
Challenges in Modeling of an Outbreak’s
Prediction, Forecasting and Decision
Making for Policy Makers

Altaf H. Khan

Abstract In this work an attempt has been made to review the current state of arts
in epidemiological modeling, assessment of predictive models as well as forecast-
ing of new pathogen. The primary concern is the containment of the outbreak from
wide spread of the disease among the whole population. This article also focuses for
the development of management tools and techniques in decision making for policy
makers that are based on scientific evidence. Moreover, the identification, detec-
tion and reporting for outbreak of an infectious disease particularly a new pathogen
in timely manner is quite challenging and tedious. Apparently understanding and
reporting of such events are commonly rely on statistical and mathematical tools and
both these approaches commonly depend upon a priory estimates as well as some
reliable data. For example: statistical models requires a sizable number of events to
develop predictive models, which is impossible at the outset of an outbreak of the
disease to collate enough number of samples. Whereas, the mathematical models are
reliable as well as have better predictive behavior, but they also require better initial
guess apart from some rigid constraints to fully satisfy the model’s assumptions.
Apart from these issues, the other important features to study in epidemiology of the
disease is how fast and quickly the scientific community promptly can pinpoint and
able to address any causal factor which may suffice to account for the magnitude and
severity of the epidemics of new pathogen that may have been taken place to any
geographic locations. Hence in this work, first of all the SIR model (susceptible: S,
infected: I, and recovered: R) will be outlined, as it is the most commonly usedmodel
in epidemiology of infectious diseases. Moreover, the applicability and utilization of
R0 in public health domain especially adaptive policy with management tools will be
developed for the healthcare workers as well as the higher management of healthcare
facility.
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1 Introduction

The infectious diseases related acute respiratory infections (ARIs) are the primary
source ofmorbidity andmortality around theworld, since each and every year approx-
imately 5 to 6 million people die due to ARIs, and 98% of these deaths are due to
lower respiratory tract infections see: Fig. 1 (the percentage of fatality rate on log-
scale for some influenza types are shown, Source: New York Times). Mortality rates
are higher among infants, children, and the elderly, and it’s commonly prevalent
in low-income and middle-income countries [6–8]. Influenza may also cause of an
increase risk of strokes and heart attacks apart from disease complications [9–11].
The emergence of the current outbreak of the new pathogen started from Wuhan
City, Hubei Province, China. This new outbreak cases were reported in the I st week
of December, 2019, and the World Health Organization (WHO) on December 31,
2019 had declared this new pathogen as a ’Global-Pandemic’. It was soon identified
as a novel coronavirus and termed as Covid-19, and belongs to the family of viruses
that include the common cold and viruses such as SARS and MERS. On January 20,
2020, this has been also confirmed that the coronavirus can be transmitted between
humans, and has wider risk of spread globally. Hence, the identification, detection
and reporting for outbreak of an infectious disease particularly a new pathogen in
timely manner is vital for the safety of general public health. Apparently reporting
of such events are quite challenging and difficult, since it requires a complete under-
standing of the new pathogen. And to comprehend and stop from spreading any new
such vicious viruses (like Covid-19) commonly rely on statistical and mathematical
tools. Both these approaches commonly depend upon a priory estimates and some
reliable data. For example: statistical models requires a sizable number of events to
develop predictive models, which is impossible at the outset of an outbreak of the
disease to collate enough number of samples. Whereas, the mathematical models are
reliable as well as have better predictive behavior, but they also require better initial
guess apart from some rigid constraints to fully satisfy the model’s assumptions.
Apart from these issues, the other important features to study in epidemiology of the
disease is how fast and quickly the scientific community can pinpoint any causal fac-
tor which may suffice to account for the magnitude and severity of the epidemics of
new pathogen that may have been taken place to any geographic locations.Moreover,
some commonly utilized modeling tools in infectious diseases will be outlined here,
whereas taking into account the primary aim of infectious disease modeling is: (i) to
understand the mechanisms of spread, (ii) to estimate the time period of the latent
and infectious periods, and (iii) the size of the epidemic, and the main focus is to
determine strategies for disease control. Some of the commonly utilized approaches
to model epidemic diseases are briefly outline here:
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Fig. 1 The figure describes the percentage of different respiratory syndromes,the percentage of
fatality rate is log scale: (Source New York Times)

1.1 Deterministic Compartmental Models (DCMs)

The DCMs based models are based on systems of differential equations which take
into account the movement of the population through discrete states, including entry
into and exit from the population, at specified rates. DCMsmodels are the most com-
monly used in the field ofmathematical epidemiology, and can be solved analytically,
or using numerical analysis. They can represent discrete forms of heterogeneity in the
population. With DCMs, once the structure and parameters have been set explicitly,
then there is no variation in model outcomes. In 1776, Daniel Bernoulli developed
a model to analyze the life expectancy and death rates based on the inoculation or
variolation in a public health enivironment, see: Dietz (2000) [37]. Some other sci-
entists, for example namely: Philip-Charles Alexandre Louis, William Farr, Ronald
Ross hadmade tremendouswork in epidemiological sciences. Lately, epidemiologist
now applying and utilizing new computational algorithms to analyze the infectious
diseases based on modeling, and simulation of the dynamics of disease generation
and propagation, see: Koopman (1996) [38].

1.2 Stochastic Individual Contact Models (ICMs)

The stochastic individual contact models (ICMs), also known as individual-based or
agent based models, explicitly represent individual units in the population and the
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Fig. 2 Visual display of a
two-dimensional
agent-based model. Each
square represents an
individually programmable,
mobile agent. Color-coding
allows easy visual tracking
of agents with different
properties. Source https://
www.ncbi.nlm.nih.gov/
books/NBK221490/figure/
mmm00027/?
report=objectonly

contacts between them are unique with discrete events. In contrast to DCMs, they
allow heterogeneity while specifying the contact process and other epidemiologi-
cally relevant events, and their stochasticity provides information on the range of
plausible outcomes resulting from a given set of parameters. The setbacks with these
models are they may require large amounts of input data that is needed for param-
eterization as well as the computational burden associated with running multiple
stochastic simulations. Agent-based modeling are used extensively in biology such
as: spread of epidemics, population dynamics, stochastic gene expression, plant-
animal interactions, vegetation ecology, as well as modeling 3D breast tissue forma-
tion/morphogenesis etc. They are agent-based computational models using computer
programs in which a population of individual entities is created, and each individual
is endowed with simple rules for interactions with the environment and with other
individuals, see: Holland (1995) [41]. They are used to model all manner of complex
scientific phenomena. Some important studies had used the agent-based modeling to
examine infectious diseases (e.g., influenza) and the immune response, see: Hofmeyr
and Forrest (2000), [40]. For example, the Swarm Development Group (ref: http://
www.swarm.org/wiki/Main_Page) had made the development of a wide variety of
infectious disease modeling using the agent-based modeling, see: Figure 2 display
of two-dimensional agent based model.

