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Abstract. Knowledge tracing model is one of the important research fields to
realize personalized intelligent education. The focus of the model is to trace stu-
dents’ knowledge mastery from the records of students’ answering performance.
However, the existing knowledge tracing models don’t consider the problems of
students’ knowledge application ability and forgetting rules. Based on the exter-
nal memory mechanism of Dynamic Key-Value Memory Networks (DKVMN),
this paper proposes a knowledge tracing model based on a dynamic key-value
gated recurrent network (DKVGRU), which designs a knowledge update network
inspired the idea ofGatedRecurrent Unit (GRU). DKVGRUcalculates the propor-
tion of concepts students apply and measures the degree of forgetting of learned
concepts, which traces the knowledge state of each concept well. In this paper,
the area under the receiver operating characteristic curve (AUC) of the prediction
result is used as an evaluation indicator. The performance of DKVGRU is higher
than DKVMN on four public datasets.

Keywords: Knowledge tracing · Deep learning · Data mining · Intelligent
education system · Student evaluation

1 Introduction

Nowadays, online learning platform realizes the acquisition of high-quality learning
resources without the constraints of time and space. Students can flexibly study on
computers and mobile terminals, and can independently arrange study plans and tasks.
Because of this, millions of students are learning a variety of courses through online
learning platforms. However, there are many obstacles in online learning platform for
the supervision of students and the provision of personalized learning guidance due to
the large number of learners. In terms of providing personalized guidance, it is very
important to evaluate students’ knowledge state for online learning platform, which is
also an important research topic in the field of intelligent education [1].

Knowledge tracing (KT) is a widely used model for predicting students’ knowledge
state in intelligent online learning platform [2]. KT can model the interaction process
between students and exercises based on the students’ past exercise records to trace
students’ knowledge state dynamically [3]. The goal of KT can be described as: given
the interaction sequence of past exercises of a student X = x1, x2, . . . , xt , KT acquires
the knowledge state of the student, which is used to predict the probability of the correct
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answer to the next exercise. The input xt = (qt, at) contains the exercise qt and the
actual answer at [4].

UsingKTmodel, online learning platforms not only customize learningmaterials for
students based on the knowledge state of students, but also provide to students and teach-
ers with feedback reports. Therefore, students reasonably allocate their study schedules
tomaximize their learning efficiency, and teachers can timely adjust appropriate teaching
plans and schemes.

At present, the traditional KT model and the deep learning-based KT model are
two kinds of models provided in the field of knowledge tracing. Among the traditional
knowledge tracing models, the most typical one is Bayesian Knowledge Tracing (BKT)
[5], which models each concept state separately. Therefore, BKT is limited to capture
the correlations between different concepts, which ineffectively simulates the knowledge
state transition between complex concepts. Researchers further applied deep learning
to KT task and proposed Deep Knowledge Tracing (DKT) [6]. Compared with BKT,
DKT uses a hidden state to sum up the knowledge state of all concepts. Considering
correlations between multiple concepts, DKT delivers a better simulation in students’
knowledge state. But DKT can’t pinpoint which concepts a student has mastered like
BKT. Consequently, DKT has its weakness in indicating the certain concept that students
grasp or not. Combining the advantages of the BKT and DKT, DKVMN uses external
memory to store the student’s knowledge state [7], and its prediction performance is
better than BKT and DKT.

However, existing KT models ignore two aspects in simulating the changes in stu-
dents’ knowledge states. Firstly, in the aspect of knowledge application, students apply
different concepts according to their knowledge states for the same exercise. Secondly,
according to the Ebbinghaus forgetting curve [8], the process of forgetting is not uni-
form. Students forget the knowledge they have just learned from the exercises very fast,
but the knowledge they have learned before is slow. Existing models have limits in
distinguishing the degree of forgetting the learned knowledge.

Based on the external memorymechanism of DKVMN, this paper designed a knowl-
edge update network inspired by the idea of GRU’s gating mechanism [9], and proposed
a knowledge tracing model based on Dynamic Key-Value Gated Recurrent Network
(DKVGRU). In the huge exercise data,DKVGRUuses theKey-Valuematrix ofDKVMN
to explore the relationship between exercises and underlying concepts, while tracing the
knowledge state of a certain concept. We provided two knowledge gates for simulating
the change of students’ knowledge states. The knowledge application gate calculates
the proportion of knowledge concepts applied by students in solving exercises, and the
knowledge forgetting gate measures the forgetting degree of the learned knowledge.

