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CHAPTER 5

Natural Disaster Shocks and Raw Material
Prices in the Steel Industry

Kaori Tembata

1 INTRODUCTION

Global steel production and consumption have been expanding consid-
erably since the 2000s because of increasing demand and economic
development in emerging countries. Notably, the unprecedented growth
of the Chinese steel industry has been prominent, making the country a
leading player as both a supplier and a consumer in the steel and related
industries. As a result of the rapid expansion of the steel industry in recent
decades, the global markets for steelmaking raw materials have become
increasingly competitive and complex. To maintain sustainable produc-
tion, it is critical for steel manufacturers to secure raw materials such
as iron ore and coal. However, recently, extreme weather events have
emerged as an additional concern in the steel industry, exacerbating the
imbalance between supply and demand for steelmaking raw materials.
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Given the increasing climate risks in the steel industry, this chapter
examines the effect of natural disasters on the prices of steelmaking raw
material. By focusing on iron ore, which is used in the production of
crude steel, we investigate whether the prices of iron ore are affected
by natural disasters in iron ore-producing countries. Iron ore is a key
input for crude steel production and is traded globally. It is mined in
approximately 50 countries, including Australia, Brazil, China, India, the
United States, and Russia. The majority of iron ore is then exported
to steel-producing countries, making iron ore the second most traded
commodity worldwide (World Steel Association 2019a). Therefore, severe
natural disasters in one country may have a widespread impact on the
steel and raw material industries through global supply chains. Although
anecdotal evidence shows that natural catastrophes have adversely affected
the supply of raw materials by damaging mines and infrastructure, we are
unaware of any studies that demonstrate the link between disaster shocks
and the steel industry. In this context, it is necessary to focus on this
important raw material to explore the climatic impact on steel production.

A number of studies have examined whether and to what extent
extreme weather events affect the economy by analyzing data on weather
conditions such as temperature and precipitation and natural disasters
such as storms, floods, and droughts (see Dell et al. 2014; Heal and
Park 2016). One strand of the literature has examined the impact of
extreme weather and natural hazards on the economy at macro levels.
Dell et al. (2009) use cross-sectional data on 134 countries to investi-
gate the relationship between temperature and income. They show that
an increase in temperature negatively affects GDP per capita. Their anal-
ysis using more detailed subnational data also finds a negative effect of
temperature within countries. Noy (2009) analyzes the impact of natural
disasters on the macroeconomy by focusing on a series of country charac-
teristics. The author finds that natural disasters cause larger output losses
in developing countries and smaller economies. In a study on temperature
and aggregate outputs, Dell et al. (2012) demonstrate the causal effect of
higher temperature on economic growth in poor countries. They estimate
that a 1°C rise in temperature leads to a decline in economic growth by
approximately 1.3 percentage points.

Researchers have further focused on the multidimensional impact
of extreme weather and natural disasters. A growing body of litera-
ture explores the complex mechanisms of climate impacts by analyzing
channels through which climate affects the macroeconomy. Evidence of
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climate shocks is observed in diverse spheres, for instance, in agricul-
ture, productivity, energy production, health and mortality, migration,
and violent conflicts (Anttila-Hughes and Hsiang 2013; Chen et al.
2016a; Leiter et al. 2009; Marchiori et al. 2012; Maystadt and Ecker
2014; McDermott and Nilsen 2014). While the link between negative
climate impacts and agricultural outcomes may be obvious and straight-
forward given the importance of weather conditions to agriculture, the
findings of the existing literature suggest broad and heterogeneous effects
of climate associated with various aspects of the economy. The study by
Dell et al. (2012) mentioned above also investigates temperature shocks
in both agricultural and industrial sectors, providing evidence of chan-
nels through which temperature conditions affect the aggregate economy.
Hsiang (2010) estimates the impact of temperature and tropical cyclones
in the Caribbean and Central America and reveals that climate shocks
resulted in greater economic losses in nonagricultural production than in
agricultural production. Using micro-level data, Leiter et al. (2009) find
a negative impact of floods on productivity in European firms. Previous
studies on climate and the economy suggest that the impact of natural
disasters is rather diverse, observed not only in the agricultural sector but
also in nonagricultural sectors.

In regard to the steel and iron ore industries, the negative impact of
natural disasters may spread beyond the country of origin because a large
volume of iron ore is traded in the international market. One strand
of literature examines the climate-economy relationship with a partic-
ular focus on international trade. Jones and Olken (2010) examine the
effects of temperature shocks on international trade. They estimate that
a 1°C rise in temperature is associated with a 2.0-5.7 percentage point
decline in annual export growth in poor countries. Dallmann (2019) uses
a series of bilateral trade data to investigate the effects of weather varia-
tions in exporting and importing countries. Analyses using the breakdown
of export data show both positive and negative impacts of temperature
and precipitation on exports at the sector and product levels.

