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Preface

Any condition which interferes with the normal functioning of the body and which
causes discomfort or disability or impairment of the health of a living organism is
called a disease. The disease agent is a factor (substance or force) which causes a
disease by its excess or deficiency or absence. The impact of severe diseases on people
is a real concern in terms of suffering as well as social and economic implications.
In recent era, there are several communicable diseases, namely Covid-19, malaria,
dengue fever, HIV/AIDS, tuberculosis, cholera, Zika virus, chickenpox, influenza,
pneumonia, and so on, which impair the health of the human population around
the globe. Some of these communicable diseases carry from person to person by
viral diseases and their pathogens, which impact the human body through sexual
intercourse.

In recent years, the control of these acute diseases has been a great concern for
bio-mathematicians and medical experts. It has been approved that these infectious
diseases are fatal to billions of people and also cause the loss of their worth. Mathe-
matical modeling plays a crucial role in the study of these adverse types of diseases.
The basic ambition to evaluate and eradicate these diseases through mathematical
models is to minimize their effects by understanding their mechanism and the agents
that cause the spread of these diseases, so that it gives a better chance to predict
these diseases and their impacts and also give a way to control them. Mathematical
models allow us to extrapolate from current information about the state and progress
of an outbreak to predict the future and, most importantly, to quantify the uncertainty
in these predictions. Most of these mathematical models contain ordinary or partial
differential equations. In some cases, instead of integer order, fractional order can
be used to analyze the real phenomena behind the problems. In one way or another,
researchers encounter different kinds of nonlinear ordinary or partial differential
equations.

The aim of this edited volume is to collect original research articles that focus on
recent results, which can be obtained from the novel methods constructed by many
researchers, for all types of infection diseases, as well as developments in recent
methods with new operators or new approximations. It is also involving the review
articles discussing the current state of the art.

v
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In this book, we are happy to have 30 chapters in two parts. Part I is based
on “general analysis,” and Part II contains papers on “country-specific analysis on
Covid-19.” All chapters are contributed from eminent researchers around the globe
who are internationally known experts in their fields. Throughout this book, the
analysis of infectious disease problems (Covid-19) and their global impact have
been explained very carefully in the simplest possible terms and illustrated by a
number of complete workout examples. This book contains some useful theorems
and their proofs.

The book is organized as follows.
In Part I, chapter “Continued and Serious Lockdown Could Have Minimized

Many Newly Transmitted Cases of Covid-19 in the U.S.: Wavelets, Deterministic
Models, and Data” discusses model-based estimates of Covid-19 in the USA during
April–June 2020. Model-based predictions of Covid-19 for the low and high range
of transmission rates and with varying degrees of preventive measures including the
lockdowns have been provided. It is shown how 10 cases that do not adhere to proper
care and do not comply with the lockdown on April 30, 2020, result, at the end of
May and at the end of June, in 50,000 and 55,000 new cases, respectively. These
values for the months of May and June would be 251,000 and 511,000, respectively,
in the case of a worse adherence rate of 50 infected (but unidentified) individuals.
Continued and serious lockdown measures bring the average daily rate of new cases
to lower figures, with a range of 4,300 per day to 8,000 per day in May.

In chapter “Dynamical Analysis of a Caputo Fractional Order SIR Epidemic
Model with a General Treatment Function,” a fractional-order SIR epidemic model
is proposed. We first prove the existence, uniqueness, non-negativity, and bounded-
ness of solutions to the considered model. We also study the existence of equilibrium
points. Some sufficient conditions are derived to ensure, in terms of the basic repro-
duction number, the global asymptotic stability of the disease-free equilibrium point
and endemic equilibriumpoint. Finally, numerical simulations are illustrated to verify
the validity of our theoretical results.

In chapter “Protective Face Shield Effectiveness: Mathematical Modelling,” a 3D
mathematical model of the airflow distribution near the cylindrical surface of a face
shield was explored. The model is based on a numerical solution of the Navier–
Stokes gas dynamics equations. The simulation results are compared with full-scale
experiments. A probability model is also considered. Quantitative conclusions are
made about the effectiveness of the protective face shields.

Chapter “On theEvolutionEquation forModelling theCovid-19 Pandemic” intro-
duces and discusses the evolution equation and, based exclusively on this equation,
considers random walk models for the time series available on the daily confirmed
Covid-19 cases for different countries. It is shown that a conventional random walk
model is not consistent with the current global pandemic time series data, which
exhibits non-ergodic properties. We therefore consider a self-affine random walk
field model which provides the non-ergodic fields that are evident in the available
data. This is based on using a spectral scaling relationship of the type 1/ω α , whereω is
the angular frequency and α ∈ (0, 1) conforms to a zero-mean Gaussian distribution.
It is then shown that α is a primary parameter for evaluating the global status of the
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pandemic in the sense that the pandemic will become extinguished as α → 0 for all
countries. For this reason, and, based on the data currently available, a study is made
of the variations for 100 randomly selected countries. Finally, in the context of the
bio-dynamic hypothesis, a parametric model is considered for simulating the three-
dimensional structure of a spike protein which may be of value in the development
of a vaccine.

Chapter “Modelling the Dynamics of Fake News Spreading Transmission During
Covid-19 Through Social Media” discusses the transmission of fake news to under-
stand the rate of spreading. Therefore, the objective of this paper is to propose amath-
ematical model that can describe the dynamics of the spread of fake news through
social media along the period of MCO through different social media platforms.
This study also suggests some measures that can be taken by different parties, such
as individuals, society, and government to solve the issue of fake news transmission.

In chapter “Generalized Logistic Equations in Covid-Related Epidemic Models,”
we discuss how to develop a simple computable model for infection propagation,
based on vicinity and interaction time conditions, between healthy and infectious
persons. This simple and robust model can be adapted for realistic simulations. The
three use cases studied in detail are as follows:

(1) An elderly care home, where contamination at joint meals is considered,
(2) A household in lockdown, stay at home, with contamination at joint meals

considered, and
(3) A large venue event with lots of interaction between participants and crowd

effects.

Each use case is presented in its phenomenology, with some illustrative refer-
ences, facts, and data, of interest for practical simulation and model adaptation,
scenarios, and corresponding interpretations. Then, the agent-based model condi-
tional to vicinity and interaction time between healthy and infected persons within
this use case is established, with its hypotheses. An active stochastic contagion prop-
agation model is developed, deriving the probability of infection from the presence
of infectious persons in the vicinity of a healthy person, during an interaction time.
Numerical examples are discussed.Bounds and limits are established in some specific
cases of interest.

Chapter “A Transition of Shared Mobility in Metro Cities—A Challenge
Post-Lockdown Covid-19” brings a contribution to the foundational basic research
on the logistic equation and its generalizations which hopefully have repercussions
for epidemiologic applications.

In chapter “Analysis of Covid-19 Virus Spreading Statistics by the Use of a New
Modified Weibull Distribution,” we use a Bureau of Public Road (BPR) model to
combat this issue endangering the environment and public health. We exploit the
BPR function to relate average travel time to the estimated number of commuters
traveling by car. We collect mode share data from the NITI Aayog, state resource
centres, which give unique figures of the impact of shared mobility in India and how,
in its absence, various sectors will be affected. Using the given data and the BPR,
we evaluate increased vehicle volumes on the road if different portions of transit and
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carpool users switch to single-occupancy vehicles and its effect on multiple other
factors. Based on this study, we predict that cities with significant transit ridership
are at risk for extreme traffic and pollution unless transit systems can resume safe
with effective protocols.

In chapter “Lifting Lockdown Control Measure Assessment: From Finite-
to Infinite-Dimensional Epidemic Models for Covid-19,” in anticipation of substan-
tial fatal effects on the health of people following this human-to-human spread, we
aim to propose a new six-parameter modified Weibull distribution to analyze the
spread of Covid-19. We apply this model to study the cumulative cases infected in
some countries, we give a global analysis of the statistical data of the pandemic, and
we prove that our new distribution efficiently generalizes some existing models and
fits correctly some data registered from February to June 2020. We use these results
to assess the potential for human-to-human spread to occur around the globe.

The main focus of chapter “Introduction to the Grey Systems Theory and Its
Application in Mathematical Modeling and Pandemic Prediction of Covid-19” is
on public health control strategies, which are currently the main way to mitigate the
Covid-19 pandemic.We introduce and compare compartmental models of increasing
complexity for Covid-19 transmission to describe the dynamics of the disease spread.
We begin by considering an SEAIR model including basic characteristics related to
Covid-19. Next, we shall pay attention to age structure modeling to emphasize the
role of age-group individuals on the disease spread. A model with constant delay is
also formulated to show the impact of the latency period on the severity of Covid-
19. Since there is evidence that for Covid-19 disease, important relationships exist
between what is happening in the host and what is occurring at the population level,
we shall link the basic model to in-host dynamics through the so-called threshold-
type delay models. Finally, we will include demographic effects to the most complex
models and wewill conduct rigorous bifurcation analysis to quantify possible factors
responsible for disease progression.

Chapter “Mathematical Analysis ofDiagnosis Rate Effects inCovid-19Transmis-
sion Dynamics with Optimal Control” is devoted to present the scientific background
for the appearance of gray systems in the 1980s. Then, the history of astonishing
development, along with the main components and fundamental principles of the
gray systems, is also introduced. Currently, a gray system is an emerging research
area with strong possibilities to transect across and apply to a wide range of scien-
tific areas, including industry, agriculture, geology, ecology,medicine, education, etc.
However, most applications of the systems are from Chinese-speaking researchers,
while the theory itself is still uncommon in uncertainty mathematics. Finally, the
representative models with high accuracy are put into practice by predicting and
handling the outbreak of the Covid-19 pandemic. Not only can the systems predict
the total number of positive cases, but they can also be applied in various other
medical practices, including telecare and data management. Their performances are
also compared with other uncertainty models, including machine learning, which
has proven that gray system models have the ability to perform equally well, or even
better, especially in the context of limited data.
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Many countries around the world are trying to fight Covid-19, and their main
methods are lockdown, quarantine, isolation, and awareness programs to encourage
people to adopt social distancing and maintain personal hygiene. The lockdown is
aimed to restrict the movement of humans from or to certain places. Quarantine is
aimed toward separating the susceptible humans from infected or exposed humans as
much as possible, whereas isolation is aimed toward keeping the confirmed cases of
infected humans away from the rest of the population. The confirmed cases aremainly
identified through the diagnosis of individuals who showed symptoms of Covid-19
and sometimes through random checking of individuals hoping to identify either
asymptomatic or pre-symptomatic cases, which is generally an expensive method.
In this chapter, we develop a mathematical model to investigate the role of diagnosis
rate in the transmission dynamics of Covid-19 together with the combined effects of
quarantine and isolation.

Chapter “Development of Epidemiological Modeling RD-Covid-19 of Coron-
avirus Infectious Disease and Its Numerical Simulation” discusses a model which is
fully analyzed both qualitatively and quantitatively in order to gain insight about the
role of different model parameters in the disease transmission dynamics, especially
those related to diagnosis and quarantine. The analysis will include the estimation of
both the basic and the control reproduction numbers and sensitivity analysis of the
reproduction numbers to the corresponding model parameters. The optimal control
theory will be also applied to the model to examine the role of some other optimal
control strategies and to study the effect of diagnosis and quarantine rates in the
effectiveness of these controls.

In chapter “Mediterranean Diet—A Healthy Dietary Pattern and Lifestyle
for Strong Immunity,” we have developed a new epidemiological dynamical model
named RD-Covid-19 (version 1.0) model. The traditional epidemiological model
of an infectious disease known as susceptible–exposed–infected–recovered–dead
(SEIRD) is modified to develop this new model. RD-Covid-19 is a networked
epidemiological model in which a data-driven logistic model and traditional models
such as susceptible, infected, and recovered (SIR), SEIR, and SEIQRDP are inter-
linked. The completer model forecasts the spread of the Covid-19. For the model,
the parameters are estimated by fitting the model with real data.1 The Levenberg–
Marquardt nonlinear least-squares optimization technique is applied for the estima-
tion of the parameters and for the fitting of the model. Numerical simulation of the
model carried out with the estimated values of the parameters and outcome of the
model generates the temporal profile of infected, recovered, and death cases. The
severity of the model is measured by computing the basic reproduction number (R0).
Data (real-time data) used in themodel RD-Covid-19 related to the public are catego-
rized as confirmed, recovered, and death cases. The model is executed to explore the
corona outbreak in China, India, Brazil, and Russia. The estimated value of the basic
reproduction number, R0, is well in agreement with that obtained from the outcome
of traditional models SIR and SEIR. Implementation of lockdown impacts the model
and its innovation, showing the advantage to make decisions on risk management

1 Source: John Hopkins University and WHO dashboard.
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by the competent authority. The verification and validation (V&V) process of our
model is carried out by comparing its results with an analogical logistic model.

Chapter “Rate-Induced Tipping Phenomena in Compartment Models
of Epidemics” is based on a Mediterranean diet. The health and the overall
well-being are greatly affected by an individual diet, lifestyle, age, and genetics, as
well as the individual’s response to stress, pathogens, and environmental pollution,
which is mainly dictated by the immune system. A healthy gut microbiota plays
a crucial role in the development and maintaining of a healthy immune system.
Numerous studies have shown that nutrients including vitamins, such as A, B6, B12,
C, D, E, and folate; trace elements, such as zinc, iron, selenium, magnesium, and
copper; and omega-3 fatty acids are complementary in maintaining a strong immune
system. Besides nutrition, a healthy lifestyle including successful management of
stress and anxiety, adequate sleep and rest, and physical activity is also crucial for
boosting the immune system. A strong immune system would effectively respond
to the attacks of pathogens (viruses and bacteria), such as the current coronavirus.
The Mediterranean way of living seems an optimal dietary pattern and a lifestyle
that could help in maintaining a healthy and diverse gut microbiota and, thus,
strong immunity. Mediterranean diet is mainly plant-based dietary pattern, which
emphasizes consumption of fruits, vegetables, whole grains, nuts, legumes, and
seeds followed by moderate consumption of fish, poultry, fermented dairy products,
and extra virgin olive oil as a main source of healthy fats, while the use of processed
red meat products and refined sugars is low. Plenty of water, fruit juices, and herb
teas are also consumed with frequent, but moderate consumption of red wine usually
with the meals. Taking rests, daily physical exercises, leisure activities, and being
a part of the community are also common features of the Mediterranean lifestyle.
Therefore, the Mediterranean diet rich in valuable phytonutrients, such as vitamins,
minerals, dietary fibers, and antioxidant polyphenols, could help in building a
healthy gut and a strong immune system to effectively respond to the Covid-19
pandemic.

Chapter “Analysis of Impact of Covid-19 Pandemic on Financial Markets” aims
to explore non-autonomous compartment models of epidemics, like SIRmodels with
time-dependent transmission and recovery rates as parameters, and particularly the
occurrence of rate-induced tipping phenomena. Specifically, we are interested in the
question, whether there can exist parameter paths that do not cross any bifurcation
points, but yet give rise to tipping when the parameters vary over time. From the
literature, it is known that such rate-induced tipping occurs, for example, in two-
dimensionalmodels of ecosystems or predator–prey systems.We show in this chapter
that rate-induced tipping can also occur in compartment models of epidemics. Thus,
regarding the Covid-19 crisis, not only the measures established in a lockdown and
the moment of the lockdown, but also the rate by which lockdown measures are
implemented may have a drastic influence on the number of infectious.

Chapter “ Symptom-Based Testing in a Compartmental Model of Covid-19”
discusses the impact of the Covid-19 pandemic on the North American financial
markets and proposes a framework for stress testing and financial scenario generation
of market indicators. This framework includes the following main components:
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• Epidemiological dynamic model describing the evolution of the number of
susceptible, infected, recovered, and death cases with social distancing,

• Dynamicalmodel describing dependence between financial indicators and growth
of the pandemic in different geographical areas, and

• Conditional stress scenario generation and financial portfolio analysis.

In chapter “Challenges in Modeling of an Outbreak’s Prediction, Forecasting
and Decision Making for Policy Makers,” testing and isolation of cases is discussed
which is an important component of our strategies to fight SARS-CoV-2. In this
chapter, we consider a compartmental model for Covid-19 including a nonlinear
term representing symptom-based testing. We analyze how the considered clinical
spectrum of symptoms and the testing rate affect the outcome and the severity of the
outbreak.

In chapter “Dynamics of Inter-community Spread of Covid-19,” an attempt has
been made to review the current state of the art in epidemiological modeling, assess-
ment of predictive models as well as forecasting of a new pathogen. The primary
concern is the containment of the outbreak from the widespread of the disease among
the whole population. This article also focuses on the development of management
tools and techniques in decision making for policy makers that are based on scien-
tific evidence. Moreover, the identification, detection, and reporting for the outbreak
of an infectious disease particularly a new pathogen in a timely manner are quite
challenging and tedious. Apparently understanding and reporting of such events
commonly rely on statistical and mathematical tools, and both these approaches
commonly depend upon a priory estimate as well as some reliable data. For example,
statistical models require a sizable number of events to develop predictive models,
which is impossible at the outset of an outbreak of the disease to collate enough
number of samples, whereas the mathematical models are reliable as well as have
better predictive behavior, but they also require better initial guess apart from some
rigid constraints to fully satisfy the model’s assumptions. Apart from these issues,
the other important features to study in the epidemiology of the disease is how fast
and quickly the scientific community promptly can pinpoint and able to address
any causal factor which may sucre to account for the magnitude and severity of the
epidemics of new pathogen that may have been taken place to any geographic loca-
tions. Hence in this chapter, first of all the SIR model (susceptible: S, infected: I,
and recovered: R) will be outlined, as it is the most commonly used model in the
epidemiology of infectious diseases. Moreover, the applicability and utilization of
R0 in the public health domain especially adaptive policy with management tools
will be developed for the healthcare workers as well as the higher management of
the healthcare facility.

In chapter “SimilarityMeasure ofq-RungOrthopair FuzzySoft Sets and ItsAppli-
cation in Covid-19 Problem,” we have developed a model for the spread of Covid-19
within a community, and we pay attention to the sensitivity of the derived basic
reproduction number to each model parameter. This model was extended to investi-
gate the impact of migration between two communities on the spread of the disease.
Three special cases, unidirectional migration, unrestricted bidirectional migration,
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and partial bidirectionalmigration,were considered. Covid-19 data for twoNigerians
states, namely Lagos (high-burden community) and Ogun (low-burden community),
were obtained from theWeb site of the Nigeria Centre for Disease Control for param-
eter estimation and simulation. Our results show that the basic reproduction number
of the original model is most sensitive to the recovery rate of symptomatic infec-
tious individuals. From the inter-community spread model, we find that the rate of
coupling plays a vital role in the control of the pandemic. Our results project the
different possible scenarios based on different lockdown and infection rates in two
different communities.

In chapter “Local Fractional Calculus to Design the Growth System of Covid-19
Using Measure of Non-compactness,” we introduce q-rung orthopair fuzzy soft sets
(q-ROFSSs) and some basic properties. Also, we define a similarity measure of
q-ROFSSs, and their properties are studied. Finally, we provide an application of
q-ROFSSs in Covid-19.

In chapter “Social Opinion Influence on Epidemic Scenarios,” we use the concept
of local fractional calculus and measure of non-compactness to design the growth
system of Covid-19. To achieve this, we establish a fixed-point and coupled fixed-
point theorems for a new μ-set contraction condition in partially ordered Banach
spaces, whose positive cone K is normal. We provide adequate examples to validate
the epidemic dynamics with graphical presentations. We also use presently available
data to validate it.

In chapter “Modelling the Significant Effect of Public Health Interventions
on Covid-19 Transmission,” we have considered different scenarios describing the
eagerness of the population to accept the confinement policies and propose a way to
directly include this information into an epidemic model.

In chapter “OptimalControl ofVaccination and PlasmaTransfusionwith Potential
Usefulness for Covid-19,” we use susceptible–exposed–infected–recovered (SEIR)
model to predict the outbreak of the disease. SEIR model was chosen because
exposed individuals who are asymptomatic or having mild symptoms contribute
to the increase of a number of infections. We also work on modeling the trans-
mission dynamics of Covid-19 in the presence of three intervention measures. The
proposedmodel describes the evolution of the disease in the populationwhen preven-
tivemeasures, active case-finding, and hospitalization interventions are implemented
as strategies to control and eradicate the disease. Variation in the effectiveness of
combined interventions for infectious individuals is observed and analyzed by simu-
lating the Covid-19 model with interventions. Our simulation results show that more
rigorous and stringent public health interventions would reduce the risk of Covid-
19 spreading. It is of great importance and practical significance to ensure early
prevention, early detection, and early treatment to combat Covid-19.

In Part II, in chapter “Optimal Control of Vaccination and Plasma Transfusion
with Potential Usefulness for Covid-19,” we introduce two control functions in
the compartmental SEIR model representing vaccination and plasma transfusion.
Optimal control problems are proposed to study the effects of these two control
measures on the reduction of infected individuals and increase of recovered individ-
uals with minimal costs. Up to our knowledge, the plasma transfusion treatment has
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never been considered as a control strategy for epidemics mitigation. The proposed
vaccination and treatment strategies may have a real application in the challenging
and hard problem of controlling the Covid-19 pandemic.

In chapter “Fractional Diffusion Equation as a Mathematical Model of the Inci-
dence of Coronavirus Disease Covid-19,” we provide the statistical analysis of the
numerical indicators of the incidence in the Russian Federation in 2020 of Covid-19.
These were constructed corresponding histograms and theoretical distribution densi-
ties and found estimates of the distribution parameters by the maximum likelihood
method. Based on the statistical analysis of the data, we verified the parameters of the
differential equation containing fractional differentiation operator in Caputo sense.
In connection with the spread of coronavirus infection (Covid-19), it seems helpful
to build a mathematical model of the number of infected persons to predict the spread
of infection.

In chapter “An SEIR Epidemic Model of Fractional Order to Analyze the Evolu-
tion of the Covid-19 Epidemic in Argentina,” we present a case study by using a
susceptible–exposed–infected–recovered (SEIR) diffusion model of fractional order
in time to analyze the evolution of the epidemic in Buenos Aires and neighboring
areas (RegiónMetropolitana deBuenosAires, (RMBA)) comprising about 15million
inhabitants. In the SEIR model, individuals are divided into four classes, namely
susceptible (S), exposed (E), infected (I), and recovered (R). The SEIR model of
fractional order allows for the incorporation of memory, with hereditary properties
of the system, being a generalization of the classic SEIR first-order system, where
such effects are ignored. Furthermore, the fractional model provides one additional
parameter to obtain a better fit of the data. The parameters of the model are cali-
brated by using as data the number of casualties officially reported. Since infinite
solutions honor the data, we show a set of cases with different values of the lockdown
parameters, fatality rate, and incubation and infectious periods. The different repro-
duction ratios R0 and infection fatality rates (IFRs) so obtained indicate the results
may differ from recently reported values, constituting possible alternative solutions.
A comparison with results obtained with the classic SEIR model is also included.
The analysis allows us to study how isolation and social distancing measures affect
the time evolution of the epidemic.

Chapter “Modeling Effectiveness of Partial Lockdown in Breaking Covid-19
TransmissionChain inMalaysia” focuses on the Covid-19whichwas first reported in
Wuhan, China, in early December 2019. OnMarch 11, 2020, theWorld Health Orga-
nization declared Covid-19 a worldwide pandemic. Within six months, this highly
infectious disease has rapidly spread over 200 countries in six continents, infecting
more than 12 million and killing more than 560,000. Malaysia recorded, as of July
12, a total of 8,718 persons tested positive for Covid-19, with 122 deaths, and 8,519
fully recovered, out of a population of 32.4 million. Unprecedented public health
and socioeconomic policy have been formulated by the Malaysian government to
control the catastrophic pandemic spread and to resolve deep socioeconomic disrup-
tions and uncertainties. For Malaysia, a major pandemic control policy measure is
the Movement Control Order (MCO) over a period of 24 weeks from March 18
to August 31, 2020. This MCO decision is facilitated by the use of epidemiology



xiv Preface

models such as the susceptible–infected–recovered (SIR) model. This MCO has
resulted in major socioeconomic disruptions and uncertainty. To overcome these
immense economic disruptions and uncertainty, several major economic stimulation
packages amounting to RM 250 billion, equivalent to 17% of Malaysia 2019 GDP,
are formulated to revitalize Malaysia’s economy. Epidemiology models are widely
used worldwide to formulate socially acceptable policy measures for breaking the
infection transmission chain and for enhancing economic resilience. Since the start
of Covid-19 outbreak in Malaysia, we use and continuously calibrate the existing
SIR-based in-house FluSiM@USM model to examine the effectiveness of various
intervention and mitigation measures in reducing the pandemic burden, the result
of which is presented in this chapter. Our epidemic model analysis suggests that
MCO has managed to effectively control the spread of Covid-19 by significantly
reducing the effective reproduction number Rt, from 3.5 to 0.2 over a period of
12 weeks. The constantly evolving knowledge of Covid-19 transmission dynamics
requires regular data updates and model enhancements. Collaboration and commu-
nication between modelers and public health authorities are essential to formulating
and supporting complex public health policy decision. This chapter highlights the
effectiveness of MCO in controlling Covid-19 spread. It discusses major socioeco-
nomic disruptions and uncertainties caused by Covid-19 and MCO to the Malaysian
and world economy. Guided by the Sendai Framework for Disaster Risk Reduction
developed by the United Nations, this chapter will focus the deliberation on the
trade-offs between saving life and saving the economy.

In chapter “An Extensive Time Series Analysis of Covid-19 Data Sets
on the Indian States,” transmission dynamics of the disease is analyzed mathe-
matically with the help of the epidemic compartmental model. The dimensionless
number—basic reproduction number,R0—is computed by using the next-generation
matrix method. Moreover, the local and global stability of the equilibrium points of
the model is discussed. The occurrence of bifurcation in the model is investigated.
Simulations are made to observe the mathematical results graphically.

Chapter “Modeling the Spread of Covid-19 Pandemic in Morocco” proposes a
delayed mathematical model to predict the epidemiological trend of Covid-19 in
Morocco. Parameter estimation and sensitivity analysis of the proposed model are
rigorously studied. Moreover, numerical simulations are presented in order to test
the effectiveness of the preventive measures and strategies were imposed by the
Moroccan authorities and also help policy makers and public health administration
to develop these strategies.

In chapter “Study of Transmission Dynamics of Covid-19 Virus Using Fractional
Model: Case of Morocco,” a generalized fractional-order SEIR model is proposed,
denoted by SEIRP, in order to study the dynamic behavior of Covid-19 and the effect
of lockdown of susceptible population. Some conditions are established to ensure the
local asymptotic stability of disease-free and endemic equilibrium points. We apply
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our results to the case of Morocco country. The theoretical results are validated by
some numerical simulations.
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Continued and Serious Lockdown Could
Have Minimized Many Newly
Transmitted Cases of Covid-19
in the U.S.: Wavelets, Deterministic
Models, and Data

Arni S. R. Srinivasa Rao and Steven G. Krantz

Abstract We have provided model-based estimates of Covid-19 in the U.S. during
April–June 2020. The newly reported Covid-19 cases of April in the U.S. have
not acquired the virus in the same month. We estimate that there was an average
of 29,000/day Covid-19 cases in the U.S. transmitted from infected to susceptible
during April 1–24, 2020, after adjusting for under-reported and under-diagnosed.
We have provided model-based predictions of Covid-19 for the low and high range
of transmission rates and with varying degrees of preventive measures including the
lockdowns. We predict that even if 10% of the susceptible and 20% of the infected
who were not identified as of April 30, 2020 do not adhere to proper care or do not
obey lockdown, then by the end of May and by end of June 50,000 and 55,000 new
cases, respectively, will emerge. These values for the months of May and June with
worse adherence rates of 50% by susceptible and infected (but not identified) will be
251,000 and 511,000, respectively. Continued and serious lockdown measures could
bring this average daily rate of new cases to a further low with a range of 4,300/day
to 8,000/day in May.
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1 Introduction

The current growth rate of Covid-19 in the world and in the U.S. as of August 10,
2020, is still alarming. We have provided here retrospective model-based estimates
for the period April–June 2020 in the US, i.e. for the period just after the lifting of
serious lockdown. The cumulative number of novel coronavirus cases in the U.S. is
still very high at more than 1,062,466 as of April 30, 2020, and more than 876,000
of these cases were reported during April 1–30, 2020 [1]. We have asked a couple of
questions: namely, did the lockdown implemented by various states in the U.S. by the
end of March 2020 had any impact so far, especially in preventing the new Covid-19
cases in the recent weeks in the U.S.? Was there any degree of damage in further
controlling the spread of Covid-19 in the U.S. by relaxing the lockdown measures
to keep-up the economy? We found that relaxing ongoing efforts on controlling the
pandemic in the U.S. could have striking impact on the number of new cases for the
months of May and June 2020. A 50% relaxed approach in the lockdown or poor
preventive measures in the U.S. could had led to additional new Covid cases up to
200,000 to 370,000. We provide several other scenarios too which are in Tables 1–6.

It is not always easy to conduct experiments to get the parameters of transmissions
during the lockdowns [2]. One can indirectly obtain the number of people who were
infected in a geographical area within a specified time and obtain population-level
incidence rates based on the newly reported cases. But we know that often not all
cases are reported or diagnosed or both [3]. That means a true incidence rate in the
population is not easy to obtain unless we adjust the reported cases with the number
not reported and retrospectively adjust the past reported data [3].

Table 1 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (Medium range)

End of the
month in
2020

Predicted new Covid-19 cases by age groups (medium
range) (with percentage of people among infected but
not yet detected who are not adhering lockdown and
other preventive measures is = 20)

Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions<18 18–64 65+ Total

May
June

259
312

37,876
41,275

12,275
13,701

50,410
55,288

10

May
June

326
455

42,123
50,215

14,054
17,407

56,503
68,077

20

May
June

402
605

46,929
61,294

16,048
21,971

63,379
83,870

30

May
June

489
860

52,340
75,018

18,285
27,600

71,114
103,478

40

May
June

588
1,142

58,432
92,011

20,796
34,542

79,816
127,695

50

May
June

700
1,493

65,289
113,043

23,614
43,111

89,603
157,647

60

May
June

827
1931

73,007
139,067

26,778
53,690

100,612
194,688

70
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Table 2 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (high range)

End of the
month in
2020

Predicted new Covid-19 cases by age groups (high
range) (with percentage of people among infected but
not yet detected who are not adhering lockdown and
other preventive measures is = 20)

Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions<18 18–64 65+ Total

May
June

315
430

38,012
41,961

13,918
16,923

52,245
59,314

10

May
June

460
775

42,991
53,741

17,684
25,234

61,135
79,750

20

May
June

642
1,277

49,186
70,781

22,104
36,482

71,932
108,540

30

May
June

866
1,992

56,818
95,007

27,315
51,854

84,999
148,853

40

May
June

1,140
3,002

66,151
129,108

33,484
72,982

100,775
205,092

50

May
June

1,475
4,418

77,507
176,827

40,807
102,126

119,789
283,371

60

May
June

1,882
6,396

91,270
243,366

49,521
142,408

142,673
392,170

70

Table 3 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (Low range)

End of the
month in
2020

Predicted new Covid-19 cases by age groups (low range)
(with percentage of people among infected but not yet
detected who are not adhering lockdown and other
preventive measures is = 50)

Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions<18 18–64 65+ Total

May
June

647
781

94,637
103,182

30,687
34,248

125,971
138,211

10

May
June

815
1,138

105,303
125,521

35,131
43,506

141,249
170,165

20

May
June

1,006
1,587

117,315
153,203

40,115
54,908

158,436
209,698

30

May
June

1,223
2,150

130,840
187,486

45,705
68,962

177,768
258,598

40

May
June

1,470
2,854

146,065
229,525

51,979
86,295

199,514
318,674

50

May
June

1,750
3,732

163,201
282,440

59,020
107,679

223,971
393,851

60

May
June

2,067
4,824

182,486
347,401

66,925
134,072

251,478
486,297

70
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Table 4 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (high range)

End of the
month in
2020

Predicted new Covid-19 Cases by age groups (high
range) (with percentage of people among infected but
not yet detected who are not adhering lockdown and
other preventive measures is = 50)

Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions<18 18–64 65+ Total

May
June

787
1,075

95,029
104,893

34,791
42,290

130,607
148,258

10

May
June

1,150
1,937

107,472
134,318

44,199
63,033

152,821
199,288

20

May
June

1,604
3,189

122,953
176,861

55,238
91,092

179,795
271,142

30

May
June

2,164
4,975

142,020
237,308

68,253
129,403

212,437
371,686

40

May
June

2,850
7,493

165,336
322,333

83,657
182,010

251,843
511,836

50

May
June

3,683
11,020

193,699
441,204

101,938
254,480

299,320
706,704

60

May
June

4,702
159,40

228,070
606,754

123,685
354,478

356,457
961,232

70

Table 5 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (medium range)

End of the
month in
2020

Predicted new Covid-19 cases by age groups (medium
range)

Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions

<18 18–64 65+ Total

May
June

1293
1562

189,270
206,345

61,370
68,482

251,933
276,389

10

May
June

1629
2274

210,594
250,987

70,254
86,976

282,477
340,237

20

May
June

2012
3172

234,608
306,295

80,215
109,746

316,835
419,213

30

May
June

2447
4297

261,664
374,772

91,388
137,801

355,499
516,870

40

May
June

2940
5703

292,078
459,510

103,924
172,386

398,942
637,599

50

May
June

3500
7455

326,328
564,324

117,993
215,034

447,821
786,813

60

May
June

4133
9636

364,869
693,920

133,786
267,638

502,788
971,194

70
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Table 6 Predicted Covid-19 cases in the U.S. under the varying degrees of adhering to lockdown
and other preventive measures from May 1 to June 30, 2020 (high range)

End of the
month in
2020

Predicted new Covid-19 cases by age groups (high range) Percentage of
susceptible people not
adhering to lockdown
and other preventive
precautions

<18 18–64 65+ Total

May
June

1,573
2,148

190,051
209,755

69,566
84,521

261,190
296,424

10

May
June

2,300
3,870

214,924
268,519

88,360
125,895

305,584
398,284

20

May
June

3,206
6,370

245,862
353,414

110,407
181,803

359,475
541,587

30

May
June

4,325
9,929

283,959
473,922

136,393
258,039

424,677
741,890

40

May
June

5,696
14,942

330,535
643,223

167,137
362,546

503,368
1,020,711

50

May
June

7,366
21,954

387,176
879,549

203,612
506,202

598,154
1,407,715

60

May
June

9,393
31,716

455,793
1,208,000

246,982
703,876

712,168
1,943,592

70

2 Methods, Models and Data

Wewant to understand through simple transmission dynamic principleswhat fraction
of these cases were possibly acquired during April. We want to understand these
numbers by adjusting for under-reporting including the under-diagnosis during the
period. Further, we develop age-structured population models of Covid-19 spread,
and combining the outcomes with wavelet analysis, we have determined the impact
of not adhering to lockdown and other preventive measures combined in the U.S. for
the period May–June, 2020. Our methods, models and the data are described in the
next paragraphs (Fig. 1).

Let fn be the cumulative number of Covid-19 cases reported at the end of the nth
day and f0 = 0 be the number of Covid-19 cases at the beginning. Let f1 be the
number of cases at the end of 1st day. Let Ii = fi+1 − fi for i = 0, 1, 2, ...., n−1 be
the new cases on the each day. Let ci ∈ (0, 1) be the fraction of Ii of those infected
on the i th day such that

ci Ii d = 1, (1)

where d is the average incubation period. That is,

ci Ii + ci Ii + . . . ci Ii (d times) = Ii , (2)
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Fig. 1 Estimated transmissions occurred during each day and the number of reported per day during
April 1–23, 2020. The estimated cases are skewed because some of the transmission occurred before
April 19 might be reported at a later date

is satisfied. Through Eq. (1), we have distributed newly reported cases on the i th day
into i th day cases and cases from d −1 number of days prior to i th day. We assumed
that ci is constant in (1), so that, Ii is uniformly distributed during [i th day, d days
prior]. Instead of uniform distribution of Ii as considered in (1), one can consider
a skewed or nonuniform or some random distribution if there is strong evidence of

the same. Under such nonuniform situations as well we will have
d∑

i=1
ci Ii = Ii and

d∑

i=1
ci = 1. Once each Ii value is partitioned into d − 1 days prior to the i th day,

then the number of transmuted cases in each day is computed using the below set of
equations:

c1 I1 + c1 I2 + . . . + c1 Id = A(I1)
c2 I2 + c2 I3 + . . . + c2 Id+1 = A(I2)

...

cd Id + cd Id+1 + . . . + cd I2d−1 = A(Id)

(3)

cd+1 Id+1 + cd+1 Id+2 + . . . + cd+1 I2d = A(Id+1)

cd+2 Id+2 + cd+2 Id+3 + . . . + cd+2 I2d+1 = A(Id+2)
...

c2d I2d + c2d I2d+1 + . . . + c2d I3d−1 = A(I2d)

(4)
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These continue until the last reported cases are available for a given population.
For the computations in this article, we considered uniform ci values over d days by
assuming ci = c within the period of study. Then, we assumed that the daily new
cases April 1–13 were uniformly distributed into 1/14th, 2/14th, 3/14th and so on
until 13/14th fractions of the reported, and we assumed all the cases from April 14
were the result of those transmitted during the month of April. A similar backward
adjustment of reported cases was theoretically demonstrated in our earlier article
with advanced network structures [5].

Let Y be the total number of newly infected cases which were not traced into the
system. Let Y = Y1 + Y2+Y 3, where Yk is the number of infected in the age group
k for k = 0–17, 18–64, 65 + , respectively. Let X be the total number of susceptible
individuals and X = ∑3

k=1 Xk, where Xk is the size of susceptible in the age group
k. Let L(Xk) = ∅k Xk be the fraction ∅k of susceptible Xk who do not practice
lockdown or other preventive measures in the age group k, such that

L(X) = L(X1 + X2 + X3) = φ1X1 + φ2X2 + φ3X3 , (5)

where ∅ = ∑3
k=1 ∅k is the total fraction of susceptibles in the population who do

not adhere to any preventive measures including the lockdown. Similarly, we will
assume that

L(Y ) = L(Y1 + Y2 + Y3) = ψ1Y1 + ψ2Y2 + ψ3Y3 , (6)

where ψ =
3∑

k=1
ψk is the total fraction of infected (who are not traced) in the

population who do not adhere to any preventive measures including the lockdown.
The differential equations describing the transmission dynamics from infected to
susceptible are given below:

dL(X1)

dt = −[L(X1)
3∑

k=1
βk1L(Yk)]

dL(X2)

dt = −[L(X2)
3∑

k=1
βk2L(Yk)]

dL(X3)

dt = −[L(X3)
3∑

k=1
βk3L(Yk)]

dL(Y1)
dt = [L(X1)

3∑

k=1
βk1L(Yk)] − γ1L(Y1)

dL(Y2)
dt = [L(X2)

3∑

k=1
βk2L(Yk)] − γ2L(Y2)



10 A. S. R. S. Rao and S. G. Krantz

dL(Y3)
dt = [L(X3)

3∑

k=1
βk3L(Yk)] − γ3L(Y3) (7)

Here, βkl is the average transmission rate from an infected in the age group k to a
susceptible in the age group l and γk is the recovery rate for the age group k. Similar
age structure population models for the Covid-19 were developed by us in predicting
the U.S. population aged 65 + with underlying medical conditions [7]. Once we
obtain predicted values of new Covid-19 cases, we will use Meyer’s wavelets to
demonstrate the difference of magnitudes between observed and predicted cases
and wavelets for the difference among various degrees of not adhering to lockdown
or other preventive measures. Meyer’s wavelets are a natural improvement over the
Fourier series and transforms. A Fourier series f (x) is written in terms of coefficients
a0, an and bn for n ∈ N, the set of natural numbers and with trigonometric functions
as below

f (x) = a0
2

+
∞∑

n=1

(ancosnx + bnsinnx), (8)

where cosnx + isinnx = einx . Further, if f (x) is Lebesgue integrable on an interval
[0, a] with a period a, then we write

f (x) = a0
2

+
∞∑

n=1

(

ancos
2πnx

a
+ bnsin

2πnx

a

)

,

where

an = 2
a

∫ a
0 f (s)cos

2πns
a

ds,

bn = 2
a

∫ a
0 f (s)sin

2πns
a

ds.

Once we have Fourier series, one can obtain Fourier transformations, fT , through
(9), written as

fT (z) = ∫ ∞
−∞e−i zs f (s)ds, (9)

where z is a complex numbers and f (s) is a Fourier series function (8).
The Meyer wavelets ψ(ω) also use trigonometric functions which are infinitely

differentiable on a certain domain. Several useful resources on wavelets are available
in [8–14]. We have used such wavelets in Covid-19 modeling [3, 5, 7, 15]. These
wavelets when plotted helps us to distinguish the degree of difference in the magni-
tude between various levels of relaxation of lockdown and other preventive measures
during Covid-19 lockdowns. TheMeyer waveletsU (ω) together with accompanying
function v are given below.
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What is interesting about this new wavelet technique is the following. The tradi-
tional trigonometric functions sine and cosine do not localize well. Once we know
a trigonometric function on a small interval, then it is uniquely determined on the
entire real line. But wavelets localize nicely in both the space and the phase variables.
This makes them particularly useful for image compression, signal processing and
data analysis. Wavelets are the key to our new approach to understanding the corona
pandemic. Let

U (ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2π
sin

(
π
2 v

(
3|ω|
2π − 1

))
e

iω
2 if 2π/3 < |ω| < 4π/3

1√
2π
cos

(
π
2 v

(
3|ω|
2π − 1

))
e

iω
2 if 4π/3 < |ω| < 8π/3

0 otherwise .

. (10)

Here v(x) = 0 For x < 0 and

v (x) =
{
x for x ∈ (0, 1)
1 for x > 1

(11)

General population age structure models are well-known in epidemiology, popu-
lation biology, ecology, see for example [16–25]. However, the novelty of our work
lies in linking thewavelets in conceptualizing the differences between themagnitudes
of L(Y 1),

[
L(Y 2), L(Y 3) with varying ∅ and ψ values. Such exposure of Meyer’s

wavelets or other wavelets were done earlier. For amore general application potential
and beauty of applicability of wavelets, one can refer to [31].

3 Data

For the modeling purpose, we have used the reported data that was available as of
April 23, 2020, the date we have designed the study, developed models and have
started calibrating to predict until June 30, 2020. As of April 23, 2020, the age distri-
bution of the Covid-19 cases in the U.S. among those whose age can be ascertained
are as follows: 2,791 (aged < 18), 475,659 (aged 18–64), 149,243 (aged 65 + ). The
number of infected during April 1–22, 2020, who were not reported are estimated at
224,785 by our previous calculation of under-reporting in the U.S. [6]. These new
cases of April, we have divided into the age groups as per the CDC data above. This
would provide us with Y1 = 999,Y2 = 170, 339, and Y3 = 53, 446. Demographic
data from census.gov [26] with adjustment for annual growth that was observed
over the past decadal growth gives us susceptible populations X1,X2,X3. We consid-
ered the lack of adherence from 10 to 70% for both susceptible and infected. We
could provide combinations of these and provide more predictions, but we prepared
for these finite number of combinations. One can try all other permutations and
combinations. Distributing ∅ and ψ within each age groups, we have considered
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the following ratio [10% : 60% : 30%]. The β values for low range of predictions
considered are

β (low) =
⎧
⎨

⎩

2.0833 × 10−10 1.84615 × 10−10 2.0833 × 10−10

2.0833 × 10−10 1.84615 × 10−10 2.0833 × 10−10

2.0833 × 10−10 2.0833 × 10−10 2.0833 × 10−10

⎫
⎬

⎭

These low range of predictions are calibrated just as in our previousmedium range
of values in the study [7]. Originally, these transmission rates were calibrated earlier
for the U.S. data on reported Covid-19 cases duringMarch 1–14 andMarch 15–April
6, 2020, which were calibrated from our paper [3]. The high-range transmission
parameters considered are

β (high) =
⎧
⎨

⎩

4.1667 × 10−10 2.3077 × 10−11 4.1667 × 10−10

2.3077 × 10−11 2.3077 × 10−11 4.1667 × 10−10

4.1667 × 10−10 4.1667 × 10−10 4.1667 × 10−10

⎫
⎬

⎭

4 Results

Out of the 876,000 Covid-19 cases newly reported during April 1–30, 2020, we have
estimated that 684,027 cases were the result of transmissions within this period. To
do this, we have assumed a few things, the first being the average incubation period
as per CDC as 2–14 days [4]. Adjusting the reported cases with the not reported
cases computed as of April 6, 2020, in the ratio of 1:1.5 as noted in [6], the true
acquired estimated number during April 1–30 stands at 684,027. According to the
CDC data released on April 30, 23% of the cases are in the age group 65 + [1]. This
implies that 23% of 684,027, that is, 235,989 number of new cases who are aged
65 + occurred during the period. This number is consistent with another modeling
study on 65+ [7] which predicts the number of new cases during April–June 2020
(Fig. 2).

In addition to backward computation of newly transmitted cases in the month
of April 2020 explained above and also in the Appendix, we have also developed
dynamics models to understand the spread of Covid-19 for the immediate months in
the U.S. We further used wavelets to demonstrate the difference in the spread that
could occur due to varying degrees of seriousness of the lockdown implementation
by susceptible and infected (who are not aware of their status). We assumed all
the detected cases are been either self-quarantined or adhering to the preventive
measures.

Serious preventive measures and continued lockdown could bring down the new
cases inMay in addition to themain results of our studymentioned in the introduction.
We also note that a relaxed approach toward lockdown and other preventivemeasures
might be a burden on the hospital system (Fig. 3).
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Fig. 2 Meyer wavelets for the difference between magnitudes of predicted new Covid-19 cases
in the U.S. for the months of May and June, 2020. All four sets are drawn based on ψ=20%
with φ = 10%, 40%, 70%. We have provided details of terminology and methods adopted in the
Appendix and actual predicted values are in Tables 1 through Table 6. a Difference of magnitude
in the month of May for low-range predictions, b difference of magnitude in the month of June for
low-range predictions, c difference of magnitude in the month of May for high-range predictions,
d difference of magnitude in the month of June for high-range predictions.

Fig. 3 Meyer wavelets for the difference between magnitudes of predicted new Covid-19 cases in
the U.S. for the months of May and June, 2020. All the four sets are drawn based on ψ = 50% with
φ = 10%, 40% , 70%. a Difference of magnitude in the month of May for low-range predictions,
b difference of magnitude in the month of June for low-range predictions, c difference of magnitude
in the month of May for high-range predictions, d difference of magnitude in the month of June for
high-range predictions



14 A. S. R. S. Rao and S. G. Krantz

5 Concluding Remarks

In summary, we see that on average about 34,000/day new cases occurred that were
transmitted during April 1–30, 2020. This is very high. This possibly indicates that
the lockdowns and prevention measures have not been adhered to at the fullest. A
complete lockdown could bring new infections to a much lower level in the next few
weeks. Average daily cases with strict measures can be brought down to a range of
4,300/day to 8,000/day in May. There is reason to believe that under-reporting is
skewing our understanding of coronavirus infection and spread. It can be shown that
lockdown measures are among the most effective for controlling virus development
and spread. Premature lifting of the lockdown could lead to disaster.

As an ending remark, we want to emphasize that one could build more complex
models for the transmission dynamics of Covid-19 in the U.S. or for any population if
there is strong evidence of transmission-level parameters at the sub-population level.
Makingmodels more complex unnecessarily without any supportive evidence would
not yield any better results and sometimes such exercises could bring misleading
results [33]. There are two levels of complexities one can introduce, one at the level
of the parameters and another at the sub-population selection level but that needs
very careful assessment of the situation, and modeling should not stand as a mere
mathematical exercise.

Funding None to report to this study.

Conflicts None.
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Dynamical Analysis of a Caputo
Fractional Order SIR Epidemic Model
with a General Treatment Function

A. Lamrani Alaoui, M. Tilioua, M. R. Sidi Ammi, and P. Agarwal

Abstract In this work, a fractional order SIR epidemic model is proposed. We
first prove the existence, uniqueness, non-negativity and boundedness of solutions
to the considered model. We also study the existence of equilibrium points. Some
sufficient conditions are derived to ensure, in terms of the basic reproduction number,
the global asymptotic stability of the disease free equilibrium point and endemic
equilibrium point. Finally, numerical simulations are illustrated to verify the validity
of our theoretical results.

Keywords Fractional derivative · Global stability · Nonlinear incidence function ·
Lyapunov functionals

1 Introduction

Recently, fractional derivatives have attracted a great attention and has known a big
development [4, 5, 20, 31, 44]. Therefore, it is well known that fractional differential
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equations are suitable tools and more effective and valuable in many fields of science
and engineering as economics, biology, physics due to its naturally relation to system
with memory which is a common feature of many phenomena. For more details see
[27, 33, 38]. Fractional derivatives generalize to a certain extent ordinary derivatives.
Thus, there is no field left untouched by this new derivatives.

In many works [1, 17, 23, 26, 41–43], the transmission of the infection in the
population is modelled by an incidence function taking many forms in the literature.
Most of epidemiological models focus on incidence function without delay assum-
ing that infection could occur instantaneously once there is a contact between an
infectious individual and a susceptible individuals.

In general, it is often to use Lyapunov’s second method also called direct method
of Lyapunov to analyze the local or global asymptotic stability properties. It is a
robust tool that allows to determine the stability of a system without explicitly inte-
grating the differential equation. For further details see [6, 16, 21, 22, 25, 40, 47].
The stability study of differential equations is still one of the most important prob-
lems. This problem has changed significantly over the years. Nowdays, many authors
have more interest in the stability analysis of fractional differential systems. The first
study trials of this kind of problems dates back many years ago. Afterwards, many
researchers devoted enough time to the stability analysis and related questions. For
nonlinear fractional differential systems, stability analysis presents much more diffi-
cult comparingwith integer differential models [2, 3, 11, 30, 32]. Caputo’s fractional
derivative is considered among well known different definitions of fractional deriva-
tives that have been used more than others. It has the advantage that it conserves the
fact that Caputo derivative of a constant is equal to zero, which is not the case for
others derivatives.

We are convinced that the treatment policy is a powerful tool and plays a cru-
cial role in controlling or decreasing the spread of infectious diseases as measles,
tuberculosis, Covid-19, etc. We can see, for instance, [8, 12, 13, 24, 29, 34].

We provide a brief review of some previous works that have studied a dynamical
processes with fractional derivatives. In [10], a fractional-order of HIV infection of
CD4 +T-cells has introduced. It is shown that themodel possesses non-negative solu-
tions and that the equilibrium points are locally asymptotically stable. The authors
have discussed in [14] the stability of equilibrium points of a fractional-order SIR
and SIRS epidemic models with variable population size. In [18], a fractional SIR
model has been analyzed using the modified Riemann Liouville derivative. The
unique global positive solution for the fractional SIR model has been obtained and
the asymptotic stability of the positive solution is analyzed. In [39], the stability anal-
ysis of a fractional-order epidemics model with multiple equilibriums was studied.
By applying fractional calculus, it was given a detailed analysis of the equilibrium
points of the model. In [28], a fractional order predator-prey model incorporating
a prey refuge was proposed. Some sufficient conditions were derived to ensure the
global asymptotic stability of the predator-extinction equilibrium point and coexis-
tence equilibrium point.

The paper is organized as follows. The mathematical model is formulated in
Sect. 2. In Sect. 3, preliminaries on the Caputo fractional calculus are presented. In
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Fig. 1 Flow diagram of the disease transmission

Sect. 4, we shall study the well-posedness of the considered model. More precisely,
the positivity and boundedness of the solution are established and the basic repro-
duction number and equilibria are determined. In Sects. 5 and6, a local and global
analysis of the considered model is investigated, respectively. The usefulness of our
model is then illustrated by a numerical example in Sect. 7. We finish the paper by
providing some concluding remarks and a perspective for future contributions.

2 Mathematical Model and Preliminaries

We are interested in a general SIR epidemic model with general treatment function.
The dynamics of the Caputo fractional-order system is presented by the following
flowchart (Fig. 1).

From the diagram, we have the following fractional-order SIR model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
t0 D

α
t S(t) = � − μS(t) − β

S(t)I (t)

S(t) + I (t)
,

C
t0 D

α
t I (t) = β

S(t)I (t)

S(t) + I (t)
− (μ + c + γ )I (t) − T (I ),

C
t0 D

α
t R(t) = T (I ) + γ I (t) − μR(t),

(1)

where S(t), I (t) and R(t) denote the numbers of susceptible, infected and recovered
individuals at time t respectively. C

t0 D
α
t stands for the Caputo fractional derivative

described below. Here, � is the recruitment rate of the population. μ is the natural
death. Moreover, individuals leave the susceptible compartment at a rate β S(t)I (t)

S(t)+I (t) .
The transmission of infectious individuals to the recovered compartment is governed
by γ , while c represents the disease-related death rate.

In what follows, let T : R+ → R+ be a continuously differentiable function sat-
isfying the following hypotheses:

(T1) T (0) = 0.
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(T2) The treatment rate
T (I )

I
is monotone increasing.

The hypothesis (T1) is natural: no treatment if there is no infected individuals while
the hypothesis (T2) reflects the increasing effort needed from the public health author-
ities to provide treatment during the time of the infection.

Since the two first equations of system (1) are uncoupled to the third remaining
equation, system (1) can be easily reduced to the following equivalent system:

⎧
⎪⎨

⎪⎩

C
t0 D

α
t S(t) = � − μS(t) − β

S(t)I (t)

S(t) + I (t)
,

C
t0 D

α
t I (t) = β

S(t)I (t)

S(t) + I (t)
− (μ + c + γ )I (t) − T (I ),

(2)

3 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts needed in
the remaining of this paper.

Definition 3.1 Let a > 0, t > a, α, t ∈ R. The Caputo fractional derivative of order
α of function f ∈ C

n is given by

C
a D

α
t f (t) = 1

�(n − α)

∫ t

a

f (n)(ξ)

(t − ξ)α + 1 − n
dξ , n − 1 < α < n ∈ N.

Proposition 3.1 [9] Let f (t), g(t) : [a, b] −→ R be such that C
a D

α
t f (t) and

C
a D

α
t g(t) exist almost everywhere and let c1, c2 ∈ R. Then, C

a D
α
t (c1 f (t) + c2g(t))

exists almost everywhere, and

C
a D

α
t (c1 f (t) + c2g(t)) = c1 C

a D
α
t f (t) + c2 C

a D
α
t g(t)

Proposition 3.2 The Caputo fractional derivative of a constant function is zero.

Definition 3.2 [37] The Mittag-Leffler function in two parameters is defined as

Eα,β(z) = ∑∞
i=0

zi

�(iα + β)
, z ∈ C, where α > 0, β > 0, C denotes the complex

plane.

Lemma 3.1 (Generalized Mean Value Theorem) [36] Suppose that w(t) ∈ C[a, b]
and C

t0 D
α
t w(t) ∈ C[a, b] for 0 < α ≤ 1, then we have

w(t) = w(a) + 1

�(1 + α)

C
t0 D

α
ξ w(ξ)�(t − a)α,

with a ≤ ξ ≤ t , ∀t ∈ (a, b].
Remark 3.1 Let 0 < α ≤ 1. Suppose that w(t) ∈ C[a, b] and C

t0 D
α
t w(t) ∈ C[a, b].

It follows from Lemma 3.1 that if C
t0 D

α
t f (t) > 0 for all t0 ∈ [a, b], then there is a
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neighborhood N of t0 such thatw(t) > w(a), and if Ct0 D
α
t w(t) < 0 for all t0 ∈ (a, b),

then there is a neighborhood N of t0 such that w(t) < w(a), ∀t ∈ N .

Let us consider the following general fractional differential equation in the Caputo
sense

{
C
a D

α
t x(t) = f (t, x(t)), α ∈ (0, 1),

x0 = x(t0).
(3)

Definition 3.3 The constant x∗ is an equilibrium point of the Caputo fractional
dynamic system (3) if and only if f (t, x∗) = 0.

Lemma 3.2 [28] Let u(t) be a continuous function on [t0,+∞)and satisfying

{
C
t0 D

α
t u(t) ≤ � − μu(t), α ∈ (0, 1),

u(t0) = u0.

where 0 < α ≤ 1, (�,μ) ∈ R
2 and μ �= 0, and t0 ≥ 0 is the initial time. Then

u(t) ≤ (ut0 − �

μ
)Eα(−μ(t − t0)

α) + �

μ
.

We now introduce the fractional LaSalle’s invariance principle.

Lemma 3.3 [19] Suppose D is a bounded closed set. Every solution of Ct0 D
α
t x(t) =

f (x) starts from a point in D and remains in D for all time. If ∃V (x) : D → R with
continuous first partial derivatives satisfies the following condition:

C
t0 D

α
t V |C

t0
Dα

t x(t)= f (x) ≤ 0

If E = {x, C
t0 D

α
t V |C

t0
Dα

t x(t)= f (x) = 0} and M be the largest invariant set of E.
Then every solution x(t) originating in D tends to M as t → ∞. Particularly, when
M = 0, then x → 0 as t → ∞.

4 The Well-Posedness of the Model and Equilibria

In this section, we will discuss existence, uniqueness, boundedness and non-
negativity of the solution of system (2). To this end, we need the following results.

Theorem 4.1 For any given nonnegative initial conditions, there exists a unique
solution of system (2) defined on [0,+∞), and this solution remains non-negative
and bounded for all t ≥ 0.
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Proof It is not hard to see that the right side of system (2) satisfies the first condition
of Lemma 4 in [7]. Denote X (t) = (S(t), I (t))T , then system (2) can be reformulated
as follows:

C
t0 D

α
t X (t) = ξ + A1X (t) + S(t)

S(t) + I (t)
A2X (t) + F(X (t)),

where

A1 =
(−μ 0

0 −(μ + c + γ )

)

, A2 =
(
0 −β

0 β

)

,

and

ξ =
(

�

0

)

, F(X (t)) =
(

0
−T (I )

)

.

Since T is a continuously differentiable function in the interior ofR+, it follows that
there exists L > 0 such that

‖F(X (t))‖ ≤ L‖X (t)‖.

Then
‖Ct0 Dα

t X (t)‖ ≤ ‖ξ‖ + (‖A1‖ + ‖A2‖ + L)‖X (t)‖.

By virtue of Lemma 4 in [7], there exists a unique solution X (t) of system (2)
with initial condition X (t0). Now, we will prove that the solution (S(t), I (t)) of (2)
belongs to R

2+, for all t ≥ 0. Let us assume, by absurd, that there exists an instant
time where the condition fails. Let

t1 := inf{t > 0, (S(t), I (t)) /∈ R
2
+}.

Thus, (S(t1), I (t1)) ∈ R
2+ and one of the quantities S(t1) or I (t1) is zero. Suppose

that S(t1) = 0. Since
C
t0 D

α
t S(t1) = � > 0,

by continuity of C
t0 D

α
t , we conclude that

C
t0 D

α
t ([t1, t1 + ξ [) ⊆ R+, for some ξ > 0. It

follows from Lemma 3.1 that S([t1, t1 + ξ [) ⊆ R+ which is a contradiction. Then,
S(t) is nonnegative. In an analogous way we can prove that I (t) is nonnegative.
Finally, it remains to establish the boundedness of the solution. By summing all the
equations of system (2), we obtain

C
t0 D

α
t N (t) = � − μS(t) − (μ + c)I (t) ≤ � − μN (t).

It follows from Lemma 3.2 that
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N (t) ≤ (N (0) − �

μ
)Eα(−μtα) + �

μ
.

Since 0 ≤ Eα(−μtα) ≤ 1, we have

N (t) ≤ N (0) + �

μ
.

This implies that the solution is bounded. The proof of Theorem is now complete.

The feasible region of system (1) is given by

� =
{
(S, I, R) ∈ R

3
+, S(t) + I (t) + R(t) ≤ �

μ

}
.

Let �̊ be the interior of �. In this stage, we use the next generation method [45] to
give the basic reproduction number for our model which is considered among the
most significant thresholds when studying the asymptotically stability of infectious
disease models.

Lemma 4.1 The basic reproduction number for the model (2) is given by

R0 = β

(μ + c + γ ) + T ′(0)
,

4.1 Existence of Endemic Equilibrium

System (2) always has a disease-free equilibrium E0 = (S0, 0) where S0 = �

μ
. We

have the following result.

Lemma 4.2 If R0 > 1, the system (2) admits a unique endemic equilibrium E∗ =
(S∗, I ∗).

To prove the unique endemic equilibrium E∗ = (S∗, I ∗) we introduce the following
auxiliary lemma.

Lemma 4.3 [15] The equation

b − au(t) − T (u(t)) = 0,

where a > 0 and b > 0 has a unique positive solution.

Proof We look for solutions (S∗, I ∗) of the equations C
t0 D

α
t S(t) = 0 and C

t0 D
α
t I (t) =

0. First note that Ct0 D
α
t S(t) +C

t0 D
α
t I (t) = 0 implies

� − μS∗ − (μ + c + γ )I ∗ − T (I ∗) = 0,
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and so

S∗ = � − (μ + c + γ )I ∗ − T (I ∗)
μ

.

Let H be a function defined from R
+ to R by

H(I ) = β(� − (μ + c + γ )I (t) − T (I (t)))

� − (μ + c + γ )I (t) − T (I (t)) + μI (t)
− (μ + c + γ ) − T (I (t))

I (t)
.

We have

lim
I→0+

H(I ) = β − (μ + c + γ ) − T
′
(0) =

(
(μ + c + γ ) + T

′
(0)

)
(R0 − 1) > 0,

and

H
(
I0

) = −
(
(μ + c + γ ) + T (I0)

I0

)
< 0,

where I0 is the unique solution of equation � − (μ + c + γ )I (t) − T (I (t)) = 0.
Then there exists a unique positive solution I = I ∗. Now, we proceed to the analysis
of the local properties of the model (2).

5 Local Stability Analysis

In this section, we show the local asymptotic stability of both the disease-free equi-
librium E0 and the endemic E∗ of system (2).

Theorem 5.1 If R0 < 1, then the disease-free equilibrium E0 of the system (2) is
locally asymptotically stable. If R0 > 1, the disease-free equilibrium E0 is unstable.

Proof The Jacobian matrix of system (2) is given by

J =

⎛

⎜
⎜
⎝

−
(
μ + β I 2

(S + I )2

)
− βS2

(S + I )2
β I 2

(S + I )2
βS2

(S + I )2
−

(
(μ + c + γ ) + T ′(I )

)

⎞

⎟
⎟
⎠ .

Then the Jacobian matrix of system (2) at E0 is

J (E0) =
(−μ −β

0 β −
(
(μ + c + γ ) + T ′(0)

)

)

.

with the eigenvalues λ1 = −μ and λ2 = β −
(
(μ + c + γ ) + T ′(0)

)
=

(
(μ + c +

γ ) + T ′(0)
)
(R0 − 1).
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If R0 < 1, all eigenvalues are negative. Namely, | arg(λi )| = π , i = 1, 2. Since all

eigenvalues λi , i = 1, 2 of Jacobian matrix J (E0) satisfy | arg(λi )| >
απ

2
, then E0

is locally asymptotically stable. If R0 > 1, then λ2 > 0 and |arg(λ2)| = 0 <
απ

2
.

Therefore, E0 is unstable.
Now, we explore the stability of the endemic equilibrium E∗. The Jacobianmatrix

of system (2) at the endemic equilibruim E∗ is

J =

⎛

⎜
⎜
⎝

−
(
μ + β(I ∗)2

(S∗ + I ∗)2
)

− β(S∗)2

(S∗ + I ∗)2
β(I ∗)2

(S∗ + I ∗)2
β(S∗)2

(S∗ + I ∗)2
−

(
(μ + c + γ ) + T ′(I ∗)

)

⎞

⎟
⎟
⎠ .

It yields that the characteristic equation of J (E∗) is

P(λ) = λ2 + a1λ + a2 = 0, (4)

where

a1 =
(
μ + β(I ∗)2

(S∗ + I ∗)2
)

− β(S∗)2

(S∗ + I ∗)2
+ (μ + c + γ ) + T ′(I ∗),

and

a2 =
(
μ + β(I∗)2

(S∗ + I∗)2

)(
− β(S∗)2

(S∗ + I∗)2
+ (μ + c + γ ) + T ′(I∗)

)
+ β2(S∗)2(I∗)2

(S∗ + I∗)4
.

We have

(μ + c + γ ) = β
S∗

S∗ + I ∗ − T (I ∗)
I ∗ .

It follows that

a1 =
(
μ + β(I ∗)2

(S∗ + I ∗)2
)

+ βS∗ I ∗

(S∗ + I ∗)2
−

(T (I ∗)
I ∗ − T ′(I ∗)

)
,

a2 =
(
μ + β(I ∗)2

(S∗ + I ∗)2
)( βS∗ I ∗

(S∗ + I ∗)2
−

(T (I ∗)
I ∗ − T ′(I ∗)

))
+ β2(S∗)2(I ∗)2

(S∗ + I ∗)4
.

From hypothesis (T2) we have

T ′(I ∗) ≥ T (I ∗)
I ∗ .

a1 > 0 and a2 > 0. Hence, we obtain the following theorem.

Theorem 5.2 If R0 > 1, then the endemic equilibrium E∗ is locally asymptotically
stable.
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6 Global Stability Analysis

6.1 Infection-Free Equilibrium

Theorem 6.1 Assume that the hypotheses (T1) and (T2) hold. Then the disease
free equilibrium E0 of the system (2) is globally asymptotically stable, if and only if
R0 ≤ 1.

To prove this theorem we need the following lemma which can be found in [2].

Lemma 6.1 Let x(t) ∈ R be a continuous and derivable function. Then, for any
time instant t ≥ t0

1

2
C
t0 D

α
t x

2(t) ≤ x(t)Ct0 D
α
t x

2(t),∀α ∈ (0, 1)

Proof Let

V (S, I ) = 1

2
I 2(t). (5)

We have

C
t0 D

α
t V (S, I ) ≤ I (t)

(
β

S(t)I (t)

S(t) + I (t)
− (μ + c + γ )I (t) − T (I )

)

≤ I 2(t)
S(t)I (t)

S(t) + I (t)

(
βS(t) − (μ + c + γ )I (t)

− (μ + c + γ )S(t) − T (I (t))

I (t)
(S(t) + I (t))

)

≤ I 2(t)
S(t)I (t)

S(t) + I (t)

(
(β − (μ + c + γ ) − T

′
(0))S(t)

− (μ + c + γ )I (t) − T (I (t))
)

≤ I 2(t)
S(t)I (t)

S(t) + I (t)

(
(β − (μ + c + γ ) − T

′
(0))S(t)

− (μ + c + γ )I (t) − T (I (t))
)

≤ −I 2(t)
S(t)I (t)

S(t) + I (t)
((μ + c + γ ) + T

′
(0))

(
(1 − R0)S(t)

+ (μ + c + γ )I (t) + T (I (t))
)
.

We conclude that C
t0 D

α
t V (S, I ) ≤ 0. Hence, V is a Lyapunov function for system

(2). Namely, C
t0 D

α
t V (S, I ) ≤ 0 for all (S, I ) ∈ �̊. Therefore, C

t0 D
α
t V (S, I ) = 0 if

and only if (S, I ) = (S0, 0). One can show that the largest invariant subset where
C
t0 D

α
t V (S, I ) = 0 is the singleton {E0}. Due to LaSalle’s Invariance Principle, E0 is

globally asymptotically stable. This completes the proof.
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6.2 Endemic Equilibrium

Theorem 6.2 Assume that the hypotheses (T1) and (T2) hold. If R0 > 1, then E∗
is the only endemic equilibrium and is globally asymptotically stable.

The next lemma plays an important role in the proof of the above theorem.

