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Abstract The aim of this chapter is to explore non-autonomous compartment mod-
els of epidemics, like, e.g., SIRmodels with time-dependent transmission and recov-
ery rates as parameters, and particularly the occurrence of rate-induced tipping phe-
nomena. Specifically,we are interested in the question,whether there can exist param-
eter paths that do not cross any bifurcation points, but yet give rise to tipping if the
parameters vary over time. From literature, it is known that such rate-induced tipping
occurs, e.g., in two-dimensional models of ecosystems or predator–prey systems.We
show in this chapter that rate-induced tipping can also occur in compartment models
of epidemics. Thus, regarding the Covid-19 crisis, not only the measures established
in a lockdown and the moment of the lockdown, but also the rate by which lockdown
measures are implemented may have a drastic influence on the number of infectious.

Keywords Geometric methods in differential equations (34A26) · Nonlinear
equations and systems (34A34) · Qualitative investigation and simulation of
models (34C60) · Nonautonomous dynamical systems (37B55)

1 Introduction

Why do we see during the Covid-19 crisis in some states a very high relative number
of infectious, while in other states the relative number of infectious is significantly
lower, although the measures established by states in a lockdown are comparable?
Maybe, this does not only depend on the moment in time at which a lockdown is
decided, but also on the rate by which lockdown measures are implemented. In this
chapter, we show that corresponding rate-induced tipping phenomena can occur in
compartment models of epidemics with time-dependent parameters.
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The foundations of compartment models of epidemics, which divide the popula-
tion into compartments and assume a certain form of the time rates for transfer from
one compartment to another, were laid byRoss (Nobel Prize inMedicine 1902) [13–
15],McKendrick andKermack [10–12] prior to 1935.Usually, spatial dependence
is neglected in compartment models, and instead a homogeneous mixing of the pop-
ulation is assumed. Thus, mathematically a compartment model of an epidemic is
usually given by a system of ordinary differential equations (ODEs) for continuous
time, or by a system of finite difference equations for discrete time, or by a system
of delay differential equations (DDEs) if, e.g., the period of temporary immunity
is modeled, but not by a system of partial differential equations (PDEs) involving
spatial derivatives. Therefore, autonomous compartment models for epidemics are
not suitable for describing the beginning of a disease outbreak, because at the begin-
ning the assumption of a homogeneous mixing of the population is invalid. Instead,
models viewing the social network as a graph may be used. However, this graph is
usually not known, and if it is considered as random, then compartment models and
network models are related; see, e.g., [3, Sect. 9.4], [5, Sect. IV.B]. Particularly, this
problem can be circumvented by using a time-dependent transmission rate, which
at the beginning is significantly reduced in comparison with the transmission rate of
the disease in a homogeneously mixed population.

The aim of using compartment models in epidemiology [2, 3] is to better under-
stand the underlying mechanisms of the spread of a disease and to obtain during the
mathematical analysis of the model threshold values [1]. A threshold for a parameter
in a model is a value, where the system shows a different behavior below the thresh-
old than above the threshold. Most mathematical epidemic models exhibit threshold
behavior, e.g., for R0 < 1 the disease will die out, while for R0 > 1 there will be an
epidemic. This behavior is consistent with observations and has been used, e.g., to
estimate the effectiveness of vaccination policies and the likelihood that a disease
may be eliminated or eradicated.

However, when calculating threshold values, one has to be very precise. One
source of confusion is the interpretation of parameters. For example in a stochastic
model, the basic reproduction number is defined as the expected number of infections
caused by one infectious in a population where all individuals are susceptible to
infection. However, if in a compartment model “the basic reproduction number is
calculated by the Jacobian method,” i.e., by linearizing the system about the state
where all individuals are susceptible, and by writing the condition that this state
is linearly unstable in the form R0 > 1, then the so defined parameter R0 may not
be identical with the basic reproduction number, i.e., with the expected number of
infections caused by one infectious, but just allows to test linear stability of the state
where all individuals are susceptible. Thus, in general, it would be wrong to say that
this parameter denoted by R0 “is” the basic reproduction number. Yet, it resembles
the basic reproduction number, as it allows to answer the question, whether the
disease will become endemic or die out. Further, in reality, parts of the population
may be immune to a disease. The basic reproduction number does not say anything
about such a state of the population, but instead the effective reproduction number
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should be used, which is defined as expected number of new infections caused by
one infectious in the actual state of the population.

Another source of confusion may be the interpretation what is meant by “different
behavior” of a system below and above a threshold. The dynamics of an autonomous
system below and above a threshold value are usually considered to be different,
if they are not topologically equivalent, i.e., if crossing the threshold results in a
(local or global) bifurcation of the system. Yet, for non-autonomous systems [4],
particularly SIR models with time-dependent parameters studied, e.g., in [5], it is
not so clear how to define different behavior, because if we start from the same initial
value but at different times, then of coursewe usually obtain different solution curves.
Remarkably, the dynamics in systems with time-dependent parameters may not only
change drastically due to a bifurcation, but also due to other tipping phenomena.
Particularly, transient resp. irreversible rate-induced tipping may occur, where the
system fails to track a continuously changing quasi-static attractor uniformly resp.
up to the end point due to a fast rate of change of parameters.

The focus of this chapter lies on such rate-dependent tipping phenomena in com-
partment models of epidemics with continuous time. From literature, it is known
that rate-induced tipping occurs generically, e.g., in climate models [16], in two-
dimensional models of ecosystems [7], in predator–prey systems [8] or in chaotic
systems [6]. We show that irreducible rate-induced tipping can also occur in ideal-
ized compartmentmodels of epidemicswith R0 > 1, where due to the slow dynamics
near the stable endemic equilibrium (EE), the state may fail to track the EE for a
fast parameter change and may leave its basin of attraction bounded by a homo-
clinic orbit resp. by the stable manifold connecting the boundary to the disease-free
equilibrium (DFE), resulting in an eradication of the disease, while else the disease
becomes endemic. Further, we show that artifacts of this tipping phenomenon can
also be observed in non-idealized models.