In the context of the iron ore industry, researchers have analyzed
factors that drive up iron ore prices and affect the global market in the
wake of a shift in the pricing regime and China’s rise over the last two
decades. In a qualitative analysis, Wilson (2012) reviews the iron ore
market in the Asia—Pacific region and argues that the rapid growth of
the Chinese steel industry led to the restructuring of the iron ore market.
China’s domestic iron ore reserves are low grade and not suitable for
steel production. Thus, procurement of iron ore depended on imports in
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response to the rapid development of steel production, which increased
market prices. Sukagawa (2010) also emphasizes the Chinese economic
boom and the increased demand for iron ore as main factors that drove
an unprecedented price increase in the early 2000s. A quantitative study
by Chen et al. (2016b) uses a quantile regression model to examine
the factors that affect China’s import prices of iron ore. They find that
production of crude steel in the previous period has a positive effect on
current prices of imported iron ore, while the volume of iron ore imports
in the previous period and domestic iron ore production have a negative
effect. Warell (2014) explores the impact of the pricing regime change in
the iron ore market in China. Although they do not find clear evidence
of the impact of the pricing regime, the results of their empirical analysis
suggest that transportation costs and GDP growth are the driving forces
that increase the import prices of iron ore.

This study contributes to the literature on the steel and related raw
material markets. Research on the iron ore market has investigated aspects
such as import volume (Tcha and Wright 1999), price volatility (Astier
2015; Chen et al. 2016b), market structure (Warell 2014 ), and interna-
tional market power (Zhu et al. 2019). While the rise of the Chinese
steel industry is the main focus of many previous studies, this study
analyzes the steel industry from a different perspective by examining the
impact of natural hazards. To the best of our knowledge, this study is
the first to empirically demonstrate the impact of natural disaster shocks
in the iron ore market. The adverse economic consequences of severe
natural disasters may become more pronounced; moreover, they are likely
to accelerate further under climate change. This study aims to provide
suggestive evidence of the risks associated with natural catastrophic events
in the steel industry.

The remainder of this chapter proceeds as follows. Section 2 presents
an overview of the global iron ore industry. We also discuss trends in iron
ore prices and extreme weather events that may cause price fluctuations.
Section 3 describes the estimation model and data used in the empirical
analysis. Section 4 presents and discusses the results. Section 5 concludes.

2  GLOBAL IRON ORE INDUSTRY AND PRICE VOLATILITY

Iron ore, along with coking coal and recycled steel, is an important
raw material used in steelmaking. Today, it is estimated that approxi-
mately 2 billion tonnes of iron ore are consumed annually to produce
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1.7 billion tonnes of crude steel worldwide (World Steel Association
2019a). Figure 1 depicts trends in global iron ore production from
1998 to 2017. The industry has been steadily growing over the last two
decades, with production doubling to 2.2 billion tonnes in 2017 from
906 million tonnes in 1998. The leading iron ore-producing countries
include Australia, Brazil, China, India, the United States, and Russia,
among which Australia and Brazil are the dominant exporters for steel
producers worldwide. These two countries alone account for approx-
imately 78% of total iron ore exports today (World Steel Association
2020).

In terms of imports, countries such as Japan, the Republic of Korea,
Germany, the Netherlands, and China are the major iron ore importers,
accounting for 86% of global total in 2017 (U.S. Geological Survey
2017). Notably, China has emerged as the largest importing country since
the 2000s. The country depends on imports for procurement of iron
ore while itself being one of the largest producers. The production of
iron ore in China is estimated to be 360 million tonnes, following only
Australia (883 million tonnes) and Brazil (425 million tonnes) in 2017
(U.S. Geological Survey 2017). Figure 2 shows China’s imports of iron
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Fig. 1 Trends in global production of iron ore (Source World Steel Association
[2008, 2018])
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Fig. 2 Trends in China’s iron ore imports and crude steel production (Source
World Steel Association [2008, 2018])

ore by weight, together with the amount of crude steel production. As
shown in Fig. 2, imports of iron ore have grown dramatically, in line
with increasing trends in the country’s steel production during the same
period. Iron ore imports into China increased from 70 million tonnes
in 2000 to 1,075 million tonnes in 2017. China’s share of global iron
ore imports also grew from 14 to 68% during this period (World Steel
Association 2002, 2019b). Today, China is the largest consumer of the
major iron ore exporters; for instance, the country accounted for 84% of
Australia’s iron ore exports in 2017.