Lemma 6.2 [46] Let y(.) be a continuous and differentiable function with y(t) ∈
R+. Then, for any time instant t ≥ t0 , one has

C
t0 D

α
t (y(t) − y∗ − y∗ ln(

y(t)

y∗ )) ≤ (1 − y(t)

y∗ )Ct0 D
α
t y(t), y

∗ ∈ R
+,∀α ∈ (0, 1) (6)

Proof Introducing the following Lyapunov functional

V (S, I ) = I ∗
(
S(t) − S∗ − S∗ ln

( S(t)

S∗
))

+ S∗
(
I (t) − I ∗ − I ∗ln

( I (t)

I ∗
)))

.

Then

C
t0 D

α
t V (S, I ) ≤ I ∗

(
1 − S∗

S(t)

)(
� − μS(t) − β

S(t)I (t)

S(t) + I (t)

)

+ S∗
( I (t) − I ∗

I (t)

)(
β

S(t)I (t)

S(t) + I (t)
− (μ + c + γ )I (t) − T (I (t)

)
.

We have ⎧
⎪⎨

⎪⎩

� = μS∗ + β
S∗ I ∗

S∗ + I ∗ ,

(μ + c + γ ) = β
S∗

S∗ + I ∗ − T (I ∗)
I ∗ .

Then we get

C
t0 D

α
t V (S, I ) ≤ I ∗

(
1 − S∗

S(t)

)(
μS∗ + β

S∗ I ∗

S∗ + I ∗ − μS(t) − β
S(t)I (t)

S(t) + I (t)

)

+ S∗
(
I (t) − I ∗

)(
β

S(t)

S(t) + I (t)
− (μ + c + γ ) − T (I (t))

I (t)

)

≤ −μI ∗ (S(t) − S∗)2

S(t)
− β I ∗ (S(t) − S∗)

S(t)

( S(t)I (t)

S(t) + I (t)
− S∗ I ∗

S∗ + I ∗
)

+ βS∗
(
I (t) − I ∗

)( S(t)

S(t) + I (t)
− S∗

S∗ + I ∗
)

− βS∗
(
I (t) − I ∗

)(T (I (t))

I (t)
− T (I ∗)

I ∗
)
.

Using the two inequalities
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⎧
⎪⎨

⎪⎩

S∗ I ∗

S∗ + I ∗ − S(t)I (t)

S(t) + I (t)
= −S(t)S∗(I (t) − I ∗) − I (t)I ∗(S(t) − S∗)

(S∗ + I ∗)(S(t) + I (t))
,

S(t)

S(t) + I (t)
− S∗

S∗ + I ∗ = I ∗(S(t) − S∗) − S∗(I (t) − I ∗)
(S∗ + I ∗)(S(t) + I (t))

,

imply

C
t0 D

α
t V (S, I ) ≤ −

( β I (t)(I ∗)2

(S∗ + I ∗)(S(t) + I (t))
+ μI ∗

) (S(t) − S∗)2

S(t)

− β(S∗)2
(I (t) − I ∗)2

(S∗ + I ∗)(S(t) + I (t))

− S∗
(
I (t) − I ∗

)(T (I (t))

I (t)
− T (I ∗)

I ∗
)
.

The hypothesis (T1) ensures that

S∗
(
I (t) − I ∗

)(T (I (t))

I (t)
− T (I ∗)

I ∗
)

≥ 0.

Hence, Ct0 D
α
t V (S, I ) ≤ 0. We conclude that the endemic equilibrium of system (2)

is globally asymptotically stable provided that R0 > 1.

7 Numerical Simulations

In this section, we carry out numerical simulations to support the theoretical analysis.
We solve the initial value fractional order problem (7) using an algorithm proposed
in [35] and based on the modified trapezoidal rule and fractional Euler’s method.
We have chosen this algorithm because it is used in a direct way without using lin-
earization, perturbation or restrictive assumptions. It is a powerful method employed
by several authors to compute numerical solutions of their mathematical models.
We consider, without loss of generality, different values of fractional order deriva-
tives α = 0.82, 0.85, 0.9 and 1.0. The simulation results confirm, numerically, the
stability result of Theorems 6.1 and 6.2.

Consider the following fractional SIR epidemic model with treatment:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
t0 D

α
t S(t) = � − μS(t) − β

S(t)I (t)

S(t) + I (t)
,

C
t0 D

α
t I (t) = β

S(t)I (t)

S(t) + I (t)
− (μ + c + γ )I (t) − r I 2(t)

a + I (t)
,

C
t0 D

α
t R(t) = γ I (t) + r I 2(t)

a + I (t)
− μR(t).

(7)

with the initial conditions
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Fig. 2 The time series of the model (7), with Figures a, b and c represent (respectively) S(t), I(t)
and R(t), with the above parameters

S(0) = 12.0, I (0) = 5.0, R(0) = 9.0.

The parameters are chosen as � = 0.2, r = 0, a = 0.4, μ = 0.027, β = 0.048, c =
0.062 andγ = 0.3. It is easy to check that R0 = 0.9140 < 1 and E0 = (7.4074, 0, 0).
The treatment term takes the following form

T (I ) = r I 2(t)

a + I (t)

Let us make some comments on the obtained results. It is obvious from
Fig. 2 and 3 that the solution for a large t converges to the disease free equilib-
rium E0 and to the endemic equilibrium E∗, respectively. However, we find that the
treatment decreases the number of infectious individuals (see Fig. 4).
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Fig. 3 The time series of the model (7), with Figures d, e and f represent (respectively) S(t), I(t)
and R(t). With the same parameters as in Fig. 2 except β = 0.23, γ = 0.005, a = 0.092. In this
case, R0 = 18.1245 > 1

8 Concluding Remarks

In summary, the basic reproduction number R0 determines the existence of the equi-
librium for the model (2). When R0 ≤ 1, model (2) has one unique disease-free
equilibrium E0. While for R0 > 1, model (2) has a disease free equilibrium E0 and
one unique endemic equilibrium E∗. We proved by means of Lyapunov method that
all steady state of the model (2) are globally asymptotically stable. We showed that
the disease free equilibrium state is globally asymptotically stable for R0 ≤ 1.When
R0 > 1, we have shown that the existence of a unique endemic equilibrium, which
is globally asymptotically stable. As future work we can study the purposed model
with general incidence rate and delay, and this is currently a work in progress.
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Fig. 4 The time series of the model (7), with Figures g, h and i represent (respectively) S(t), I(t)
and R(t). With the same parameters as in Fig. 3 except r = 0.15. In this case, R0 = 0.4370 < 1
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Abstract A face shield is a type of the personal protective equipment that is used to
protect a person’s face from various external hazardous influences—splashes, drops
and aerosols, thermal and optical radiation. It is believed that face shields effectively
prevent contamination of the mucous membranes of the human body. According
to the World Health Organization (WHO) recommendations, social and medical
personnel in contact with Covid-19 patients should use similar protective equipment,
including protective face shields. In the present work, a 3D mathematical model of
the airflow distribution near the cylindrical surface of a face shield was explored. The
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1 Introduction

A newly emerged and rapidly spread infectious disease Covid-19 made experts in
diverse fields of medicine, biology, chemistry, sociology, physics and even mathe-
matics unite to combat it. It is only through the joint efforts of all specialists and a
comprehensive approach that this problem can be effectively tackled.

The development, testing and deployment of personal protective equipment for
facial and respiratory protection are crucial elements of the anti-pandemic measures.
We believe that mathematical modelling can play a rather constructive role in this. It
is well known that mathematical methods have long been widely used in biology and
medicine [1]. Among them are probability theory, statistics, combinatorics, ordinary
and partial differential equations, control theory and linear programming. Nowa-
days, for instance, it is impossible to imagine the genetic science without modern
mathematical and computer science methods.

Mathematical modelling is an effective tool for studying qualitative properties
of various phenomena or processes. The modelling process consists of the follow-
ing steps: a mathematical model construction, software implementation, numerical
experiment and verification. A mathematical model is based on an analysis of a phe-
nomenon and experimental results. The analysis allows us to determine the main
characteristics and parameters, obtain theoretical and empirical formulas, as well as
derive relevant differential, integral or integro-differential equations (or systems of
equations). Next, a software implementation of the constructed model is carried out.
For this, as a rule, various high-level programming languages or suitable comput-
ing environments (computer mathematics systems), as well as a problem-oriented
software (which is designed to solve a problem in a specific area) are used. Then
numerical calculation is carried out to identify some unknown parameters that give
an idea of certain properties of the objects that are modelled. Finally, verification
is performed. For this, qualitative or quantitative results of modelling are compared
with experimental or observation data.

The aim of this work is to evaluate the effectiveness of protective face shields
in preventing the transmission of airborne infections. In particular, we construct a
mathematical model of an airflow around the surface of a protective face shield. The
model is based on the stationary Navier–Stokes equation. Moreover, we describe and
analyse the results of full-scale experiments conducted with a protective face shield,
including visualization of airflow at various angles of attack. We also consider a
probability model of the process under study.

The theoretical and experimental results of thiswork allow us to draw encouraging
conclusions regarding the protective properties of the face shield equipment under
discussion.
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2 Practical Application of Face Shields

Covid-19 is primarily transmitted between people through respiratory droplets [2–
6]. Apparently, a contact transmission is also possible [7, 8], for example, through
household items. It is also known that viruses can enter a human body through the
eyes [9–11]. This danger cannot be excluded in the case of Covid-19 [3].

An adult human has about 15,000L of ambient air passing through the respiratory
system per day. The bacterial and viral content of the air is filtered and settles on
the surface of epithelial cells. Particles of moisture, saliva, mucus, sputum with
pathogenic microflora, including Covid-19, are ejected from the nasopharynx of a
patient, or a virus carrier. For a short period of time, an infected area is generated
around the patientwith amaximumconcentration of aerosol particles. Particles larger
than 100 microns (large droplet phase) settle rapidly. The dispersion range usually
does not exceed 2–3 m. The degree of the virus concentration and the duration of
its suspension in the air depends on the size of the airborne particles generated by
people’s breathing, talking, sneezing and coughing.

It has been established that the Covid-19 is sufficiently stable in the environment
[12, 13]. So, the virus can remain viable in the air for several hours to several days.
Therefore, an infection can occur through household items, dishes and door handles
of public institutions long after they have been touched by an ill person. There
is another factor that influences the occurrence of the coronavirus infection—the
number of viral particles that enter the body. The smaller is the number of them, the
less likely the body’s protective barriers will be overcome, and a disease will occur.
The enclosed spaces, especially with a large gathering of people such as offices,
schools, kindergartens, public transport, shops suggest high viruses concentration.
For protection against viruses and bacteria, it is effective to use medical or respirator
masks in combination with a protective face shield [14] (Fig. 1).

According to theWorld Health Organization’s guidance [15], during the outbreak
of Covid-19, it is very important to use appropriate personal protective equipment,
including a medical mask and eye or face protection (face shield). In addition to
standard precautions, wearing amedicalmask and a face shieldwould avoid infection
through contamination of mucous membranes.

An effective face shield must cover the sides of the face and go below the chin.
A protective face shield with good safety properties should provide good visibility.
This is achieved by proper operation, which includes: orderly cleaning of the rim and
the shield surface with soap/detergent and water, and disinfection with 70% alcohol
or 0.1% sodium hypochlorite [15], followed by a thorough washing with clean water;
avoidance of mechanical damage; proper storage. Hand hygiene is also important
before putting on and after removing a protective face shield. A protective face shield
prevents a direct airflow, splash of chemicals, infectious substances or body fluids
from getting on a person’s face. In addition, the use of a face shield helps to avoid
random face-and-mask touching by reflex.

In [16], one can find a systematic review and a meta-analysis of how physical
distancing, face masks and eye protection prevent transmission of SARS-CoV-2
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Fig. 1 A medical mask and
a protective face shield
combination

and Covid-19. In particular, it was shown that transmission of viruses is lower with
physical distancing of 1m or more. Moreover, wearing of a face mask could result
in a large reduction in risk of infection. Eye protection also was associated with less
infection. Therefore, the problem of evaluating the effectiveness of a face shield is
relevant.

3 Mathematical Modelling

We use the theory of viscous gas flow [17]. The basic principle of macroscopic gas
dynamics is that a medium consisting of a large number of individual particles is
regarded as a continuous medium that provides a framework for equations of motion.
In general, the medium may be viscous, compressible and thermally conductive. In
our case, this approach means that aerosol particles generate a rarefied gas, which is
considered as a continuous medium due to its small-sized particles.

The system of equations consists of equations for a gas flow density, velocity and
energy. In addition, we employ an equation of state describing the thermodynamic
properties of a medium. The gas dynamics equations can be written in two different
forms: with respect to the Euler coordinates, i.e. fixed in space, and with respect
to the Lagrangian coordinates associated with the motion of a continuous medium.
Below we give a derivation of these equations.
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3.1 Euler Form of Equations

The continuity equation. Consider a cavity of volume V into which a gas flow
enters through surface S. The mass of the incoming substance through the surface S
per unit time is ∫

S

j dS,

dS = n dS,

where j is the flux density, n is the unit normal vector and dS is the square element.
The flow entering the cavity reduces the amount of gas. The moving gas in terms of
units of mass per unit time is

− ∂

∂ t

∫

V

ρ dV,

where ρ is the bulk density of the gas. Equating these expressions, we get

∫

S

j dS = − ∂

∂ t

∫

V

ρ dV . (1)

On the other hand, the Ostrogradsky–Gauss theorem gives

∫

S

j dS =
∫

V

(∇, j) dV, (2)

where (·, ·) stands for a dot product. Comparing (1) and (2), we obtain the continuity
equation:

∂ρ

∂ t
+ (∇, j) = 0. (3)

By definition, the flux density is
j = ρ v, (4)

where v is the vector of velocity. Once having substituted (4) into (3), we get

∂ρ

∂ t
+ ρ (∇, v) + (v, ∇ρ) = 0. (5)

The equation of motion. Applying Newton’s equations of motion to the gas, we
can derive the equation of motion:

ρ
dv
dt

= −∇ p, (6)
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where p is the pressure. Despite possible local or non-local compression, the total
mass of the gas conserved. Therefore, the density in (6) is not under the sign of
differentiation. For the differential of velocity, we can write

dv = ∂ v
∂ t

dt + ∂ v
∂ r

dr.

Now we introduce the material derivative

d v
dt

= ∂ v
∂ t

+ (v, ∇) v , (7)

where

(v, ∇) = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
.

By (6) and (7), we get
∂v
∂ t

+ (v, ∇)v = − 1

ρ
∇ p. (8)

The equation of energy balance. Kinetic energy E per unit volume of gas is
defined by

E = ρ v2

2
+ ρ u,

where u is the internal energy per unit mass. Taking into account the equations of
continuity and motion, and differentiating with respect to time, we obtain the energy
balance equation

∂E

∂ t
= −(∇, Q), (9)

Q = ρ v
(
v2

2
+ u + p

ρ

)
,

where Q is the energy flux density.

3.2 Lagrangian Form of Equations

In terms of the material derivative

d

dt
= ∂

∂ t
+ (v, ∇),

the equations of hydrodynamics can be written in the Lagrangian form. In this case,
the equations take a simple form:
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the equation of continuity
dρ

d t
= −ρ (∇, v), (10)

the equation of motion

ρ
dv
dt

= −∇ p, (11)

and the equation of energy balance

dE

d t
= (∇, v E − Q) = −(∇, v p) = −p (∇, v) − ( v, ∇ p). (12)

For the system of equations to be closed, it should be supplemented by the gas
equation of state:

E = E(p, ρ). (13)

There are many equations that can be applied to a wide range of temperatures and
pressures [18]. The choice of the equation of state depends on the specific physical
problem for which a mathematical model is being developed. The simplest model is
the ideal gas model with

E = p

ρ (γ − 1)
, (14)

where γ is the heat capacity ratio.

3.3 Model Description

The inclusion of gas viscosity in the equation of motion leads to the Navier–Stokes
equation:

ρ

[
∂ v
∂ t

+ (v, ∇)v
]

= −∇ p + η ∇2v +
(
ξ + η

3

)
∇(∇, v), (15)

where ξ and η are the viscosity coefficients.
Let the gas flow have low flow velocities and be incompressible, i.e.

(∇, v) = 0. (16)

This allows us to simplify the Eq. (15); we can write

∂ v
∂ t

+ (v, ∇)v = − 1

ρ
∇ p + η

ρ
∇2v. (17)
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It should be noted that in this case we may not take into account Eqs. (9) and
(12). Because all four unknown functions (three velocity components and pressure)
can be found from the three equations of motion corresponding to the three velocity
components and the solenoidality condition.

In case of steady-state flow, by (17) we can finally obtain

(v, ∇)v = − 1

ρ
∇ p + η

ρ
∇2v. (18)

The boundary condition on the surface � has the form

v|� = 0. (19)

Aerodynamic equations can be reduced to a dimensionless form by introducing
some specific numbers. TheReynolds, Prandtl, Euler andMachnumbers are principle
and are defined as:

Re = v0l0
ν

, Pr = ν

a
, Eu = p

ρ v2
0

, M = v0

vs
,

where v0 and l0 are the characteristic flow velocity and geometric size, a is the
thermal diffusivity, ν is the kinematic viscosity, p is the pressure, and vs is the speed
of sound in the environment. In the dimensionless form, the equations are universal,
since they can describe the nature of infinite number of different flows with the
same numbers. For example, if two stationary gas flows have different velocities and
different kinematic viscosities, but their Reynolds numbers are the same, then the
motion of these flows can be described by the same dimensionless equation. This
constitutes the essence of the law of similarity for aerodynamics and hydrodynamics.

The law of similarity in aerodynamics is of extreme practical importance, since
it allows us to simulate various phenomena. Thus, in our problem of incompressible
flow around the face shield, all the values to be determined depends only on the angle
of attack α and the Reynolds number Re. Consequently, the conditions for physical
similarity are α = const and Re = const . When simulating this phenomenon, the
experimental results can be used only for the similar values of α and Re.

Depending on the Reynolds number, a flow can be either laminar or turbulent. For
small Reynolds numbers, the flow is laminar. In this case, the fluid layers do not mix.
Turbulence arises spontaneously when Reynolds number exceeds the critical value.
Local pressure gradients, conservative forces and flows around the shield surface
can cause neighbouring layers to move randomly and mix up. As a consequence,
in a turbulent flow, one can observe nonlinear waves with a geometric structure
of self-similarity (fractals) at different spatial scales. These waves occupy a finite
volume, and therefore some part of the flow is always laminar. In the mathematical
sense, turbulence means the appearance of strange attractors in the phase space of the
system of aerodynamic equations. The description of turbulence is closely related to
the existence and smoothness of solutions to the Navier–Stokes equation.
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Developed turbulence occurs if the Reynolds numbers are large and chaotic veloc-
ity pulsations happen. Important information about the local structure of devel-
oped turbulence can be obtained using the concepts of similarity and dimension.
As the Reynolds number increases, turbulences of smaller scales arise and redis-
tribute energy between all scales. In this case, as a rule, when pulsation is of smaller
scales, energy dissipation occurs due to viscous forces. Let v0 and l0 be speed and
size of a turbulent vortex, and ε be the energy dissipated per unit mass per unit time
(dimension is [ε] = L2T−3). If a small scale is selected, the velocity should depend
only on ε and l0. This gives the only relationship between the size and velocity:

v0 = C (ε l0)
1/3,

where C is an unknown constant. This formula is known as the Kolmogorov–
Obukhov law. This law is reliably confirmed experimentally by measurements of
developed turbulence spectra. As was repeatedly obtained from experiments, C is
1.44±0.6.

3.4 Numerical Methods

The system of equations (16), (18) together with the boundary condition (19) (the
Dirichlet problem) is used for simulating stationary air flows at the surface of a
protective face shield. The gas flow problem has been solved numerically using the
finite element method and the Newton–Raphson algorithm [19]. The method has a
quadratic convergence.

The essence of the finite element method is as follows. First, we subdivide the
considered domain into small simple parts, i.e. into finite elements. For each of these
elements, we consider an approximating function, which, as a rule, is a polynomial
and is zero outside the element [20, p.21]. Assuming that approximating functions
are equal at the points of the boundary of neighbour elements, we obtain a system
for finding unknown coefficients.

Let

min
v

⎧⎨
⎩�(v) =

∫

V

ϕ

(
r, v(r),

dv(r)
dr

)
d3r

⎫⎬
⎭

be the variational form of the problem (18) and (19). Here v(r) is an unknown
flow velocity. The functional �(v) contains information about the external source
functions and boundary values. The integral over V can be rewritten as a sum for
each element

�(v) =
N∑

k=1

�k(v),
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where N is a number of subdivision elements. Now, for each element, we replace
the function v(r) by its approximation

v(r) = P(vk, r)

with unknown coefficients v1, ..., vM to be determined. Thus, we obtain �(v) as a
function of parameters v1, ..., vM .

Next, the problem of finding an optimum of�(v) leads to the system of equations

∂�

∂v1
= 0, . . . ,

∂�

∂vM
= 0 (20)

that consists of M equations with M unknowns v1, ..., vM .
To solve the obtained system, the Newton–Raphson method can be used. This

method, as a rule, provides fast convergence. Let us rewrite the system (20) as

⎧⎪⎨
⎪⎩

f1(v1, ..., vM ) = 0,
...

fM(v1, ..., vM ) = 0,

where fi (v1, ..., vM ): V→R are given continuously differential functions (i = 1, M ,
V⊂ R

M ).
Let v∗

1, ..., v
∗
M be a desired solution. Expanding fi as the Taylor series about the

points v∗
1, ..., v

∗
M gives

⎧⎪⎨
⎪⎩

f1(v1, ..., vM ) = f1(v∗
1, ..., v

∗
M ) + ∂ f1

∂v1
(v∗

1 − v1) + ∂ f1
∂v1

(v∗
1 − v1) + . . . ,

...

fM(v1, ..., vM ) = fM(v∗
1, ..., v

∗
M ) + ∂ fM

∂vM
(v∗

M − vM) + ∂ fM
∂vM

(v∗
M − vM) + . . . .

Assuming that v1, ..., vM are close enough to v∗
1, ..., v

∗
M , we get a linearized system

(written in matrix form)

F(v) ≈ F(v∗) + J (v − v∗),

v = (v1, ..., vM )T , v∗ = (v∗
1, ..., v

∗
M )T ,

F(v) = ( f1(v), . . . , fM(v))T ,

F(v∗) = ( f1(v∗), . . . , fM(v∗))T ,
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where

J =
⎛
⎜⎝

∂ f1
∂v1

. . .
∂ f1
∂vM

...
. . .

...
∂ fM
∂v1

. . .
∂ fM
∂vM

⎞
⎟⎠ ,

is the Jacobian matrix.
Solution of the linearized system can be obtained by iterations

v j+1 = v j − J−1F(v j ).

The iterative process continues until the condition

∥∥v j+1 − v j
∥∥ ≤ ε

is satisfied. Here, ε is a required accuracy of the solution. It should be noted that
the main difficulty in applying this method is to find the inverse Jacobian matrix. To
solve this problem, the Gauss–Jordan method [21] can be used.

3.5 Computer Simulation

Nowwe present the results of computer simulation. The object of modelling is a face
shield designed in the form of a thin semi-cylindrical shell. The shield has a thickness
of 1 mm, an outer radius of 9 cm and a height of 21 cm. Modelling was carried out
for the following air parameters: temperature 293.15 K, density 1.204 kg/m3, bulk
viscosity 1.088 · 10−5 Pa · s. The initial flow velocity is 2 m/s that corresponds to
the average normal human breathing [22]. In Fig. 2, there are simulation results of a
flow around the face shield at different angles of attack α.

The airflowaround the face shield deforms creating an areawith variable velocities
and pressure. The flow parallel to the vertical plane of symmetry is symmetric.
For shields that are nearly flat, the flow direction changes very sharply. Therefore,
the flows slow down in front of the shield surface, contract at the edges and form
rarefaction regions beyond the edges. There is a jet wake flow behind the shield. In
front of the shield, the pressure is higher than in an undisturbed flow. Behind the
shield, due to rarefaction, the pressure decreases. The rounded shield makes the flow
around the front and rear parts smoother.

A non-zero angle of attack results in an asymmetric flow. In this case, the greater
deformation of the flow is observed in a spot of greater curvature of the body surface.
In this area, the flow is compressed, and due the condition (16), then it spreads out in
a thin current layer. A less curved surface has little effect on the flow pattern. At the
place of the greater contraction, the flow velocity increases locally while the pressure
decreases. Behind the shield, the flow deforms less and, therefore, the flow velocity
and pressure also change less. In general, the flow deformation substantially depends
on the shield configuration and its position against the flow.
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Fig. 2 Simulation results of the flow around a semi-cylindrical face shield. The top images are
velocity fields (m/s). The lower images are pressure distributions (Pa)

4 Full-Scale Experiment

Here, we present the results of an experiment with aerosol flows around a face shield.
In the experiment, an ultrasonic humidifier and CPU fan were used. With the help of
the humidifier, water vapour was produced with particles less than 5 microns in size,
and the fan was used for directing the vapour flow. The fan speed—and therefore
the flow velocity—was controlled by the power supply. The testing results at various
angles of attack around a face shield are presented in Fig. 3.

Fig. 3 Flows near the protective face shield functional surface
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Fig. 4 Protective face shield effectiveness function

At α = 0, the vapour flow directed towards the shield is almost entirely dissipated.
In this case, the face shield provides maximum protection. When the angle of attack
is not zero, some of the flow can penetrate into the zone behind the shield reducing
the protection effectiveness. Depending on the flow velocity, turbulent swirling flow
may occur at the leading edge of the shield, what contributes to the additional flow
infiltration into the geometric shadow region. Frontal flow (α = π/2) is divided into
two approximately equal parts. One part of the flow gets reflected back into the
external space, and the other part, with a lower velocity, enters the zone behind the
shield. Such flow distribution seems most undesirable.

In reality, the airflows are of a random nature; therefore, for assessing the possi-
bility of air flows entering the protected zone, it is appropriate to use the probabilistic
approach. The results of modelling and experimental studies show that if the flows
have low velocities and there is no turbulence, then the effectiveness of a face shield
can be determined by the area of its projection (shadow) on the plane perpendicular
to the direction of flow.

As above, we assume that the protective face shield is a cylindrical surface, the
base of which is a circular arc with an angle of β, where β ∈ [0, 2π ] (see Fig. 4).
Consider

ρ(α, β) = 1

S0
S(α, β),

where S(α, β) is the ‘shadow’ area protected from the flow, S0 is the maximum
projected area of the shield and α is the angle of attack. Hence,

ρ(α, β) = 1

2 sin
(
min{π

2 , β})×
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Fig. 5 Face shield effectiveness depending on the angle β. The dashed line corresponds to the
function y(x) = x/(2π)

×
{
cos( min{ π, α}) − cos( min{ π, β + α}), α ∈ [0, 2π − β],
2 + cos( min{ π, α}) − cos( min{ π, β + α − 2π}), α ∈ [2π − β, 2π ],

(21)
where min{a, b}, as usual, denotes the minimum of a and b.

Figure4 presents a three-dimensional graph of the function ρ(α, β) given by (21).
Averaging (21) for all angles of attack, we obtain the effectiveness estimation:

p0 = 1

2π

2π∫

0

ρ(α, β)dα = β

2π sin
(
min{π

2 , β}) , (22)

which does not depend onα. The result is predictable: for a given radius, the effective-
ness of a protective face shield is proportional to the base arc angle β. For example,
if a shield is flat (i.e. β = 0) then p0 = 1/(2π) ≈ 0.159. Under the random air flow,
such a shield is the least effective compared to others with the same linear sizes and
β > 0. It should be noted that formula (22) is obtained without taking into account
the influence exerted by the head of a person equipped with the protective face shield.
As a matter of fact, formula (22) gives a lower estimate for the worst case. Indeed,
the performances p of the protective face shield should apparently satisfy p > p0.
Figure5 shows a graph of the function p0(β).
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5 Conclusion

The paper studies the effectiveness of a protective face shield in prevention the direct
contact with the air flows, which may pose a risk of infection. We have considered
two mathematical models. The first model is based on the flow problem and the
numerical solutions of the Navier–Stokes system of equations. The second model is
based on the probabilistic approach, with the air flows randomly directed towards the
protective shield. In addition, face shields have been tested using steam flows in vivo.
The obtained results reveal that effectiveness of a protective face shield increaseswith
increasing bending, i.e. base arc angle (for the same linear sizes).

In should be added that a face shield and amedical or respirator mask complement
each other. The simultaneous use of these two protective agents improves the safety
properties of each of them. However, the following should be taken into account. A
face shield restricts the air penetration into the respiratory system (as can be inferred
from the results of Sect. 4), just as well as a medical mask can make respiration
difficult [23, 24]. Therefore, in order to avoid undesirable consequences, care must
be taken when using these two protective agents together. This is especially relevant
for their indoor use and also for the use by people with poor health. It should also
be borne in mind that materials in contact with the human skin can cause allergic
reactions in sensitive individuals [25].
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On the Evolution Equation for Modelling
the Covid-19 Pandemic

J. M. Blackledge

Abstract The paper introduces and discusses the evolution equation, and, based
exclusively on this equation, considers randomwalk models for the time series avail-
able on the daily confirmed Covid-19 cases for different countries. It is shown that
a conventional random walk model is not consistent with the current global pan-
demic time series data, which exhibits non-ergodic properties. A self-affine random
walk field model is investigated, derived from the evolutionary equation for a speci-
fied memory function which provides the non-ergodic fields evident in the available
Covid-19 data. This is based on using a spectral scaling relationship of the type 1/ωα

where ω is the angular frequency and α ∈ (0, 1) conforms to the absolute values of
a normalised zero mean Gaussian distribution. It is shown that α is a primary param-
eter for evaluating the global status of the pandemic in the sense that the pandemic
will become extinguished as α → 0 for all countries. For this reason, and based on
the data currently available, a study is made of the variations in α for 100 randomly
selected countries. Finally, in the context of the Bio-dynamic Hypothesis, a para-
metric model is considered for simulating the three-dimensional structure of a spike
protein which may be of value in the development of a vaccine.

Keywords Einstein’s Evolution equation · Self-Affine random walk fields ·
Pandemic time series analysis · Bio-dynamics hypothesis · Fractal geometry of
spike proteins.

J. M. Blackledge (B)
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
KwaZulu-Natal, South Africa
e-mail: jonathan.blackledge@TUDublin.ie

School of Electrical and Electronic Engineering, Technological University Dublin, Dublin, Ireland

Department of Computer Science, University of Western Cape, Western Cape, South Africa

Faculty of Arts, Science and Technology, Wrexham Glyndrw University of Wales, Wales, UK

Centre for Advanced Studies, Warsaw University of Technology, Warsaw, Poland

Science Foundation Ireland, Dublin, Ireland

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
P. Agarwal et al. (eds.), Analysis of Infectious Disease Problems (Covid-19)
and Their Global Impact, Infosys Science Foundation Series,
https://doi.org/10.1007/978-981-16-2450-6_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2450-6_4&domain=pdf
mailto:jonathan.blackledge@TUDublin.ie
https://doi.org/10.1007/978-981-16-2450-6_4


52 J. M. Blackledge

1 Introduction

Coronaviruses are a family of viruses that can cause illnesses from the common cold
to severe acute respiratory syndrome. In late 2019, a new coronavirus was identified
as the cause of a disease outbreak that originated in China. The virus is now known as
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease it
causes is called coronavirus disease 2019 (Covid-19), and, inMarch 2020, theWorld
Health Organisation declared the Covid-19 outbreak a pandemic [1]. A pandemic
is an epidemic of an infectious disease that spreads across large regions such as
multiple continents or worldwide, affecting a substantial number of people. They
are a natural occurrence of human evolution, made more probable by the increasing
size of the human population and its propensity to localisation in urban centres. Past
pandemics were caused by diseases such as Small Pox and Tuberculosis. The most
fatal pandemic in recorded historywas the BlackDeath (The Plague), which killed an
estimated 75–200 million people in the 14th Century. The most notable pandemic of
the last century occurred over 100years ago, namely the influenza pandemic (Spanish
flu) which killed an estimated 50–100 million people worldwide.

The 1918 Spanish flu pandemic initiated some of the earliest work on the math-
ematical modelling of infectious diseases. Since the pioneering work of Kermack
and McKendrick in 1926-27 [2], modelling the dynamics of disease transmission
has been based on the development of increasingly complex systems of differential
equations. A fundamental property of such models is the Basic Reproduction Num-
ber which is a threshold value, below which an infectious disease cannot spread in
a susceptible population. This number needs to be less than one for an infectious
disease to be extinguished.

In the context of any infectious disease, and, an associated vaccination program
(if one exists), the concept of herd immunity is fundamental [3]. This is because
with herd immunity, it is not necessary to vaccinate an entire population in order
to reduce the progress and possibly eliminate an infectious disease, a concept that
proved its value during the eradication of Smallpox in the1970s, for example. Since
then, mathematical modelling has become increasingly important for public health
policymaking. This has included the control of the human immunodeficiency viruses
in terms of predicting the further course of the epidemic and trying to identify the
most effective prevention strategies. With further infectious disease outbreaks such
as the Severe Acute Respiratory Syndrome virus of 2002, Swine Flu in 2009, and,
more recently, the outbreak of Covid-19, infectious disease models have become
increasingly sophisticated, e.g. [4, 5].

Mathematical models that are based on systems of differential equation are exam-
ples of deterministic models where each term in the equation plays a part in mod-
elling a specific component of a dynamical process. Such models depend onmultiple
parameters (coefficients and initial conditions, for example) that affect the solutions
obtained. This is because each term that is included is usually predicated on some
coefficient which needs to be known relatively accurately and may vary in time. In
the absence of accurate values for these coefficients, some of which may be known
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unknown’s, these models can output error prone results in terms of predicted out-
comes as a function of time. In the current Covid-19 pandemic, the sophistication of
such models has been extended further to incorporate more and more effects in line
with the policies and practices implemented by central government and local health
authorities. The sophistication of such models increases further the parameter sets
whose values require increasingly accurate estimates. This problem is typical of sit-
uations in mathematical modelling where deterministic models become too complex
to provide future forecasts that are accurate enough to be of significance [6]. Further,
if these models include nonlinear terms, it is likely that the output(s) may be become
chaotic. In this case, the determinism of such models becomes an irrelevance and we
must turn to the application of stochastic modelling methods which is the subject of
this work.

In this paper, an approach is explored whose aim it to model a set of time series
(Covid-19 daily cases, for example) but not in terms of predicting a specific outcome
for a specific country at a point in time. Instead we focus on modelling the global
random walk field for the current Covid-19 pandemic. This is where the assembly
of all time series for all countries is treated as a set of random walks to produce a
‘random walk field’. The aim is to simulate this field in a way that is representative
of the known data and to show that it is analogous to the interaction of a canonical
ensemble of particles each undergoing random motion over a period of time. In this
context, it is assumed that the pandemic will eventually diffuse throughout the world
population and become a steady state effect rather than be fully eradicated, and, that
any intervention in this process will only delay the final steady state condition rather
than extinguish it.

A random walk model is developed which illustrates that the Covid-19 data fields
available (i.e. the set of time series data on daily cases) are not representative of clas-
sical diffusion [7] but of fractional diffusion [8]. The development of this model is
predicated on an analysis of the evolution equation as are all the results presented in
the paper. This allows the models developed to be understood in the context of a fun-
damental field equation of statistical physics as discussed in the following section.We
then use this field equation to develop models for ergodic random and non-ergodic
self-affine random walk fields which is the subject of Sect. 3 and Sect. 4, respec-
tively. This is followed by the introduction of a parametric solution for modelling
the structural complexity of the viral spike protein which may have ramifications in
the development of a vaccine subject to the Bio-dynamics Hypothesis as presented
in Sect. 5.

The Bio-dynamics Hypothesis is the result of asking a simple question: why are
so many biological entities, irrespective of their physical scale or origin, composed
of self-affine structures? In the context of this question, the hypothesis states that: If
replication is a self-affine process of time, then the geometrical structure of the result
is also self-affine [9]. The hypothesis attempts to relate the dynamical behaviour
of replication, mutation and evolutionary biology to the self-affine structure (the
fractal structure) of biological entities. In this paper, we present some results from
an analysis of Covid-19-based data assuming that the pandemic is a self-organising
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processes, a result that is derived specifically from the evolution equation. This
approach complements the analysis of the pandemic based on self-organising maps,
for example [10].

2 The Evolution Equation

Let p(r) denote a Probability Density Function (PDF) where

∞∫

−∞
p(r)dnr = 1

which characterises the position of particles in a n-dimensional space r ∈ R
n (n =

1, 2, 3). At any instant in time t , the particles are distributed in space as a result
of some ‘random walk’ process involving elastic interactions or ‘elastic scattering’
(with other like particles in the same n-dimensional space, when, in all cases, both
momentumand energy are conserved). Let u(r, t) denote the density function (i.e. the
number of particles per unit of an n-dimensional space) associated with a canonical
assemble of particles all undergoing the same random walk processes.

Consider an initial condition where we have an infinitely small concentration of
such particles at a time t = 0 located at an origin r = 0. The density function at
t = 0 is then given by u(r, 0) = δn(r) where δn(r) is the n-dimensional Dirac delta
function. At some short time later t << 1, it can be expected that the density function
will be determined by the PDF governing the distribution of particles after a (short
duration) random walk. Thus we can write

u(r, t) = p(r) ⊗ u(r, 0) = p(r) ⊗ δn(r) = p(r)

where ⊗ denotes the convolution integral over r. The PDF p(r) therefore represents
the response (in a statistical sense) to a short time random walk process, and, in
this context, can be taken to be is a distributional Impulse Response Function (IRF).
Thus, for any time t , the density field at some later time t + τ will be given by

u(r, t + τ) = p(r) ⊗ u(r, t) (1)

For any instant in time t , Eq. (1) shows that the spatial behaviour of the density
field at some future time τ is given by the convolution of the density of particles at a
previous time with the PDF of the system that governs its ‘statistical evolution’. In
this sense, p(r) is analogous to the IRF of a linear stationary system when, for an
initial condition u0(r) ≡ u(r, t = 0), say,

u(r, t) = g(r, t) ⊗ u0(r)
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where g(r, t) is the characteristic Green’s function of the system. However, in this
case u(r, t) denotes a deterministic function associated with the behaviour of a deter-
ministic system, whereas in Eq. (1), u(r, t) is the density function associated with
the evolution of a distribution for a stochastic system. This ‘system’ is taken to be
stationary in a statistical sense because it is assumed that p(r) does not vary in time
and the time evolution model given by Eq. (1) is referred to as being ‘Ergodic’.
Further, we note that if the PDF is symmetric, then p(r) ≡ p(r) where r =| r |.

Equation (1) is an evolution equation first derived by Albert Einstein in 1905
[11]. It is the principal field equation for elastic scattering processes in statistical
mechanics and is an example of a continuous time random walk model where p(r)
is the PDF for the displacement r of a particles position over time interval τ . For
some stochastic source function s(r, t), the evolution equation is generalised further
to the form

u(r, t + τ) = p(r) ⊗ u(r, t) + s(r, t) (2)

This equation describes the evolution of the density function u(r, t) when the initial
particle concentration is replenished in space and/or time and can be extended further
to include a decay factor over time when it is required to consider an evolution
equation of the type (for decay rate factor λ, say)

u(r, t + τ) = p(r) ⊗ u(r, t) + s(r, t) − λu(r, t)

In this paper, we focus exclusively on the application of Eq. (2) for modelling and
analysing time series data associatedwith theCovid-19 pandemic. In this application,
the density field u is taken to be the number of infections divided by the number of
those at risk to infection.

One of the purposes of this paper is to bring to the attention of the reader the
value of using Eq. (2) to develop a unified framework for stochastic modelling in
public health medicine. In this context, there are two other equations which, although
essentially different ways of writing Eq. (2), are nevertheless informative, especially
in regard to understanding someof the consequences of imposing certain condition on
Eq. (2) and the interpretation of the results that follow. These equations are discussed
in the following sections.

2.1 The Classical Kolmogorov–Feller Equation

Consider the following Taylor series for the function u(r, t + τ) in Eq. (2):

u(r, t + τ) = u(r, t) + τ
∂

∂t
u(r, t) + τ 2

2!
∂2

∂t2
u(r, t) + ...

For τ << 1
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u(r, t + τ) � u(r, t) + τ
∂

∂t
u(r, t)

and from Eq. (2), we obtain the Classical Kolmogorov–Feller Equation (CKFE), [13,
14]

τ
∂

∂t
u(r, t) = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t) (3)

which is a representation of Eq. (2) when τ << 1.
Equation (3) is based on a critical assumption which is that the time evolution of

the density field u(r, t) is influenced only by short term events and that longer term
events have no influence on the behaviour of the field at any later time. This is to
say that the ‘system’ described by Eq. (3) has no ‘memory’. This statement is the
physical basis upon which the condition τ << 1 is imposed, thereby facilitating the
Taylor series expansion of the function u(r, t + τ) to first order alone. It means that
if a time series is taken to be described by u(t) (for some fixed position in space)
then the behaviour of this time series at any time t is not influenced by its behaviour
at some earlier time less that t . This is the basis for understanding classical diffusion,
for example, when Eq. (3) can be used to derive the classical diffusion equation given
that p(r) is a Gaussian distribution. For r ∈ R

n , this can be shown by approximating
the Characteristic Function for a Gaussian distribution (which is itself Gaussian).
For example, if we consider the case when the source function is zero and apply the
approximation exp(− | k |2) � 1 − k2, then, in Fourier space, Eq. (3) is given by

τ
∂

∂t
U (k, t) = −k2U (k, t)

which is a Fourier space representation of the classical diffusion equation

∂

∂t
u(r, t) = D∇2u(r, t)

where D = 1/τ is the diffusivity, i.e. a measure of the rate at which particles can
spread. The Green’s function solution to the diffusion equation is [15]

u(r, t) = g(r, t) ⊗ u0(r)

where g(r, t) is the Green’s function given by

g(r, t) =
(

1

4πDt

) n
2

exp

(
− r2

4Dt

)
, t ≥ 0

and u0(r) = u(r, t = 0) is the initial condition. On the basis of this solution, we
can infer that as τ increases, the speed of diffusion decreases, i.e. the distribution
of u(r, t) in time is slower for larger values of τ . The equivalent solution to Eq. (3)
which is inclusive of the source function is
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u(r, t) = g(r, t) ⊗ u0(r) +
t∫

0

g(r, t − τ) ⊗ s(r, t)dτ

Thus, if we consider an asymptotic solution when r → 0, then for u0(r) = 0 we
obtain

u(t) =
(

1

4πDt

) n
2

⊗ s(t), s(t) ≡ s(0, t)

where ⊗ denotes the casual convolution integral in time. This result is an example
of a continuous time random walk model for a stochastic time source s(t) which, for
classical diffusion, is characterised by scaling factor 1/tn/2.

2.2 The Generalised Kolmogorov–Feller Equation

Given that Eq. (3) is memory invariant, the question arises as to how longer temporal
influences can be modelled, other than by taking an increasingly larger number of
terms in the Taylor expansion of u(r, t + τ) which is not analytically consequential,
i.e. writing Eq. (2) in the form

τ
∂

∂t
u(r, t) + τ 2

2!
∂2

∂t2
u(r, t) + ... = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t)

The key to solving this problem is to consider the idea of expressing the Taylor series
on the left-hand side of the equation above in terms of a ‘memory function’m(t) and
write

τm(t) ⊗ ∂

∂t
u(r, t) = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t) (4)

This is the generalised Kolmogorov–Feller equation (GKFE). In addition to specify-
ing the source function and the PDF in order to develop a solution for u, this equation
also requires a memory function to be specified. In this case, if a time series is taken
to be described by u(t) (for a fixed position in space) then the behaviour at a time
t is influenced by the behaviour at some earlier time according to the characteris-
tics of the memory function. This is an example of a stochastic process in which
the past influences the future. The time scale over which this effect is possible then
depends on the ‘width’ in time of the memory function where it is noted that the
GKFE reduces to the CKFE when m(t) = δ(t) which is equivalent to imposing the
condition τ << 1.
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2.3 Orthonormal Memory Functions

For any inverse function or class of inverse functions of the type n(t), say, such that

n(t) ⊗ m(t) = δ(t)

the GKFE can be written in the form

τ
∂

∂t
u(r, t) = −n(t) ⊗ u(r, t) + n(t) ⊗ u(r, t) ⊗ p(r) + n(t) ⊗ s(r, t) (5)

where the CKFE is again recovered when n(t) = δ(t) given that δ(t) ⊗ δ(t) = δ(t).
The function n(t) is a orthonormal function of m(t). Writing the GKFE in this form
facilitates the development of solutions for u(r, t) given that n(t) can be derived from
m(t). In principle, this is possible, given that in Fourier space, the orthonormality
relationship between m(t) and n(t) is (using the convolution theorem)

N (ω) = 1

M(ω)
(6)

where N (ω) and M(ω) are the Fourier transforms of n(t) and m(t), respectively.

2.4 Time Series Models

Equation (5) is a description for a density field that is dependent on both space and
time. Given that we are interested in analysing data that are time series alone, it is
necessary to develop a time-only series model. A conditional example of this is to
note that when p(r) = δn(r), we can write Eq. (5) as

τ
d

dt
u(t) = n(t) ⊗ s(t) (7)

where

u(t) =
∫

u(r, t)dnr and s(t) =
∫

s(r, t)dnr

To generalise this result further, we consider an asymptotic result for the spatial
component of Eq. (5). To do this, we note that using a Taylor expansion for the
convolution integral over r, we can write

u(r, t) ⊗ p(r) =
∫

p(r − s)u(s, t)dns =
∫

[p(r) − s · ∇ p(r) + ...] u(s, t)dns
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= p(r)
∫

u(s, t)dns + ∇ p(r) ·
[∫

su(s, t)dns
]

+ ... ∼ p(r)
∫

u(s, t)dns

If the PDF is such that p(r) → 0 as r → ∞, and, in addition, we can assume that
the gradient of p(r) and all higher-order gradients approach zero in the same limit,
then, given the above series, we can consider the case where

u(r, t) ⊗ p(r) ∼ 0, r → ∞

The contribution of the term n(t) ⊗ u(r, t) ⊗ p(r) in Eq. (5) then becomes insignif-
icant, and we can consider the time-only dependent asymptotic equation

τ
d

dt
u(t) = −n(t) ⊗ u(t) + n(t) ⊗ s(t) (8)

where u(t) ≡ u(r, t), r → ∞ and s(t) ≡ s(r, t), r → ∞.
The essential difference between Eqs. (8) and (7) is compounded in the inclusion

or otherwise of the term −n(t) ⊗ u(t), respectively. In the latter case, i.e. Eq. (8),
the spectral response of u(t) to s(t) is determined by the transfer function

T (ω) = N (ω)

N (ω) + iωτ

In the former case, i.e. Eq. (7), the transfer function is

T (ω) = N (ω)

iωτ

In both cases, the stochastic behaviour of the density field u(t) depends on the source
function s(t) and the memory function m(t).

2.5 Logarithmic Scale Analysis

If we let u = logw, then Eq. (7) becomes

τ
d

dt
logw(t) = n(t) ⊗ s(t)

By way of an example, consider case when n(t) = δ(t) and

τ
d

dt
logw(t) = s(t)
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Then, for a constant value of s(t) = ±s0∀t say, we obtain the standard exponential
growth/decay model when, for some initial condition w0 = w(t = 0),

w(t) = w0 exp(±s0t/τ)

Thus, we observe that this most basic of time evolution models (exponential
growth/decay) is in fact, just a conditional model of the evolution equation when
p(r) = δn(r) and n(t) = δ(t) where the density field is taken to be on a logarithmic
scale. For a time varying source function, over some interval of time t , the solution
is

w(t) = exp

⎡
⎣1

τ

t∫
s(ξ)dξ

⎤
⎦

3 RandomWalk Fields

Consider the example data given in Fig. 1 which shows the daily new confirmed
Covid-19 cases (for approximately 200 days) on a linear scale for different countries
[16]. The plots provide the rolling 7-day average where the number of confirmed
cases is taken to be lower than the number of actual cases due to limited testing. One
of the purposes of applying a rolling average is to eliminate the characteristic and

Fig. 1 Daily confirmed Covid-19 cases (for approximately 200 days) on a linear scale for a range
of different countries with highlights for the UK, the USA and Brazil [16]
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periodic decrease on the daily rates that occurs over the weekends, at least for the
majority of countries when a Saturday and a Sunday are non-working days for the
majority of the population. The data must be considered to contain a wide range of
errors (e.g. false negatives and false positives), and, on a country by country basis, to
have substantial differences in accuracy, consistency and relevance. In this context,
Fig. 1 highlights three specific times series for cases in the UK, the USA and Brazil
to illustrated some extreme example differences in the progression of the disease for
three different countries.

The reasons for the differences in the growth (and decay) of the disease on a
country-by-country basis are multifaceted. They are due to differences in the health
systems of each country, their social-economic characteristics, the genetic dispo-
sitions of the population, age range and immunity signatures, etc. as well as the
production and management of the data and the different policies adopted by cen-
tral governments to control the disease. Thus, the data provided in Fig. 1 cannot be
assumed to be an fully accurate representation for any case or to have a uniformity
in its inaccuracies across the range of countries given. In this regard, the purpose of
this section is to show that in a global context, the behaviour of the pandemic from
one country to another appears to reflect a random walk process (a stochastic time
series). Taking all the times series given in Fig. 1 produces a random walk field. It is
this field that is a focus of the mathematical modelling considered in this work.

In terms of Eq. (7), the randomwalkmodel that is now considered is predicated on
a one-dimensionalmodelwhen τ << 1, i.e. the systemhas nomemory so that n(t) =
δ(t). It therefore represents a model in which the simulation of the results given in
Fig. 1 are based on the assumption that any interventions imposed or otherwise by a
central authority are irrelevant and that the evolution of the pandemic is independent
of any other factors such a asymmetry, herd immunity and the effects of a vaccination
program, for example. In this case, Eq. (7) reduces to the simplest of evolution
equations, namely,

τ
d

dt
u(t) = s(t) (9)

Fig. 2 provides an example of a typical set of random walks—a random walk field
consisting of 15 trajectories over 200 steps re-scaled to 1. This results are based on
using Euler’s method and forward differencing the gradient in time for Eq. (9) to
produce the difference equation

un+1 = un + 
sn, n = 1, 2, ..., N − 1

with 
 = 0.001. Each trajectory follows a different random path from a common
initial condition u1 = 0. In this case, sn is taken to be aGaussian distributed (discrete)
variable with a mean of zero. The random walks therefore have both positive and
negative amplitudes.

The random walk field illustrated in Fig. 2 spreads out over time, the difference
from one trajectory to the next being due to different initial conditions used to seed
the Gaussian random number generator (in this example, the MATLAB function
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Fig. 2 Simulation of a random walk field illustrating random walks for un (above) and | un | based
on Eq. (9) for a random Gaussian distributed source sn

randn has been applied). The result is to produce a random walk field whose spatial
dissipation is not as diverse as is evident in Fig. 1 (for the time series given by | u(t) |).
The principal reason for this is that the distribution in amplitudes of the trajectories
given in Fig. 2 are within a common range and thus the distribution of gradients for
any trajectory is the same, i.e. given Eq. (9), the derivative of u(t) must be zero
mean Gaussian distributed if s(t) is so distributed. The principal difference between
a random walk field based on Eq. (9) and that given in Fig. 1 is that in the former
case, the field is ergodic [17] from one trajectory to the next.

For a system to be ergodic, any collection of random samples from a process
must represent the average statistical properties of the entire process. In other words,
regardless of what the individual samples are, a broad view of the collection of
samples must represent the whole process. In the case of Fig. 1, it is clear that the
statistical properties of the time series vary significantly from one country to another,
specifically in regard to the standard deviation of the daily case time differences, i.e.
the gradients of each time series. In this context, Eq. (9), and, themodel it is predicated
upon, fails to account for the differences in the infection rates that are observed. The
solution to this issue is explored in the section that follows.

4 Self-Affine RandomWalk Fields

The solution to Eq. (7) requires the distribution of the source term to be quantified
and the memory function to be specified. In the latter case, let the memory function
be given by
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m(t) = 1

�(1 − α)tα
, α ∈ (0, 1) (10)

where � is the Gamma function. The reason for adopting this particular function is
that, as shall now be shown, the solution to Eq. (7) can be shown to yield a self-affine
time series which is characteristic of many natural random processes including those
presented in Fig. 1. In this context, the aim is to both simulate and quantify the data
field in Fig. 1, the quantification being compounded in the parameter α. To do this,
we note a key result which is that

1

(iω)α
↔ 1

�(α)t1−α

where ↔ denotes Fourier transformation. Thus,

m(t) ↔ 1

(iω)1−α
⇒ N (ω) = (iω)1−α

given Eq. (6).

4.1 Solution for Eq. (7)

In Fourier space, Eq. (7) is given by (using the Convolution Theorem)

iωτU (ω) = N (ω)S(ω)

whereU (ω) and S(ω) are the Fourier transforms of u(t) and s(t), respectively. Thus,
we can write

U (ω) = 1

iωτ
(iω)1−αS(ω)

or, using the convolution theorem again,

u(t) = 1

τ�(α)t1−α
⊗ s(t) (11)

The solution for u(t) is then expressed in terms of the Riemann–Liouville (frac-
tional) integral which is an icon of the fractional calculus, Liouville having been
one of the first to consider the possibility of fractional calculus in 1832. The integral
may be considered to be the anti-derivative of a fractional differential and one of its
principal properties is its scale invariance, given that for some scale length λ > 0 (in
this case, a scale in time) and using a change of variable, it can be shown that
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uλ(t) = 1

τ�(α)t1−α
⊗ s(λt) = u(λt)

λα

and we can therefore write
u(λt) = λαuλ(t)

For this reason, the function u(t) is a random scaling fractal and has a power spectral
density function which scales with frequency as 1/ | ω |2α assuming that the power
spectral density function for s(t) is a constant, i.e. s(t) is a ‘white noise’ source. This
scaling law is a principal ‘signature’ for stochastic time series that exhibit random
self-affine properties, the relationship betweenα and the fractal dimension D ∈ (1, 2)
for such a time series being [18]

α = 5

2
− D

4.2 Solution for Eq. (8)

Given Eq. (10), and, following the analysis given in Sect. 4.1, Eq. (8) becomes

u(t) = − 1

τ�(α)t1−α
⊗ u(t) + 1

τ�(α)t1−α
⊗ s(t) (12)

which has the transfer function

T (ω) = 1

1 + τ(iω)α
(13)

One approach to solving Eq. (12) is to apply iteration when

u(k+1)(t) = − 1

τ�(α)t1−α
⊗ u(k)(t) + 1

τ�(α)t1−α
⊗ s(t), k = 0, 1, 2, ...

where

u(1)(t) = 1

τ�(α)t1−α
⊗ s(t)

The first iteration is then equivalent to Eq. (11). In this case, a condition for the
convergence of the solution must be investigated and obtained. Another approach to
the problem is to consider the relationship between Eqs. (11) and (12) in terms of
their respective transfer functions. This is the approach that is considered here, as
shall now be addressed.

Since the transfer function for Eq. (11) is 1/τ(iω)β, β ∈ (0, 1), if we can relate
α to β, then it becomes possible to compare the solution given by Eq. (11) and the
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Fig. 3 Surface plot of β(α, τ), α ∈ (0, 1), τ ∈ (0, 10] based on Eq. (14) illustrating that for τ >>

1, there is a linear relationship between α and β.

solution we now require to Eq. (12). To do this, we equate the power spectra of the
two transfer functions. This yields a relationship between α and β for τ given by

τ 2 | ω |2β= 1 + τ 2 | ω |2α +2τ | ω |α cos(απ/2)

so that upon setting ω = e we can write

β = 1

2
log[1 + τ 2 exp(2α) + 2τ exp(α) cos(απ/2)] − log τ (14)

Figure3 shows a plot of β for α ∈ (0, 1) and τ ∈ (0, 10] based on Eq. (14) and
illustrates that as τ > 1 increases, there develops a linear relationship between α

and β. In particular, for τ = 10, a linear fit between the two parameters yields β =
0.9016α + 0.09393. Since Eqs. (11) and (12) are both scaled by 1/τ , this result
implies that for τ >> 1 the two equations are equivalent. Thus, the solution for
u(t) given by Eq. (11) is equivalent to the solution for u(t) given by Eq. (12) with
α � 1.1β − 0.1. Moreover, any estimate for α given u(t) based on Eq. (11) through
application of a regression analysis is simply related to an estimate for α, given
Eq. (12). For this reason, in the following section, we focus on the time series model
compounded in Eq. (11).

4.3 Random Walk Analysis

Equation (11) can be written in the form
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Fig. 4 Example simulation of a self-affine random walk field | u(t) | for τ = 10 using Eq. (15)
when α ∈ (0, 1) is assumed to be a random Gaussian distributed variable

τ
d

dt
u(t) = d

dt

(
1

�(α)t1−α

)
⊗ s(t) = 1

�(α)t1−α
⊗ d

dt
s(t) (15)

This provides an equation that is compatiblewithEq. (9) so that, on comparingEq. (9)
with Eq. (15), it is apparent that if α is the same for all random walk trajectories the
random walk field will be ergodic. However, if α varies randomly from one country
to another, a non-ergodic random walk field will result of the type that is evident
in Fig. 1. In this regard, the value of α determines the relative rate of growth of
a trajectory and it is clear that as α → 0, any rate of growth becomes increasing
suppressed because �(α) → ∞ as α → 0. This characteristic is reflected in Fig. 4
which shows an example random walk field | u(t) | for τ = 10 based on Eq. (15)
where α ∈ (0, 1) is chosen from a zero mean Gaussian distributed source (by taking
the absolute value of the output array and normalising the result) .

An essential difference between this model and that presented in Sect. 3 is that the
non-ergodic characteristics of random walk field—specifically, the standard devia-
tion of the gradients of u(t) - are a measure of the random changes in the value of
α ∈ (0, 1) for each country. This is a consequence of the self-affine model developed
through the application of the memory function given by Eq. (10).

4.4 Example Results

Based on the model for the memory function given by Eq. (10), α determines the
memory of the system. Thememory decays faster as α → 1 when one can intuitively
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expect the random walk field to have greater dispersion. In this sense, α can be
interpreted as a measure of ‘control’ on the rate of infection which in turn, is related
to issues such a lock-down and herd immunity. Thus, in the context of the self-
affine random walk model being considered, the infection will be suppressed when
α → 0 for all countries (assuming travel continues form one country to another).
Consequently, the evaluation of α on a country by country basis using available data
is informative as given in Fig. 5 for 100 randomly selected countries. The basis for
these results is the application of a least squares regression method to compute α

given that (for a constant C)

log | U (ω) |2= C − 2α log(ω), ω > 0

where | U (ω) |2 is the power spectrum of the data plotted in Fig. 1 for each country.
The results in Fig. 5 illustrate some important features that include the following:

(i) The values of α are not confined to the condition α ∈ (0, 1);
(ii) there is a significant diversity in the values of α computed;
(iii) the distribution of values for α decays with higher values;
(iv) the mean value of α is 0.5746.

The reasons for point (i) above are that the quantity of data currently available
is not significant enough to provide accuracy on the computation of α through the
regression method used (i.e. a least squares estimate of α). Another issue is that for
some countries, the model for u(t) being considered may not conform to the data.
Hence, the results shown in Fig. 5 should not be taken to be statistically significant. It
is expected that the significance of such results will improve as further data becomes
available. Nevertheless, in regard to point (ii) above, the results illustrate that there
is, as would be expected, significant diversity in the random walk fields given in
Fig. 1 for the Covid-19 pandemic, irrespective of directives from the World Health
Organisation, for example.

By way of some specific examples, compared to Sweden, α is larger for both the
USA and theUK, for example, that have introduced lock-down policies [19]. Sweden
has endorsed a policy not to lock down the country in response to the global pandemic.
Thus, on the basis of Eq. (11), and its interpretation with regard to the pandemic,
Sweden is better served by the policies the Health authorities have introduced [20],
as predicated on the self-affine randomwalk approach being considered in this work.

It should be noted that as α approaches 0, the memory function given by Eq. (10)
becomes constant in time, i.e. m(t) → 1 as α → 0 when �(1 − α) = 1. A memory
function that is constant in time implies that the density field u is time invariant. This
is because, from Eq. (4),

τm(t) ⊗ ∂

∂t
u(r, t) = τu(r, t) ⊗ d

dt
m(t) = 0, if m(t) = 1∀t

and we are then left with the time-independent equation



68 J. M. Blackledge

Fig. 5 Values of α for 100 randomly selected countries (left) and the associated 10-bin distribution
(right)

u(r) ⊗ p(r) + s(r) = u(r) (16)

From Eq. (11), it is clear that u(t) → 0 ∀t as α → 0 when the density field
ceases to evolve in time, its spatial distribution being determined by the solution to
Eq. (16). In this context, if p(r) = δn(r), then s(r) = 0. On the other hand, for a
Lévy distribution with approximated Characteristic Function (for Lévy Index γ )

P(k) = exp(− | k |γ ) ∼ 1− | k |γ , γ ∈ (0, 2)

we can write Eq. (16) in terms of the fractional Poisson equation

∇γ u(r) = s(r) (17)

where ∇γ u(r) ↔ − | k |γ U (k). The relationship between γ and the fractal dimen-
sion is given by [18]

γ = 3

2
n + 1 − D, r ∈ R

n

Thus, for example, when n = 2, Eq. (17) is the equation for a Mandelbrot surface
[18].
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5 The Bio-Dynamics Hypothesis

The Bio-dynamics Hypothesis is concerned with the connectivity between the
dynamical behaviour of bio-organisms in regard to their replication and growth and
the geometrical structures of the physical forms that result. It states that if the growth
of a bio-organism is self-affine, then the geometry of the organism will also be self-
affine.

In this section, we consider a similar model to that discussed in Sect. 4 but with
a focus on developing a parametric representation whose aim is to reflect the self-
affine structures of proteins. The reason for this is that understanding and interpreting
the structure (geometric configuration) of the spike protein on a coronavirus is the
key to developing a vaccine. This is because it is through the spike protein that the
virus attaches, fuses and gains entry to cells. Therefore, analysis of the spike protein
‘architecture’ coupled with its mechanics is vital in revealing information that can
prompt the discovery of countermeasures against the virus.

In this context, the basic principle for developing a vaccine is well known. If a
protein can be found that has the same structure as the spike protein and is introduced
into the body prior to infection, then anti-bodies will be generated by the body that
will destroy the virus by suppressing its ability to replicate through elimination of
the spike protein. On this basis, what is required is a search and/or fabrication of
proteins whose self-affine structure is the same as the spike protein.

5.1 Self-affine Structures of a Virus

It is well known that there is a correlation between the effect (in particular, its fatal-
ness) of a virus and its fractal geometry. This refers primarily, but not exclusively, to
the surface roughness of a virus and its metabolic rate. In turn, the surface roughness
is related to the structural complexity of the spike proteins and their density on the
surface of the virus. For a single near spherical cell, its metabolic rate, MR , scales
as MR ∼ r2 where r is the radius of the cell but for a virus, its metabolic rate scales
as MR ∼ r D where D ∈ (2, 3) is the fractal dimension of the surface and r is the
characteristics radius of the virus [21].

Figure6 shows a comparison of the simulated structures for the spike proteins
of the Covid-19 virus, the influenza virus and the Human Immunodeficiency Virus
(HIV). In each case, the spike protein is not one continuous feature but is composed
of specific protein strands which are colour coded. While the Covid-19 spike protein
displays structural similarities to the spike proteins of influenza virus and HIV, it is,
by comparison, the largest class I fusion protein known to date. Given that Covid-19
is new and there is no general immunity to it, this is why it is so relatively dangerous.

UseofEq. (17) tomodel such structures is not relevant. This is due to the following:



70 J. M. Blackledge

Fig. 6 Comparison of the simulated structural complexity of the spike protein’s for coronavirus
(CoV S), the influenza virus and HIV [22]

• the equation assumes that the evolution process is time-independent;
• it is not compatible with modelling a self-affine field that is based on long contin-
uous strands of which proteins are an important example.

Instead, we consider a parametric self-affine model which is discussed in the follow-
ing section.

5.2 A Parametric Self-affine Model

For p(r) = δn(r), Eq. (5) reduces to

τ
∂

∂t
u(r, t) = n(t) ⊗ s(r, t)

Consider a solution to this equation based on an additive separation of variables when

u(r, t) = ux (t) + uy(t) + uz(t) and s(r, t) = sx (t) + sy(t) + sz(t).

The source function is taken to model a system characterised by a set of additive
spatial sources which may have independent stochastic properties. We are then inter-
ested in the evolution of a density field in a three-dimensional space that is taken to
be described by the parametric curve [ux (t), uy(t), uz(t)].

Following the solution method discussed in Sect. 4 for the memory function given
by Eq. (10), we can write the solution for each component of the parametric curve
as
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Fig. 7 Evolution of a three-dimensional parametric curve for (from left to right consecutively)
α = 0.8, α = 0.6, α = 0.4 and α = 0.2 obtained using Eq. (18)

⎡
⎣ux (t)
uy(t)
uz(t)

⎤
⎦ = 1

τ�(α)t1−α
⊗

⎡
⎣sx (t)
sy(t)
sz(t)

⎤
⎦ (18)

The Fourier space representation of this result is

⎡
⎣Ux (ω)

Uy(ω)

Uz(ω)

⎤
⎦ = 1

τ(iω)α

⎡
⎣Sx (ω)

Sy(ω)

Sz(ω)

⎤
⎦ , ω > 0 (19)

where the upper case functions of the angular frequency ω denote the Fourier trans-
forms of the corresponding lower case function of time. It is then clear that the
parametric curve is composed of elements that are characterised by the same value
of α. Although the source functions are uncorrelated, their power spectral density
functions are taken to be the same. The structure of the parametric curve is then
determined by the value of α which, in turn, is a measure of the influence of the
memory function in time. This is illustrated in Fig. 7 which shows parametric curves
for various values of α ∈ (0, 1) illustrating that the complexity of the curve increases
as the value of α decreases.

5.3 Discussion

If we can model the Covid-19 spike protein as a parametric curve with a known value
α based on Eq. (18), then it may be possible to use this value in the search for other
benign proteins that have a similar α value. Such proteins would then at least possess
the same structural complexity which is an important factor in the development of
any vaccine. One way to determine the value of α from protein models of the type
given in Fig. 6 is to extract data associated with the functions ux (t), uy(t) and uz(t)
(essentially the coordinate values of the structure obtained by moving along the
protein strand), evaluate α in each case and compute the mean value.
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6 Summary, Conclusions and Future Research

The material presented in this work has been developed to provide readers with an
overview of the ways in which Eq. (2) can be used as a frame work for investigating
epidemic and pandemic time series (and viral structures). In this context, a summary
of the material presented is now given followed by some conclusions and directions
for future research.

6.1 Summary

The evolution equation for a stochastic source given by Eq. (2) is a fundamental field
equation of statisticalmechanics. It is applicable in all topological dimensions and for
any system composed of random interactions (elastic scattering). In the application
of Eq. (2) to the evolution of an infectious disease, these interactions are taken to be
the transmission of a pathogen from one person to another. In this regard, the focus
of the work has been to develop time series models for the evolution of Covid-19
informed by the data that is currently available. For this purpose, and, using Eq. (4), a
memory function has been considered—Eq. (10)—that yields a self-affine model for
the time series. The reason for doing this is because it is known that biological and
bio-medical time series are self-affine which is entirely compatible with the fractal
geometry of nature [23]. Not surprisingly, therefore, this also appears to be the case
for Covid-19 pandemic time series data.

Two time-only dependent equations have been derived, namelyEq. (7) andEq. (8).
The former equation is based on assuming the PDF in Eq. (2) is a delta function and
corresponds to the case when τ << 1. The latter equation is based on an asymptotic
solution and is applicable for any PDF p(r) which approaches zero as r → ∞ and
valid for all values of τ . However, through an analysis of the transfer functions for
both equations as given in Sect. 4.2, it has been shown that the two equations have
an equivalence in terms of the relationship between α for each equation as given by
Eq. (14). This avoids having to resort to an iterative approach for solving Eq. (8).
Moreover, it provides a method of determining the parameter α for Eq. (8) based on
applying a recursion analysis using Eq. (7), i.e. given u(t), compute α.