https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
http://www.swarm.org/wiki/Main_Page
http://www.swarm.org/wiki/Main_Page
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1.3 Network Models

Network models are also stochastic and represent individual units, but unlike ICMs,
they providea flexible framework for representing repeated contacts with the same
person or persons over time. These repeated contacts may give rise to persistent
network configurations for example: pairs, triples, and larger connected components
which in turn establishes the temporally ordered pathways for infectious disease
transmission across a population. The R-package ’EpiModel’ is a good tools for
simulation of models for network analysis. It provides a generalized framework for
both estimation and simulation of dynamically evolving networks. Network models
provide the most accurate control over the contact process, but have greater com-
putational burden than ICMs, both because they require statistical estimation of the
network model parameters. Network models offer a versatile means of capturing
heterogeneity in populations during an epidemic. In this approach, highly connected
individuals tend to be infected at a higher rate early during an outbreak than those
with fewer connections, see: Romanescu and Deardon [39]. Figure3 shows the rep-
resentation of evolving bit strings in a fitness landscape, and its clear that network
models inspired by the Internet will productively inform the modeling of microbial
pathogen networks, Albert et al. (2000) [42], Pastor-Satorras and Vesignani (2001)
[43], and Lloyd and May (2001) [45]. As we know that the social networks had
made a major role to determine the rate and pattern of epidemic spread of microbial
diseases in human societies. Although it had been primarily focused in the role of
population heterogeneity and sub-networks to study the spread of sexually trans-
mitted diseases, especially HIV/AIDS. However, not too much attention had been
paid in role of network topology to monitor the spread of other infectious diseases.
Currently, computer scientists as well as physicists are more concerned about the
spread of infectious agents, for example: computer viruses, worms, etc., through the
Internet and the World Wide Web. This had made the development of new interest in
network topology that have evolve as a revolution in network modeling, see Fig. 3,
for references see the work of Barabasi (2002) [44], and Watts (1999).

1.4 Harmonic Decomposition Analysis

It should be noted that the biological scientists particularly in health-care’s though
were lagging behind to utilize sophisticated mathematical tools such as: Fourier
transform as well as the wavelets theory, etc. but now these powerful analytical tools
are also utilized by them for example: Fourier analysis has been used to decompose
dengue and malaria data sets to reveal the weather-independence of interepidemic
variability, Rogers et al. (2002) [47]; Hay et al. (2000) [48]. The power of wavelet
analysis is evident as it was used to decomposemeasles epidemic harmonics to reveal
recurrent spatial spreading patterns which were not evident in the undecomposed
epidemic data, see Fig. 4 . With this successes the decompositional technique made
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Fig. 3 Internet routing map (80,000 nodes). See http://www.cs.bell-labs.com/~ches/map/

Fig. 4 Continuous wavelet transform decomposition of 1928–1964 Baltimore measles time series
data showing that the incidence curve is decomposable into a shorter component with a periodicity
of 12 months, and a longer component with a variable periodicity of 24–36 months. The longer
component correlates closely with changes in birth rates. Source https://www.ncbi.nlm.nih.gov/
books/NBK221490/figure/mmm00026/?report=objectonly

it possible to analyze and explain the dynamics of many infectious diseases, see:
Grenfell et al. (2001) [49]; Strebel and Cochi (2001) [50].

http://www.cs.bell-labs.com/~ches/map/
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00026/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00026/?report=objectonly
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Fig. 5 Representation of evolving bit strings in a fitness landscape. In this example populations of
strings are shown as dots colonizing local fitness optima in sequence space, Source https://www.
ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly

1.5 Digital Microbes

The last decade had seen a see change after it’s initial downfall in early nineties that
evolutionary techniques would now be incorporated into machine learning, artificial
intelligence, and computer programming. The genetic algorithms is the first and
now a standard evolutionary computational technique—code strings are iteratively
mutated, recombined, and selected for fitness, just as if they were nucleic acid strings
evolving in nature, Burke et al. (1998) [51], see Fig. 5. This algorithms are widely
employed to solve practical computationally intensive problems, such as protein
folding, but only a few studies have appeared in which evolving code strings are
used to simulate microbial evolution and adaptation. Preliminary studies suggest
that the rules governing code string evolution may be independent of the stuff from
which the evolving code strings are made, and that experiments on digital microbes
with code string evolution and epidemiology “in silicon” may be a productive way to
understand and solve problems that are difficult to study in nature, Ray (1995) [52];
Wilke et al., Adami et al. (2000) [53]; Radman et al. (1999) [54].1

In following sections: SIR model (susceptible: S, infected: I, and recovered: R)
based on ordinary differential equations (ODEs) will be outlined, and it is the most

1 Agent based, network based, harmonic decomposition analysis, and digital microbes notes were
adopted from: Computational Modeling and Simulation of Epidemic Infectious Diseases Donald S.
Burke (M.D.) Bloomberg School of Public Health, Johns Hopkins University (USA), and appendix
from:Microbial Threats toHealth: Emergence,Detection, andResponse (2003),NationalAcademic
Press.

https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly
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commonly used model in epidemiology of infectious diseases. The basic reproduc-
tion number known as: R0 pronounced as R-naught will be estimated for the basic
SIR and the extended SIRmodels and computed estimates of R0 will be compared in
different scenarios as well as computational algorithms will be outlined for solving
SIR model. Next, the stochastic modeling will be briefly discussed.The applicability
and utilization of R0 in public health domain especially adaptive policy with man-
agement tools will be described for the healthcare workers as well as for higher
management of healthcare facility.