As described above, major steel-producing countries depend on
imports of raw materials from foreign countries. Tanaka (2012) cate-
gorizes the mass-procurement systems for iron ore in the steel industry
into three types: captive mines, long-term contracts, and spot trading.
The captive mine approach dates back to the beginning of the twen-
tieth century. It was first established and has been mainly practiced in the
United States, where steel firms own captive mines domestically and inter-
nationally (mostly in Canada and South America). Long-term contracts
between steel firms and iron ore suppliers have been adopted by Japanese
steel firms since the 1950s. Other countries also began following this
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system, including the Republic of Korea and European nations, and now,
procurement of iron ore by long-term contracts is most commonly used
by large steel firms. Notably, from the 1980s, prices were set by the
so-called benchmark system, where dominant steel firms and iron ore
suppliers negotiated annual prices in the Asian and European markets.
The yearly benchmark system was dissolved in 2010; instead, prices
began to be negotiated quarterly based on spot market prices. The third
system using spot markets was introduced as the pricing regime shifted
during this period. Although the traditional practice based on long-term
contracts is still predominant in the steel industry, the use of spot trading
has been rapidly expanding in response to the increasing demand for steel
products in China and other emerging countries.

Figure 3 shows trends in the monthly spot price of iron ore imported
into China. The spot price of iron ore has been volatile throughout the
period. Monthly prices rose steadily in the first half of 2008, with the
highest price being USD 197.12 per dry metric ton unit (dmtu) in March.
The market then witnessed a steep decline in the second half of 2008,
and the iron ore price has continued to fluctuate in recent decades. After
2008, spot prices again increased to USD 187.18 per dmtu in February
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Fig. 3 Trends in iron ore prices (Note The values are in nominal US dollars.
Source World Bank [2020])
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2011, then the lowest price of USD 40.50 per dmtu was marked in
December 2015. More recently, the average monthly spot price was USD
93.85 per dmtu in 2019. Within that year, the monthly spot price rose
from USD 76.16 per dmtu in January to USD 120.24 per dmtu in July.

In addition to the unprecedented growth in China’s steel production,
natural disaster risks have posed a great concern that may trigger price
volatility in steelmaking raw materials. For instance, Australia, one of the
largest suppliers of steelmaking raw materials, has experienced extreme
weather events in recent years. In November 2010, Australia received
record-breaking precipitation in Queensland, the northeastern part of
the country. The substantial rainfall and extensive floods in the following
months caused widespread damage to the local economy, including coal
production in this region (Nihon Keizai Shimbun 2011a). In the affected
area, coal mines were inundated, and infrastructure was disrupted (Nihon
Keizai Shimbun 2011b). As a result, coal production and shipping were
forced into temporary reductions, leading to an increase in the global
coal price. Along with the coal price, the price of iron ore reportedly rose
during the 2010-2011 flood. Furthermore, iron ore suppliers and steel-
producing firms face other climate risks because Australia is also prone
to seasonal cyclones. In March 2019, the supply of iron ore was affected
by a cyclone that struck in the western part of Australia. The tempo-
rary shutdown of a damaged port reportedly contributed to an increase
in the iron ore price in spring 2019 (Nihon Keizai Shimbun 2019).
More recently, a cyclone hit again in February 2020 and affected ship-
ping of iron ore by destroying ports and railroads in western Australia
(Nihon Keizai Shimbun 2020). Because iron ore is an internationally
traded commodity, the steelmaking industry can be affected by natural
disasters throughout the production process, including the shipping and
trading of production inputs.

3  EMPIRICAL ANALYSIS
3.1  Estimation Framework

Our empirical analysis aims to investigate the impact of natural disas-
ters on steel production. To examine whether natural disasters affect the
production of steel, this study analyzes data on iron ore, which is a key
component of raw materials used in the steelmaking process. We use spot
prices in China to represent global iron ore prices, with a monthly time
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series dataset from 2006 to 2019. As we estimate the causal effects of
natural disasters on iron ore prices with time series data, this study applies
the distributed lag model and incorporates lags for the disaster variables.
We begin with the following specification to run the regression model:

L
InPrice; = Po + Z Bi1,jDisaster;_j + PalnSteel,
j=0
+ BalnTransport; + PalnRate; + d; + ¢, €))]

where Price is the monthly price of iron ore imported to China, Disaster
is the number of natural disasters that occurred in iron ore-exporting
countries, Steel is the crude steel production in China, Transport is the
shipping cost, and Rate is the exchange rate between the US dollar
(USD) and Chinese yuan (CNY). In addition, § denotes a set of time
dummies to capture any external events and other seasonal components
that may lead to omitted variable bias. Finally, € is an error term.