6.2 Conclusions

The application of stochasticmodels avoids the indeterminacy associatedwith imple-
menting a deterministic model with many coefficients. On a global perspective, this
approach assumes that there are no intrinsic correlations between the dynamics of the
pandemic and its intervention and control. This is due to the multifaceted differences
that are being introduced by different governments through different policies at dif-
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ferent times in order to attempt to reduce the severity of the disease using ‘solutions’
that are not, as yet, fully proven (i.e. statistically significant), e.g. [25].

Themodels and results presented in this work are developments based exclusively
on the evolution equation—Eq. (2). In this context, the time seriesmodel compounded
in Eq. (11) is critically dependent on the memory function parameter α. From the
example time series data given in Fig. 1, it is clear that the stochastic characteristics
are non-ergodic (i.e. they changes significantly from one country to another) and that
α changes from one country to another. Thus, the growth of the pandemic in each
country is memory dependent. The distribution of α presented in Fig. 5 is informative
but not yet statistically significant due to the lack of data that is currently available.
Consequently, the results given in Fig. 5 need to be continually re-evaluated as the
Covid-19 pandemic evolves.

The value of α provides a measure on the dissipation of the pandemic. It has a
synergy with the reproduction number R associated with deterministic models which
is a way of rating the ability for an infection to spread—the number of people (on
average) that one infected personwill pass the virus on to. To extinguish an infectious
disease, we require that R < 1. To extinguish an infectious disease based on a self-
affine evolutionary model based on Eq. (8), we require that α → 0. This is because
u(t) approaches zero due to the scaling of Equations (11) and (12) by 1/�(α), i.e.
�(α) → ∞ as α → 0. However, it is arguable that this is not physically possible,
because it implies that the memory function is constant in time which in turn implies
that the system is time-independent and that there is no time evolution of the density
field.

On the basis of the evolution equation and the analysis used to derive a time-only-
dependent representation for the density field u(t), Equations (11) and (12) provide
basic stochastic time series models which have an intrinsic relationship. If | u(t) | is
taken to be a model for the infections over a uniform period of time (e.g. each day),
then the amplitude of this function is reduced as α → 0 and as τ → ∞. In terms of
the dynamics of a global pandemic, this result implies that the longer the memory
associated with a population maintaining a high value of τ is (giving a low infection
rate), the greater the rate at which | u(t) | reduces to zero, thereby extinguishing the
pandemic.

In the sameway thatα is a gauge on viral infection rates, in the context of the Fig. 6
and the Bio-dynamics Hypothesis, it also relates to the self-affine structures that are
prevalent in the spike protein. In both cases, the value of α determines the rate of
infection and the structure of the protein that is causing the disease. The interesting
question is whether there is a correlation between the two, i.e. the mean value of α

that is characteristic of the infection rate in a global context and the value or α that
is characteristic of the structural complexity of the spike protein.

The underlying principle is that the Covid-19 virus will fractionally diffuse in
the early stages of the pandemic exhibiting self-affine characteristics, and, as time
increases, the dynamicswill become increasingly characterisedby classical diffusion.
This is a consequence of the Central Limit Theoremwhen γ → 2 as t → ∞. Further,
as time increases, the value of α can be expected to approach zero for all countries
thereby giving the appearance of the pandemic becoming extinct, the final density
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field then being given by Eq. (17) for γ = 2, i.e. the time-independent diffusion
equation for a source.

In the context of this conceptual interpretation, the effect of attempting to control
the infection rates will merely delay the transition from fractional to classical dif-
fusion. Compared to the 1918 ‘Spanish flu’ pandemic, for example, which involved
the H1N1 virus, taking a few years to be extinguished at the cost of many tens of
millions lives [24], the current pandemic is likely to continue for a longer period
of time but at the same final cost. This is not due to a difference in the dynamical
behaviour of Covid-19 now compared to H1N1 in 1918, but the considerable dif-
ference in the moral imperatives of today compared to 100years ago. In this regard,
the failure of deterministic pandemic models is in part due to ‘interference’ of cen-
tral governments and their time varying policies which alter the dynamics of the
infection rate, one that is randomly inhomogeneous on a worldwide basis. Thus, a
stochastic approach to modelling the pandemic is, in part, necessitated by the moral
imperatives that modern governments are expect to adopt which injects random-
ness into the evolution of the disease when viewed on a global perspective [25]. On
the basis of the models developed and the data analysed, this randomness appears
to be self-affine. In this context, the models presented reflect the inconsistencies
of implementing a lock-down and substantiates, on a theoretical level at least, the
importance of evidence-based medicine rather than highly sensitive deterministic
modelling based on assumptions and many unknowns [26] as briefly discussed in
the introduction.

By way of an analogy, consider an ink drop which is introduced to the surface
of some water that is contained in a vessel where it is assumed that the ink is the
same density as the water and that the water is at a constant temperature and is
homogeneous throughout the container. The ink will flow into the water producing
complex patterns while spreading away from the point on the surface at which it has
been introduced. These complex patterns represent the combined effects of each ink
molecule undertaking a random walk. As time increases, the ink will diffuse into
the water and eventually become equally distributed throughout, a process that is
irreversible. A lock down is then analogous to draining the container by introducing
a channel at the bottomof the vessel, for example, at the time the ink is first introduced
in order to try and eradicate its presence. The effect of this is to drain some of the ink
but at the expense of a falling water level. The difference between the initial and final
water levels is then analogous to the difference between the economic prosperity of
a country before and after lock down, especially in regard to the younger and more
healthy component of the population who are inherently less vulnerable to the effects
of infection. The economic effects of this may be destined to be significant [27]. In
this context, the objective to suppress the pandemic through intermittent lock-downs,
while waiting for an effective vaccine to be developed is, while laudable, not feasible
and may lead to significant long-term damage, especially to those who are at the
forefront of wealth creation in a society.



On the Evolution Equation for Modelling the Covid-19 Pandemic 75

6.3 Future Research

Within the context of the material presented, example suggestions for future work
include the following:

• Simulation of Covid-19 random walk fields using Eq. (12) for distributions in the
values of the infection rate τ ;

• evaluation of distributions for α using different data associated with the Covid-19
pandemic;

• evaluation of the time evolution of α as more data becomes available;
• evaluation of α using more advanced regression methods such as singular value
decomposition which typically requires extensive data sets;

• simulation of spike proteins based on Eq. (18) when the value of α varies for each
component of the parametric curve;

• computation of α for different continuous strands of proteins fromwhich the spike
protein is composed based on Eq. (18);

• analysis of solutions toEq. (5) using time series data predicatedon spatial locations,
i.e. the geographical location of a country relative to a common origin such as
Wuhan in China, for example (where the Covid-19 virus is considered to have
emerged) and the location of isolated pockets of infections with each country as
and when such data becomes available.
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Modelling the Dynamics of Fake News
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Abstract On 12 January 2020, the World Health Organization (WHO) confirmed
that a novel coronavirus was the cause of a respiratory illness in a cluster of people
in Wuhan City, Hubei Province, China, which was reported to the WHO on 31
December 2019. The case fatality ratio for coronavirus disease 2019 (Covid-19) has
been much lower than SARS of 2003, but the transmission has been significantly
greater, with a significant total death toll. As of 20 May 2020, there are a total of
5,085,449 confirmed cases and 329,239 death cases in the world with more than
200 countries affected. Malaysia reported a total of 7,009 confirmed cases, 5,706
recoveries and 114 deaths. According to the Global Web Index (GWI), it can be
seen that there is a significant increase in the usage of social media among global
users for the past month, including Facebook, Instagram and WhatsApp. By going
online, people can stay updated to the news more easily and information can be
spread at a higher speed. However, it can also bring negative impact among the
users when people misuse this platform to spread fake news, causing misconception,
anxiety and fear as they become “viral”. The spread of fake news can lead to several
misconceptions among social media users, which can cause unnecessary fear and
anxiety. For example, when Movement Control Order (MCO) was first announced
in Malaysia on 16 March 2020, fake news about the shortage of food supply spread
through the social media within hours, and this had led to more people rushing to
the supermarkets to stock up their groceries. This paper discussed the transmission
of fake news to understand the rate of spreading. Therefore, the objectives of this
paper are to propose a mathematical model that can describe the dynamics of the
spread of fake news through social media along the period of MCO through different
social media platforms. This study also suggests some measures that can be taken
by different parties, such as individuals, society and government to solve the issue
of fake news transmission.
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1 Introduction

Misinformation can amplify humanity’s greatest challenges.A salient recent example
of this is the Covid-19 pandemic, which has bred a multitude of falsehoods even as
truth has increasingly become a matter of life and death [1]. The Covid-19 pandemic
represents a substantial challenge to the maintenance of global human well-being.
Unfortunately, misinformation about Covid-19 has proliferated on social media [2].
In the case of Covid-19, this misinformation comes inmany forms—from conspiracy
theories about the virus being created as a biological weapon in China to claims that
coconut oil kills the virus [3]. At its worst, misinformation of this sort may cause
people to turn to ineffective (and potentially directly harmful) remedies, as well as to
either overreact (e.g. by hoarding goods) or, more dangerously, underreact (e.g. by
deliberately engaging in risky behaviour and inadvertently spreading the virus) [4].
As an example, Cable News Network (CNN) has recently anticipated a rumour about
the possible lockdown of Lombardy (a region in northern Italy) to prevent pandemics
3, publishing the news hours before the official communication from the Italian
Prime Minister. As a result, people overcrowded trains and airports to escape from
Lombardy towards the southern regions before the lockdownwas in place, disrupting
the government initiative aimed to contain the epidemics and potentially increasing
contagion. Thus, an important research challenge is to determine how people seek
or avoid information and how those decisions affect their behaviour [5], particularly
when the news cycle dominated by the disintermediated diffusion of information
alters the way information is consumed and reported on (GWI, 2020). Social media
platforms such as YouTube and Twitter provide direct access to an unprecedented
amount of content and may amplify rumours and questionable information [6, 7].
Some studies pointed out that fake news and inaccurate information may spread
faster and wider than fact-based news [8].

In this work, a mathematical model is proposed called SIR model [9] that can
describe the dynamics of the spread of fake news through social media along the
period of MCO through different social media platforms.

2 Methodology/Proposal

2.1 SIR Model for Fake News Transmission

The Susceptible–Infected–Removed (SIR) model is used to compute the theoretical
number of the flow of people between three states: the number of susceptible (S),
the number of infectious (I ) and the number of removed (R).

In this study, we will be using the SIR model to understand the transmission rate
of fake news through social media. The assumptions to be made assume that the SIR
model is homogeneous, and every social media user has identical touch to others
within the population (social media user) that will be considered.
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We assume that no one enters or leaves the community of the social media user
and there is no contact outside the community. Each person is either susceptible, S
(able to spread the fake news but still have not do so), infected, I (currently believe
the fake news and still spreading the fake news) or removed, R (already get the
correct source of the news and will not spread the fake news again). Thus, the total
population for a specific social media platform is defined as [10]:

N (t) = S(t) + I (t) + R(t) (1)

At the initial phase (which is at t = 0), every person is categorized as either S
or I only. The time period for the model will be per day and will only discover the
changes of S, I and R in 30 days. With some modifications from the simplest SIR
model, the following shows the differential equations that will be using [11]:

dS

dt
= −βS(t)I (t)

d I

dt
= βS(t)I (t) − γ I (t)

dR

dt
= γ I (t)

(2)

where S(t) is the number of susceptible users in the community after time t., I (t)
is the number of infected users in the community after time t., R(t) is the number
of removed users in the community after time t., β is the transfer rate of the fake
news around the social media platform or the transmission coefficient and γ is the
removal rate of the fake news per day.

2.2 Fake News Transmission Rate Through Different Social
Media Platforms

The social media platforms are Facebook [12], WhatsApp [6], Instagram [13, 14],
Twitter [15] and Snapchat [16]. SIR model developed using MATLAB requires
several variables and conditions.

Firstly, discover the initial number of susceptible users, S0, and the initial number
of infected users, I0, for different social media platforms. Note that the initial number
of removed users, R0, is always zero as it takes some time for the people to realize
that they had shared the wrong information or fake news around the social media
community. Next, find the transmission coefficients, β. Suppose that each infected
individual has k contact per day; that is, k users can receive the fake news per day
when the infected user shares the fake news. Note that [17]:
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Table 1 Initial number of susceptible users and the initial number of infected users for different
social media platforms [6, 12, 15, 16, 18]

Social
media

S0(in billion) I0(in billion) β

Facebook 2.32× 0.90 = 2.088 2.32× 0.10 = 0.232 155× 0.001/2.32 = 0.06681

WhatsApp 1.6× 0.90 = 1.44 1.6× 0.10 = 0.16 145× 0.001/1.6 = 0.090625

Instagram 1× 0.90 = 0.90 1× 0.10 = 0.10 150× 0.001/1 = 0.15

Twitter 0.321× 0.90 = 0.2889 0.321× 0.10 = 0.0321 707× 0.001/0.321 = 2.202

Snapchat 0.36× 0.90 = 0.324 0.36× 0.10 = 0.036 34.1× 0.001/0.36 = 0.0947

β = k

N
× the transmission probability,τ. (3)

Three assumptions are here:

1. Assume that 10% of the total monthly active users will be infected on the first
day; that is, 10% of the total monthly active users will spread the fake news
around the social media.

2. Assume that in each social media platform, there is around 0.1% of chance that
a person reads and shares the fake news to others. Then, have τ = 0.001.

3. Assume that it takes an average of 5 days for the people to realize that they
had shared the wrong information on each social media platform. Then, have
γ = 1

5 = 0.2.

Table 1 shows the initial number of susceptible users, S0, the initial number of
infected users, I0, and β for different social media platforms.

2.3 Fake News Transmission Rate Among Users of Different
Age Groups

This section investigates the fake news transmission rate among Facebook users of
different age groups. There are a total of 2.32 billion in Facebook monthly active
users. There are four age groups for SIR model use as in Table 2.

Table 2 Four age group
targets in this study

Age group Birth year Current age (years)

Baby Boomers 1944–1964 56–76

Gen X 1965–1979 41–55

Millennials (Gen Y) 1980–1994 26–40

Gen Z 1995–2015 5–25
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The following criteria are considered: 10% of the total monthly active users will
be infected on the first day, 0.1% of chance that a person reads and shares the fake
news to others, and it takes 5 days for the people to realize that they had shared the
wrong information.

2.4 Fake News Transmission Rate Among Users of Facebook
from Different Countries

Malaysia, USA and UK are been analysed. Table 4 shows the distribution of the
Facebook users among different countries and their respective initial number of
susceptible users, S0, the initial number of infected users, I0, and β [19].

3 Results, Interpretation and Discussion

In this section, the investigational outcome achieved is presented and discussed. In
this study, the fake news dataset is used provided by Facebook, WhatsApp, Insta-
gram, Twitter and Snapchat. The Optimization Toolbox in the MATLAB® software
(MathWorks Inc.).

From Fig. 1, the number of susceptible Facebook users decreases over time as
the number of removed users increases. This is because more and more users get
to receive correct information about the news, and thus the number of shared posts
starts to decrease. Besides, the figure can also observe that it takes roughly 10 days
for the number of infected Facebook users to decrease to half of its initial number of
infected users, I (0) = 0.232 billion. The transmission coefficient (β) of Facebook
is considered small when compared to Twitter, mainly because Twitter users are
used to sending tweets daily; thus, fake news spreads more faster; whereas Facebook
has implemented the “flag” function to help remove misinformation on its platform,
hence chances are less for users to spread the fake news.

The number of susceptible WhatsApp users decreases at a very low rate over
time; this is probably due to the limit on messages forwarding through WhatsApp.
The results of Fig. 2 can show that it takes around 26 days to reduce to 10% of
the initial number of infected WhatsApp users, that is, from I (0) = 0.16 billion
to 10% × I (0) = 0.016 billion, which is roughly at I (26) = 0.016986 billion. The
transmission coefficient ofWhatsApp, β = 0.090625, is the second lowest among all
five social media platforms. The limit on messages forwarding as well as its privacy
usage on WhatsApp is believed to be the cause of its low transmission coefficient,
which helps to reduce fake news transmission through its platform.

Figure 3 shows the SIR results from above figure are roughly similar to that of
WhatsApp. It can be observed that after 30 days, the initial number of susceptible
Instagram users, that is, S(0) = 0.90 billion, has decreased to only 83.35% of it,



82 S. Sathasivam et al.

Fig. 1 SIR results for fake news transmission among Facebook users (population) over 30 days
(time, t)

Fig. 2 SIR results for fake news transmission among WhatsApp users (population) over 30 days
(time, t)



Modelling the Dynamics of Fake News Spreading Transmission During Covid-19 … 83

Fig. 3 SIR results for fake news transmission among Instagram users (population) over 30 days
(time, t)

which is S(30) = 0.75016 billion. Also, notice from Table 1 that the transfer rate
of fake news of Instagram, which is β = 0.15, is the second highest among all five
social media platforms. The “discover” page allows Instagram users to see what is
the current “hot” topic because the post with the most likes/comments/shares will be
on top of the discover page, which leads users to read and share the post, which in
turn increases the transfer rate.

Figure 4 clearly shows that the number of infected Twitter users increases the
fastest among all five social media platforms. This is because the transfer rate of
fake news through Twitter, that is, β = 2.202, is the highest as can be seen from
Table 1. According to OmnicoreAgency.com, 71% of Twitter users say they use
this platform to get their news, which is why it has a high transfer rate. Besides the
results in the figure, we can also see that the number of infected Twitter users peaked
at between days 5 and 10. At the same time, the number of susceptible Twitter users
decreases significantly and only takes around 9 to 10 days to reduce to 10% of its
initial susceptible users, that is, from S(0) = 0.2889 billion to 10%× S(0) = 0.0289
billion, which lies between S(9) = 0.03263 billion and S(10) = 0.024295 billion.
The reason is that there are roughly 500 million tweets sent per day, as seen from
the statistics of OmnicoreAgency.com (2020); hence, a specific trendy news will be
replaced by the other very soon.

Figure 5 shows us that the SIR of Snapchat is quite constant. According to
OmnicoreAgency.com, the number of snaps created per day (including photographs
and videos) is approximately 3 billion. However, users often use Snapchat to send
photographs and videos related to their daily lives. Hence, fake news are less likely
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Fig. 4 SIR results for fake news transmission among Twitter users (population) over 30 days (time,
t)

Fig. 5 SIR results for fake news transmission among Snapchat users (population) over 30 days
(time, t)
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Table 3 Age group users in Facebook [16]

Age groups S0(in billion) I0(in billion) β

Baby Boomers 2.32× 0.102× 0.90

= 0.212976

2.32× 0.102× 0.10

= 0.023664

115.5× 0.001/0.23664

= 0.48808

Gen X 2.32× 0.198× 0.90

= 0.413424

2.32× 0.198× 0.10

= 0.045936

248.5× 0.001/0.45936

= 0.54097

Gen Y 2.32× 0.404× 0.90

= 0.843552

2.32× 0.404× 0.10

= 0.093728

319× 0.001/0.93728

= 0.34035

Gen Z 2.32× 0.296× 0.90

= 0.618048

2.32× 0.296× 0.10

= 0.068672

507× 0.001/0.68672

= 0.73829

to be spread through its platform and when it does, the users are less likely to be
infected, which is why its infected number of users is able to decrease to 0.00376%
of its initial infected number of users, I (0) = I(0)= 0.036 billion after 30 days. With
its low transfer rate, β = 0.0947, the S, I and R also have a significant small change
daily, especially after day 15. Besides, we also can deduce that its low transfer rate is
because it does not have the “share” function, meaning a user who receives a “snap”
is unable to share or forward it.

Table 3 shows that the number of Facebook’s Baby Boomers users is the lowest
among all 4 generations. This is clear because the users from this group are 56–
76 years old today, and most of them are lagged from this technological world.
Hence, the initial number of susceptible Baby Boomers users, S(0), as well as the
initial number of infected Baby Boomers users, I (0), is low as well. Therefore, this
study has less significant changes in the SIR as can be seen from Fig. 6.

The results from Fig. 7 tell us that the number of removed Facebook’s Gen X
users, R, surpassed the number of infected Gen X users, I, on day 6, that is, R(6) =
0.057403 billion > 0.048712 billion = I (6). This means most of the Gen X users
will check on the correct sources of the fake news before spreading it. The Facebook
users from this generation are mature and rational in handling fake news since their
ages are between 41 and 55.

Table 3 shows us that the number of initial susceptible Facebook’s Gen Y users,
S0, and the number of initial infected Gen Y users are the highest among all four
generations. The users from this age group are currently 26 to 40 years old. As stated
in Global Web Index [20], 50% of the Millennials said they are using Facebook for
up-to-date news about Covid-19. That is why more active users will get exposed
to fake news transmission. Figure 8 shows that on day 16, the number of removed
Gen Y users, R(16) = 0.4063 billion, is close to the number of susceptible Gen Y
users, S(16) = 0.41597 billion. It means that most of the Gen Y users take more
than two weeks to realize that the fake news that has been spreading around is a
misinformation.

Figure 9 clearly shows the significant SIR changes throughout 30 days. The trans-
mission coefficient, β = 0.73829, is the highest within all age groups. The reason is
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Fig. 6 SIR results for fake news transmission among Facebook’s Baby Boomers users (population)
over 30 days (time, t)

Table 4 Users on Facebook among various countries [19]

Countries S0(in billion) I0(in billion) β

Malaysia 0.0231× 0.90

= 0.02079

0.0231× 0.10

= 0.00231

223× 0.001/0.0231

= 9.65368

USA 0.253× 0.90

= 0.2277

0.253× 0.10

= 0.0253

338× 0.001/0.253

= 1.33597

UK 0.04484× 0.90

= 0.040356

0.04484× 0.10

= 0.004484

155× 0.001/0.04484

= 3.45674

because these younger generation users are used to sharing trendy news, regardless
of whether the information is correct or wrong. The number of infected Facebook’s
Gen Z users peaked at day 7 to day 9, which has reached 0.2 billion users. Then,
the number significantly drops to I (19) = 0.066497 billion on day 19, which is less
than its initial infected user, I (0) = 0.068672 billion. At the same time, the number
of susceptible users drops significantly at day 7 to day 9 as most of them, S, have
been converted to I . However, notice that S is still slightly higher than I after day
19, because the susceptible users who read the fake news still do not take any action
after reading it, neither sharing nor correcting, whereas those who are infected, I ,
have already been converted to removed users, R, after receiving the correct sources
of information.
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Fig. 7 SIR results for fake news transmission among Facebook’s Gen X users (population) over
30 days (time, t)

Fig. 8 SIR results for fake news transmission among Facebook’s Millennials users (population)
over 30 days (time, t)
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Fig. 9 SIR results for fake news transmission among Facebook’s Gen Z users (population) over
30 days (time, t)

The Facebook users from different countries may have different usage activities
on their social media platform since different countries have different implemented
laws on controlling and filtering the fake news. In Fig. 10, we have divided the
S, I and R of fake news transmission from different countries into three subplots.
The figure shows an overview of the S, I and R of three different countries but as can
notice, the results for Malaysia and UK are similar in the three subplots, not because
they are constant, but because the scale used here is too big for the population of both
the countries, since the population in USA is the largest among the three. Hence,
to compare the results more clearly, we have divided them into their respective SIR
model according to their countries.

Figure 11 shows that the number of infected Malaysia’s Facebook users, I, inter-
sects with the number of removed users approximately on day 5. This means the
users realized that they received the fake news similar to our assumption made in
Sect. 2.3, that is: “It takes 5 days for the people to realize that they had shared the
wrong information”. The total number of Malaysia’s Facebook users is the lowest
among the three countries, but the transmission coefficient, β = 9.65368, is the
highest among all.

From Fig. 12, we can observe the significant changes of S, I and R among Face-
book users from theUSA. The population of Facebook users in theUSA is the highest
among the three countries. Also, we can see that the number of susceptible Face-
book users intersects with the number of removed users on approximately day 15,
where S(15) = 0.10652 billion and R(15) = 0.11084 billion. Besides, the number
of infected Facebook users, I , peaked at approximately day 9, with I (9) = 0.042037
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Fig. 10 Shows the S, I and R results for Facebook users from three different countries, which are
Malaysia, USA and UK (population) over 30 days (time, t)

Fig. 11 SIR results for fake news transmission among Facebook users in Malaysia (population)
over 30 days (time, t)
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Fig. 12 SIR results for fake news transmission among Facebook users in the USA (population)
over 30 days (time, t)

billion. And it takes roughly 27 days for the initial number of infected users, I (0) =
0.0253 billion, to drop to half of it, that is, 1

2 × I (0) = 0.01265 billion, which is
roughly at I (27) = 0.012372 billion.

From Fig. 13, we can observe the significant changes of S, I and R among Face-
book users from the UK. The changes of SIR among Facebook users from UK are
less significant over time. It takes around 4 days for the number of infected Face-
book users, I, to intersect with the number of removed users, R, which is a good
thing because it means that the users are less likely to spread the fake news, and
most of them will check the validity of the information when they receive it, so the
fake news are less likely to spread around its community. The number of susceptible
users, S, does not decrease much even after 30 days, meaning the users usually read
the news but they do not take any actions about it, which is important in controlling
the widespread of fake news.

4 Conclusion

In this paper, fake news transmission through social media platforms from three
different aspects has been investigated. We investigated the SIR trend of fake news
transmission through different social media platforms. The results shown tell us that
Twitter is the platform with the most dynamic SIR changes. Snapchat has the least
SIR change over a month. We would say that the privacy function of Snapchat is
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Fig. 13 SIR results for fake news transmission among Facebook users in the UK (population) over
30 days (time, t)

strong, whereas the “re-tweet” function in Twitter is the common reason why fake
news can go viral so fast on its platform. The authorities and users are responsible
for cutting down the transmission chain of fake news.
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Generalized Logistic Equations in
Covid-Related Epidemic Models

Daniele Ritelli

Abstract The logistic equation on population growth was proposed by Verhulst
(Corresp Math Phys 10:113-126, 1838) [22], with the aim to provide a possible
correction to the unrealistic exponential growth forecast by T. Malthus, (J Johnson,
London, 1872) [13]. Population modeling became of particular interest in the 20th
century to biologists urged by limited means of sustenance and increasing human
populations. Verhulst’s scheme was rediscovered by A. Lotka, (Elements of Mathe-
matical Biology. Dover, NewYork, 1956) [12], as a simple model of a self-regulating
population. Subsequently, the use of logistic dynamics spreads across a huge number
of different frameworks, especially in diffusion phenomena. The logistic differential
equation is a fundamental element in quantitative study of population dynamics, its
use also extends to the field of epidemiology: both to describe the evolution of the
infected population in deterministic models, and working in conditions of uncer-
tainty it is the deterministic component of stochastic differential equations. This
work brings a contribution to the foundational basic research on the logistic equa-
tion and its generalizations which hopefully have repercussions for epidemiologic
applications.

Keywords Epidemiological models · Logistic Growth · Hypergeometric
function · Periodic solutions

1 Introduction

If x(t) is the population (which for us means single species in a closed ecosystem
withoutmigrations) at time t , the Verhulst model is ruled by the initial value problem:

D. Ritelli (B)
Department of Statistics, University of Bologna, Bologna, Italy
e-mail: daniele.ritelli@unibo.it

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
P. Agarwal et al. (eds.), Analysis of Infectious Disease Problems (Covid-19)
and Their Global Impact, Infosys Science Foundation Series,
https://doi.org/10.1007/978-981-16-2450-6_6

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2450-6_6&domain=pdf
mailto:daniele.ritelli@unibo.it
https://doi.org/10.1007/978-981-16-2450-6_6


94 D. Ritelli

{
ẋ = r x

(
1 − x

K

)
x(0) = x0

(1)

where the dotmeans derivativewith respect to time and the intrinsic reproduction rate
r is a positive constant measuring the population average net growth reproduction.
In the above equation, “any role of resources is subsumed in the idealized parameters
r and K ”, [9]. In fact, being x2 representative of the rate of pair interactions, then
r/K will provide the rate of them acting as a decrease of population growth. The
carrying capacity K , due to environmental pressures, stands for the saturation, or
maximum sustainable value, of population; so that r (1 − x(t)/K ) means the per
capita birth rate at epoch t . The carrying capacity utmost bound of a territory is not
fixed: It can spread due external factors. So that all the growth models based on fixed
K -values, are somewhat unrealistic. Therefore, in the above differential equation r
and k have to be replaced by an exogenous functions r(t), k(t): In such away realism
and complexity of the model are both increased. In fact both r(t) and K (t) can be
any functions depending by the type of phenomenon studied. It is important to point
out that Nkashama, [18, 19], proved that each Verhulst-type equation with positive
non-autonomous bounded forcing coefficients has exactly one bounded solution that
is positive, and that does not approach the zero-solution in the past and in the future.

The connection of the logistic model with epidemiology is well known. We begin
with the simplest of the epidemic models, the SI (susceptible-infected) where every
infected remains infected, like varicella-zoster virus. If S(t) and I (t) denote the
number of susceptibles and infected at time t , the evolution of the disease is described
by the system of differential equation

⎧⎪⎨
⎪⎩
Ṡ = −β

SI

N

İ = β
SI

N

N = S + I represents the total population, it follows that this model reduces to the
logistic equation:

İ = β I

(
1 − I

N

)

Similarly, the susceptible-infected-susceptible (SIS) model describes the spread of
diseaseswith no permanent immunity, [3, 11] assuming that an individual starts being
susceptible to a disease, at some point of time gets infected and then recovers after
some other time interval, becoming susceptible again. If S(t) and I (t) denote again
the number of susceptibles and infected at time t , respectively, then the differential
equations describing the spread of the disease are
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⎧⎪⎨
⎪⎩
Ṡ = −β

SI

N
+ γ I

İ = β
SI

N
− γ I

Again assuming N = S + I to represent the total population the model reduces to
the logistic equation:

İ = (β − γ )I − β

N
I 2.

The introduction of stochastic elements allows to obtain more realistic and reliable
models, and involves the introduction of variable coefficients in the logistic model.
In epidemiology, two main kinds of stochasticity are relevant: demographic and
environmental. Demographic stochasticitymodels the fact that, even if all individuals
may be subject to the same possible events with the exact same probabilities, chance
events may change the fates of individuals. When a phenomenon is the sum of a
large number of small individual effects (as disease propagation in large population),
the weak law of large numbers reduces the effects of demographic stochasticity
and a deterministic model can be used. In contrast, when the population is small,
random events cannot be neglected and a stochastic model is necessary. On the other
side, environmental stochasticity deals with the situation where there is variation in
the probability associated with an event. Therefore, some parameters in stochastic
models may be uncertain and characterized by a probability distribution instead of a
constant value. Fixing initial conditions, a deterministic model will produce a unique
result, whereas a stochasticmodel will producemany different outputs, depending on
the actual values the random variables take. For these reasons, we will study different
occurrences and generalizations of the logistic equation, representing stochasticity
using equations with variable coefficients.

For these reasons, in this chapter we present several modifications of the basic
model, specifically we will deal with the following variants of the model:

(i) Model’s coefficients are assumed to change logistically as exposed in [16]:
We will provide explicit solutions using Gauss hypergeometric function 2F1.
Our computational results agree with the theoretical results established by
Nkashama [18, 19].

(ii) We examine the situation of periodic coefficients to represent infections with
seasonal effects. We confirm the important theoretical conclusions established
by deMottoni and Schiaffino in [5, 6] in a particular situation then establishing
an effective operational procedure for the implementation of the model.

(iii) The logistic model is upgraded introducing a periodic forcing term, following
[17]: The relevant Riccati equation is solved in terms ofMathieu functions after
linearization.
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2 Logistic Coefficients Models

The use of variable coefficients in the logistic model, referring to its epidemiological
occurrences, allows to analyze the effect of exogenous interventions, such as social
distancing, hygiene measures, introduction of specific therapies, aimed at reducing
the spread of infection. All this implies a variable carrying capacity: Here we refer to
the contributions of [15, 16, 18], providing some extensions of the previous models.
Write the general logistic differential equation with variable coefficient as:

{
ẋ = a(t)x − b(t)x2

x(0) = x0 > 0
(2)

where we assume a(t) > 0 and b(t) > 0 are given continuous positive bounded
functions of time. (2) is a Bernoulli equation that can be easily integrated:

x(t) =
exp

(∫ t

0
a(τ )dτ

)
1

x0
+

∫ t

0
b(τ ) exp

(∫ τ

0
a(ξ)dξ

)
dτ

. (3)

The study of its asymptotic behavior is of great relevance and not helped by formula
(3); moreover, the following remark is fundamental for the study of (2).

Remark 1 Since the zero function solves (2) on R, by uniqueness any non-trivial
solution of (2) must be either positive or negative on its interval of definition.

In the general case to variable, positive, bounded and continuous coefficients, we
explicitly report the important, and relatively recent, contribution of Nkashama [18]:
assume that

0 < α ≤ a(t) ≤ A, 0 < β ≤ b(t) ≤ B, t ∈ R, (4)

for some positive constants α, β, A and B. In consequence of hypothesis (4), we can
state the following Lemma which, in this particular situation, provides the existence
of the horizontal asymptote for the solutions of (2).

Lemma 1 If we assume, the existence of the limit

lim
t→∞

a(t)

b(t)
= � ∈ R

then, solution of (2) is such that

lim
t→∞ x(t) = �
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Proof The statement follows by de l’Hospital rule in formula (3). �

For completeness, we report three Theorems of Nkashama in view of their impact
on the model we are going to present below.

Theorem 1 ([18]Theorem 2.1) Suppose that (4) are fulfilled. Then equation (2) has
exactly one bounded solution u : R → R that is positive, and that does not tend to
zero as t → ±∞. Actually, u satisfies the inequalities

α

B
≤ u(t) ≤ A

β
for all t ∈ R. (5)

It turns out that the unique bounded solution u(t) obtained in Theorem 1 is a forward
attractor for all positive solutions (bounded andunbounded), and so is forward asymp-
totically stable. Also the zero-solution of (2) is a backward (exponential) attractor
for all solutions v(t) with v(t1) < u(t1) for some t1 ∈ R, and so is backward expo-
nentially stable. Thus, the zero-solution is a forward (exponential) repeller for all
solutions that remain below the attractor. This is explained in the second and third
Nkashama results.

Theorem 2 ( [18] Theorem 3.1) Suppose the conditions in (4) are met. Then, the
bounded solution u(t) given in Theorem 1 is an attractor for all positive solutions to
(2). That is, if v(t) is a positive solution to (2), then

lim
t→∞ |u(t) − v(t)| = 0.

Theorem 3 ([18] Theorem 3.2) Suppose the conditions in (4) are met. Then, the
zero-solution exponentially repels all solutions v(t) such that v(t1) < u(t1) for some
t1 ∈ R. That is, if v(t) is a solution to (2) with v(t1) < u(t1) for some t1 ∈ R, then

lim
t→−∞ v(t) = 0

exponentially.

2.1 Computable Examples

Meyer and Ausubel, [15] introduce a variable carrying capacity, driven by a logistic
law evolving sigmoidally between the initial value α > 0 and the final value β > 0;
the integration of the relevant equation is provided in [16]. After having recalled
the integration in hypergeometric terms proposed in [16], we present two further
integrations deriving from different representations of the two coefficients a(t) and
b(t) that always produce solutions expressed through the Gaussian hypergeometric
function. Consider equation (2) assuming:
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a(t) = a0 > 0, b(t) = a0
α + (α − β) (e−γ t − 1)

(6)

being γ > 0 a positive parameter that regulates the rate of change from the initial
value α to the final asymptotic value β. We infer that solution of (2) when (6) holds
verifies

lim
t→∞ x(t) = β.

To integrate equation (2) under assumption (6), we use the Gaussian 2F1 hypergeo-
metric function. For completeness, we recall the properties we are going to use in the
following; for further details we refer, for instance, to [1, 7] and [21]. 2F1 is defined
by the power series, which converges for |x | < 1:

2F1

(
a, b

c

∣∣∣∣ x
)

=
∞∑
n=0

(a)n (b)n
(c)n

xn

n! ,

(a)n stands for Pochhammer symbol, i.e., (a)n = a(a + 1) · · · (a + n − 1).The inte-
gral representation theorem:

2F1

(
a, b

c

∣∣∣∣ x
)

= �(c)

�(c − a)�(a)

∫ 1

0

ta−1(1 − t)c−a−1

(1 − xt)b
dt,

where Re a > Re c > 0 ensures analytic continuation to the complex plane cut along
the segment [1,∞). In what follows we will use a particular occurrence of 2F1,
precisely:

F(t) = 2F1

(
1, 1 + a0

β γ

2 + a0
βγ

∣∣∣∣∣ t
)

(7)

Theorem 4 If conditions (6) hold and α �= β, formula (3) becomes

x(t) = x0(α − β)(a0 + γ )ea0t

(α − β)(a0 + γ ) − a0x0
(
F

(
− β

α−β

)
− et (a0+γ ) F

(
− β

α−β
etγ

)) . (8)

Proof From (3) we see that solution is obtained evaluating the integral

I(t) =
∫ t

0

a0eaτ

(α − β) (e−γ τ − 1) + α
dτ.

Using the change of variable y = eατ we get:

I(t) = a0
γ (α − β)

∫ eat

1

ua0/γ

1 + β

α−β
u
du (9)
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Fig. 1 Solutions for α < β and for α > β

Write the integral in (9) as

I(t) = a0
γ (α − β)

(∫ ea0 t

0

ua0/γ

1 + β

α−β
u
du −

∫ 1

0

ua0/γ

1 + β

α−β
u
du

)
. (10)

In the first integral in (10), we make the normalization y = eα t u, so that (8) follows
by integral representation theorem for 2F1. �

The explicit integration performed in Theorem 4 allows the complete description
of the transient phase of demographic dynamics described in [15]. The following
graphic representation, Fig. 1, is meaningful, since are represented the asymptotic
level at which the system tends, with the dashed lines the logistic equations with
constant coefficient with carrying capacities given by the two extreme values α and
β both cases α < β and α > β the solution, represented with a continuous line of
the equation (2) with coefficients given by (6) that governs Meyer–Ausubel’s model.

The scenario in which, in the long term, the carrying capacity is reduced, i.e.,
α > β, is, without doubt, the most interesting at epidemiological level, as it involves
a significant reduction in the final number of the infected population. Moreover, for
α > β solution of (2) under (6) is no longer monotonic, as shown in the right Fig. 1.

We remark that the asymptotic behavior detected is in full agreement with
Nkashama’s results: Theorems 1, 2 and 3.

Remark 2 Since there are many hypergeoemetric identities, it may happen, for
particular configurations of the parameters, that the solutions can be represented
through elementary functions. For instance, taking α = 3, β = 2 γ = 1, a0 = 1 the
identity, see http://functions.wolfram.com/07.23.03.3123.01, comes into play

2F1

(
1, 3/2

5/2

∣∣∣∣ x
)

= 3

2x3/2
ln

1 + √
x

1 − √
x

− 3

x
.

Equations (2) with (6) assume the form of a elementary solvable initial value problem
for a Bernoulli equation, namely:

http://functions.wolfram.com/07.23.03.3123.01
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⎧⎨
⎩x ′ = x − x2

2 + e−t
,

x(0) = x0.

Its solution is:

x(t) = 4et x0
x0 (2et − 2 + ln 3) − x0 ln (1 + 2et ) + 4

.

In their possible practical applications, these specific situations are not indeed of great
interest, given the very particular distribution of the parameters, whose estimation,
on the contrary, allows, in light of the integration just carried out, to fully exploit the
characteristics of the proposed model.
Now assume that the reproduction rate varies logistically, thus we consider (2) under
condition

a(t) = a0
α + (α − β) (e−γ t − 1)

, b(t) = a0 (11)

With this model, we try to represent the effect on the population dynamics regulated
by the logistic equation (2) when the reproduction rate goes from an initial value to an
asymptotic value: In this way we try thinking about possible epidemiological appli-
cations, to the effect of actions aimed at limiting, through exogenous interventions,
the spread of an infection.

We skip the proof, since is similar to previous Theorem 4, of the following result,
concerning the exact integration of logistic equation (2) under (11).

Theorem 5 If conditions (11) hold and if α �= β quadrature formula (3) becomes

x(t) = x0(α − β)(a0 + βγ )
(
α + β

(
eγ t − 1

)) a0
βγ

(α − β)(a0 + βγ )α
a0
βγ + a0βx0 J (t)

(12)

being

J (t) = α
a0
βγ

+1 F(
α

α − β
) − (

α + β
(
eγ t − 1

)) a0
βγ

+1 F
(
1 + β

α − β
etγ

)

where, again, F is given by (7).

At this point, it is natural to consider the behavior of the logistic equation in which
both functions a(t) and b(t) vary between an initial level and an asymptotic level.
Indicated with α and β the two levels of the function a(t) and with δ and ε those of
the function b(t), we treat the equation (2) assuming:

a(t) = a0
α + (α − β) (e−γ t − 1)

, b(t) = a0
δ + (δ − ε) (e−γ t − 1)

(13)
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Repeating, with the appropriate computational adjustments, the procedure applied in
the theorem 4, we present in an explicit form the solution of the equation (2) under
the condition (13).

Theorem 6 If conditions (13) hold, and if βδ − αε �= 0 quadrature formula (3)
becomes

x(t) = x0(a0 + βγ )(βδ − αε)
(
α + β

(
eγ t − 1

)) a0
βγ

(a0 + βγ )α
a

βγ (βδ − αε) + b0βx0 J1(t)
. (14)

being

J1(t) =
((

α + β
(
eγ t − 1

)) a0
βγ

+1 F
((

α + (
etγ − 1

)
β
)
ε

αε − βδ

)
− α

a0
βγ

+1 F
(

αε

αε − βδ

))

where F is still given by (7).

Remark 3 The explicit solutions found in Theorems 4, 5 and 6 exhibit the asymp-
totic behavior theoretically expected, reaching the level of the corresponding cases
at constant coefficients. The possible employment of the obtained results regards the
situations in which the functions a(t) and b(t) vary between two extreme values,
assuming that such variation happens in a logistic-sigmoidal way. This last assump-
tion can be seen as an approximation of convenience, since claiming, aswe have done,
that the variation between the two levels of the parameters occurs in a sigmoidal way
allows the explicit integration of the differential equation thus obtained.

3 Carrying Capacity Periodically Variable

The idea of considering evolutions of population with periodically variable carrying
capacity arises in a completely natural way, having in mind seasonal diseases and
has, therefore, great interest from epidemiological applications. In this section, we
recall the important theoretical results due to deMottoni and Schiaffino, [5], and then
present a particular case, in which these theoretical evidences are reflected in the
explicit calculation of the solution.

3.1 Existence of Periodic Solution

In [5], de Mottoni and Schiaffino consider this generalization of (1):

ẋ = x f (t, x) (15)

and state the following result concerning existence of periodic solutions of (15).



102 D. Ritelli

Theorem 7 Assume for f : R × [0,+∞) → R the following:

(i) f is periodic in t (it does not go against the generality of the treatment to
assume that the period is unitary)

(ii) f is continuous in t and C1 in x
(iii) f is decreasing in x
(iv) x fx is decreasing in x
(v) there exists M0 > 0 such that f (t, x) ≤ 0 for x ≥ M0 > 0

Consider the mean μ of the function f (t, 0) over one period, i.e.,

μ =
∫ 1

0
f (t, 0) dt

then, if:

(a) μ ≤ 0 there are no periodic non-negative non-trivial solutions of (15), moreover
every solution such that x(0) > 0 tends for t → +∞ to the trivial solution.

(b) μ > 0 there is a positive and periodic solution of (15), this solution is the sole
periodic solution and it is globally stable, compared to all positive solutions.
Henceforth, every solution such that x(0) > 0 tends for t → +∞ to the unique
positive periodic solution of (15).

3.2 Cosinusoidal Carrying Capacity

Consider equation (1) assuming that K varies periodically with time ruled following
a cosinusoidal rule:

K (t) = K0 (1 + α cos(ωt)) , (16)

where we assume K0 > 0 and 0 < α < 1. Using the notation of (15) we have

f (t, x) = r

(
1 − x

K0
(1 + α cos(ωt))

)

which immediately ensures for Theorem 7 existence of periodic solution of (1) when
K (t) is given by (16). In this particular situation, we are seeking for the explicit
computation of the periodic solution theoretically individuated by Theorem 7.

Theorem 8 Introduce, for α < 1

p = p(α) = −1 − √
1 − α2

α
, (17)

and define
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z(t) = 1

K0

(
1 + p2

1 − p2

) {
1 + 2r

∞∑
n=1

(
r cos (nωt) + nω sin (nωt)

r2 + n2ω2

)
pn

}
. (18)

Then x(t) = 1/z(t) is periodic with period T = 2π/ω and solves equation

ẋ = r x

(
1 − x

K0 (1 + α cos(ω t))

)
. (19)

Proof The main ingredient for our proof is the Poisson kernel identity, entry 1.447.3
page 40 of [8], i.e.:

1 − p2

1 − 2p cos(ω τ) + p2
= 1 + 2

∞∑
n=1

pn cos(nω τ), |p| < 1. (20)

Using standard substitution z = 1/x equation (19) is linearized:

ż = −r z + r

K0
(1 + α cos (ωt)) , (19L)

We underline that here we are not working on the general solution nor on the solu-
tion of an initial value problem, but we are trying to represent explicitly the periodic
solution theoretically identified by deMottoni and Schiaffino in Theorem 7. This
computational approach has great importance in applications, because it allows to
estimate the value of the periodic limiting solution, theoretically foreseen and, there-
fore, to calculate it according to the usual procedure of the initial value problems. At
this aim, integrating, starting at −∞ we get the particular solution of (19L)

z(t) = r e−r t

K0

∫ t

−∞
erτ

1 + α cos (ωτ)
dτ. (21)

The integral appearing in (21) can be computed using (20). We need to find |p| < 1
in order to express the denominator of the integrand as 1 − 2p cos(ω τ) + p2. For
the purpose, multiply and divide for β > 0 (we will choose the appropriate value
later) in (21) getting:

z(t) = rβ

K0
e−r t

∫ t

−∞
erτ

β + αβ cos (ωτ)
dτ. (21′)

Thus, β must be such that β = 1 + p2 and αβ = −2p, hence β is easily detected:

β2 − 4

α2
β + 4

α2
= 0 =⇒ β = 2

α2

(
1 −

√
1 − α2

)

where the smallest root has been selected so that |p| < 1. And, then (17) follows.
For this choice of p = p(α), we represent solution of (19L) as:
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z(t) = rβ

K0
e−r t

∫ t

−∞
erτ

1 − 2p cos (ωτ) + p2
dτ. (22)

Inserting (20) into (22), we arrive at:

z(t) = rβ

K0

1

1 − p2
e−r t

{∫ t

−∞
erτdτ + 2

∞∑
n=1

pn
∫ t

−∞
erτ cos(kω τ) dτ

}
, (23)

where the integration and summation have been interchanged due to the uniform
convergence. The second integral in the right-hand side of (23) is elementary, one can
see [8] entry 2.663.3 p.196. Canceling e−r t , we arrive at, recalling that β = 1 + p2,
at (18), which ends our proof. �
Remark 4 Form the proof of theorem 8, we can observe that:

(i) For α = 0, and then, p = 0, one has simply x(t) = K0, corresponding to the
equilibrium solution for the constant coefficients case.

(ii) Series (18) converges fastly being −1 < p < 0.

As stated by Theorem 7, when considering any initial value problem associated
with the equation (19), the relevant solution will not be in general periodic, but
is asymptotic to the periodic solution individuated in Theorem 7 and computed in
Theorem 8 for the particular cosinusoidal case. The initial value at t = 0 of the
periodic solution is given by the infinite series

x(0) = K0

(
1 − p2

1 + p2

)(
1 + 2r

∞∑
n=1

rpn

n2ω2 + r2

)−1

. (24)

Series obtained in (24) can, in fact, be calculated in closed form, however the expres-
sion we get comes from an identity, verifiable via Mathematica®, of the form:

∞∑
n=0

pn

a n2 + b
= 1

2b

⎛
⎜⎝2F1

⎛
⎜⎝ 1, −i

√
b
a

1 − i
√

b
a

∣∣∣∣∣∣∣ p
⎞
⎟⎠ + 2F1

⎛
⎜⎝ 1, i

√
b
a

1 + i
√

b
a

∣∣∣∣∣∣∣ p
⎞
⎟⎠

⎞
⎟⎠ (25)

which, in view of the fact that in applications we need a numerical evaluation of the
initial condition associated only with the periodic solution of the equation (19), does
not seem useful to us, given the transcendence of the expression obtained in (25).

In Fig. 2, we compare, in a time span of 30, for the set of particular values given
by r = .1, α = .5, K0 = 1, ω = 2π the periodic solution, corresponding, following
(24), at the initial value

1

x(0)
= 2

5
√
3

⎛
⎜⎝ ∞∑

n=1

(√
3 − 2

)n

10
(
4π2n2 + 1

100

) + 5

⎞
⎟⎠ � 1.15455
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Fig. 2 Illustrating Theorems
7 and 8

thus x(0) � 0.84 being here the period equal to 1.

4 Periodic Harvesting

The logistic constant coefficient equation with constant harvesting, a, b, h > 0 is:

{
ẋ(t) = a x(t) − b x2(t) − h,

x(0) = x0,
(26)

(26) is an elementary Riccati equation, it is treated in [2] Chap.2, Sects. 2.7.2 and
2.7.2. By the way in this case, equation (26) can be solved using the fact that a
stationary solution, putting  = a2 − 4bh, assuming  > 0, is given by:

x0(t) = a + √


2b

hence, with standard methods, we see that solution x(t) of (26) is given by

x(t) = a + √


2b
+ 1

ce
√

t − b√


Moreover, if < 0 the integration of (26) is obtained using trigonometric functions,
generated by the inversion of the algebraic integral:

∫ x

x0

ds

−h + as − bs2
= t.

That said, we will study the initial value problem:



106 D. Ritelli

{
ẋ(t) = a x(t) − b x2(t) + c cos(ω t) − h ,

x(0) = x0 > 0.
(27)

Throughout the cycle of the exogenous, time-dependent, periodic forcing term
f (t) = c cos(ωt) − h, c > 0, the population is unceasingly lowered by a constant
harvesting of rate h > 0, plus a periodic unbalance c cos(ωt). The birth parame-
ter a is not under control, but the overcrowding and harvesting parameters b and
c, as well as the harvesting/restocking parameters h and ω, present an avenue for
exogenous control. We will integrate the Riccati equation (27) through its standard
transformation into a second order linear (Mathieu) equation (see [4, 14]). Moreover,
we establish (Theorem 9) the analytical relationship among the coefficients a, b, c,
h, while ω remains not involved, and the initial condition x0, sufficient to ensure
that (27) has a defined, bounded and positive solution x(t) for any t > 0, namely
|x(t)| ≤ K for a suitable positive number K > 0 for any t ≥ 0. The proposed model
aims to represent situations in which seasonal conditions occur that lead to the spread
of a viral infection.

4.1 Global Features of the Solution

We transform (27) with the usual change of variable

u(t) = exp

(
b

∫ t

0
x(τ ) dτ

)
⇔ x(t) = 1

b

u̇(t)

u(t)
, (28)

obtaining: {
ü − a u̇ − b c cos(ωt) u − b h u = 0,

u(0) = 1, u̇(0) = b x(0) = b x0 > 0.
(29)

Notice that (29) is a damped Mathieu equation, by the way the term −au̇(t), is
removed using a second (standard) change of variable, see, for instance, [20, chapter
1, Sect. 3, pp. 7–8], namely v(t) = e−(a/2)t u(t) which provides the normal form
equation ⎧⎪⎨

⎪⎩
v̈ −

(
a2

4
− b h + b c cos(ωt)

)
v = 0,

v(0) = 1, v̇(0) = bx0 − 1

2
a.

(30)

Equation (30) will be integrated using Mathieu functions later. Let us first provide
relationships ensuring that (27) has a bounded solution. Recall that (27) is solved
by:

x(t) = a

2b
+ 1

b

v̇(t)

v(t)
. (31)
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Therefore, we need to prove that the logarithmic derivative of the solution of (30) is
bounded. Write for simplicity (30) as:

v̈ − A(t)v = 0,withA(t) = a2/4 − b h + b c cos(ωt). (32)

We require the boundedness for the logarithmic derivative of solution of (32). First
notice that if v is solution of (32), then its logarithmic derivative solves the first-order
Riccati equation:

ẏ = A(t) − y2. (33)

We will use standard results on differential inequalities, provided in [10], in order
to deduce the boundedness of y(t) depending on A(t). To this end, let us prove the
following Lemma, which holds for any bounded real function A(t).

Lemma 2 Consider differential equation (33) assuming A(t) bounded, and let y
the solution of (33) such that y(0) = y0.

(i) If 0 < m2 = inf
t∈R

A(t) < M2 = sup
t∈R

A(t) and |y0| < |m| , then y is bounded,

while for |y0| > |M | y is unbounded.
(ii) If −m2 = inf

t∈R
A(t) < −M2 = sup

t∈R
A(t) < 0, then y(t) is unbounded.

(iii) If −m2 = inf
t∈R

A(t) < 0 < M2 = sup
t∈R

A(t), then neither the boundedness, nor

the unboundedness of y can be inferred.

Proof We begin with (i). Using a standard argument, see for instance Corollary 4.2
page 27 of [10], we find that ym(t) ≤ y(t) ≤ yM(t)where ym and yM are the solutions
of the two initial value problems:

{
ẏm = m2 − y2m,

ym(0) = y0,

{
ẏM = M2 − y2M ,

yM(0) = y0,

namely:

ym(t) = m
m sinh(mt) + y0 cosh(mt)

m cosh(mt) + y0 sinh(mt)
, yM(t) = M

M sinh(Mt) + y0 cosh(Mt)

M cosh(Mt) + y0 sinh(Mt)
.

Such functions are both bounded if |y0| < m, and then solution of (33) is also
bounded. Similarly, if |y0| > M the functions ym(t), yM(t) are unbounded, and then
y is unbounded too. The proof of (ii) is similar; in this case we have:

−m2 = inf
t∈R

A(t) < −M2 = sup
t∈R

A(t) < 0.

Thus, once again, we find ym ≤ y ≤ yM , but now ym and yM are solutions of the
initial value problems:
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{
ẏm = −m2 − y2m,

ym(0) = y0,

{
ẏM = −M2 − y2M ,

yM(0) = y0,

namely:

ym(t) = m tan
(
−mt + arctan

y0
m

)
, yM(t) = M tan

(
−Mt + arctan

y0
M

)
,

that are both unbounded, and not globally defined, imposing the same behavior upon
y. Finally, in the case of (iii), we can deduce only an upper bound for y but not a
lower bound. �

By the above Lemma 2, we can establish the following sufficient condition for
the boundedness of the solutions of (27).

Theorem 9 Consider the initial value problem (27). If the following inequalities
hold:

4b (h + c) < a2, |2bx0 − a| <
√
a2 − 4b (h + c) , (34)

the solution of (27) is bounded.

Remark 5 It is easy to evaluate the mean value x̄(t) in [0, t] of the solution of (27);
for recalling (31), we have:

x̄(t) = 1

t

∫ t

0
x(τ )dτ = a

2b
+ 1

bt
ln

∣∣∣∣ v(t)

v(0)

∣∣∣∣ , (35)

where v solves (30).

4.2 Closed-Form Integration and Examples

The Mathieu equation is a linear second-order equation of the form:

y′′ + (λ − 2q cos(2t)) y = 0 (36)

A fundamental system of solutions of (36) is given by the elliptic sine Se(λ, q, t)
which is such that Se(λ, q, 0) = 0 and is in odd function and the elliptic cosine
Ce(λ, q, t), which is such that Ce(λ, q, 0) = 1 and is even. For further details one
can see [4, 14, 23]. Rewrite (30) as:

{
v̈ − (� + � cos(ωt)) v = 0,

v(0) = 1, v̇(0) = X,
(30b)
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Fig. 3 The stable case: the
population is bounded but
oscillating at any time

where: � = �(a, b, h) = a2/2 − bh, � = �(b, c) = bc and X = X (a, b, x0) =
bx0 − (1/2)a. Solution of v of (30b) is then:

v(t) =
N1 Se
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ω2
,
2�

ω2
,

ω

2
t

)
+ N2Ce

(−4�

ω2
,
2�

ω2
,

ω

2
t

)
ω (D1 − D2)

, (37)

where:

N1 = ωCe′
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,
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, 0

)
− 2 X Ce
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,
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, 0

)
,

N2 = 2 X Se
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,
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, 0

)
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,
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ω2
, 0

)
,

D1 = Ce′
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,
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, 0

)
Se
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ω2
,
2�

ω2
, 0

)
,

D2 = Ce

(−4�

ω2
,
2�

ω2
, 0

)
Se′

(−4�

ω2
,
2 B

ω2
, 0

)
,

and the primes ′ denote derivatives with respect to t . To express the solution of (27),
we have to insert (37) into (31).

4.3 A Sample Problem

To illustrate the concrete effects of the introduction of a periodic term in the logistics
model, we present a simulation in the case providing bounded solution, therefore
using data meeting condition (34) of Theorem 9. Let a = 1, b = 1/20, c = 3, h =
1/2, ω = 1/(2π), x0 = 5.
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Fig. 4 Solution comparison from Sect. 2

In Fig. 3, the continuous black line indicates the solution of the initial value prob-
lem (27), expressed explicitly in terms of Mathieu’s functions, the dotted black line
is x̄(t), i.e., the mean value of the solution as computed in (35), the red dashed
line represents the unperturbed solution of the constant coefficient logistic equation,
corresponding to c = 0 and h = 0 in our notations, eventually the blue dashed line
represents the logistic equation perturbed only by the harvesting effect, correspond-
ing to c = 0 and h > 0 in our notations. The fact that the harvesting solution is
dominated by the logistics solution with constant coefficients is, as expected, found.
Moreover, the mean value x̄(t) goes asymptotically to the asymptotic value reached
by eliminating the periodic effect: This is also a reasonable behavior confirmed by
the computational evidence. The most interesting aspect is, certainly, the fact that
the influence of the periodic term accentuates the oscillations of the solution, repro-
ducing the effects of epidemic waves brought by seasonal viral infections, like the
coronaviruses.

Explicit solutions and Mathematica®

In Sects. 2 and 4, we have obtained explicit solutions in closed form of the logistic
differential equations used for the description of epidemiological models. Although
the formulas obtained in the respective integration processes are structurally compli-
cated, given that, thanks to the current computer algebra resources, they can still be
implemented and, therefore, can be used operationally. Moreover, as the following
two examples, one related to Sect. 2, see Fig. 4 and the second to Sect. 4, Fig. 5, show
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Fig. 5 Solution comparision from Sect. 4

a remarkable numerical precision in the Mathematica® libraries. Below we show the
comparison, obtained by discretizing the maximum difference between numerical
solution and solution obtained in closed form in two sample problems.

Conclusion

In this chapter, we have set out three different generalizations of the logistic equation,
providingmodelsmore suitable to represent real cases, also and especially in the field
of epidemiology. In the first two models, we considered two particular occurrences
of the logistic equation with non-constant coefficients, which confirmed the theoret-
ical analyses conducted by Nkashama [18, 19] and deMottoni and Schiaffino [5] in
two particular cases, but significant in the concrete implementation. The last model
instead deals with a periodic perturbation of a logistic equation with constant coef-
ficients. All models presented allow explicit and concrete calculations, illustrated in
detail by the use of Mathematica®.
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The spirit of our contribution is that of fundamental research, aimed at offering
new possible future instruments of investigation to scholars of phenomena in real
situations.
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Professor Stefano Alliney, which could not materialize due to the worsening of his health, which
led to his premature death. This work is dedicated to his memory.
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A Transition of Shared Mobility in Metro
Cities—A Challenge Post-Lockdown
Covid-19

Mohd Aman and Bushra Miftah

Abstract This chapter is written for the welfare of the society, to question and
enlighten on effects of the increment or decrement in the percentage of quality of air
causing pollution due to the rise in the traffic post-lockdown due to Covid-19 inmetro
cities, specifically in Delhi. In this chapter, we address the question about people’s
preference of moving in the shared taxis to their workplaces or their reluctance
travelling in shared vehicle because of the fear of getting infected. The sensitivity of
the situation will compel the people to move in a single-occupied vehicle (SOV). The
rise in the number of vehicles on the roads will result in traffic jams, and different
kinds of pollutions where people battling with the pandemic will inevitably get
exposed to other health-related issues.We use aBureau of Public Roads (BPR)model
to combat this issue endangering the environment and public health. We exploit the
BPR function to relate average travel time to the estimated number of commuters
travelling by car.We collect mode share data from the NITI Ayog, the State Resource
Centre and other authentic sources,which gives unique figures of the impact of shared
mobility in India and how, in its absence, various sectors will get affected. Using the
given data and theBPR,we evaluate increased vehicle volumes on the road if different
portions of transit and carpool users switch to single-occupancy vehicles and its effect
on multiple other factors. Based on the study of densely populated city, Delhi, we
predict that cities with significant transit ridership are at risk for extreme traffic and
pollution unless transit systems can resume safe with effective protocols.
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1 Introduction

The twenty-first century saw the emergence of a newly found coronavirus, also
known as the Severe Acute Respiratory Syndrome (SARS) COV–2 in the Wuhan
city of China. Unaware of the cause of transmission to the human body, the deadly
virus which had been declared Public Health Emergency of International Concern
by WHO earlier this year has been contracted by more than one crore population
across the globe causing more than 1 lakh fatalities bringing the entire world to a
standstill.

India,which holds a population ofmore than 130 crores, has been severely affected
by the newly found virus. However, to curb the same, India went under what is known
as the strictest lockdown on March 22, 2020. The stay-at-home orders had a drastic
effect on the life of every common person. It caused a direct impact on the usage
of the transport system. As the stay-at-home order took effect, ridership data show
steep decline in both transit ridership and vehicular traffic.

According to the data collected in fromNITIAyog [1, 2], a State-Resource-Centre
of Government of India established with the aim to achieve sustainable development
goals in the economic policy-making process; there was an usurp growth in the
vehicle ownership and transportation in the last few years which led to overcrowding
and unsorted situation that resulted in the loss of 1.42 lakh crore INR annually
alone in the cities of Delhi, Mumbai, Kolkata and Bangalore. It has had severe and
adverse implications on the health and environment. The increment in the number
of vehicles had severely affected India’s energy consumption, energy security and
economy, pollution, congestion, health and safety. The graphs in Figs. 1 and 2 depict
a more detailed picture of the congestion and its cost across metro cities.

The transportation sector in India accounts for 18% of commercial energy con-
sumption and is highly dependent on oil imports. India imported 80% of its oil at the
cost of Rs. 4.2 lakh crore in recent years. Additionally, private vehicle use has signif-
icant implications on land requirement for parking: In Delhi, for example, parking
accounts for 8–10% of the available land pool.

There is a direct effect of ridesharing practice on space. The Fig. 3 gives the idea of
estimated space that could be saved by switching to rideshare from private vehicles
in big cities in 2017.

Weighing the seriousness of the situation, it is deducted that with the complete
unlocking of the lockdown, there will be a drastic mode shift of transportation to
single-occupied vehicles (SOV).

Definitely, there will be a massive change in the traffic volume caused due to a
sudden drop in transit usage and its impact on the commute time on the road. With
the collected data from verified sources, we estimate the number of cars on the road
if certain proportions of commuters switch from transit and carpool modes to single
occupancy vehicle (SOV), thus increasing the total number of vehicles on the road
and the average travel time. The total traffic volume is therefore taken as the number
of vehicles commuting from this mode. This data when applied on the BPR model
[3–6] to calculate the traffic volume and average traffic time give us an idea of the
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Fig. 1 Cost of congestion across cities (2017) in USD Billion

Fig. 2 Road congestion during peak hours before vs. after rideshare (2017)
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Fig. 3 Estimated space that can be saved by adopting rideshare assuming rideshare substitutes for
private cars (2017)

travel time in a condition when there is a decrease or the increase in the number of
vehicles on the road.

Several researchers have carried out studies trying to model the congested traffic
in the urban network for different countries across the globe. For example, Saberi et
al. [7] used a susceptible-infected-recovered (SIR) model to describe the spreading
of traffic jam. Colak et al. [8] used the ratio of road supply to travel demand as
a dimensionless factor to explain the percentage of time lost in congestion. The
macroscopic BPR model is studied by Wong et al. [9] and Kucharski and Drabicki
[10] to relate traffic demand and travel time. One or several cities or regions are
studied in the above works. Our research is specific to a densely populated Indian
metro city, Delhi with an exorbitant increase in the traffic. There is no work done
using the BPR analytical model on Indian metro cities which makes an inquiry with
regards to road management in Indian cities and make predictions for their travel
time under various scenarios of possible traffic volume. India accounts for top 15
most polluted cities in the world. Figure4 gives the average travel time of four highly
congested metro cities in India in 2018.

The major finding on the collected data throws light on the greater risk of high
transit cities of increased traffic so that system can resume safely without any com-
plications.
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Fig. 4 Travel time of congested metro cities of India (2018)

The high-transit metro cities are at a higher risk with potentially 4–30min addi-
tional commute travel time in a one-way trip. This unusual rise in road transport
which will result in a sudden increment in the number of vehicles will cause serious
health and environmental issues. This can be curbed, and the transit ridership can be
brought to normalcy with returns in trips by car, thereby bringing down the traffic.

The rest of the chapter deals with the introduction of the formulation of BPR
model and the introduction of data on traffic in metro cities of India and show the
forecast result of traffic in different reopening scenarios.

Our main finding is that the high–transit cities are at greater risk for increased traf-
fic volume unless their transit systems can resume safe, high throughput operations
quickly.

2 BPR Model

A widely used impedance calculation model, the Bureau of Public Roads (BPR)
model [3–6] states that traffic flow affects the traffic speed. The Bureau of Public
Roads is a federal agency created in 1918. Lodged in the USDepartment, it has taken
up much responsibility of building roads in national parks and forests, assisted states
with road construction, helped beautify highways, and conducted various transporta-
tion studies.

The Bureau of Public Roads (BPR) function [3, 4] is a model that relates the
volume of traffic on the road to the travel time to traverse it. It has a great deal of
usage in transportation management [11, 12] and network traffic stimulation [13].
According to recent studies, apart from being applied on single–road traffic [9, 10],
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it also has applicability on urban scale transportation analysis. A BPR function thus
provides us with a theoretical foundation of predicting metro area travel congestion
based on traffic volume.

The relationship between travel time and the volume (total number of vehicles)
can be expressed by the classical BPR function in the following ways:

T = T0
[
1+ a

(
N

C

)b
]
, (1)

where, T is the travel time as a function of N the volume on the roadway. The param-
eters T0, C are the free-flow travel time and the practical road capacity, respectively.
The shape parameters a and b can be fit or assumed to follow a common choice of
a = 0.15 and b = 4.

In order to apply the function at the scale of a city, we interpret the BPR model as
a function that takes the total number of road users in a city N as a proxy for volume
and returns the average commute travel time T in the city. In this interpretation,
the capacity C should be viewed as the total number of road users that can be
accommodated in the city before average travel time begins to increase. The average
travel time is overall users at all time of the day.

Rewriting (1), we have

T = T0
[
1+ 0.15

(
N

C

)b
]
, (2)

or
T = T0 µ+ N . (3)

The above equation clearly shows that the travel time T and the traffic volume N
have a linear relationship. The model parameters in (1) can be estimated using linear
regression. With the historic data from NITI Ayog and other sources [1, 2, 14–16],
we conduct a linear regression on the data from 2012–2018 to find the coefficients
T0 and µ. This allows us to estimate the free-flow travel time T0 and the practical
road capacity

c =
(
0.15 T

µ

)
, (4)

for the metro city Delhi deriving from (2).
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3 Data Analysis & Implementation

3.1 Data Description

The data used in the given equation has been derived mainly from NITI Ayog which
is a State-of-Art Resource Centre with in-demand knowledge and some other sources
as well [1, 2, 14–16]. Using the data, we can answer the following questions:

How many cars are on the road in each city?