2 Mathematical Modeling: The Basic SIR Model

The basic compartment models are: SIS, SIR, and SEIR, where the different com-
partments are symbolically denoted as letters S, E, I, and R. S: individual subjects in a
population are susceptible to the disease, similarly E, I, and R mean that subjects are
exposed (E), infected (I) from the disease and able to transmits to others, and R com-
partment signifies subjects have recovered from the disease, immune or have died.
The disease parasite or virus dictates the choice or selection of the compartments and
depends on the characteristics of the particular disease.It ought to be also noted that
the inclusion of too many compartments into the model could be computationally
intensive as well as tedious apart from risk of making unreliable prediction as well
as may pose greater challenges in policy and decision making.

Historically, Daniel Bernoulli had formulated and solved a model for smallpox in
1760, and based on this he evaluated the efficacy by inoculating on healthy subjects
the smallpox virus [12]. A discrete time model by Hamer in 1906 was formulated
to understand the recurrence of the outbreak of measles [13]. Sir Ronald Ross was
awarded the Nobel Prize, as he had developed a mathematical model for malaria as a
host-vector disease in 1911 which was based on the differential equation differential
[14]. Another interesting model was developed by Kermack and McKendrick [1] on
epidemic models and introduced the threshold result that the density of susceptible
must exceed a critical value in order for an epidemic outbreak to occur [8].Moreover,
recent development in mathematical modeling are numerous such as passive immu-
nity, gradual loss of vaccine [3] and disease-acquired immunity, stages of infection,
vertical transmission, disease vectors, vaccination, quarantine, social and sexualmix-
ing groups and age structure [15–21]. The SIS, SIR, and SEIRmodels are graphically
shown in Fig. 1. In SIR modeling the population is divided into three groups namely:
(i) the group of individuals who are not infected and susceptible (S) of catching the
disease, the group of individuals who are infected (I) by the concerned pathogen, and
(iii) the group of recovered (R) individuals who have acquired a permanent immunity
to the disease. Some of the basic ideas, assumptions, transmission, and recovery for
an SIR model (adopted from [22]) are summarized in Table 1. Moreover, a system
of differential equations for an SIR model for three compartments are modeled as
follows:
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Fig. 6 The compartmental
model: S represents the
group of the subjects not
infected and susceptible to
the risk of the disease, I is
the group of the subjects are
infected by the new
pathogen: virus or bacteria
and R are those group of
people who recovered and
acquired immunity from the
new pathogen

dS

dt
= −β I S (1)

d I

dt
= −β I S − γ I (2)

dR

dt
= −γ I (3)

where in the above equations: S denotes the number of susceptible, I the number of
infected individuals and R the number of immune individual at time t, and the total
population is given by: N = S + I + R is constant by assumption as we have: dN

dt =
dS
dt + d I

dt + dR
dt = 0. In equations (1) and (2): the first term β I S represents the disease

transmission rate by contact between susceptible and infected individuals. This rate
is assumed to be proportional to the sizes of both groups with a proportionality
coefficient β and equations (2) and (3) the parameter γ is the specific rate at which
infected individuals recover from the disease. For example: consider an epidemic
outbreak in a population where, at the initial time, only a few individuals are infected,
then the initial conditions for SIR model can be assumed as: S(0) ≈ N , I (0) =
N − S(0) ≈ 0, R(0) = 0.

2.1 Phase Analysis

Sometimes, it’s desired to have the dynamics in the phase-plane via deriving the
isocline’s and divide the plane into regions of increase and decrease of the various
state variables. The phaseR package is a wrapper around ode that makes it easy
to analyze 1D and 2D ode’s. The R-state in the SIR model does not influence the
dynamics, so we can rewrite the SIR model as a 2D system. So divide equation (1)
by (2) gives the ODE:
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Fig. 7 The phase-plane diagram for the SI model

dS

d
I = −βSI

βSI − γ I
(4)

The solutionof the aboveODEcanbe foundanalytically, using separationof variables
the above equation can be rewritten as (for I > 0):

∫
βS − γ

βS
dS = −

∫
d I (5)

After integrating the above equation and for every t ≥ 0

I (t) + S(t) − γ

β
logS(t) = I (0) + S(0) − γ

β
logS(0) (6)

The above expression gives the solutions (S(t), I(t)) in the S-I plane contains the level
curves of the function (S(t); I(t)) viewed in the S–I plane (orbits) are contained in
the level curves curves of this function F(S; I ) = I (t) + S(t) − γ

β
logS(t), and it’s

shown in Fig. 7.

2.2 Endemic of the Disease

The above SIRmodel describes the long term state of the epidemic. The questionmay
naturally arise: “How long the pandemic may last?”. It should be noted that always
there will be a some portion of the population of susceptible individuals can never
get infected. Mathematically, this can be answered by the SIR model by dividing Eq.
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Fig. 8 The stochastic model
for the endemic of the
disease based on SIR
branching approximation

(1) by Eq. (3), and integrating with respect to R, we have

S(t) = S(0)e−R(t)R0 (7)

From the above expression S(0) will be always positive, whereas the exponential
term R(t)R0 has negative sign, ultimately there will no susceptible individual get
infected over the time, and pandemic will be ceased to an end. Using stochastic SIR
branching approximation and the MultiBD an R-package https://cran.r-project.org/
web/packages/MultiBD/.

2.3 Computational Methods for Solving SIR Model

The SIRmodel’s equations can be solved numerically using: Explicit time, Backward
Euler, and Crank-Nicolson discretization schemes. The Explicit time discretization
are explicitODE(ordinarydifferential equation)methods, for exampleForwardEuler
scheme, Runge-Kutta methods, Adams-Bashforth methods, and all these schemes
evaluate the function at time levels. The Backward Euler method is an implicit
method, also used to solve ODEs. The Crank-Nicolson method is based on the finite
difference scheme and commonly used to solve ODEs/PDEs, and is a 2nd order
method in time. This method is implicit in time and can be written as an implicit
Runge–Kutta method, and this method has numerically stability. Rewriting the SIR
model as follows:

S′ = −βSI (8)

I ′ = βSI − γ I (9)

R′ = γ I (10)

whereS(t) , I(t), andR(t) are susceptible, infected and recovered respectively,whereas
the constants, β > 0 and γ > 0 should be given as the initial conditions: S(0), I(0),

https://cran.r-project.org/web/packages/MultiBD/
https://cran.r-project.org/web/packages/MultiBD/
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Table 1 The assumptions for SIR model (Source lecture notes by V. A. Bokil, “Mathematical
Modeling and Analysis of Infectious Disease Dynamics”)

SIR model’s basic assumptions transmission, and recovery

Basic ideas and assumptions Transmission assumptions Recovery assumptions

1. Populations under study are
divided into compartments.

1. β is the average number of
adequate contacts (i.e.,
contacts sufficient for
transmission) of a person per
unit time.