The disaster variable in Eq. 1 includes lags indexed by j. With the
distributed lag model, this study attempts to capture dynamic causal
effects by using contemporaneous values of natural disasters and lagged
values over previous months. When a disaster—for instance, a flood—hits,
it is possible that its effects persist for more than one month. Natural
disasters could directly cause damage to iron ore mines; moreover, iron
ore production and exports may be affected by supply chain disruptions,
severe damage to infrastructure, temporary loss of labor productivity, etc.
The use of lags enables us to explore such underlying assumptions. For
example, the estimated coefficient of the one-month lagged disaster vari-
able indicates whether natural disasters in the previous month affect iron
ore prices in the current month. Similarly, the coefficient of the six-month
lagged variable estimates the impact of a natural disaster occurring six
months ago, the coefficient of the 12-month lagged variable estimates the
impact of a natural disaster occurring a year ago, and so forth. This study
investigates both the immediate and dynamic effects of natural disasters
on the prices of iron ore.

An advantage of using natural disasters in econometric models is that
the occurrence of natural disasters itself can most likely be considered
exogenous. In this study, we use OLS for the distributed lag regression by
assuming that our disaster variable is exogenous. That is, the error term ¢
in Eq. 1 has a conditional mean of zero, given the present and past values



106 K. TEMBATA

of the disaster variable (Stock and Watson 2015). In other words, ¢ is
uncorrelated with the disaster variables in the present and past periods.
Note that it is not assumed that the disaster variables are strictly exoge-
nous, where the error term is uncorrelated with the values of the regressor
in all time periods, including past, present, and future. Strict exogeneity
cannot hold when iron ore and steel producers can predict future disaster
events by forecasting, for example, upcoming hurricanes and the possible
flooding that follows. In that case, the error term that includes forecasts
of natural disasters is correlated with future disaster occurrences, so strict
exogeneity no longer holds.

3.2 Data Description

We construct a time series dataset using several different sources. Data on
iron ore spot prices are taken from the World Bank. These are the cost
and freight for iron ore imported to China (CFR China). To make the
prices comparable, the dollar values for iron ore are adjusted to constant
2015 USD using the US GDP deflator. Although the data source provides
long-term data on various commodities, monthly data on iron ore are
available only after 2006. Overall, our dataset consists of 168 observations
for a sample period from 2006 to 2019.

Data on natural disasters are obtained from the Emergency Events
Database (EM-DAT) of the Centre for Research on the Epidemiology
of Disasters at the University of Louvain (CRED and Guha-Sapir 2020).
The EM-DAT is the most comprehensive disaster database, including
more than 22,000 natural and technological disaster events worldwide.
This database uses the following criteria for recording disasters: 10 or
more people were reportedly killed; 100 or more people were reportedly
affected; a state of emergency was declared; or international assistance was
appealed for. Disaster events must satisfy at least one of these criteria to
be included in the database. We construct a monthly dataset from the
event-based disaster data from the EM-DAT.

As our dependent variable, the iron ore price represents the CFR to
China. This study uses disaster events in the top 10 countries that export
iron ore to China. These countries are chosen according to data on trade
values in 2006. Data are obtained from UN Comtrade using Harmonized
System (HS) classification codes. To identify iron ore exports, we use
the four-digit code HS2601, labeled zron ores and concentrates, including
roasted iron pyrites. Figure 4 presents the trade values and weights of
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Fig. 4 Top 10 iron ore-exporting countries (exports to China, 2006) (Source
United Nations [2020])

iron ore for the 10 exporters included in the empirical analysis. Australia,
India, and Brazil were the leading iron ore trading partners for China at
the beginning of the sample period. This trend continues to this day, with
a significant increase in value and weight. For instance, Australia’s iron ore
exports to China exceeded USD 54,000 million or 690 million tonnes,
in 2019. With these countries selected, natural disasters in our analysis
include extreme temperatures, storms, floods, landslides, droughts, wild-
fires, earthquakes, and volcanic activity. The variable Disaster represents
the total number of natural disasters, including all the abovementioned
types, that occurred in a given month.

The following control variables are also included in the analysis. While
focusing on natural disasters as the variables of interest in this study, we
use these control variables to consider possible factors that may affect
iron ore prices. These variables are all log-transformed in the regression
models. For steel production, we use monthly crude steel production
in China provided by the World Steel Association.! Data on the crude
oil price are obtained from the World Bank. We use the average spot
prices from Brent, Dubai, and West Texas Intermediate. The oil price is
included to account for the transport costs of iron ore exports. Consid-
ering the effect of freight costs for shipping commodities, it is expected
that changing oil (fuel) prices have impacts on the prices of iron ore. The
values for this variable are converted into constant 2015 USD. Data on

1 Available at https://www.worldsteel.org/.
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Table 1 Descriptive statistics of variables

Variable Mean S.D Min Max
Price of iron ore (USD/dmtu) 109.20 47.71 40.50 221.04
Natural disaster 5.74 2.58 1 16
Flood 2.53 1.92 0 9
Storm 0.74 0.93 0 4
Drought 0.98 1.07 0 3
Extreme temperature 0.65 0.85 0 4
Steel production (thousand tonnes)  59,432.12  14,240.95 30,076.00 89,090.60
Oil price (USD/bbl) 79.25 26.21 29.46 147.62
Exchange rate (USD/CNY) 6.74 0.52 6.10 8.07

the exchange rate are taken from the IMF and represent the USD/CNY
rate. We use this variable to account for Chinese economic conditions,
which may impact iron ore exports.