What is the average travel time experienced by commuters in
each city?

The data records means of transportation to work by selected characteristics. For
Delhi, annual statistics of a given time (2012–2018) is recorded including the total
number of road users for each commute mode (shared vehicles including public
transit, single-occupancy vehicles (SOV)), as well as the average commute time
(Fig. 5).

The road commute metrics are calculated with the help of raw data. The average
travel time of the four-wheelers is taken. The total number of vehicles is computed
by converting cars, jeeps, shared vehicles and buses into equivalent vehicles on the
road.

We have estimated the resulting vehicles on the road when 25%, 50%, 75% and
100% of commuters using shared vehicles switch to SOV.

We use the latest statistics from the 2018 data to estimate the number of vehicles
on the road. The data from 2018 to present can be considered in an extension and

Fig. 5 Observed data of number of vehicles and average one-way tavel time (Delhi) from 2012–
2018
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Table 1 Exploitation of historical dataa & Data computed using BPR function (Delhi)

Year No. of Vehicles Avg. Travel Time Trave Time Ratio
Capacity Ratio

2012 2644520 51 1.007
0.807

2013 2831460 54 1.067
0.864

2014 3102442 59 1.165
0.946

2015 3470526 61 1.205
1.059

2016 3711060 65 1.284
1.132

2017 3937104 67 1.324
1.201

2018 4245760 70 1.383
1.295

a Historical data collected from NITI Ayog & other reliable sources

is not taken into account in this analysis. We also note that the mode share data for
taxis and ride-hailing is mixed in with motorcycles, bike and others, and we omit the
influence of taxis (not OLA, UBER, etc.) in this study and do not count taxis in the
total number of vehicles. Table 1 gives the historical commute data of Delhi from
2012 to 2018.

3.2 Model Application & Results

BPR Model

The linear regression applied to the historical data of Delhi gives us an estimate of
free-flow travel time and capacity. Figure6 gives the regression line for better under-
standing of the trend. To understand the travel time, we study the traffic scenarios
in different metro cities. We show for the metro city Delhi, the increment in travel
time follow the BPR model as described in (2).

We deduce that the highly congested metro cities have a strong relationship
between traffic volume and travel time over the years.

For better insight, we see the drift in travel time by analysing the data of Delhi.
We show that for Delhi, travel time follows the BPR trend as mentioned in (2). The
cities that do not have a strong relationship between the volume of traffic and travel
time are excluded. The reasons for excluding can be an error in data collection or the
traffic volume not being the main factor for increase in travel time. We exclude these
cities in analysis as the traffic volume does not facilitate in predicting the commute
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Fig. 6 Regression line and scatter plot for the data of Delhi from 2012–2018

time. The exclusion is done based on some statistical analysis. We measure the
linear correlation between travel time T and the fourth order of traffic volume N 4

and calculate their Pearson’s correlation coefficient and two-tailed p value. We filter
out the metro areas where Pearson’s correlation coefficient is larger than 0.5, and p
value is smaller than 0.1. On the basis of threshold, we predict that the analysis is
applicable to the cities including Delhi, Bangalore, Mumbai and Kolkata and some
other that are not included in the further analysis. The BPR model is then applied
to Delhi and other metro cities. We see that in Delhi travel time increases with the
increase in the number of vehicles, nicely following the BPR function.

We can observe a similar trend in the other mentioned metro cities using the BPR
model, which gives us the estimated free-flow time and practical road capacity. Using
the estimated free-flow travel time and road capacity, we calculate two important
metrics for mentioned metro area:

• Travel time ratio: the ratio of actual travel time versus free-flow travel time. A
travel time ratio of 1.1 means the current travel time is 1.1 time (or 10% higher)
than the empty road travel time.

• Capacity ratio: the ratio of traffic volume versus road capacity. A capacity ratio of
1.1 means there are 10% more cars than the road capacity.

Travel time ratio and capacity ratio allows us to standardize each city, accounting for
the fact that larger cities tend to have larger capacities and longer commutes, even
when the roads are empty.

Figure7 shows the standardized relationship of travel time ratio and capacity ratio
of Delhi (Blue dots are historical data and yellow dots are prediction for 25%, 50%,
75% and 100% switch to SOV). We see that the city follows the same growing curve
when there is a decrease in the number of shared vehicles on the road. Essentially,
what we are doing in the standardization is looking at the rate travel time ratio
increases with capacity ratio, then estimate where the city sits on the BPR curve. For
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Fig. 7 Travel time ratio vs.
capacity ratio for Delhi
under different scenarios

Delhi, there is an increase in travel time ratio with an increase in capacity ratio. This
indicates that the traffic volume of Delhi is way above road capacity. The same can
be observed in Fig. 7.

3.3 Prediction of Traffic Scenarios Post-Lockdown

For decades now, there has been a massive amount of pollutants in the atmosphere,
which is a cause of major concern. The air quality has however enormously improved
from hazardous to moderate during the lockdown imposed due to Covid-19.

Amassive rise of pollutants is expected post-lockdownwith increasing number of
vehicles on roads with commuters switching to SOV. A sudden drift in the number of
vehicles will cause an adverse effect on the traffic system. However, a massive decre-
ment in the amount of pollutants in the atmosphere has been observed, which was a
cause of major concern pre-lockdown. It has been successfully reduced, improving
the air quality from hazardous to moderate.

According to the Air Quality Index, the unprecedented growth in the pollutants
in the atmosphere has caused not only environmental and health issues but a heavy
impact on the economy.

If we focus on the situation on the road traffic before lockdown, we see a high
level of congestion in four megacities in India, namely Delhi, Mumbai, Bangalore
and Kolkata, where total congestion cost was estimated to be more than USD 22
billion per year. We can thus estimate the potential positive impact on ridesharing in
each city.

Delhi and Mumbai have been two mega urban centres with relatively more devel-
oped modern public transport system. The congestion levels remained high during
the pre-lockdown era due to high level of private vehicles in the city. With the bur-
geoning population and the growing prosperity of Delhi and Mumbai, the reliance
on cars has increased, adding more pressure to the road network.



A Transition of Shared Mobility in Metro Cities—A Challenge … 123

Fig. 8 Example of BPR travel time prediction for Delhi. The blue points are the observed data,
and the yellow points are the predictions when 25%, 50%, 75% and 100% of the carpool and transit
commuters switch to SOV

Bangalore and Kolkata have a relatively smaller population; these two cities have
been more dependent on motorbikes and cars adding to huge ownership of private
vehicles causing intense congestion.

Government has urged the cities to maintain control over vehicle growth and
encourages the use of public transport as key objectives for going forward. A com-
bination of infrastructure improvement, addition of more mass transit, as well as
efficient alternatives to vehicle ownership, will facilitate in curbing congestion.

It can be easily predicted that if commuters quickly return to road, the transit
users are more likely to switch to SOV. We have considered three scenarios, namely
when 25%, 50%, 75% and 100% of the carpool and transit users switch to SOV. The
assumed scenarios are created to show a range of possibilities of the mode shift to
SOV, which is highly likely post-lockdown in the country. It does not necessarily
predict the actual mode shift.

The predictions for Delhi under each of the four scenarios is shown in Fig. 8. The
data plotted using the BPR model can be seen to be easily fitted along the curve. We
can determine from Fig. 8 that cities having more cars than the network can handle
(e.g., Delhi here) are sensitive to the changes in the number of vehicles on the road.
A few minutes of increment in average travel time can make a huge impact on the
traffic network if multiplied by the number of road users in the city, and this can result
in thousands of additional hours time spent in traffic each day. However, the rate of
actual mode shift of transit and carpool users that will shift to personal vehicles or
SOV depends on a multitude of factors. They may be specific of each traveller and
each city, such as unemployment, cost of maintaining SOV, remote work.
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We are, however, not claiming that a specific percentage of users will switch to
single-occupied vehicles. The purpose of creation of the predicted scenarios is to
identify the cities which are more sensitive to changes in the number of cars on the
road post-lockdown in the country.

4 India’s Transport Growth Journey and Its Effect on
Energy and Environment

If we look at the present situation in India, there is an urgent need to conserve energy
and land, control pollution and “greenhouse gas emissions”, and to alleviate poverty.

Urban transport has been a major cause and a solution to combat these issues.
The need of the hour is planned urban mobility solutions where all categories of road
users are facing problems in commuting.

If we look at the scenario before the pandemic brought the world to a standstill the
increment in the number of vehicles on the road has caused problems to everybody,
the pedestrians do not get a safe, conflict-free and obstruction-free path to walk. The
cyclists have to fight for the space to cycle with fast moving motorized modes of
transport, many a time risking their lives. This is due to overcrowding of vehicles
reducing the area of parking, compelling people to park their vehicles out of the
allotted area.

The users of shared vehicles face long waiting periods, uncertainty in travel time
and difficult conditions of travel. The movement of personal motorized modes of
transport is slowed down by the slow-moving passenger and goods traffic and face
significant delays at traffic signals and road junctions. Road users get restless leading
to road rage, rash driving and accidents.

The use of desirable modes, walk, bicycle and PT, is declining and the use of
undesirable modes, i.e. car and two-wheelers, is growing. As a result, congestion is
increasing, urban mobility as well as road safety are declining, and pollution and use
of fossil fuel and accidents are rising everyday.

4.1 Transport and Environment

The second largest consumer of energy in India is the transport sector. The unprece-
dented and haphazard growth of the transport has been a major cause of concern, for
it has not only increased pressure on the limited non-renewable energy resources but
has considerably increased environmental pollution.

Increasing car dependency in India, especially in the urban areas, is most visible
in vehicular emissions which cause air pollution, noise pollution and corresponding
health effects. Increasing energy consumption, pollution, land intrusion and conges-
tion are some of the areas that need urgent attention.
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Fig. 9 Effects of RoadTransport onGrowth. Source: ncbi.nlm.nih.gov/pmc/articles/PMC4746948/

Transport planning is intrinsically linked to land use planning and both need to be
developed together in a manner that serves the entire population and yet minimizes
travel needs. An integratedmaster plan needs to internalize the features of sustainable
urban transport.

Rapid motorization of Indian cities has led to a public health crisis in the form
of increased traffic injuries and fatalities, exposure to air and noise pollution and
decreased physical activity among many other adverse health and environmental
impacts (Fig. 9).

4.2 Health and Social Issues

Adverse effects of increasingly car-based urban transport systems in India and other
emerging economies are most visible on the local level. Vehicle emissions such
as particulate matter, NOx or SOx pollute the atmosphere. Traffic noise act as a
hindrance in conversation and disturbs the sleep. Road accidents pose further risk
to the citizens’ health, affecting especially vulnerable groups such as pedestrians,
cyclists or children.

The transport sector has contributed significantly to the emissions of toxic sub-
stances into the atmosphere. High demand for used automobiles might have sufficed
and catered the need of the people, but it has made the situation worse for their health.
Every vehicle on the road adds to the harmful substance in the atmosphere.

Many surveys reveal that 45% of the respondents claimed that they have transport-
related diseases in the city. It is pertinent to note that 50% of the respondents who
claim that they have transport-related health challenges have eye problems, approxi-
mately 16% has asthma and the same percentage has skin-burn diseases. In addition,
8% and 5% of the patients claim that they have upper respiratory tract infections and
hypertension, respectively. Only 2% of respondents indicated that they have hearing
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impairment resulting from unpleasant sounds emanating from indiscriminate use of
horns by motorists and record players.

The increase in air pollution has very serious health implications. Poor air quality
increases respiratory ailments like asthma and bronchitis, heightens the risk of life-
threatening conditions like cancer and burdens our health care systemwith substantial
medical costs. Particulate matter is singlehandedly responsible for up to 30, 000
premature deaths each year.

It is impossible to reduce all environmental exposures to a level at which the risk
to human health is zero.

4.3 Personal Vehicles and Their Impact

Use of personal motorized vehicles and its significant contribution to air pollution,
greenhouse gas emissions and fossil fuel consumption are well accepted. The main
reason for the increasing use of personal vehicles is the reluctance of the people
to travel in public transports (PTs) for the inefficiency in maintaining the quality
of the transport. Not until this situation was tackled that Covid-19 hit the country,
making the situation even worse where even a greater population will now switch to
a personal mode of commute, turning the whole situation gross.

Simultaneously, there is an urgent need to put a restraint on the use of personal
vehicles. Government of India is already supporting measures such as traffic-calmed
areas, pedestrianized areas, car limited zones, congestion pricing zones, no-emission
zones, high parking charges, park & ride facility and other economic instruments to
control the indiscriminate use of personal motorized modes. However, these may not
suffice in the current panic-like situation.

Increase in the number of PT would not suffice in such a situation of crisis. The
pandemic is more likely to force people to choose private vehicle ownership for the
fear of infection, reducing their dependency on PTs.

AQI calculates the air pollutants and particulate matter, nitrogen oxide, sulphur
dioxide, ozone, carbonmonoxide, etc. The ones that are ofmost concern is particulate
matterwith a diameter of 2.5 and10microns. ThePTof these sizes cannot be removed
and filtered from the body.

It is obvious that low levels of air pollution reached during the lockdown have
considerably reduced the particulate matter in the atmosphere, thus reducing the
deaths to approximately six lakhs. Due to the restricted activities during the period
of lockdown, the particulate matter was reduced by 52% nationwide.

According to the Central Government’s System of Air Quality andWeather Fore-
casting andResearch, all the sources of pollution have decreased during the lockdown
period to a considerably lower level which has not been seen in the past four decades.

These changes are however temporary, and once the lockdown is brought to clo-
sure, the vehicles will increase at an alarming rate due to a sudden switch to SOV or
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personal vehicles. A measure to save oneself from one deadly disease, i.e. Covid-19,
would push them to the risk of another.

This situation needs dire and urgent attention to the public transport in India is
not very developed and walkable and cycling environment needs to be promoted at
a larger scale. With lakhs of travel trips a day, cities without adequate measures to
tackle the situation will lock in an enormous amount of pollution and carbon.

There is a rise of 7–14 time more pollutants contributed by car or two-wheelers
than by buses in Delhi in every trip. There is a constant decline in the usage of the
buses in Delhi which is expected to witness even a steeper decline post-lockdown.

4.4 Measures to Curb the Traffic Upsurge

With the unlocking of the cities, therewill be steep inclination in the people switching
to private mode of transport. The spread of the infectious disease can be easily
contracted in close proximity of the infected person; therefore, people will keep off
from enclosed spaces especially the shared mode of transport.

Confined and crowded environment result in easy contraction of the diseasewhich
might result in an outbreak. The restarting of the public transport with reduced
crowding is an issue of paramount importance.

The safetymeasures should be incorporated in such amanner to protect commuters
and on-board staff. Proper and regular sanitization of public transport with proper
distancing might serve as a boon.

Several other ways are being discussed by the government keeping in view the
welfare of the society.

Conclusion

After performing the experiment with the help of the given data, it is observed that
the increase in the average travel time is only by few minutes. This may appear as
a minimal change, but the delay takes place in each trip. To understand the actual
time-lapse if it is multiplied by the total number of travellers in the city, even aminute
of change will result in thousands of additional hours in the traffic.

The data on road commute mode and travel time in different cities has been
accumulated from the verified sources such as State Resource Centre, NITI Aayog
and Transport Sector of India.

A BPR model is further used to establish a relation between the average travel
time to the estimated number of commuters travelling by car. The resulting travel
time is thus deduced using the BPR model by estimating the number of cars on the
road wherein the transit and carpool users switch to single-occupancy vehicles.
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Therefore, it can be concluded that

• When the number of vehicles is more than the capacity of the road. The increasing
cars are inimical to everyone’s commute. This is calculated and analysed using
the BPR model.

• Covid-19 brought serious implication in the mode shift of traffic. The imposition
of lockdown throughout the country resulted in deserted roads thereby decreasing
the pollution. With the reopening, traffic will eventually spring back. If transit
ridership does not return, travel time will increase, sometimes dramatically.

• A possible increase in travel time per trip is of 5–20 minutes in high-transit cities,
which add up to several hundreds of thousands of hours of travel time each day.

• These discordant and erratic increases are avoidable if transit ridership resumes in
accordance with car traffic.
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Analysis of Covid-19 Virus Spreading
Statistics by the Use of a New Modified
Weibull Distribution

Abdelmajid Belafhal, Salma Chib, and Talha Usman

Abstract Since the World Health Organization has declared Coronavirus a pan-
demic, researchers have given several interpretations on how this virus is spreads. In
the presentwork, in anticipation of substantial fatal effects on health of people follow-
ing this human-to-human spread, we aim to propose a new six parameter-modified
Weibull distribution to analyze the spread of Covid-19 virus. We apply this model to
study the cumulative cases infected in some countries, we give a global analysis of
the statistical data of the pandemic, and we prove that our new distribution efficiently
generalizes some existing models and fits correctly some data registered from Febru-
ary to June 2020. We use these results to assess the potential for human-to-human
spread to occur around the globe.

Keywords Covid-19 virus · Modified Weibull distribution · Moments ·
Reliability function · Statistical properties

1 Introduction and Preliminaries

In December 2019, Covid-19, as a new coronavirus declared as a global pandemic
by the World Health Organization, is spreading quickly in more than 214 countries.
A large cases reported by June 30, 2020, became infected in the world by this novel
virus which caused in the world 10435321 cases and 508844 deaths. These numbers
are distributed as: 396674 cases and 52699 deaths in Africa, 5318248 cases and
251324 deaths in America, 2272566 cases and 56207 deaths in Asia and 2437636
cases and 191255 deaths in Europe [1]. The basic issue to be addressed is to give
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an analysis of the Covid-19 virus spreading statistics on a lot of cases from some
countries.

For this problematic, we have studied different published models used in the past
to model some distributions, because we have need to promote the use of statisti-
cal analyses that provide guidance for the evolution of the virus. Until now, many
researches have been developed to study the development, propagation law and pre-
diction of Covid-19 [2–13].

In the past and for modeling lifetime data, many distributions are proposed. The
most popular ne is the Weibull distribution introduced in 1951 by Weibull [14] and
applied by Bailly and Bell [15] in forestry and in other fields [16]. Many works have
been investigated about modified forms of theWeibull distribution with two [17–19],
three [20–24] four [25–31] and five parameters [32–39].

In this work, we propose a modified Weibull distribution, referred as NMWB ,
with six parameters for given a generalization of some previous distributions. To our
knowledge, no study has proposedwith this form andwith this number of parameters.
The present investigation, based on the results of Refs. [31, 36], is used to analyze
the Covid-19 virus spreading statistics by taking different countries as examples.

For the present investigation, we recall in the following some theoretical notions.

1.1 The New Model NMWB Distribution

We introduce our new modified Weibull distribution by proposing the following
cumulative distribution function (CDF)

F (x) =
[
1 − e−(αxθ +βxγ eχx)

] [
1 + λe−(αxθ +βxγ eχx)

]
, x ≥ 0. (1)

In this expression, the five parameters α, β, θ, γ and χ are shape parameters and λ,
called the transmuted parameter, is defined by−1 ≤ λ ≤ 1. α is a non-negative scale
parameter representing the characteristic life and χ is the acceleration parameter.
From Eq. (1), and by deriving the CDF, one can determine the failure probability
density function (PDF) of our model as

f (x) =
[
αθxθ−1 + β (γ + χx) xγ−1eχx

]
e−

(
αxθ+βxγ eχx

) [
1 − λ + 2λe−

(
αxθ+βxγ eχx

)]
.

(2)
This PDF can be also expressed in terms of survival and hazard functions Sw and hw

of the Weibull and modified Weibull distributions SMW and hMW as

f (x) = [hW (x, α, θ) + hMW (x, β, γ, χ]SW (x, α, θ)SMW (x, β, γ, χ)[1 − λ + 2λSW SMW ].
(3)
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Fig. 1 (a) Probability Density Function and (b) Cumulative Distribution Function for the NMWB
distribution with the following parameters: Solid curve (α = 0.087, β = 4,γ = 6.03, θ = 2.3, χ =
0.01, λ = 1), Dotdash curve (α = 5, β = 0.8, γ = 9, θ = 6.3, χ = 0.01, λ = 1) and Dashed
curve (α = 0.087, β = 0.05, γ = 6.03, θ = 2.3, χ = 0.01,λ = 1)

By taking values of the six parameters, one obtains the NMWB distribution behavior
described by the corresponding PDF. We illustrate in Fig. 1 the comportment of the
PDFand theCDF for some special packets of parameters interesting in the description
of the propagation analysis of the Covid-19. In Fig. 1, and based on a preliminary
analysis of the evolution of the pandemic, we observe that the PDF of our newmodel
has the same shape of the propagation of Covid-19 in some countries.

1.2 The Reliability Function

This function is defined as [31, 40]

R (x) = 1 − F (x) , (4)

which gives the hazard function h by the relation

h (x) = f (x)

1 − F (x)
= f (x)

R (x)
. (5)

Also, we can evaluate the cumulative hazard function by the expression

H (x) = − ln |F (x)| . (6)

For our model, these functions are given, respectively by

R (x) = e−(αxθ +βxγ eχx)
[
(1 − λ) + λe−(αxθ +βxγ eχx)

]
, (7)
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h (x) =
[
αθxθ−1 + β (γ + χx) xγ−1eχx

] [
1 − λ + 2λe−(αxθ +βxγ eχx)

]
[
(1 − λ) + λe−(αxθ +βxγ eχx)

] , (8)

and

H (x) = ln

∣∣∣∣
1

1 + λe−(αxθ +βxγ eχx)

∣∣∣∣ − ln
∣∣∣1 − e−(αxθ +βxγ eχx)

∣∣∣ . (9)

Figure2 shows the patterns of these functions in terms of the variable x with different
choices of our six parameters.

1.3 Moments of the Distribution

The kth moments of random variable X with the PDF f (x) or the CDF F(x) is
defined by [30, 31]

μk = E (X) =
∞∫

0

xk f (x) dx =
∞∫

0

xkdF (x) . (10)

From this definition, one can evaluate other coefficients of the proposed distribution
as

CV =
√

μ2

μ2
1

− 1, (11)

CS = μ3 − 3μ1μ2 + 2μ3
1(

μ2 − μ2
1

)3/2 , (12)

and

CK = μ4 − 4μ1μ3 + 6μ2
1μ2 − 3μ4

1(
μ2 − μ2

1

)2 . (13)

These coefficients are called: the coefficient of Variation, coefficient of Skewness
and coefficient of Kurtosis, respectively. We illustrate in Fig. 3 the behavior of these
coefficients in terms of the parameter γ for different values ofλ. The other parameters
are chosen as follows: α = 5, β = 0.8, θ = 6.3 and χ = 0.01.

From Fig. 3, we can clearly see that the three coefficients keep a similar shape
profile for the three values of the parameter λ. It is also observed from these plots
that the CV decreases with the increment of γ , the CS first decreases and reaches its
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Fig. 2 Representation of (a) the reliability function (b) the hazard function and (c) the cumula-
tive hazard function for the NMWB distribution with the following parameters: solid curve (α =
0.087, β = 4,γ = 6.03, θ = 2.3, χ = 0.01, λ = 1), dotdash curve (α = 5, β = 0.8, γ = 9, θ =
6.3, χ = 0.01, λ = 1) and dashed curve (α = 0.087, β = 0.05, γ = 6.03, θ = 2.3, χ = 0.01,λ =
1)

minimum at γ = 2.0 and its maximum around γ = 4.5. However, the CK takes its
maximum around γ = 3.6.

Note that, for the case of λ = 0 corresponding to the distribution of Almalki and
Yuan [36] and by setting χ = 0 and θ = 1, we obtain the different coefficients of the
distribution of Khan and King [31].

Another important moment of the distribution is the moment generating function
(MGF), which is obtained from the measure of the central tendency and of the
dispersion. This function is defined as

MX (t) =
∞∫

0

ext f (x) dx . (14)
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Fig. 3 Illustration in terms of the parameter γ of (a): the coefficient of variation, (b): coefficient of
skewness and (c): coefficient of kurtosis, respectively, for the NMWB distribution with the three
values of λ dashed curve: λ = −0.4, solid curve: λ = 0 and dotdash curve λ = 0.6

1.4 Order Statistics

The PDF of the r th order statistic X(r) (1 ≤ r ≤ n) from the continuous distribution
of a random sample (X1:n ≤ . . . ≤ Xn:n) is defined by [40]

fr :n (x) = F(x)r−1(1 − F (x))n−r f (x)

B (r, n − r + 1)
, (15)

where B is the beta function given by

B (r, n − r + 1) = 1

Cr :n
= (r − 1)! (n − r)!

n! . (16)

We define also the joint PDF of Xr :n and Xs:n (1 ≤ r ≤ s ≤ n) by

fr :s:n (x, u) = Cr :s:n[F (x)]r−1[F (u) − F (x)]s−r−1[1 − F (x)]n−s f (x) f (u) ,

(17)
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where

Cr :s:n = n!
(r − 1)! (s − r − 1)! (n − s)! and 0 ≤ x ≤ u ≤ ∞. (18)

1.5 Parameter Estimation

We consider a random sample x1, . . . , xn with n observations from the NMWB

distributionwith six parameters (α, β, θ, γ, χ, λ) andweuse the approach to estimate
the parameters called the maximum likelihood. We define the likelihood function of
the model by [40]

L (x1, . . . , xn, α, β, θ, γ, χ, λ) =
n∏

i=1

f (xi ). (19)

So, the log-likelihood function of this expression is given by

L = ln (L) =
n∑

i=1

ln f (xi ) . (20)

The estimating equations are obtained by differentiating this last expression with
respect to each parameter then equating it to zero.

1.6 Relationship with Weibull-Related Results

We give in Table1 a list of models that are generalized by NMWB distribution with
their CDF and parameters.

2 Main Results

2.1 Statistical Properties

Here, we announce some theorems to evaluate the above expressions of the proposed
distribution NMWB as the kth moment

Theorem 1 The kth moment of the NMWB is given as follows

μk = 1

αk/θ

(
k

θ

)
!
[

λ

2k/θ
Rθ,γ

k (x2, y2) − (λ − 1) Rθ,γ

k (x1, y1)

]
, (21)
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Table 1 CDF and special parameters of sub-models of NMWB distribution

Distribution F(x) Parameters Reference

NMWB [1 −
e−(αxθ +βxγ eχx )][1 +
λe−(αxθ +βxγ eχx )]

(α, β, θ, γ, χ, λ) Present work

T MWA [1 − e−(αxθ +βxγ eχx )] (α, β, θ, γ, λ, 0) [36]

T MWK [1 − e−(αx+βxγ )][1 +
λe−(αx+βxγ )]

(α, η, 1, β, 0, λ) [31]

T ME [1 − e−(αx+βx)][1 +
λe−(αx+βx)]

(α, β, 1, 1, 0, λ) [31]

T MR [1 − e−(αx+βx2)][1 +
λe−(αx+βx2)]

(α, β, 1, 2, 0, λ) [31]

MW [1 − e−(αx+βxγ )] (α, β, 1, γ, 0, 0) [31]

MR [1 − e−(αx+βx2)] (α, β, 1, 2, 0, 0) [31]

ME [1 − e−(αx+βx)] (α, β, 1, 1, 0, 0) [31]

TW (1 − e−βxγ
)(1 +

λe−βxγ
)

(0, β, 0, γ, 0, λ) [31]

T R (1 − e−βx2 )(1 +
λe−βx2 )

(0, β, 0, 2, 0, λ) [31]

T E (1 − e−βx )(1 +
λe−βx )

(0, β, 0, 1, 0, λ) [31]

W (1 − e−βxγ
) (0, β, 0, γ, 0, 0) [14]

R (1 − e−βx2 ) (0, β, 0, 2, 0, 0) [19]

E (1 − e−βx ) (0, β, 0, 1, 0, 0) [19]

where the function Rθ,γ

k is defined by

Rθ,γ

k (x, y) =
∞∑

m,n=0

(
k

θ

)
mγ+n

θ

xm

m!
(my)n

n! , (22)

with

x1 = − β

αγ/θ
, x2 = − 2β

(2α)γ/θ
, (23)

y1 = χ

α1/θ
, y2 = χ

(2α)1/θ
and (α)p = 	 (α + p)

	 (α)
. (24)

Proof By substituting Eq. (1), which can be written as

F (x) = 1 + (λ − 1) e−(αxθ +βxγ eχx) − λe−2(αxθ +βxγ eχx), (25)

into Eq. (10), one obtains

μk = λk I (2) − (λ − 1) k I (1), (26)
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where

I (a) =
∞∫

0

xk−1e−a(αxθ +βxγ eχx)dx, (27)

with a = 1 or 2.
To evaluate the integral I (a) , we use the Taylor expansion of exponential function
twice. So, Eq. (27) can be written as

I (a) =
∞∑

m,n=0

(−aβ)m

m!
(mχ)n

n!
∞∫

0

xk−1xmγ+ne−aαxθ

dx . (28)

The integral in this last equation can be evaluated by the help of the following identity
[41]

∞∫

0

xν−1e−μx p
dx = 	

(
ν/p

)

pμν/p
, (29)

with Re (μ) = Re (aα) > 0 , Re (ν) = Re (mγ + n + k) > 0 and p = θ > 0.
Then, I (a) becomes

I (a) =
∞∑

m,n=0

(−aβ)m

m!
(mχ)n

n!
1

θ(aα)
mγ+n+k

θ

	

(
mγ + n + k

θ

)
. (30)

We use the function given by Eq. (22), and I (a) can be rearranged as

I (a) = 1

θ

1

(aα)
k/θ

	

(
k

θ

)
Rθ,γ

k (xa, ya) . (31)

Finally, by inserting I (1) and I (2) in Eq. (26), one obtains

μk = λk

θ

1

(2α)k/θ
	

(
k

θ

)
Rθ,γ

k (x2, y2) − (λ − 1)
k

θ

1

αk/θ
	

(
k

θ

)
Rθ,γ

k (x1, y1) ,

(32)
with x1, x2, y1 and y2 are given by Eqs. (23) and (24).
So, we get the required result. This completes the proof. �

Corollary 1 If λ = 0 andχ = λ, the kthmoment of the NMWB distribution is given
as follows

μkA = 1

αk/θ

(
k

θ

)
!Rθ,γ

k

(
− β

αγ/θ
,

λ

α1/θ

)

= k

θ

∞∑
n,m=0

(−β)n

n!
(nλ)m

m! α
−

(
nγ+m+k

θ

)
	

(
nγ + m + k

θ

)
,

(33)
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This result is the same as the kth moment found by Almalki and Yuan [36].

Corollary 2 If θ = 1, β = η, γ = β, χ = 0 and λ �= 0, one finds the kth moment
corresponding to T MWK distribution

μkK = (1 − λ)

∞∑
m=0

k	 (k + mβ)

αmβ+k

(−η)m

m! + λ

∞∑
m=0

k	 (k + mβ)

(2α)mβ+k

(−2η)m

m! . (34)

Theorem 2 If X has NMWB distribution, then its moment generating function is
given by

MX (t) =
∞∑
l=0

t l

l!μl, (35a)

and

MX (t) =
∞∑
l=0

(
t/αθ

)l
l!

(
l

θ

)
!
[

λ

2l/θ
Rθ,γ

l (x2, y2) − (λ − 1) Rθ,γ

l (x1, y1)

]
, (35b)

where the function Rθ,γ

l is given by Eq. (22) and the other variables are defined by
Eqs. (23) and (24).

Proof Starting from Eq. (14) and by applying the Taylor expansion of etx , one
obtains for MX

MX (t) =
∞∑
l=0

t l

l!
∞∫

0

xl f (x)dx . (36)

The integral of this expression is the lth moment μl , so

MX (t) =
∞∑
l=0

t l

l!μl . (37)

By using Theorem 1, Eq. (35-b) is proved, and this completes the proof. �

Corollary 3 If λ = 0,

M A
X (t) =

∞∑
l=0

(
t/αθ

)l
l!

(
l

θ

)
!Rθ,γ

l (x1, y1) . (38)
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Proof It is easy to prove this corollary. So, by using the expression of R given by
Eq. (22), this last equation becomes

MA
X (t) =

∞∑
l,m,n=0

(1)l/θ

(
l

θ

)
mγ+n

θ

xl

l!
ym

m!
(mz)n

n! , (39)

where

x = t

αθ
, y = − 2β

(2α)
γ /θ

and z = χ

(2α)1/θ
. (40a)

�

Corollary 4 If θ = 1, β = η, γ = β, χ = 0 and λ �= 0

MK
X (t) =

∞∑
l=0

t l
[

λ

2l
R1,β
l (x2, y2) − (λ − 1) R1,β

l (x1, y1)

]
, (41)

where x1 = − 2η
(2α)β

, x2 = 1
2(β−1) , y1 = 0 and y2 = 1

2 .

Proof For the proof of this identity, we use the expression of the function R1,β
l given

by

R1,β
l (x1, y1) =

∞∑
m=0

(l)mβ

xm1
m! , (41a)

and

R1,β
l (x2, y2) =

∞∑
m,n=0

(l)(mβ+n)

xm2
m!

(my2)
n

n! , (41b)

and the expression of the moment generating function is

MS
X (t) = λ

∞∑
l,m,n=0

(1)l (l)(mβ+n)

( t
2
)l

l!

(
1/2β−1

)m

m!
(m/2

)n
n!

+ (1 − λ)

∞∑
l,m=0

(1)l (l)mβ
(t)l

l!

(−2η/
(2α)β

)m

m! .

(42)

�
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Table 2 Quantile of particular distributions

Distribution Parameters (α, β, θ, γ, χ, λ) The qth quantile of the
distribution

T MWK (α, η, 1, β, 0, λ) See Eq. (8) of Ref. [31]

T R (0, β, 0, 2, 0, λ)
√

− A
β

T LFRD (α, β, 0, 2, 0, λ)
−α+

√
α2−4βA
2β

T E (0, β, 0, 1, 0, λ) −A
β

TW (0, β, 0, γ, 0, λ)
(−A

β

)1/γ

T ME (α, β, 1, 1, 0, λ)
−(α+A)

β

T MR (α, β, 1, 2, 0, λ)
[−(α+A)

β

]1/2

TWD (0, β, 0, γ, 0, λ)
(
− ln A

β

)1/γ

Theorem 3 The quantile tq of NMWB distribution is given as the real solution of
the following equation

βtγq e
χ tq + αtθq + ln

[
1 − (1 + λ) −

√
(1 + λ)2 − 4λq

2λ

]
= 0. (43)

Proof For this reason, we get that a = αtθq + βtθq e
χ tq and it easy to find the solution

of the equation F (x) = tq with x = e−a , which can be written as

x = e−a = 1 − (1 + λ) −
√

(1 + λ)2 − 4λq

2λ
. (44)

After some algebraic manipulations, one finds Eq. (43). This completes the proof. �

FromTheorem3, one can deduce themedian of NMWB distribution by takingq = 1
2 .

We put t1/2 = tm which is the solution of the following equation

βtγme
χ tm + αtθm + B = 0, (45)

with

B = ln

(
λ − 1 + √

λ2 + 1

2λ

)
.

From Eq. (44), we can deduce some special cases which are listed in Table2 for

β = 0, tq is given by tq = (−A
α

)1/θ with A = ln

[
1 − (1+λ)−

√
(1+λ)2−4λq
2λ

]
.
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2.2 Least Square Estimates (LSES)

LSES are evaluated by minimizing the following quantity

Q =
n∑

i=1

{F (ti ) − E [F (ti )]}2, (46)

where ti (1 ≤ i ≤ n) is the ordered sample and E [F (ti )] = Ei is given (for three
methods for estimating F by graphical procedure) as [42]

− f or the mean rank : Ei = i

(n + 1)
, (47a)

− f or the median rank : Ei = i − 0.3

n + 0.4
and (47b)

− f or the symmetrical rank CDF : Ei = i − 0.5

n
. (47c)

Theorem 4 The estimators of NMWB distribution are governed by

• for p = λ

n∑
i=1

[(1 − f (ti )) (1 + λ f (ti )) − Ei ] (1 − f (ti )) f (ti ) = 0, (48)

• and for p �= λ

n∑
i=1

[(1 − f (ti )) (1 + λ f (ti )) − Ei ] (λ − 1 − 2λ f (ti ))
∂ f (ti )

∂p
= 0, (49)

with p = α, β, θ, γ or χ .

Proof For our proposal distribution, Eq. (46) is expressed as follows

Q =
n∑

i=1

[(1 − g(ti ))(1 + λg(ti )) − Ei ]2, (50)

where
g (ti ) = e−(αtθi +βtγi e

χ ti ). (51)

Note that the expression of Q depends on six parameters and in the following, we
give the corresponding equations deduced by minimizing Eq. (48) with respect first
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to the parameter λ and second to the parameter p = α, β, θ, γ or χ .
So, Theorem 4 is proved. �

By using the following expressions

∂ f (ti )

∂α
= −tθi f (t i ) , (52a)

∂ f (ti )

∂β
= −tγi e

χ ti f (t i ) , (52b)

∂ f (ti )

∂θ
= −αtθi f (t i ) ln (ti ) , (52c)

∂ f (ti )

∂γ
= −βtγi e

χ ti f (t i ) ln (ti ) , (52d)

and

∂ f (ti )

∂χ
= −βtγ+1

i eχ ti f (t i ) , (52e)

and Eqs. (48) and (49) because it is difficult to obtain a closed-form solution. One
can deduce, by using an adequate numerical technique, the estimated parameters
λ, α, β, θ, γ and χ from the following equations

a- for λ
n∑

i=1

uλ (ti ) w (ti ) = 0, (53a)

b- for α
n∑

i=1

tθi uλ (ti ) vλ (ti ) = 0, (53b)

c- for β
n∑

i=1

tγi e
χ ti uλ (ti ) vλ (ti ) = 0, (53c)

d- for θ
n∑

i=1

αtθi ln (ti ) uλ (ti ) vλ (ti ) = 0, (53d)

e- for γ
n∑

i=1

βtγi e
χ ti ln (ti ) uλ (ti ) vλ (ti ) = 0, (53e)

f- and for χ
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n∑
i=1

βtγ+1
i eχ ti uλ (ti ) vλ (ti ) = 0, (53f)

where
uλ (ti ) =

[
1 − e−(αtθi +βtγi e

χ ti )
] [

1 + λe−(αtθi +βtγi e
χ ti )

]
, (53g)

vλ (ti ) =
[
λ − 1 − 2λe−(αtθi +βtγi e

χ ti )
]
e−(αtθi +βtγi e

χ ti ), (53h)

and
w (ti ) =

[
1 − e−(αtθi +βtγi e

χ ti )
]
e−(αtθi +βtγi e

χ ti ). (53i)

2.3 Order Statistics

In this subsection, we present the formulae about the PDF of the r th order statistic
and the joint PDF for NMWB distribution.

Theorem 5 The PDF of the rth order statistic for NMWB distribution is given by

fr :n (x) = n

(
n − 1
r − 1

) r−1∑
l,m=0

n−r∑
k=0

(
r − 1
l

) (
r − 1
m

) (
n − r
k

)
λ(m+n−r−k)

× (1 − λ)k
(−1)l

εlmk
f
(
x, α′, β ′, θ, γ, χ, λ

)
,

(54)

where

f
(
x, α′, β ′, θ, γ, χ, λ

) = [
α′θxθ−1 + β ′ (γ + χx) xγ−1eχx ] [

1 − λ + 2λeS(x)
]
eεlmk S(x),

(55a)

α′ = εlmkα, (55b)

β ′ = εlmkβ, (55c)

with
εlmk = l + m + 2n − 2r − k + 1,

and
S (x) = − (

αxθ + βxγ eχx
)
. (55e)
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Proof By using the Taylor expansion of ex and the identity (x + y)n =
n∑

k=0(
n
k

)
xn−k yk , one obtains for each term of Eq. (15) the following expressions

F (x) = [
1 − eS(x)

] [
1 + λe

S(x)
]
, (56)

[F (x)]r−1 = [
1 − eS(x)

]r−1
[
1 + λe

S(x)
]r−1

=
r−1∑
l,m=0

(
r − 1
l

)(
r − 1
m

)
(−1)lλme(l+m)S(x),

(57)

[1 − F (x)] = λe2S(x) + (1 − λ) eS(x), (58)

[1 − F (x)]n−r = e(n−r)S(x)
n−r∑
k=0

(
n − r
k

)
λ(n−r−k)e(n−r−k)S(x)(1 − λ)k, (59)

and
f (x) = [

αθxθ−1 + β (γ + χx) xγ−1eχx
]
eS(x)

[
1 − λ + 2λeS(x)

]
. (60)

So, Eq. (15) can be rearranged as

fr :n (x) = n

(
n − 1
r − 1

) r−1∑
l,m=0

(
r − 1
l

) (
r − 1
m

)
(−1)lλme(l+m)S(x)e(n−r)S(x)

×
n−r∑
k=0

(
n − r
k

)
λ(n−r−k)e(n−r−k)S(x)(1 − λ)k

× [
αθxθ−1 + β (γ + χx) xγ−1eχx

] [
1 − λ + 2λeS(x)

]
eS(x).

(61)

After some algebraic manipulations, one finds Eq. (54). This completes the proof. �

From Theorem 5 and by taking r = 1 and r = n, one can deduce the first order
and nth order probability density functions. So, it is easy to establish the following
corollaries.

Corollary 5 The first order and nth order probability density functions for NMWB

distribution are given by

f1:n (x) = nS′ (x)
n−1∑
k=0

(
n − 1
k

)
λ(n−k−1)(1 − λ)ke(2n−k−1)S(x), (62)
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and

fn:n (x) = n

(
n − 1
r − 1

)
S′ (x)

n−1∑
l,m=0

n−1∑
k=0

(
n − 1
l

)(
n − 1
m

)(
n − 1
k

)
λm−k(1 − λ)k

× (−1)l e(l+m−k+1)S(x)
,

(63)
where

S′ (x) = [
αθxθ−1 + β (γ + χx) xγ−1eχx

] [
1 − λ + 2λeS(x)

]
. (64)

Proof It is easy to prove Eqs. (62) and (63) by setting r = 1 and n into Eq. (61),
respectively. �

Corollary 6 The joint distribution of r th order statistic Xr and sth order statistic
Xs is expressed as

g (x1, xn) = n (n − 1) [F (xn) − F (x1)]
n−2 f (x1) f (xn)

= n (n − 1) (λ − 1)n−2e(n−2)S(xn)
n−2∑
p,q=0

q∑
v=0

(
n − 2
p

) (
n − 2
q

)(
q
v

)
(−1)p+q

(
λ

λ − 1

)q

× eqS(xn)e(p+v)[S(x1)−S(xn)]S′ (x1) S′ (xn) e[S(x1)+S(xn)].

(65)

Proof It is evident to prove Eq. (65) by using the definition of g and Eqs. (59) and
(60). �

Theorem 6 The joint PDF of Xr :n and Xs:n (1 ≤ r ≤ s ≤ n) is expressed as

fr :s:n (x, u) = n!
(r − 1)! (s − r − 1)! (n − s)!

λn

(λ − 1)r+1

(
λ − 1

λ

)s

S′ (x)

× S′ (u) e(s−r)S(u)e[2(n−s)+1]S(x)
n−s∑
k=0

(
n − s
k

)(
1 − λ

λ

)k

e−kS(x)

×
r−1∑
m,l=0

s−r−1∑
p,q=0

q∑
v=0

(
r − 1
m

) (
r − 1
l

) (
s − r − 1

p

) (
s − r − 1

q

)(
q
v

)

× (−1)l+p+qλm

(
λ

λ − 1

)q

e(l+m+p+v)S(x)+(q−p−v)S(u).

(66)

Proof We start by evaluating each term of Eq. (17). So, we give the expressions of
these terms as follows

[F (x)]r−1 =
r−1∑
l,m=0

(
r − 1
l

)(
r − 1
m

)
(−1)lλme(l+m)S(x), (67a)
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[F (u) − F (x)]s−r−1 = (λ − 1)(s−r−1)e(s−r−1)S(u)

×
s−r−1∑
p,q=0

q∑
v=0

(
s − r − 1

p

) (
s − r − 1

q

) (
q
v

)
(−1)p+q

(
λ

λ − 1

)q

e(q−p−v)S(u)e(p+v)S(x),

(67b)

[1 − F (x)]n−s = e(n−s)S(x)
n−s∑
k=0

(
n − s
k

)
λ(n−s−k)e(n−s−k)S(x)(1 − λ)k, (67c)

F (x) = 1 + (λ − 1) eS(x) − λe2S(x), (67d)

and
F (u) = 1 + (λ − 1) eS(u) − λe2S(u). (67e)

By substituting these last equations into Eq. (17), one finds Eq. (66). This completes
the proof. �

2.4 Parameter Estimation

2.4.1 Maximum Likelihood Estimators

The usual estimation method of parameters is by maximum likelihood. For that we
consider a random sample x1, . . . , xn consisting of n observations from the NMWB

distribution. We know that the likelihood function of our failure probability density
function of six parameters given by Eq. (2) is expressed as

L (x1, . . . , xn, α, β, θ, γ, χ, λ) =
n∏

i=1

f (xi )

=
n∏

i=1

[
αθxθ−1

i + β (γ + χxi ) x
γ−1

i eχxi
]
e
−

(
αxθ

i +βxγ

i e
χxi

)

×
[
1 − λ + 2λe

−
(
αxθ

i +βxγ

i e
χxi

)]
.

(68)

So, the log-likelihood function can be expressed according to the following relation

L = ln (L) =
n∑

i=1

ln
[
αθxθ−1

i + β (γ + χxi ) x
γ−1

i eχxi
]

− α

n∑
i=1

xθ
i − β

n∑
i=1

xγ

i e
χxi +

n∑
i=1

ln

[
1 − λ + 2λe

−
(
αxθ

i +βxγ

i e
χxi

)]
.

(69)



Analysis of Covid-19 Virus Spreading Statistics by the Use … 149

Differentiating this last equation with respect to parameters (α, β, θ, γ, χ, λ) and by
equating it to zero, one obtains the following estimating equations

n∑
i=1

θxθ−1
i

D(1)
i

−
n∑

i=1

xθ
i − 2λ

n∑
i=1

xθ
i Ni

D(2)
i

= 0, (70a)

n∑
i=1

(γ + χxi ) x
γ−1
i eχxi

D(1)
i

−
n∑

i=1

xγ

i e
χxi − 2λ

n∑
i=1

xγ

i e
χxi Ni

D(2)
i

= 0, (70b)

n∑
i=1

xθ−1
i (1 + θ lnxi )

D(1)
i

−
n∑

i=1

xθ
i lnxi − 2λ

n∑
i=1

xθ
i Ni lnxi

D(2)
i

= 0, (70c)

n∑
i=1

xγ−1
i eχxi

[
1 + (γ + χxi ) ln xi

]

D(1)
i

−
n∑

i=1

xγ

i e
χxi ln xi − 2λ

n∑
i=1

xγ

i e
χxi ln xi Ni

D(2)
i

= 0,

(70d)
n∑

i=1

xγ

i (1 + γ + χxi ) eχxi

D(1)
i

−
n∑

i=1

xγ+1
i eχxi − 2λ

n∑
i=1

xγ+1
i eχxi Ni

D(2)
i

= 0, (70e)

and
n∑

i=1

(2Ni − 1)

(1 − λ + 2λNi )
= 0, (70f)

where

Ni = e
−

(
αxθ

i +βxγ

i e
χxi

)
, (71a)

D(1)
i = αθxθ−1

i + β (γ + χxi ) x
γ−1

i eχxi , (71b)

and
D(2)

i = 1 − λ + 2λNi . (71c)

Finally, one can deduce, by solving the nonlinear equations (70) numerically for
α, β, θ, γ, χ and λ, the maximum likelihood estimators α̂, β̂, θ̂ , γ̂ , χ̂ and λ̂. As
∂L
∂p (p = α, β, θ, γ, χ or λ) is a continuous function, so this quantity is differen-

tiable and ∂2L
∂p∂p′ exist.

We give in Appendix all the second partial derivatives of the log-likelihood func-
tion L for the construction of the observed information matrix of the six parameters.
This 6 × 6 Fisher informationmatrix [43], given in terms of the second partial deriva-
tives of the log-likelihood function L as [44]
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I = −
⎛
⎝

∂2L
∂α2 · · · ∂2L

∂α∂λ· · · · · · · · ·
∂2L
∂λ∂α

· · · ∂2L
∂λ2

⎞
⎠ . (72)

This matrix yields also the approximate variance–covariance matrix

V =
⎛
⎝
V11 · · · V16

· · · · · · · · ·
V61 · · · V66

⎞
⎠ =

⎛
⎜⎜⎜⎝

var
(
α̂
)

. . . cov
(
α̂, λ̂

)

...
. . .

...

cov
(
λ̂, α̂

)
· · · var

(
λ̂
)

⎞
⎟⎟⎟⎠ = I−1 (73)

Approximately, 100 (1 − ε)%confidence intervals for the six parameters can be eval-

uated as α̂±Zε/2

√
var

(
α̂
)
, β̂±Zε/2

√
var

(
β̂
)
, θ̂ ± Zε/2

√
var

(
θ̂
)
, γ̂ ± Zε/2

√
var

(
γ̂
)
,

χ̂ ± Zε/2

√
var

(
χ̂

)
and λ̂ ± Zε/2

√
var

(
λ̂
)
, with Zε/2 is the upper εth percent of the

standard normal distribution and ε > 0.

3 Applications

In this section, we present a data analysis in order to show the efficacy of our new
model to describe the propagation of the novel virus Covid-19 in some countries.
The data represents the daily infected by this kind of virus in each country treated
which is registered from February to June 2020.

In Fig. 4, we fit the PDF of our new modified Weibull distribution expressed in
Eq. (2) to the data of the daily cases infected by Covid-19. As shown in the below
figure, our model has agreed with the propagation of this novel virus and describe
its behavior.

The table below presents the MLEs of the parameters of the NMWB distribution
for the data registered (Table3).

Table 3 MLEs of parameters for daily cases infected by Covid-19 in six treated countries

Countries α̂ β̂ θ̂ γ̂ χ̂ λ̂

Canada 0.01 0.5 2.3 6.03 1.1 1

India 2.10−5 0.0257 6 6 0 10−3

Iraq 9.10−5 0.02004 10 6 1.1 −1

Qatar 2.10−7 0.15 0.65 6.8 0.018 0.5

Mexico 2.10−6 0.02001 1.5 5 0.15 1

Oman 5.10−5 0.02025 0.75 5 1 −0.45
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Fig. 4 Fitted PDF of daily cases infected by Covid-19 in (a) Canada (b) India (c) Iraq (d) Qatar
(e) Mexico and (f) Oman with (*)is the data registered and solid curve is the NMWB distribution
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Finally, we give the approximate 95% confidence intervals for (α, β, θ, γ, χ, λ)

respectively, for the current data:

• Canada:
α ∈ [0, 5.63] , β ∈ [0.492, 0.508], θ ∈ [2.25, 2.34],
γ ∈ [5.88, 6.18], χ ∈ [0.01, 2.19] and λ ∈ [0.59, 1].

• India:

α ∈ [0, 0.00146], β ∈ [0.025695, 0.025706], θ ∈ [5.999, 6.001],
γ ∈ [5.848, 6.152], χ ∈ [−0.04782, 0.04782] and λ ∈ [−0.190, 0.192].

• Iraq:

α ∈ [0, 0.00149], β ∈ [0.020035, 0.020045], θ ∈ [9.999, 10.001],
γ ∈ [5.85, 6.15], χ ∈ [1.05, 1.15] and λ ∈ [−1,−0.81].

• Qatar:

α ∈ [0, 5.7 × 10−7], β ∈ [0.149, 0.151], θ ∈ [0.619, 0.681],
γ = [6.78, 6.82], χ ∈ [0.0167, 0.0193] and λ ∈ [0.2, 0.8].

• Mexico:

α ∈ [0, 0.03005], β ∈ [0.01482, 0.02520], θ ∈ [0.05, 2.96],
γ ∈ [4.93, 5.08], χ = [−0.27, 0.57] and λ ∈ [0.61, 1].

• Oman:

α ∈ [0, 0.0986], β ∈ [0.0183, 0.0222], θ ∈ [−0.32, 1.82],
γ ∈ [4.96, 5.04], χ ∈ [0.28, 1.72] and λ ∈ [−0.57,−0.33].

4 Conclusion

The proposal new Weibull distribution with six parameters is studied. We have
derived various structural properties of this distribution asmoments,moment generat-
ing function, relationship with previous Weibull distributions, parameter estimation,
statistical properties, the qth quantile, estimators and order statistics.

As application, we analyzed the Covid-19 virus spreading statistics by our
extended distribution to fit the cases infected in some countries. We proved that
our new distribution generalizes some existing models and gives the correct fits of
some data.
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Our hope is that our new distribution will attract wider applications and replace
other models which are valid for modeling real data in several fields.

Appendix

All the second partial derivatives of the log-likelihood function are obtained in this
appendix as follows

Lαα = −
n∑

i=1

h2α
h2

+ 2λ
n∑

i=1

t2θi hSλ, (74)

Lββ = −
n∑

i=1

h2β
h2

+ 2λ
n∑

i=1

t2γi e2χ ti hSλ, (75)

Lθθ =
n∑

i=1

(
hθθh − α2h2αθ

)

h2
− α

n∑
i=1

tθi ln
2 (ti ) − 2αλ

n∑
i=1

tθi h
α
Sλln (ti ), (76)

Lγ γ =
n∑

i=1

(
hγ γ h − β2h2βγ

)

h2
− β

n∑
i=1

tγi e
χ ti ln2(ti ) − 2βλ

n∑
i=1

tγi e
χ ti hβχ

Sλ ln
2(ti ),

(77)

Lχχ =
n∑

i=1

(
hχχh − h2βχ

)

h2
− β

n∑
i=1

tγ+2
i eχ ti − 2βλ

n∑
i=1

tγ+2
i eχ ti hβχ

Sλ , (78)

Lλλ = −
n∑

i=1

h2λ, (79)

Lθα =
n∑

i=1

(hαθh − αhαθhα)

h2
−

n∑
i=1

tθi ln (ti ) − 2λ
n∑

i=1

tθi h
α
Sλ, (80)

Lβα = −
n∑

i=1

hαhβ

h2
+ 2λ

n∑
i=1

tθ+γ

i eχ ti hSλ, (81)

Lγα = −β

n∑
i=1

hαhβγ

h2
+ 2βλ

n∑
i=1

tθ+γ

i eχ ti hSλ ln (ti ), (82)

Lχα = −
n∑

i=1

hαhβχ

h2
+ 2βλ

n∑
i=1

tθ+γ+1
i eχ ti hSλ, (83)
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Lλα = −2
n∑

i=1

tθi
eS

S2λ
, (84)

Lθβ = −α

n∑
i=1

hαθhβ

h2
+ 2αλ

n∑
i=1

tθ+γ

i eχ ti hSλ ln (ti ), (85)

Lγ θ = −αβ

n∑
i=1

hαθhβγ

h2
+ 2αβλ

n∑
i=1

tθ+γ

i eχ ti hSλln
2 (ti ), (86)

Lχθ = −α

n∑
i=1

hαθhβχ

h2
+ 2αβλ

n∑
i=1

tθ+γ+1
i eχ ti hSλ ln (ti ), (87)

Lλθ = −2α
n∑

i=1

tθi
eS

S2λ
ln (ti ), (88)

Lγβ =
n∑

i=1

hβγ

(
h − βhβ

)

h2
−

n∑
i=1

tγi e
χ ti ln (ti ) − 2λ

n∑
i=1

tγi e
χ ti hβχ

Sλ ln (ti ), (89)

Lχβ =
n∑

i=1

(
hχγ h − hβχhβ

)

h2
−

n∑
i=1

tγ+1
i eχ ti − 2λ

n∑
i=1

tγ+1
i eχ ti hβχ

Sλ , (90)

Lλβ = −2
n∑

i=1

tγi e
χ ti hλ

S, (91)

Lχγ = β

n∑
i=1

(
hχ

βγ h − hβχhβγ

)

h2
− β

n∑
i=1

tγ+1
i eχ ti ln (ti )

− 2βλ

n∑
i=1

tγ+1
i eχ ti hβχ

Sλ ln (ti ),

(92)

Lλγ = −2β
n∑

i=1

tγi e
χ ti hλ

S ln (ti ), (93)

and

Lλχ = 2βλ

n∑
i=1

tγ+1
i eχ ti

eS

S2λ
, (94)
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where
hα = θ tθ−1

i , (95)

hSλ =
(
Sλ − 2λeS

)
eS

S2λ
, (96)

hβ = (γ + χ ti ) t
γ−1
i eχ ti , (97)

hβγ = eχ ti tγ−1
i

[
1 + (γ + χ ti ) ln (ti )

]
, (98)

hχχ = βtγ+1
i eχ ti (2 + γ + χ ti ) , (99)

hγ γ = βeχ ti tγ−1
i

[
2 + (γ + χ ti ) ln (ti )

]
ln (ti ) , (100)

hαθ = tθ−1
i (1 + θ ln (ti )) , (101)

hθθ = αtθ−1
i (2 + θ ln (ti )) ln (ti ) , (102)

h pχ
Sλ =

[
Sλ − ptγi e

χ ti
(
Sλ − 2λeS

)]
eS

S2λ
, (103)

h p
Sλ =

[
Sλ − ptθi

(
Sλ − 2λeS

)]
eS ln (ti )

S2λ
, (104)

hβχ = βtγi e
χ ti (1 + γ + χ ti ) , (105)

hχγ = tγi e
χ ti

[
1 + (γ + χ ti )

]
, (106)

hλ = (Sλ − 1)

λSλ

, (107)

hS =
(
2eS − 1

)
eS

S2λ
, (108)

hλ
S =

[
Sλ − λ

(
2eS − 1

)]
eS

S2λ
(109)

and
hχ

βγ = tγi e
χ ti

[
1 + ln (ti ) + (γ + χ ti ) ln (ti )

]
. (110)
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Lifting Lockdown Control Measure
Assessment: From Finite-to
Infinite-Dimensional Epidemic Models
for Covid-19

Redouane Qesmi and Aayah Hammoumi

Abstract The main focus of this chapter is on public health control strategies which
are currently the main way to mitigate Covid-19 pandemic. We introduce and com-
pare compartmental models of increasing complexity for Covid-19 transmission to
describe dynamics of the disease spread. We begin by considering an SEAIR model
including basic characteristics related to Covid-19. Next, we shall pay attention to
age-structured modeling to emphasis the role of age-group individuals on the disease
spread. A model with constant delay is also formulated to show the impact of the
latency period on the severity of Covid-19. Since there is evidence that for Covid-19
disease, important relationships exist betweenwhat is happening in the host andwhat
is occurring at the population level, we shall link the basic model to in-host dynamics
through the so-called threshold-type delay models. Finally, we will include demo-
graphic effects to themost complexmodels, andwewill conduct rigorous bifurcation
analysis to quantify possible factors responsible for disease progression.

Keywords Covid-19: Spreading statistics · Modified Weibull distribution ·
Mean · Variance · Standard deviation · Moments

1 Introduction

The SARS-CoV-2, designated as Severe Acute Respiratory Syndrome CoronaVirus-
2, is a causative agent of Covid-19 disease that first emerged in China on December
2019 [28]. Up to date, 213 countries and territories are affected by the disease, with
nearly 19 million confirmed cases and more than 700,000 deaths. Unfortunately,
there are no current effective therapeutic agents or vaccines for treatment of Covid-
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19 and, consequently, public health control strategies that diminish contact between
infectious and susceptible individuals are actually the main way to contain and mit-
igate the pandemic [36]. Examples of such a control include the personal protective
measures (e.g., hand hygiene, cough or sneeze etiquette and face coverings), social
distancing measures (e.g., increasing physical distance from other people, avoiding
social gathering and stay at home) and environmental surface cleaning [12]. How-
ever, despite health control interventions seem to be successful in reducing the spread
of the pandemic, they are also responsible of global economic crisis. It is estimated
that Covid-19 could cost the global economy more than $10 trillion [1, 21]. Mil-
lions of individuals throughout the world have been forced to reduce their working
hours or have lost their jobs and around 900 million students are affected by national
school closures [30, 33]. Furthermore, because of the isolation and the increase of
social class inequalities, the lockdown is badly lived by the majority of children and
adults who have developed mental health disorders and familial problems [1, 8, 21].
Although many information related to Covid-19, such as its potential to reoccur,
remain unclear, lifting lockdown measure became an urgent need to avoid the wors-
ening of the global crisis caused by Covid-19 [22]. Governments around the world
encountered serious difficulties to adopt the best lockdown lifting strategy balancing
between economy recovery and health protection of citizens.

Fortunately, since the beginning of the outbreak of Covid-19, mathematical mod-
eling proved to be an effective tool to predict the course as well as the severity of the
epidemic and to help decision-makers to evaluate the effectiveness of health control
measures (See [4, 13, 15, 20, 32] and references therein). Generally, at the begin-
ning of an emergent epidemic, the novel pathogenic agent lacks detailed knowledge.
Mathematicians begin by using simplest compartmental models to estimate the key
epidemiological parameters (such as the basic reproduction number R0, peak time,
peak size, latency period, infectious period) which are necessary to set up public
health strategies and monitor the disease progression [3]. Most such models consider
individuals in a closed population that are classified according to their disease status:
susceptible (S), latent or exposed (E), infectious (I) and recovered (R). These basic
models have the great advantage of being easy to investigate but, on the other hand,
often oversimplify the existing complexity of disease processes which underestimate
or overestimate the magnitude of the disease spread. However, more complex mod-
els can be considered in case the scientists provide more epidemiological evidences
leading to detailed knowledge of Sars-Cov-2 pathogenic mechanism and its mode
of transmission. Even if they are more difficult to analyze and need more detailed
data, these models could be more realistic since they take into account more realistic
epidemiological properties such as the heterogeneity of disease transmission, age-
subgroups, latent periods and so on. The purpose of this chapter is to consider and
compare different deterministic compartmental models of increasing complexity that
will be useful to clarify how Sars-CoV-2 spread within individuals while considering
the relaxation of the compulsory lockdown to prevent dissemination of the Covid-19
disease.



Lifting Lockdown Control Measure Assessment: From Finite … 161

The main contribution of this chapter is organized as follows. In Sect. 3, we will
consider and investigate an extended basic SEAIR model which is widely used for
Covid-19 disease. Indeed, thismodel takes into account the standard epidemiological
states such as the exposed individuals to the Sars-CoV-2 virus which are infected
but can not transmit the virus to others. In Sect. 4, we consider an extension of the
previous model with particular focus on an identified route of Covid-19 transmission
from children to adults and vice versa. In other words, we present a discrete age-
structured model, by separating the population into two different age-subgroups
with different contact rates, to look at the heterogeneity of Covid-19 transmission
within a population. Indeed, it is proved that children are less affected by Sars-
Cov-2 than adults and play a minor role in disease transmission [2, 17]. Seniors
and person with existing chronic medical conditions develop more severe form of
disease and are more likely to die [34]. Furthermore, individuals with different ages
may also have different behaviors and behavioral changes which are crucial in the
assessment of control scenarios targeted at particular groups, such as reopening
schools or relaunch of economic activities. The impact of the latent period on disease
transmission is also evaluated in Sect. 5 by incorporating a time delay to the basic
SAIRmodel instead of considering the latent stage as a model component. In Sect. 6,
we examine a threshold-type delay model by incorporating a series of smaller Sars-
CoV-2 viral loads, due to close contact with infectious individuals, into the within-
host virus dynamics. This type of model can be used for example to study the impact
of Covid-19 exposure to health care workers who are daily in close contacts with
Covid-19 patients, visitors or co-workers in a population and are more likely to be
infected [7]. In Sect. 7, we include vital dynamics to the constant and threshold-
type delay models by assuming that the Covid-19 disease could persist for a long
period. Indeed, with the evidence of sensibility of Sars-CoV-2 to climatic factors such
as temperature and humidity, scientists think that the Covid-19 allows a seasonal
cycle and could reduce with climate change. But, even with the arrival of the warm
weather, the disease still evolved and could persist for several months or years. This
demonstrates that the climate change is not the main parameter which influences the
disease transmission but also, the people’s behavior, the low immunity of individuals
to a novel coronavirus and the immunity period (the amount of time that people
remain immune after infection) [9, 11]. We will then conduct rigorous qualitative
analysis including bifurcation investigation of both models with demographic effect
to quantify possible factors responsible for disease progression and highlight long-
term qualitative behavior of Covid-19 spread. Next, in order to help scientists to
avoid major blunders and generate models that fit the data reasonably accurately, we
compare in Sect. 8 the proposed models to identify which one best fits the reported
data and provide a better prediction for Covid-19. Results of our models will help
to tackle health concerns that are of great importance and will draw of the hospitals
research and surveillance data to create, optimize and parameterize disease models,
focusing on Covid-19.
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2 Data Collection

The data of reported symptomatic infectious cases is collected each day at 11 pm
from the official Coronavirus Portal of Morocco [27]. Data information covers the
cumulative number of reported cases from March 2nd to June 10th, 2020. The data
from March 2nd to March 20 (first day of lockdown measure) are used to estimate
the basic reproduction number and adjust the investigated models to become closer
to reality, while data from March 21st to June 10th (last day of lockdown measure)
are used to adjust the models and estimate the lockdown rate during this period of
lockdown.

3 Basic Covid-19 Model

The population, with size N , considered in this basic model is stratified into seven
disease status. Individuals are classified as susceptible (S), exposed noninfectious
(E) , asymptomatic infectious (A), unreported symptomatic infectious (Iu), reported
symptomatic infectious or hospitalized (H), recovered (R) and dead (D).We formu-
late the model to describe the course of Covid-19 epidemic under the assumptions:

1. Reported symptomatic infectious individuals are hospitalized and can not contact
susceptibles anymore.

2. As confirmed by Rothe et al. [24], asymptomatic individuals can infect suscep-
tible individuals.

3. Confined asymptomatic and confined unreported individuals can still spread the
virus to their families.

4. Exposed infected individuals cannot immediately spread the virus to other indi-
viduals.

5. As proved byMacIntyre in [18], asymptomatic and symptomatic infectious indi-
viduals share the same infection probability.

Taking account of the previous assumptions, the dynamics of Covid-19 can be
described as follows: Individuals are confined at rate p. Unconfined (resp. confined)
susceptibles (1 − p)S (resp. (pS)) contacted with either unreported symptomatic
(Iu) or asymptomatic infectious individuals (A) are infected with infection probabil-
ity, βN (resp. βc), and move to the exposed infected class (E). Exposed individuals
then become asymptomatic infectious at rate k. After an average period 1/δ days the
asymptomatic infectious individuals (A) become symptomatic and proceed either to
the unreported symptomatic infectious (Iu), at rate δ1, or to the reported symptomatic
infectious (H) at rate δ2 with δ = δ1 + δ2. Once becoming symptomatic, individu-
als of class Iu and H remain symptomatic for 1/μ days on average before they are
recovered or dead at rate d. The parameter γ corresponds to the lifting rate while
parameter θ corresponds to the contact reduction, due to wearing masks, washing
hands and social distancing practices of unconfined individuals. The general basic
model equations including parameters control are given as follows
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= − ((1 − γ ) pβc + (1 − θ) (1 − (1 − γ ) p) βN ) S(t) (A(t) + Iu(t)) /N ,

dE

dt
= ((1 − γ ) pβc + (1 − θ) (1 − (1 − γ ) p) βN ) S(t) (A(t) + Iu(t)) /N − kE,

d A

dt
= kE − δA(t),

d Iu
dt

= δ1A(t) − μIu(t) − d Iu(t),

dH
dt = δ2A(t) − μH − dH,

dR

dt
= μ(H + Iu),

dD

dt
= d(H + Iu).