1. A fraction α of infectives
leave the infective class in unit
time.

2. Rates of transfer between
compartments are expressed
mathematically as derivatives
with respect to time of the
sizes of the compartments:
systems of ordinary
differential equations

2. β I
N is the average number of

contacts with infectives per
unit time of one susceptible.

2. There is no entry or
departure from the population
except possibly through death
from the disease.

3. The community size is
constant over the duration of
the epidemic and is a large
number, N

3. ( β I
N )S is the number of new

cases per unit time due to the S
susceptibles. (Horizontal
Incidence)L

4. The infection is transmitted
primarily by person-to person
contacts (e.g., measles)

5. Individuals are
homogeneous and mix
uniformly.

Ignore demography, i.e., births
and deaths

and R(0). Now, applying the Implicit time discretization for the Crank-Nicolson
scheme will make a 33 system of non-linear algebraic equations in the unknowns as:
Sn+1, I n+1, and Rn+1, and they are written below

Sn+1 − Sn

�t
= β[SI ]n+0.5 ≈ 0.5β(Sn I n + Sn+1 I n+1) (11)

I n+1 − I n

�t
= β[SI ]n+0.5 − γ I n+0.5 ≈ 0.5β(Sn I n + Sn+1 I n+1) − 0.5γ (I n + I n+1)

(12)

Rn+1 − Rn

�t
= γ I n+0.5 ≈ 0.5γ (I n + I n+1) (13)

Denoting S for Sn+1, S(1) for Sn , I for I n+1, I (1) for I n , and R for Rn+1, R(1) for Rn ,
now writing the system of equations as
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FS(S, I, R) = S − S(1) + 0.5�tβ(S(1) I (1) + SI ) = 0 (14)

IS(S, I, R) = I − I (1) − 0.5�tβ(S(1) I (1) + SI ) + 0.5�tγ (I (1) + I ) = 0 (15)

RS(S, I, R) = R − R(1) − 0.5�tγ (I (1) + I ) = 0 (16)

Applying Picard’s iterative approximation method and assume that Ŝ, Î and R̂, for
S, I, and R as to linearize the non-linear terms., and solving the above equations with
respect to the unknowns: S, I, and R.

S = S(1) − 0.5�tβS(1) I (1)

1 + 0.5�tβ Î
(17)

I = I (1) + 0.5�tβS(1) I (1) − 0.5�tγ I (1)

1 − 0.5�tβ Ŝ + 0.5�tγ
(18)

R = R(1) − 0.5�tγ (I (1) + Î ) (19)

The non-linear system of equation (10), (11), and (12) can be written as G(u) = 0,
where G =GS,GI ,GR), so the Jacobian can computed as

J =
⎡
⎣

∂GS
∂S

∂GS
∂ I

∂GS
∂R

∂GI
∂S

∂GI
∂ I

∂GI
∂R

∂GR
∂S

∂GR
∂ I

∂GR
∂R

⎤
⎦ =

⎡
⎣1 + 0.5�tβ I 0.5�tβS 0

0.5�tβ I 1 − 0.5�tβS + 0.5�tγ 0
0 0.5�tγ 0

⎤
⎦ (20)

Updating after each iteration with new updates, using Newton method to solve the
Jacobian as an algebraic equation, the solution could be obtained for unknowns S, R,
and R. Moreover, for the above SIR model, an explicit time integration approaches
work well, the 4th order Runge-Kutta method is a suitable choice since it is efficient,
accurate and is based on the simple algorithms. Moreover, in order to fit the model
with the observed or real data, broadly, two things need to be taken into account, first
a solver for the system of differential equations and an optimizer. For solving DEs the
function’ode’ from the’deSolve’ an R package, and to optimize’optim’ function from
base R; both these functions are also available in other softwareMATLAB,MAPLE,
R andMathematica (computational packages). So tominimize the sumof the squared
differences between the number of infected I at time t and the corresponding number
of predicted cases by our model ˆI (t).

RSS(β, γ ) =
∑
t

(I (t) − Î (t))2 (21)

Using these tools from COVID19.analytic and R-package, the estimated cases for
susceptible,infected, and recovered are shown below in Fig. 9, the plots on the right
side are on semi-log- scale, the plots show that the model fit with the observed data
quite well.
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Fig. 9 Based on the SIR model the susceptible, infected, and recovered cases for Saudi Arabia is
shown right hand side graphs on log-scale

Moreover, if the graphical plots do not fit well due to algorithm does not converge
to the optimal solution. The reason could be the’optim’ stops too early before it
could not find an appropriate solution. Now, further explore the’optim’ algorithm, the
optim function uses the gradient algorithms such as:” “BFGS (by Broyden, Fletcher,
Goldfarb and Shanno)”, “CG (Fletcher andReeves developed the conjugate gradients
method” and “L-BFGS-B (method is by Byrd et al.)” methods. as well as a finite-
difference approximation algorithms. These gradient based algorithmsmay try to find
an optimum estimate via repeatedly improving the current estimate and finding a new
solution with a lower residual sum of squares (RSS) each time. Gradient methods do
this by computing for a small change of the parameters in which direction the RSS
will change the fastest and is based on the linear search approach.
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2.4 Estimating the Reproducing Number R0

The basic reproduction number was introduced in 1886 by (the Director of the Sta-
tistical Office of Berlin) Richard Bockh, see: [23] and [24]. The basic reproduction
number also commonly known as R0 pronounced as ’R-nought’ could be defined
as the expected number of secondary cases produced by a single individual infected
subject in a completely susceptible population [25]. It is a dimensionless number
and not a rate. We can use the fact that R0 is a dimensionless number to help us in
calculating it

R0 ∝
(
in f ection

contact

)
×

(
contact

time

)
×

(
t ime

in f ection

)
(22)

