The beam envelope in the slowly
varying envelope approximation is expressed as [6],

U (ξ, s) = U0(ξ, s)e−i 
(ξ,s) (7.42)

U0(ξ, s) is the amplitude which is real and the phase is given by 
(ξ, s).
Substituting (7.42) in (7.41) we obtain,

(
i
∂U0

∂ξ
+U0

∂


∂ξ

)
+ 1

2

{
∂2U0

∂s2
− 2i

∂U0

∂s

∂


∂s
− iU0

∂2


∂s2
−U0

(
∂


∂s

)2
}

− β1
1 + ρ(
1 +U 2

0

)U0 − β2

(
1 + ρ

1 +U 2
0

)2

U0 − δs2U0 = 0 (7.43)

(7.43) is an equation which is a combination of real and imaginary terms. For the
LHS to be zero, we need to equate the real and imaginary parts separately to zero,

∂U0

∂ξ
− ∂U0

∂s

∂


∂s
− 1

2
U0

∂2


∂s2
= 0 (7.44)

U0
∂


∂ξ
+ 1

2

∂2U

∂s2
− 1

2
U0

(
∂


∂s

)2

− β1�1(ξ, s)U0 + α�2(ξ, s)U0 − δs2U0 = 0

(7.45)

where,

�1(ξ, s) = 1

1 + |U0|2 (7.46)

�2(ξ, s) = |U0|2
(1 + |U0|2) (7.47)

�1(ξ, s) and �2(ξ, s) represent the contributions to the refractive index change
due to the (linear) electro-optic effect.We shall be searching for physically acceptable
bright soliton states and like before, assume a quasi-soliton solution for (7.45) as
follows,

U0(ξ, s) = U00√
f (ξ)

e−s2/2r2 f 2(ξ) (7.48)
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(ξ, s) = s2

2
�(ξ) (7.49)

�(ξ) = − 1

f (ξ)

d f (ξ)

dξ
(7.50)

where P0 = U 2
00 is the normalized peak power of the soliton, r is a constant which is

always positive, f (ξ) is the variable parameter related to the beam width such that
the product r f (ξ) is the spatial width of the soliton. The ansatz used in (7.48) can be
said to be a variational solution. The variable parameters to be found are r, (ξ), �(ξ).
In general, we shall assume that the soliton beam is stable and not diverging when
it enters the photorefractive crystal, i.e., d f

dξ
= 0 at ξ = 0. Also, we can assume that

f = 1 at ξ = 0. The next step is to simplify the non-linear terms �1 and �2. By a
simple Taylor expansion in first order analogous to the calculation in Sect. 7.3.1, we
get,

�1(ξ, s) ≈ 1(
1 + U 2

00
f

) + s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)2 (7.51)

�2(ξ, s) ≈
U 2

00
f(

1 + U 2
00
f

)2 − s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)2 (7.52)

Substituting (7.14)–(7.18) in (7.11), we obtain an equation which contains several
powers of s2. Considering the coefficients of s2 in LHS and RHS and equating them,
we get the following evolution equation for the parameter f (ξ),

d2 f (ξ)

dξ 2
= 1

r4 f 3(ξ)
− 2(β + α)

P0
r2 f 2(ξ)(

1 + P0
f (ξ)

)2 − 2δ f (ξ) (7.53)

Higher order terms of s, i.e., s3, s4 will not be considered since we take the first
order approximation [r f(ξ )] > s in (7.51)–(7.52). Now, the optical beammay diverge,
be compressed or travel stably after self trapping. From (7.53), we can see that this
depends upon the magnitudes of the power P0 and the parameters β1, β2. A soliton,
which is a stable self trapped solitary wave will be formed when the beam width
f (ξ) remains exactly constant. So the LHS in (7.53) should equal zero,

1

r4
= 2δ + 2(α + β)P0t

r2(1 + P0t )2
(7.54)

In (7.54), we see an equilibrium condition which is known as quartic equilibrium
condition because it is a polynomial equation of fourth order and has four roots. From
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(7.54), we can find out the threshold power P0t needed for stationary propagation of
the optical beam. It can be said to be an existence equation for optical spatial solitons
propagating through the photorefractive waveguide. Examining the solutions of the
above equation, two roots are imaginary, one root is negative and only one root is
positive. Neglecting the imaginary and negative values of r for spatial solitons as
being unphysical, we are left with only one solution (Fig. 7.22).