Table 1 shows the descriptive statistics of the variables used in this
study. The price of iron ore is shown in USD per dmtu. For the natural
disaster variable, the number of events varies from one to 16 per month
during the sample period in the 10 countries used in this study. On
average, natural disasters occurred approximately 5.7 times per month.
Table 1 also presents the variables for individual disaster types. In addi-
tion to natural disasters as a whole, this study further explores the specific
effect of climate-related disasters in a later section. Our sample shows
that floods are the most frequent natural disasters, in line with the global
trends in the past two decades (Wallemacq and House 2018).

4 RESULTS
4.1  Main Results

In the empirical analysis, we use Eq. 1 to estimate the contemporaneous
and dynamic effects of natural disasters on iron ore prices. Our primary
results are presented in Table 2. The estimation models with lag structures
include up to a 6-month lag of the disaster variables. These lag variables
estimate whether the impact of natural disasters persists during the post-
disaster period. All specifications are estimated using heteroskedasticity-
and autocorrelation-consistent (HAC) standard errors (Newey and West
1987). Following Stock and Watson (2015), we set the value of five as a
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rule of thumb for the truncation parameter based on the time period of
our sample.

In column 1, we first estimate a static model without lags. The coef-
ficient of the disaster variable is positive but insignificant, suggesting no
immediate effect of natural disasters on iron ore prices. In columns 2—4,
the results for the dynamic causal impact of natural disasters are presented.
The estimation models are structured with one, three, or six lags. While
the immediate impact remains insignificant, the lagged variables indicate
that natural disasters affect iron ore prices in the post-disaster period. The
coefficients of the disaster variables with a one-month lag (L.Disaster)
in columns 2—4 are positive and statistically significant, suggesting that
an additional disaster event in the previous month increases the price of
iron ore in the present month by 1.1-1.3%. This dynamic effect is also
observed when lagged variables are added in the models. In column 4,
the lagged disaster variables are positively correlated with iron ore prices.
The coefficients of the lagged variables indicate that a past disaster event
is estimated to raise current iron ore prices by 1.1-1.6%. The findings
show that the impact of natural disasters could persist for five months.

In columns 5-8, the models are estimated with additional control
variables. The results are mostly consistent with regard to the disaster vari-
ables. Although the magnitude of the coefficients becomes slightly smaller
than those in columns 14, the results suggest the robustness of the
impact of natural disasters on iron ore prices. Steel production is positively
related to iron ore prices. The coefficients of steel production are statisti-
cally significant, indicating that a 1% increase in China’s steel production
is associated with a 1.1-1.3% increase in iron ore spot prices. We also
find that the oil price is statistically correlated with iron ore prices. The
findings imply that transport costs for export affect commodity prices,
thus increasing input prices for steel production. On the other hand, we
do not find a correlation between the exchange rate and iron ore prices.
The results show that the coefficients are insignificant across alternative
models. In the bottom rows of Table 2, the F statistics for the joint
significance of time fixed effects are presented. The results are similar
across alternative models in columns 1-4 and 5-8. The year dummies
are jointly significant in all specifications, while the month dummies are
jointly significant in the models with control variables.
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4.2  Cumulative Effect of Natuval Disasters

This section examines the cumulative effect of natural disasters on iron
ore prices. The primary analysis in Sect. 4.1 suggests that more frequent
natural disasters cause an increase in iron ore prices. By incorporating
lags, we find a correlation between iron ore prices and natural disasters
occurring a month prior, two months prior, and so forth. To understand
the dynamic causal effects in more detail, this section analyzes whether
and to what extent natural disaster events cumulatively affect the iron ore
price in the present month. To estimate the cumulative dynamic effect,
the distributed lag model in Eq. 1 is modified as follows:

L
InPrice; = 0y + Z 01,jADisaster;—j + 01, y1Disaster; (1)
Jj=0
+ 62InSteel; 4+ 03lnTransport; + 64lnRate;
+ 8 + &, 2)

where the coefficient 0 ; for the disaster variables is now the j-month
cumulative dynamic multiplier (Stock and Watson 2015). The cumula-
tive dynamic multipliers show the cumulative effect of natural disasters
on iron ore prices over ;7 months. For example, the one-month cumula-
tive dynamic multiplier is denoted as 61,1 and is equivalent to the sum of
the zero-month dynamic effect f10 and the one-month dynamic effect
B1,1 in Eq. 1. The coefficient 67 1,1 therefore denotes the total sum of
the dynamic multipliers, namely, 810 + 1,1 + B12 + ... + B1,L.