1.1 Outline

In Sect. 2, we introduce basic facts about compartment models with continuous time
and time-dependent parameters. Further, we derive basic properties of the classical
SIR and SIRS models. In Sect. 3, we discuss linear compartment models of epi-
demics and particularly in the time-dependent case phenomena related to tipping. In
Sect. 4, we turn to nonlinear compartment models of epidemics and discuss a typical
bifurcation of compartment models at the DFE. By center manifold reduction, we
obtain an idealized planar system,which governs the dynamics and shows irreducible
rate-induced tipping. Finally, in Sect. 5, we study tipping phenomena in nonlinear
compartment models of epidemics.
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2 Preliminaries

Throughout this chapter, we consider compartment models with continuous time,
and we normalize systems so that each state variable models the percentage of the
whole population in the corresponding compartment.

2.1 Compartment Models with Time-Dependent Parameters

Definition 1 A compartment model with n + 1 compartments is a semi-process
on the n-dimensional probability simplex �n := {x ∈ R

n+1 | x ≥ 0 , 1T x = 1} ⊂
R

n+1, i.e., a family of continuousmaps�t,s : �n → �n , s ≤ t , such that�t,t = Id�n

for all t ∈ R and the cocycle condition�t,r = �t,s ◦ �s,r holds for all r ≤ s ≤ t , and
which is generated by an ODE ẋ(t) = f (t, x(t)) in the sense that�t,s(x) is identical
with the value x(t) of the unique ODE solution to the initial value x ∈ �n at time s.

An ODE ẋ(t) = f (t, x(t)) with a time-dependent vector field f : R × R
n+1 →

R
n+1 generates such a semi-process � on �n , if the probability simplex �n is posi-

tively invariant, and this is the case iff

(A1) fi (t, x) ≥ 0 holds for every x ≥ 0 with 1T x = 1 and xi = 0, and every t ∈ R,
(A2) 1T f (t, x) = 0 holds for every x ∈ �n and every t ∈ R.

Under these conditions, global existence of solutions forward in time to initial val-
ues in �n holds for a continuous f due to compactness of �n . Additionally, in
compartment models of epidemics, we require that (1, 0, . . . , 0) is for all times an
equilibrium, i.e.,

(A3) fi (t, (1, 0, . . . , 0)) = 0 holds for every t ∈ R,

We call this equilibrium disease-free equilibrium (DFE) and correspondingly con-
sider the first component of x ∈ �n as percentage of susceptibles in the population.
Due to 1T x = 1, every compartment model can be reduced by one dimension to
an n-dimensional ODE ˙̂x = f̂ (t, x̂) on the image �̂n := {x̂ ∈ R

n | x̂ ≥ 0 , 1T x̂ ≤
1} of the diffeomorphism from �n onto �̂n given by x = (x1, . . . , xn, xn+1) �→
(x1, . . . , xn) = x̂ with inverse x̂ �→ (x̂, 1 − 1T x̂) = x , i.e., by eliminating xn+1 =
1 − ∑n

i=1 xi from the ODE. The assumptions (A1)-(A3) then translate into

(A1)’ f̂i (t, x̂) ≥ 0 holds for every x̂ ≥ 0 with 1T x̂ < 1 and x̂i = 0 and every t ∈ R,
(A2)’

∑n
i=1 f̂i (t, x̂) ≤ 0 holds for every x̂ ≥ 0 with 1T x̂ = 1, and every t ∈ R,

(A3)’ f̂i (t, (1, 0, . . . , 0)) = 0 holds for every t ∈ R.

The longtime behavior of a semi-process � on �n is governed by its global
pullback attractor, i.e., by the time-dependent family of non-empty compact sets

A(t) :=
⋂

s≤t

⋃

r≤s

�t,r (D) , (1)
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with D := �n chosen to be the whole state space. Note that A(t) consists of all
values of solutions at time t originating from D for times s → −∞, i.e., A(t) is a
kind of non-autonomousω-limit set of orbits originating from D. The global pullback
attractor is the minimal closed set which attracts all subsets B ⊂ �n at time −∞,
i.e., lim

s→−∞ dist(�t,s(B), A(t)) = 0 holds for every subset B ⊂ �n , and it is invariant,

i.e.,�t,s A(s) = A(t) holds for all s ≤ t . In the autonomous case, where�t,s = �t−s

is a continuous dynamical system on �n and the vector field f in the generating
ODE ẋ(t) = f (x(t)) does not depend on time, the global pullback attractor does not
depend on time, i.e., A(t) = A is a constant set, and A is identical with the global
attractor of the autonomous dynamical system on �n .

If D in (1) is not chosen as the whole space �n but replaced by a locally pullback
absorbing family of time-dependent sets D(r), i.e., there exists a sufficiently small
distance ε > 0 and a sufficiently large time T > 0 such that �t,r (Bε(D(r))) ⊂ D(t)
holds for all (t, r) with t ≥ r + T , where Bε(D) := {x ∈ �n | dist(x, D) < ε}
denotes the ε-neighborhood of D ⊂ �n , then A(t) is called the local pullback
attractor of the absorbing family D(t). Given a local pullback attractor A(t), the
largest locally pullback absorbing family D(t) of time-dependent sets is such that
A(t) ⊂ D(t) is called its time-dependent basin of attraction.