We shall proceed similarly to the previous case to predict the behavior of spatial
solitons in absence of the waveguiding effect. Considering typical parameters of the
LN crystal with external bias field, we have, For illustration, we take four different
values of power, P1(= 0.0999) < P0t1, P2(= 0.3341) = P0t1, P0t1 < P3(= 1) <

P0t2, P4(= 33.41) > P0t2.We plot the variation in f with the normalized propagation
distance ξ in Fig. 7.23. As explained previously, we observe a self trapping if the

Fig. 7.22 Variation of
equilibrium spatial width
r with threshold peak power
P0t of the spatial solitons, β
= 157.9, α = 31.58.
(Reprinted with permission
from: S Shwetanshumala and
S Konar, Bright optical
spatial solitons in a
photorefractive waveguide,
Physica Scripta, 82, 4,
045404, First Published
2010-09-15, doi:
10.1088/0031-
8949/82/04/045404)

Fig. 7.23 Variable beam
width parameter f (ξ) versus
the propagation distance ξ at
four different soliton peak
powers, β = 157.9, α =
31.58. (Reprinted with
permission from: S
Shwetanshumala and S
Konar, Bright optical spatial
solitons in a photorefractive
waveguide, Physica Scripta,
82, 4, 045404, First
Published 2010-09-15, doi:
10.1088/0031-
8949/82/04/045404)
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Fig. 7.24 The variation of variable beam width parameter f (ξ) with of propagation distance
ξ for different waveguide strengths, α = 31.58, β = 157.9, P0 = 0.06947, r = 0.1489.
(Reprinted with permission from: S Shwetanshumala and S Konar, Bright optical spatial solitons
in a photorefractive waveguide, Physica Scripta, 82, 4, 045404, First Published 2010-09-15, doi:
10.1088/0031-8949/82/04/045404)

power of the light beam falls within the two threshold powers. Self trapping is
not observed for powers below the threshold power. For investigating the effect
of waveguide embedded in the photorefractive crystal, we plot the change in the
soliton width parameter f with the normalized distance of propagation for different
waveguide parameters δ in Fig. 7.24. The conclusions remain same that a soliton of
peak power lesser than the threshold power can still be self trapped by the use of an
embedded waveguide in the photorefractive crystal.

7.4 Concluding Remarks

In conclusion, a comprehensive investigation of optical spatial solitons propagating in
a photorefractive crystal having an embedded planar waveguide has been discussed.
The paraxial diffraction equation is nowmodified to incorporate the waveguide term.
In contrast to a numerical solution for the soliton enevelope, a modified Gaus-
sian ansatz is used to solve this paraxial Helmholtz equation by means of a vari-
ational method. The planar waveguide structure increases the self-focusing while
decreasing the minimum or threshold power required for self trapping. A soliton
of lesser power which could not form can be formed with assistance from the self
focusing due to the waveguide. The propagation of the solitons is visualized with
and without the presence of the waveguide structure. The theory reduces to studying
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solitons in conventional photorefractive waveguides and centrosymmetric photore-
fractive waveguides. Lastly, this theory is extended for spatial solitons propagating in
photovoltaic photorefractive crystals and pyroelectric photorefractive waveguides.

Note 1:
We shall take,

	E = �(x, z)eikz (7.55)

where the plane wave propagates along the z-axis and �(x, z) is the transverse
modulation of the amplitude. Applying the paraxial approximation which implies a
slow variation of �(x, z) with z compared to the wavelength.