2 Related Work

There are two main types of KT models. One is the traditional KT model, the other is
the KT model based on deep learning. In this chapter, we first introduce BKT, DKT and
DKVMN. Besides, DKVGRU is inspired by the gating mechanism, and this chapter also
introduces Recurrent Neural Network (RNN) [10] and its variants, which can capture
long-term sequence data relations.
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2.1 Bayesian Knowledge Tracing

BKT is the most commonly used among traditional KT models, which was introduced
in the field of intelligent education by Corbett and Anderson and used to intelligent
tutoring systems in 1995 [11]. BKT assumes that each concept is independent of each
other and students have only two states for each concept: mastered or not mastered. As
shown in Fig. 1, BKT uses Hidden Markov Model (HMM) to model a certain concept
separately, and updates the state of a concept with the help of two learning parameters
and two performance parameters. The original BKT assumes students do not forget
knowledge in learning, which is obviously against students’ regular learning pattern
[12]. And researchers have proposed several aspects to optimize BKT from forgetting
parameters [13], exercise difficulty [14], personalized parameters [15], emotions [16],
etc.
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Fig. 1. The architecture of BKT

2.2 Deep Learning-Based Knowledge Tracing

In 2015, Piech et al. firstly applied deep learning to KT tasks and proposed DKT based
on RNN and Long Short-Term Memory (LSTM) [17]. As illustrated in Fig. 2, DKT
can represent the student’s continuous knowledge state using a high-dimensional hidden
state. And without the manual annotation, DKT can automatically discover the rela-
tionship between concepts from exercises. Using the forgetting gate of LSTM, DKT
can simulate the knowledge forgetting that occurs in the learning process. Khajah et al.
proved that the advantage of DKT lies in the ability to make good use of some statistical
rules in data, which BKT cannot use [18]. Yeung et al. added a regularization term to the
loss function to solve two problems of DKT: inaccuracy and instability [19]. Xiong et al.
believe that DKT is a potential KT method if more features can be modeled, such as
student abilities, learning time, and exercise difficulty [20]. And many variations were
raised by adding dynamic student classification [21], side information [22] and other
features [23] into DKT.

The Memory Augmented Neural Network (MANN) [24] uses an external memory
module to store information,whichhas a stronger information storage capacity thanusing
a high-dimensional hidden state. And MANN can rewrite local information through the
external memory mechanism. Different from the general MANN which uses a simple
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Fig. 2. The architecture of DKT based on RNN

memory matrix or two static memory matrices [25], DKVMN utilizes the key-value
matrix to store all concepts and the knowledge state of each concept. The key matrix is
used to calculate the correlation between exercises and concepts, and the value matrix
is used to read and write the knowledge state of each concept. Ha et al. [26] optimized
DKVMN from knowledge growth and regularization.

2.3 Recurrent Neural Network

For sequence data, researchers use RNN to obtain data relationships in general. How-
ever, RNN cannot effectively capture long-term sequence data relationships because of
its structural defects. And Hochreiter et al. proposed LSTM to solve the problem of
long-term in 1997, which used three gates to effectively deal with long-term and short-
term dependence. And Cho et al. proposed GRU by optimizing the structure of LSTM in
2014, which not only guarantees model performance but also improves model training
efficiency [27]. GRU uses two gates to determine which information needs to be mem-
orized, forgotten, and output respectively, which effectively achieve long-term tracing
of information. As shown in Fig. 3, the reset gate generates the weight to decide how
much historical information is used according to the input information, and the update
gate is used to generate the proportion of historical memory and current memory in new
memories.

3 Model

DKVGRU can be divided into three parts: correlation weight, read process and write
process, which are represented in Fig. 4. Correlationweight represents theweight of each
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Fig. 3. The architecture of GRU

Fig. 4. In the framework of DKVGRU, the green part is write process we designed. The blue and
purple parts are correlation weight and read process, which refer to DKVMN.

concept contained in the exercise. Read process can read the student’s current memory,
which is used to predict students’ performance of a new exercise. And write process
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is used to update the student’s memory state after answering a exercise. Correlation
weight and read process refer to DKVMN. The correlation weight, read process and
write process are described in Sect. 3.2, 3.3, and 3.4.