(1)

3.1 Reproduction Numbers

The basic reproduction number, R0, is the average number of secondary infections
produced when one infectious individual is introduced into a host susceptible popu-
lation. This quantity determines whether a given disease may spread, or die out in a
population. To compute this number, we assume that p = θ = γ = 0 and we apply
the next generation matrix method in [31]. We obtain

R0=
(a + k) (a + δ) (a + μ + d)

k (δ1 + a + μ + d)

(
1

δ
+ δ1

δμ

)

(2)

where a is an estimated constant given in Sect. 3.2. Here, R0 can be explained as
follows: Assume that one asymptomatic infectious individual is introduced into the

susceptible population. This asymptomatic individual produces, on average, βN S0
1

δ
asymptomatic individuals during his average lifespan 1/δ.These asymptomatic indi-
viduals then become unreported symptomatic infectious individuals over their lifes-
pan 1/δ at a rate δ1 and then each infectious symptomatic produces, on average,

βN S0
1

μ
asymptomatic individuals during his lifespan 1/μ.

Let us show the formula of R0. The linearized system related to infectious indi-
viduals , around (S0, 0, 0, 0) , of system (1) is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dE
dt = −kE(t) + βN S0A(t) + βN S0 Iu(t)
d A

dt
= kE(t) − δA(t),

d Iu
dt

= δ1A(t) − (μ + d) Iu(t),
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and the associated Jacobian matrix is given by M = F − E where

F =
⎛

⎝
0 βN S0 βN S0
k 0 0
0 δ1 0

⎞

⎠ and E =
⎛

⎝
k 0 0
0 δ 0
0 0 μ + d

⎞

⎠ .

Therefore, FE−1 =
⎛

⎝
0 βN S0/δ βN S0/ (μ + d)

1 0 0
0 δ1/δ 0

⎞

⎠ and R0 is its spectral radius.

Using the formula of βN in (9), we obtain the formula given in (2).
The control reproduction number, Rc, is an important value, used to determine

whether a control policy, such as lockdown, lifting, behavioral practices, etc., will
be efficient to decrease the number of secondary infections to be less than one.
Computation method of Rc is similar to the one of R0 and leads to the following
formula

Rc = ((1 − γ ) pβc + (1 − θ) (1 − (1 − γ ) p) βN )

(
1

δ
+ δ1

δμ

)

.

3.2 Parameter and Initial Data Estimation

To estimate the model parameters, we will consider two different stages. The first
stage is between the beginning of the Covid-19 epidemic and the first time of con-
tainment control (i.e., p = 0 and θ = 0) for which we will estimate the initial data
of the model, the parameters related to infection and the basic reproduction number.
The second stage will be during the lockdown period (γ = 0 and θ = 0) for which
we will estimate the lockdown rate.

Since the first and the only symptomatic infectious individual is reported onMarch
2nd, 2020, which corresponds to t = 0, then H(0) = 1, R(0) = 0 and D(0) = 0.
For the estimation of βN , E(0), A(0) and Iu(0) we will use the data of cumulative
reported cases collected fromMarch 2nd to March 20 (before the start of lockdown)
andwe follow the procedure by [15]. The cumulative reported infectious population is
given, for t ≥ 0, by F(t) = δ2

∫ t
0 A(s)ds + 1. It is obvious that cumulative reported

infectious population increases slowly and then accelerates rapidly with time. Hence,
wewill use exponential regressionwith 95%of confidence level tofind an exponential
function that best fits the data, from March 2nd to June 10th. Using SPSS software
(Statistical Package for the Social Sciences), we found that exponential model given
by beat with a = 0.263 with confidence interval C I (0.229 − 0.297) and b = 0.507
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with C I (0.3444 − 0.7475) fits well the data with a correlation coefficient given by
R = 0.97. It follows from F(t) = δ2

∫ t
0 A(s)ds + 1 = beat that

A(t) = ba

δ2
eat . (3)

Since the initial susceptible population is not dramatically affected in the early phase
of the epidemic, we will assume that S(t) ≈ S(0). Let S0 := S(0), E(0) := E0,

A(0) := A0 and Iu(0) := I0. From the second and the third equations of system (1)
and using (3) we obtain

((
a + δ

k

)

+ (a + δ)

)

A(t) = βN S(0) (A(t) + Iu(t)) , (4)

E(t) = E0e
at and Iu(t) = I0e

at , (5)

where

E0 = a + δ

k

ba

δ2
and I0 = ba

((a+δ
k

) + (a + δ) − βN S(0)
)

δ2βN S0
. (6)

Now, using formulas (5) and the third equation of system (1), we obtain after sim-
plification

aE0 = βN S0 (A0 + I0) − kE0 (7)

and
aI0 = δ1A0 − (μ + d)I0. (8)

Solving Eqs. (6), (7) and (8) for βN and I0 lead to

βN = (a + k) (a + δ) (a + μ + d)

k (δ1 + a + μ + d)
and I0 = δ1

a + μ + d
A0. (9)

To estimate the transmission rate, βc, and the lockdown rate, p during the lockdown
period, we assume that γ = 0 and θ = 0 andwe use the nonlinear least squares solver
“lsqcurvefit” in MATLAB R2019b software. The values of the estimated parameters
are summarized in Table1.

Define the sum of squared residuals (SSR) as

SSR =
√
√
√
√1

n

n∑

i=1

(δ2A(t) − Newcase(i))2

where Newcase(i) is the number of new reported cases on the day i and n is the
number of collected new cases. This number measures the discrepancy between the
data and the estimation model of new reported cases per day and will serve us to
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Table 1 Parameter definitions and values of model (1)

Symbol Definition Parameter value Confidence
interval

Reference

S(0) Initial susceptible
population

35865191 [5]

E(0) Initial exposed
noninfecious
population

0.3175 00.8 − 1.37 Estimated

A(0) Initial
asymptomatic
population

11.9921 9.42 − 15.03 Estimated

Iu(0) Initial unreported
symptomatic
population

0.8414 0.592 − 1.3 Estimated

H(0) Initial reported
symptomatic
population

1 See text

R(0) Initial recovered
population

0 See text

D(0) Initial dead
population

0 See text

βN Infection rate for
unconfined
population

2.87 0.5 − 4.2 Estimated

βc Infection rate for
confined
population

0.57 0.1 − 0.84 Estimated

1/δ Asymptomatic
duration

6 days [27]

k Exposed
noninfectious rate

3 2 − 4 See text

δ1 Asymptomatic
unreported rate

0.017 per day Assumed

δ2 Symptomatic
reported rate

0.15 per day Assumed

1/μ Symptomatic
duration

14 days [35]

p Proportion of
lockdown

0.7 0.5 − 0.76 Estimated

R0 Basic
reproduction
number

2.88 2.55 − 2.99 Estimated
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compare the suggested models of this chapter. A small SSR indicates a better fit
of the model to the data. A computation of this measure for model (1) leads to
SSRbasic = 93.4.

4 Discrete Age-Structured Covid-19 Model

Basic discrete age-structured compartmental models seem to be more appropriate
for Covid-19 disease since it is claimed that adults have a greater risk of transmitting
SARS-CoV-2 virus than children do toward susceptibles (See Sect. 1). This suggests
that in order to give more appropriate description of Covid-19 transmission, it is
important to separate the population into two different age-subgroups.

The population considered in this section is stratified into two age categories
and ten disease status. Individuals are classified as susceptible children (T ), suscep-
tible adult (S), exposed noninfectious (ET ) , exposed noninfectious adult (Es) ,

asymptomatic infectious adult (A), asymptomatic infectious children (B), unre-
ported symptomatic infectious (Iu), hospitalized symptomatic infectious (H), recov-
ered individuals (R) and dead individuals (D). We assume that infected children do
not show symptoms and can still transmit the disease. Covid-19 disease dynamics
can be described as follows: Let βχ be the transmission rate from infectious indi-
viduals to confined susceptible individuals and βN be the transmission rate from
infectious individuals to unconfined susceptible individuals. Then, for i ∈ {χ, N } ,

susceptibles adults (S) (resp. susceptible children (T )) are infected through contact
with infectious adults (A + Iu) at a transmission rate β i

aa (resp. β
i
ca) or through con-

tact with infectious children (B) at a transmission rate β i
ac (resp. β

i
cc) and move to

the exposed noninfectious adult class (Es) (resp. the exposed noninfectious children
class (ET )). Adult exposed individuals (resp. children exposed individuals) then
become asymptomatic infectious at rate ks (resp. kT ). After an average period 1/δ
days the asymptomatic infectious individuals (A) become symptomatic and proceed
either to the unreported symptomatic infectious (Iu), at rate δ1, or to the hospitalized
individual (H) at rate δ2 with δ = δ1 + δ2.Once becoming symptomatic, individuals
of class Iu and H either remain asymptomatic for 1/μ days on average before they
are recovered or remain asymptomatic for 1/d days on average before they are dead.
Asymptomatic children can either be recovered without being hospitalized at rate
δ or detected and hospitalized at rate σ. The control parameters are as defined in
Sect. 3. The subscripts c and a, respectively, characterize children and adults. The
model will be given by the following equations
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⎧
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dT

dt
= − (1 − γc) pc

(
β

χ
acT (t) (A(t) + Iu(t)) + β

χ
ccT (t)B(t)

)

− (1 − θc) (1 − (1 − γc) pc)
(
βN
acT (t) (A(t) + Iu(t)) + βN

ccT (t)B(t)
)

,

dET

dt
= (1 − γc) pc

(
β

χ
acT (t) (A(t) + Iu(t)) + β

χ
ccT (t)B(t)

)

+ (1 − θc) (1 − (1 − γc) pc)
(
βN
acT (t) (A(t) + Iu(t)) + βN

ccT (t)B(t)
)

− kT ET ,

dB

dt
= kT ET − (σ + δ)B(t),

dS

dt
= − (1 − γa) pa

(
β

χ
aa S(t) (A(t) + Iu(t)) + β

χ
ca S(t)B(t)

)

− (1 − θa) (1 − (1 − γa) pa)
(
βN
aa S(t) (A(t) + Iu(t)) + βN

ca S(t)B(t)
)

,

dEs
dt

= (1 − γa) pa
(
β

χ
aa S(t) (A(t) + Iu(t)) + β

χ
ca S(t)B(t)

)

+ (1 − θa) (1 − (1 − γa) pa)
(
βN
aa S(t) (A(t) + Iu(t)) + βN

ca S(t)B(t)
)

− ks Es ,

d A

dt
= ks Es − δA(t),

d Iu
dt

= δ1A(t) − μIu(t) − d Iu(t),

dH

dt
= δ2A(t) + σ B(t) − μH − dH,

dR

dt
= δB(t) + μ(H + Iu),

dD

dt
= d(H + Iu).

(10)

4.1 Reproduction Numbers

Here, the basic and control reproduction numbers will be given by

R0 = βN
ccT (0)/N

σ + δ
+ βN

aa S(0)/N

δ
+ δ1β

N
aa S(0)/N

δ (μ + d)
(11)

and

Rc =
(
(1 − γc) pcβ

χ
cc + (1 − θc) (1 − (1 − γc) pc) βN

cc

)
T (0)/N

σ + δ
(12)

+ (δ1 + μ + d)
(
(1 − γa) paβ

χ
aa + (1 − θa) (1 − (1 − γa) pa) βN

aa

)
S(0)/N

δ (μ + d)
.

Let us show the formula of R0. By setting γ = θ = 0, the linearized system related
to infectious individuals, around (T (0), 0, 0, S0, 0, 0, 0) , of system (3) is given b
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⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dET

dt
= −kT ET + βN

ccT (0)B(t)/N + βN
acT (0)A(t)/N + βN

acT (0)Iu(t)/N

dB

dt
= kT ET − (σ + δ)B(t),

dES

dt
= βN

ca S(0)B(t)/N − ks ES + βN
aa S(0)A(t)/N + βN

aa S(0)Iu(t)/N

dA

dt
= ks Es − δA(t),

d Iu
dt

= δ1A(t) − (μ + d) Iu(t).

Moreover, the associated Jacobian matrix will be given by M = F − E where

F =

⎛

⎜
⎜
⎜
⎜
⎝

0 βN
ccT (0)/N 0 βN

acT (0)/N βN
acT (0)/N

kT 0 0 0 0
0 βN

ca S(0)/N 0 βN
aa S(0)/N βN

aa S(0)/N
0 0 ks 0 0
0 0 0 δ1 0

⎞

⎟
⎟
⎟
⎟
⎠

and E =

⎛

⎜
⎜
⎜
⎜
⎝

kT 0 0 0 0
0 σ + δ 0 0 0
0 0 ks 0 0
0 0 0 δ 0
0 0 0 0 μ + d

⎞

⎟
⎟
⎟
⎟
⎠

.

Therefore,

FE−1 = 1

N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βN
ccT (0)

δ + σ

αcβccT (0)

δ + σ

(d + μ + δ1) βN
acT (0)

δ(d + μ)

(d + μ + δ1) βN
acT (0)

δ(d + μ)

βN
acT (0)

d + μ
0 0 0 0 0

βN
ca S(0)

δ + σ

βN
ca S(0)

δ + σ

(d + μ + δ1) βN
aa S(0)

δ(d + μ)

(d + μ + δ1) βN
aa S(0)

δ (d + μ)

βN
aa S(0)

d + μ
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and R0 is its spectral radius which is given by formula (11). Moreover, assuming that
γ θcθa �= 0 and following the same process above, the control reproduction number
will be given by formula (12).

4.2 Parameter and Initial Data Estimation

Note that the first infected child was reported 22 days since the beginning of the
epidemic. Furthermore, themaximumasymptomatic duration including the exposure
period is about 14 days. Consequently, there were neither exposed nor asymptomatic
infected children under 15years old at t = 0. Thus, the initial data values related to
infected adult individuals are the same as those in system (3). Furthermore, E0 =
B0 = 0, T0 = 9683602 and S0 = 26181589.Asmentioned in Sect. 1, we assume that
β i
ac = β i

aa, β i
ca = β i

cc where i ∈ {χ, N } .Using the same fitting solver as in Sect. 3.2,
we obtain the parameter values shown in Table2. The SSR related to this model is
estimated to be SSRage = 98.76.
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Table 2 Parameter definitions and values of model (10)

Symbol Definition Parameter value Confidence
interval

Reference

βN
aa, β

N
ac Infection rate

from infectious
adults to
unconfined
population

0.41 0.1 − 0.63 Estimated

βN
ca, β

N
cc Infection rate

from infectious
children to
unconfined
population

0.2 0.05 − 0.31 Estimated

β
χ
aa, β

χ
ac Infection rate

from infectious
adults to confined
population

0.1 0.007 − 0.15 Estimated

β
χ
ca, β

χ
cc Infection rate

from infectious
children to
confined
population

0.014 0.002 − 0.16 Estimated

p Proportion of
lockdown

0.65 0.57 − 0.86 Estimated

k Exposed
noninfectious
individuals

3 2 − 4 See text

R0 Basic
reproduction
number

2.06 0.5 − 3.19 Estimated

5 Covid-19 Model with Constant Delay

In order to enable the study of the effect of the period time, in which infected indi-
viduals are asymptomatic and noninfectious, on the Covid-19 dynamics, we will
incorporate the time delay (latency period) in the basic model instead of considering
the noninfectious latent state as a model component. Let η denotes the death rate
of noninfectious exposed individuals. Once infected through contact with infectious
individuals at rate β, the susceptible individuals that survive with probability e−ητ

become infectious (able to transmit the infection) when the time since exposure
exceeds an exposure period time τ. The dynamics of the model are described by the
following system of differential equation with delay
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dS
dt = −αe−ητ S(t) (A(t) + Iu(t)) /N ,

d A

dt
= αe−ηaτ S(t − τ) (A(t − τ) + Iu(t − τ)) − δA(t),

d Iu
dt

= δ1A(t) − μIu(t) − d Iu(t),

dH
dt = δ2A(t) − μH − dH,

dR

dt
= μ(H + Iu),

dD

dt
= d(H + Iu)

(13)

where α = (1 − γ ) pβc + (1 − θ) (1 − (1 − γ ) p) βN and all the model parameters,
except η and τ, are described similarly to those in Sect. 3.

5.1 Reproduction Numbers

The control and basic reproduction numbers for system (13) are successively given
by

Rc=
αS0e−ητ

N

(
1

δ
+ δ1

δ (μ + d)

)

and R0=
βN S0e−ητ

N

(
1

δ
+ δ1

δ (μ + d)

)

.

To compute the basic reproduction number, we apply the survival function approach
described by Heffernan, Smith, and Wahl [6]. Let R01 (respectively, R02) be the
average number of secondary infections produced when one asymptomatic infected
(respectively, symptomatic unreported infected) individual is introduced into the host
virgin population. Following the work in [6], we have R01 = ∫ ∞

0 F(s)ds where F(s)
is the probability that a newly asymptomatic infected individual has been produced
by an existing asymptomatic infectious individual and lives for at least time s. The

probability function F(s) can be expressed as F(s) =
∫ s

0
P1(t)P2(s, t)dt, where

P1(t) is the probability that an asymptomatic infected individual of age t infects

a susceptible individual and is given by
βN S0
N

and P2 (s, t) is the probability that

exposed infected individual lives to age s − t and is given by e−ητ e−δ(s−t) before
becoming infectious. Consequently, R01 = βN S0

N e−ητ
∫ ∞
0

∫ s
0 e−δ(s−t)dtds which can

be reduced to R01 = βN S0e−ητ

Nδ
.Since asymptomatic individuals canbecomeunreported

symptomatic infectious individuals over their lifespan 1/δ at a rate δ1 and each

infectious symptomatic individual produces, on average, βN S0
1

μ + d
asymptomatic

individuals during his lifespan 1/ (μ + d) then, similarly, we can express R02 as
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R02=
βN S0e−ητ

N
δ1

δ(μ+d)
. Thus, the basic reproduction number R0 will be given by

R0=
βN S0e−ητ

N

(
1

δ
+ δ1

δ (μ + d)

)

.

Similarly, we can obtain the control reproduction number for system (13).

5.2 Parameter and Initial Data Estimation

Since the parameters δ, δ1,δ2, μ and d are not affected by the age then their values
are the same as those in Sect. 3.2. Note that since there were no death of exposed
individuals then it is meaningful to assume that η = 0. To estimate the initial data,
we will use the same process as in Sect. 3.2 so that A(t) will be given by (3) for t
close to 0. Thus, using the second and the third equations of system (13) we obtain,
for t close to 0,

aA(t) = βN S(0) (A(t − τ) + Iu(t − τ)) /N − δA(t), (14)

and

Iu(t + θ) = I0 (θ) eat , (15)

where

I0(θ) = δ1

a + μ + d

ba

δ2
eaθ . (16)

Now, using Eqs. (14) and (15) and the third equation of system (13), we obtain after
simplification

aA0 = βN S0

(

A0 + δ1

a + μ + d
A0

)

e−aτ /N − δA0 (17)

and
aI0 = δ1A0 − μI0 − d I0. (18)

Solving Eqs. (16), (17) and (18) for βN and A0 lead to

βN = (a + δ) (a + μ + d)

a + μ + d + δ1
eaτ and I0 = δ1

a + μ + d
A0. (19)
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Table 3 Parameter definitions and values of model (13)

Symbol Definition Parameter value Confidence
Interval (95%)

Reference

βN Infection rate for
unconfined
population

0.4596 0.4492 − 0.48 Estimated

βc Infection rate for
confined
population

0.091 0.089 − 0.096 Estimated

τ latency period 0.33 0.25 − 0.5 See text

R0 Basic
reproduction
number

3.03 2.96 − 3.174 Estimated

p Proportion of
lockdown

0.75 0.53 − 0.82 Estimated

Furthermore, the initial data A0(θ) and I0(θ) are given for θ ∈ [−τ, 0] by A0(θ) =
ba

δ2
eaθ and I0(θ) = δ1

a + μ + d
A0(θ). We will assume, as in Sect. 3, that the latency

duration varies between 6 and 12 h. Consequently, βN is estimated to be between
0.4492 and 0.48 with an average of 0.4596. In this case, the basic reproduction
number varies between 2.96 and 3.174 with 3.03 in average. Finally, by repeating
the same above process between the first and last day of lockdown we can estimate
the parameters βc and p (See Table 3). Here, the sum of squared residuals is estimated
to be SSRdde = 92.63. When considering 6 and 12 h as latency periods, then their
SSR are given respectively by SSRτ=0.25 = 93.23 and SSRτ=0.5 = 95.55.

6 Covid-19 Model with Threshold-Type Delay

Threshold delay equations (TDEs) ensue in a natural way in compartmental models
for which the time in residence in a particular compartment is determined by the
stipulation that a fixed threshold load of an entity is racked up during the time spent
in that compartment. A susceptible individual that is first exposed to a pathogen
at time t − σ will become infectious at time t provided the individual receives a
sufficient load of the virus during the time from t − σ to t. We will assume that
an individual is exposed to an infectious quantum, c, which is the unit of SARS-
CoV-2 viral load needed to produce an infection. Therefore, we will assume that the
infectious SARS-CoV-2 viral load will grow, overcoming the nonspecific immune
response. When the pathogen load has increased to a threshold Q, or equivalently,
when the age since exposure is greater than the latency period τ, we then consider
the individual to be infectious. We assume, as mentioned in [7], that the repeated
exposures to smaller viral loads increase the pathogen load in-host. Furthermore,
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since transmission occurs from infected individuals, the pathogen load due to an
exposure will depend on the infected population.

Let r be the internal growth rate of the SARS-CoV-2 virus, b is the number of
effective contacts between an exposed and infectious individuals, k is an adjustable
parameter which measures how soon saturation occurs. Following the modeling
approach in [23], the threshold condition is governed by the following formula

�(t) := cerτ(At+Iu,t ) +
∫ 0

−τ(At+Iu,t )

e−vrG(A(t + v) + Iu(t + v))dv − Q = 0 (20)

where At + Iu,t are the history functions of the infectious individuals defined for
ξ ∈ [−τ∞ := −maxφ∈C τ(φ), 0] by

At (ξ) + Iu,t (ξ) = A(t + ξ) + Iu(t + ξ)

and τ : C �→ R
+ is a decreasing and continuously differential map on the space

of continuous functions,C := C
([−τ∞, 0],R+)

, satisfying τ(0) = 1
r ln

( Q
c

)
. Fur-

thermore, F is the additive SARS-CoV-2 viral load in the exposed individual due
to multiple exposures to infectious individuals which is given, for x ≥ 0, by the
following Holling functional response-type 2

G(x) = bcx

kx + 1
.

The Covid-19 model will then be given by the following threshold-type delay system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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dS
dt = −αS(t) (A(t) + Iu(t)) /N ,

d A

dt
= αe−ητ(At+Iu,t)S

(
t − τ

(
At + Iu,t

)) (
A

(
t − τ

(
At + Iu,t

)) + Iu
(
t − τ

(
At + Iu,t

)))

−δA(t),

d Iu
dt

= δ1A(t) − μIu(t) − d Iu(t),

dH
dt = δ2A(t) − μH − dH,

dR

dt
= δB(t) + μ(H + Iu),

dD

dt
= d(H + Iu),

�(t) = 0
(21)

where τ, A and Iu satisfy the threshold condition (20).
Applying the survival function approach described byHeffernan, Smith, andWahl

[6] as done in Sect. 5.1, the control and basic reproduction numbers are given by
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Table 4 Parameter definitions and values of model (21)

Symbol Definition Parameter value Confidence
Interval (95%)

Reference

βN Infection rate for
unconfined
population

0.4596 0.4492 − 0.48 Estimated

βc Infection rate for
confined
population

0.091 0.089 − 0.096 Estimated

r Internal growth
rate

1.02 Adjusted

b Effective contact
number

20 Adjusted

k Adjustable
parameter

10−5 Adjusted

c Viral load per
contact

49, 79 18.31 − 135.33 Estimated

τ(0) Maximal latency
duration

0.33 days 0.25 − 0.25 See text

R0 Basic
reproduction
number

3.03 2.96 − 3.174 Estimated

p Proportion of
lockdown

0.73 0.51 − 0.78 Estimated

Rc = αS0e−ητ(0) (μ + d + δ1)

δN (μ + d)
and R0 = βN S0e−ητ(0) (μ + d + δ1)

δN (μ + d)
.

In order to estimate the model parameters and simulate its dynamics we use
MATLAB ddesd solver [25] for state-dependent delay differential equations to com-
pute the solutions of (21) numerically. However, we should note that simulating the
behavior of solutions of system (21) for the general state-dependent delay τ is
a challenging task. To overcome this difficulty, we will estimate the parameters
and perform our simulations using constant initial data. Let C̃ =
{φ ∈ C : φ(s) = φ(0) for all s ∈ [−τ∞, 0]} be the space of constant initial data.
Thus, for φ ∈ C̃, the equation �(τ(φ), φ) = 0 given by (20) is equivalent to

cerτ(φ) +
∫ 0

−τ(φ)

e−rsG(φ(0))dv − Q = 0.

Solving this equation for τ(φ), we obtain

τ(φ) = 1

r
ln

(
r Q + G(φ(0))

cr + G(φ(0))

)

. (22)
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It is experimentally shown that the minimal viral load needed for the infection to
occur in hamsters is 1000 particles (See [10] more details). Thus, we assume that
Q = 1000. Furthermore, since the maximal latency duration τ(0) varies between 6
and 12 hours then, from formula (22) the viral load, c, per each contact will vary
between Qe−r/2 and Qe−r/4 with an average of Qe−r/3. However, another difficulty
we encounter for this model is that the parameters b, r and k related to Covid-19
disease are still unknown andwe are compelled to fairly adjust them to fit the reported
cases (see Table4). In this case, we will be able to follow the same process as the one
in Sect. 5.2 to obtain the remaining model parameters (See Table4). Furthermore,
we obtain SSRsde = 94.3.

7 Models with Demographic Effects

In the previous section, we have omitted births and deaths in our description of
models because it was believed that the time scale of of Covid-19 epidemic is much
shorter than the demographic time scale. Indeed, we have used a time scale on which
the number of births and deaths in unit time is negligible. However, as mentioned in
Sect. 1, there is a possibility that the Covid-19 may not go away after a short time
and could stay for years. Thus, we need to think on a longer time scale and include
a birth rate parameter, πS and a death rate parameter dS. In what follows, we will
reconsider models (13) and (21) including demographic effects and we shall give a
rigorous mathematical analysis to the both models. The reason for which we select
these models is that model (13) is shown to be the best one to fit well the data while
model (21), as we will see in Subsection 7.2, generates more complicated behavior
then the three other models.

7.1 Covid-19 Model with Constant Delay

Let us analyze the following constant-delay Covid-19 model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = πS − αe−ητ S(t) (A(t) + Iu(t)) /N − dS S(t),

d A

dt
= αe−ηaτ S(t − τ) (A(t − τ) + Iu(t − τ)) − δA(t) − −dS A(t),

d Iu
dt

= δ1A(t) − μIu(t) − d Iu(t) − dS Iu(t),

dH
dt = δ2A(t) − μH(t) − dH(t) − dSH(t),

dR

dt
= μ (H(t) + Iu(t)) − dS R(t),

dD

dt
= d (H(t) + Iu(t))

(23)
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where
α = ((1 − γ ) pβc + (1 − θ) (1 − (1 − γ ) p) βN ) .

Since the three last components H,R and D do not appear in the three first equations
of model (23), then we will focus our local stability study on the three first equations.

7.1.1 Equilibria

Computing the equilibria of system (23),we see that a positive steady state
(
S̃, Ã, Ĩu

)

must satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πS − αe−ητ S̃
(
Ã + Ĩu

)
/N − dS S̃ = 0,

αe−ητ S̃
(
Ã + Ĩu

)
/N − (δ + dS) Ã = 0,

δ1 Ã − (μ + d + dS) Ĩu = 0.

A straightforward calculation of the above system leads to the following result.

Proposition 1 The model (23) has a disease-free equilibrium (DFE) given by E =
( πS
dS

, 0, 0) in which there is no disease. Furthermore, the DFE is unique when Rc ≤ 1
and a unique endemic equilibrium of (23) appears when Rc > 1.

Moreover, the endemic equilibrium, E∗ =
(
S̃, Ã, Ĩu

)
, satisfies

S̃ = δ

αe−ητ

(
1 + δ1

μ+d+dS

)
/N

, Ã = δ
(
πS − dS S̃

)
/N and Ĩu = δ1

μ + d + dS
Ã,

(24)

7.1.2 Control Thresholds

Following the work done in Sect. 5.1 we can easily obtain the basic reproduction
number related to model (23) as follows

R0=
πSβNe−ητ

dSN

(
1

δ + dS
+ δ1

(δ + dS) (μ + d + dS)

)

.

The control reproduction number is given by

Rc=
πSαe−ητ

dSN

(
1

δ + dS
+ δ1

(δ + dS) (μ + d + dS)

)

.
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7.1.3 Bifurcation Analysis

In the following, we shall prove that system (23) produces a forward transcritical
bifurcation. The linearization of system (23) around any steady state E =

(
Se, Ae, I eu

)

characteristic equation

�(λ) = (λ + δ + dS)
(
λ + αe−ητ

(
Ae + I eu

)
/N + dS

)
(λ + μ + d + dS) (25)

−αe−ητ Se (λ + μ + d + δ1 + dS) (λ + dS) e
−λτ /N .

The local behavior of the DFE of system (23) is given by the following theorem.

Theorem 1 The boundary steady state E of system (23) is unstable when Rc > 1
and locally asymptotically stable when Rc < 1.

Proof The characteristic equation associated with the DFE is given by

�(λ) = (λ + dS)
(
(λ + δ + dS) (λ + μ + d + dS) − αe−ητ S (λ + μ + d + δ1 + dS) e

−λτ /N
)
.

Then the associated eigenvalues are given by λ = −dS and the roots of

δ̃ (λ) = (λ + δ + dS) (λ + μ + d + dS) − αe−ητ S (λ + μ + d + δ1 + dS) e
−λτ /N .

(26)
Let λ be any eigenvalue associated with Eq. (26) with nonnegative real part (i.e.
�e (λ) ≥ 0) and assume that Rc < 1. Then e−�e(λ)τ ≤ 1 and

| λ + δ + dS || λ + μ + d + dS |
| λ + μ + d + δ1 + dS | ≤ αe−ητ S/N .

On the other hand, it follows from Rc < 1 that

αe−ητ S/N <
(δ + dS) (μ + d + dS)

μ + d + δ1 + dS
.

This is a contradiction since the map λ �→ | λ + δ + dS || λ + μ + d + dS |
| λ + μ + d + δ1 + dS | is

increasing. Consequently, the DFE is locally asymptotically stable. On the other
hand if Rc > 1 then

δ̃ (0) = δ (μ + d + dS) (1 − Rc) < 0.

Then δ̃ has one positive root and the DFE is unstable. �

The forward transcritical bifurcation of the endemic equilibrium as Rc moves
through 1 is stated as follows.

Theorem 2 When Rc < 1, the endemic equilibrium of system (23) is locally asymp-
totically stable while the DFE is unstable, and for Rc > 1 the DFE is unique and
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locally asymptotically stable. That is, forward transcritical bifurcation occurs at
Rc = 1.

Proof The characteristic equation associated with the endemic equilibrium is given
by

� (λ) =
(λ + δ + dS)

(
λ + αe−ητ

(
Ã + Ĩu

)
/N + dS

)
(λ + μ + d + dS)

(λ + μ + d + δ1 + dS) (λ + dS)
− αe−ηaτ S̃/Ne−λτ .

Let λ be any eigenvalue associated with Eq. (26) with nonnegative real part. Then

| λ + δ + dS || λ + μ + d + dS |
| λ + μ + d + δ1 + dS | ≤

| λ + δ + dS || λ + αe−ητ
(
Ã + Ĩu

)
/N + dS || λ + μ + d + dS |

| λ + μ + d + δ1 + dS || λ + dS |
= αe−ητ S̃ | e−λτ | /N

≤ (μ + d + dS) δ

μ + d + δ1 + dS

However, λ �→ | λ + δ + dS || λ + μ + d + dS |
| λ + μ + d + δ1 + dS | is increasing which is a contra-

diction. It follows that all characteristic roots of � are negative. Thus, the local
asymptotic stability of the positive steady state immediately follows. Furthermore,
from Theorem 1 we deduce the local behavior of the DFE. This completes the
proof. �

7.2 Covid-19 Model with Threshold-Type Delay

In this section, we will perform qualitative analysis of the following threshold-type
delay Covid-19 model. We shall prove that system (23) produces two potential cases
of bifurcation depending on the chosen parameter values.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = πS − αS(t) (A(t) + Iu(t)) /N − dSS,

d A

dt
= αe−ητ(A(t)+Iu(t))S(t − σ(t)) (A(t − σ(t)) + Iu(t − σ(t)))

− (δ + dS) A(t),

d Iu
dt

= δ1A(t) − μIu(t) − (d + dS) Iu(t),

dH
dt = δ2A(t) − μH − (d + dS) H,

d R̃

dt
= δB(t) + μ(H + Iu),

dD

dt
= d(H + Iu)

(27)

where σ(t) = τ (A(t) + Iu(t)) .
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7.2.1 Equilibria

As mentioned in Sect. 7.1, we will focus our study only on the three first equations.
Computing the equilibria of the system (27), we see that an endemic equilibrium(
S̃, Ã, Ĩu

)
must satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πS − α S̃
(
Ã + Ĩu

)
/N − dS S̃ = 0,

αe−ητ( Ã+ Ĩu) S̃
(
Ã + Ĩu

)
/N − (δ + dS) Ã = 0,

δ1 Ã − (μ + d + dS) Ĩu = 0.

Let, for y > 0, ν (y) = τ

((
μ + d + δ1 + dS

μ + d + dS

)

y

)

,

W (y) = ην ′ (y)
(

α

(
μ + d + δ1 + dS

μ + d + dS

)

y/N + dS

)

+ α

(
μ + d + δ1 + dS

μ + d + dS

)

/N

and

χ (y) = πSαe−ην(y) (μ + d + δ1 + dS)

α

(
μ + d + δ1 + dS

μ + d + dS

)

y/N + dS

.

A straightforward calculation of the above system leads to the following result.

Proposition 2 The model (27) has a disease-free equilibrium (DFE) given by,

E = (
πS

dS
, 0, 0)

in which there is no disease. Furthermore,

(i) if Rc ≤ 1 and W
(
Ã
)

> 0 then there is no endemic equilibria,

(ii) if Rc > 1 and W
(
Ã
)

> 0 then there exists only one endemic equilibrium,

(iii) if Rc < 1 and there exist A∗ > 0 such that χ(A∗) > δN (μ + d) , then there
exist at least two endemic equilibria,

(vi) if Rc ≤ 1 and, for all y > 0, χ(y) < δN (μ + d) , then there is no endemic
equilibria.

Moreover, the endemic equilibrium, E∗ =
(
S̃, Ã, Ĩu

)
, satisfies

S̃ = πS

α

(
μ + d + δ1 + dS

μ + d + dS

)

Ã/N + dS

, Ĩu = δ1

μ + d + dS
Ã and χ

(
Ã
)

= δN (μ + d + dS) .

(28)

Proof After few calculations, we obtain
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χ (0) = πSαe−ην(0) (μ + d + δ1 + dS)

dS
= RcδN (μ + d + dS),

limy→∞ χ(y) = 0 and

χ ′
(
Ã
)

= − πSα (μ + d + δ1 + dS) e−ην( Ã)

(

α

(
μ + d + δ1 + dS

μ + d + dS

)

Ã/N + dS

)2W
(
Ã
)

.

This proves all the assertions of the proposition. �

7.2.2 Control Thresholds

Similarly to the proof in Sect. 5.1, the basic and control reproduction numbers for
system (27) are successively given by

vspace*-8pt

R0 = πSβN e−ην(0) (μ + d + δ1 + dS)

δN (μ + d + dS) dS
and Rc=

πSαe−ην(0)

NdS

(
1

δ + dS
+ δ1

(δ + dS) (μ + d + dS)

)

.

7.2.3 Bifurcations

Here we focus on local asymptotic stability and bifurcation analysis of equilibria of
system (27) .

Theorem 3 The DFE E = (
S, 0, 0

)
of (27) is unstable when Rc > 1, and locally

asymptotically stable when Rc < 1.

Proof The characteristic equation associated with the DFE is given by

�(λ) = (λ + δ + dS) (λ + μ + d + dS) − αe−ην(0)Se−λν(0) (λ + μ + d + δ1 + dS) /N

= λ2 + (
μ + d + δ + dS − αS/N

)
λ − αe−ην(0)S/N (λ + μ + d + δ1 + dS) e

−λν(0)

+ (δ + dS) (μ + d + dS) .

When ν = 0 then �(λ) = λ2 + (
μ + d + δ + dS − αS/N

)
λ + δ (μ + d + dS)

(1 − Rc) . Furthermore, we have

μ + d + δ + dS − Sα/N = (δ + dS) (μ + d + dS)

μ + d + δ1 + dS

(μ + d + δ + dS) (μ + d + δ1 + dS)

(δ + dS) (μ + d + dS)

>
(δ + dS) (μ + d + dS)

μ + d + δ1 + dS
(1 − Rc) .
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Thus, the DFE is stable when ν = 0 and Rc < 1. Assume that ν > 0 and let ω > 0.
Separating real and imaginary parts, equality �(iω) = 0 is equivalent to

ω4 +
(

(μ + d + dS)
2 + (δ + dS)

2 −
(
αe−ην(0)S/N

)2
)

ω2 + (δ + dS)
2 (μ + d + dS)

2

−
(
αe−ην(0)S/N (μ + d + δ1 + dS)

)2 = 0.

A simple calculation of the discriminant δ̃ leads to

δ̃ =
(

(μ + d + dS)
2 − (δ + dS)

2 −
(
αe−ην(0)S/N

)2
)2

+ 4 (δ + dS)
2
(
αe−ην(0)S/N

)2

+4
(
αe−ην(0) S̃/N (μ + d + δ1 + dS)

)2

which is positive. It follows that iω is not a root of � and, consequently, the DFE is
LAS for all ν > 0 such that Rc < 1. On the other hand, if Rc > 1 then

�(0) = δ (μ + d + dS)

(

1 − αe−ην(0)πS (μ + d + δ1 + dS) /N

dSδ (μ + d + dS)

)

= (δ + dS) (μ + d + dS) (1 − Rc)

which is negative. It follows that � has a positive root and the DFE is unstable. �

Theorem 4 When Rc = 1 and W
(
Ã
)

> 0 , the endemic equilibrium undergoes

a forward transcritical bifurcation, that is for Rc > 1, Rc close to 1, the endemic
equilibrium is locally asymptotically stable, whereas the DFE is unstable, and for
Rc < 1 the DFE is locally asymptotically stable and is the only steady state of (27).

Proof The characteristic equation is given by

� (λ) = (λ + δ + dS) (λ + μ + d + dS) − α S̃e
−ην

(
Ã
)

e
−λν

(
Ã
)

(λ + μ + d + δ1 + dS) /N

+ Q(λ)

where

Q (λ) = αe
−ην

(
Ã
) (

Ã + Ĩu
)
S̃ (λ + μ + d + δ1 + dS)

⎛

⎝
e
−λν

(
Ã
)

α/N

λ + α
(
Ã + Ĩu

)
/N + dS

+ ην′ ( Ã
)
⎞

⎠ /N .

Then

� (0) = δ (μ + d + dS) − αe
−ην

(
Ã
)

S̃ (μ + d + δ1 + dS) /N

+αe
−ην

(
Ã
)

(
Ã + Ĩu

)
S̃ (μ + d + dS)

⎛

⎝
α

(
μ+d+δ1

μ+d

)
/N

α
(
Ã + Ĩu

)
/N + dS

+ ην′ ( Ã
)
⎞

⎠ /N .
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On the other hand, from the equilibrium Eq. (28), we have

αe−ηaν( Ã) S̃ (μ + d + δ1 + dS) /N − (δ + dS) (μ + d + dS) = 0.

Then

�(0) = αe
−ην

(
Ã
) (

Ã + Ĩu
)
S̃ (μ + d + dS)

⎛

⎜
⎜
⎝

α

(
μ + d + δ1 + dS

μ + d + dS

)

/N

α
(
Ã + Ĩu

)
/N + dS

+ ην′ ( Ã
)

⎞

⎟
⎟
⎠ /N .

It follows from condition (ii) in Proposition 2 that �(0) > 0. This proves that λ = 0
is not a root of �(λ) = 0.

Now, let λ be a root of �(.) with nonnegative real part and Z =| λ + μ + d +
δ1 + dS | αe−ην( Ã) S̃/N . Thus, | e−λν( Ã) |≤ 1 and

| Q (λ) | ≤ Z

⎛

⎝
α

(
Ã + Ĩu

)
/N

| λ + α
(
Ã + Ĩu

)
/N + dS |

⎞

⎠

< Z .

Set X = (δ+dS)(μ+d+dS)
μ+d+δ1+dS

− α S̃e−ην( Ã)e−λν( Ã)/N and Y = αe−ηaν( Ã) S̃/N − α

S̃e−ην( Ã)e−λν( Ã)/N . Then, using formula (28), we have X = Y and

| (λ + δ + dS) (λ + μ + d + dS) − α S̃e
−ην

(
Ã
)

e
−λν

(
Ã
)

/N | ≥| λ + μ + d + δ1 + dS || Y |

= Z | 1 − e
−λν

(
Ã
)

| .

Therefore, | 1 − e−λν( Ã) |< 1 which is a contradiction since �e(λ) ≥ 0. Conse-
quently, the endemic equilibrium is LAS. �

Theorem 5 Assume that case (iii) in Proposition 2 holds true. When Rc = 1, the
system (27) undergoes a backward bifurcation. That is, for Rc > 1, Rc close to 1,
the endemic equilibrium is the unique equilibrium which is locally asymptotically
stable; and for Rc < 1 Rc close to 1, the DFE together with an endemic equilibria
is locally asymptotically stable, whereas a second endemic equilibrium exists and is
unstable.

Proof When case (iii) hold, then there exist at least two positive steady states, Em =(
Sm, Am, I mu

)
and EM = (

SM , AM , I Mu
)
. The selected equilibria Em and EM we

will use are the first two solutions Am and AM of equation χ(y) = δN (μ + d)such
that χ ′(AM) < 0 and χ ′(Am) > 0. Thus, the proof of the LAS of equilibrium EM is
similar to the one of Theorem 4.
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The characteristic equation associated with Em satisfies

�(0) = αe−ην(Am (ζ )) (Am (ζ ) + Im (ζ )) Sm (ζ ) (μ + d + dS) χ ′(Am)/N .

Consequently �(0) < 0 and, since limλ→∞ �(λ) = +∞, then there exists λ∗ > 0
such that �(λ∗) = 0. This concludes the proof of the theorem. �

The existence of a backward bifurcation is an interesting artifact since this means
that repeated exposures of susceptibles to the SARS-CoV-2 virus can cause bi-
stability dynamics and, subsequently, infection persistence even when the control
reproduction number Rc is less than unity. An interesting query that emanates from
the backward bifurcation is “What is the maximum effective contact number, b, or
viral load per each contact, c, below which the Covid-19 disappear one we reduce
Rc below one?”. Note that, as mentioned and proved in [23], in the case of single
exposure model (27) is a system of constant-delay differential equations which is
equivalent to system (23). Moreover, no backward bifurcation occurs. Generally,
there is a threshold b∗ below which the backward bifurcation disappear (The proof
is similar to the one in [23]). This result could have a significant biological interpre-
tation since, as stated in [10], minimization of exposure to SARS-COV-2 is key to
reducing the chance of infection and developing disease.

8 Discussion

Since the beginning of Covid-19 pandemic, numerous mathematical models with
increasing complexity are developed worldwide to understand the course of Covid-
19 disease. The modeling results have shown a wide large of variations, especially in
the basic reproduction numbers. This leads to ask some questions such as:Why these
variations exist between models? Which model is the most realistic for the Covid-
19 disease? WHO had reported that the basic reproduction number is estimated to
be between 1.4 and 2.5 [26] while other interesting contributions reported that the
Covid-19 is more transmissible than whatWHOmentioned. In [16], the authors esti-
mated, through a comparison study of 12 different results, that the median value of
R0 for Covid-19 is expected to be around 2 − 3. However, only 6 among these studies
have usedmathematical models leading to a higher variation of R0 (1.5 − 6.49),with
an average of 4.2. Another systematic review in [14] screened 75 mathematical and
statistical models published between December 1st 2019 and February 21st 2020
and concluded that the median of R0 for Covid-19 was 3.77 (Fig. 1). In this chapter,
we developed, fitted and compared four mathematical models with increasing com-
plexity, that incorporate lifting lockdown strategy, to check out which one among
them provides the best prediction for Covid-19 disease. We considered a progressive
relaxation of the compulsory lockdown performed in two stages and supported by
a reduction of 60% of the contact rate. In the first stage, 30 % of the total confined
population lifted the lockdown on June 10th, while in the second stage another 30%
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Fig. 1 Time series plot for model (1), starting from March 21, 2020, of the numbers of reported
individuals change using different lifting rates at different times as follows: 30% of the total popula-
tion is lifted on June 10 (dot line) and a fraction γ of the remaining confined individuals (γ = 0.3,
γ = 0.4, and γ = 0.5, solid line, dashed line and dot-dashed line respectively) is lifted on Septem-
ber 1st

lifted the lockdown on September 1st. Our investigation of the proposed models
showed a small variation of R0 ranging from 2.06 to 3.03, and according to the SSR
measure (see Sect. 3), the best fit of reported data is achieved for the model with
constant delay (13) with SSR = 92.63. Consequently, our results show that model
(13) is the most reliable to estimate the value of R0 (R0 = 3.03), which is higher than
those estimated by models (1), (10) and (21) (Fig. 2). Although it is believed that
the discrete age-structured model (10) is more realistic, our investigations show that
this model is the least accurate of any of the models used to estimate the basic repro-
duction number R0 since its SSR is the highest one with SSR = 98.76. This leads
us to think to extend the proposed models by gathering both age and constant-delay
factors at once. On the other hand, using our proposed models, the examination of
the lockdown lifting scenario shows a prominent difference between disease predic-
tions. Furthermore, no eradication of Covid-19 disease is observed before the end
of the year when relaxing the compulsory lockdown on September 1st. The discrete
age-structured model (10), which have estimate the lowest R0 value, predict a less
severe disease persistence when comparing with the other models. Lifting 30% of
the total confined population on June 10th will lead to a slight second wave of infec-
tion followed by a rapid decrease till the eradication of the disease before the end of
the year (Fig. 3). However, if this strategy is accompanied with a second lockdown
lifting of at least 30% of the total confined population (11.5% of adults and 80%
of children under 15years old) on September 1st then the extinction of the virus
cannot happen ( Fig. 2) and a third wave could arise. However, it is obvious that the
reopening of primary and junior high schools does not lead to an important wave of



186 R. Qesmi and A. Hammoumi

Fig. 2 Time series plot for model (10), starting from March 21, 2020, of the numbers of reported
individuals change using different lifting rates at different times as follows: 30% of children and
30% of adults are lifted on June 10 (dot line) and a fraction γ of the remaining confined individuals
((γa = 0.115, γc = 0.8) , (γa = 0.25, γc = 0.8) , and (γa = 0.39, γc = 0.8) , solid line, dashed
line, dot-dashed line respectively) is lifted on September 1st

Fig. 3 Time series plot for model (13), starting from March 21, 2020, of the numbers of reported
individuals change using different lifting rates at different times as follows: 30% of the total popula-
tion is lifted on June 10 (dot line) and a fraction γ of the remaining confined individuals (γ = 0.3,
γ = 0.4, and γ = 0.5, solid line, dashed line, dot-dashed line respectively) is lifted on September
1st
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Fig. 4 Time series plot for model (21), starting from March 21, 2020, of the numbers of reported
individuals change using different lifting rates at different times as follows: 30% of the total popula-
tion is lifted on June 10 (dot line) and a fraction γ of the remaining confined individuals (γ = 0.3,
γ = 0.4, and γ = 0.5, solid line, dashed line, dot-dashed line respectively) is lifted on September
1st

infection, when comparing with models (1), (13) and (21). Figures1, 3 and 4 show,
however, that no second wave will reoccur but a longer lasting persistence of the
infection occurs when 30% of the population lifted on June 10th. However, when
comparing with the both basic model (1) and constant-delay model (13), threshold-
type delay model (21) show a higher size of reported cases as well as an important
second wave when a second stage of lifting lockdown strategy occurs on September
1st. Furthermore, it seems that the latency period influences the model fitting to data.
Figure5 and the SSR measure (SSRτ=0.33 = 92.63), related to the delay model (13),
shows that the constant-delay model with latency period of 8 h is the best fit to data
and, thus, this period gives a better prediction than 6 or 12h of latency.

In summary, there are no mathematical models able to correctly capture all com-
plexity of Covid-19 disease in general. Each model, either simple or complex, has
its own advantages and disadvantages. Besides the availability of data, the choice of
model depends on the goal sought by scientists to answer a question of interest. Fur-
thermore, the use of complex models does not necessarily provide the most precise
answers than the simplest. Indeed, since many biological and epidemiological issues
related to SARS-CoV-2 remain to be clarified, parameters considered in the pro-
posed model can be underestimated or overestimated and, consequently, can lead to
wrong results. An unsuccessful evaluation of the disease behavior could cost serious
damage because it leads to an incorrect estimate of the control health measures that
are necessary to contain the disease transmission. However, although a lot of issues
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Fig. 5 Time series plot for model (13), starting from March 21, 2020, of the numbers of reported
individuals change using different latent periods (τ = 0.25, τ = 0.33, and τ = 0.5, dashed line,
solid line, dot-dashed line respectively) with 30% of the total population is lifted on June 10

must be considered to provide the built model a maximum of realism, mathematical
modeling remains a crucial tool to understand and control the behavior of Covid-19
disease.
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Introduction to the Grey Systems Theory
and Its Application in Mathematical
Modeling and Pandemic Prediction of
Covid-19

Hoang Anh Ngo, Thai Nam Hoang, and Mehmet Dik

Abstract Firstly, this chapter is devoted to present the scientific background for the
appearance of Grey Systems in the 1980s. Then, the history of astonishing devel-
opment, along with the main components and fundamental principles of the Grey
Systems, is also introduced. Currently, Grey Systems is an emerging research area
with strong possibilities to transect across and apply to a wide range of scientific
areas, including industry, agriculture, geology, ecology, medicine, education, etc.
However, most applications of the Systems are from Chinese-speaking researchers,
while the theory itself is still uncommon in Uncertainty Mathematics. Finally, the
representative models with high accuracy are put into practice by predicting and han-
dling the outbreak of Covid-19 pandemic. Not only can the Systems predict the total
number of positive cases, but it can also be applied in various other medical practices,
including telecare and data management. Their performances are also compared with
other uncertainty models, including Machine Learning, which has proven that Grey
System models have the ability to perform equally well, or even better, especially in
the context of limited data.

Keywords Mathematical modeling · SEAIR model · MATLAB

1 A Brief Introduction to the Grey Systems Theory

Grey method was proposed by Deng Ju-Long in March, 1982 [12]. In Grey system
theory [12, 29], considered the degree of information, a white system is a system in
which all information is known, while a black system is a system that contains all
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unknown parts. Additionally, a system which consists of both known and unknown
information is called a Grey system [12]. According to Guo, R. [14], the Grey system
outperforms other methods with just a limited number of discrete data, to achieve
an insignificant margin of error of prediction versus real value. The system of total
Covid-19 infected cases can be treated as a Grey system due to its constraint of data.

Mathematically, the traditional Grey predicting model is based on the least square
reduction and the first-order linear ordinary differential equation. For instance, tra-
ditional GM(1, 1) can be taken into account [25, 63] to solve this problem. Notably,
to reinforce the predicting accuracy, some researchers have studied and combined
to create hybrid Grey models, such as Grey-Markov [25, 62], Grey-Fourier [46],
Grey-Taguchi [13]. Some more hybrid models such as Grey rolling mechanism [1,
4, 27] or Nonlinear Grey Bernoulli method [5, 31, 50, 54] can also be taken into
consideration.

Those alternatives of original Grey models aforementioned can be applied to a
variety of topics, including Grey Relational Analysis [10, 21, 23] and Grey pre-
diction [39, 47]. Grey Relational Analysis has an important role in fields of data
analysis to make assumptions based on two or more Relational data. Taking the
relationship between a country’s energy consumption and its GDP, Grey Relational
Analysis can scrutinize how energy resources like oil and renewable energy have
major impacts on Turkey’s GDP. This method yields a potential result, compared to
other econometric models [23]. While Grey Relational Analysis can delineate the
relationship of different topics, Grey prediction can make future assumptions based
on given data. Due to the dynamics of system evolution, the biological limitations of
the human sensing organs, and the constraints of relevant economic conditions and
technological availability, most nowadays problems can be regarded as time-series
problems, or in other words, prediction problems. Using Grey prediction, Wang et
al. applied Grey systems theory to a comprehensive index to represent the condition
of food security to predict the changing trend of the constructed index in the future
and judge the condition of food security risk [47].

As anunascertained system,Greymethod comprisesmany fundamental character-
istics to solve uncertainty problems.Thefirst and foremost characteristic is the incom-
pleteness in the information. The situation of incomplete information is often seen in
our social, economic, and scientific research activities. For instance, in agricultural
productions, even if we know all the exact information regarding the areas of plan-
tation, seeds, fertilizers, irrigations, due to the uncertainties in areas like labor qual-
ity, natural environments, weather conditions, the commodity markets, etc., it is still
extremely difficult to precisely predict the production output and the consequent eco-
nomic values. For biological prevention systems, even ifwe clearly know the relation-
ship between insects and their natural enemies, it is still very difficult for us to achieve
the expected prevention effects due to our ignorance with the knowledge on the rela-
tionships between the insects and the baits, their natural enemies and the baits, and
a specific kind of natural enemy with another kind of natural enemy. Another funda-
mental characteristic is the inaccuracy of data. Both incompleteness and inaccuracy
in data are roughly the same, as glancing through. However, inaccuracy triggers the
insightful of Grey method: data fluctuation can affect the outcome [30].
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Within the first parts of this chapter, univariate Grey models (both linear and non-
linear) will be introduced, alongwith differentmethods/mechanisms of optimization.
Then, some models that have been proposed and applied in predicting the number
of Covid-19 cases will be investigated, showing that Grey models have the ability
to return excellent results compared to various other traditional or modern statistical
methods.

2 Description of the Traditional Linear and Nonlinear
Univariate Grey Models GM(1, 1) and NGBM(1, 1)

A very brief introduction of the mathematical modeling of two traditional Grey
models: GM(1, 1) and Nonlinear Grey Bernoulli Model NGBM(1, 1) is presented in
this section.

2.1 Building the Traditional Grey Model GM(1, 1)

Assume that x (0) is a non-negative original historical time series of data with m
entries

x (0) = {x (0)(1), x (0)(2), ..., x (0)(k), ..., x (0)(m)} (1)

According to Nguyen et al., the initial data has to be tested using the following
conditions to check if it is consistent with the prediction model. Then, σ (0)(k) is
called class ration when the initial value has m ≥ 4, x (0) ∈ R, and k = 2, 3, · · · , n
[35].

x (0)(k − 1)

x (0)k
= σ (0)(k) ∈

(
e− 2

m+1 , e
2

m+1

)
(2)

Next, defining x (1) using one-time accumulated generating operation (1 - AGO)
as

x (1) = {x (1)(1), x (1)(2), ..., x (1)(k), ..., x (1)(m)} (3)

where ⎧⎪⎨
⎪⎩

x (1)(1) = x (0)(1)

x (1)(k) =
k∑

i=1

x (0)(i), k = 2, 3, ...,m
(4)

As x (1) is a monotonic increasing sequence—same as the solution of a first-
order linear differential equation, one can assume that the solution of the following
differential equation will be
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dx̂ (1)

dt
+ ax̂ (1) = b (5)

representing the Grey predicted value complement to the initial condition x̂ (1)(1) =
x (0)(1) and parameters a and b.

By definition, dx̂
dt can be written as

dx̂ (1)

dt
= lim

�t→0

x̂ (1)(t + �t) − x̂ (1)(t)

�t
(6)

However, to discretize the differential equation, �t can be set to be equal to 1,
which makes (5) to be rewritten as

dx̂ (1)

dt
= x̂ (1)(t + 1) − x̂ (1)(t) = x (1)(t + 1) − x (1)(t) = x (0)(t + 1) (7)

The Grey predicted value is now defined as

x̂ (1)(t) ≈ Px (1)(k) + (1 − P)x (1)(k + 1) = z(1)(k + 1), k = 1, 2, 3, ...,m (8)

with P usually set as 1
2 in the traditional models.

The differential equation can now be discretized as

x (0)(k) + az(1)(k) = b (9)

By the least-squared method, the coefficients a and b can be determined by

[
a
b

]
= (BT B

)−1
BTY (10)

with

B =

⎡
⎢⎢⎣

−z(1)(2) 1
−z(1)(3) 1

...

−z(1)(m) 1

⎤
⎥⎥⎦ ,Y =

⎡
⎢⎢⎣
x (0)(2)
x (0)(3)

...

x (0)(m)

⎤
⎥⎥⎦ (11)

The particular solution of Eq. (4) with the initial condition is

x̂ (1)(k + 1) =
(
x (0)(1) − b

a

)
e−ak + b

a
, k = 1, 2, 3, ...,m − 1 (12)

The prediction of the historical time series of data at point k + 1 can now be
deduced by

x̂ (0)(k + 1) = x̂ (1)(k + 1) − x̂ (1)(k) = (1 − e−a)

(
x (0)(1) − b

a

)
e−ak (13)
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with {
x̂ (0)(k) = x (0)(k), k = 1, 2, ...,m fitted values,

x̂ (0)(m + 1), x̂ (0)(m + 2), ..., x (0)(m + h) predicted values
(14)

2.2 The Nonlinear Grey Bernoulli Model NGBM(1, 1)

In order to obtain higher accuracy in predicting comparing to the original GM(1,)
model, Professor Chen [5] had proposed the Nonlinear Bernoulli Grey Model
NBGM(1, 1) as follows.

Similarly to the traditional Grey model GM(1, 1), assume that x (0) is the non-
negative original historical time series of data with m entries

x (0) = {x (0)(1), x (0)(2), ..., x (0)(k), ..., x (0)(m)} (15)

Next, we define x (1) using one-time accumulated generating operation (1 - AGO),
which is as

x (1) = {x (1)(1), x (1)(2), ..., x (1)(k), ..., x (1)(m)} (16)

where ⎧
⎪⎨
⎪⎩

x (1)(1) = x (0)(1)

x (1)(k) =
k∑

i=1

x (0)(k), k = 2, 3, ...,m
(17)

As indicated previously, Eq. (4) is a linear differential equation. A similar form
of this equation, which is nonlinear and has the form of

dx̂ (1)

dt
+ ax̂ (1) = b

[
x̂ (1)
]n

(18)

where n ∈ R any real number is called a Bernoulli equation, or the with then differ-
ential equation of the NGBM(1, 1) model.

The background value is now also defined as

z(1)(k + 1) = (1 − P)x (1)(k) + Px (1)(k + 1) (19)

with P = 1
2 for the traditional model. Then, discretizing the ODE, one obtains

x (0)(k) + az(1)(k) = b
[
x (1)(k)

]n
(20)

which is called the basic Grey differential equation of the NGBM(1, 1) model. It
can easily be recognized that for n = 0, this equation turns to equation (4), which is
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the traditional GM(1, 1) model; for n = 2, the equation turns to the Grey - Verhulst
equation.

By the least square method, the parameters a and b can be determined by

[
a
b

]
= (BT B

)−1
BTY (21)

with

B =

⎡
⎢⎢⎣

−z(1)(2)
[
z(1)(2)

]n
−z(1)(3)

[
z(1)(3)

]n
...

−z(1)(m)
[
z(1)(m)

]n

⎤
⎥⎥⎦ ,Y =

⎡
⎢⎢⎣
x (0)(2)
x (0)(3)

...

x (0)(m)

⎤
⎥⎥⎦ (22)

The particular solution of Eq. (17), or the discrete time function, with the initial
condition is

x̂ (1)(k) =
[(

x (0)(1)(1−n) − b

a

)
e−a(1−n)(k−1) + b

a

] 1
1−n

, k = 1, 2, 3, ...,m (23)

The prediction of the historical time series of data at point k can now be deduced
by

x̂ (0)(k) = x̂ (1)(k) − x̂ (1)(k − 1) (24)

3 Optimization of the Univariate Grey Models

3.1 Optimization of Hyper-parameters

Optimization of hyper-parameters in Grey models includes optimizing the exponen-
tial value (in non-linear models) and of the background value estimation.

Previously, based on the basic principle of the overlapping information of theGrey
systems and approximation of the integral, Wang et al. (2009) [48] and Tan (2000)
[40] has proposed different formula in determining the optimal value of the parame-
ter P in the background value and the exponential parameter n. However, NGO and
HOANG (2020) [34] has investigated that, with the existence of modern program-
ming languages, the formula yield the problem of inflexibility and ineffectiveness
compared to the method of iterating on the pre-defined range with the maximum
likelihood of optimality

• (0, 1) for the background value P
• [−1, 1) for the exponential parameter n
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Similar to the Fractional Order r in multivariate Grey models (Sect. 6.4), the two
hyper-parameters can also be simultaneously optimized by applying evolutionary
algorithms independently without spending enormous resources on iterating with
small steps.

3.2 Rolling Mechanism

Incasewhenapredictionserieshasa substantial numberofdatapoints, a rollingmech-
anism for a short data sequence is preferred. The purpose of the rolling mechanism is
that, in each rolling step, the next forecasting data points are derived based on themost
recent data (including data that has recently been predicted). The standard algorithm
that is widely applied in various newly proposed models can be found at [27].

3.3 Optimization of the Initial Condition

In traditional univariate Grey models, the initial condition is set as x (0)(1). However,
using the principle of new information prior choosing, Dang (2004) [9] has confirmed
that x (1)(m) can be used to increase the accuracy of the model. This can be further
developed by adding a correction term as x (1)(m) + c to form a new initial condition,
minimizing the following function (proposed by Lu et al. (2016) [31])

f (c) =
m∑

k=1

{[
x̂ (1)(k)

]1−n − [x (1)(k)
]1−n

}2
(25)

By setting {
E(k) = e−a(1−n)(k−m)

A(k) = [x (1)(k)
]1−n − b

a (1 − E(k))
(26)

the new initial condition with correction term can be written as

x (1)(m) + c =

⎡
⎢⎢⎢⎢⎣

m∑
k=1

A(k)E(k)

n∑
i=1

E(k)2

⎤
⎥⎥⎥⎥⎦

1−n

(27)
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4 Applications of Univariate Grey Models in Predicting
Total Covid-19 Infected Cases

Due to the current situation of limited data available for Covid-19 related research,
especially to pandemic modeling and prediction, univariate models are currently
more preferred in terms of feasibility and practicality. With its advantage in dealing
with limited available information and data sequences, Grey models have the poten-
tial to return excellent result compared to other epidemiological or machine learning
models, both short-term and long-term. However, there are still very limited research
papers using Grey models as a prediction tool, as follows

• Forecasting the cumulative number of confirmed cases ofCovid-19 in Italy,UKand
USA using Fractional nonlinear Grey Bernoulli model by Sahin, U. and Sahin,
T (2010). [38]. This paper uses three traditional models: GM(1, 1), NGBM(1,
1) and Fractional NGBM(1, 1), along with optimizing hyper-parameters of the
models (γ—power index value and r—Fractional Order value) by a generative
algorithm. The Fractional NGBM(1, 1) performed significantly better compared
to other models, with MAPE of ≤ 4.895% and R-squared values of ≥ 0.999 for
all three countries.

• Prediction of the Number of Patients Infected with Covid-19 Based on Rolling
Grey-Verhulst Models by Zhao et al. (2020) [61]. At the time of research, the
pandemic curve in China is increasing in an S-shaped trend, which is suitable for
the strong prediction capacity of Grey-Verhulst models. Six models, along with
the rolling mechanism on 7-, 8- and 9-day data sequences are built to predict the
number of cumulative cases from January 20th to February 20th, with the training
set depending on the length of the rolling sequence. The minimum and maximum
MAPE in each stage is presented in Table1, which shows that the proposed model
showed a significantly high level of robustness and accuracy.

• A Rolling Optimized Nonlinear Grey Bernoulli model and application in predict-
ing total Covid-19 infected cases by NGO and HOANG (2020) [34]. In this paper,
the authors proposed a novel model by optimizing two hyper-parameters simulta-
neously (the background value P and the power index value n), while applying a
rolling mechanism to take advantage of newly generated data points. The model is
first tested on predictingVietnam’sGDP from 2004 to 2018 and the comparedwith
modern machine learning models (ANN and LSTM) in predicting total Covid-19
cases in China from January 28th to February 18th, 2020. The novel model out-
performed any other models compared in the paper. The authors do not consider
saturating factors in the model due to the epidemiological suggestions and confir-
mation that China is still in its initial stage of containing the virus until February
20th, 2020 [8].

From the three research papers shown above, univariate Grey models have shown
their massive advantage in handling limited data situations with consistently strong
performance (Figs. 1 and 2).
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Fig. 1 Prediction of rolling Grey–Verhulst models with 7-, 8- and 9-day data sequence, Zhao et al.
(2020)

Fig. 2 Prediction of total Covid-19 infected cases predicted using Grey models (2020-01-28 -
2020-02-08), NGO and HOANG (2020)



200 H. A. Ngo et al.

Table 1 Prediction results (MAPE) of rolling Grey-Verhulst models proposed by Zhao et al. (2020)

Training stage (%) Testing stage (%)

Minimum MAPE 1.80 1.65

Maximum MAPE 4.74 4.72

The next sections are devoted to elaborating on the series of multivariate Grey
models. Due to the limited data sources available, there has been little to no applica-
tions of thesemodels in predicting Covid-19 related figures.When data are becoming
more and more available, these models will have a greater impact in making predic-
tions; for example, the daily number of confirmed Covid-19 cases can be predicted
based on various variables such as

• Number of tests conducted within the previous days
• Number of imported/local cases; Number of active clusters
• Number of quarantined patients due to close contact with previous positive cases
• Number of available staffed / ICU beds available for Covid-19 patients, etc.

5 Description of the Existing GM(1, N) and GMC(1, N)
Models

5.1 The Traditional GM(1, N) Model

Assume that there exist pairs of observations X (0) =
(
X (0)
1 , X (0)

2 , ..., X (0)
n

)
available

at equispaced intervals of time with n − 1 inputs
(
X (0)
2 , X (0)

3 , ..., X (0)
n

)
and an output

X (0)
1 from a certain dynamic system.
Let

• r be the number of data points (number of time intervals) used in building the
model

• rp be the delay period
• r f be the number of data points to be forecasted

Then, the original data points would be

X (0)
i =

{
X (0)
i (1), X (0)

i (2), ..., X (0)
i (r)

}
, i = 2, 3, ..., n (28)

while the predicted series (series that need prediction) would be

X (0)
1 =

{
X (0)
1 (rp + 1), X (0)

1 (rp + 2), ..., X (0)
1 (rp + r)

}
(29)
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The first order accumulated generating operation (1-AGO) data for

⎧
⎨
⎩
X (1)
i =

{
X (1)
i (1), X (1)

i (2), ..., X (1)
i (r)

}
, i = 2, 3, ..., n

X (1)
1 =

{
X (1)
1 (rp + 1), X (1)

1 (rp + 2), ..., X (1)
i (rp + r)

} (30)

are given as follows

{
X (1)
i (k) =∑k

j=1 X
(0)
i ( j)

X (1)
1 (rp + k) =∑k

j=1 X
(0)
1 (rp + j)

, k = 1, 2, ..., r (31)

Deng (1989) [11] suggests that the discrete systems of GM(1, n) model can be
described by the following Grey differential equation

dx (1)
1 (rp + t)

dt
+ b1X

(1)
1 (rp + t) =

n∑
i=2

bi X
(1)
i (t); t = 1, 2, ..., r (32)

The Grey derivative for the 1-AGO representation, for �t → 1 is described as

dx (1)
1 (rp + t)

dt
= lim

�t→1

X (1)
1 (rp + t + �t) − X (1)

1 (rp + t)

�t

= X (1)
1 (rp + t + 1) − X (1)

1 (rp + t)

= X (0)
1 (rp + t)

(33)

The background value of the Grey derivative dX (1)(rp+t)
dt is taken as

z(1)
1 (rp + t) = 1

2

(
X (1)
1 (rp + t) + X (1)

1 (rp + t − 1)
)

(34)

while those of the series X (1)
i (t) would be

z(1)
i (t) = 1

2

(
X (1)
i (t) + X (1)

i (t − 1)
)

(35)

The least-square solution for the model parameters can be determined by

[
b1 b2 ... bn

]T = (BT B
)−1

BTYR (36)

with
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B =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2

(
X (1)
1 (rp + 1) + X (1)

1 (rp + 2)
)

X (1)
2 (2) X (1)

3 (2) ... X (1)
n (2)

− 1
2

(
X (1)
1 (rp + 2) + X (1)

1 (rp + 3)
)

X (1)
2 (3) X (1)

3 (3) ... X (1)
n (3)

...
...