The results for the cumulative dynamic effects are presented in Table 3.
Similar to the main results, we find that the occurrence of natural disasters
is associated with the price volatility of iron ore. The estimation model in
column 1 includes disaster lags for six months and corresponds to the
model in column 4 in Table 2. Here, the coefficient of the one-month
lagged variable L.Disaster shows the cumulative effects of natural disasters
over the past two months (the previous and present months), the coeffi-
cient of the two-month lagged variables L2. Disaster shows the cumulative
effects over the past three months, and so forth. The coefficient of the six-
month lagged disaster variable—i.e., the six-month cumulative dynamic
multiplier—is positive and statistically significant at the 1% level. The find-
ings suggest that the sum of the effect of natural disasters that occurred
over six months induces an 8.2% increase in iron ore prices.
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Table 3 Cumulative effect of natural disasters on the price of iron ore

Dependent variable: In(Price of iron ore)

0 lags 0 lags 12 lags 6 lags 6 lags 12 lngs
(1) 2) 3) 4 (5) (6)
Disaster 0.009 0.009 0.008 0.002 0.002 0.001
(0.007)  (0.006) (0.009)  (0.005) (0.004) (0.005)
L.Disaster  0.021""  0.021"" 0.019 0.010 0.010 0.009
(0.010)  (0.010) (0.012)  (0.007) (0.007) (0.008)
L2.Disaster  0.033""  0.033"" 0.029"  0.016" 0.016" 0.013

(0.014)  (0.014) (0.017)  (0.009) (0.009) (0.010)
L3.Disaster  0.044""  0.044"" 0.039"  0.024™" 0.024"" 0.020"
(0.017)  (0.019) (0.021)  (0.011) (0.012) (0.011)

L4.Disaster  0.060 0.060"" 0.053"  0.032"" 0.032"" 0.028""
(0.022)  (0.024) (0.028)  (0.013) (0.014) (0.013)

L5.Disaster  0.073"""  0.073"""  0.064"  0.040"""  0.040"" 0.034""
(0.026)  (0.028) (0.033)  (0.015) (0.016) (0.015)
L6.Disaster  0.082"""  0.082"""  0.071"  0.046™""  0.046™" 0.039""
(0.030)  (0.031) (0.040)  (0.017) (0.018) (0.018)
In(Steel 1.085°*"  1.085""  1.113"""
production) (0.278) (0.303) (0.288)
In(Oil price) 0.773"*  0773™" 0768
(0.085) (0.086) (0.085)
In(Exchange —0.333 —0.333 —0.414
rate) (0.723) (0.765) (0.775)

Constant 3.888""" 3.888"""  4.063""" —9.784""" _—9.784"" _9.748™""
(0.212)  (0.220) (0.480)  (2.749) (2.911) (2.975)

Observation 168 168 168 168 168 168

HAC 5 10 5 5 10 5

truncation

parameter

F-test for

jomnt

significance

Year fixed 80.23"" 167.85"" 59.76"" 29.09"** 7558  30.12"""

effects

Month fixed 0.95 0.94 0.98 3.70"" 356" 3.67°"

effects

Notes All specifications include year and month fixed effects. Newey-West heteroskedasticity- and
autocorrelation-consistent (HAC) standard errors are in parentheses
"p < 0.1, skp < 0.05, sxxp < 0.01
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The following models in Table 3 explore alternative specifications and
check the robustness of the estimation results. First, we reestimate the
model by changing the value for the HAC truncation parameter to 10.
The results are reported in column 2. The coefficients are quite similar
to those in column 1, confirming that an alternative HAC truncation
parameter does not alter the results. Second, we expand the model by
adding the lags of disaster variables to examine whether the disaster
impact persists for a longer period. In column 3, the results are similar
and exhibit the cumulative dynamic effects of natural disasters on iron
ore prices. For example, the coefficient of the three-month lagged vari-
able is positive and statistically significant, indicating that the total effects
of natural disasters over three months raise iron ore prices by 3.9%. Simi-
larly, the cumulative effects of natural disasters cause an increase in iron
ore prices by 7.1% in six months. We do not find the coefficients of lagged
variables to be statistically significant after six months.