3.1 Related Definitions

Given a student’s past interaction sequence of exercises X = x1, x2, . . . , xt−1, our task
is to obtain the student’s current knowledge state according to the student’s interaction
sequence and predict students’ performance of the next exercise. The interaction tuple
xt = (qt, at) represents the student’s answer to the exercise qt , where at is 1 means the
answer is correct and 0 means wrong.

Table 1. Symbols

Symbols Explanation

X The past exercise sequence of a student: x1, x2, …, xt−1

E Number of exercises

N Number of concepts contained in the exercises

K Key matrix, which is used to store all concepts

V Value matrix, which is used to dynamically store the state of each concept

Ṽ Knowledge growth matrix, which stores the knowledge growth of students after
answering one exercise

D Knowledge application matrix, which stores the proportion of each concept used by
students for a certain exercise

e Exercise vector

c Exercise interaction vector

w Correlation weight

Z Knowledge application gate, which calculates the proportion of concepts used in an
exercise

U Knowledge forgetting gate, which measures the forgetting degree of the learned
knowledge

A Exercise embedding matrix

B Interaction embedding matrix

; The operation of Concatenating two vectors or two matrices

As illustrated in Table 1, the definition of various symbols used in the model is
described. The N represents the number of concepts, and the key matrix K(N × dk )
stores these concepts. Besides, the knowledge state of each concept is stored in the value
matrix V (N × dv).
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3.2 Correlation Weight

Each exercise contains multiple concepts. The exercise qt is firstly mapped into a vector
e ∈ Rdk by an embedding matrix A ∈ Rdk . The correlation weight wt ∈ RN is computed
by taking the softmax activation of the inner product between et and each ki of the key
matrix K = (k1, k2, . . . , kN ):

wt = Softmax
(
et · KT

)
. (1)

ki is the key memory slot which is used to store the ith concept. And wt measures
the correlation weight between this exercise and concepts.

3.3 Read Process

The probability of answering qt correctly needs to consider two factors: the student’s
current knowledge state and exercise difficulty. Above all, wt is multiplied by the each
vi of the value matrix V = (v1, v2, . . . , vN ), which is to get the read content vector
rt ∈ Rdv :

rt = wt · Vt . (2)

vi is the value memory slot which is used to store the state of the ith concept. And
the read content rt is regarded as the student’s overall mastery of qt .

Then considering that the difficulty of qt , the exercise vector et passes through the
fully connect layer and Tanh function to get the difficulty vector dt ∈ Rdk :

dt = Tanh(et · W1 + b1), (3)

Tanh(x) = 1 − e−2x

1 + e−2x , (4)

and Wi and bi are the weight and bias of the full connect layer.
The summary vector ft is obtained after concatenating the read content vector rt and

the difficulty vector dt :

ft = Tanh([rt; dt] · W2 + b2). (5)

Finally, the probability pt is computed from the summary vector ft :

pt = Sigmoid(ft · W3 + b3), (6)

Sigmoid(x) = 1

1 + e−x . (7)

And Sigmoid function makes the probability pt between 0 to 1.
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3.4 Write Process

The knowledge state of each concept are updated after the student answering the exercise
qt . The interaction tuple xt = (qt, at) is turned into a number by yt = qt + at ∗E, which
yt represents the student’s interactive information. And yt is converted into an interaction
vector ct ∈ Rdv by an embedding matrix B ∈ RE×dv . Considering that students apply
knowledge to exercise according to their knowledge state, we adds the interaction vector
ct and each value memory slot vi of the value matrix Vt , and pass the result through the
fully connect layer and an activation function to obtain the knowledge application gate
Zt ∈ RN×dv :

Ct = Concat(ct, ct, . . . , ct), (8)

Zt = Sigmoid([Vt + Ct] · Wz + bz). (9)

Zt is used to calculate the proportion of concepts used in an exercise. The application
knowledge state Dt ∈ RN×dv is obtained by using Zt to weight the value matrix Vt :

Dt = Zt ∗ Vt . (10)

Then, we concatenate the interaction vector ct and each di of the value matrix Dt =
(d1, d2, . . . , dN ) to get the knowledge growth matrix Ṽt ∈ RN×dv :