... ...
...

− 1
2

(
X (1)
1 (rp + r − 1) + X (1)

1 (rp + r)
)
X (1)
2 (r) X (1)

3 (r) ... X (1)
n (r)

⎤
⎥⎥⎥⎥⎥⎥⎦

(37)

and
YR = [X (0)

1 (rp + 2) X (0)
1 (rp + 3) ... X (0)

1 (rp + r)
]

(38)

The particular solution of theGrey differential equation (32), or the 1-AGOmodeling
values of the series, according to Tien (2012) [44] is

X̂ (1)
1 (rp + t) =

[
X (0)
1 (rp + 1) − 1

b1

n∑
i=2

bi X
(1)
i (t)

]
× e−b1(t−1) + 1

b1

n∑
i=2

bi X
(1)
i (t)

(t = 2, 3, ..., r + r f )
(39)

From 1-IAGO, the predicted values of the model can be derived as

{
X̂ (0)
1 (rp + 1) = X̂ (1)

1 (rp + 1) = X (0)
1 (rp + 1)

X̂ (0)
1 (rp + t) = X̂ (1)

1 (rp + t) − X̂ (1)
1 (rp + t − 1)

, t = 2, 3, ..., r + r f (40)

5.2 The Grey Model with Convolution Integral GMC(1, N)

The model GMC(1, n) is a new model, as an improvement to the existing GM(1, 1)
with a so-called Grey control parameter u introduced. This means that the represen-
tation for GMC(1, 1) becomes a linear differential equation, as follows

dx (1)
1 (rp + t)

dt
+ b1X

(1)
1 (rp + t) =

n∑
i=2

bi X
(1)
i (t) + u; t = 1, 2, ..., r + r f (41)

Similarly to the GM(1, n) model, by the least-square method, the model parameters
of GMC(1, n) can be estimated by

[
b1 b2 ... bn u

]T = (BT B
)−1

BTYR (42)

with
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B =

⎡
⎢⎢⎢⎣

−z(1)
1 (rp + 2) z(1)

2 (2) z(1)
3 (2) ... z(1)

n (2)
−z(1)

1 (rp + 3) z(1)
2 (3) z(1)

3 (3) ... z(1)
n (3)

...
...

... ...
...

−z(1)
1 (rp + r) z(1)

2 (r) z(1)
3 (r) ... z(1)

n (r)

⎤
⎥⎥⎥⎦ (43)

and
YR = [X (0)

1 (rp + 2) X (0)
1 (rp + 3) ... X (0)

1 (rp + r)
]

(44)

If we set the right hand side of (41) to be a discrete function f (t) as

f (t) = b2X
(1)
2 (t) + b3X

(1)
3 (t) + ... + bn X

(1)
n (t) + u, t = 1, 2, ..., r f (45)

The particular solution of the equation (41) can be derived as

X̂ (1)
1 (rp + t) = X (1)

1 (rp + 1)e−b1(t−1) +
∫ t

1
e−b1(t−τ) f (τ )dτ (46)

which can be approximated by

X̂ (1)
1 (rp + t) ≈ X (0)

1 (rp + 1)e−b1(t−1) + u(t − 2) ×
⎧⎨
⎩

t∑
k=2

e
−b1

(
t−k+ 1

2

)
· 1
2
[ f (t) + f (t − 1)]

⎫⎬
⎭
(47)

with u(t − 2) being the unit step function.
The predicted values of the model can be derived similarly with the traditional

GM(1, n) model, using the first-order inverse accumulative generating operation
(1-IAGO).

5.3 Variations of the Current GMC(1, N) and GMC(1, N)
Models

5.3.1 A New Multivariable Grey Prediction Model with Structure
Compatibility NMGM(1, N)

Assume all initial conditions exactly identical to previous settings. Then,

X (1)
1 (rp + t) =

n∑
i=2

bi X
(1)
i (t) + β1X

(1)
1 (t − 1) + β2(t − 1) + β3 (48)

is referred to as the New Multivariable Grey prediction Model with structure com-
patibility, or usually abbreviated as NMGM(1, n) [60].

With
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B =

⎡
⎢⎢⎢⎣

X (1)
2 (2) X (1)

3 (2) ... X (1)
n (2) X (1)

1 (1) 1 1
X (1)
2 (3) X (1)

3 (3) ... X (1)
n (3) X (1)

1 (2) 2 1
...

... ...
...

...
...

...

X (1)
2 (r) X (1)

3 (r) ... X (1)
n (r) X (1)

1 (r − 1) r − 1 1

⎤
⎥⎥⎥⎦ (49)

and
YR = [X (0)

1 (rp + 2) X (0)
1 (rp + 3) ... X (0)

1 (rp + r)
]

(50)

the least square solution for the model parameters
[
b2, b3, ..., bn, β1, β2, β3

]
can be

derived as

1. If r = n + 3 and |B| �= 0,
[
b2, b3, ..., bn, β1, β2, β3

] = B−1YR .

2. If r > n + 3 and
∣∣BT B

∣∣ �= 0,
[
b2, b3, ..., bn, β1, β2, β3

] = (BT B
)−1

BTYR .

3. If r > n + 3 and
∣∣BBT

∣∣ �= 0,
[
b2, b3, ..., bn, β1, β2, β3

] = BT
(
BBT

)−1
YR .

For the NMGM(1, n) model, the time-response function, or the particular solution
for the 1-AGO modeling values of Eq. (48), is given by Zeng (2019) [60] as

X̂ (1)(rp + t) =
t−1∑
u=1

[
n∑

i=2

βu−1
1 bi X

(1)
i (t − u + 1)

]
+ β

(t−1
1 X (1)

1 (1)

+
t−2∑
v=0

βv
1 [(t − v − 1β2 + β3]

(51)

In Grey System theory, there are various univariate and multivariate models in differ-
ent forms and formats. Applying these models improperly will lead to poor, or even
misleading, predicted results. Due to the wide range of available models with differ-
ent complexity, the compatibility (or generalization ability) of a model is at utmost
importance. The following proposition will prove the compatibility of NMGM(1, n)
with the other commonly used Grey models.

Proposition 1 1. When n = 1 and β1β2β3 �= 0, the proposed model NMGM(1, n)
model is equivalent to the model NHGM(1, 1, k).

2. When n = 1, β2 = 0 and β1β3 �= 0, the proposed model NMGM(1, n) becomes
the traditional GM(1, 1) model.

3. When n > 1, β1 �= 0 and β2 = β3 = 0, the proposed model NMGM(1, n) is equal
to the traditional multivariate GM(1, n) model.

5.4 Representation of the Nonlinear Grey Model with
Convolution Integral NGMC(1, N)

To apply GMC(1, n) for nonlinear data series, Wang (2014) [49] proposed an
improved version of the model, namely NGMC(1, n). The Grey differential equation
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of this model now becomes

dx (1)
1 (rp + t)

dt
+ b1X

(1)
1 (rp + t) =

n∑
i=2

bi
[
X (1)
i (t)

]βi + u; t = 1, 2, ..., r (52)

where b1, b2, ..., bn; u, β2, β3, ..., βn are parameters that need estimating.
β2, β3, ..., βn are introduced into the model as power exponents of the predicted
variables, reflecting the behavior of nonlinear systems. Note that when n = 1 or
β2 = β3 = ... = βn = 0, (52) becomes the traditional GM(1, 1) model.

To evaluate all parameters in the model, the exponential parameters β2, β3, ..., βn

are assumed to be known. Using the same least-square method as that of GMC(1, n),
the estimates of b1, b2, ..., bn, u are made. After deriving the particular solution and
applying 1-IAGO to obtain the predicted values of the model X̂ (0)

1 , the optimization
algorithm is applied to obtain the values of β2, β3, ..., βn .

6 Grey System Models with Fractional Order
Accumulation

6.1 Definition of the Fractional Order Accumulation

Let x (0) = {x (0)(1), x (0)(2), ..., x (0)(n)
}
be the original time-series data sequence. If

the first - order accumulated generating operator (1-AGO) is applied r times on x (0),
we obtain

x (r) = {x (r)(1), x (r)(2), ..., x (0)(n)
}

(53)

By mathematical induction, setting
( p

q −1
0

) = 1 and
(k−1

k

) = 0, Wu et al. (2013)
[52] has proven that its r -order Fractional accumulation (r -FOA) is

x (r)(k) =
k∑

i=1

(
k − i + r − 1

k − i

)
x (0)(i), k = 1, 2, ..., n (54)

where (
k − i + t − 1

k − i

)
= (r + k − i − 1)(r + k − i − 2)...(r + 1)r

(k − i)! (55)

It is worth noting that the larger the value of r , the larger the weight of old data points
in the time-series sequence would be; the lower the value of r , the smaller the weight
of the old data would be.

The r -order inverse Fractional accumulation (r -IFOA) is also defined as
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x (r)(k) =
k∑

i=1

(
k − i − r − 1

k − i

)
x (0)(i), k = 1, 2, ..., n (56)

which means that the definition of the r -FOA and r -IFOA share basically the same
formulation, with the only difference at the sign of r . From (54) and (56), we have
the following relationship [32]

(
x (r)(k)

)(−r) =
k∑

i=1

(
k − i − r − 1

k − i

)
x (r)(i) = x (0)(k) (57)

6.2 The Fractional GM
p
q (1, 1) Model

In line with the traditional model GM(1, 1) introduced previously, the Grey differ-
ential equation of GM

p
q (1, 1) model can be expressed as

x
(

p
q

)
(k) − x

(
p
q

)
(k − 1) + az

p
q (k) = b (58)

with

z
p
q (k) = 1

2

(
x
(

p
q

)
(k) + x

(
p
q

)
(k − 1)

)
, k = 2, 3, ..., n (59)

Using the least-squares method, the coefficients a and b of the Eq. (58) can be
determined by [

a
b

]
= (BT B

)−1
BTY (60)

where

B =

⎡
⎢⎢⎢⎣

−z
p
q (2) 1

−z
p
q (3) 1

· · ·
−z

p
q (n) 1

⎤
⎥⎥⎥⎦ ,Y =

⎡
⎢⎢⎢⎢⎣

x
(

p
q

)
(2) − x

(
p
q

)
(1)

x
(

p
q

)
(3) − x

(
p
q

)
(2)

· · ·
x
(

p
q

)
(n) − x

(
p
q

)
(n − 1)

⎤
⎥⎥⎥⎥⎦

(61)

Similar to the GM(1, 1) model, the particular solution for the whitenization differ-

ential Eq. dx
p
q (t)

dt + ax
(

p
q

)
(t) = b is

x
(

p
q

)
(k + 1) =

[
x (0)(1) − b

a

]
e−ak + b

a
(62)
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In order to optimize the effects of the model parameters in the particular solution,
we can assume that

x
(

p
q

)
(k + 1) = ce−ak + d (63)

Applying again the least squares method for parameters c and d, we obtain

[
c
d

]
= (BT B

)−1
BTY (64)

with

B =

⎡
⎢⎢⎣

e−a 1
e−2a 1
· · ·

e−(n−1)a 1

⎤
⎥⎥⎦ ,Y =

⎡
⎢⎢⎢⎢⎣

x
(

p
q

)
(2)

x
(

p
q

)
(3)

· · ·
x
(

p
q

)
(n)

⎤
⎥⎥⎥⎥⎦

(65)

Thus, the final solution for equation (58), which is a 3-parametric exponential expres-
sion, would be

x
(

p
q

)
(k + 1) = ce−ak + d, k = 1, 2, ..., n − 1 (66)

If we replace the constant b on the right-hand side of equation (58) with a poly-
nomial function with respect to k, the new form of the model would be

x
(

p
q

)
(k) − x

(
p
q

)
(k − 1) + az

p
q (k) = β1

k∑
i=1

i1 + β2

k∑
i=1

i + β3 (67)

This model is named the Time - Delayed Polynomial Grey System Model with the
Fractional Order Accumulation (TDPFOGM(1, 1)) [6].

6.3 The Fractional Multivariate Grey Model
with Convolutional Integral GMC

p
q (1, N)

Let X (r)
i (i = 1, 2, ..., rp + n) be the r -order Fractional accumulation of the original

series X (0)
i , with rp beign the time delay factor. The Fractional multivariate Grey

model with convolutional integral GMC
p
q (1, n) can be represented by the following

Grey differential equation

d(r)
1 (rp + t)

dt
+ b1X

(r)
1 (t) =

n∑
i=2

bi X
(r)
i (t) + u (68)
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Applying the trapezoid formula for each of the intervals [k − 1, k], the differential
equation can be discretized as

(
X (r)
1 (rp + k) − X (r)

1 (rp + k − 1)
)

+ b1Z
(r)
1 (k) =

n∑
i=2

bi Z
(r)
i (k) + u (69)

where Z (r)
i (i = 1, 2, ..., rp + n) are called background values,

Z (r)
i (k) = 1

2

(
X (r)
i (k) + X (r)

i (k − 1)
)

(70)

Similar to the traditional GMC(1, 1) model, the parameters b1, b2, ..., bn and u can
be estimated using least-squares method, as follows

[
b1 b2 ... bn u

]T = (BT B
)−1

BTY (71)

where

B =

⎡
⎢⎢⎢⎢⎢⎣

−Z (r)
1 (2) −Z (r)

2 (2) ... −Z (r)
n (2) 1

−Z (r)
1 (3) −Z (r)

2 (3) ... −Z (r)
n (3) 1

.

.

.
.
.
. ...

.

.

.
.
.
.

−Z (r)
1 (n) −Z (r)

2 (n) ... −Z (r)
n (n) 1

⎤
⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X (r)
1 (rp + 2) − X (r)

1 (rp + 1)

X (r)
1 (rp + 3) − X (r)

1 (rp + 2)
.
.
.

X (r)
1 (rp + n) − X (r)

1 (rp + n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(72)

The continuous response function for (68) can be estimated using the discrete func-
tion f (t) and estimation methodology previously mentioned

X (r)
1 (rp + t) = X (0)

1 e−b1(t−1) +
t∑

k=2

{
e−b1(t−k+ 1

2 ) · 1
2
[ f (k) + f (k − 1)]

}
(73)

From X (r), the predicted value of the original sequence can be calculated using the
1-IFOA Eq. (57).

6.4 Optimization of the Fractional Order r

Considering all the previously proposed model, the Fractional Order r has been
assumed to be given before running the model. However, selecting the optimal value
of r is also of significant importance in improving the accuracy of the final model.
Once again, to evaluate the accuracy, we will use the mean absolute percentage error
(MAPE).
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Table 2 Prediction results of GM
p
q (1, 1) with different values of Fractional Order r

GM1.1(1, 1) GM1(1, 1) GM0.3(1, 1) GM0.2(1, 1) GM0.1(1, 1) GM0(1, 1)

MAPE
(2001–
2006)

2.55 1.13 1.27 1.17 1.07 1.18

MAPE
(2007–
2009)

28.37 6.54 3.83 2.31 1.49 2.23

Table 3 Prediction results of the optimal FDGM(1, n) comparing with different multivariate Grey
models

Year FDGM FGMC GMCG GMCT NGMC

r = −1.24234 r = −0.41939

Fitting ARPE 0.0002 0.7664 6.2579 10.7512 1.4752

Prediction
ARPE

13.0452 103.6555 2118.5894 985.1529 17.5114

There has been a lot of well-known evolutionary algorithms that have been used
to optimize hyper-parameters of Grey models (background value, power coeffi-
cient and now, the Fractional Order), including Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Ant Colony Optimization (ACO), Evolution Strategy (ES),
Population-based Incremental Learning [32] and Adaptive Dynamic Cat Swarm
Algorithm (ADCSA) [26]. Ma et al. (2019) [32] also suggested using Grey Wolf
Optimizer, one of the most intelligent optimizers proposed in 2014, to solve the
nonlinear programming problem for the Fractional Order r . However, most of the
optimizers proposed only concern non-constrained optimization, which means that
we have to validate the constrains for every iteration of the optimizer.

In terms of empirical results, Wu et al. (2012) [52] confirmed that different val-
ues of Fractional Order r returns significantly different results of ARPE (Table2).
Besides, application of GreyWolfModel byMa (2019) (Table3) also received signif-
icantly better results compared to other existing models, especially upon comparing
with the traditional Grey model with convolutional integral.

The final parts of this chapter introduces another important part of Grey sys-
tems: Grey Relational Analysis (GRA). While Grey models handle prediction and
regression tasks, Grey Relational Analysis resolves the relationship between factors
when experimental methods can not be carried out properly, or when data becomes
ambiguous, overcoming the disadvantages of traditional statistical methods.
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7 Introduction to the Grey Relational Analysis

7.1 Data Preprocessing

Data preprocessing is a process in which the data get transformed, or modified, to a
more comparable series. For this purpose, all variables are normalised to be within
the range [0, 1].

There are various approaches in normalising the original sequence, including

1. If the target value of the sequence is infinite (±∞) and has the characteristic of
“the higher, the better,” the sequence can be minimized as

x∗
i (k) = x0i (k) − min x0i (k)

max x0i (k) − min x0i (k)
(74)

2. If the target value of the sequence is expected to be “the lower, the better,” in this
case, the original sequence should be normalized as

x∗
i (k) = max x0i (k) − x0i (k)

max x0i (k) − min x0i (k)
(75)

3. If there is a finite target values for the sequence to reach, the original sequence
shall be normalized by

x∗
i (k) = 1 −

∣∣x0i (k) − x0
∣∣

max x0i (k) − x0
(76)

with x0 being the desired/preferred output value of the sequence.
4. Most simply, the sequence can be normalized based on its first value

x∗
i (k) = x0i (k)

x0i (1)
(77)

7.2 Grey Relational Coefficient and Grey Relational Grade

Grey Relational Coefficient is meant to express the relationship between the idea
(desired) and actual normalized results. This coefficient, according to Yang (2006)
[57], can be calculated as follows

ξi (k) = �min + ξ · �max

�0i (k) + ξ · �max
(78)
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where

• �0i (k) is the deviation sequence of the reference sequence and the comparability
sequence, namely

�0i (k) = ∥∥x∗
0 (k) − x∗

i (k)
∥∥ (79)

• ξ is the distinguishing or identification coefficient, ξ ∈ [0, 1]. Normally, ξ = 0.5
is commonly used.

• �max and�min is the maximum and minimum deviation of the reference sequence
from the comparability sequence, which is described as

�max = max∀ j∈i max∀k
∥∥x∗

0 (k) − x∗
j (k)

∥∥ (80)

�min = min∀ j∈i min∀k
∥∥x∗

0 (k) − x∗
j (k)

∥∥ (81)

After all the Grey Relational Coefficients are calculated, the Grey Relational
Grade is obtained simply by taking the mean of all the Grey Relational Coefficients,
as follows

γi = 1

n

n∑
i=1

ξi (k) (82)

However, since the effects of each variable (factor) on the output sequence is not
the same, the Grey Relational Grade formula (82) can be modified as

γi =
n∑

k=1

ωk · ξi (k),
n∑

k=1

ωk = 1 (83)

with ωk beign the normalized weighting value of factor k.
In theGreyRelational Analysis, GreyRelational Grade represents the relationship

among sequences or variables. If the two sequence are identical, the Grey Relational
Grade will be equal to 1. If a particular comparability sequence has more impact
than another comparability sequence, the Grey Relational Grade for that particular
sequence will also be higher than the other [58].

8 Applications of Grey Relational Analysis In medicine

8.1 General Applications of Grey Relational Analysis
in Medical Data Analysis

With advantages in handling limited data sequence, Grey Relational Analysis has
more applications compared to traditional statistical methods in multi-variable anal-
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ysis. Grey Relational Analysis can be used in verification of medical theory [7, 18] or
results of empirical research [42, 43]. Besides, with the assistance of Grey Relational
Analysis, either evaluation of the curative effect on a single variable can be evaluated
without the usage of placebo control or all side effects can be evaluated in overall in
multi-variable model judgement environment [28].

Grey Relational Analysis has also been applied to generate clustering algorithms,
namely

• Hierarchical Grey relation clustering algorithm with application to the geographic
information system of hospitals in Taiwan [53].

• Grey Relational pattern analysis approach for data clustering and comparison
with well-known existing algorithms, including fuzzy c-means and hard c-means
methods [3, 19].

8.2 Application in Telecare

8.2.1 The Role and Development of Telecare in Covid-19 Pandemic

Remote healthcare is easier to access in this era than ever, thanks to the constant
improvement of technology. The term ‘telecare’ or ‘telehealth’ is the care offered to
patients remotely via live video, or remote patient monitoring. Telecare is often used
to expand patient access to care, help patients manage recovery and well-being at
home, and remotely monitor risks or early warning signs of health conditions. The
care could be handled through a range of technology—from telephones to online
virtual visits to remote patient monitoring centers [45].

In this Covid-19 situation, the advantage of telecare is radically utilized. Patients
can receive immediate feedback on their environment, health, or situation, which
can alleviate memory issues and help the person to maintain their dignity and inde-
pendence [45], also doctors can keep distance to patients to minimize the chance
of being exposed to coronavirus. Electronic intensive care unit (e-ICU) monitoring
programs, which allow nurses and physicians to remotely monitor the status of 60 to
100 patients in ICUs in multiple hospitals are ideal for monitoring sicker patients.
Technological and staffing complexities make it impossible to create such a program
on short notice, but rapid deployment of the two-tablet approach can reduce health
care workers’ contact with infected patients in the ICU.

Telehealth has had a positive impact on a number of pandemic diseases similar to
Covid-19 in the past. During the years 2014–2016, when Africa was dealing with the
Ebola crisis, there was a challenge of how to interrupt the ongoing transmission of the
Ebola virus to others. In this situation, an approach was used to combat the disease
using a mobile app named Ebola Contact Tracing (ECT), which helped remotely
monitor and contact trace confirmed cases of Ebola virus disease. Data gathered by
the ECT app were faster, secure, and complete as compared with a paper-based form
and it could accurately monitor a large number of contacts [22, 37].
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Disasters and pandemics pose unique challenges to health care delivery. Though
telehealth will not solve them all, it’s well suited for scenarios in which infrastructure
remains intact and clinicians are available to see patients. Payment and regulatory
structures, state licensing, credentialing across hospitals, and program implementa-
tion all take time to work through, but health systems that have already invested in
telemedicine are well-positioned to ensure that patients with Covid-19 receive the
care they need. In this instance, it may be a virtually perfect solution [16].

In general, the mentioned applications of telecommunications in past and current
crises demonstrate the potential of remote teleconsultation in themanagement of viral
pandemics. The important issue is that many developing countries are not ready to
take advantage of telehealth, especially for their remote and rural areas despite the
significant growth of technology, such as increased penetration of smartphones and
the expansion of 3G and 4G internet networks [22].

8.2.2 Previous Application of Grey Relational Analysis in Telecare

Huang (2011) [17] conducted a survey on 76 adult users of age 55 or above about their
perception of the telecare services. There are 7 factors that are used tomeasure effects
of using telecare on Quality of Life, including health promotion, safety, accessibility
of medical care services, overall living quality, financial burden, social relationship,
and acquisition of information. This study adopted Grey system theory to propose
an effective method of data analysis, which is different from most of the traditional
statistical methods.

Based on users’ preference for the influence of telecare on the quality of life,
the results showed that the overall living quality has the greatest effect on the effect
generated by telecare on the quality of life (0.808). It is followed by the acquisition
of information (0.785), accessibility of medical care services (0.748), and safety
(0.741) (Fig. 3). This research also suggests that the Grey system theory (in general),
or the Grey rational analysis (in particular), is an effective method for data analysis.
The results and methodology of this research can be considered as a reference for
later studies, especially when telecare is playing a more and more important role in
increasing the treatment effect on Covid-19 patients.

8.3 Grey Data Management in Medicine

Handling data is indeed a crucial part of Covid-19 pandemic response in every coun-
try. Medical history, information about movements, and interactions are of equal
importance as quarantine or social lockdown in dealing with this pandemic. For cer-
tain regions, for example, the US and European Union, these types of data are also
very sensitive and concern a lot of privacymeasures. There havebeennumerous appli-
cations of data analysis into Covid-19 research, some of which have reached early
success, including contact tracing, resource optimization, aiding at-risk populations,
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Fig. 3 Grey Relational Grade of each quality of life (Huang, 2011)

and demand planning [36]. Medical data are considered minor in this experimental
context as information is divided into small-sized samples against the proposition
information field of the whole human body [55].

TheGrey datamanagement, in general, refers to the first step ofGrey data analysis,
including data collection, data imputation, data storage, and management.

1. Data collection: In most cases, data collection starts with an incomplete data
requirement, which means that the incompleteness will be shown right from the
beginning. Each sample will be considered as a Grey dataset, with Grey number
as a representation of its incompleteness.

2. Data imputation, data storage, and management: Within this step, a data for-
mat and storage management plan has to be come up with to keep not only the
information available but also all the details of its Greyness. Instead of converting
or guessing unknown value to a more reliable existing value (mean, median, or
mode), Grey data imputation focuses on reducing the degree of Greyness rather
than completely removing all uncertainty.

Due to the minor data and uncertain characteristics of medical data (similar to
Grey systems), combined with mathematical modeling and quantification of medical
information, Tan et al. (2007) [41] proposed some of the most basic concepts of Grey
medicine, includingGreymedical cognitionmode,GreyRelational Coefficient, Grey
polarity besides the previously defined terms, Grey Relational Analysis or Grey
Relational Grade.
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Conclusion

Although the research on Covid-19 has been continuously going on and achieved
excessive progress, certain limitations, especially in accessing the data source for
pandemic modeling, is inevitable. Even when the data is accessible, there is no
certainty that the data is complete, or in perfect condition, with full information
available. As a result, despite currently having very few applications to mathematical
modeling or pandemic prediction, the Grey Systems theory has tremendous potential
for later development. Not only can it make accurate and reliable predictions for
policy-making and controlling purposes, but Grey data analysis can also shed light
on important insights that can help us understand much more about the pandemic in
the near future, assisting researchers in containing this disease, at worldwide level.
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Mathematical Analysis of Diagnosis Rate
Effects in Covid-19 Transmission
Dynamics with Optimal Control
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Dayse Pastore , and Maryam Al-Yahyai

Abstract Many countries around the world are trying to fight Covid-19, and their
main methods are lockdown, quarantine, isolation, and awareness programs to
encourage people to adopt social distancing and maintain personal hygiene. The
lockdown is aimed to restrict the movement of humans from or to certain places.
Quarantine is aimed toward separating the susceptible humans from infected or
exposed humans as much as possible, whereas isolation is aimed toward keeping the
confirmed cases of infected humans away from the rest of the population. The con-
firmed cases are mainly identified through the diagnosis of individuals who showed
symptoms of Covid-19 and sometimes through random checking of individuals hop-
ing to identify either asymptomatic or pre-symptomatic cases, which is generally an
expensive method. In this chapter, we develop a mathematical model to investigate
the role of diagnosis rate in the transmission dynamics of Covid-19 together with the
combined effects of quarantine and isolation. Our model will be fully analyzed both
qualitatively and quantitatively in order to gain insight about the role of different
model parameters in the disease transmission dynamics, especially those related to
diagnosis and quarantine. The analysis will include the estimation of both the basic
and the control reproduction numbers, and sensitivity analysis of the reproduction
numbers to the corresponding model parameters. The optimal control theory will be
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also applied to the model to examine the role of some other optimal control strategies
and to study the effect of diagnosis and quarantine rates in the effectiveness of these
controls.

Keywords Covid-19 · Basic reproduction number · Sensitivity analysis · Optimal
control

1 Introduction

Covid-19 is a severe acute respiratory syndrome (SARS) disease. First, it has been
associated with severe pneumonia cases in Wuhan city, China, in December 2019
[18]. The early stage transmission was assumed to be from animal to human only;
however, it has been proved that its major route of transmission is from human to
human [33] as well as it has been reported that there is a possibility of transmission
through contaminated environment [7, 12]. There is no approved treatment yet,which
makes very difficult to control the disease especially due to its high transmission rate
reaching over seven million cases by June 9, 2020 [35]. Nevertheless, some kind
of treatment has been employed to reduce the symptoms and enhance the immune
system, but until now none of them showed to be efficient and that is why many
efforts around the world are being made in order to develop an effective vaccine to
fight this disease, with some initial success so far.

The Covid-19 presents some particular aspects which turns its control a nontrivial
challenge to deal. It is a known fact that Covid-19may have a large incubation period,
compared to other diseases, taking between 1 and 14 days for the first symptoms to
appear into the individual body ([4, 33]), which represents a challenge to detect the
infected individuals right at the beginning, especially because this period may vary
a lot depending on the individual. Other aspect that should be pointed out concerns
on the variety of ways that the novel coronavirus may manifest into the human body
[15, 34], which seems to depend on several variables. This fact is still an object of
extensive study by the scientists around the world. In addition to all these matters,
even though the infected individuals do not present any symptoms, they can spread
the virus to other individuals, hindering the disease containment [3, 5, 20, 24, 27,
30, 38].

All these aspects represent a barrier in the control and measurement of the pan-
demics, since they reveal the big deal behind of promoting cheap and general pub-
lic policies to contain the spread of the disease. One of the most efficient policies
addressed to this issue concerns on providing an extremely high accuracy testing
policy for the population (see [28, 31]). Notice that if the number of testing is not
enough, it is necessary to adopt high quarantine rate, even when the region has a
low infection rate, since the real number of infected individuals is not known. Also,
with the low testing rate, it is not possible for the local authorities to know the real
dimension of the pandemics, hence it may have higher proportion than it is being
measured.
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In face of this context, the main methods which have been currently employed
for fighting Covid-19 are lockdown, quarantine, isolation, and awareness programs
to encourage people to adopt social distancing and maintain personal hygiene, while
an effective treatment is still in development. The aim of lockdown is to restrict the
mobility of individuals from or to certain places, and quarantine is aimed toward
separating the susceptible humans from infected or exposed humans as much as pos-
sible to avoid the contagious. On the other hand, the aim of isolation is to keep the
confirmed cases of infected humans away from the rest of the population. The con-
firmed cases are mainly identified through the diagnosis of individuals who showed
the symptoms of Covid-19 and sometimes through contact tracing or random check-
ing of individuals hoping to identify asymptomatic or pre-symptomatic cases.

The model that we present here shows the importance of adopting these methods,
specially quarantine and social distancing, in order to control the pandemics, being
one of the most efficient methods for its containment. In the simulations presented
in this chapter, one can confirm this fact.

In [1], a comparisonwasmade between the rigidity of the social distancemeasures
adopted in Argentina, Spain, Italy, Brazil, and the USA. In this survey, carried out in
April 2020, it was concluded that Argentina, Spain, and Italy adopted stricter social
distance measures, while Brazil and USA adopted more flexible measures. When
comparing the numbers of diagnosed cases, among these countries, in the months
following the adoption of isolation measures, we see that the countries that have
adopted a stricter isolation policy have a steady growth in the number of cases, while
the other countries have had a marked growth, these data can be seen in [10]. This
fact corroborates the results found in the model presented in this chapter.

Understanding the Covid-19 transmission dynamics using mathematical model-
ing plays an important role for disease control, management, and allowing the design
of effective public policies to be employed by the several governments in different
parts of the world. For this reason, in the last months, a huge number of mathemat-
ical models have been developed in order to comprehend the pandemic and control
its transmission in a better way; see, for instance, [11, 16, 19, 21, 25, 26, 32, 36,
37]. The susceptible–exposed–infectious–recovered (SEIR) model is the most com-
monly investigated model, in which the infectious individuals are taken as one class
or divided into a number of classes such as asymptomatic, pre-symptomatic, and
symptomatic infectious classes.

In this chapter, we develop a mathematical model to investigate the role of diag-
nosis rate in the transmission dynamics of Covid-19 together with the combined
effects of quarantine and isolation, and taking into account the routes of transmis-
sion from human to human as well as from environment to human, this last one is
very important to consider in order to get a better description of the disease, since
an individual can acquire the novel coronavirus when an individual has contact with
contaminated surfaces, as some investigations and important studies have suggested
(see [7, 12]). Our model is formulated in the next section and is fully analyzed both
qualitatively and quantitatively in order to gain insight about the role of different
model parameters in the disease transmission dynamics, especially those related to
diagnosis and quarantine. The full mathematical analysis is given in Sect. 3, and it
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includes the calculation of the disease-free equilibrium and the estimation of both the
basic and control reproduction numbers, and sensitivity analysis of the reproduction
numbers to the corresponding model parameters. The stability of equilibrium points
has been also addressed in this section, which is concluded with numerical simu-
lation to demonstrate the obtained theoretical results. In Sect. 4, an optimal control
model is developed and analyzed numerically to examine the role of some other
optimal control strategies and study the effect of diagnosis and quarantine rates in
the effectiveness of these controls. Finally, a brief conclusion is presented in Sect. 5.

2 Model Formulation

In this section, the goal is to present themodel formulation and discuss its description
and interpretation.

We start by considering both direct (from human to human) and indirect (from
environment to human) routes of transmission. The human population N (t) is divided
into eight sub-population, namely susceptible S(t), exposed E(t), quarantined Q(t),
asymptomatic A(t), pre-symptomatic P(t), symptomatic infected I (t), diagnosed
(tested positive for Covid-19) D(t), and recovered R(t), so that

N (t) = S(t) + E(t) + Q(t) + A(t) + P(t) + I (t) + D(t) + R(t).

It is assumed that susceptible humans are recruited into the population at a con-
stant rate �. Susceptible humans acquire Covid-19 by either contacted with a pre-
symptomatic, an asymptomatic, a symptomatic infected human or from the con-

taminated environment with rates βP , βA, βI , and
βe B

k + B
, respectively, or they are

quarantined at a rateλQ . Quarantined humans leave quarantine and rejoin the suscep-
tible class at a rate λS . All newly infected humans enter a latent period and then either
become pre-symptomatic or asymptomatic at a rateλP orλA, respectively. Then, pre-
symptomatic individuals develop symptoms at a rate λI and become symptomatic
infected. Pre-symptomatic, asymptomatic, and symptomatic infected individuals get
diagnosed at rates εP , εA, and εI , respectively, and enter the diagnosed class. Here,
we assume that susceptible individuals avoid contact with diagnosed individuals
who are isolated at home or at health institutions till they have been recovered or
die and, hence, they do not contribute to the disease transmission. Asymptomatic,
symptomatic infected, and diagnosed (isolated) individuals recover from the disease
with rates γA, γI , and γD , respectively. It is assumed that pre-symptomatic indi-
viduals will recover after they develop symptoms. All human sub-populations are
subject to natural death which occurs at a rate μ. Moreover, symptomatic infected
and diagnosed humans are subject to disease related to death that occurs at rates
δI and δD , respectively. It is assumed that the environment gets contaminated from
pre-symptomatic, asymptomatic, and symptomatic infected individuals with rates



Mathematical Analysis of Diagnosis Rate Effects in Covid-19 Transmission … 223

Fig. 1 Model flow diagram for Covid-19

αP , αA, and αI , respectively. Covid-19 virus is cleared from the environment at a
rate μe. The description of the model is illustrated in Fig. 1.

Using the above-mentioned description, and Fig. 1, the proposed mathematical
model is given by the following set of differential equations:

dS

dt
= � − βA A(t)S(t) − βP P(t)S(t) − βI I (t)S(t) − βe B(t)S(t)

k + B(t)
− μS(t) − λQS(t) + λSQ(t)

dE

dt
= βA A(t)S(t) + βP P(t)S(t) + βI I (t)S(t) + βe B(t)S(t)

k + B(t)
− λAE(t) − λP E(t) − μE(t)

dQ

dt
= λQS(t) − λSQ(t) − μQ(t)

d A

dt
= λAE(t) − γA A(t) − μA(t) − εA A(t)

dP

dt
= λP E(t) − λI P(t) − μP(t) − εP P(t) (1)

d I

dt
= λI P(t) − γI I (t) − μI (t) − εI I (t) − δI I (t)

dD

dt
= εA A(t) + εP P(t) + εI I (t) − γDD(t) − μD(t) − δDD(t)

dR

dt
= γA A(t) + γI I (t) + γDD(t) − μR(t)

dB

dt
= αA A(t) + αP P(t) + αI I (t) − μe B(t)

where N ′(t) = � − δI I (t) − δDD(t) − μN (t), B(t) represents the concentration of
coronavirus at contaminated environment, and the constant k represents theminimum
concentration of virus at environment capable of ensuring 50% chance of contracting
the disease. All other parameters of model (1) are defined in Table1.
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Table 1 Parameters used in model (1)

Parameter Description

� Recruitment rate

μ Natural death rate of humans

βA Transmission rate of the disease from asymptomatic

βP Transmission rate of the disease from pre-symptomatic

βI Transmission rate of the disease from symptomatic infected

λQ quarantined rate

1/λS Average number of day in quarantine

λA Rate at which exposed becomes asymptomatic

λP Rate at which exposed becomes pre-symptomatic

λI Rate at which pre-symptomatic becomes symptomatic

εA Diagnostic rate of asymptomatic

εP Diagnostic rate of pre-symptomatic

εI Diagnostic rate of symptomatic

γA Recovery rate of asymptomatic

γI Recovery rate of symptomatic

γD Recovery rate of diagnosed

δI Covid-19-related death rate of symptomatic

δD Covid-19-related death rate of diagnosed

βe Contact rate with contaminated environment

αA Shedding rate from asymptomatic to environment

αP Shedding rate from pre-symptomatic to environment

αI Shedding rate from symptomatic to environment

1/μe Lifetime of the virus in the environment

3 Mathematical Analysis

3.1 The Disease-Free Equilibrium and Control Reproduction
Number

The disease-free equilibrium (DFE) of the model is given by

E0 =
(

(μ + λS)�

μ(μ + λQ + λS)
, 0,

λQ�

μ(μ + λQ + λS)
, 0, 0, 0, 0, 0, 0

)
.

Now, depending whether the term αA A(t) + αP P(t) + αI I (t) is considered as new
infection or not, one may get two different expressions for the control reproduction
number Rc using the next-generation matrix method [13]. These expressions are,
respectively, given by
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Rc = 1

2

(
Rhh +

√
R2

hh + 4Rhe

)
or Rc = Rhh + Rhe

where

Rhh = (μ + λS)�βAλA

μ(μ + λQ + λS)(μ + λA + λP )(μ + γA + εA)
+ (μ + λS)�βPλP

μ(μ + λQ + λS)(μ + λA + λP )(μ + λI + εP )

+ (μ + λS)�βIλPλI

μ(μ + λQ + λS)(μ + λA + λP )(μ + λI + εP )(μ + γI + εI + δI )

Rhe = (μ + λS)βeαAλA�

μ(μ + λQ + λS)(μ + λA + λP )(μ + γA + εA)
+ (μ + λS)βeλPαP�

μ(μ + λQ + λS)(μ + λA + λP )(μ + λI + εP )

+ (μ + λS)βeαIλPλI�

μ(μ + λQ + λS)(μ + λA + λP )(μ + λI + εP )(μ + γI + εI + δI )

It is clear thatRhh gives thedirect contribution fromasymptomatic, pre-symptomatic,
and symptomatic infected humans, whereas Rhe gives the contribution from the con-
taminated environment. One should note here that both expressions of the control
reproduction numbers have the same threshold, i.e.,Rc = 1 whenever Rhh + Rhe =
1 and, hence, Rc ≶ 1 whenever Rhh + Rhe ≶ 1. In particular, if either Rhh or Rhe

is greater than 1, thenRc > 1. We should also note here that the basic reproduction
number R0 corresponds to the case when λQ = λS = εA = εP = εI = 0.

Now, using [14, Theorem 2], we obtain the following result.

Theorem 1 The disease-free equilibrium of model (1) is locally asymptotically sta-
ble ifRc < 1 and unstable if Rc > 1.

3.2 Global Stability of DFE

In this subsection, we are interested to investigate the global behavior of system
(1). To achieve our goal, we will need an auxiliary result, which was proved by
Castillo–Chavez et al. in [8]. We state it here for the reader’s convenience.

Theorem 2 ([8, Castillo–Chavez et al.]) For the system:

dX

dt
= F(X, Z)

dZ

dt
= G(X, Z) G(X, 0) = 0, (2)

where the components of the column vector X ∈ R
m denote the number of uninfected

individuals and the components of vector Z ∈ R
n denote the number of infected

individuals. E0 = (X∗, 0) denotes the disease-free equilibrium of this system. The
fixed point E0 = (X∗, 0) is a globally asymptotically stable equilibrium for this
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system provided that R0 < 1 (locally asymptotically stable) and the following two
conditions are satisfied:

(H1) For
dX

dt
= F(X, 0), X∗ is globally asymptotically stable.

(H2) G(X, Z) = AZ − Ĝ(X, Z), Ĝ(X, Z) ≥ 0 for (X, Z) ∈ �, where A = DZG
(X∗, 0) is an M-matrix (the off-diagonal elements of A are non-negative) and
� is the region where the model has biological meaning.

We can rewrite our system (1) using above notation, where

X = (S, Q, R) and Z = (E, A, P, I, D, B)

represent the uninfected and infected classes, respectively, and F(X, Z) andG(X, Z)

are the corresponding right-hand side of model (1). Clearly, G(X, 0) = 0 and

F(X, 0) = (
� − (μ + λQ)S + λS Q λQ S − (μ + λS)Q − μR

)T
.

Moreover, the DFE E0 can be written as E0 = (X∗, 0), where

X∗ =
(

(μ + λS)�

μ(μ + λQ + λS)
,

λQ�

μ(μ + λQ + λS)
, 0

)
.

Now, solving the system of differential equations which appears in the first condition
(H1), we obtain

S(t) = c1
λS

λQ
e−μt − c2e

−(μ+λQ+λS)t + (μ + λS)�

μ(μ + λQ + λS)

Q(t) = c1e
−μt + c2e

−(μ+λQ+λS)t + λQ�

μ(μ + λQ + λS)

R(t) = c3e
−μt

where c1, c2, and c3 are arbitrary constants. Clearly, X → X∗ as t → ∞. Hence,
X∗ is globally asymptotically stable and condition (H1) is satisfied. For the second
condition (H2), we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−κ1 βAS∗ βP S∗ βI S∗ 0
βeS∗

k
λA −κ2 0 0 0 0
λP 0 −κ3 0 0 0
0 0 λI −κ4 0 0
0 εA εP εI −κ5 0
0 αA αP αI 0 −μe

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and
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Ĝ(X, Z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

βA(S∗ − S)A(t) + βP (S∗ − S)P(t) + βI (S∗ − S)I (t) + βe S∗B2 + βe Bk(S∗ − S)

k(B + k)
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

whereκ1 = λA + λP + μ,κ2 = εA + γA + μ,κ3 = εP + λI + μ,κ4 = εI + γI + δI +
μ,κ5 = γD + δD + μ and S∗ = (μ + λS)�

μ(μ + λQ + λS)
. It is clear that A is an M-matrix

and Ĝ(X, Z) ≥ 0 for all (X, Z) ∈ �, where

� =
{
(S, E, A, P, I, D, R, B) ∈ R

8+ : 0 < S + E + A + P + I + D + R ≤ �

μ
, 0 < B ≤ αP�

μμe

}

is the region where the model makes biological sense. Hence, we obtain as a conse-
quence the following result.

Theorem 3 The disease-free equilibriummodel (1) is globally asymptotically stable
when R0 < 1.

3.3 Existence and Local Stability of the Endemic Equilibrium

In this subsection, our goal is to prove the existence and the local stability of the
endemic equilibrium. For it, we will use the center manifold theorem, namely [9,
Theorem 4.1]. With this objective, we consider our system (1) in the following
formulation

dx1
dt

= � − βAx4(t)x1(t) − βP x5(t)x1(t) − βI x6(t)x1(t) − βex9(t)x1(t)

k + x9(t)
− μx1(t) − λQx1(t) + λS x3(t)

dx2
dt

= βAx4(t)x1(t) + βP x5(t)x1(t) + βI x6(t)x1(t) + βex9(t)x1(t)

k + x9(t)
− λAx2(t) − λP x2(t) − μx2(t)

dx3
dt

= λQx1(t) − λS x3(t) − μx3(t)

dx4
dt

= λAx2(t) − γAx4(t) − μx4(t) − εAx4(t)

dx5
dt

= λP x2(t) − λI x5(t) − μx5(t) − εP x5(t) (3)

dx6
dt

= λI x5(t) − γI x6(t) − μx6(t) − εI x6(t) − δI x6(t)

dx7
dt

= εAx4(t) + εP x5(t) + εI x6(t) − γDx7(t) − μx7(t) − δDx7(t)

dx8
dt

= γAx4(t) + γI x6(t) + γDx7(t) − μx8(t)

dx9
dt

= αAx4(t) + αP x5(t) + αI x6(t) − μex9(t)
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Now, taking βP to be the bifurcation parameter and βP = φ to be the corresponding
bifurcation value at Rc = 1, it follows that system (3) has the following Jacobian at
the disease-free equilibrium E0 and βP = φ:

J (φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λQ + μ) 0 λS −βAS∗ −φS∗ −βI S∗ 0 0 −βeS∗

k

0 −κ1 0 βAS∗ φS∗ βI S∗ 0 0
βeS∗

k
λQ 0 −(λS + μ) 0 0 0 0 0 0
0 λA 0 −κ2 0 0 0 0 0
0 λP 0 0 −κ3 0 0 0 0
0 0 0 0 λI −κ4 0 0 0
0 0 0 εA εP εI −κ5 0 0
0 0 0 γA 0 γI γD −μ 0
0 0 0 αA αP αI 0 0 −μe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where κi , i = 1, 2, · · · 5 and S∗ were defined earlier. One can easily verify that the
above Jacobian has a simple zero eigenvalue. Then, computing the corresponding
right and left eigenvectors, w = [w1 w2 · · · w9]T and v = [v1 v2 · · · v9],
respectively, we get

w1 = − k1(λS + μ)

μ(λQ + λS + μ)
w2

w3 = − k1λQ

μ(λQ + λS + μ)
w2

w4 = λA

κ2
w2

w5 = λP

κ3
w2

w6 = λIλP

κ3κ4
w2

w7 = 1

κ5
(εAw4 + εPw5 + εIw6)

w8 = 1

μ
(γAw4 + γIw6 + γDw7)

w9 = 1

μe
(αAw4 + αPw5 + αIw6)

and
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v1 = v3 = v7 = v8 = 0

v9 = βeS∗

kμe
v2

v4 = 1

κ2

(
βAS

∗v2 + αAv9
)

v6 = 1

κ4

(
βI S

∗v2 + αIv9
)

v5 = 1

κ3

(
βP S

∗v2 + λIv6 + αPv9
)
,

where w2 and v2 are nonzero free parameters. Now, to calculate the values of a and
b as defined in [9, Theorem 4.1], we need to compute the following second-order
derivatives:

∂2 fi
∂x j∂xk

and
∂2 fi

∂x j∂φ
, i, j, k = 1, 2, · · · 9,

where fi , i = 1, 2, · · · 9 denote the right-hand side of equation number i of system
(3). We then have

∂2 f1
∂x1∂x4

= −βA ,
∂2 f1

∂x1∂x5
= −φ

∂2 f1
∂x1∂x6

= −βI ,
∂2 f1

∂x1∂x9
= −βe

k

∂2 f2
∂x1∂x4

= βA ,
∂2 f2

∂x1∂x5
= φ

∂2 f2
∂x1∂x6

= βI ,
∂2 f2

∂x1∂x9
= βe

k

∂2 f1
∂φ∂x5

= −S∗ ,
∂2 f2

∂φ∂x5
= S∗.

Note that the rest of the second derivatives are all zero. Now, taking the free parame-
tersw2 and v2 to be positive, the values and the signs of a and b are given, respectively,
by

a = − k1(λS + μ)

μ(λQ + λS + μ)

[
βAw4 + φw5 + βIw6 + βe

k
w9

]
w2v2 < 0

b = S∗λP

κ3
w2v2 > 0.

Using [9, Theorem 4.1], the direction of the bifurcation is forward and, hence, it
follows the result below.
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Theorem 4 If Rc > 1, then there exists a unique endemic equilibrium point for
system (1). Moreover, this point is locally asymptotically stable whenever it exists.

3.4 Sensitivity Analysis

The impact ofmodel (1) parameters on themodel outcome is determined via sensitiv-
ity analysis [6, 22, 23]. Here, we adopt Latin hyper-cubic sampling (LHS) technique
and partial rank correlation coefficient (PRCC). LHS is a stratified sampling with-
out replacement method which allows for an efficient analysis of parameter varia-
tions across simultaneous uncertainty ranges in each parameter. PRCC measures the
strength of the relationship between the model outcome and the parameters, stating
the degree of the effect that each parameter has on the outcome [6, 22]. A total of
1000 simulations of model (1) per LHS run were carried out, using the ranges and
baseline values given in Table2 (with the control reproduction number, Rc, and the
basic reproduction number, R0, as the response functions).

In order to find the values of the parameters to be used for parameter’s estimation,
we fitted the Covid-19 published data from the Ministry of Health, The Sultanate of
Oman, from February 24 to July 12, 2020, available at https://www.worldometers.
info/coronavirus/country/oman/. The MATLAB function “fminsearch” was employ
ed, and the sum of squares was used tomeasure the cost. The values of the parameters
are then given in Table2.

For the purpose of sensitivity analysis, each parameter value, an interval within
25% range of the parameter value is formed to test the sensitivity. Figures (2) and
(3) depict the PRCC values for each parameter of the models using the reproduction
numbers, Rc and R0, as the response functions, respectively. Parameters with the
highest PRCC values have the largest impact on the response functions.

The parameters λQ , μ, and εP have the highest negative impact on Rc, while
the parameters βP and λS have the highest positive impact on Rc, which indicate
that quarantine of susceptible humans and diagnosis of pre-symptomatic humans are
very effective in decreasing Rc, whereas the rate at which the susceptible humans
leave the quarantine and the transmission of the virus from the symptomatic and
pre-symptomatic individuals plays the most important role in increasing Rc. This
result shows that in order to control the disease, susceptible humans need to stay in
quarantine or at least adopt social distancing. Moreover, pre-symptomatic humans
need to be diagnosed through contact tracing, for example, and hence isolated.

The parameter with the highest positive impact onR0 is βI , whereas the parame-
ters with the highest negative impact onR0 are γI and μ. This result shows that when
there is no control strategy applied to the system, then the transmission rate from
symptomatic individuals is the key to increaseR0, and the recovery rate of infected
individuals is the key to reduce R0 (Fig. 3).

https://www.worldometers.info/coronavirus/country/oman/
https://www.worldometers.info/coronavirus/country/oman/
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Table 2 Values of the estimated parameters

Parameters Estimated value

� 202

μ 3.8 × 10−5

βI 7.479 × 10−7

βA 6.474 × 10−7

βP 8.418 × 10−7

βe 0.403

λQ 0.683

λS 0.391

λP 0.568

λA 0.289

λI 0.612

εA 0.009

εI 0.132

εP 0.0144

γA 0.606

γI 0.411

γD 0.51

δD 0.114

δI 0.57

αI 0.487

αP 0.169

αA 0.216

μe 0.73

Fig. 2 PRCC values for model (1), using the control reproduction number (Rc) as the response
function
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Fig. 3 PRCC values for model (1), using the basic reproduction number (R0) as the response
function

3.5 Numerical Simulation

In this subsection, we will illustrate some numerical simulations in order to verify
our theoretical results which were stated in the previous sections. The baseline values
of the parameters were taken from Table2, and some of the parameters were varied
to investigate their role in the dynamics.

Figure4 illustrates the effect of the diagnosis rates of symptomatic and pre-
symptomatic individuals. For small values of εA, the maximum number of diagnosed
individuals reaches above 2000, and as the value of εA increases, this number starts
to decreases until it reaches less than around 1600 as εA reaches 0.132. Note that the
baseline value of εA is really small (i.e., 0.009), and hence its effect starts to be clear as
this value starts to increase, as one could see from Fig. 4 (left). Figure4 (right) shows
the effect of εP on the dynamics of diagnosed humans, and its effect is similar to the
effect of εA; however, the effect of εP is much more clear and stronger than the effect
of εA, as it is clear when comparing the two figures which are described in Figs. 4. By
increasing εP to 0.132, the maximum number of diagnosed individuals reduces from
over 2000 to around 600. This supports our theoretical results from the sensitivity
analysis which indicate that εP is one of the parameters which have the most negative
impact on Rc; therefore, as εP increases Rc decreases and hence the prevalence of
the disease decreases. This decrease is taking place, because once pre-symptomatic
individuals are diagnosed, they are isolated and hence they do not contribute to the
disease transmission and as a result the number of infected individuals (i.e., exposed,
asymptomatic, pre-symptomatic, and symptomatic) decreases. This effect is illus-
trated in Fig. 5 for exposed individuals. This decrease in the exposed individuals will
result in a decrease in all other infected individuals, which in turn leads to decrease
the number of diagnosed individuals.
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Fig. 4 Effect of varying εA (left) and εP (right) on the dynamics of the diagnosed humans
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Fig. 5 Effect of varying εP on the dynamics of the exposed humans

The effect of the quarantine rate λQ and the rate by which individuals leave the
quarantine is illustrated in Fig. 6. Clearly, the effects of λQ and λS are opposite to
each other. When λQ increases, i.e., when the number of susceptible individuals who
enter the quarantine increases, then the number of diagnosed humans decreases.
When λS increases, i.e., when the number of quarantined individuals who return
to the pool of susceptible individuals increases, the number of diagnosed humans
increases. This again confirms that quarantine is one of the most important control
strategies in fighting the disease.

4 Optimal Control

In this section,we introduce two time dependent controls into system (1) and examine
their role in controlling the disease transmission. In particular, we introduce time-
dependent treatment and sanitation of the environment, and our goal is to investigate
the effect of diagnosis and quarantine rates in the effectiveness of these controls.
We emphasize that treatment here should be understood as medical attendance in
hospitals, but not as a specific treatment, since there is no successful treatment for
Covid-19 so far.
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Fig. 6 Effect of varying λS (left) λQ (right) and on the dynamics of the diagnosed humans

4.1 Building the Optimal Control Problem

Let u1(t) be the time-dependent rate of treatment. It is assumed that this time-
dependent treatment rate is applied to the symptomatic infected and diagnosed
humans. Let u2(t) be the time-dependent sanitation of the environment. Then, the
above system of ODEs (1) becomes
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dS

dt
= � − βA A(t)S(t) − βP P(t)S(t) − βI I (t)S(t) − βe B(t)S(t)

k + B(t)
− μS(t) − λQ S(t) + λS Q(t)

dE

dt
= βA A(t)S(t) + βP P(t)S(t) + βI I (t)S(t) + βe B(t)S(t)

k + B(t)
− λAE(t) − λP E(t) − μE(t)

dQ

dt
= λQ S(t) − λS Q(t) − μQ(t)

d A

dt
= λAE(t) − γA A(t) − μA(t) − εA A(t)

dP

dt
= λP E(t) − λI P(t) − μP(t) − εP P(t) (4)

d I

dt
= λI P(t) − u1(t)I (t) − γI I (t) − μI (t) − εI I (t) − δI I (t)

dD

dt
= εA A(t) + εP P(t) + εI I (t) − u1(t)D(t) − γDD(t) − μD(t) − δDD(t)

dR

dt
= γA A(t) + (u1(t) + γI )I (t) + (u1(t) + γD)D(t) − μR(t)

dB

dt
= αA A(t) + αP P(t) + αI I (t) − μe B(t) − u2(t)B(t)

We want to find the controls that minimize the total number of exposed, asymp-
tomatic, pre-symptomatic, and symptomatic infected humans, the concentration of
the virus in the environment, and the cost of controls; i.e., we want to find the optimal
values (u∗

1, u
∗
2) of the control variables that minimize the cost objective functional

J (u1, u2) =
∫ T

0

[
c1E + c2A + c3P + c4 I + c5B + c6u

2
1 + c7u

2
2

]
dt. (5)

subject to the differential equations (4), where T is the final time. This performance
specification involves the numbers of exposed, asymptomatic, pre-symptomatic, and
symptomatic infected humans and the concentration of the virus in the environment,
along with the cost of applying the controls (u1(t) and u2(t)). The coefficients,
ci , i = 1 · · · 7, are balancing cost factors. The control doubles, (u1(t) and u2(t)), are
bounded and Lebesgue integrable functions [2, 17].

4.2 Characterization of the Optimal Control

The necessary conditions that an optimal control double, (u∗
1, u

∗
2), must satisfy come

from the Pontryagin’s maximum principle [29]. This principle converts equations
(4) and (5) into a problem of minimizing pointwise Hamiltonian H, with respect to
the controls (u1, u2). First, we formulate the Hamiltonian from the cost functional
and the governing dynamics to obtain the optimality conditions

H = c1E + c2A + c3P + c4 I + c5B + c6u
2
1 + c7u

2
2 +

9∑
i=1

φi gi (6)

where gi is the right-hand side of the i th equation of system (4).
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The system of adjoint equations is found by taking the appropriate partial deriva-
tives of the Hamiltonian equation (6) with respect to the associated state and control
variables, i.e.,

dφi

dt
= −∂H

∂Vi

where Vi , i = 1 · · · 9, is the i th variable in the system (4). Then, the adjoint system
is given by:

dφ1

dt
=

(
βA A + βP P + βI I + βe B

k + B

)
(φ1 − φ2) + (λQ + μ)φ1 − λQφ3

dφ2

dt
= −c1 + (λA + λP + μ)φ2 − λAφ4 − λPφ5

dφ3

dt
= (λS + μ)φ3 − λSφ1

dφ4

dt
= −c2 + βAS(φ1 − φ2) + (γA + εA + μ)φ4 − εAφ7 − γAφ8 − αAφ9

dφ5

dt
= −c3 + (λI + εP + μ)φ5 + βP S(φ1 − φ2) − λIφ6 − εPφ7 − αPφ9 (7)

dφ6

dt
= −c4 + (εI + u1 + δI + μ + γI )φ6 + βI S(φ1 − φ2) − εIφ7 − (γD + u1)φ8 − αIφ9

dφ7

dt
= (u1 + δD + μ)φ7 − u1φ8 + γD(φ7 − φ8)

dφ8

dt
= μφ8

dφ9

dt
= −c5 + βekS

(k + B)2
(φ1 − φ2) + (μe + u2)φ9

and with transversality conditions

φi (T ) = 0 (8)

Furthermore, the control quadruple (u∗
1, u

∗
2) is given as

u∗
1 = min

{
1,max

[
0,

(φ6 − φ8)I + (φ7 − φ8)D

2c6

]}
(9)

u∗
2 = min

{
1,max

[
0,

φ9B

2c7

]}
.

4.3 Numerical Simulation of the Optimal Control Problem

Numerical solutions to the optimality system comprising the state equations (4),
adjoint equations (7), control characterization equations (9), and corresponding
initial/final conditions are carried out using the forward–backward sweep method
(implemented in MATLAB) and using parameters set in Table2.
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In this subsection, we employ numerical simulations to the optimality system to
provide examples about the dynamics of the disease under the controls and to assess
the impact of the control variables on the disease dynamics.We use the following ini-
tial conditions S0 = 4.89 × 106, E0 = 0, Q0 = 0, A0 = 0, P0 = 0, I0 = 2, D0 =
2, R0 = 0 and B0 = 103.

In general, numerical simulations of the optimality system show that quarantine
and diagnosis are the key stone for controlling the disease, and even when other
control strategies are implemented, namely treatment of symptomatic infected and
diagnosed humans, as well as sanitation of the environment. They play a major role
in the effectiveness of these two controls as illustrated in the next two subsections.

4.3.1 Effect of Diagnosis

To study the effect of diagnosis on the optimal control model, we apply both controls
with diagnosis to all infected classes and with diagnosis to symptomatic individ-
uals only. Then, we remove the controls and simulate the system with diagnosis
to all infected classes and with diagnosis of symptomatic individuals only. The
results of this simulation show that including the diagnosis of asymptomatic and
pre-symptomatic enhances the effectiveness of the used controls by reducing the
maximum number of infected individuals and delaying the time it takes to reach
this maximum as illustrated in Figs. 7, 8 and 9, which illustrate the dynamics of
asymptomatic, pre-symptomatic, and symptomatic individuals, respectively, with
the effects of optimal controls and diagnosis. Hence, it is very important to imple-
ment some methods that help in diagnosing asymptomatic and pre-symptomatic
individuals, such as contact tracing.

Fig. 7 Number of asymptomatic humans with and without control
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Fig. 8 Number of pre-symptomatic humans with and without control

Fig. 9 Number of symptomatic infected humans with and without control

4.3.2 Effect of Quarantine

In order to investigate the effect of quarantine on the optimal control system, we
apply both controls with quarantine and without quarantine, and then we remove
both controls and simulate the system with quarantine and without quarantine. The
results are illustrated in Figs. 10, 11 and 12, which show the effect of control and
quarantine in the dynamics of asymptomatic, pre-symptomatic, and symptomatic
individuals, respectively. Comparing parts (A) and (B) in these figures, it is clear that
quarantine is much more important in controlling the disease transmission than the
two introduced controls, as its effect in reducing the maximum number of infected
individuals is much higher than the effect of controls. This result is very matching
with the suggestion of WHO regarding quarantine of susceptible individuals as the
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Fig. 10 Number of asymptomatic humans with and without control

Fig. 11 Number of pre-symptomatic humans with and without control

best controlling strategy. Note that wearing face mask and keeping the social dis-
tancing could be also considered (to some extent) as quarantine, because they work
toward reducing the contact between susceptible and infected individuals, avoiding
the transmission.
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Fig. 12 Number of symptomatic infected humans with and without control

5 Conclusion

In this chapter, we have developed and analyzed a mathematical model for Covid-
19 taking into account role of diagnosis and quarantine. The model includes both
direct and indirect asymptomatic, pre-symptomatic, and symptomatic transmissions,
and it has been analyzed both qualitatively and quantitatively. The analysis includes
calculation of the control and basic reproduction numbers, stability of equilibrium
points, sensitivity analysis, and numerical simulation to demonstrate the obtained
theoretical results; the goal of them is to show that the disease-free equilibrium is
globally asymptotically stable whenever Rc is less than unity and when Rc passes
unity, the disease-free equilibrium loses its stability and aunique endemic equilibrium
exists and becomes locally asymptotically stable. Sensitivity analysis shows that the
parameters with the highest positive influence on Rc are the transmission rate from
pre-symptomatic individuals, the rate at which humans leave the quarantine and the
transmission rate from symptomatic infected individuals. On the other hand, the
parameters with the highest negative influence on Rc are the rate at which humans
enter the quarantine, the natural death rate of humans, and the diagnosis rate of pre-
symptomatic individuals. This result shows that quarantine and diagnosis, especially
for the pre-symptomatic humans, play the most crucial role in controlling the disease
transmission. This effect has been demonstrated numerically as well. Numerical
simulations show that both diagnosis and quarantine rates have the effect of reducing
the maximum number of diagnosed individuals and delaying the time it takes to
reach this maximum. Moreover, an optimal control problem has been developed and
analyzed numerically. The optimal control result agrees with the sensitivity analysis
result on the importance of diagnosis and quarantine rates in controlling the disease
transmission. Moreover, it shows that without diagnosis and without quarantine,
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other control strategies (namely treatment of symptomatic infected and diagnosed
individuals and sanitation of the environment) will not be enough to control the
disease and reduce its catastrophic effect on the population.
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Development of Epidemiological
Modeling RD-Covid-19 of Coronavirus
Infectious Disease and Its Numerical
Simulation

Rashmi Bhardwaj and Debabrata Datta

Abstract Coronavirus disease (Covid-19) occurred first in Wuhan city of Hubei
province of China in December 2019. The World Health Organization (WHO)
declared the spread or the transmission of this virus as a global pandemic. The virus
was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the
International Committee on Taxonomy of Viruses on February 11, 2020. Disease due
to this novel-coronavirus is infectious.Therefore,modeling such an infectious disease
is essential to understand the method of its transmission, spread, and epidemic.
Several researchers have found that the transfer of the virus occurs through human
contact via their pathogens, such as coughing, sneezing, and breathing. With all
sorts of preventive measures (social distancing, wearing mask and lockdown), there
is a need to develop a dynamic model of epidemiology for infectious disease. In
this article, we have developed a new epidemiological dynamical model named
RD_Covid-19 (version 1.0) model. The traditional epidemiological model of an
infectious disease known as susceptible-exposed-infected-recovered-dead (SEIRD)
is modified to develop this new model. RD_Covid-19 is a networked epidemiolog-
ical model in which a data-driven logistic model, traditional epidemiological models
such as SIR (Susceptible, Infected, Recovered), SEIR and SEIQRDP are interlinked.
The model forecasts the spread of the Covid-19. Nonlinear least-squares optimiza-
tion technique is applied for fitting the model to estimate its parameters. The realistic
data is taken from JohnHopkinsUniversity andWHOdashboard. The outcome of the
numerical simulation of the model generates the temporal profile of infected, recov-
ered, and death cases. The severity of the model is measured by computing the basic
reproduction number (R0). The model executed to explore the corona outbreak in
China, India, Brazil, and Russia. The estimated value of basic reproduction number,
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R0 is well in agreement with that obtained from the outcome of traditional models
SIR and SEIR. The verification and validation (V & V) process of our model is
carried out by comparing its results with an analogical logistic model.

Keywords Covid-19 · Epidemiological model · Optimization · Numerical
Optimization · Nonlinear least square · Basic reproduction number

1 Introduction

Coronavirus disease (Covid-19) occurred first in Wuhan city of Hubei province of
China in December 2019. The World Health Organization (WHO) has declared the
spread or transmission of this virus as a global pandemic [1–4]. Initially, it has
proposed that the transmission of the coronavirus is related to a seafood market
(Wuhan Seafood Wholesale Market), and exposure took place whoever visited
that market. Coronavirus genomic infection-2019 has been announced as a severe
health emergency arising international awareness due to its spread to 201 coun-
tries at present. In April of the year 2020, it has undoubtedly been called the
pandemic outbreak having approximately 11,16,643 infections confirmed, leading
to around 59,170 deaths recorded all over the world. In general, human-affecting
coronavirus contagions has some similarities with two Beta coronaviruses: severe-
acute-respiratory-syndrome-coronavirus (SARS-CoV) andMiddle-East-respiratory-
syndrome-coronavirus (MERS-CoV) [5, 6].