In this chapter, we are particularly interested in compartment models

ẋ(t) = f (x(t), λ(t)) (2)

which are non-autonomous due to time dependence of parameters. Hereby, we
assume that the system is driven, i.e., that we can write the system in skew-product
form

ẋ(t) = f (x(t), λ(t))

λ̇(t) =rg(λ(t))
(3)

with parameter path induced by a vector field g(λ) in parameter space for a fixed rate
r ≥ 0. Often, we assume that λ(t) approaches constant values λ± for times t → ±∞
with a flat derivative, i.e., λ(t) is a heteroclinic orbit in parameter space connecting
λ± and satisfies λ̇(t) → 0 as t → ±∞ due to g(λ±) = 0. We are mainly interested
in the dependence of x on the rate r . Note that the derivative of x(t) w.r.t. r is given
by the solution y of

ẏ(t) =∂ f

∂x
(x(t), λ(t))y(t) + ∂ f

∂λ
(x(t), λ(t))κ(t)

κ̇(t) =rg′(λ(t))κ(t) + g(λ(t))
(4)

to the initial values y(s) = 0 and κ(s) = 0, where κ = ∂λ
∂r . This equation can be used

to obtain information about the dependence of x on the rate, e.g., if y(t) = ∂x
∂r (t) → 0

for t → ∞, then a change of the rate does not lead to a different longtime behavior
of the solution.
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Example 1 For g(λ) := −(λ − λ−)(λ − λ+) with λ± = ±1, i.e., g(λ) = 1 − λ2,
the parameter path is given by

λ(t) = tanh(r t) (5)

due to tanh′ = 1 − tanh2. In this case, the second equation κ̇(t) = −2λ(t)rκ + 1 −
λ(t)2 in (4) has for the rate r = 1 and the initial value κ(−10) = 0 the exact solution

κ(t) = (t + 10) sech2(t) . (6)

Let us consider as one-dimensional example the parameter-dependent autonomous
vector field f (x, λ) := −x(x2 + λ), i.e., a pitchfork. Depending on λ being positive
resp. negative, x = 0 is the only equilibrium resp. there are additionally the two
equilibria x± := ±√−λ. If λ < 0, then x = 0 is unstable and x± are asymptotically
stable, while if λ > 0, then x = 0 is asymptotically stable. Now our parameter path
λ(t) = tanh(r t) runs at t = 0 through the bifurcation point λ = 0, thus eventually
the solution of

x ′(t) = −x(t)(x(t)2 + tanh(r t)) (7)

to the initial value x(−10) = 0.1 first tends to x+ ≈ 1, but at time t = 0 the bifur-
cation happens and merely the asymptotically stable equilibrium x = 0 survives. As
(7) is a Bernoulli ODE, we can calculate the exact solution, which is given for the
rate r = 1 by

x(t) = (cosh(t)(2 sinh(t) + C cosh(t)))−1/2 (8)

with C = 100
cosh2(−10)

− 2 tanh(−10) ≈ 2 + 8.162 · 10−7 put this solution x(t), the
parameter path λ(t) from (5) and the function κ(t) from (6) into the first equa-
tion of (4) and solve this linear inhomogeneous ODE to the initial value y(−10) = 0
to obtain as solution y(t) = ∂x

∂r (t) the derivative of the solution x(t) w.r.t. r , without
explicitly solving (7) for other rates than r = 1, see Fig. 1.

Fig. 1 On the left, the solution (8) of Eq. (7) with rate r = 1 to the initial value x(−10) = 0.1 is
shown. In the middle, the derivative of this solution w.r.t. the rate is plotted, obtained by solving (4)
for y. Observe that the rate mainly has an influence on the behavior of the solution shortly after the
bifurcation at t = 0. Particularly, the rate does not have any influence on the long time behavior.
This can also be seen by comparing the left picture to the right picture, which shows the solution
of Eq. (7) with rate r = 0.1 to the same initial value x(−10) = 0.1
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The sudden qualitative change of the state in Example 1 is mainly due to the
bifurcation point λ = 0 of the autonomous system. To fix notation, if in (2) the
parameter λ(t) = λ is constant (or r = 0 in (3)), then we call

ẋ(t) = f (x(t), λ) (9)

the autonomous frozen ODE. In such a parameter-dependent autonomous ODE, a
sudden qualitative change of the behavior of the system at a threshold λ0 can only
occur due to a bifurcation. In fact, by definition, a bifurcation is said to occur at
the parameter λ0, if there are arbitrarily close parameters for which the generated
dynamics are not topologically equivalent. The solution x(t) of (9) to a fixed ini-
tial value x(s) = x0 depends differentiably on the parameter λ, and moreover the
derivative ∂x

∂λ
of x w.r.t. λ solves

y′ = ∂ f

∂x
(x(t), λ0)y + ∂ f

∂λ
(x(t), λ0) (10)

to the initial value y(s) = 0. Compare Eq. (10) in the autonomous case with the cor-
responding first equation of (4) in the non-autonomous case to note that time depen-
dence of parameters has a strong influence, if ∂ f

∂λ
is large. While for autonomous sys-

tems, a sudden qualitative change is related to a bifurcation, and for non-autonomous
systems there are other sources of a sudden qualitative change. Particularly, rate-
induced tippingmay happen, where the system fails to track a continuously changing
quasi-static attractor due to a fast rate of change of parameters.

Definition 2 For a non-autonomous ODE (2), a local attractor A(λ) of the corre-
sponding autonomous ODE (9) at parameter λ is called a local quasi-static attractor.

Let us assume that along λ(t) there is no bifurcation, so that A(λ−) has a unique
continuation A(λ(t)) for all times t . If the rate r > 0 is sufficiently small, then the
local pullback attractor A(t) originating form A(λ−) uniformly tracks A(λ(t)), i.e.,
supt∈R dist(A(t), A(λ(t))) is continuous w.r.t. to the rate r on which λ(t) depends
for small r > 0, and dist(A(t), A(λ(t))) tends to 0 as t → ±∞. This property was
obtained in [9] and allows to define rate-induced tipping. We use the following
definition.

Definition 3 Under the assumption that along the path λ(t) there is no bifurcation
of the local quasi-static attractor A(λ(t)), we say that at points of discontinuity of
r �→ supt∈R dist(A(t), A(λ(r t))) the system (2) has

1. transient rate-induced tipping, if lim
t→∞ dist(A(t), A(λ(r t))) = 0,

2. irreducible rate-induced tipping, if lim
t→∞ dist(A(t), A(λ(r t))) > 0.

In case of irreducible rate-induced tipping, the local pullback attractor A(t) may
tend for t → ∞ to a local attractor at λ+ different from A(λ+), while in case of
transient rate-induced tipping A(t) tends for t → ∞ to A(λ+), but in between A(t)
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approached another local attractor of the autonomous system. Rate-induced tipping
is intimately related to basin instability; see [7, Definition 5.1]. Particularly, for
equilibria the following definition makes sense.