R0 can be estimated from the above SIRmodel’s equations (1) to (3), since it depends
on the transmissibility, contact rates and expected duration of infection. Based on the
model’s assumption the population N is closed have N number of subjects, whereas
number of susceptible S and infected I , and R subjects are removed, So rewriting
the SIR model in terms of proportion, we have

ds

dt
= −βis (23)

di

dt
= −βis − γ i (24)

dr

dt
= −γ i (25)

where s = S
N , i = I

N , and r = R
N . The trajectory of the system solution in the I − S

plane is presented in Fig. 2; from this the existence of a ’threshold effect’ can be
observed. The maximum value of the curve occurs at S = γ

β
. It implies that an

epidemic will start and amplify only if S(0) ≈ N is larger than γ

β
, or equivalently if

R0 = Nβ

γ
> 1

So under this condition, the number of infectious people will increase until the num-
ber of susceptible is reduced to γ

β
and will decrease thereafter. Thus the number R0

represents a threshold for an epidemic to happen, and this number is also commonly
known as ’basic reproduction ratio’, since it represents the average number of sus-
ceptible which are contaminated by one infectious person. now divide Eq.2 by 1, we
get:

d I

dS
= (

γ

βS
− 1)
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Integrating this equation, we get:

I = γ

β
logS − S + C wi th C ≈ N − γ

β
logN

From the above equation, the instantaneous maximum number of infectious subjects
can computed as:

Imax = N (1 − 1 + logR0

R0
)

The trajectory terminates on the S-axis at a positive value as shown in Fig. 7, which
can be seen from Eq.4 that I must vanish at some positive value of S. So the epidemic
terminates before all susceptible have become infected and some individual subjects
escape the new pathogen completely. Further, we can estimate howmany susceptible
subjects remain or equivalently the final value R(∞) of immune population size.
Divide Eq.2 by Eq.3, so we have:

dS

dR
= −β

γ
S =⇒ S(R) = S(0)e− β

γ
R ≈ Ne− β

γ
R

So
dS

dt
= γ I = γ (N − S − R) = γ (N − Ne− β

γ
R
)

Therefore

t → ∞ =⇒ I → 0 =⇒ dR

dt
= 0 =⇒ N [1 − e− β

γ
R(∞)] = R(∞) (26)

Eq.5 has unique solution R(∞) between 0 and N as long as R0 > 1. Denote
x = R(∞)

N the fraction the population that has contracted the disease before the epi-

demic collapses. SolvingEq.5,we have: R0 = log(1−x)
x , and R0 estimates for different

pandemics are shown in Fig. 10, see: https://www.the-scientist.com/features/why-
r0-is-problematic-for-predicting-covid-19spread-67690ga=2.205136600.9300868
60.1594988120-662736184.1594988120.

2.4.1 Challenges and Issues in Estimating R0

As above an estimate for R0 is described for an SIR model, and has been called
“arguably the most important quantity in the study of epidemics”. Since it’s playing
a vital role as well as desiderata especially for public health professionals in their
decision and policy making. Hence, it’s very crucial and important to produce accu-
rate and reliable estimates of this quantity R0. This quantity precisely presents the
whole outbreak of a disease, and it assess the magnitude and severity as well as helps
to quantify the percentage of the population needed to be vaccinated to avoid the

https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
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Fig. 10 R0 estimates for different pandemic is shown adopted from The Scientist an article by
Katarina Zimmer, July13, 2020

epidemic roughly as 1 − 1
R0

is utilized to estimate final size of the total number of
infected individuals; and is related to the probability of observing an outbreak under
the same conditions (Anderson and May, 1992; Britton, 2010). Although there is an
explicit definition of R0, it is still difficult for an epidemiologists to standardize an
estimator for R0 (Hethcote 2000). An obvious issue in quantifying an estimate for
R0 is that it’s solely depend on the property of the disease model apart from the com-
monly encountered noises inhibit in statistical models as well assumptions made by
the researchers about the disease which had been transmitted in a population (Brown,
Oleson, & Porter, 2016; Diekmann, Heesterbeek, & Roberts, 2009). To develop a
good estimate for R0 numerous research works had been done and the difficulties
and nuances that’s involved in estimating R0 can be found in Diekmann et al. (2009)
[26], Heathcote [21], and Van den Driessche (2017), [27]. Based on eight different
approaches Gallagher, et al. [25] had discussed the nuances pertaining in estimating
R0 for the 2009 pandemic influenza. The authors utilized the basic SIR model by
adding the random into the model, and adding the noise the new compartment model
as an stochastic model, and the expression with “hats” and without “hats” are distin-
guishes as stochastic and deterministic in equations (as observations were generated
from the ODEs), are noises are given as below:

ˆS(t) = S(t) + εS,t (27)

ˆI (t) = N − ˆS(t) − ˆR(t) (28)

ˆR(t) = ˆR(t) + εR,t (29)
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where and εS,t and εR,t are the random noises in the model. Moreover, Gallagher, et
al. [25] has utilized the above Eqs. 28-30 to estimate the R0 by the data generated
from these equations as follows:

Data = { ( ˆS(t) = s(t), ˆI (t) = i(t), ˆR(t) = r(t)
)

: t = t0, t1, ..., tT
}

(30)

R̂0 = m(Data) (31)

where m is a function of the data, and the eight models by these authors have been
briefly outlined and their comparison of estimates for R0 for the pandemic influenza
is shown in Table2.

• Exponential Growth(EG)
The effective reproduction number R0 and hence the initial reproduction number
R0, was derived by Wallinga and Lipsitch (2007) [31] on the hypothesis that
“counts increase exponentially in the initial phase of an epidemic.” So to estimate
r, the per capita change in the number of new cases per unit of time andω the serial
interval, the distribution of time between a primary and secondary infection, then,
R0 = erω. This equation is based on the Lotka-Euler survival model, commonly
utilized in demography, ecology as well as evolutionary biology. Expanding this
equation R0 = erω by using Taylor series expansion up to first order to estimate R0,
whereas in Nishiura, Chowell, Safan, and Castillo-Chavez (2010) [32] had derived
it’s variant. This approach assumes an exponential growth during early phase as
well as the occurrence of initial phase growth. The model has an advantage since
it relies on estimates of the number of susceptible, how and when such a method
should be used because of the initial growth assumption, Nishiura et al. (2010) [32]
had given some guidelines. Moreover, there are several adjustments that could be
done to this approach, for example: Wallinga and Lipsitch (2007) [31] describes to
estimate R0 by assumingω a random variable, whereas Obadia, Haneef, & Boëlle,
(2012) [33] assumed that r has it’s own distribution.