In December 2019, the succession of pneumonia cases from an unknown cause
appeared across the city of Wuhan, China, and clinical tests detected them as viral
pneumonia. Deep-sequencing-analyzers depicted that the lower respiratory-tract
samples indicated a novel-coronavirus coined as a 2019 novel coronavirus (2019-
nCov). As of now, around 800 confirmed cases found among health-care workers
from this genomic viral which exists in Wuhan along with the exported population
in other provinces of China, Thailand, Japan, South Korea & the USA. The clinical
findings, such as lower and upper respiratory symptoms of the infection, have been
reported based on research findings from several countries. The pandemic situation
hasworsened at the national aswell as at the international level. The outbreak of coro-
navirus (Covid-19) is categorized as incidence representing number of confirmednew
cases, number of cases recovered and number of deaths occurred. Looking towards
the daily outbreak of this virus and suspecting its transmission through contact of
humans, various countermeasures such as social distancing and lockdown imple-
mented to prevent its potential spread. Therefore, tasks about effective control of
outbreak motivated us to develop a reasonable and feasible epidemic model for this
infectious disease. Infectious disease epidemiology is characterized by the presence
of at least one active player in addition to human population, namely, the infectious
agent or parasite [7, 8]. The presence of this additional propagating population sets
the stage for aspects specific to infectious disease epidemiology. First and foremost
is transmission. Transmission from one host to another is fundamental to the survival
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strategy of the infectious agent, since any host will eventually either clear the infec-
tion or die, even if from an unrelated cause. A consequence of transmission is that,
unlike non-infectious diseases, the occurrence of infectious diseases in individuals
depends on the occurrence of those diseases in other members of the population. Sir
Ronald Ross [9] called this dependence of disease events in infectious diseases as
“dependent happenings”.

Although most methods used in general epidemiology are applicable to the study
of the infectious diseases, additional concepts are needed to describe the phenomena
resulting from the dependence of disease events. These include infectiousness, the
transmission probability, contact patterns and the basic reproduction number (R0). An
intervention in infectious diseases can also have several different kinds of effects,
including direct effects on a person receiving the intervention as well as indirect
effects on other individuals. These different effects require additional parameters and
study designs for their evaluation. Exposure to infection plays a special role because
exposure to infection is necessary for infection and disease to occur. The components
of exposure to infection, such as the contact and mixing patterns of the infective and
susceptible hosts, as well as the degree and duration of the infectiousness, need to
be taken into account in infectious disease epidemiology.

Even when conventional epidemiologic concepts are applicable, these should
be used in infectious disease studies only after close examination of the under-
lying assumptions. Because the temporal evolution of the host population and the
disease process under study can be quite rapid compared with the time frame of
the study, conventional epidemiologic methods that assume stationarity can produce
very biased estimates of effects in infectious disease epidemiology. Epidemiology
of infectious disease is an extension of ecology and evolution. Since each infectious
agent has its own life cycle, immunology, ecology, evolution and molecular biology,
thus studies of infectious disease require the understanding of all these aspects [10].
Since present circumstances focus on the possibility of the spread of coronavirus,
we have developed an epidemiological model named RD-Covid-19. With the help
of the numerical simulation of RD-Covid-19 Model, the outburst for Covid-19 cases
in several countries like China, India, Brazil and Russia has been simulated. RD
Model provides the knowledge of basic reproduction number, R0, and with the help
of R0, the rate of severity of the coronavirus disease in abovementioned countries has
explored. Herd immunity computed fromR0. Case fatality rate (CFR) is an additional
component of the epidemiology of infectious disease [10, 11], which was calculated
using the RD-Covid-19 model. Modelling of the novel Coronavirus outbreak using
data based transformations for epidemiology has been forecasted [12]. A Multi-
risk SIR model with optimally targeted lockdown analyzed for the estimation of
the transmission risk of 2019-nCov and its implication on public health interven-
tions [13–15]. The corona theorem for differrnt functions analyzed and applied to
study the spectral problems for predictive modelling [16, 17]. Predictive models
for small molecules that target the severe acute respiratory syndrome human coro-
navirus nowcasted and forecasted for international spread of 2019-nCov [18, 19].
The clinical implications of Glycopeptide antibiotics that would inhibit Cathepsin L



248 R. Bhardwaj and D. Datta

in the Late Endosome/Lysosome, and blocks entry of Ebola virus, MERS-CoV and
SARS-CoV-2 discussed [20, 21].

The outburst ofCovid-19 studied in detail through data-basedmodeling& forecast
analysis with a detailed explanation of the mathematical perspective to understand
the spread of infectious diseases [22, 23]. Estimation and spread of atmospheric
pollutants through dynamic indicators, statistical simulations were modeled and
analyzed in detail for prediction and forecasting [24–30]. Coronavirus data analyzed
for forecasting and risk assessment [31]. Transmission dynamics using data anal-
ysis of the Covid-19 outbreak discussed for government interventaions and tracking
the rate of transmission of the epidemic, dynamics of transmission and its control
[32–37]. For 2019-nCoV pandemic, the efficiency of control strategies towards the
reduction of social mixing and complexity with futuristic estimations for China
modelled using supervised learning [38]. Time series forecasting of the spread of
genomic virus using genetic programming for study of pandemic outbreak based
on training testing of multimodal data predicted [39–41]. The molecules that enter
into host cell and cause acute respiratory syndrome targeting towards coronavirus
forecasted impending Covid-19 spread cases for China and some other regions using
mathematical & traditional time-series prediction models [42–44].

In this chapter, we introduce a few important concepts of infectious disease
epidemiology, focusing on the consequences of the dependent structure of disease
events for measures of the effect. The detailed structure of RD-Covid-19 model with
its numerical simulation also presented. Section 2 presents the various components
of epidemiology of infectious disease such as time lines of infection, transmission
probability, and secondary attack rate. Section 3 describes the basic reproduction
number and its estimation methodologies. Incidence rate as a function of prevalence
and contact rate is presented in Sect. 4. Section 5 describes the dynamic epidemic
process in a closed population. Section 6 describes our RD-Covid-19 model and its
various components (network). Numerical simulation of our model for countries, as
mentioned, is presented in Sect. 7. Section 8 concludes the chapter with possible
future research in this direction.

2 Infectious Disease Epidemiology Components

Its various components always understand the epidemiology of an infectious disease.
These are (1) timelines of infection, (2) transmission probability, and (3) secondary
attack rate. This section presents insight into these components.

2.1 Timelines of Infection

The time lines of infection within the host can be best described with reference to the
dynamics of infectiousness and of disease (Fig. 1). Both start with the active disease
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Fig. 1 Timeline for infection and disease

of the vulnerable host by the parasite. The time line of infectiousness includes the
latent period, the time interval from infection to development of infectiousness and
the period of infectiousness of the host, during which time the host could infect
another host. Eventually, the host becomes noninfectious either by recovery from
the infection, possibly developing immunity, or by death. The host can also become
noninfectious while still alive and still harboring the parasite.

The time line of disease within the host includes the incubation period, the time
from infection to development of symptomatic disease and the symptomatic period.
The probability of developing symptoms or disease after becoming infected is the
pathogenicity of the interaction of the parasite with the host. Eventually, the host
leaves the symptomatic state either by recovering from the symptoms or by death.
The host becomes an infectious carrier if he recovers from symptoms but remains
infectious. The terminology used in infectious disease epidemiology always differs
from that of non-infectious disease epidemiology. The term latent period refers the
time corresponding to the period fromdevelopment of asymptomatic disease to devel-
opment of symptoms. The incubation period in infectious disease is a combination
of what are called the induction and the latent periods in noninfectious diseases.
The configuration of the two time lines in Fig. 1 and their relation to one another
are specific to each parasite and can have important public health consequences and
implications for study design.

2.2 Estimation of Transmission Probability

Transmission probability is an important parameter of infectious disease epidemi-
ology which is defined as the probability that, given contact between two infective
source and a susceptible host, successful transfer of the parasite will occur so that the
susceptible host becomes infected (Fig. 2). Hence, estimation of transmission proba-
bility is very important from the point of knowing the outbreak of infectious disease
Covid-19. The transmission probability depends on characteristics of the infective
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Fig. 2 Transmission from an infective to a susceptible host during contact

source, the parasite, the susceptible host and the type of definition of contact. The
infectious source could be another person, as in Covid-19. The mode of transmission
of a parasite determines what type of contact is potentially infectious.

It is worth to know the method of estimating transmission probability. In one
method, infectious individuals are identified and the proportion of contacts that they
make with susceptible hosts that result in transmission is determined. This approach
can be explained further by introducing secondary attack rate.

Secondary Attack rate:

The conventional secondary attack rate (SAR) defined as the probability of the occur-
rence of disease among known susceptible persons following contact with a primary
case:

SAR = n (number of persons exposed who develop disease)

m (total number of susceptible exposed persons)

2.3 The SAR is a Proportion, Not a Rate

In another technique, susceptible hosts are identified and data gathered on the number
of contacts they make with infectives and outcomes of their infection. In this method
binomial model is used to estimate the transmission probability. The probability
of transmission during a contact between a susceptible and an infectious person
is denoted by ‘p’ and the probability of a susceptible person’s escaping infection
during the contact is ‘q = 1 – p’. The probability of escaping infection from all n
potentially infective contacts is qn = (1 − p)n.. The probability of being infected
after n contacts, that is, of not escaping infection from all n contacts is 1 − qn =
1 − (1 − p)n. The maximum likelihood estimate of the transmission probability
under the binomial model can be written as

p = number of susceptibles who become in f ected

total number of contacts wi th in f ectives
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It is required to note that, in the binomial model, the total number of potentially
infectious contacts that susceptible individuals make, while in SAR, each vulnerable
person had just one potentially infectious contact with the infective.

3 Estimation of Basic Reproduction Number/ Proliferation
Number

Basic reproduction number, R0 is defined as the expected number of new infectious
hosts that one infectious host will produce during his or her period of infectious-
ness in a large population that is completely susceptible. R0 does not include the
new cases produced by the secondary cases which do not become infectious. For
example, if R0 = 9 for some infectious disease in a population, then one person
with that infectious disease introduced to that population would be expected to
produce nine new secondary infectious cases before recovering, if the population
were completely susceptible. If the person produced two additional cases which did
not become infectious, R0 would still be 9. In general, for an epidemic to occur in
a susceptible population, R0 must be greater than one. If R0 < 1, an average case
will not produce itself, so an epidemic will not spread. Since R0 is an average, it
is possible that a particular infectious person will produce more than one infective
case, even when R0 < 1, so there may be a small cluster of cases. We would not,
however, expect a self-sustaining outbreak.

The basic reproduction number, R0 for infectious disease depends on three param-
eters, which are: (a) the rate of contacts c, (b) the duration of infectiousness d, and
(c) the transmission probability per potentially infective contact p. Mathematical
expression of R0 hence can be written as

R0 = numberof contacts

time
× transmissionprobabili t y

numberof contacts
× duration(time) = cpd

By definition, R0 assumes that all contacts are with susceptibles. Under these
conditions, the expected number of new cases produced by an infectious person is
less than R0 and is called the effective reproductive number, R. If x is the proportion
of a randomly mixing, homogeneous population that is susceptible, R is the product
of R0 times the proportion x of the contacts that are with susceptibles. So, R = R0 x.
For example, if R0 = 9 and x = 0.5, then R = 4.5. So an infectious disease would
produce on average only 4.5 new secondary cases in this population. We can also
write R = R0 (1 – f), where fraction f is immunized before the age of first infection
and (1 – f) would be the maximum fraction of the population that is susceptible,
disregarding immunity from previous disease. Therefore, to eliminate transmission,
we should have, R=R0 (1 – f) < 1. Therefore the fraction that needs to be immunized
to eliminate transmission is f > 1 – 1/R0. A higher R0 requires immunization of a
higher fraction to eliminate transmission.
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Herd immunity [11] describes the collective immunologic status of a population
of hosts, as opposed to an individual organism, with respect to a given parasite [9].
Herd immunity of a population may be high if many people have been immunized
or have recovered from infection with immunity or may be low if most people are
susceptible. As herd immunity increases, R will decrease.

3.1 Estimation of R0

If the average life expectancy, L in a population is known, then R0 can be esti-
mated from the relation, R0 = L/A, where A = 1/I (incidence rate). R0 can be
calculated by computing the ratio of the rate of infection (β) to the rate of recovery
(γ) for a standard SIR epidemic model. Maximum likelihood method can be the
alternate method for estimating R0. In case of a standard compartment epidemic
model or networkedmodel, R0 is computed by next generationmatrixmethod, where
maximum eigenvalue of the next generation matrix is the value R0.

3.2 Virulence of R0 and the Case Fatality Ratio (CFR)

Virulence is ameasure of the spreadwithwhich a virus (coronavirus) kills an infected
host. Since R0 is a function of the time spent in the infective state, R0 could decrease
as virulence increases. The case fatality ratio (CFR) is the probability of dying from
a disease (Covid-19) before recovering or dying or something else [11]. Mathemat-
ically, CFR is defined as the ratio of number of deaths due to disease to the number
of confirmed infectious cases. As virulence increases, the CFR increases.

4 Incidence Rate as a Function of Prevalence and Contact
Rate

Apart from R0, transmission probability, the incidence rate, also used in infectious
disease epidemiology. Under the assumption of simple random mixing, constant
contact rate, c, and the transmission probability p, the incidence rate I(t) expressed
as a function of the prevalence P(t) at time t of infectious persons defined as

I (t) = cpP(t) = R0

d
P(t) (1)
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5 Dynamic Epidemic Process in a Closed Population

If the population is closed, then there are no births, immigration, deaths, or emigra-
tion. In a typical cohort study, we would not necessarily be concerned with how the
individual people interact. In any study of infectious disease, the underlying contact
and transmission process is essential, so we need to think about these processes in
our model. If S is the susceptible population, I, the infected population, and R is
the recovered population, we can have a SIR epidemic model [44–47] governed by
following network diagram (Fig. 3) and equations as presented in Eq. (2).

dS
dt = −β SI

N

d I
dt = β SI

N − γI
dR
dt = γI

⎫
⎪⎪⎬

⎪⎪⎭

(2)

where, β denotes the infection rate, γ indicates the rate of recovery and the total
population is N = S + I + R.

The dynamics of the epidemic described by Eq. (2) The rate at which people leave
the susceptible compartment S and become infected is simply the incidence rate.
Prevalence of infectives at time t, P(t) is the number of infectious people I(t) divided
by the size of population N, or I(t)/N. The incidence as a function of prevalence is
given by

I ncidence(t) = cpP(t) = cp
I (t)

N
dS

dt
= −I ncidence(t)S(t) = −cp

I (t)

N
S(t) = −β

SI

N

Therefore, the infection rate is given by β= c p.A cross-sectional study to estimate
prevalence P(t) of current infection would yield an estimate of I(t)/N. We can write
the differential equation representing the variation of the infected population for a
variety of susceptible population of SIR model (Eq. 2) can be written as

d I

dS
= γ

β

N

S
− 1 (3)

Similarly, we can also write,

Fig. 3 Network diagram of SIR Model
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d I

dR
= βSI

N
− 1 (4)

Analytical solution of Eq. (3) with initial condition S(0) = N, I(0) = 0 and R(0)
= 0 can be written as

I = f (S) = Nγ

β
ln

(
S

N

)

+ (N − S) (5)

Equation (5) utilized to reconstruct the phase of the infected-susceptible popula-
tion. The epidemic process also depends on population biology. By using definition
of R0, for SIR model we can easily express R0 = c p/γ = β/γ. The expected number
of new cases per infective host decreases from R0 to R = R0 (S/N). The epidemic
peaks begins to decrease when R < 1, so that S(t)/N < 1/R0, that is, when the propor-
tion of the population still susceptible becomes less than the reciprocal of the basic
reproductive number. If an intervention (social distancing and lockdown) reduced
some aspect of R0, then the intervention would result in the epidemic peaking when
a higher proportion of the population was still susceptible, and fewer people would
become infected before the epidemic died out.

6 RD-Covid-19 Epidemiological Model

Looking towards the need of an epidemiological forecasting model for knowing the
outbreak of coronavirus we have developed a hybrid model RD-Covid-19 which is
a networked model of a data-driven logistic model, SIR model, SEIR model [43–
48] and SEIQRDP (Susceptible, Exposed, Infected, Quarantine, Recovered, Dead,
Protected) model. Epidemiological models are generally dynamic model and data
dependency. Hence, forecasting the spread of the coronavirus disease (Covid-19)will
change with the change or availability of new datasets addressing confirmed, recov-
ered, and death cases. Moreover, every epidemiological model is the compartmental
model, and the introduction of a fresh compartment always based on certain assump-
tions. The assumption based modeling motivates us to develop a data-independent
epidemiological model to forecast the coronavirus outbreak optimally. Accordingly,
this demands to develop an optimal model to predict the spread or transmission of
Covid-19 optimally. Therefore, with a view to this demand, we developed a hybrid
model by the networking of logistic Model with SIR, SEIR, and SEIQRDP Model
[47, 48]. The fundamental concept behind this networked model is to cascade the
output of one model into the input of another model. Every model in this work is
calibrated with the help of the available data in a sense, that parameters of the specific
model at every stage are estimated using nonlinear least square optimization method.

In the cascade, at first parameters (infection rate and rate of recovery) of a data-
driven model (logistic model) are estimated. Estimated values of these parameters
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used as guess value of the parameters of the SIR model, which calibrated further
using the same data set and generate an improved amount of rate of infection and
rate of recovery parameters of the SIR model. In the next stage, again, those values
are used as input to the SEIR model. It is considered that, at the input stage, values
of the parameters of the model accepted as guess value. Finally, the estimated values
of the parameters by fitting the SEIR model along with the other parameters of the
SEIQRDP model used as a guess value (input) of the SEIQRDP epidemiological
model. Finally, the Model SEIQRDP numerically solved with the fitted values of
the model parameters. Since the estimated values of the rate of infection and rate of
recovery are going through several stages for their improvement, our model provides
optimal values of the rate of infection and rate of recovery. These two parameters
of a dynamic epidemiological model are data-dependent. Other parameters, such
as incubation rate, protection rate, and quarantine period, guessed based on model
assumptions. Assumptions of SIR model are:

(1) The only way a person can leave the susceptible group is to become infected.
(2) The only way a person can leave the infected group is to recover from the

disease.
(3) Once a person has recovered, the person received immunity.
(4) Age, sex, social status, and race do not affect the probability of being infected.

A schematic diagram of RD-Covid-19 model is as shown in Fig. 4.
The data-driven model estimates the growth curve of the epidemic by fitting

the parameters of the model through the available data (confirmed cases of Covid-
19) of the public for any country. As mentioned previously, hereafter, estimated
values of the parameters (rate of infection and rate of recovery) from the logistic
model fed as guess value of the parameters of the SIR model, and subsequently,

Fig. 4 Schematic Diagram of Networked RD-Covid-19 Model
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similar trend follows for the other three networked model, viz., SEIR and SEIQRDP.
Parameters of epidemiological models used in our work estimated by the nonlinear
least-square fitting of the available data. Levenberg–Marquardt Algorithm [49] and
an optimization technique of min-search (basically quadratic programming) used for
fitting the model parameters. At the final stage, the SEIQRDP model is executed to
compute the time-dependent profile of seven states of the model.

Let us discuss data-driven models that we have investigated, and finally, we have
selected a specific model for the present work.

1. Gompertz Model

Qt = cumulative con f irmed cases = a ∗ exp(−b ∗ exp(−c ∗ (t − t0)))
(6)

where, a = predicted maximum of confirmed, b and c are fitting coefficients,
t represents the number of days since the first case, and t0 signifies the time
when the first case occurred.

2. Logistic Model
This model predicts the development and transmission trend of the epidemic.
Governing equation of this data-driven model is given by

Qt = a

1 + exp(b − c(t − t0))
, (7)

where a= predictedmaximum of confirmed cases, where b and c are the fitting
coeffcients, t represents the number of days since the first case, t0 signifies the
time when the first case occurred.
The logistic model is used to explore the risk factors of particular disease and
predict the probability of a specific disease according to the risk factors.

3. Bertalanffy Model
This model represents the growth curve model for a time series (cumulative or
daily confirmed cases and death cases in case of Covid-19). It is a special case
of generalized logistic function. Governing equation of this model is given by

Qt = a(1 − exp(−b(t − t0)))
c (8)

where the symbols have usual significances, like previous other models as
mentioned.

(4) Monod Kinetic Growth Model
This model is used to explore the growth of microorganisms. Form of this
model is the same as Michaelis–Menten equation and is given by

Yt = Ymax
θ

Kθ + θ
, (9)
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Yt specific growth rate of the microorganisms (in this case, coronavirus)
Ymax = maximum value of the specific growth rate of microorganism, θ =
concentration (cases) of the limiting substrate for growth, Kθ = half velocity
constant. The present work follows the logistic model Monod Kinetic Growth
model (Eq. 9) to explore the coronavirus outbreak of any country and the
corresponding growth rate of the event in the same region.
The second stage of the networkedmodel is SIR,which has already described in
Eq. (2). The third stage of the networked model is SEIR model, where an extra
compartment explaining the exposed population (E) introduced. The governing
one-dimensional differential equation (ODE) of the SEIR epidemiological
model is written (Eq. 10) as:

dS
dt = − βSI

N
dE
dt = βSI

N − ωE
dI
dt = ωE − γ I

dR
dt = γ I

(10)

where, N = S + E + I + R = total population, β = rate of infection, which
modeled as = β0 K explaining β0 as the probability of infection per encounter
with an infected individual and K as the number of people encountered per
day. The parameter ω is modeled as 1/Te, where Te signifies the latent period
(days). The average rate of recovery is denoted by the parameter γ = 1/Ti,
where Ti is the average recovery time of infectives.

The last stage of networked RD-Covid-19 model is the SEIQRDP model, which
is further networked by seven states. Those seven states are: (a) Susceptible (S), (b)
Exposed (E), (c) Infected (I), (d) Quarantined (Q), (e) Recovered (R), (f) Dead (D)
and (g) Protected (P) or in-susceptible population. This specific model contains six
parameters which are defined as:

α—the protection rate,
β—the infection rate,
γ—the inverse of the average latent time,
δ—the rate at which infectious people enter in quarantine,
λ(t)—a time-dependent coefficient used to describe the recovery rate,
κ(t)—a time-dependent coefficient that describes the mortality rate.
The time-dependent coefficients, λ(t) and κ(t) further assumed in the following

form:

λ(t) = λ0(1 − e(−λ1t)) and κ(t) = κ0e
(−κ1t), where λ0, λ1, κ0, κ1 are constants.

The values of λ(t) and κ(t) based on the empirical fitting of some provinces
of China data indicate that the gradual increase of recovery rate and fast decrease
of mortality rate. The assumptions are reasonably accepted by nature as pandemic
always converges to zerowhile the recovery rate continues to increase towards a satu-
ration level. The other parameters of the SEIQRDP model are constant because they
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do not fluctuate on time. The dynamic of each state is characterized mathematically
by an ordinary differential equation given by (Eq. 11).

dS
dt = −αS − βSI

N
dE
dt = βSI

N − γ E
dI
dt = γ E − δ I
dQ
dt = δ I − λQ − κQ
dR
dt = λQ
dD
dt = κQ
dP
dt = αS

(11)

where N represents the total population and is written as N = S + E + I + Q + R
+ D + P.

The networked RD-Covid-19 model estimates the basic reproduction number R0

at its networked stage. Therefore, in the first stage of the network, the output of data-
driven (Monod Kinetic growth) and SIRmodels and the last stage of a network that is
an output of SEIQRDP model-based estimated value of R0 are mentioned, which is
sufficient to know about the progress of coronavirus outbreak. The time evolution of
reproduction number, R is modeled as Rt = R0 exp(−γ t), γ signifies here the rate of
recovery. There are many methods to estimate R0. In our present work, we have used
the next-generation matrix method for determining R0. In the next-generation matrix
method, the estimation of R0 is based on the maximum eigenvalue of the product
of two matrices F and V−1, which are generated from the system of the differential
equation of the specific model in matrix form.

7 Numerical Simulation of RD-Covid-19 Model

The general strategy of simulation of the infectious disease dynamics model for
modeling and predicting the number of Covid-19 cases has carried out. The fore-
casting of RD-Covid-19 model validated with cases in Wuhan, China. Later on, our
model implemented to forecast the coronavirus outbreak and epidemic profile of
countries like India, Brazil, and Russia. Utilization of the numerical Model is of
incredible managing hugeness to survey the effect of segregation of suggestive cases
just as the perception of asymptomatic contact cases and to advance proof-based
choices and strategy. We accepted no new transmissions from creatures, no distinc-
tions in singular insusceptibility, the time-size of the pandemic is a lot quicker than
trademark times for segment forms (normal birth and death), and no differences in
common births and passings.

Numerical simulation of any dynamic model (a system of first-order coupled
ODE) can be carried out either by the Runge–Kutta method or by explicit finite
difference technique. Here we have adopted the fourth order Runge–Kutta method
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for simulating each networked node (epidemiological model). In the first stage of the
RD-Covid-19networkedmodelwehavefitted theMonodKineticGrowthdata-driven
model. Subsequently, parameters of the SIR model fitted by Levenberg Marquardt
nonlinear least square method based optimization technique. Data used for mounting
the model and corresponding simulation captured from John Hopkins University and
WHO dashboard [50]. Dataset preprocessed into three groups like (a) cumulative
confirmed cases, (b) cumulative recovered cases, and (c) cumulative deaths. Dataset
for daily new cases constructed by computing the forward difference of cumulative
confirmed cases per day. Similarly, new deaths per day and new recovered cases per
day also computed by following a similar strategy. Active cases per day generated
by subtracting the cumulative recovered and cumulative deaths from cumulative
confirmed cases.

We have divided numerical simulation of RD-Covid-19 into four parts. Part 1
presents the numerical outcome of India; Part 2 of China; Part 3 of Brazil and Part
4 of Russia.. Numerical simulation of each node of RD-Covid-19 model has been
carried out with the fitted parameters at each stage, and finally, the simulated outcome
of node ‘SEIQRDP’ of RD-Covid-19 shown in Fig. 11.We have developed computer
code for numerical simulation of our RD-Covid-19 Model in R software (version
3.6.2) and MATLAB 2017a. The impact of various control measures (e.g., social
distance, wearing a mask, and lockdown) implemented in code. In the process, S
assumed to be the population of an individual country.

7.1 PART-1: Numerical Outcome of RD-Covid-19 Model
Outcome for INDIA

Time histories profile of various events (confirmed cases, death cases, and recovered
cases) and epidemic trend of coronavirus outbreak as the outcome of RD-Covid-19
Model for India during the period from January 22, 2020, to July-5, 2020 are shown in
Figs. 5, 6, 7, 8, 9, 10 and 11. The results of the epidemic trend (plot) of coronavirus
outbreak is as shown in Fig. 10 with a blue line (cases/day). Blue dots represent
the actual infection rate (cases/day). A region with different colours separate the
transmition phases of the epidemic like the red-colored zone signifies fast growth
phase, yellow colored zone presents the transmition to steady state phase and green
colored zone presents the ending phase.
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Fig. 5 Temporal profile of cumulative confirmed cases in India
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Fig. 6 Temporal profile of daily confirmed cases in India

7.2 PART-2: Numerical Outcome of RD-Covid-19 Model
Outcome for CHINA

Time histories profile of various events (confirmed cases, death cases, and recovered
cases) and epidemic trend of coronavirus outbreak as the outcome of RD-Covid-19
Model for China during the period during the period from January 22, 2020, to July-5,
2020 are shown in Figs. 12, 13, 14, 15, 16, 17 and 18. The result of the epidemic trend
(plot) of coronavirus outbreak is as shown in Fig. 17 with a blue line (cases/day).
Blue dots represent the actual infection rate (cases/day).A regionwith different colors
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Fig. 7 Temporal profile of daily death cases in India
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Fig. 8 Temporal profile of daily recovered cases in India

separate the transition phases of the epidemic like the red-colored zone signifies fast
growth phase, yellow-colored zone presents the transition to steady-state phase, and
green colored zone presents the ending phase.
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Fig. 9 Temporal profile of daily active cases in India

Fig. 10 Epidemic Trend of Coronavirus outbreak in India



Development of Epidemiological Modeling RD-Covid-19 … 263

0 50 100 150
0

1

2

3

4

x 10
5

N
u

m
b

er
 o

f 
ca

se
s

time (days)

Hybrid SEIQRDP Model based epdemic curve of India

Confirmed (fitted)
Recovered (fitted)

Deceased (fitted)
Confirmed (reported)
Recovered (reported)

Deceased  (reported)

Fig. 11 Numerical simulation of Node SEIQRDP model of RD-Covid-19 (India)
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Fig. 12 Temporal profile of cumulative confirmed cases
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Fig. 13 Temporal profile of daily confirmed cases
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Fig. 14 Temporal profile of daily death cases



Development of Epidemiological Modeling RD-Covid-19 … 265

0 20 40 60 80 100 120 140 160 180
-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

Number of days: 
From 22-01-2020 to 05-07-2020

N
u

m
b

er
 o

f 
D

ai
ly

 R
ec

o
ve

re
d

 c
as

es
Temporal profile of Daily Recovered cases for China

Fig. 15 Temporal profile of daily recovered cases
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Fig. 16 Temporal profile of daily active cases

7.3 PART-3: Numerical Outcome of RD-Covid-19 Model
Outcome for BRAZIL

Time histories profile of various events (confirmed cases, death cases, and recovered
cases) and epidemic trend of coronavirus outbreak as the outcome of RD-Covid-19
Model for Brazil during the period during the period from January 22, 2020, to July-
5, 2020 are shown in Figs. 19, 20, 21, 22, 23 and 24. The result of the epidemic trend
(plot) of coronavirus outbreak is as shown in Fig. 23 with a blue line (cases/day).
Blue dots represent the actual infection rate (cases/day).A regionwith different colors
separate the transition phases of the epidemic like the red-colored zone signifies fast
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Fig. 17 Epidemic Trend of Coronavirus outbreak in China

growth phase, yellow-colored zone presents the transition to steady-state phase, and
green colored zone presents the ending phase.

7.4 PART-4: Numerical Outcome of RD-Covid-19 Model
Outcome for RUSSIA

Time histories profile of various events (confirmed cases, death cases, and recovered
cases) and epidemic trend of coronavirus outbreak as the outcome of RD-Covid-19
Model for Russia during the period during the period from January 22, 2020, to July-
5, 2020 are shown in Figs. 25, 26, 27, 28, 29 and 30. The result of the epidemic trend
(plot) of coronavirus outbreak is as shown in Fig. 29 with a blue line (cases/day).
Blue dots represent the actual infection rate (cases/day).A regionwith different colors
separate the transition phases of the epidemic like the red-colored zone signifies fast
growth phase, yellow-colored zone presents the transition to steady-state phase, and
green colored zone presents the ending phase.
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Fig. 18 Numerical simulation of Node SEIQRDP model of RD-Covid-19 (China)
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Fig. 19 Temporal profile of Cumulative confirmed cases in Brazil
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Fig. 20 Temporal profile of daily confirmed cases in Brazil
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Fig. 21 Temporal profile of daily death cases in Brazil

Values of the fitted parameters of the last node SEIQRDP of RD-Covid-19
Model for various countries (China, India, Brazil, and Russia) tabulated in Table 1.
Basic reproduction number (R0), reproduction number (R), and herd immunity
threshold concerning the epidemic curve of China, India, Brazil, andRussia tabulated
in Table 2. The estimated duration of different stages of epidemic events presented
in Table 3. Estimated datum (Dates) of the epidemic stage of China, India, Brazil,
and Russia showed in Table 4. Table 5 presents the statistics of total and daily cases.
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Fig. 22 Temporal profile of daily recovered cases in Brazil

Fig. 23 Epidemic trend of Coronavirus outbreak in Brazil
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Fig. 24 Numerical simulation of Node SEIQRDP model of RD-Covid-19 (Brazil)
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Fig. 25 Temporal profile of Cumulative confirmed cases in Russia
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Fig. 26 Temporal profile of daily confirmed cases in Russia
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Fig. 27 Temporal profile of daily death cases in Russia
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Fig. 28 Temporal profile of daily recovered cases in Russia

8 Conclusions

Epidemiological modeling of infectious diseases like Covid-19 has been discussed
in detail in this chapter. The chapter discusses various issues associated with the
fundamental aspects of the epidemiology of infectious diseases such as contact rate,
attack rate, probability of transmission, basic reproduction number, and dynamic
growth. Each traditional epidemiological models in this direction are compartmental
model, and their evolution are discussed in the chapter. Here, in this chapter, we
have presented the design, development and numerical simulation of an innovative
networked RD-Covid-19 model. Various traditional models such as SIR, SEIR, and
SEIQRDP are networked or cascaded to develop this RD-Covid-19. In our RD-
Covid-19Model, we have demonstrated the technique of fitting of model parameters
using a nonlinear least square optimization method wherein we have used the Leven-
berg–Marquardt algorithm. Initially, guess the value of themodel parameters required
for fitting (mainly, infection rate and recovery rate) are guessed and subsequently iter-
ated and improved by a data driven logistic growth model (Monod Kinetic Growth
Model). Subsequently, guess values are used as input to the various stages of the
network so that parameters have improved at every stage. Hence, the final stage of
the system of RD-Covid-19 Model (SEIQRDP) generated the optimal values of the
fitted parameter. The profile of various states (infected, quarantined, recovered, etc.)
of the model have been created by using the optimal values of the parameters. The
severity of the model is presented by estimating the basic reproduction number, R0.
The epidemic trend of four countries, viz. India, China, Brazil, and Russia is gener-
ated as an outcome of RD-Covid-19 model. Results are in agreement with the result
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Fig. 29 Epidemic Trend of Coronavirus outbreak in Russia
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Fig. 30 Numerical simulation of Node SEIQRDP model of RD-Covid-19 (Russia)
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Table 1 Fitted Value of Parameters of SEIQRDP node of RD-COVD-19 model

Event China India Brazil Russia

Fitted protection rate (alpha) 0.069 0.0116 0.0351 0.0208

Fitted infection rate (beta) 1.68 1.74 1.9279 1.4924

Fitted inverse of average latent time 0.68 0.0695 0.3327 0.2769

Fitted delta (rate of quarantine) 0.5937 0.27 0.3956 0.4333

Fitted recovery rate (lambda) 0.08 0.01 0.50 0.10

Fitted death rate (Kappa) 0.41 0.04 0.15 0.03

Table 2 Basic Reproduction number, Reproduction number and Herd Immunity

Event China India Brazil Russia

Basic reproduction number (R0) 2.49 1.16 1.46 1.89

Reproduction number (R) 0.268 1.02 0.87 0.59

Herd immunity threshold 99.0 99.97 96.21 99.80

Table 3 Estimated duration of epidemic stage

Estimated duration (days) China India Brazil Russia

Turning day 17 158 109 84

Acceleration phase 7 39 31 30

Deceleration phase 9 41 35 36

Total growth phase duration 16 81 65 66

Total epidemic duration 92 461 388 388

Table 4 Estimated datum of epidemic stage

Estimated datum (Date) China India Brazil Russia

Outbreak 22-Jan-2020 30-Jan-2020 28-Feb-2020 31-Jan-2020

Start of acceleration 01-Feb-2020 30-May-2020 17-May-2020 24-Apr-2020

Turning point 08-Feb-2020 08-Jul-2020 16-Jun-2020 24-May-2020

Start of steady growth 17-Feb-2020 19-Aug-2020 21-Jul-2020 28-Jun-2020

Start of ending phase 25-Feb-2020 28-Sep-2020 23-Aug-2020 31-Jul-2020

End of epidemic (5 cases) 12-Apr-2020 03-Apr-2021 19-Feb-2021 15-Feb-2021

End of epidemic (1 case) 23-Apr-2020 07-May-2021 23-Mar-2021 24-Mar-2021

reported in the WHO dashboard. Future perspectives of this kind of study related
to dynamic epidemiology will extend to compute risk management, including the
cognitive behavior of humans facing this infectious disease under various control
measures such as lockdown mainly and also social distance maintenance.
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Table 5 Statistics of total and daily cases

China India Brazil Russia

Statistics (Total cases)

Number of observations 166 156 129 127

Degrees of freedom 162 152 125 123

Root mean squared error 1924.35 5217.5 20,460.7 13,363.7

R2 1 1 1 1

Adjusted R2 1 1 1 1

F statistics vs. zero model 7997.59 58,808.5 21,400.2 12,597.6

p-value 9.01E-176 1.116E-112 3.058E-169 7.59E-153

Statistics (daily new cases)

Number of observations 165 155 128 126

Degrees of freedom 161 151 124 122

Root mean squared error 1098.71 1025.52 6715.67 1502.51

R2 1 1 1 1

Adjusted R2 1 1 1 1

F statistics vs. zero model 65.79 1662.45 138.89 269.632

p-value 8.05E-28 2.15e-115 1.75E-39 1.21E-53
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Mediterranean Diet—A Healthy Dietary
Pattern and Lifestyle for Strong
Immunity

Anka Trajkovska Petkoska and Anita Trajkovska-Broach

Abstract The human health and the overall well-being are greatly affected by the
individual’s diet, lifestyle, age, and genetics, as well as the individual’s response
to stress, pathogens, and environmental pollution, which is mainly dictated by the
immune system. A healthy gut microbiota plays a crucial role in the development and
maintaining a healthy immune system. Numerous studies have shown that nutrients
including vitamins, such as A, B6, B12, C, D, E, folate, and trace elements, such as
zinc, iron, selenium, magnesium, and copper, and omega-3 fatty acids are comple-
mentary inmaintaining a strong immune system. Besides nutrition, a healthy lifestyle
including successful management of stress and anxiety, adequate sleep and rest, and
physical activity are also crucial for boosting the immune system. A strong immune
systemwould effectively respond to the attacks of pathogens (viruses, bacteria), such
as the current coronavirus disease (Covid-19). The Mediterranean way of living
seems an optimal dietary pattern and a lifestyle that could help in maintaining a
healthy and diverse gut microbiota and thus strong immunity. Mediterranean diet
is mainly a plant-based dietary pattern, which emphasizes consumption of fruits,
vegetables, whole grains, nuts, legumes, and seeds followed by moderate consump-
tion of fish, poultry, fermented dairy products, and extra virgin olive oil as a main
source of healthy fats, while the use of processed redmeat products and refined sugars
is low. Plenty of water, fruit juices, and herb teas are also consumed with frequent,
but moderate consumption of red wine usually with the meals. Taking rests, daily
physical exercises, leisure, and social activities and be a part of the community are
also common features of the Mediterranean lifestyle. Therefore, the Mediterranean
diet rich in valuable phytonutrients, such as vitamins, minerals, dietary fibers, and
antioxidant polyphenols, along with social aspects of the diet could help building
a healthy gut and a strong immune system to effectively respond to the Covid-19
pandemic.
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1 Introduction

It is of a vital importance to maintain a strong human immune system, which can
defend the body from viruses, bacteria, and other pathogens. With more than 70% of
the immune system located in the gut, the gutmicrobiota is responsible for developing
and supporting a healthy immune system. Suppressed immunity and inflammation,
which occurs as the immune system’s response to the external invaders (viruses,
bacteria) and subsequent cells’ injuries, have been implicated as causes of many
serious diseases. In fact, several chronic metabolic disorders and health outcomes,
such as obesity, metabolic syndrome (MS), type 2 diabetes, cardiovascular diseases
(CVDs), depression, Alzheimer’s disease (AD), and certain types of cancers start in
the gut and further progress as a result of a long-term inflammation.

As the viral Covid-19 pandemic is an “on-going” treat around the globe and there
is uncertaintywhen this pandemicwould “end,” strategies to strengthen the immunity
have been mainly directed toward a healthy and balanced nutrition that could help
boosting the immune system necessary for prevention and management of viral and
bacterial infections. These dietary recommendations usually involve consumption
of mainly plant-based foods, such as foods rich in dietary fibers (vegetables, fruits,
grains), proteins (fish, seafood), probiotics-rich food (fermented products), healthy
fats (fish, seafood), and others. All of them provide diverse nutrients, viz. vitamins A,
B6, B12, C, D, E, and folate, trace elements, including zinc, iron, selenium, magne-
sium, and copper, and omega-3 fatty acids playing important and complementary
roles in supporting the immune system. Avoiding ultra-processed food containing
refined sugars, salt, and unhealthy fats, known to promote inflammatory processes,
is also recommended [1–10]. Beside the dietary recommendations, confinement and
social distancing have been suggested for reduced spreading of the pandemic. This
kind of restrictions significantly modifies the lifestyles of individuals and whole
communities. Lack of relationships and social interactions, limited opportunities
than those experienced before the pandemic, changes in circadian rhythms, more
sedentary lifestyles, and other lifestyle restrictions are increasing the risks of over-
weight and obesity, CVDs, metabolic diseases, and many other issues, are just few of
the consequences of the confinement measures. Anxiety, fear, stress, uncertainty for
the future, and many other issues, whose real health consequences are yet to be deter-
mined, are surfacing. Taking all these factors into account, experts are suggesting
lifestyle recommendations, which could keep the immune system strong. Among
them, staying physically active and hydrated, maintaining healthy weight, having
adequate rest and night sleep, keeping the stress under control, maintaining the social
interactions (even remotely), and having optimistic attitude and positivemindset have
been linked to have positive effects on gutmicrobiota, and thus, on immunity [11–14].
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All of these dietary and lifestyle guidelines for strengthening the human immunity
are actually in line with most of the principles of the traditional Mediterranean
lifestyle.

2 Mediterranean Lifestyle

Mediterranean lifestyle, in general, refers to the traditional Mediterranean diet (MD)
and the traditions of people living in the Mediterranean basin. It became a part of
the UNESCO’s intangible cultural heritage in 2010, where MD is defined as “a set
of skills, knowledge, rituals, symbols and traditions concerning crops, harvesting,
fishing, animal husbandry, conservation, processing, cooking, and particularly the
sharing and consumption of food.” Mediterranean lifestyle is often schematically
presented as a MD pyramid, such as the one proposed by Oldways (Fig. 1) [15–18].

The MD pyramid (Fig. 1) is organized in a way that the foods consumed daily
and in abundance are located in the base of the pyramid, followed by those that are
moderately consumed, while the food items eaten in limited amounts or occasionally
are at the top. MD emphasizes the use of plant-derived foods; in particular, daily
consumption involves plenty of fruits and vegetables, whole grains, legumes, nuts,

Fig. 1 Mediterranean Diet Pyramid ( © 2009 Oldways Preservation and Exchange Trust)
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and seeds, extra virgin olive oil (EVOO), alongwith amoderate use (several times per
week) of fermented milk products (sour milk, yogurt, cheese, curds), fish, poultry,
lean red meat, and eggs while limited use, or use in special occasions (once–twice a
week, or holidays) involves refined carbohydrates (sweets, cakes), and processed red
meat products. Water, no sugar-added fruit juices, teas, soups, and broths are usually
used to keep a good hydration during the day. Moderate red wine consumption with
the meals is common in some of the Mediterranean countries depending on the
religious beliefs.

The plant origin of the food in MD, rich in dietary fibers, antioxidants (polyphe-
nols), vitamins, and minerals coupled with the probiotics, has been found to be
responsible for the overall well-being of the people adhering to this diet and their
reduced risks for many chronic diseases.

Seasonal plant-based foods, such as fruits and vegetables, whole grains, legumes,
nuts, and seeds, are in the base of the pyramid,meaning their frequent consumption in
abundance every day. The complex mixtures of phytochemicals found in the plants,
i.e., in their roots, seeds, leaves, flowers, and fruits, give them their unique color,
smell, and flavor, as well as dictate their bioactivities and bioavailability within the
gut. Consuming variety of “bright colors and textures,” i.e., a rainbowof colored fresh
vegetables and fruits is usually recommended to ensure a broad spectrum of protec-
tive phytochemicals. For instance, vegetables are important sources of polyphenolic
compounds (e.g., flavonols, flavones, stilbenes, etc.), dietary fibers, vitamins A, C, K,
E, B6, folate, copper, potassium, magnesium, iron, and choline among many others.
These phytochemicals have been proven to provide antimicrobial, anti-inflammatory,
and antioxidant activities within the body. Moreover, the richness of the plants in
dietary fibers promotes the feeling of satiety—the feeling of being and staying full
for a longer time, which is good for the gut, digestion, and maintaining a healthy
weight [19–24]

The phytochemicals, viz. polyphenols, carotenoids, tocopherols, tocotrienols,
glutathione, vitamins, and enzymes, protect the cell damage from oxidative stress.
The oxidative stress is a result of the generation of oxidative species (free radicals,
reactive oxygen, and reactive nitrogen species) in the body, which is usually triggered
by unhealthy diets and external factors, such as smoke, pollution, chemicals, drugs,
and UV rays. The oxidative stress causes structural and functional damages of the
main biomolecules in the body, including DNA, lipids, and proteins and has been
implicated in the pathogenesis of many chronic degenerative diseases, inflamma-
tion, neurodegenerative disorders, and aging processes. In particular, the imbalance
between the production of oxidative species in the body and the antioxidant defense
could lead to many pathological situations (diseases). To counteract this oxidative
stress caused by the reactive species, the body needs various types of antioxidants.
The body fights with its own anti-oxidative defense mechanism, but de novo antiox-
idants’ production in the human cells is limited. Therefore, it needs a continuous
supply of external antioxidants, which to ensure better health is preferred to come
from the diet (dietary antioxidants). The traditional MD is rich in antioxidants,
such as vitamins (β-carotene, vitamin C, and vitamin E), natural folate, polyphe-
nols (flavonoids), carotenoids, and selenium. Many of the MD food phytochemicals
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are also anti-inflammatory in nature and, thus, do not support the generation of pro-
inflammatory molecules in the body [22, 24]. Representative food produces often
used in the MD along with their phytonutrients are shown in Fig. 2.

The hallmark of MD, extra virgin olive oil (EVOO), is a main source of dietary
lipids in the traditional MD. Its unique composition, the fatty acid composition, and
the richness with bioavailable polyphenols give EVOO the health protective bene-
fits and its resistance to elevated temperatures, which makes it a good candidate for
both cooking and salad dressings. EVOO as one of the most studied oils to date has
been associated with extended life expectancy and reduction of the risks of many
age-related degenerative diseases. Reduction of the oxidative stress and suppression
of chronic inflammation have been associated with EVOO in relation to the modu-
lation of the aging processes and promotion of healthy aging. Moreover, EVOO has
been reported to be inversely associated with the risks for several cancers and CVDs,
as well as to positively affect blood lipids (i.e., cholesterol and triglyceride levels).
All these benefits are due to the richness of the EVOO with valuable bioavailable
phytochemicals, such as the optimal fatty acid profile, especially monounsaturated
fatty acids (MUFA), viz. oleic, palmitic, linoleic, and a-linoleic acid, tocopherols
(vitamin E), beta-carotene, and variety of polyphenols. Diversity of the polyphenols
phenolic acids (caffeic, p-cumaric, ferulic acid), phenolic alcohols (hydroxytyrosol,
tyrosol), secoiridoids (oleuropein), flavonoids (quercetin, luteolin, apigenin), lignans,
and others, gives EVOOa strong anti-oxidative activity, capable of scavenging oxida-
tive species, increasing cellular endogenous antioxidant defenses, and, thus, reducing
the oxidative stress in the body [25–35].

Furthermore, the cooking practices are usually minimal, i.e., done in a way that
does not destroy the nutritional profile of the used ingredients. Traditionally, in the
Mediterranean cuisine, the vegetables along with herbs and spices are cooked in
EVOO, namely onions (and garlic) cooked in EVOOare the base formany sauces and
Mediterraneandishes,where the preparationprocess actually amplifies the nutritional
value (the antioxidant capacity) of the sauce or the dish compared to that of the raw
ingredients. The typical Mediterranean dish, tomato sofrito, for example, is rich with
bioavailable lycopene,which is transformed from its natural form in the tomato by the
cooking procedure in EVOO and the presence of onions, garlic, and herbs [36–40].

In addition, the food preparation and consuming the meals together with family
and friends are common habits in the Mediterranean area. Adequate sleep, taking
rests during the day, daily physical and leisure activities, and being a part of the
community are features of the Mediterranean way of living, as well. The socializing
aspect and the other characteristics of MD like moderate intake of red wine have
been associated with the longevity and reduced risk of many diseases of the people
living in theMediterranean basin [41–48]. It is proven that red wine positively affects
health and longevity due to its polyphenol (resveratrol) content [49–52].

Mediterranean way of living constitutes a set of lifestyle habits and behaviors,
which have been associated with a better cognitive performance, well-being, and
overall health of the people adhering to this lifestyle. In particular, the social interac-
tions, the social support and the sense of community, the group participation in leisure
and physical activities, and the adequate rest and sleep patterns have proven positive



284 A. Trajkovska Petkoska and A. Trajkovska-Broach

Fig. 2 Selected typical foods in the Mediterranean diet with their nutrients
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effects on cognition [53–59]. The MD has been evolved over centuries by mostly
“poor” people in theMediterranean area working hard to produce food in mainly bad
terrains for survival. Such hard work included a lot of physical activity with the crops
in the “fields” and/or taking care of the farm animals [60–64]. The physical activity
in combination with moderate portions of foods with different nutrients could yield
healthy weight in people adhering to MD [65–67].

AlthoughMDdiffers fromcountry to country in terms of food choices and cooking
practices, religious beliefs, and other traditions, it has a common set of features
capturing the dietary and lifestyle habits of the people around theMediterranean Sea.
From a dietary aspect, MD is mostly a plant-based dietary pattern, which emphasizes
consumption of fruits, vegetables, whole grains, nuts, legumes, and seeds, followed
by moderate consumption of fish, poultry, fermented dairy products, and extra virgin
olive oil as a main source of healthy fats, while the consumption of processed red
meat products and products with refined sugars is limited. Daily intake of plenty
of water, non-sugary drinks (juices, herbal teas), fermented drinks (yogurt), coffee,
broths, and different soups is frequently consumed in the traditional MD during the
day; hydration is important for an optimal health [68–70].

Overall, the nutritional value of the MD along with its associated social lifestyle
aspects adds to a better management of stresses, reducing the sense of loneliness and
isolation and increasing the sense of self-worth and the sense of contributing to the
community, all together positively affecting the human health, mood, and cognitive
functions.

3 Benefits of Mediterranean Diet

The health benefits of people adhering to the traditional Mediterranean diet were
first reported in the seven countries study by Dr. Keys. Originally, MD was linked
to significantly reduced rates of CVDs observed among the people residing in the
Mediterranean region, but over the years MD has been also linked to reduced rates
of many other chronic diseases, viz. several types of cancers [71–77], MS [77–
80], obesity [74], diabetes [81–83], atherosclerosis] [84], cognitive impairment [85–
90], depression] [43, 91–94], CVD [94–102], and other neurodegenerative disorders
(AD, Parkinson’s disease, PD) [103–105], as well as higher life expectancy in the
Mediterranean populations compared to other population [93, 106–120].

Figure 3 summarizes the most important phytochemicals found in the traditional
MD, which are responsible for the protective effects against multiple diseases, and
the benefits that people enjoy by adhering to this diet.

The health benefits of MD have been mainly associated with the high intake
of unprocessed nutrient-rich plant-based foods. In particular, the crucial dietary
components of MD believed to be responsible for its health benefits are as follows:
long-chain omega-3 fatty acids originating mainly from fresh fish, EVOO, nuts, and
seeds; variety of powerful antioxidants, especially polyphenols (quercetin, resvera-
trol, hydroxytyrosol) originating from vegetables, fruits, EVOO, red wine, tea, etc.,
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Fig. 3 Benefits of
Mediterranean lifestyle:
phytochemicals frequently
found in Mediterranean diet
could protect from a number
of diseases

probiotics originating from fermented milk products (yogurt, sour curds, cheeses)
and fermented vegetables; vitamins (A, D, E, C, B6, B9, B12), minerals (zinc, iron,
selenium,magnesium,manganese), and other phytonutrients (carotenoids-lycopene)
having strong antioxidant and anti-inflammatory activities originating from vegeta-
bles, fruits, herbs, and spices. Many institutions, like UNICEF, FAO, and WHO,
also recommend the same nutrients in the current pandemic situation [121]. Recent
studies have pointed out all of theseMDnutrients as very beneficial in the fight against
coronavirus [122–126]. In addition, two studies have linked the protective effects
of the MD with its positive changes on the gut microbiota; in particular, participants
adhering to the MD were found to have richer populations of beneficial bacteria and
reduced pathogenic bacteria in their guts compared to the controls [127, 128].

4 Mediterranean Diet for a Healthy Gut

The human gut microbial communities are a mixture of different microorganisms
collectively called the gut microbiota or “gut flora.” The gut is comparable to an
organ, because it contributes directly and/or indirectly in various vital physiolog-
ical functions necessary for survival. Some of these functions include immunity,
metabolism, fertility, development, aging, and antioxidant activities which promote
health and fitness. A rich and diverse microbial community results in a balanced and
healthy gut microbiota composition leading to an optimal host’s health and well-
being. This state of a healthy and balanced microbiota ecosystem, called eubiosis,
is essential for proper metabolism of different dietary components, extraction of
the nutrients, and their supply to the body. The microbiota ecosystem starts devel-
oping from early stages of life, with the baby’s delivery and feeding practices, and is
changing throughout the life depending on the lifestyle and habits, the environment,
the antibiotics (and other drugs) use, and mostly by the nutrition choices [129–133].

Disruption and imbalance of the microbiota, known as dysbiosis, in most cases
are characterized as a pathogenic state of the gut or gut with diminished microbiota.
It usually happens via a loss of beneficial bacteria, overgrowth of harmful bacteria,
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and/or loss of the microbial diversity in the gut. In any case, it has been implicated as
origin ofmany conditions and diseases, includingMS [134], CVD [135, 136], obesity
[137], autoimmune diseases (AID) [138], inflammatory bowel diseases (IBD) [139–
141], and certain types of cancers [142]. The bidirectional communication between
the gut microbiota and the brain, well-known as the gut–brain axis, has been shown
to play a key role also in several neurological disorders, such as depression, AD, PD,
autism spectrum disorders, and others [143–158].

The gut–brain axis is a complex communication system, which among others
include the immune system. As it is known, the immune system protects the body
by using both the innate and adaptive immune systems. More specifically, the innate
immune system is comprising the physical barriers (skin, epithelial lining in gastroin-
testinal tract and respiratory tract) and the biochemical barriers (secretions and
mucus), while the adaptive immune system consists of numerous different immune
cells and antibodies. Depending on the nature of the insult (pathogen), certain levels
of defense are triggered, and in general the innate immune system is activated first. If
the pathogen manages to avoid the innate defenses, then the more complex, adaptive
response is triggered, which produce antibodies to target and destroy the pathogen.
The gut–brain communication is influenced by the composition and diversity of the
gut microbiota, hormones, and immune- and neuropeptides produced in the gut,
but also by the integrity of the intestinal wall serving as the physical barrier to
the external environment. The integrity of this intestinal wall as a part of the gut
mucosa is a functional barrier which controls the transfer of the nutrients through the
intestinal wall into the bloodstream and defending the body from the penetration of
unwanted dangerous molecules. The gut mucosa is a multilayered system consisting
of an external “anatomical” barrier and an inner “functional” immunological barrier.
This deeper, inner barrier consists of a complex network of immune cells, which
could contain up to 70% of the body’s total number of immunocytes; thus, it is
involved in the body’s response to the attack of pathogens (viruses and bacteria).
Therefore, keeping the integrity of the barrier walls and the gut mucosa is crucial
[130, 142, 155–158].

If the integrity of gut mucosa is impaired by a poor diet and/or other external
insults, a condition known as a “leaky” gut will allow the passage of undigested food
particles, toxic waste, and harmful bacteria into the blood circulation and, therefore,
could affect the physiological, behavioral, cognitive, and memory functions of the
brain, contributing to chronic diseases, mental health conditions, and neuropsychi-
atric disorders. For instance, intestinal dysbiosis and mucosal surfaces with impaired
microbiota function and diversity have been related to the pathogenesis of several
AIDs.

Furthermore, a close relationship between inflammation and suppressed immunity
for various inflammation-caused diseases has been established. Maintaining a strong
immune system could lead to reduced inflammation in the body and that can result in
reduced risk of these diseases. Inflammation is a biological response of the immune
system to events triggered by a variety of factors, including pathogens (viruses,
bacteria), damaged cells, ionized pollution, toxic compounds, smoke, alcohol, etc.
Like theoxidative stress, and sometimes causedby it, inflammation is amajor factor in
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the pathology ofmany chronic diseases includingCVD, cancer [142], type 2 diabetes,
MS, AD[159] and obesity [160, 161], among others. Several immune-mediated
inflammatory diseases, such as RA, IBD [139], multiple sclerosis, systemic lupus
erythematosus, and psoriasis, have been determined to originate from suppressed
immunity [159–162].

In this context, consumption of ultra-processed food, such as processed red meat
products, products with refined sugars (cakes, cookies, refined sweetened cereals),
prepacked and ready-to-eat meals, energy drinks, carbonated beverages with artifi-
cial sweeteners, high-fat milk products, can lead to severe dysbiosis. High intake of
processed food containing animal-derived proteins, saturated and trans fats, refined
sugars and salt, and poor in nutrients, such as natural antioxidants, omega-3 fatty
acids, and fiber content, could stimulate the growth of pathogenic bacteria on the
account of beneficial bacteria, leading to potential alterations of the gut and the
intestinal barrier. For instance, Westernized diets [163–165] comprising mainly
processed food have been shown to enhance Escherichia coli colonization and asso-
ciated inflammation in mice by altering the host mucus layer, increasing intestinal
permeability, and impairing immune function. Moreover, such dietary patterns may
cause the activation of the innate immune system, most likely by excessive produc-
tion of pro-inflammatory cytokines and reduced production of anti-inflammatory
cytokines. The impaired gut epithelial barrier and disturbances in the intestinal
microbiota will eventually result in a chronic mucosal inflammation and subsequent
increases in chronic non-communicable diseases, such as obesity, CVDs, AIDs, type
2 diabetes, and colon cancer [165–171].

On the other hand, the protective effects of theMediterranean diet against chronic
diseases are attributed to the cumulative synergistic and interactive combination of
its nutrients. In the context of gut health, MD promotes diverse and rich microbiota,
and these positive changes have been attributed to MD as a consistent source of key
nutrients, including dietary fibers, omega-3 fatty acids, and crucial vitamins, such as
vitamins C, B6, B9, B12, and D, and minerals such as zinc, copper, selenium, potas-
sium, iron, manganese, and magnesium. The consumption of dietary fibers and plant
proteins has also been associatedwith an increase of beneficial bacteria quantity stim-
ulating short-chain fatty acids (SCFA) production and other associated metabolites.
Human enzymes are not able to digest most complex carbohydrates of the dietary
fibers, but instead these polysaccharides are metabolized by gut microbes which
generate short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate;
they are actually produced by certain classes of beneficial bacteria among which are
Bacteroides, Bifidobacterium, Clostridium, and Eubacterium Lactobacillus and are
playing roles in different relationships of the gut with other organs in the body [172].

Comparison of consumption level of certain foods in the Mediterranean and
Western diets is given in Table 1.

Two recent randomized controlled trials are linking MD to the positive changes
in the gut—a more stable gut ecosystem characterized with richer populations of
the bacteria that produce beneficial metabolites (e.g., SCFAs) and reduced levels
of pathogenic bacteria. This statement is consistent with a study, which reported
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Table 1 Comparison of consumption level of certain foods in Mediterranean and Western diets

Food Mediterranean Western

Fruits and vegetables (fresh, minimum-processed) High Low

Whole grains (unrefined cereals, oats, brown rice) High Low

Legumes (beans, lentils, chickpeas) High Low

Nuts (walnuts, hazelnuts, pistachio, peanuts) High Low / Moderate

Fish, seafood (salmon, tuna, shellfish) Moderate N/A

Poultry (chicken, turkey) Moderate Moderate / High

Processed red meats (sausages, hamburgers) Low High

Refined sugars (sweets, sweetened beverages) Low High

Extra virgin olive oil High Low

Red wine Moderate N/A

that high adherence to MD is related to decreased counts of E. coli, a representa-
tive of the pathogenic bacterium, as well as increased ratio of a typical beneficial
Bifidobacteria:E. coli, which is considered an important indicator for gut micro-
biota equilibrium and overall health [127, 128]. Another recent study showed that
a high-fiber-rich MD tested against an animal fat-rich low-fiber diet can alter the
human gut microbiome composition in just four days. The dietary pattern low in
fiber and high in sugar and saturated fat shifts the microbiome toward a profile that
has been associated with chronic metabolic diseases, whereas the MD rich in fiber,
unsaturated healthy fats (MUFA), polyphenols, and other phytonutrients shift the
microbiome and plasma microbial metabolites toward a gut microbial profile that
has been associated with beneficial health effects [173].

Due to the high consumption of plant-based foods, significantly higher levels
of total SCFAs as metabolic products of the dietary fibers have been detected in
people with high-level adherence to MD than in people on Western diets. Further-
more, bioactive substances such as polyphenols—plant compounds abundant in the
Mediterranean dietary pattern, have been associated with enhanced microbial diver-
sity that correlates with improved mood, cognition, and cardiovascular health, as
well as enhanced blood flow to the brain. Omega-3 fatty acids and micronutrients
in MD appear to have the potential to reduce the systemic inflammation and reduce
intestinal permeability and further promote the gut microbiota diversity and stability.
Toribio-Mateas [174] even coined the phrase “Mediterranean gut” for a healthy and
resilient gut with diverse microbiota like those found in people adhering to the MD
[173, 175–184].

Several studies have proved MD as an anti-inflammatory diet showing evidence
that it reduces systemic inflammation by promoting a healthy microbiota. When
compared to diets comprising mostly animal-based products, MD has shown to
significantly reduce inflammatory biomarkers. MD as an anti-inflammatory diet is
being also recommended to patients to enhance the effects of pharmacological thera-
pies in treatment of several inflammatory diseases. For instance, MD has been shown
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to improve the quality of life and well-being of patients already having health issues,
such as RA and irritable bowel disorder. MD can be neuroprotective, as well. Several
dietary components consumed in the MD (omega-3 fatty acids, antioxidants) can
inhibit neuro-inflammation processes associated with health-related outcomes, like
AD [95, 185–194].

Chronic, systemic inflammation is believed to be one of the leading drivers of
some of the most serious conditions, such as obesity, type 2 diabetes, MS, CVDs,
AD, depression, and others. Obesity is a low-grade chronic inflammatory state that
has been linked to an increased risk for viral and bacterial infections. In fact, the
obesity can modify innate and adaptive immune responses, making the immune
system more vulnerable to infections and less responsive to vaccinations, as well as
can contribute to the onset of metabolic diseases. Therefore, maintaining a healthy
weight can significantly benefit the immune system. A plant-based diet, like MD,
is an effective diet for maintaining a healthy weight due to its abundance of dietary
fibers, which helps the feeling of satiety, without adding extra calories [195].

Adequate sleep and undisturbed circadian rhythms are very important for main-
taining strong immune system. Several studies have shown positive effects of MD on
sleep patterns in different population groups [196–198]. Consuming foods containing
tryptophan (roots, bananas, cherries, whole grain oats) during dinner time could
improve the sleep quality. Tryptophan is an essential amino acid, which is actually
involved in the metabolic production of serotonin and melatonin, important for the
sleep quality. In fact, 95% of serotonin is produced and stored within the cells of gut
[196].

Obviously, the interplay among themicrobiota, genetics, age, diet, stress, physical
activity, and environment is a complex process influencing both the mental and the
physical health. By adopting a healthy diet and lifestyle, such as the Mediterranean
way of living, healthy and diversemicrobiota, strong immune system, and suppressed
inflammatory processes are possible. It seems that the “Mediterranean gut” might
be a solution to many metabolic diseases and mental disorders as well as a powerful
weapon in the fight against Covid-19.

5 Conclusion

The discovery of high percentage of longer-living people with good cognitive func-
tions and low incidence of cardiovascular, cancer, and metabolic diseases in the
Mediterranean countries in 1960s, which was attributed to their diet and lifestyle,
led to numerous studies on this diet making it one of the most studied diets in
the world. The MD emphasizes consumption of fruits, vegetables, whole grains,
legumes, nuts, seeds, and EVOO, while the consumption of animal-derived foods,
such as processed red meat and products with refined sugars, is limited. Moderate
consumption of fish, seafood, poultry, and fermented dairy and non-dairy products,
sometimes accompanied with a glass of red wine, is also a characteristic of MD.



Mediterranean Diet—A Healthy Dietary Pattern and Lifestyle … 291

The efficacy of this diet has been attributed to its variety of nutrients and their anti-
oxidative and anti-inflammation effects, which result in maintenance of a healthy
gut and strong immune responses, and the overall good health in the Mediterranean
populations.

To date, MD has been recognized as one of the healthiest dietary patterns in the
world, not only due to its nutrient-packed dietary choices, but also due to the distinct
lifestyle emphasizing conviviality, social interactions, adequate sleep, rest and leisure
activities, and most importantly enjoying the life. Having positive mindset is what
we need the most in this time of a worldwide pandemic. While social interactions
are restricted at the moment, there are many ways that we could still stay socially
connected, communicate with each other, take care, encourage and support each
other, and, thus, experience the feeling of community—an important aspect of the
Mediterranean way of living.

Mediterranean lifestyle is an affordable, easy-to-follow diet and habits for main-
taining a healthy and resilient “Mediterranean gut,” which could protect us from
infections and metabolic diseases. It has been also called an “evergreen solution” for
optimal microbiota diversity and stability and even has been mentioned as a “food
pharmacy” for immunological modulation through a diet [175, 176].

Moreover,MD is a remarkable representative of a sustainable food system (Fig. 4).
It is a healthy diet that comprises the basic pillars of sustainability (environment,
society, and economy) and is in line with the 17 Sustainable Development Goals
(UN, 2015). The MD seems to be the best compromise between the need to reduce
the environmental impact of food consumption and still maintains a healthy food
consumption behavior. A well fed nation is a healthy nation; it is a sustainable and
productive nation [199–205].

Hippocrates once said: “Let food be thy medicine and medicine be thy food”—
this quote remains highly relevant after millennia. Surprisingly, the diet of his origin
country—the Mediterranean diet—could be the perfect “medicine” that we all need

Fig. 4 MD positively affects
the human health and
well-being, society,
economy, and environment,
while maintaining the food
security and biodiversity
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today. With the Mediterranean healthy lifestyle and adequate nutrition, we could all
emerge strong from the current pandemic situation and will be able to quickly adapt
to “the new normal” life situations.
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Rate-Induced Tipping Phenomena in
Compartment Models of Epidemics

Jochen Merker and Benjamin Kunsch

Abstract The aim of this chapter is to explore non-autonomous compartment mod-
els of epidemics, like, e.g., SIRmodels with time-dependent transmission and recov-
ery rates as parameters, and particularly the occurrence of rate-induced tipping phe-
nomena. Specifically,we are interested in the question,whether there can exist param-
eter paths that do not cross any bifurcation points, but yet give rise to tipping if the
parameters vary over time. From literature, it is known that such rate-induced tipping
occurs, e.g., in two-dimensional models of ecosystems or predator–prey systems.We
show in this chapter that rate-induced tipping can also occur in compartment models
of epidemics. Thus, regarding the Covid-19 crisis, not only the measures established
in a lockdown and the moment of the lockdown, but also the rate by which lockdown
measures are implemented may have a drastic influence on the number of infectious.

Keywords Geometric methods in differential equations (34A26) · Nonlinear
equations and systems (34A34) · Qualitative investigation and simulation of
models (34C60) · Nonautonomous dynamical systems (37B55)

1 Introduction

Why do we see during the Covid-19 crisis in some states a very high relative number
of infectious, while in other states the relative number of infectious is significantly
lower, although the measures established by states in a lockdown are comparable?
Maybe, this does not only depend on the moment in time at which a lockdown is
decided, but also on the rate by which lockdown measures are implemented. In this
chapter, we show that corresponding rate-induced tipping phenomena can occur in
compartment models of epidemics with time-dependent parameters.
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The foundations of compartment models of epidemics, which divide the popula-
tion into compartments and assume a certain form of the time rates for transfer from
one compartment to another, were laid byRoss (Nobel Prize inMedicine 1902) [13–
15],McKendrick andKermack [10–12] prior to 1935.Usually, spatial dependence
is neglected in compartment models, and instead a homogeneous mixing of the pop-
ulation is assumed. Thus, mathematically a compartment model of an epidemic is
usually given by a system of ordinary differential equations (ODEs) for continuous
time, or by a system of finite difference equations for discrete time, or by a system
of delay differential equations (DDEs) if, e.g., the period of temporary immunity
is modeled, but not by a system of partial differential equations (PDEs) involving
spatial derivatives. Therefore, autonomous compartment models for epidemics are
not suitable for describing the beginning of a disease outbreak, because at the begin-
ning the assumption of a homogeneous mixing of the population is invalid. Instead,
models viewing the social network as a graph may be used. However, this graph is
usually not known, and if it is considered as random, then compartment models and
network models are related; see, e.g., [3, Sect. 9.4], [5, Sect. IV.B]. Particularly, this
problem can be circumvented by using a time-dependent transmission rate, which
at the beginning is significantly reduced in comparison with the transmission rate of
the disease in a homogeneously mixed population.