Definition 4 Suppose A(λ) is a stable equilibrium of the autonomous frozen ODE
(9) for every λ on the chosen parameter path λ(t), and let B(A(λ)) denote the basin
of attraction of A(λ). Then A(λ) is said to be basin unstable on the parameter path,
if there are two λ1, λ2 on the parameter path such that A(λ1) is outside the closure
of the basin of attraction of A(λ2), i.e., A(λ1) /∈ B(A(λ)).

Themain result about basin instability is that it implies the existence of a parameter
path along which rate-induced tipping happens.

Theorem 1 ([7]) If a stable equilibrium A(λ) of the autonomous frozen ODE (9) is
basin unstable for all λ on the parameter path, then there is a time-varying external
input λ(t) of sufficiently fast rate that traces out the path and gives irreversible
rate-induced tipping from A(λ(t)) in the non-autonomous system.

Thus briefly, if the system is in a state where the dynamics is slow, but the actual
parameter change is fast, then it may happen that the state may leave the basin of
attraction of the continuation A(λ(t)) of the attractor A(λ−) and the local pullback
attractor A(t) tends to a different local attractor of the system.

Ourmain goal is to describe amechanism how this kind of basin instability and the
corresponding rate-induced tipping can happen in compartmentmodels of epidemics.
The difficulty hereby is that usually the endemic equilibrium (EE) is globally asymp-
totic stable, and then there is no way how basin instability can happen. Therefore,
we consider idealized systems which has at least two different basins of attraction
and argue that even in systems which do not have this idealized property, artifacts of
rate-induced tipping can be seen. But first let us introduce basic compartment models
of epidemics.

2.2 Autonomous SIR Model

The classical autonomous SIRmodel of McKendrick andKermack [10–12] reads
in full form as

S′ = −βSI

I ′ = βSI − α I

R′ = α I

(11)

with constant transmission rate β > 0 and recovery rate α > 0, or in reduced form
as

S′ = −βSI

I ′ = (βS − α)I
(12)
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with R := 1 − S − I . This system has a whole line segment {(S, 0) | 0 ≤ S ≤ 1}
of equilibrium points bounded to the right by the disease-free equilibrium (DFE)
(S, I ) = (1, 0), and the parameter R0 := β

α
resembles the basic reproduction number:

The Jacobian of the reduced model is

D f̂ (S, I ) =
(−β I −βS

β I βS − α

)

, (13)

and therefore the linearization at the DFE

D f̂ (1, 0) =
(
0 −β

0 β − α

)

(14)

has eigenvalues λ = 0 and λ = β − α. Thus, linear instability holds if R0 := β

α
> 1,

but due to the degenerated eigenvalue λ = 0, which corresponds to the whole line
segment of equilibria, even in the case R0 < 1 we do not have local attractivity but
just stability of the disease-free equilibrium (S, I ) = (1, 0). Nonetheless, in the case
R0 < 1, the system tends for every initial state (S0, I0)with I0 > 0 to the disease-free
equilibrium (S, I ) = (1, 0), i.e., the DFE attracts all states (S, I ) with I > 0 and the
disease dies out.

In the case R0 > 1, solutions have amaximumnumber of infectiouswhere I ′ = 0,
i.e., at S = α

β
= 1

R0
. Afterward the number of infectious decreases and tends for

t → +∞ to an equilibrium with S∞ < 1 and I∞ = 0, i.e., the disease becomes
epidemic. Let us calculate the value S∞: By integration over t ∈ [0,∞) on the one
hand (S + I )′ = −α I implies S∞ − (S0 + I0) = −α

∫ ∞
0 I (t) dt , and on the other

hand S′/S = −β I implies ln(S∞/S0) = −β
∫ ∞
0 I (t) dt . Thus, S∞ − (S0 + I0) =

α
β
ln(S∞/S0) holds and allows to calculate S∞. Under the assumption that at the

beginning, there are no recovered, we have to solve S∞ − 1 = α
β
ln(S∞/S0), and

with the product log function W (x), which solves x = wew for w, the solution can
be written as S∞ = − α

β
W (−S0

β

α
e− β

α ).

2.3 Autonomous SIRS Model

Instead of a more appropriate DDE taking into account the period of temporary
immunity, we consider in this subsection as model with temporary immunity the
SIRS model given by

S′ = −βSI + γ R

I ′ = βSI − α I

R′ = α I − γ R

(15)

with an additional rate γ > 0 of loss of immunity. The reduced model
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S′ = −βSI + γ (1 − S − I )

I ′ = (βS − α)I
(16)

has the disease-free equilibrium (DFE) (S, I ) = (1, 0), and for α < β additionally
the endemic equilibrium (EE) (S, I ) = ( α

β
,

γ

α+γ
(1 − α

β
)).

Particularly, for γ ↘ 0, we obtain (S, I ) = ( α
β
, 0) as limit of the endemic equilib-

rium, i.e., a distinguished point on the line segment of equilibria of the autonomous
SIR model. Thus, if the SIR model is considered as limit of the SIRS model with
vanishing γ , then for R0 > 1 the unique equilibrium with S∞ := α

β
on the whole

line segment of equilibria should be considered as epidemic equilibrium in the SIR
model. Again the parameter R0 := β

α
resembles the basic reproduction number: The

Jacobian of the reduced model is

D f̂ (S, I ) =
(−(β I + γ ) −(βS + γ )

β I βS − α

)

, (17)

and we obtain that the linearization at the DFE

D f̂ (1, 0) =
(−γ −β − γ

0 β − α

)

(18)

has the eigenvalues λ = −γ and λ = β − α. Thus, the DFE is asymptotically sta-
ble if R0 := β

α
< 1 and unstable if R0 > 1. In the case R0 > 1, the eigenvector

(−(β + γ ), β + γ − α)T to λ = β − α > 0 of sign structure (−,+)T has a second
component which is smaller than the negative of the first component, thus the unsta-
ble manifold of the DFE points into the probability simplex �̂n . Further, the Jacobian
at the EE

D f̂

(
α

β
,

γ

α + γ

(

1 − α

β

))

=
(

−γ
β+γ

α+γ
−(α + γ )

γ
β−α

α+γ
0

)

(19)

has for R0 > 1 a negative trace as well as a positive determinant, i.e., the eigenvalues
have negative real parts and thus the EE is asymptotically stable. The EE is a stable
focus if γ < 4(β − α)(

α+γ

β+γ
)2, else it is a stable node. Observe that the lineariza-

tion (18) at the DFE has for γ = 0 and β = α > 0 a zero eigenvalue of algebraic
multiplicity two and geometric multiplicity one. Therefore, when considered as a
two-parameter system on whole R

2, there is a bifurcation not very different from
(but also not identical with) a Bogdanov–Takens bifurcation.