The variation is expressed as, δ� = ∂�
∂z δz 
 � with δz ∼ λ. So that

∂�

∂z

 �/λ ∼ k � (7.56)

Hence,

∂2�

∂z2

 k

∂�

∂z

 k2� (7.57)

Now, we have to evaluate,

∇2−→E + (k0n
′
e)

2−→E − gx2
−→
E = 0 (7.58)

TheLaplacian canbe expressed as a combinationof the transverse and longitudinal
parts,

∇2 = [∇2
⊥ + ∂2

z

]
(7.59)

So,

∇2 	E = [∇2
⊥ + ∂2

z

] 	E (7.60)

Now,

∂2
z

	E = ∂2
z

[
�(x, z)eikz

]
(7.61)

Solving (7.61),

∂2
z

[
�(x, z)eikz]=[∂2

z � + 2ik∂z� − k2�
]
eikz (7.62)

Substitute in (7.58),
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∇2
⊥
[
�(x, z)eikz

] + ∂2
z �(x, z) + 2ik∂z�(x, z) − k2�(x, z)]eikz

+ (k0n
′
e)

2�(x, z)eikz − gx2�(x, z)eikz (7.63)

The term ∂2
z �(x, z) can be neglected due to the paraxial approximation. So,

∇2
⊥
[
�(x, z)eikz

] + 2ik∂z�(x, z) − k2�(x, z)]eikz
+ (k0n

′
e)

2�(x, z)eikz − gx2�(x, z)eikz (7.64)

From (7.2),

n′2
e = n2e − n4er33Esc − n4egef f ∈2

0 (∈r −1)2E2
sc (7.65)

Substitute k = k0ne and (7.65) in (7.64),

i
∂�

∂z
+ 1

2k0ne

(
∂2�

∂x2
+ ∂2�

∂y2
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− 1

2
k0n

3
ere f f Esc�

− 1

2
k0n

3
egef f ∈2

0 (∈r −1)2E2
sc� − gx2� = 0 (7.66)

Since the diffraction effects are considered only in the in the x-direction, (7.66)
becomes,

i
∂�

∂z
+ 1

2k0ne

∂2�

∂x2
− 1

2
k0n

3
ere f f Esc�

− 1

2
k0n

3
egef f ∈2

0 (∈r −1)2E2
sc� − gx2� = 0 (7.67)

Note 2
We want to calculate,

�1(ξ, s) = 1

1 + |U0|2 (7.68)

From (7.14),

U0(ξ, s) = U00√
f (ξ)

e−s2/2r2 f 2(ξ) (7.69)

Hence, we get,

|U0|2 = U 2
00

f (ξ)
e−s2/r2 f 2(ξ) (7.70)

Now, expanding the exponential function in (7.70),
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e−s2/r2 f 2(ξ) = 1 − s2

r2 f 2(ξ)
+ 1

2!
(

s2

r2 f 2(ξ)

)2

− · · · (7.71)

Substituting in (7.70),

|U0|2 = U 2
00

f (ξ)

{
1 − s2

r2 f 2(ξ)
+ 1
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(7.72)

Substitute (7.72) in (7.68), we have,
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00

f (ξ)
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Simplifying,
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(7.76)

Following the approach of Refs. [28, 29], the term in curly brackets is expanded
in a Taylor series. Considering the first order approximation we get,
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�1(ξ, s) ≈ 1(
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00
f (ξ)

) + s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00

f (ξ)

)2 (7.78)

Proceeding similarly for �2(ξ, s) = 1
(1+|U0|2)2 , we get,
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Simplifying,
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Expanding the second term in Taylor series in first order,

�2(ξ, s) ≈ 1(
1 + U 2

00
f (ξ)

)2 + 2s2
U 2

00
r2 f 3(ξ)(

1 + U 2
00
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