Ṽt = Tanh([Dt;Ct] · Wr + br). (11)

For the purpose of measuring student’s forgetting degrees, We adds the interaction
vector ct and each value memory slot vi of the value matrix Vt to obtain the knowledge
forgetting gate Ut ∈ RN×dv :

Ut = Sigmoid([Vt + Ct] · Wu + bu). (12)

Each concept state of the value matrix Vt is updated by Ut . (1 − Ut) ∗ Vt repre-
sents the unforgettable part of the previous knowledge state, and Ut ∗ Ṽt represents the
unforgettable part of the knowledge gained from this exercise. And Vt+1 means the new
student’s knowledge state.

Vt+1 = (1 − Ut) ∗ Vt + Ut ∗ Ṽt . (13)

3.5 Optimization Process

The optimization goal of our model is that the predicted probability pt is close to the
student’s answer at , that is to minimize the cross entropy loss L.

L = −
∑

t
at log(pt) + (1 − at) log(1 − pt). (14)
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4 Experiments

4.1 Datasets

There are several datasets to test the performance of models in Table 2, including
Statics2011, ASSISTments2009, ASSISTments2015 and ASSISTment Challenge. And
these datasets come from real online learning systems.

(1) Statics2011: This dataset has 1,223 exercise tags and 189,297 interaction records of
333 students, which comes from an engineering mechanics course of a university.

Table 2. Dataset statistics

Datasets Students Exercise tags Records

Statics2011 333 1,223 189,297

ASSISTments2009 4,151 110 325,637

ASSISTments2015 19,840 100 683,801

ASSISTment Challenge 686 102 942,816

(2) ASSISTments2009: This dataset contains 110 exercise tags and 325,637 interac-
tions records for 4,151 students, which comes from the ASSISTment education
platform in 2009.

(3) ASSISTments2015: This dataset is collected from the ASSISTment education plat-
form, which has 100 exercise tags and 683,801 interactions records of 19,840
students.

(4) ASSISTment Challenge: This dataset was used in the ASSISTment competition
in 2017, and it contains 102 exercise tags and 942,816 interaction records of 686
students.

4.2 Evaluation Method

In the field of knowledge tracing, we usually use AUC as the evaluation criteria for
model classification. The advantage of AUC is that even if the sample is unbalanced, it
can still give a more credible evaluation result [28]. This paper also uses AUC as the
evaluation of the model. And the higher the value of AUC, the better the classification
result. As shown in Fig. 5, ROC curve is drawn according to TPR and FPR, and AUC is
obtained from the area under ROC curve.
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Fig. 5. Description of the AUC calculation

4.3 Implementation Details

In this paper, the training set and test set of each dataset was randomly assigned, 70%
of which is the training set and the remaining 30% is the test set. The five-fold cross-
validation method was used on the training set, and 20% of the training set was divided
into the validation set. We used early stopping and selected hyperparameters of model
on the validation set. And the performance of the model was evaluated on the test set.

Gaussian distribution was used to initialize the parameters randomly. Stochastic
gradient descent method was adopted as the optimization method for training. And
batch size was set to 50 on all datasets. The maximum number of training times of the
model was set to 100 epochs. The epoch with the best AUC value on the validation set
was selected for testing. And the average value of AUC on the test set was used as the
model evaluation result.

Using different initial learning rates, we compared the performance of DKVMN and
DKVGRUmodels when the sequence length was 200. Then, we set sequence lengths of
100, 150, and 200 to compare the performance of DKVMN and DKVGRU.

4.4 Result Analysis

On the four datasets, the experiment used the initial learning rate of 0.02, 0.04, 0.06,
0.08, and 0.1 to measure the AUC scores of DKVMN and DKVGRU. And AUC of 0.5
represents the score that can be obtained by random guessing. The higher the AUC score,
the better the prediction effect of the model. As shown in Table 3, there are the test AUC
score of DKVMN and DKVGRU of all datasets. It can be clearly seen that DKVGRU
performs better than DKVMN on all datasets.
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Table 3. The test AUC scores of DKVMN and DKVGRU with different initial learning rates on
all datasets