3 Linear Compartment Models

Linear compartment models of epidemics model the behavior near an endemic equi-
librium. First, let us discuss the case of constant parameters and let us introduce some
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special names for matrices, which are unfortunately not used completely uniformly
in the literature.

Definition 5 A matrix A = (ai j ) ∈ R
n×n is called

1. Z-matrix, if ai j ≤ 0 holds for i �= j ,
2. Metzler matrix, if ai j ≥ 0 holds for i �= j , or equivalently −A is a Z-matrix,
3. M-matrix, if A is a Z-matrix and additionally �(λ) ≥ 0 holds for every eigen-

value λ of A, or equivalently there is a non-negative matrix B ≥ 0 and a scalar
α ≥ ρ(B) such that A = αE − B.

These terms have to do a lot with non-negative linear flows. In fact, exactly the
linear flows generated by Metzler matrices preserve the cone condition x ≥ 0:

Theorem 2 The non-negative cone {x ∈ R
n | x ≥ 0} is positively invariant w.r.t. the

linear flow generated by x ′ = Ax, iff A is a Metzler matrix.

Proof On the one hand, if the non-negative cone {x ∈ R
n | x ≥ 0} is pos-

itively invariant w.r.t. the linear flow exp(t A), then 0 ≤ eTi exp(t A)e j =
eTi e j + teTi Ae j + O(t2) holds for i, j as t ↘ 0. Thus, 0 ≤ eTi Ae j + O(t)
is valid for i �= j as t ↘ 0, and this implies ai j = eTi Ae j ≥ 0 for i �= j . On
the other hand, if A is a Metzler matrix, then there is a scalar α ∈ R and a
matrix B ≥ 0 such that A + αE = B. Thus, exp(t A) = e−αt exp(t B), where
exp(t B) ≥ 0, and hence exp(t A)x ≥ 0 for all x ≥ 0. �

The invariance of the affine linear subspace consisting of all vectors whose entries
sum up to 1 can be tested via the following criterion.

Theorem 3 The affine linear subspace {x ∈ R
n | 1T x = 1} is invariant w.r.t. the

linear flow generated by x ′ = Ax, iff 1T A = 0 or equivalently AT 1 = 0, i.e., the
vector 1 containing just ones is an eigenvector of AT to the eigenvalue 0.

Proof If the flow generated by x ′ = Ax preserves the condition 1T x = 1, then 0 =
d
dt 1 = d

dt 1
T x = 1T Ax for every solution x(t) and thus 1T A = 0. On the other hand,

if 1T A = 0 holds, then d
dt 1

T x = 1T Ax = 0 so that 1T x is constant. �

Of particular interest are matrices A, for which the linear flow generated by
x ′ = Ax is non-negative and leaves the subspace {x ∈ R

n | 1T x = 1} invariant, as
then the linear flow is a compartment model.

Corollary 1 The probability simplex �n−1 := {x ∈ R
n | x ≥ 0 , 1T x = 1} is posi-

tively invariant w.r.t. the linear flow generated by x ′ = Ax, iff A is a Metzler matrix
with AT 1 = 0. In this case,−A is aM-matrix with semi-simple eigenvalue 0. If addi-
tionally A = B − ρ(B)E for an irreducible matrix B ≥ 0, then there is a unique
equilibrium in the interior of the simplex, and this equilibrium is globally asymptot-
ically stable.
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Proof The first claim follows from a combination of Theorems 2 and 3. A Metzler
matrix Awith AT 1 = 0 is automatically anM-matrix, as x �→ 1T x is due to 1T A = 0
a Lyapunov function on the non-negative cone {x ∈ R

n | x ≥ 0}, i.e., 0 is a stable
equilibriumof x ′ = Ax on the non-negative cone as underlying space.Thus, all eigen-
values λ of A satisfy �(λ) ≤ 0, and every eigenvalue with �(λ) = 0 is semi-simple.
Additionally, the condition AT 1 = 0 implies that A has the eigenvalue 0, too. Other
eigenvalues λ �= 0 of A with �(λ) = 0 cannot exist, because due to A = B − αE
withα ≥ ρ(B) for every eigenvalue λ of Awith�(λ) = 0, there is an eigenvalue β of
B with λ = β − α,�(β) = α, and 0 = �(λ) = �(β) − α ≤ ρ(B) − α ≤ 0 implies
α = ρ(B) = β, i.e., λ = 0. Moreover, if A = B − ρ(B)E holds with an irreducible
non-negative matrix B ≥ 0, then the last statement follows from Frobenius–Perron’s
famous theorem, which states that for an irreducible non-negative matrix B the
spectral radius ρ(B) > 0 is an algebraically (as well as geometrically) simple eigen-
value of B and the only eigenvalue of B with positive eigenvector x > 0. Since for
A = B − αE the equation Ax = 0 is equivalent to α being an eigenvalue of B with
eigenvector x , there is exactly one point x0 > 0 with Ax0 = 0 and 1T x0 = 1, namely
the eigenvector normalized by 1T x0 = 1 to the eigenvalue ρ(B) of B. Since −A
is an M-matrix with a simple eigenvalue 0 and A otherwise has only eigenvalues
with negative real part, the asymptotic stability of the equilibrium x0 in the simplex
follows. �

Example 2 The matrix B :=
⎛

⎝
0 0 0
1 0 1
0 1 0

⎞

⎠ is non-negative, but not irreducible. It has

eigenvalues −1, 0, 1, thus A := B − E is a Metzler matrix with simple eigenvalue
0, and AT 1 = 0 holds. Nonetheless, x ′ = Ax has no equilibrium in the interior of the
simplex {x ∈ R

n | x ≥ 0 , 1T x = 1}, because every eigenvector of A to the eigen-
value 0 is a multiple of the boundary point x0 = (0, 1/2, 1/2)T of the simplex. This
shows that in the final statement in Corollary 1, the irreducibility of B cannot be
waived or replaced by the assumption that 0 is a simple eigenvalue of A.