Figure 5 illustrates these estimated dynamic effects in more detail.
Using the estimated result in column 3 in Table 3, Fig. 5a decomposes
the cumulative effects and depicts the individual dynamic effect of natural
disasters in each month, while Fig. 5b shows the cumulative dynamic
effects for 12 months. In Fig. 5a, the dynamic effects appear to be positive
for the first seven month lags and then become negative afterward. Given
these positive and negative values, the cumulative dynamic effects increase
over seven months, as shown in Fig. 5b. Although it remains positive, the

20+

Estimated effect on iron ore prices (%)
Estimated effect on iron ore prices (%)

6 9 12 0 6
Lag (month) Lag (month)

a. Estimated dynamic effect b. Estimated cumulative dynamic effect

Fig. 5 Dynamic effect of natural disasters on the iron ore price (Note The
solid lines represent the estimated effects, and the dashed lines represent the 90%
confidence interval. The estimated model includes 12 lags of the disaster variable)
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estimated cumulative effects gradually decrease after reaching the peak, as
the individual dynamic effects become negative during the eighth month.

In addition, we test the robustness of these results by estimating the
models with control variables. The models in columns 4-6 show the
corresponding results. Again, we find that past disaster events are statisti-
cally correlated with price volatility. The positive signs of the coefficients
show that the occurrence of natural disasters over the past months cumu-
latively affects iron ore exports, thereby increasing prices. The findings
suggest that the cumulative effects persist for six months after the onset
of natural disasters.

Overall, the results in Sects. 4.1 and 4.2 show the dynamic causal effect
of natural disasters on the prices of iron ore. By incorporating lagged vari-
ables, we find that a price increase is induced several months after natural
disasters. The analysis also reveals the total impact of natural disasters
in the post-disaster period by estimating the cumulative dynamic multi-
pliers. These results imply that steel producers may suffer from the costs of
natural disasters as a negative consequence of higher iron ore prices. This
is indeed the case when steel firms cannot increase the prices of their final
products to cushion price increases in raw materials (Astier 2015). The
findings suggest that natural disasters lead to price fluctuations, causing a
negative impact in the steel and iron ore industries.

4.3  Effect of Natural Disasters by Type

We further analyze the impact of natural disasters on iron ore prices
by investigating the individual disaster types. Iron ore production and
exports may be more sensitive to some natural hazards than others. More-
over, climate shocks such as frequent floods and intense tropical storms
have been a great concern for steel producers in recent years. Therefore,
this additional analysis explores possible heterogeneity in the effects of
extreme weather events, with a focus on climate-related disasters. We
run regressions using Eq. 2, which estimates the cumulative dynamic
effects. The disaster variables now indicate the number of occurrences
for a particular disaster type, that is, floods, storms, droughts, or extreme
temperatures.

The estimation results are provided in Table 4. All specifications
include six lags of the disaster variable and control variables. In column
1, the results show that floods have an impact on iron ore prices. The
coefficients of all lagged variables except the first appear positive and
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Table 4 Cumulative effect by disaster type

Dependent variable: In(Price of iron ore)

Flood Storm Drought Extreme temperature
(1) 2) 3) 4
Disaster —0.003 —0.022" 0.073"" 0.016
(0.005) (0.011) (0.031) (0.014)
L.Disaster 0.009 —0.035" 0.073"" 0.032
(0.007) (0.021) (0.029) (0.023)
L2.Disaster 0.018" —0.055™" 0.051" 0.032
(0.009) (0.027) (0.030) (0.029)
L3.Disaster 0.029"" —0.074™" 0.036 0.047
(0.013) (0.033) (0.034) (0.035)
L4.Disaster 0.039"" —0.098™" 0.061 0.067"
(0.017) (0.040) (0.037) (0.038)
L5.Disaster 0.045™" —0.110"" 0.078™" 0.075"
(0.019) (0.045) (0.036) (0.045)
L6.Disaster 0.045™" —0.109"" 0.058" 0.097"
(0.021) (0.053) (0.033) (0.054)
In(Steel 0.867""" 1.240*" 1.230"*" 12147
production) (0.272) (0.270) (0.249) (0.281)
In(Oil price) 0.813""" 0.824™"" 0.824™"" 0.784™""
(0.080) (0.089) (0.093) (0.093)
In(Exchange rate) 0.517 0.725 0.620 0.343
(0.622) (0.614) (0.678) (0.717)
Constant —9.337""" 13458 —13.212""" —12.346™""
(2.729) (2.800) (2.606) (2.686)
Observation 168 168 168 168
HAC truncation 5 5 5 5
paramcter
F-test for joint
significance
Year fixed effects 25.15™"" 33.16"" 32.58""" 30.317""
Month fixed 2.67""" 253" 443" 3.65"""
effects