• Ratio Estimator (RE)
The second approach the Gallagher et al. applied to the SIR model is to minimize
the joint mean square error for the data collected at each time point:

(β̂, γ̂ ) = argminβ,γ

∑
t

[
(s(t) − S(t;β, γ ))2 + (i(t) − I (t;β, γ ))2 + (r(t) − R(t;β, γ ))2

]
(32)

So the equation for the ratio estimator (RE) for R0 will be as:

R̂0 = β̂

γ̂
(33)

The above estimate could be found for the β and γ either with optimization algo-
rithm or grid search methods.

• Re-parameterized Ratio Estimator(rRE)
As the approach used to estimate β and γ to compute R0 can also be estimated
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by simply reparametrization of ODEs directly with R0 via using the relationship
R0 = β

γ
, and we have:

(R̂0, γ̂ ) = argmin0,γ
∑
t

[
(s(t) − S(t; R0, γ ))2 + (i(t) − I (t; R0, γ ))2 + (r(t) − R(t; R0, γ ))2

]

(34)
The above estimate can again be found either grid search algorithmor optimization
tools.

• Log Linear (LL)
In Log-Linear model, the SIR model was reduced to ODEs by Harko, Lobo, and
Mak(2014) [34] in two ODEs with one constraint for each equations as follows:

log

(
S(t)

S(0)

)
= −R0

R(t)

N
(35)

and estimated the R0 as below:

R̂0 = −
∑T

t0
log

(
S(t)
S(0)

)
∑T

t0
R(t)
N

(36)

• Markov Chain (MC)
Based on Reed-Frost model Abbey(1952) [35] using the Reed-Frost Chain Bino-
mial which as specific form of I(t), the number of infected individuals at time point
t. So we have

ˆS(t) = Ŝ(t − 1) − ˆI (t) (37)( ˆI (t)|Ŝ(t − 1), Î (t − 1)
)

∼ Binomial
(
Ŝ(t − 1), 1 − (1 − α) Î (t−1)

)
(38)

ˆR(t) = R̂(t − 1) + ˆI (t) (39)

Using the likelihood method and the optimization tools, R̂0 can be obtained as:

R̂0 = log

(
1

1 − α

)
(40)

• Likelihood-Based Estimation (LBE)
Using the likelihood based estimate the R0 is given by see for detail Gallagher et
al. [25]

R0 = β̂

γ̂
(41)

• Incidence to Prevalence (IPR)
The incidence to prevalencemethodwas described byNishiura andChowell (2009)
[32], the estimate for R̂0 is:
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Table 2 Comparison of R0 estimates for 2009 influenza, SourceExploring the nuances of R0: eight
estimates and application to 2009 pandemic influenza, by Shannon Gallagher, Andersen Chang,
and William F. Eddy (a preprint), March 25, 2020

Estimation of R0 using eight models: a comparison

Methods SEIR R0 (SE) SIR R0 (SE)

EG 1.001 (<1e-04) 1.002 (2e-04)

RE 1.977 (0.0161) 1.767 (0.137)

rRE 1.977 (0.0162) 1.767 (0.0795)

LL 1.989 (0.021) 1.789 (0.0042)

MC 1.31 (0) 1.619 (0)

LBE 1.893 (0.0135) 1.742 (5.5501)

IPR 4.254 (0.8687) 1.177 (0.9889)

LMA -0.645 (2.5491) 2.565 (0.175)

R̂0 = 1

γ
· I P R(t∗) (42)

• Linear model approximation (LMA)
Chen and Li, 2009; and Hu, Teng, andLong (2014) [36] described method to
estimate R̂0 by applying the linear approximation of theKermack andMcKendrick
SIRmodel, this emthod is further extended by Gallagher et al. [25], so the estimate
for R0 is given as:

R̂0 =
ˆS′(0)
ˆR′(0)

· N
ˆS(0)

(43)

2.4.2 Next Generation Method: R0

As R0 is the number of secondary infections in which a single individual subject
is infected in a population. The issue is: how we deal if there were multiple types
of infected subjects; for example malaria which is vector-borne disease or sexually
transmitted disease (HIV). Such type pf problems can be handled using the structured
epidemic models, the basic idea is simply average the expected number of new
infections over all possible infected types. Now assuming that a system havemultiple
discrete type of infected individual subjects. Now introducing a ’next generation
matrix’ as square matrix G, and the elements of this matrix are denoted as gi j , where
i and j are the rows and columns of thematrixG. The gi j gives the expected number of
secondary infection type i, and it is caused by a single individual infected individual
subjects of type j, whereas the population of type i completely susceptible. Hence
all the elements in the matrix G are the reproduction number. The spectral radius of
the matrix G gives the reproduction number, which is also known is the dominant
eigenvalue. For example, consider G as a 2 by 2 matrix defined as:
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G =
[
a b
c d

]

The eigenvalue of matrix G can be given as

λi = T

2
±

√(
T

2

)2

− D (44)

where T = a + d is the trace and D = ad - bc is the determinant of the matrix G.
The next generation matrix has a number of desirable properties such as it is a

non-negative matrix and, it guarantees that there will be a single, unique eigenvalue
which is positive, real, and strictly greater than all the others.

The estimation of reproduction number R0 is discussed, and the next generation
method is outlined in this subsection, a detail work can be found in [26–28].

2.5 Stochastic Modeling

Since with any modeling tools, there are always limitation, and it also exist with
compartmental models. For example, the model may not able to describe the real
or observed data. Due to the assumptions were not fully met namely: homogeneity
assumption, not a close system, imbalance equations, where as in general with real
world data compartments models fail to describe the system. These limitation could
be avoided by extending the deterministic compartmental models into a stochastic
model which incorporates the probabilistic theory. So it can be done by keeping
time discrete and utilizes the stochastic processes. Another approach may be using
continuous framework and time to infection as stochastic.

2.5.1 Reed-Frost Model

The Reed-Frost model is based on the chain binomial model since the infection
spread dynamically through direct contact and assume that it’s independent and have
constant probability, and this model has the following characteristics [29, 30]:

• It is similar to compartmental model where each individuals are either susceptible,
infectious or recovered.

• The population of the study population is closed and constant and have initial
values such as: s0 and i0 ∈ N , where s0 = S0, and i0 = I0 are susceptible and
infected individual subjects.

• The infection dynamic can be explained via discrete time Markov chain.