Example 3 Two-dimensional linear compartment models have the full form

⎛

⎝
S′
I ′
R′

⎞

⎠ =
⎛

⎝
−β δ γ − ζ

β − ε −α ζ

ε α − δ −γ

⎞

⎠

⎛

⎝
S
I
R

⎞

⎠ (20)

with constants α ≥ δ ≥ 0, β ≥ ε ≥ 0, γ ≥ ζ ≥ 0. Here, we do not require (A3),
because we consider the system (20) as linearization of a nonlinear system at the
endemic equilibrium (EE). Let the transmission rate β of S be the maximum of the
three constants α, β, γ , then the system matrix can be written as A = B − βE with
the non-negative matrix

B =
⎛

⎝
0 δ (γ − ζ )

(β − ε) (β − α) ζ

ε (α − δ) (β − γ )

⎞

⎠
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Fig. 2 Solution S in blue, I in red, of (21) to the initial value (S0, I0) = (0.95, 0.05)T for β(r t) =
(2 − tanh(r t))decreasing from the value 2 at t = 0 to a value nearα := 1 approaches the equilibrium
(S, I ) = ( 12 , 1

2 ) for the fast rate r = 2 on the left directly, while for the slow rate r = 1 on the right
there is a kind of overshooting. The critical rate lies between r = 1.9 and r = 2

Thismatrix is irreducible iffβ is strictly larger thanα, γ > 0 (even if δ = ε = ζ = 0).

3.1 Artifacts of Rate-Induced Tipping

Although linear compartment models cannot exhibit true rate-dependent tipping,
because by Corollary 1 the unique equilibrium is globally asymptotically stable,
some artifacts of rate-induced tipping in nearby nonlinear systems can be observed,
as will be explained in more detail in Sect. 5. For example, consider the most simple
one-dimensional non-autonomous SIS model

S′ = − β(r t)S + δ I

I ′ =β(r t)S − δ I
(21)

with a time-dependent transmission rate β(r t) ≥ 0 of rate r and constant rate δ > 0.
The ODE (21) can be viewed as model of a disease, where susceptibles get ill
without any contacts to infectious, andwhere there is no immunity. The reducedODE
reads as Ṡ(t) = −(β(r t) + α)S(t) + α. If β(t) connects β− and β+ with β− > β+
monotonely decreasing, then it depends on the rate r , whether the solution S(t) =(
S0 + ∫ t

0 exp(B(rs)/r + αs)α ds
)
exp(−B(r t)/r − αt), B(t) := ∫ t

0 β(s) ds, to the

initial value S(0) = S0 ∈ [0, 1] has a local minimizer or not. For r → 0, the solution
tends to α

β−+α
+ (S0 − α

β−+α
) exp(−(β− + α)t)) and thus is monotone decreasing

for S0 > α
β−+α

, while for r → ∞ it tends to the same function with β− replaced by
β+. Therefore, there is a threshold rc, i.e., a critical rate, such that for rates r < rc
there is a kind of overshooting when approaching the longtime equilibrium α

β−+α
,

while for rates r > rc the solution does not show overshooting; see Fig. 2.
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Fig. 3 On the left, the DFE is a stable node on a boundary vertex of the simplex, while the EE is
an unstable saddle outside the simplex. On the right, the EE has entered the simplex through the
boundary vertex and has become a stable focus, while the DFE lost its stability and has become an
unstable saddle. Additionally, the unstable manifold of the DFE runs into the stable manifold and
forms a homoclinic orbit HO surrounding the EE

4 Nonlinear Compartment Models

In this section, we consider autonomous nonlinear compartment models ẋ = f (x)
of epidemics on the probability simplex �n and discuss the situation, where the
asymptotically stable disease-free equilibrium (DFE) becomes unstable due to a
local bifurcation. Note that the DFE does not lie in the interior but at a boundary
vertex of the simplex�n . As our knowledge about boundary equilibrium bifurcations
is still a little patchy, the bifurcation theory of the DFE is not completely standard.
Here we are mainly interested in a bifurcation of codimension two. In this case, by
center manifold reduction we can consider the equation induced by ẋ = f (x) on the
two-dimensional center manifold, and this equation determines the dynamics of the
full n-dimensional compartment model near the bifurcation point. However, center
manifold reduction requires that f is sufficiently smooth, but as the DFE lies at a
boundary vertex, the vector field f can be smooth in the interior but merely contin-
uous up to the boundary. Then terms occur, which due to missing differentiability
cannot be obtained by linearization, andwe use such terms to obtain idealizedmodels
where after a transcritical bifurcation of the DFE the arising endemic equilibrium
(EE) is surrounded by a homoclinic orbit (HO), see Fig. 3, or there is at least a tra-
jectory from the boundary to the DFE such that the EE does not attract the whole
interior of the simplex.