Note All specifications include year and month fixed effects. Newey-West heteroskedasticity- and
autocorrelation-consistent (HAC) standard errors are in parentheses. The disaster variables include
0-6 lags

*p < 0.1, wxp < 0.05, sxxp < 0.01
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statistically significant. As shown in the six-month lagged variable, the
cumulative dynamic effects of floods drive up the current price of iron
ore by 4.5%. In contrast, the results in column 2 show a negative correla-
tion between storms and iron ore prices. We find dynamic and immediate
impacts of storms that lower iron ore prices. The negative sign of the coef-
ficients is not what we expected; nevertheless, the findings show that the
market prices of traded commodities may be affected by natural disasters
in exporting countries. In column 3, droughts appear to have a posi-
tive impact on iron ore prices. The results suggest that droughts tend to
increase the prices of iron ore in the early months. In total, the coefficients
of the six-month lagged variable indicate that an additional drought event
is associated with a 5.8% increase in iron ore prices. Column 4 reports the
results for extreme temperatures. We find that extreme temperatures do
not immediately affect iron ore prices. The coefficients of the cumulative
dynamic multipliers are positive and significant after the four-month lag.
The findings suggest that in the long run, extreme temperatures induce
2 9.7% increase in iron ore price over six months. The estimation results
from individual natural disaster events show evidence of climate-induced
price volatility that may affect the iron ore market.

5 CONCLUSIONS

This chapter examined the effect of natural disasters on the prices of iron
ore, an important raw material used in steel production. The empirical
investigation used spot prices of iron ore imported in China to examine
whether price volatility is induced by natural disasters occurring in iron
ore-exporting countries. Considering the persistent impact of natural
disasters that may last after the onset, we estimated the dynamic effect
of disasters by incorporating lagged variables in the analysis.

The main results showed that iron ore prices are significantly affected
by the occurrence of natural disasters in exporting countries. The esti-
mation results from the models with lag structure demonstrate that
significant impacts persist in the post-disaster period, causing an increase
in iron ore prices. We found that iron ore prices are estimated to increase
by 1.1-1.6% by a disaster event in the previous months. These findings
suggest that more frequent disasters may disturb the iron ore market by
accelerating price fluctuations. The results were robust when the models
included control variables. In addition to natural disasters, we found that
steel production in China has a significant impact that drives iron ore
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prices. Transportation costs, measured by oil prices, also showed a positive
association with iron ore prices.

Moreover, an additional analysis estimated the cumulative dynamic
effect of natural disasters. The results were similar to the primary results
that natural disasters were significantly related to iron ore prices over
several months. The findings showed that natural disasters over six
months raise iron ore prices by 8.2% in total. When we added more
lags in the model, cumulative dynamic effects were also observed over
six months, while a significant effect no longer appeared afterward.

This chapter illustrated the relationship between the steel industry
and natural disasters, highlighting higher prices of one steelmaking raw
material driven by the occurrence of natural disasters. Steel firms world-
wide largely depend on imports of raw materials from several different
countries. This study suggests that when iron ore exporters are hit by
natural disasters, an economic consequence could appear in the prices of
imported commodities. In other words, the negative impact may not be
limited to a country hit by natural disasters but may further spread to steel
producers through the global supply chain. For iron ore-exporting coun-
tries, higher export prices could be a disadvantage because they lower
the relative costs of domestic iron ore in China and make the iron ore
market more competitive (Astier 2015). Moreover, the findings of this
study may have important implications for iron ore suppliers and policy-
makers regarding disaster risk reduction. To reduce the costs of current
and future climate change, addressing disaster risks is important in the
iron ore-exporting countries. This includes both pre- and post-disaster
planning and operations, for example, investment in disaster-resilient facil-
ities and infrastructure through the application of the Building Back
Better (BBB) framework (UNISDR 2017). For steel-producing coun-
tries, higher raw material costs can also be problematic. In addition to
the emerging influence of China’s economic growth, natural disasters
may trigger price volatility, which causes steel production to be more
unstable. Notably, steel firms must bear the higher costs of inputs if they
cannot pass along these price increases to their customers in the form of
higher steel product prices (Astier 2015). These potential consequences
imply that steel firms should pay attention to natural disaster risks asso-
ciated with procurement of raw materials. Furthermore, an increase in
spot market prices may have a broader impact given that the quarterly
negotiated prices of iron ore are influenced by spot market prices. In this
regard, it is possible to assume that the pricing systems of the iron ore
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market may continue to transform depending on the economic and polit-
ical conditions of the leading players in the steel and iron ore industries.
Further expansion of spot trading can also be anticipated in raw mate-
rial markets. Future research must focus on such complex and unique
situations to further examine the effect of climate on the iron ore market.
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