{
It+1| St = st , It = it ∼ Bin (st , 1 − (1 − ω)it ) ),

St+1 = St − It+1
(45)
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where t = 1, 2, ... are time steps andω is the probability of an infectious individual
who is a susceptible subjects in span of one time step.

• The epidemic final size is: Z = ∑∞
i=0 Ii .

Now consider if ω is the probability of infection, then the probability of not infected
subject will be 1 − ω, so the probability to escape from infection from contact will
be (1 − ω)i i , hence the probability of infection will be 1 − (1 − ω)i . The Reed-Frost
model can be interpreted as an SIR model in which the incubation period and the
recovery time is one unit time, whereas the basic reproduction number can be given
as ωS0. Moreover, the likelihood of the Reed-Frost model can be given as

L(ω : {i0, i1, , ..., iT , s0}) =
T−1∏
i=0

θ
it+1
t (1 − θt )

si−si+1 , θt = 1 − (1 − ω)it (46)

where T denotes the number of time steps.

2.5.2 Gillespie’s Direct Method

The Gillespie’s direct method asks two questions if the system is in a given state:

• When does the next event occur? The time to the next event (τ ) is exponentially
distributed and the rate equal to the sum of the rates over all possible events. The
probability density function is given by

f (τ ) = (
∑
i

ai )e(−τ
∑

i ai ) (47)

• Which event occurs next? We convert event rates into probabilities, and randomly
select one of these events according

P(Event = v) = av∑
i ai

(48)

where ai are event rates.
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Assuming the above distributions the algorithm is as follows:

1. Set initial population numbers t �→ 0.
2. Calculate the ai for all i.
3. Choose τ from an exponential distribution with parameter

∑
i ai as in Eq. (30).

4. Choose the event v according to the distribution in Eq. (31).
5. Change the number of individuals to reflect the event, v. Set t �→ t + τ .
6. Go to step 2.

The above algorithm simulates stochastic realizations of the exact process described
by what’s known as the master equation. Assume that pSI R(t) is the probability and
it is in state (S,I,R) at a given time t, and N = S + I + R, then the master equation is
given as follows describes as how this probability distribution evolves over the time:

dpSI R(t)

dt
=pS−1,I,R [μ(N − 1) ] + pS+1,I,R [μ(S + 1) ]+

pS+1,I−1,R [β (I − 1)

N
(S + 1) ] + pS,I+1,R−1 [γ (I + 1) ]

+ pS,I+1,R [μ(I + 1) ] + pS,I,R+1 [μ(R + 1) ]
− pS,I,R [μN + μS + β

I

N
S + γ I + μI + μR ]

(49)

2.5.3 Example Based on SIR Model Using SimInf R-Package

The following example is based on the ’SimInf’ an R-package https://cran.r-project.
org/web/packages/SimInf/vignettes/SimInf.pdf.

Specification of the SIR model without scheduled events

This example is based on the predefined three compartments (SIR) model (sus-
ceptible: S, infected: R, and recovered: R). The mode of transmission of infection is
to susceptible individuals is through direct contact between susceptible and infected
individuals, this model has two transitions at each node i as follows:

Si
βSi Ii/(S+ Ii+Ri )−−−−−−−−−→ Ii

Ii
γ Ii−→ Ri

where β, and γ are the transmission and recovery rates respectively. In order to create
and SIRmodel object, define u0, a data.framewith the initial number of individuals in
each compartment when the simulation starts, assume that a node has 999 susceptible
with 1 infected and there are no recovered individuals. As the assumptions made in
this example is that there are no interaction between nodes, so the stochastic model
does not disturb any nodes in the model. So the R-code is as follows:

https://cran.r-project.org/web/packages/SimInf/vignettes/SimInf.pdf
https://cran.r-project.org/web/packages/SimInf/vignettes/SimInf.pdf
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> install.packages(’SimInf’)

> library(SimInf)

> n <- 1000

> u0 <- data.frame(S = rep(999, n), I = rep(1, n), R = rep(0, n))

> tspan <- seq(from = 1, to = 180, by = 7)

> model <- SIR(u0 = u0, tspan = tspan, beta = 0.16, gamma = 0.077)

> model

> model

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

- Empty, please run the model first

> set.seed(123)

> set_num_threads(1)

> result <- run(model = model)

> result

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

S 108.0 368.0 993.0 755.4 999.0 999.0

I 0.0 0.0 1.0 30.4 38.0 235.0

R 0.0 1.0 5.0 214.2 484.0 891.0

> plot(result)

> plot(result, node = 1:10, range = FALSE)

> plot(result, node = 1:5, range = FALSE)

%%%%%

> head(trajectory(model = result, node = 1))

node time S I R

1 1 1 999 1 0

2 1 8 998 1 1

3 1 15 991 8 1

4 1 22 973 21 6

5 1 29 935 42 23

6 1 36 886 61 53

Specification of scheduled events in the SIR model Further continuing with
predefined SIR model, and taking into account the demographic data. So specify
each event as one column in the select matrix E using the select attribute of the event.
The non-zero entries in the selected column in E specify the compartment involved,
define E as



Challenges in Modeling of an Outbreak’s Prediction, Forecasting … 401

Fig. 11 The output result from a stochastic SIR model in 1000 nodes starting with 999 susceptible,
1 infected and 0 recovered individuals in each node (β = 0.16, γ = 0.077). There are no between-
node interactions. Left (1a: The default plot shows the median and inter-quartile range of the count
in each compartment through time across all nodes. Right 1b: Realizations from a subset of 10
nodes

1 2 3 4( )1 0 0 1 S
0 1 0 1 I
0 0 1 1 R

In order to operate on a single compartment (S, I or R) as well as an event that
involves all three compartment, we need to specify a scheduled event. When several
compartments are involved in an event, the individuals affected by the event will
be sampled without replacement from the specified compartments. The numerical
solver performs an extensive error checking of the event before it is processed. And
an error will be raised if the event is invalid, for example, if the event tries to move
more individuals than exists in the specified compartments. Consider we have 4
scheduled events to include in a simulation. Below is a data.frame, that contains the
events.