4.1 Local Normal Form for a Bifurcation of Codimension
Two

Under the assumption that f is sufficiently smooth near the DFE, let us derive a
normal form for the planar system on the two-dimensional center manifold of a com-
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partment model ẋ = f (x) of epidemics. If a two-parameter family of autonomous
vector fields f̂ (S, I ) on �̂2 satisfying (A1)’,(A2)’,(A3)’ has a local bifurcation at
the DFE (S, I ) = (1, 0), then generically the linearization A := D f̂ (1, 0) has a zero
eigenvalue of algebraic multiplicity two, but geometric multiplicity one. Let q0 be
an eigenvector to the zero eigenvalue, i.e., Aq0 = 0, and let q1 be a corresponding
generalized eigenvector, i.e., Aq1 = q0. Via a change of coordinates to

(
S − 1
I

)

= xq0 + yq1 ,

the Taylor expansion T2 f̂ of second order of f̂ around (S, I ) = (1, 0) reads as

T2 f̂ (S, I ) = f̂ (1, 0) + A

(
S − 1
I

)

+ 1

2
B

((
S − 1
I

)

,

(
S − 1
I

))

= yq0 + 1

2
x2B(q0, q0) + xyB(q0, q1) + 1

2
y2B(q1, q1)

with the second derivative B := D2 f̂ (1, 0). Using an eigenvector p1 of AT to the
zero eigenvalue and a corresponding generalized eigenvector p0 with AT p0 = p1 as
dual basis vectors satisfying 〈p0, q1〉 = 0 = 〈p1, q0〉 and 〈p0, q0〉 = 1 = 〈p1, q1〉,we
obtain due to (A3)’, which excludes constant terms, under the genericity conditions

〈p1, B(q0, q1)〉 �= 0 ,
1

2
〈p1, B(q1, q1)〉 �= 0 , (22)

similar as in Bogdanov–Takens bifurcation the normal form

x ′ = 〈p0, x ′q0 + y′q1〉 = −β1x + y

y′ = 〈p1, x ′q0 + y′q1〉 = β2y − xy − y2
(23)

with parameters β1, β2 vanishing at the bifurcation. Beneath (0, 0), there is a second
equilibrium (

β2

1+β1
,

β1β2

1+β1
) in �̂2 for β1 ≥ 0, β2 > 0. This normal form differs from

Bogdanov–Takens normal form

x ′ = y

y′ = −β1 + β2x − x2 − xy
(24)

mainly in that A is perturbed in the Bogdanov–Takens case to

(
0 1
β2 0

)

, and the

equilibrium (0, 0) is split up into the two equilibria (
β2

2 ± 1
2

√
β2
2 − 4β1, 0) for β2

2 ≥
4β1, while our normal form (23) perturbs A to

(−β1 1
0 β2

)

and leaves—as required

by (A3)’—the DFE fixed. A coordinate transform of x , y, t and a substitution of the
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parameters in (23) leads to

x ′ = −γ x + αy

y′ = (β − α − δ − βx − βy)y ,
(25)

where the bifurcation happens at parameters γ = 0 resp. δ = β − α. Particularly, if

A =
(
0 −1
0 0

)

and correspondingly q0 = (−1, 0)T , q1 = (−1, 1), then x = 1 − S −
I = R and y = I so that in the coordinates (S, I ) the reduced normal form is given
by

S′ = −βSI + δ I + γ (1 − S − I )

I ′ = (βS − α − δ)I ,
(26)

where additionally after an infection theremay be partially no immunity due to δ > 0.
This normal form is a combination of SIRS and SIS models, wherein the SIS model
α = 0, γ = 0 so that all infectious become after the infect directly again susceptible.
The Jacobian of the right-hand side of (26) is

D f̂ (S, I ) =
(−β I − γ δ − βS − γ

β I βS − α − δ

)

, (27)

and for γ > 0 the DFE is asymptotically stable if R0 := β

α+δ
< 1 resp. unstable if

R0 > 1. In the case R0 > 1, the EE has the coordinates ( α+δ
β

,
γ

α+γ
(1 − α+δ

β
)), and it

is a stable focus for small γ > 0 resp. a stable node for large γ > 0.

Fig. 4 On the left, the homoclinic orbit arising in (24) for β2 = 1, β1 ≈ − 6
25β2

2 , after a Bogdanov–
Takens bifurcation.On the right, the homoclinic orbit occurring in (28). Note that trajectories outside
but near to the homoclinic orbit miss the equilibrium and tend to infinity, while in our idealized
model due to invariance of the axes they tend to the DFE
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Fig. 5 On the left, compared to the right picture in Fig. 3 the EE has moved and the HO is a little
deformed. On the right, it is shown that the HO vanishes for slight perturbations. Yet, due to the
trajectory connecting the boundary with the DFE, the EE still is merely locally and not globally
asymptotically stable

Yet, while in Bogdanov–Takens bifurcation a homoclinic orbit arises around the
stable equilibrium for a rather specifically chosen combination of the two bifurcation
parameters, see Fig. 4, this does not seem to be the case for (26) and parameters
β > α + δ, α, γ, δ ≥ 0. In the following subsection, we indicate how to construct
compartment models of epidemics with this idealized behavior.

4.2 Idealized Models

In this subsection, we aim to construct an idealized system, where after a transcritical
bifurcation of the DFE, the arising EE is surrounded by a homoclinic orbit HO; see
Fig. 3. Although the HO may be deformed or may vanish for a slight perturbation of
the two parameters, see Fig. 5, such idealized models will help us to explain tipping
phenomena in compartment models of epidemics in Sect. 5. To obtain an idealized
model with this behavior, we add non-smooth terms to the normal forms (25) resp.
(26). Note that already the standard example of a system with a homoclinic orbit

x ′ = −x + xy + (y − x)
√
x2 + y2

y′ = −y − x2 + (x + y)
√
x2 + y2

(28)

contains the non-smooth term
√
x2 + y2. In polar coordinates, this system (28) reads

as
r ′ = −r(1 − r)

ϕ′ = r(cos(ϕ) − 1)
(29)

and obviously has the circle r = 1 as invariant set, which consists of a homoclinic
orbit and the equilibrium at r = 1, ϕ = 0, see Fig. 4.