Dataset The initial learning rate Test AUC

DKVMN DKVGRU

Statics2011 0.02 0.814900 0.816630

0.04 0.817625 0.831916

0.06 0.818041 0.834688

0.08 0.818591 0.834850

0.1 0.819070 0.834766

ASSISTments2009 0.02 0.801624 0.806886

0.04 0.803469 0.808587

0.06 0.804472 0.808334

0.08 0.802909 0.806580

0.1 0.804652 0.808877

ASSISTments2015 0.02 0.726578 0.728503

0.04 0.725727 0.728791

0.06 0.724857 0.729177

0.08 0.724883 0.728526

0.1 0.724837 0.728371

ASSISTment Challenge 0.02 0.662156 0.676517

0.04 0.664859 0.684211

0.06 0.667367 0.687498

0.08 0.669780 0.689189

0.1 0.671637 0.689144

For Statics2011 dataset, the average AUC of DKVMN is 81.76%, while the average
AUC of DKVGRU is 83.06%, which indicates a 1.29% higher than DKVMN. On the
ASSISTments2009 dataset, DKVMN produces the average test AUC value of 80.34%,
which shows a 0.44% difference compared with 80.70% for DKVGRU. For ASSIST-
ments2015 dataset, the average AUC of DKVGRU is 72.87% and DKVMN is 72.54%.
On theASSISTmentChallenge dataset, DKVGRUachieves the averageAUCof 68.53%,
which improves 1.82% as DKVMN in 66.72%. Therefore, DKVGRU has a better per-
formance than DKVMN on all four datasets. For both models, the paper observes that
a larger initial learning rate might lead to a better AUC score from the aforementioned
experiments.

Then, we set the initial learning rate of 0.1 and sequence lengths of 100, 150, and
200 to evaluate these two models. And the experimental results indicate that DKVGRU
performs better than DKVMN at different sequence lengths in Table 4.
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According to Fig. 6, the AUC results of DKVGRU and DKVMN become better with
the increase of sequence length except for Statics2011 dataset. The findings support that
the setting of the sequence length of the exercises has a positive correlation with the
models performance, which means a longer sequence length results in a better predic-
tion performance for the model. That is, the model can more accurately trace students’
knowledge state by utilizing more exercise records.

Table 4. The test AUC scores of DKVMN and DKVGRU with different sequence length on all
datasets

Dataset Sequence length Test AUC

DKVMN DKVGRU

Statics2011 100 0.833927 0.849142

150 0.827971 0.842618

200 0.819070 0.834766

ASSISTments2009 100 0.799399 0.804384

150 0.800944 0.804276

200 0.804652 0.808877

ASSISTments2015 100 0.723672 0.727784

150 0.723034 0.727913

200 0.724837 0.728371

ASSISTment
Challenge

100 0.658292 0.672841

150 0.664720 0.682050

200 0.671637 0.689144

On the Statics2011 dataset, the reason why the AUC results have a negative correla-
tion with the sequence length is that exercise tag is the largest among the four datasets,
which included 1,223 exercise tags. The more exercise labels in the sequence, the more
complex relationships between exercises and concepts need to be considered by the
model. Nonetheless, the AUC score of DKVGRU on the Statics2011 dataset is higher,
which means DKVGRU can simulate students’ knowledge state better than DKVMN.

In summary, DKVGRU performs better than DKVMN with different learning rates
and sequence lengths, which shows that the gating mechanism of DKVGRU effectively
simulates the changes of students’ knowledge state.
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Fig. 6. The test AUC scores of DKVMN and DKVGRU with different sequence length on all
datasets

5 Conclusions and Prospects

For the existing shortcomings of knowledge tracing, such as ignoring students apply
different concepts to the same exercise and failing to consider the forgetting process of
concepts they have learned, we propose a knowledge tracing model DKVGRU, which
is based on the dynamic Key-Value matrix and gating mechanism. DKVGRU updates
students’ knowledge state by the gating mechanism. The experimental data comes from
four public datasets. And the experiments demonstrate that DKVGRU performs better
than DKVMN.

In addition to the students’ exercise records, online learning platforms also record
various learning activities of students, such as watching videos, viewing exercise expla-
nations and other learning actions. For future work, we will consider these features in
KT tasks. And using these data, we also can classify students according to students’
learning attitude and habits, which simulates students’ knowledge state reasonably.
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