> u0 <- data.frame(S = rep(0, 5), I = rep(0, 5), R = rep(0, 5))

> add <- data.frame(event = "enter", time = rep(1:10, each = 5),

+ node = 1:5, dest = 0, n = 1:5, proportion = 0, select = 1, shift = 0)

> infect <- data.frame(event = "enter", time = 25, node = 5,

+ + dest = 0, n = 1, proportion = 0, select = 2, shift = 0)

> infect <- data.frame(event = "enter", time = 25, node = 5,

+ dest = 0, n = 1, proportion = 0, select = 2, shift = 0)

> move <- data.frame(event = "extTrans", time = 35:45, node = c(5, 5, 5,

+ 5, 4, 4, 4, 3, 3, 2, 1), dest = c(4, 3, 3, 1, 3, 2, 1, 2, 1, 1, 2),
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+ n = 5, proportion = 0, select = 4, shift = 0)

> remove <- data.frame(event = "exit", time = c(70, 110),

+ node = rep(1:5, each = 2), dest = 0, n = 0, proportion = 0.2,

+ select = 4, shift = 0)

> model <- SIR(u0 = u0, tspan = 1:180, events = events, beta = 0.16,

+ + gamma = 0.077)

> set.seed(3)

> set_num_threads(1)

> result <- run(model)

> plot(result, node = 1:5, range = FALSE)

> result

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

S 103.0 337.0 992.0 744.5 999.0 999.0

I 0.0 0.0 2.0 31.4 41.0 239.0

R 0.0 1.0 5.0 224.1 528.0 896.0

3 Role of Reproduction Number and Growth Curve
in Decision and Policy Making

The basic reproduction number plays a vital role in epidemiological sciences as
well as in public health management, since it has been used to explain the dynamic
of epidemics in population. For example Covid-19 (an infectious disease), R0 is
estimated between 2 and 2.5, whereas for measles it lies between 12 to 18. R0 spread
is order of exponential, for example if R0 = 2, then a single person can generate new
infections exponentially as 2n , whereas if this number if less than 1 then it decays
fast as well exponentially:

I generation = 2 new in f ections

I I generation = 4 new in f ections

I I I generation = 8 new in f ections

I V generation = 16 new in f ections

V generation = 32 new in f ections

Moreover in practice or real life the e f f ective reproduction number is utilized
and denoted as R and defined as: the average number an infected person goes on to
infect in a population where some people are immune (or some other interventions
are in place). It related with R0 as: R = sR0 , where is the proportion of susceptible
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Fig. 12 The effective reproduction number based on laboratory-confirmedCorona virus (Covid-19)
Cases in Wuhan, China (Source https://jamanetwork.com/journals/jama/fullarticle/2765665)

subjects for a population.AsR is not a rate, and it cannot explain how fast the epidemic
is growing in the population, and this can by quantified by using the growth curve,
so the growth curve can be defined as exponential curve:

N (t) = constant eλt (50)

where N is the number of cases and depends on time t in days and λ is the growth
rate of of the disease per day. If the growth rate is positive this implies the rise in the
epidemic cases whereas if sign of growth rate is negative means there are decrease in
number of epidemic cases, and for growth rate zero gives number of cases constant.
Now the question is: R or growth rate λ is better? The pros and cons as given in Table
3 below:

3.1 Challenges and Issues in Modeling Infectious Diseases

• Provide a systematic framework for when we should try to eradicate
• Develop quantitative models of the economics of control versus eradication
• Identify the most effective approaches to achieve eradication
• Quantify the landscape of susceptibility

https://jamanetwork.com/journals/jama/fullarticle/2765665
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Fig. 13 Global growth rate of Corona virus: confirmed, recovered, deaths and active cases by using
Covid-19analytics (R-package)

Fig. 14 Stages towards and after elimination in a given location and milestones on the path to
elimination. Adapted from (Townsend et al., 2013b, World Health Organization, 2007). Shading
illustrates control intensity (darker grey for heightened efforts), also see: https://www.sciencedirect.
com/science/article/pii/S175543651400070X

https://www.sciencedirect.com/science/article/pii/S175543651400070X
https://www.sciencedirect.com/science/article/pii/S175543651400070X
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Table 3 Comparing R and the growth rate, Source https://plus.maths.org/content/epidemic-
growth-rate)

Comparison between reproduction number and the growth rate

Reproduction ratio: R Growth rate per day:

1. In planning to dealwith the spread of epidemic using
any intervention, then the reproduction number is
most suitable in planning of the control measures
such as:

• if R=1.5means thenwe need to plan for one third
of reduction in transmission.

• if R=2 means need to vaccinate half the suscep-
tible people in the population;

An intuitive way of predicting the strength of future
interventions needed to stop an epidemic then con-
sideration of R is a better choice.

2. if R>1 then exponential growth in epidemic cases if
R=1 then the epidemic cases are constant or flat if
R<1 then exponential decay in epidemic cases.

3. R a ratio of cases by infection generation. It is not a
rate: there is no timescale involved.

4. R is not at all easy to measure in practice, but can be
fitted using models if the timescales of infection are
known. In principle it could be estimated by detailed
epidemiological data on exactly who got infection
fromwhom, but this is not usually feasible in typical
settings.

1. Growth rate is more natural for thinking about how
cases are oscillating over time. For example

• λ = 0.01 per day means cases will increase by
about 1% a day.

• λ = -0.02 per day means cases will decrease by
about 2% a day.

The growth rate is a good description of what’s hap-
pening now: if we have a certain number of cases
today then we can work out how many to expect
tomorrow, the day after, and so on.

2. if λ >0 then exponential growth if λ = 0 then the
growth is flat or constant if λ <0 then growth curve
is exponential decay

3. The growth rate λ is a rate, usually given in days for
Covid-19.

4. The growth rate λ is relatively easy to estimate from
time series data of cases or deaths (but see below
about small numbers). A simple approach is just to
find the gradient of the logged cases.More advanced
approaches, which can take into account a time-
varying growth rate, or heterogeneous population,
again involve fitting epidemic models.

• Improve monitoring during and after the endgame
• Identify post-eradication opportunities and threats

4 Summary

The basic SIR, and stochastic models were outlined along with some notes on com-
putational tools for these models. Briefly, the reproduction number R0 was dis-
cussed based on different approaches. A famous quote by greatmathematicianDaniel
Bernoulli:

I simply wish that, in a matter which so closely concerns the well being of the human race,
no decision shall be made without all the knowledge which a little analysis and calculation
can provide.” (Daniel Bernoulli,1760)

https://plus.maths.org/content/epidemic-growth-rate
https://plus.maths.org/content/epidemic-growth-rate
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