Similarly, if we add the term ε − x−y
(x2+y2)1/2 y to the right-hand side of the second

equation in (25) for ε := α−γ

(α2+γ 2)1/2
chosen such that the termvanishes at the linewhere
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Fig. 6 On the left, for α := 1, β := 1.5, γ := 0.1 and δ := 0, the EE and the surrounding HO
in (30) are shown. On the right, for α := 0.5, β := 1 and γ := 0.1 and δ := 0, the EE and the
surrounding HO in (31) are shown

the first equation vanishes, i.e., for a rather specific combination of parameters, then
the system

x ′ = −γ x + αy

y′ =
(

β − α − δ − βx − βy + ε − x − y

(x2 + y2)1/2

)

y ,
(30)

seems to have a HO at the DFE; see Fig. 6 on the left. Note that x−y
(x2+y2)1/2 y is continu-

ous due to | x−y
(x2+y2)1/2 y| ≤ |x − y|.Yet, a disadvantageof this system is that trajectories

starting far away from the HO may leave the simplex �̂2, but of course the vector
field can be modified so that the simplex is positively invariant while the dynamics
near the HO is not changed. Another example is the modification

S′ = −βSI + γ (1 − S − I )

I ′ =
(

βS − α

(

2 + tanh

(
1 − x

2y
− 5

)))

I ,
(31)

of (26) with δ := 0, i.e., a modified SIRS system. Again, the term tanh( 1−x
2y − 5)

is smooth in the interior and continuous up to the boundary, as it tends to 1 for
(x, y) → (x0, 0) approaching the boundary. The HO and EE are given in Fig. 6 on
the right. Yet, there seems to be an additional small instable periodic orbit around
the EE, and again the system needs to be modified far away from the DFE.
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Fig. 7 On the left, the pullback attractor A lies near to the EE, but then the parameters are changed
fast while the dynamics near A is slow. Therefore, the pullback attractor leaves the basin of attraction
of the EE, which in the middle is the interior of the HO and on the right is separated by a trajectory
from the boundary to the DFE. As A has entered the basin of attraction of the DFEmarked in green,
the disease will die out, while for a slow rate of parameter change the pullback attractor would have
tracked the EE and the disease would have become endemic

5 Irreducible Rate-Induced Tipping in Non-autonomous
Models

Regardless, whether there is a homoclinic orbit (HO) surrounding the endemic equi-
librium (EE) after a transcritical bifurcation at the disease-free equilibrium (DFE)
like in the idealized system on the left of Fig. 5, or whether there is an orbit con-
necting the boundary R = 1 − S − I = 1 with the DFE like in Fig. 5 on the right, if
there are two different basins of attraction, one of the EE and one of the DFE, then
irreducible rate-induced tipping may occur for time-dependent parameters. Hereby,
starting with the pullback attractor A(t0) near the EE, if the parameters evolve so
that the homoclinic orbit shrinks fast while the dynamics near A(t) are slow, it may
happen that A(t) leaves the basin of attraction of the EE and enters the basin of
attraction of the DFE; see Fig. 7. Then the disease will die out, while for a slower
rate A(t) would have tracked the EE and the disease would have stayed endemic.
The critical rate for which A(t) leaves the basin of attraction of the EE is a threshold
for the occurrence of rate-induced tipping.

Of course, in application, it is necessary to estimate the time-dependent parameters
from data. But this is not so difficult, e.g., in the SIR model (11) with time dependent
β = β(t) and α = α(t), for S near 1 and small h as in [5] the parameters can be
estimated by

α(t) ≈ R(t + h) − R(t)

hI (t)

β(t) ≈ (I (t + h) − I (t)) + (R(t + h) − R(t))

hI (t)

(32)

from time series for I (t), R(t), due to α = R′/I and β = (I + R)′/SI .
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Fig. 8 For the slow rate r = 0.05, the blue solution curve (33) tracks the EE of the frozen system
rather well, while for the higher rate r = 0.1 along the red curve, there is a reduced percentage
of infectious in the middle part, and this can be considered as artifact of rate-induced tipping in a
system where the red curve tends to the DFE. However, in (33), the EE attracts the whole interior of
the simplex, and this enforces an additional turn at the end, i.e., a second wave with a little higher
percentage of infectious than for the blue curve

5.1 Artifacts of Rate-Induced Tipping

Many compartment models in epidemics are not idealized, i.e., the DFE with its
unstable manifold does not have a basin of attraction intersecting the interior of the
simplex �. But even in the case, where the whole interior of the simplex belongs to
the basin of attraction of the EE, artifacts of rate-induced tipping in nearby idealized
systems can be seen. For example, instead of the SIRS model (15), consider

S′ = −β(t)SI + γ R

I ′ = β(t)S − α I

R′ = α I

(33)

with a time-dependent transmission rate β = β(t) := 1 − 1
3 tanh(r t) and constant

α = 1/2, γ = 1/10, i.e., β(t) decreases from 1 at t = 0 to 2/3 at time t → ∞. Then
Fig. 8 shows an artifact of rate-induced tipping in a nearby idealized systems where
the red curve tends to the DFE.
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6 Conclusion

We identified a mechanism which allows to have rate-induced tipping in idealized
compartment models of epidemics with R0 > 1, where not only the endemic equi-
librium (EE) but also the disease-free equilibrium (DFE) has a basin of attraction
intersecting the interior of the probability simplex. Moreover, even in the case that
the compartment model is not idealized and the EE attracts every point in the interior
of the simplex, we showed that artifacts of nearby idealized compartment models
can be observed. Thus, in models it can happen that in two countries the same kind
of lockdown measures is decided at the same time, corresponding to the same ini-
tial and final values of a parameter path at the same times, but that the measures are
established by different rates so that the disease becomes endemic in a country where
the measures are slowly established (or there is at least a high number of infectious),
while in a country where the measures are established fast the disease is eradicated
(or there is at least a lower number of infectious).

Yet, there are various open research questions: Is there an idealized compartment
model of epidemics with polynomial right-hand side? How to determine the critical
rate, i.e., the threshold for the rate below which a rate-induced tipping happens in
idealized compartment models? Can (4) help to determine this threshold? Can we
obtain quantitative and not only qualitative results for non-idealized systems?Maybe
an answer to these questions can help us to better handle a pandemic disease like
Covid-19 in future.
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