The aim of using compartment models in epidemiology [2, 3] is to better under-
stand the underlying mechanisms of the spread of a disease and to obtain during the
mathematical analysis of the model threshold values [1]. A threshold for a parameter
in a model is a value, where the system shows a different behavior below the thresh-
old than above the threshold. Most mathematical epidemic models exhibit threshold
behavior, e.g., for R0 < 1 the disease will die out, while for R0 > 1 there will be an
epidemic. This behavior is consistent with observations and has been used, e.g., to
estimate the effectiveness of vaccination policies and the likelihood that a disease
may be eliminated or eradicated.

However, when calculating threshold values, one has to be very precise. One
source of confusion is the interpretation of parameters. For example in a stochastic
model, the basic reproduction number is defined as the expected number of infections
caused by one infectious in a population where all individuals are susceptible to
infection. However, if in a compartment model “the basic reproduction number is
calculated by the Jacobian method,” i.e., by linearizing the system about the state
where all individuals are susceptible, and by writing the condition that this state
is linearly unstable in the form R0 > 1, then the so defined parameter R0 may not
be identical with the basic reproduction number, i.e., with the expected number of
infections caused by one infectious, but just allows to test linear stability of the state
where all individuals are susceptible. Thus, in general, it would be wrong to say that
this parameter denoted by R0 “is” the basic reproduction number. Yet, it resembles
the basic reproduction number, as it allows to answer the question, whether the
disease will become endemic or die out. Further, in reality, parts of the population
may be immune to a disease. The basic reproduction number does not say anything
about such a state of the population, but instead the effective reproduction number
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should be used, which is defined as expected number of new infections caused by
one infectious in the actual state of the population.

Another source of confusion may be the interpretation what is meant by “different
behavior” of a system below and above a threshold. The dynamics of an autonomous
system below and above a threshold value are usually considered to be different,
if they are not topologically equivalent, i.e., if crossing the threshold results in a
(local or global) bifurcation of the system. Yet, for non-autonomous systems [4],
particularly SIR models with time-dependent parameters studied, e.g., in [5], it is
not so clear how to define different behavior, because if we start from the same initial
value but at different times, then of coursewe usually obtain different solution curves.
Remarkably, the dynamics in systems with time-dependent parameters may not only
change drastically due to a bifurcation, but also due to other tipping phenomena.
Particularly, transient resp. irreversible rate-induced tipping may occur, where the
system fails to track a continuously changing quasi-static attractor uniformly resp.
up to the end point due to a fast rate of change of parameters.

The focus of this chapter lies on such rate-dependent tipping phenomena in com-
partment models of epidemics with continuous time. From literature, it is known
that rate-induced tipping occurs generically, e.g., in climate models [16], in two-
dimensional models of ecosystems [7], in predator–prey systems [8] or in chaotic
systems [6]. We show that irreducible rate-induced tipping can also occur in ideal-
ized compartmentmodels of epidemicswith R0 > 1, where due to the slow dynamics
near the stable endemic equilibrium (EE), the state may fail to track the EE for a
fast parameter change and may leave its basin of attraction bounded by a homo-
clinic orbit resp. by the stable manifold connecting the boundary to the disease-free
equilibrium (DFE), resulting in an eradication of the disease, while else the disease
becomes endemic. Further, we show that artifacts of this tipping phenomenon can
also be observed in non-idealized models.

1.1 Outline

In Sect. 2, we introduce basic facts about compartment models with continuous time
and time-dependent parameters. Further, we derive basic properties of the classical
SIR and SIRS models. In Sect. 3, we discuss linear compartment models of epi-
demics and particularly in the time-dependent case phenomena related to tipping. In
Sect. 4, we turn to nonlinear compartment models of epidemics and discuss a typical
bifurcation of compartment models at the DFE. By center manifold reduction, we
obtain an idealized planar system,which governs the dynamics and shows irreducible
rate-induced tipping. Finally, in Sect. 5, we study tipping phenomena in nonlinear
compartment models of epidemics.
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2 Preliminaries

Throughout this chapter, we consider compartment models with continuous time,
and we normalize systems so that each state variable models the percentage of the
whole population in the corresponding compartment.

2.1 Compartment Models with Time-Dependent Parameters

Definition 1 A compartment model with n + 1 compartments is a semi-process
on the n-dimensional probability simplex �n := {x ∈ R

n+1 | x ≥ 0 , 1T x = 1} ⊂
R

n+1, i.e., a family of continuousmaps�t,s : �n → �n , s ≤ t , such that�t,t = Id�n

for all t ∈ R and the cocycle condition�t,r = �t,s ◦ �s,r holds for all r ≤ s ≤ t , and
which is generated by an ODE ẋ(t) = f (t, x(t)) in the sense that�t,s(x) is identical
with the value x(t) of the unique ODE solution to the initial value x ∈ �n at time s.

An ODE ẋ(t) = f (t, x(t)) with a time-dependent vector field f : R × R
n+1 →

R
n+1 generates such a semi-process � on �n , if the probability simplex �n is posi-

tively invariant, and this is the case iff

(A1) fi (t, x) ≥ 0 holds for every x ≥ 0 with 1T x = 1 and xi = 0, and every t ∈ R,
(A2) 1T f (t, x) = 0 holds for every x ∈ �n and every t ∈ R.

Under these conditions, global existence of solutions forward in time to initial val-
ues in �n holds for a continuous f due to compactness of �n . Additionally, in
compartment models of epidemics, we require that (1, 0, . . . , 0) is for all times an
equilibrium, i.e.,

(A3) fi (t, (1, 0, . . . , 0)) = 0 holds for every t ∈ R,

We call this equilibrium disease-free equilibrium (DFE) and correspondingly con-
sider the first component of x ∈ �n as percentage of susceptibles in the population.
Due to 1T x = 1, every compartment model can be reduced by one dimension to
an n-dimensional ODE ˙̂x = f̂ (t, x̂) on the image �̂n := {x̂ ∈ R

n | x̂ ≥ 0 , 1T x̂ ≤
1} of the diffeomorphism from �n onto �̂n given by x = (x1, . . . , xn, xn+1) �→
(x1, . . . , xn) = x̂ with inverse x̂ �→ (x̂, 1 − 1T x̂) = x , i.e., by eliminating xn+1 =
1 − ∑n

i=1 xi from the ODE. The assumptions (A1)-(A3) then translate into

(A1)’ f̂i (t, x̂) ≥ 0 holds for every x̂ ≥ 0 with 1T x̂ < 1 and x̂i = 0 and every t ∈ R,
(A2)’

∑n
i=1 f̂i (t, x̂) ≤ 0 holds for every x̂ ≥ 0 with 1T x̂ = 1, and every t ∈ R,

(A3)’ f̂i (t, (1, 0, . . . , 0)) = 0 holds for every t ∈ R.

The longtime behavior of a semi-process � on �n is governed by its global
pullback attractor, i.e., by the time-dependent family of non-empty compact sets

A(t) :=
⋂

s≤t

⋃

r≤s

�t,r (D) , (1)
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with D := �n chosen to be the whole state space. Note that A(t) consists of all
values of solutions at time t originating from D for times s → −∞, i.e., A(t) is a
kind of non-autonomousω-limit set of orbits originating from D. The global pullback
attractor is the minimal closed set which attracts all subsets B ⊂ �n at time −∞,
i.e., lim

s→−∞ dist(�t,s(B), A(t)) = 0 holds for every subset B ⊂ �n , and it is invariant,

i.e.,�t,s A(s) = A(t) holds for all s ≤ t . In the autonomous case, where�t,s = �t−s

is a continuous dynamical system on �n and the vector field f in the generating
ODE ẋ(t) = f (x(t)) does not depend on time, the global pullback attractor does not
depend on time, i.e., A(t) = A is a constant set, and A is identical with the global
attractor of the autonomous dynamical system on �n .

If D in (1) is not chosen as the whole space �n but replaced by a locally pullback
absorbing family of time-dependent sets D(r), i.e., there exists a sufficiently small
distance ε > 0 and a sufficiently large time T > 0 such that �t,r (Bε(D(r))) ⊂ D(t)
holds for all (t, r) with t ≥ r + T , where Bε(D) := {x ∈ �n | dist(x, D) < ε}
denotes the ε-neighborhood of D ⊂ �n , then A(t) is called the local pullback
attractor of the absorbing family D(t). Given a local pullback attractor A(t), the
largest locally pullback absorbing family D(t) of time-dependent sets is such that
A(t) ⊂ D(t) is called its time-dependent basin of attraction.

In this chapter, we are particularly interested in compartment models

ẋ(t) = f (x(t), λ(t)) (2)

which are non-autonomous due to time dependence of parameters. Hereby, we
assume that the system is driven, i.e., that we can write the system in skew-product
form

ẋ(t) = f (x(t), λ(t))

λ̇(t) =rg(λ(t))
(3)

with parameter path induced by a vector field g(λ) in parameter space for a fixed rate
r ≥ 0. Often, we assume that λ(t) approaches constant values λ± for times t → ±∞
with a flat derivative, i.e., λ(t) is a heteroclinic orbit in parameter space connecting
λ± and satisfies λ̇(t) → 0 as t → ±∞ due to g(λ±) = 0. We are mainly interested
in the dependence of x on the rate r . Note that the derivative of x(t) w.r.t. r is given
by the solution y of

ẏ(t) =∂ f

∂x
(x(t), λ(t))y(t) + ∂ f

∂λ
(x(t), λ(t))κ(t)

κ̇(t) =rg′(λ(t))κ(t) + g(λ(t))
(4)

to the initial values y(s) = 0 and κ(s) = 0, where κ = ∂λ
∂r . This equation can be used

to obtain information about the dependence of x on the rate, e.g., if y(t) = ∂x
∂r (t) → 0

for t → ∞, then a change of the rate does not lead to a different longtime behavior
of the solution.
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Example 1 For g(λ) := −(λ − λ−)(λ − λ+) with λ± = ±1, i.e., g(λ) = 1 − λ2,
the parameter path is given by

λ(t) = tanh(r t) (5)

due to tanh′ = 1 − tanh2. In this case, the second equation κ̇(t) = −2λ(t)rκ + 1 −
λ(t)2 in (4) has for the rate r = 1 and the initial value κ(−10) = 0 the exact solution

κ(t) = (t + 10) sech2(t) . (6)

Let us consider as one-dimensional example the parameter-dependent autonomous
vector field f (x, λ) := −x(x2 + λ), i.e., a pitchfork. Depending on λ being positive
resp. negative, x = 0 is the only equilibrium resp. there are additionally the two
equilibria x± := ±√−λ. If λ < 0, then x = 0 is unstable and x± are asymptotically
stable, while if λ > 0, then x = 0 is asymptotically stable. Now our parameter path
λ(t) = tanh(r t) runs at t = 0 through the bifurcation point λ = 0, thus eventually
the solution of

x ′(t) = −x(t)(x(t)2 + tanh(r t)) (7)

to the initial value x(−10) = 0.1 first tends to x+ ≈ 1, but at time t = 0 the bifur-
cation happens and merely the asymptotically stable equilibrium x = 0 survives. As
(7) is a Bernoulli ODE, we can calculate the exact solution, which is given for the
rate r = 1 by

x(t) = (cosh(t)(2 sinh(t) + C cosh(t)))−1/2 (8)

with C = 100
cosh2(−10)

− 2 tanh(−10) ≈ 2 + 8.162 · 10−7 put this solution x(t), the
parameter path λ(t) from (5) and the function κ(t) from (6) into the first equa-
tion of (4) and solve this linear inhomogeneous ODE to the initial value y(−10) = 0
to obtain as solution y(t) = ∂x

∂r (t) the derivative of the solution x(t) w.r.t. r , without
explicitly solving (7) for other rates than r = 1, see Fig. 1.

Fig. 1 On the left, the solution (8) of Eq. (7) with rate r = 1 to the initial value x(−10) = 0.1 is
shown. In the middle, the derivative of this solution w.r.t. the rate is plotted, obtained by solving (4)
for y. Observe that the rate mainly has an influence on the behavior of the solution shortly after the
bifurcation at t = 0. Particularly, the rate does not have any influence on the long time behavior.
This can also be seen by comparing the left picture to the right picture, which shows the solution
of Eq. (7) with rate r = 0.1 to the same initial value x(−10) = 0.1
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The sudden qualitative change of the state in Example 1 is mainly due to the
bifurcation point λ = 0 of the autonomous system. To fix notation, if in (2) the
parameter λ(t) = λ is constant (or r = 0 in (3)), then we call

ẋ(t) = f (x(t), λ) (9)

the autonomous frozen ODE. In such a parameter-dependent autonomous ODE, a
sudden qualitative change of the behavior of the system at a threshold λ0 can only
occur due to a bifurcation. In fact, by definition, a bifurcation is said to occur at
the parameter λ0, if there are arbitrarily close parameters for which the generated
dynamics are not topologically equivalent. The solution x(t) of (9) to a fixed ini-
tial value x(s) = x0 depends differentiably on the parameter λ, and moreover the
derivative ∂x

∂λ
of x w.r.t. λ solves

y′ = ∂ f

∂x
(x(t), λ0)y + ∂ f

∂λ
(x(t), λ0) (10)

to the initial value y(s) = 0. Compare Eq. (10) in the autonomous case with the cor-
responding first equation of (4) in the non-autonomous case to note that time depen-
dence of parameters has a strong influence, if ∂ f

∂λ
is large. While for autonomous sys-

tems, a sudden qualitative change is related to a bifurcation, and for non-autonomous
systems there are other sources of a sudden qualitative change. Particularly, rate-
induced tippingmay happen, where the system fails to track a continuously changing
quasi-static attractor due to a fast rate of change of parameters.

Definition 2 For a non-autonomous ODE (2), a local attractor A(λ) of the corre-
sponding autonomous ODE (9) at parameter λ is called a local quasi-static attractor.

Let us assume that along λ(t) there is no bifurcation, so that A(λ−) has a unique
continuation A(λ(t)) for all times t . If the rate r > 0 is sufficiently small, then the
local pullback attractor A(t) originating form A(λ−) uniformly tracks A(λ(t)), i.e.,
supt∈R dist(A(t), A(λ(t))) is continuous w.r.t. to the rate r on which λ(t) depends
for small r > 0, and dist(A(t), A(λ(t))) tends to 0 as t → ±∞. This property was
obtained in [9] and allows to define rate-induced tipping. We use the following
definition.

Definition 3 Under the assumption that along the path λ(t) there is no bifurcation
of the local quasi-static attractor A(λ(t)), we say that at points of discontinuity of
r �→ supt∈R dist(A(t), A(λ(r t))) the system (2) has

1. transient rate-induced tipping, if lim
t→∞ dist(A(t), A(λ(r t))) = 0,

2. irreducible rate-induced tipping, if lim
t→∞ dist(A(t), A(λ(r t))) > 0.

In case of irreducible rate-induced tipping, the local pullback attractor A(t) may
tend for t → ∞ to a local attractor at λ+ different from A(λ+), while in case of
transient rate-induced tipping A(t) tends for t → ∞ to A(λ+), but in between A(t)
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approached another local attractor of the autonomous system. Rate-induced tipping
is intimately related to basin instability; see [7, Definition 5.1]. Particularly, for
equilibria the following definition makes sense.

Definition 4 Suppose A(λ) is a stable equilibrium of the autonomous frozen ODE
(9) for every λ on the chosen parameter path λ(t), and let B(A(λ)) denote the basin
of attraction of A(λ). Then A(λ) is said to be basin unstable on the parameter path,
if there are two λ1, λ2 on the parameter path such that A(λ1) is outside the closure
of the basin of attraction of A(λ2), i.e., A(λ1) /∈ B(A(λ)).

Themain result about basin instability is that it implies the existence of a parameter
path along which rate-induced tipping happens.

Theorem 1 ([7]) If a stable equilibrium A(λ) of the autonomous frozen ODE (9) is
basin unstable for all λ on the parameter path, then there is a time-varying external
input λ(t) of sufficiently fast rate that traces out the path and gives irreversible
rate-induced tipping from A(λ(t)) in the non-autonomous system.

Thus briefly, if the system is in a state where the dynamics is slow, but the actual
parameter change is fast, then it may happen that the state may leave the basin of
attraction of the continuation A(λ(t)) of the attractor A(λ−) and the local pullback
attractor A(t) tends to a different local attractor of the system.

Ourmain goal is to describe amechanism how this kind of basin instability and the
corresponding rate-induced tipping can happen in compartmentmodels of epidemics.
The difficulty hereby is that usually the endemic equilibrium (EE) is globally asymp-
totic stable, and then there is no way how basin instability can happen. Therefore,
we consider idealized systems which has at least two different basins of attraction
and argue that even in systems which do not have this idealized property, artifacts of
rate-induced tipping can be seen. But first let us introduce basic compartment models
of epidemics.

2.2 Autonomous SIR Model

The classical autonomous SIRmodel of McKendrick andKermack [10–12] reads
in full form as

S′ = −βSI

I ′ = βSI − α I

R′ = α I

(11)

with constant transmission rate β > 0 and recovery rate α > 0, or in reduced form
as

S′ = −βSI

I ′ = (βS − α)I
(12)
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with R := 1 − S − I . This system has a whole line segment {(S, 0) | 0 ≤ S ≤ 1}
of equilibrium points bounded to the right by the disease-free equilibrium (DFE)
(S, I ) = (1, 0), and the parameter R0 := β

α
resembles the basic reproduction number:

The Jacobian of the reduced model is

D f̂ (S, I ) =
(−β I −βS

β I βS − α

)

, (13)

and therefore the linearization at the DFE

D f̂ (1, 0) =
(
0 −β

0 β − α

)

(14)

has eigenvalues λ = 0 and λ = β − α. Thus, linear instability holds if R0 := β

α
> 1,

but due to the degenerated eigenvalue λ = 0, which corresponds to the whole line
segment of equilibria, even in the case R0 < 1 we do not have local attractivity but
just stability of the disease-free equilibrium (S, I ) = (1, 0). Nonetheless, in the case
R0 < 1, the system tends for every initial state (S0, I0)with I0 > 0 to the disease-free
equilibrium (S, I ) = (1, 0), i.e., the DFE attracts all states (S, I ) with I > 0 and the
disease dies out.

In the case R0 > 1, solutions have amaximumnumber of infectiouswhere I ′ = 0,
i.e., at S = α

β
= 1

R0
. Afterward the number of infectious decreases and tends for

t → +∞ to an equilibrium with S∞ < 1 and I∞ = 0, i.e., the disease becomes
epidemic. Let us calculate the value S∞: By integration over t ∈ [0,∞) on the one
hand (S + I )′ = −α I implies S∞ − (S0 + I0) = −α

∫ ∞
0 I (t) dt , and on the other

hand S′/S = −β I implies ln(S∞/S0) = −β
∫ ∞
0 I (t) dt . Thus, S∞ − (S0 + I0) =

α
β
ln(S∞/S0) holds and allows to calculate S∞. Under the assumption that at the

beginning, there are no recovered, we have to solve S∞ − 1 = α
β
ln(S∞/S0), and

with the product log function W (x), which solves x = wew for w, the solution can
be written as S∞ = − α

β
W (−S0

β

α
e− β

α ).

2.3 Autonomous SIRS Model

Instead of a more appropriate DDE taking into account the period of temporary
immunity, we consider in this subsection as model with temporary immunity the
SIRS model given by

S′ = −βSI + γ R

I ′ = βSI − α I

R′ = α I − γ R

(15)

with an additional rate γ > 0 of loss of immunity. The reduced model
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S′ = −βSI + γ (1 − S − I )

I ′ = (βS − α)I
(16)

has the disease-free equilibrium (DFE) (S, I ) = (1, 0), and for α < β additionally
the endemic equilibrium (EE) (S, I ) = ( α

β
,

γ

α+γ
(1 − α

β
)).

Particularly, for γ ↘ 0, we obtain (S, I ) = ( α
β
, 0) as limit of the endemic equilib-

rium, i.e., a distinguished point on the line segment of equilibria of the autonomous
SIR model. Thus, if the SIR model is considered as limit of the SIRS model with
vanishing γ , then for R0 > 1 the unique equilibrium with S∞ := α

β
on the whole

line segment of equilibria should be considered as epidemic equilibrium in the SIR
model. Again the parameter R0 := β

α
resembles the basic reproduction number: The

Jacobian of the reduced model is

D f̂ (S, I ) =
(−(β I + γ ) −(βS + γ )

β I βS − α

)

, (17)

and we obtain that the linearization at the DFE

D f̂ (1, 0) =
(−γ −β − γ

0 β − α

)

(18)

has the eigenvalues λ = −γ and λ = β − α. Thus, the DFE is asymptotically sta-
ble if R0 := β

α
< 1 and unstable if R0 > 1. In the case R0 > 1, the eigenvector

(−(β + γ ), β + γ − α)T to λ = β − α > 0 of sign structure (−,+)T has a second
component which is smaller than the negative of the first component, thus the unsta-
ble manifold of the DFE points into the probability simplex �̂n . Further, the Jacobian
at the EE

D f̂

(
α

β
,

γ

α + γ

(

1 − α

β

))

=
(

−γ
β+γ

α+γ
−(α + γ )

γ
β−α

α+γ
0

)

(19)

has for R0 > 1 a negative trace as well as a positive determinant, i.e., the eigenvalues
have negative real parts and thus the EE is asymptotically stable. The EE is a stable
focus if γ < 4(β − α)(

α+γ

β+γ
)2, else it is a stable node. Observe that the lineariza-

tion (18) at the DFE has for γ = 0 and β = α > 0 a zero eigenvalue of algebraic
multiplicity two and geometric multiplicity one. Therefore, when considered as a
two-parameter system on whole R

2, there is a bifurcation not very different from
(but also not identical with) a Bogdanov–Takens bifurcation.

3 Linear Compartment Models

Linear compartment models of epidemics model the behavior near an endemic equi-
librium. First, let us discuss the case of constant parameters and let us introduce some
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special names for matrices, which are unfortunately not used completely uniformly
in the literature.

Definition 5 A matrix A = (ai j ) ∈ R
n×n is called

1. Z-matrix, if ai j ≤ 0 holds for i �= j ,
2. Metzler matrix, if ai j ≥ 0 holds for i �= j , or equivalently −A is a Z-matrix,
3. M-matrix, if A is a Z-matrix and additionally �(λ) ≥ 0 holds for every eigen-

value λ of A, or equivalently there is a non-negative matrix B ≥ 0 and a scalar
α ≥ ρ(B) such that A = αE − B.

These terms have to do a lot with non-negative linear flows. In fact, exactly the
linear flows generated by Metzler matrices preserve the cone condition x ≥ 0:

Theorem 2 The non-negative cone {x ∈ R
n | x ≥ 0} is positively invariant w.r.t. the

linear flow generated by x ′ = Ax, iff A is a Metzler matrix.

Proof On the one hand, if the non-negative cone {x ∈ R
n | x ≥ 0} is pos-

itively invariant w.r.t. the linear flow exp(t A), then 0 ≤ eTi exp(t A)e j =
eTi e j + teTi Ae j + O(t2) holds for i, j as t ↘ 0. Thus, 0 ≤ eTi Ae j + O(t)
is valid for i �= j as t ↘ 0, and this implies ai j = eTi Ae j ≥ 0 for i �= j . On
the other hand, if A is a Metzler matrix, then there is a scalar α ∈ R and a
matrix B ≥ 0 such that A + αE = B. Thus, exp(t A) = e−αt exp(t B), where
exp(t B) ≥ 0, and hence exp(t A)x ≥ 0 for all x ≥ 0. �

The invariance of the affine linear subspace consisting of all vectors whose entries
sum up to 1 can be tested via the following criterion.

Theorem 3 The affine linear subspace {x ∈ R
n | 1T x = 1} is invariant w.r.t. the

linear flow generated by x ′ = Ax, iff 1T A = 0 or equivalently AT 1 = 0, i.e., the
vector 1 containing just ones is an eigenvector of AT to the eigenvalue 0.

Proof If the flow generated by x ′ = Ax preserves the condition 1T x = 1, then 0 =
d
dt 1 = d

dt 1
T x = 1T Ax for every solution x(t) and thus 1T A = 0. On the other hand,

if 1T A = 0 holds, then d
dt 1

T x = 1T Ax = 0 so that 1T x is constant. �

Of particular interest are matrices A, for which the linear flow generated by
x ′ = Ax is non-negative and leaves the subspace {x ∈ R

n | 1T x = 1} invariant, as
then the linear flow is a compartment model.

Corollary 1 The probability simplex �n−1 := {x ∈ R
n | x ≥ 0 , 1T x = 1} is posi-

tively invariant w.r.t. the linear flow generated by x ′ = Ax, iff A is a Metzler matrix
with AT 1 = 0. In this case,−A is aM-matrix with semi-simple eigenvalue 0. If addi-
tionally A = B − ρ(B)E for an irreducible matrix B ≥ 0, then there is a unique
equilibrium in the interior of the simplex, and this equilibrium is globally asymptot-
ically stable.
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Proof The first claim follows from a combination of Theorems 2 and 3. A Metzler
matrix Awith AT 1 = 0 is automatically anM-matrix, as x �→ 1T x is due to 1T A = 0
a Lyapunov function on the non-negative cone {x ∈ R

n | x ≥ 0}, i.e., 0 is a stable
equilibriumof x ′ = Ax on the non-negative cone as underlying space.Thus, all eigen-
values λ of A satisfy �(λ) ≤ 0, and every eigenvalue with �(λ) = 0 is semi-simple.
Additionally, the condition AT 1 = 0 implies that A has the eigenvalue 0, too. Other
eigenvalues λ �= 0 of A with �(λ) = 0 cannot exist, because due to A = B − αE
withα ≥ ρ(B) for every eigenvalue λ of Awith�(λ) = 0, there is an eigenvalue β of
B with λ = β − α,�(β) = α, and 0 = �(λ) = �(β) − α ≤ ρ(B) − α ≤ 0 implies
α = ρ(B) = β, i.e., λ = 0. Moreover, if A = B − ρ(B)E holds with an irreducible
non-negative matrix B ≥ 0, then the last statement follows from Frobenius–Perron’s
famous theorem, which states that for an irreducible non-negative matrix B the
spectral radius ρ(B) > 0 is an algebraically (as well as geometrically) simple eigen-
value of B and the only eigenvalue of B with positive eigenvector x > 0. Since for
A = B − αE the equation Ax = 0 is equivalent to α being an eigenvalue of B with
eigenvector x , there is exactly one point x0 > 0 with Ax0 = 0 and 1T x0 = 1, namely
the eigenvector normalized by 1T x0 = 1 to the eigenvalue ρ(B) of B. Since −A
is an M-matrix with a simple eigenvalue 0 and A otherwise has only eigenvalues
with negative real part, the asymptotic stability of the equilibrium x0 in the simplex
follows. �

Example 2 The matrix B :=
⎛

⎝
0 0 0
1 0 1
0 1 0

⎞

⎠ is non-negative, but not irreducible. It has

eigenvalues −1, 0, 1, thus A := B − E is a Metzler matrix with simple eigenvalue
0, and AT 1 = 0 holds. Nonetheless, x ′ = Ax has no equilibrium in the interior of the
simplex {x ∈ R

n | x ≥ 0 , 1T x = 1}, because every eigenvector of A to the eigen-
value 0 is a multiple of the boundary point x0 = (0, 1/2, 1/2)T of the simplex. This
shows that in the final statement in Corollary 1, the irreducibility of B cannot be
waived or replaced by the assumption that 0 is a simple eigenvalue of A.

Example 3 Two-dimensional linear compartment models have the full form

⎛

⎝
S′
I ′
R′

⎞

⎠ =
⎛

⎝
−β δ γ − ζ

β − ε −α ζ

ε α − δ −γ

⎞

⎠

⎛

⎝
S
I
R

⎞

⎠ (20)

with constants α ≥ δ ≥ 0, β ≥ ε ≥ 0, γ ≥ ζ ≥ 0. Here, we do not require (A3),
because we consider the system (20) as linearization of a nonlinear system at the
endemic equilibrium (EE). Let the transmission rate β of S be the maximum of the
three constants α, β, γ , then the system matrix can be written as A = B − βE with
the non-negative matrix

B =
⎛

⎝
0 δ (γ − ζ )

(β − ε) (β − α) ζ

ε (α − δ) (β − γ )

⎞

⎠
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Fig. 2 Solution S in blue, I in red, of (21) to the initial value (S0, I0) = (0.95, 0.05)T for β(r t) =
(2 − tanh(r t))decreasing from the value 2 at t = 0 to a value nearα := 1 approaches the equilibrium
(S, I ) = ( 12 , 1

2 ) for the fast rate r = 2 on the left directly, while for the slow rate r = 1 on the right
there is a kind of overshooting. The critical rate lies between r = 1.9 and r = 2

Thismatrix is irreducible iffβ is strictly larger thanα, γ > 0 (even if δ = ε = ζ = 0).

3.1 Artifacts of Rate-Induced Tipping

Although linear compartment models cannot exhibit true rate-dependent tipping,
because by Corollary 1 the unique equilibrium is globally asymptotically stable,
some artifacts of rate-induced tipping in nearby nonlinear systems can be observed,
as will be explained in more detail in Sect. 5. For example, consider the most simple
one-dimensional non-autonomous SIS model

S′ = − β(r t)S + δ I

I ′ =β(r t)S − δ I
(21)

with a time-dependent transmission rate β(r t) ≥ 0 of rate r and constant rate δ > 0.
The ODE (21) can be viewed as model of a disease, where susceptibles get ill
without any contacts to infectious, andwhere there is no immunity. The reducedODE
reads as Ṡ(t) = −(β(r t) + α)S(t) + α. If β(t) connects β− and β+ with β− > β+
monotonely decreasing, then it depends on the rate r , whether the solution S(t) =(
S0 + ∫ t

0 exp(B(rs)/r + αs)α ds
)
exp(−B(r t)/r − αt), B(t) := ∫ t

0 β(s) ds, to the

initial value S(0) = S0 ∈ [0, 1] has a local minimizer or not. For r → 0, the solution
tends to α

β−+α
+ (S0 − α

β−+α
) exp(−(β− + α)t)) and thus is monotone decreasing

for S0 > α
β−+α

, while for r → ∞ it tends to the same function with β− replaced by
β+. Therefore, there is a threshold rc, i.e., a critical rate, such that for rates r < rc
there is a kind of overshooting when approaching the longtime equilibrium α

β−+α
,

while for rates r > rc the solution does not show overshooting; see Fig. 2.
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Fig. 3 On the left, the DFE is a stable node on a boundary vertex of the simplex, while the EE is
an unstable saddle outside the simplex. On the right, the EE has entered the simplex through the
boundary vertex and has become a stable focus, while the DFE lost its stability and has become an
unstable saddle. Additionally, the unstable manifold of the DFE runs into the stable manifold and
forms a homoclinic orbit HO surrounding the EE

4 Nonlinear Compartment Models

In this section, we consider autonomous nonlinear compartment models ẋ = f (x)
of epidemics on the probability simplex �n and discuss the situation, where the
asymptotically stable disease-free equilibrium (DFE) becomes unstable due to a
local bifurcation. Note that the DFE does not lie in the interior but at a boundary
vertex of the simplex�n . As our knowledge about boundary equilibrium bifurcations
is still a little patchy, the bifurcation theory of the DFE is not completely standard.
Here we are mainly interested in a bifurcation of codimension two. In this case, by
center manifold reduction we can consider the equation induced by ẋ = f (x) on the
two-dimensional center manifold, and this equation determines the dynamics of the
full n-dimensional compartment model near the bifurcation point. However, center
manifold reduction requires that f is sufficiently smooth, but as the DFE lies at a
boundary vertex, the vector field f can be smooth in the interior but merely contin-
uous up to the boundary. Then terms occur, which due to missing differentiability
cannot be obtained by linearization, andwe use such terms to obtain idealizedmodels
where after a transcritical bifurcation of the DFE the arising endemic equilibrium
(EE) is surrounded by a homoclinic orbit (HO), see Fig. 3, or there is at least a tra-
jectory from the boundary to the DFE such that the EE does not attract the whole
interior of the simplex.

4.1 Local Normal Form for a Bifurcation of Codimension
Two

Under the assumption that f is sufficiently smooth near the DFE, let us derive a
normal form for the planar system on the two-dimensional center manifold of a com-



Rate-Induced Tipping Phenomena in Compartment Models of Epidemics 321

partment model ẋ = f (x) of epidemics. If a two-parameter family of autonomous
vector fields f̂ (S, I ) on �̂2 satisfying (A1)’,(A2)’,(A3)’ has a local bifurcation at
the DFE (S, I ) = (1, 0), then generically the linearization A := D f̂ (1, 0) has a zero
eigenvalue of algebraic multiplicity two, but geometric multiplicity one. Let q0 be
an eigenvector to the zero eigenvalue, i.e., Aq0 = 0, and let q1 be a corresponding
generalized eigenvector, i.e., Aq1 = q0. Via a change of coordinates to

(
S − 1
I

)

= xq0 + yq1 ,

the Taylor expansion T2 f̂ of second order of f̂ around (S, I ) = (1, 0) reads as

T2 f̂ (S, I ) = f̂ (1, 0) + A

(
S − 1
I

)

+ 1

2
B

((
S − 1
I

)

,

(
S − 1
I

))

= yq0 + 1

2
x2B(q0, q0) + xyB(q0, q1) + 1

2
y2B(q1, q1)

with the second derivative B := D2 f̂ (1, 0). Using an eigenvector p1 of AT to the
zero eigenvalue and a corresponding generalized eigenvector p0 with AT p0 = p1 as
dual basis vectors satisfying 〈p0, q1〉 = 0 = 〈p1, q0〉 and 〈p0, q0〉 = 1 = 〈p1, q1〉,we
obtain due to (A3)’, which excludes constant terms, under the genericity conditions

〈p1, B(q0, q1)〉 �= 0 ,
1

2
〈p1, B(q1, q1)〉 �= 0 , (22)

similar as in Bogdanov–Takens bifurcation the normal form

x ′ = 〈p0, x ′q0 + y′q1〉 = −β1x + y

y′ = 〈p1, x ′q0 + y′q1〉 = β2y − xy − y2
(23)

with parameters β1, β2 vanishing at the bifurcation. Beneath (0, 0), there is a second
equilibrium (

β2

1+β1
,

β1β2

1+β1
) in �̂2 for β1 ≥ 0, β2 > 0. This normal form differs from

Bogdanov–Takens normal form

x ′ = y

y′ = −β1 + β2x − x2 − xy
(24)

mainly in that A is perturbed in the Bogdanov–Takens case to

(
0 1
β2 0

)

, and the

equilibrium (0, 0) is split up into the two equilibria (
β2

2 ± 1
2

√
β2
2 − 4β1, 0) for β2

2 ≥
4β1, while our normal form (23) perturbs A to

(−β1 1
0 β2

)

and leaves—as required

by (A3)’—the DFE fixed. A coordinate transform of x , y, t and a substitution of the
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parameters in (23) leads to

x ′ = −γ x + αy

y′ = (β − α − δ − βx − βy)y ,
(25)

where the bifurcation happens at parameters γ = 0 resp. δ = β − α. Particularly, if

A =
(
0 −1
0 0

)

and correspondingly q0 = (−1, 0)T , q1 = (−1, 1), then x = 1 − S −
I = R and y = I so that in the coordinates (S, I ) the reduced normal form is given
by

S′ = −βSI + δ I + γ (1 − S − I )

I ′ = (βS − α − δ)I ,
(26)

where additionally after an infection theremay be partially no immunity due to δ > 0.
This normal form is a combination of SIRS and SIS models, wherein the SIS model
α = 0, γ = 0 so that all infectious become after the infect directly again susceptible.
The Jacobian of the right-hand side of (26) is

D f̂ (S, I ) =
(−β I − γ δ − βS − γ

β I βS − α − δ

)

, (27)

and for γ > 0 the DFE is asymptotically stable if R0 := β

α+δ
< 1 resp. unstable if

R0 > 1. In the case R0 > 1, the EE has the coordinates ( α+δ
β

,
γ

α+γ
(1 − α+δ

β
)), and it

is a stable focus for small γ > 0 resp. a stable node for large γ > 0.

Fig. 4 On the left, the homoclinic orbit arising in (24) for β2 = 1, β1 ≈ − 6
25β2

2 , after a Bogdanov–
Takens bifurcation.On the right, the homoclinic orbit occurring in (28). Note that trajectories outside
but near to the homoclinic orbit miss the equilibrium and tend to infinity, while in our idealized
model due to invariance of the axes they tend to the DFE
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Fig. 5 On the left, compared to the right picture in Fig. 3 the EE has moved and the HO is a little
deformed. On the right, it is shown that the HO vanishes for slight perturbations. Yet, due to the
trajectory connecting the boundary with the DFE, the EE still is merely locally and not globally
asymptotically stable

Yet, while in Bogdanov–Takens bifurcation a homoclinic orbit arises around the
stable equilibrium for a rather specifically chosen combination of the two bifurcation
parameters, see Fig. 4, this does not seem to be the case for (26) and parameters
β > α + δ, α, γ, δ ≥ 0. In the following subsection, we indicate how to construct
compartment models of epidemics with this idealized behavior.

4.2 Idealized Models

In this subsection, we aim to construct an idealized system, where after a transcritical
bifurcation of the DFE, the arising EE is surrounded by a homoclinic orbit HO; see
Fig. 3. Although the HO may be deformed or may vanish for a slight perturbation of
the two parameters, see Fig. 5, such idealized models will help us to explain tipping
phenomena in compartment models of epidemics in Sect. 5. To obtain an idealized
model with this behavior, we add non-smooth terms to the normal forms (25) resp.
(26). Note that already the standard example of a system with a homoclinic orbit

x ′ = −x + xy + (y − x)
√
x2 + y2

y′ = −y − x2 + (x + y)
√
x2 + y2

(28)

contains the non-smooth term
√
x2 + y2. In polar coordinates, this system (28) reads

as
r ′ = −r(1 − r)

ϕ′ = r(cos(ϕ) − 1)
(29)

and obviously has the circle r = 1 as invariant set, which consists of a homoclinic
orbit and the equilibrium at r = 1, ϕ = 0, see Fig. 4.

Similarly, if we add the term ε − x−y
(x2+y2)1/2 y to the right-hand side of the second

equation in (25) for ε := α−γ

(α2+γ 2)1/2
chosen such that the termvanishes at the linewhere
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Fig. 6 On the left, for α := 1, β := 1.5, γ := 0.1 and δ := 0, the EE and the surrounding HO
in (30) are shown. On the right, for α := 0.5, β := 1 and γ := 0.1 and δ := 0, the EE and the
surrounding HO in (31) are shown

the first equation vanishes, i.e., for a rather specific combination of parameters, then
the system

x ′ = −γ x + αy

y′ =
(

β − α − δ − βx − βy + ε − x − y

(x2 + y2)1/2

)

y ,
(30)

seems to have a HO at the DFE; see Fig. 6 on the left. Note that x−y
(x2+y2)1/2 y is continu-

ous due to | x−y
(x2+y2)1/2 y| ≤ |x − y|.Yet, a disadvantageof this system is that trajectories

starting far away from the HO may leave the simplex �̂2, but of course the vector
field can be modified so that the simplex is positively invariant while the dynamics
near the HO is not changed. Another example is the modification

S′ = −βSI + γ (1 − S − I )

I ′ =
(

βS − α

(

2 + tanh

(
1 − x

2y
− 5

)))

I ,
(31)

of (26) with δ := 0, i.e., a modified SIRS system. Again, the term tanh( 1−x
2y − 5)

is smooth in the interior and continuous up to the boundary, as it tends to 1 for
(x, y) → (x0, 0) approaching the boundary. The HO and EE are given in Fig. 6 on
the right. Yet, there seems to be an additional small instable periodic orbit around
the EE, and again the system needs to be modified far away from the DFE.
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Fig. 7 On the left, the pullback attractor A lies near to the EE, but then the parameters are changed
fast while the dynamics near A is slow. Therefore, the pullback attractor leaves the basin of attraction
of the EE, which in the middle is the interior of the HO and on the right is separated by a trajectory
from the boundary to the DFE. As A has entered the basin of attraction of the DFEmarked in green,
the disease will die out, while for a slow rate of parameter change the pullback attractor would have
tracked the EE and the disease would have become endemic

5 Irreducible Rate-Induced Tipping in Non-autonomous
Models

Regardless, whether there is a homoclinic orbit (HO) surrounding the endemic equi-
librium (EE) after a transcritical bifurcation at the disease-free equilibrium (DFE)
like in the idealized system on the left of Fig. 5, or whether there is an orbit con-
necting the boundary R = 1 − S − I = 1 with the DFE like in Fig. 5 on the right, if
there are two different basins of attraction, one of the EE and one of the DFE, then
irreducible rate-induced tipping may occur for time-dependent parameters. Hereby,
starting with the pullback attractor A(t0) near the EE, if the parameters evolve so
that the homoclinic orbit shrinks fast while the dynamics near A(t) are slow, it may
happen that A(t) leaves the basin of attraction of the EE and enters the basin of
attraction of the DFE; see Fig. 7. Then the disease will die out, while for a slower
rate A(t) would have tracked the EE and the disease would have stayed endemic.
The critical rate for which A(t) leaves the basin of attraction of the EE is a threshold
for the occurrence of rate-induced tipping.

Of course, in application, it is necessary to estimate the time-dependent parameters
from data. But this is not so difficult, e.g., in the SIR model (11) with time dependent
β = β(t) and α = α(t), for S near 1 and small h as in [5] the parameters can be
estimated by

α(t) ≈ R(t + h) − R(t)

hI (t)

β(t) ≈ (I (t + h) − I (t)) + (R(t + h) − R(t))

hI (t)

(32)

from time series for I (t), R(t), due to α = R′/I and β = (I + R)′/SI .
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Fig. 8 For the slow rate r = 0.05, the blue solution curve (33) tracks the EE of the frozen system
rather well, while for the higher rate r = 0.1 along the red curve, there is a reduced percentage
of infectious in the middle part, and this can be considered as artifact of rate-induced tipping in a
system where the red curve tends to the DFE. However, in (33), the EE attracts the whole interior of
the simplex, and this enforces an additional turn at the end, i.e., a second wave with a little higher
percentage of infectious than for the blue curve

5.1 Artifacts of Rate-Induced Tipping

Many compartment models in epidemics are not idealized, i.e., the DFE with its
unstable manifold does not have a basin of attraction intersecting the interior of the
simplex �. But even in the case, where the whole interior of the simplex belongs to
the basin of attraction of the EE, artifacts of rate-induced tipping in nearby idealized
systems can be seen. For example, instead of the SIRS model (15), consider

S′ = −β(t)SI + γ R

I ′ = β(t)S − α I

R′ = α I

(33)

with a time-dependent transmission rate β = β(t) := 1 − 1
3 tanh(r t) and constant

α = 1/2, γ = 1/10, i.e., β(t) decreases from 1 at t = 0 to 2/3 at time t → ∞. Then
Fig. 8 shows an artifact of rate-induced tipping in a nearby idealized systems where
the red curve tends to the DFE.
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6 Conclusion

We identified a mechanism which allows to have rate-induced tipping in idealized
compartment models of epidemics with R0 > 1, where not only the endemic equi-
librium (EE) but also the disease-free equilibrium (DFE) has a basin of attraction
intersecting the interior of the probability simplex. Moreover, even in the case that
the compartment model is not idealized and the EE attracts every point in the interior
of the simplex, we showed that artifacts of nearby idealized compartment models
can be observed. Thus, in models it can happen that in two countries the same kind
of lockdown measures is decided at the same time, corresponding to the same ini-
tial and final values of a parameter path at the same times, but that the measures are
established by different rates so that the disease becomes endemic in a country where
the measures are slowly established (or there is at least a high number of infectious),
while in a country where the measures are established fast the disease is eradicated
(or there is at least a lower number of infectious).

Yet, there are various open research questions: Is there an idealized compartment
model of epidemics with polynomial right-hand side? How to determine the critical
rate, i.e., the threshold for the rate below which a rate-induced tipping happens in
idealized compartment models? Can (4) help to determine this threshold? Can we
obtain quantitative and not only qualitative results for non-idealized systems?Maybe
an answer to these questions can help us to better handle a pandemic disease like
Covid-19 in future.
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Analysis of Impact of Covid-19 Pandemic
on Financial Markets
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Hamed Rasouli, and Oleksandr Romanko

Abstract In this paper, we discuss impact of the Covid-19 pandemic on the North
American financial markets and propose a framework for stress testing and financial
scenario generation of market indicators. This framework includes the following
main components:

• Epidemiological dynamic model describing evolution of the number of Suscepti-
ble, Infected, Recovered and Death cases with social distancing,

• Dynamical model describing dependence between financial indicators and growth
of the pandemic in different geographical areas,

• Conditional stress scenario generation and financial portfolio analysis.

We apply an extended epidemiological model to analysis of Covid-19 pandemic
spread andanalyze its impact on someof themainfinancial indicators, including stock
indices, credit spreads and FX rates, and characteristics of the pandemic process in
different geographical areas. This analysis results in amodel connecting the dynamics
of the pandemic and that of the main financial indicators. The model allows one to
generate pandemic scenarios under different assumptions on the parameters of the
infectious disease and that of the social distancing policies. Once the pandemic
scenarios are generated, one can transform them into a set of scenarios on macro-
economic risk factors. Then, applying the conditional scenario technique we obtain
a set of Monte Carlo scenarios on the risk factors driving the portfolio dynamics. The
proposed dynamic models allow one to generate various financial stress scenarios
on market indicators and compute the distribution of financial portfolio losses and
their risk measures.
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1 Introduction

Over the first seven months in 2020, we have been facing dramatically increased
social impacts of the Covid-19 (CV-19) pandemic: the number of cases already
exceeds 13 million, the number of fatal outcomes exceeds 0.5 million and continues
to grow.

The global spread of CV-19 has tremendous impact on all aspects of the inter-
national society including economy and financial markets. The first signs of market
crash in North America (NA) were observed when the U.S. equity markets went
down more than 30% from Feb. 14 through March 25. Similar market movements
were observed in the European equity markets. At the same time, a sharp growth of
the unemployment rate which accompanied the market drop, created an impression
that the time of economic depression had come.

This pessimistic scenario has not occurred: in a relatively short time, financial
markets managed to recover a substantial part of losses. We also observed that the
start of the recovery process of the market appeared to be related to the time when
social distancing policywas enforced in theUS andCanada, and the CV-19 pandemic
changed its growth rate.

Naturally, the latter observation raises the following question: is there a connection
between pandemic dynamics and market behaviour and what kind of model can
describe this relation?

In this paper, we answer this question using theNAdata and describe our approach
to this problem.We propose a framework linking together evolution of the pandemic
and financial market movements. The main idea of our approach is to develop a
robust statistical model for the processes describing the pandemic dynamics and that
of the financial indicators of interest. Once this model is calibrated, one can generate
non-financial scenarios simulating the pandemic growth and transform them into the
scenarios on financial indices.

This approach is not the only one that can be used for developing financial stress
scenarios during the pandemic growth. One can also produce historical scenarios by
generating randomly permuted sequences of log-returns observed in the market.

The sentiment analysis also looks very attractive for developing CV-19 stress
scenarios. The idea that sentiment and volume of market news and public opinion
related to CV-19 development can forecast market movements underlies use of senti-
ment analysis for modeling financial market variables. Natural Language Processing
(NLP) algorithms developed up to date can parse thousands of news articles and gen-
erate sentiments (positive or negative opinions) based on the frequency of positive
and negative words in the text, on bag-of-words models, or on more complex word
embeddings. If CV-19 sentiment can be extracted from the online news articles and
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related to movements of financial risk factors, we can build Machine Learning (ML)
models to forecast financial risk drivers based on sentiment-based features extracted
from online news.

Reliability of sentiment analysis models is subject to discussion as a sentiment
score itself is subjective and depends on personal perceptions. As a result, NLP
models for sentiment analysis may have errors, coming from sentiment subjectivity.
Alternatively, measures such as volume of news that mention CV-19 in relation to
financial markets may be more reliable. Building ML models that predict values
of financial risk factors based on such features as sentiment scores and volumes of
news, is in the plans for future research and development.

Another alternative methodology is the hypothetical scenario approach [20] pro-
viding the flexibility to evaluate the effect of a specific market view on the portfolio
performance. This enables portfolio managers to impose specific constraints on the
risk drivers and examine stress testing results. Unlike historical stress scenarios,
hypothetical stress scenarios are constructed based on a specific view about stress
events in the market. Value of the portfolio depends on its underlying risk factors.
Elements, that affect portfolio value, are categorized into two groups: risk drivers
and risk factors. In the first step, the risk driver shocks are computed. In the second
step, the risk driver shocks are propagated to all risk factors. Implementation of this
methodology requires calibration of a candidate probability distribution on the log-
arithmic return time series of risk drivers, and then using a linear regression model
to propagate risk driver shocks to the risk factors.

In this paper we focus on the joint models of the pandemic processes and financial
indices. The details of the historical and hypothetical scenario approaches as well as
details of the sentiment analysis are not considered in the present paper.

The paper is organized as follows. In Sect. 2 the NA market behaviour during
initial and intermediate pandemic phases is described. In Sect. 3 we describe the
framework for modelling pandemic impact on financial markets. The first element of
this framework is a set of models describing dynamics of the pandemic. We propose
two models in this section. The first, deterministic model is an extension of the SIRD
model describing the social distancing effect.

The second, stochastic model, is a combination of pure birth and pure death
processes. This model also allows for simulation of social distancing. The model has
simpler structure, but its explanatory power is not as high as that of the first model.
In Sect. 3 we also describe the calibration algorithms developed for these models.

The second element of the framework is a mapping of the pandemic processes to
the financial indices. We propose a regression model that links financial risk drivers
such as DJI , TSX , S&P500 and the VIX indices to a small subset of regularly
observed epidemic variables. This mapping is expressed as a generalized regres-
sion model written for the log-price, auto-regressive process and the standardized
pandemic variables.

In Sect. 4, we apply the constructed mapping to generation of stress scenarios on
S&P500 and VIX indices. In conclusion, we provide some remarks on the extension
of the framework and further research directions.
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Fig. 1 Normalized financial
indices
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2 Market Behaviour During Initial and Intermediate
Pandemic Phases

In this sectionwe briefly inspect the time series of the followingNAfinancial indices:
Dow Jones Industrial index (DJI), TSX and FX CAD/USD. These observations are
collected during the pandemic period starting 28 February and lasting next 4 months.

In Fig. 1 we display the normalized time series of the DJI and TSX indices
and the normalized exchange rate CAD/USD. The normalization of the time series
{X (tn)}n≥1 is obtained by the transformation X (tn)/X (t1). The graphs of the finan-
cial indices have a V-shape in this Figure.1 In the case of the volatility indices, their
shape is a reflection of V-shape.

Several historical scenarios were studied and analyzed during the global CV-19
pandemic period. Here, we present two instances of these historical stress scenarios.
Different countries were hit at different times, and similar pandemic scenarios can
be constructed based on geographical areas.

2.1 Covid-19 Market Crash (2020/02/19–2020/03/19)

The coronavirus created such an uncertainty around the world that three of the largest
single daydrops in theDowJones andS&P500 are fromMarchof 2020.OnMarch12,
DowJones index lost almost 10%andS&P500 indexdropped9.5%.OnMarch16, the
Dow Jones and S&P500 indices dropped 12% and 11.9%, respectively. Meanwhile
the Chicago Board of Exchange Volatility Index rose steadily since the middle of
February as the virus began to spread around the world [19]. VIX level reached 83

1 Similar shape is observed in the case of the European indices MIB and FTSE100.
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Fig. 2 Growth of the
number of registered cases
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points on March 16. Our analysis indicates that the correlation between different
market indices got very close to one during this period which is a sign of severe
financial stress.

Similar behaviour of the DJI and TSX indexes can be observed in Fig. 1.

2.2 Market Recovery After Covid-19 Crash (2020/03/20 -
2020/03/26)

Twomajor events contributed to the fast recovery of themarket after themarket crash
due to CV19 pandemic. On March 23, 2019, federal reserve announced that it will
remove its cap on the amount of government bonds buyback. This was previously
set at $700 billion. The US government two trillion-dollar aid package to assist
Americans, who were affected by the virus pandemic, was another moving factor in
the market. In the span of only three days, Dow Jones Index recovered as much as
21.3%, setting a record for the highest 3-day growth since the Great Depression.

2.3 Pandemic Growth After 2020/03/18

In Fig. 2 we depict the dynamics of the number of registered cases, in the US, and
Canada, in the log-scale (that is the logarithm of the number of cases as a function
of time).

It is known that the process N (t) has initially exponential growth [1], [3]. For
this reason, the choice of the function log N (t) is the most natural. Notice that after
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time T1 = 282 the growth rate of the number of registered cases significantly deviates
from exponential. During the sameweek the social distancing policies were enforced
in the US and Canada.

3 Framework for Modelling Pandemic Impact

The modelling framework for analysis of pandemic impact on financial markets
contains three main elements:

a. A set of models describing dynamics of the pandemic processes.
b. Calibration algorithms for tuning the model parameters.
c. A mapping of the pandemic process into the space of the standard financial risk

factors.

We consider two pandemic models in this section. The first model is an extension
of the classical SIRD model suitable for modelling social distancing effect on the
pandemic spread. This model is a deterministic approximation to the Markov chain
describing the dynamics of the pandemic. This approximation is close, in spirit, to the
well-known Lunchester equations devised in 1916 to describe the relative strength
of the military units in combat [17] as well as the famous Lottka-Volterra equations.
The model allows us to introduce the social distancing policies by restricting the
number of susceptible individuals.

The secondmodel is a combination of the pure birth and pure death processes. The
model has three phases each of which is calibrated to the corresponding historical
scenario. One of the advantages of this model is its analytical tractability despite
stochastic nature. The latter implies a relatively simple calibration. The effect of
social distancing policies is also incorporated in the model dynamics.

These models allow us to generate pandemic scenarios. A generalized linear
regression maps these scenarios into the space of financial risk factors and allows us
to create stress scenarios on the financial indexes.

3.1 Susceptible, Infected, Recovered and Death (SIRD)
Model with Time-Dependent Parameters and Social
Distancing

The Susceptible, Infected, Recovered and Death (SIRD) Epidemiological Model
is a compartmental model for describing spread of contagious diseases through a
population. The SIRDmodel is based in the classic Susceptible, Infected andRecover
(SIR) model introduced in the 1927, 1932, and 1933 series of papers by [14–16].
The only difference is that the SIRD model incorporates the death (D) compartment

2 28 days since the beginning of the pandemic.
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Fig. 3 SIRD and SIR transition dynamics

in order to keep track of the fatalities, which may occur at a different rate than the
recoveries.

The SIRD model describes how in the presence of a contagious disease, indi-
viduals transition from one of the compartments to the next. Figure3 illustrates the
compartments of the SIR(D) model and the corresponding transition rates.

The compartments, or states, are defined as follows,

• (S) Susceptible. The part of the population who is likely to be infected with the
disease. We denote the number of susceptible individuals at time t by S(t).

• (I) Infected. The part of the population who is currently infected with the disease
and is contagious. Specifically, this refers to the “actively” infected people.

• (R) Recovered. This is the population that survived the disease and becomes
immune. The cumulative number of recovered individuals at time t is denoted
by R(t).

• (D) Death. This is the part of the population that succumbed to the disease, i.e.,
the number of fatalities. The cumulative number of fatal cases at time t is denoted
by D(t).

The number of actively infected people I (t) can be obtained as

I (t) = N (t) − (R(t) + D(t)), with N (t) =
∫ t

0
c(u)du (1)

where N (t) refers to the cumulative number of infections at time t ≥ 0, which is
obtained as the time integral of the number of new registered cases c(t).

There are two basic assumptions in this model. First, it is assumed that the birth
rate and the (ex-disease) death rate are approximately the same and small compared
to the rate of contagion. Hence, the total number M of individuals in the population
is constant over time,

M = S(t) + I (t) + R(t) + D(t), ∀t ≥ 0. (2)
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Second, it is assumed that transition times are independent, exponentially dis-
tributed random variables. Typically, it is also assumed that the waiting times are
identically distributed within each compartment; however, we do not make this
assumption since we use time-dependent transition rates in order to obtain more
accurate calibration results. One of the reasons for using time-dependent parameters
is due to the fact that the number of cases is less certain at earlier stages of the
epidemic event which may lead to different parameterization than on later stages.
Another very important reason is that the rates of contagion change over time due to
the implementation of different health policies. For example, when social distancing
policies are implemented the rate of contagion is reduced but when these policies
are lifted prematurely, the rate of contagion may increase again which in turn may
cause a new wave of contagion.

The transitions of the SIRD model can be described using a continuous time
Markov chain (CTMC). Since the total population M is constant, then one of
the states is well defined by the remaining states. For instance, D(t) = M −
(S(t) + I (t) + R(t)) for all t ≥ 0. Hence, the SIRD epidemic processes is defined
as a trivariate stochastic process on a continuous time scale, t ∈ [0,∞), with discrete
states (S, I, R)(t) = (S(t), I (t), R(t)):

S(t), I (t), R(t) ∈ {0, 1, . . . , M}. (3)

The joint probability function of these states is denoted by,

P(s,i,r)(t) = P ((S, I, R)(t) = (s, i, r)) (4)

Since we do not assume time-homogeneity, the transition probabilities,

P(s,i,r),(s ′,i ′,r ′)(u, t),

need to be defined using 2- parameter times (u, t) ∈ [0, T ] × [u, T ], T < ∞. Hence,
for a sufficiently small�t the (forward) infinitesimal transition probabilities are given
by

P(s,i,r),(s+h,i+ j,r+m)(t, t + �t) (5)

= P ((S, I, R)(t + �t) = (s + h, i + j, r + m) |(S, I, R)(t) = (s, i, r) ) (6)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β(t) i s
M �t + o(�t), (h, j,m) = (−1, 1, 0)

γ (t) i �t + o(�t), (h, j,m) = (0,−1, 1)
η(t) i �t + o(�t), (h, j,m) = (0,−1, 0)

1 − (
β(t) S

M + γ (t) + η(t)
)
i�t + o(�t), (h, j,m) = (0, 0, 0)

o(�t) otherwise

(7)
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where, for all t ≥ 0,3

• β(t) > 0 is the transmission rate. The factor β I/M is called the force of infection
which is the per-capita rate at which susceptible individuals leave the S compart-
ment.

• γ (t) > 0 is the per-capita recovery rate. This is the rate at which an infected
individual overcomes the disease and becomes immune.

• η(t) > 0 is the per-capita death rate. This is the rate atwhich an infected individual
(i.e., a member of I ) succumbs to the disease and becomes part of the death
compartment D, which cannot be infected nor contagious.

From (7) we observe that: (a) an individual can only leave the susceptible com-
partment if she becomes infected (i.e., (h, j,m) = (−1, 1, 0)), (b) when the indi-
vidual leaves the infected compartment it is either for recovered compartment (i.e.,
(h, j,m) = (0,−1, 1)) or the death compartment (i.e., (h, j,m) = (0,−1, 0) and
the fact that M is constant) and she no longer becomes susceptible to the disease
again; and (c) no other transitions are possible. These are the dynamics of the SIRD
process represented in Fig. 3.

In view of nonlinear nature of the SIRD model, we can only approximate the
value of its moments. For example, the first moment can be approximated with the
solution of the following deterministic non-linear ODE system:

SIRD evolution =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = −β(t) I S

M

d I
dt = β(t) I S

M − (γ (t) + η(t)) I

dR
dt = γ (t) I

dD
dt = η(t) I = − (

dS
dt + d I

dt + dR
dt

)

(8)

For more accurate approximations we refer to the moment closure procedures of
[13, 18]. For the rest of this section, we use the solution of deterministic system
as the expected value of the SIRD compartments since this is a commonly used
approximation.

Strict Social Distancing.One possible way to study the effect of social distancing
is obtained by introducing the parameter ρ ∈ [0, 1] that defines the proportion of
the susceptible population that does not or cannot follow the lockdown guidelines,
and hence, remains vulnerable to the disease. On the other hand, (1 − ρ) ∈ [0, 1]
is the proportion of the susceptible population that follows a strict social distancing
policy, and hence, it cannot be infected. The parameter ρ is called the proportion of
vulnerability, such that ρ = 0 refers to the case of total lockdown (100% strict social
distancing), meanwhile ρ = 1 refers to the base case in which no social distancing
is applied whatsoever. Therefore, we can rewrite Eq (2) as,

3 In order to have a well defined time-dependent process we restrict time-dependent parameters
(β(t), γ (t), η(t)), t ∈ [0, T ], be continuous functions except for a finite number of discontinuities
(e.g., stepwise function).
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(a) ρ = 1 (b) ρ = 0.75

Fig. 4 SIRD Dynamics

ρ M︸︷︷︸
vulnerable

= S + I + R + D (9)

As a result of the strict social distancing policy, the susceptible population is given
by S(t) = ρM − I (t) − R(t) − D(t), and hence S(0) = ρM , while for all t > 0,
S(t) is given by the dynamics described by Eqs. (7) and (8). For example, consider
the case in which there are 5 actively infected people in a population of 1000 individ-
uals. Moreover, assume that none has yet recovered or died. Hence, M = 1000. For
convenience, assume that the model parameters (β, γ, η) = (1, 1/15, 1/30) remain
constant for all t ≥ 0. Figure4a, b show the expected values of the SIRD compart-
ments with and without strict social distancing. Clearly, if the proportion of vulnera-
bility was 75% of the total population then (S, I, R, D)(0) = (745, 5, 0, 0) and the
expected number of actively infected people would be significantly lower than with-
out social distancing. This shows how social distancing may prevent the complete
depletion of the available medical care.

3.2 Calibration Algorithm

Before we explain the calibration methodology, let us first mention some common
difficulties that arise in the calibration of epidemiological models. The SIRD model,
likemanyother epidemiologicalmodels, is useful for describing the epidemic dynam-
ics in a well observed system. For example, in the case of a laboratory study, we can
clearly observe each of the individuals transitioning across the SIRD compartments.
However, in real life, these observations are much less accurate, specially when the
virus is new and little information is known about its characteristics, and when it
has spread across large populations since it is almost impossible to account for all
the cases. For instance, in the current CV-19 pandemic event, we are not yet cer-
tain whether people who recover become completely immune or if the immunity is
just temporary. Similarly, the actual number of cases is quite noisy, specially at early



Analysis of Impact of Covid-19 Pandemic on Financial Markets 339

stages, this is due to the fact that different countries apply different testing policies, or
because some countries tend to report fewer cases either for political or economical
reasons or simply to avoid panic in the population. There is also the case of asymp-
tomatic people or people who experienced only mild symptoms and never knew they
were infected, and so they are not included in reported cases. Even if there is some
level of certainty in the number of infected people and the number of fatalities, there
is much less certainty in the number of recovered individuals, e.g., people may be
released from the hospital prematurely in an effort to increase hospital availability.
Nonetheless, the uncertainty in the number of cases decreases as time goes by, more
data is gathered and there is more information about the features of the disease.

The set of complexities mentioned above is one of the reasons for using time-
dependent parameters (β(t), γ (t), η(t)), for instance, the fact that the number of
cases is less certain at earlier stages may lead to different parameterization than on
later stages. Another very important reason for using time-dependent parameters is
that, due to the implementation of different health policies, the rates of contagion
change over time. For example, implementing social distancing reduces the rate of
contagion, while reopening the city and its businessesmay lead to a new rate increase,
and subsequently, a new wave of contagion.

The data used in this calibration exercise are taken from the Repository by Johns
Hopkins CSSE.4 The advantage of this repository is that it contains the time series
of the cumulative number of infected cases, recovered and deaths for almost all
countries. Therefore, the actively infected number of cases can be directly obtained
using Eq. (1).

Since it is our objective to calibrate multiple time series simultaneously, our prob-
lem is a multi-objective optimization. In this case, we simply use a multi-objective
weighted least squares method in order to give more relevance to the most recent
data. This problem can be formulated as follows:

min
[β,θ,η]∈R3+

(
w2

S

K∑
i=0

(
Sobsti − Stheoti

)2 + w2
I

K∑
i=0

(
I obsti − I theoti

)2
(10)

+w2
R

K∑
i=0

(
Robs
ti − Rtheo

ti

)2 + w2
D

K∑
i=0

(
Dobs

ti − Dtheo
ti

)2 )
,

where [wS, wI , wR, wD] ∈ R
4
+, (11)

and t0 is the first time where an infected individual appears, K (in tK ) is the length
of the time series, and [wS, wI , wR, wD] are the weights for each objective function.
Let Xobs

[u,t] = [Sobs[u,t], I
obs
[u,t], R

obs
[u,t], D

obs
[u,t]] be the time series of the time interval [u, t],

t > u ≥ 0, of the observed number of individuals in each compartment. Similarly,
let Xtheo

[u,t] = [Stheo[u,t], I
theo
[u,t] , R

theo
[u,t], D

theo
[u,t]] be the theoretical time series of the number

4 We use the repository available in https://github.com/pomber/covid19, which in turn cleans and
processes the data from Johns Hopkins CSSE (see also, https://github.com/CSSEGISandData/
COVID-19).

https://github.com/pomber/covid19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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of individuals in each compartment according to the dynamics prescribed in Eq. (8)
during the same time interval [u, t]. Also, let W = diag([wS, wI , wR, wD]) be the
diagonal matrix of weights for each time series. Lastly, we can solve a sequence of
optimization problems

{
min

[βk ,γk ,ηk ]∈R3+
trace

(
(Xdi f f

[tk ,tk+1] W )T (Xdi f f
[tk ,tk+1]W )

)}∣∣∣∣
K−1

k=1

(12)

over a time grid 0 = t1 < t2 < · · · < tK . Such formulation implies that the time-
dependent parameters (β(t), γ (t), η(t)) are specified by stepwise functions. Obvi-
ously, other kind of interpolation schemes can also be implemented.

Results. We calibrate the SIRD model to the US data available from February
1 to July 1, 2020. The calibration is done by solving the sequence of optimization
problems of Eq. (12) over a semi-monthly grid.

Figure5 illustrates the quality of our calibration procedure. We highlight the fact
that we are able to capture the surge of the number of actively infected people
that occurred in the second half of June. Figure6 illustrates the step-wise profile
of the time-dependent parameters (β(t), γ (t), η(t)) corresponding to our calibration
procedure. We also highlight the fact that as time goes by, the parameters converge to
a stable level. This is important, since it rules out possibility of over parameterizing
estimation algorithm and confirms our assumption that the information on later stages
is less noisy than on earlier stages of the epidemic event.

3.3 Phenomenological Pandemic Model (PPM)

Thismodel describes development of the pandemic growth by the processes N (t) and
I (t), in three phases: an initial pandemic growth, an intermediate growth and the final
phase. In the initial phase, the pandemic growth is uncontrolled. In the intermediate
phase, the social distancing rules restrict the growth. In the final phase, the number
of registered cases does not change and the number of active cases decreases.

This model is a simplification of that considered in the previous section. At first,
we introduce the stochastic process N (t) describing the dynamics of the number of
registered cases.

3.3.1 The Process N(t)

Consider the process N (t) in the initial phase. Once the number of infected indi-
viduals becomes large enough, the social distancing measures get enforced and the
population starts following the social distancing rules (SDR). The growth of the
number of registered cases deviates from the exponential function marking the the
end of the initial phase.
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(a) Compartment S. (b) Compartment I.

(c) Compartment R. (d) Compartment D.

Fig. 5 Calibration of the SIRD model

(a) Transmission rate, β(t) > 0.

(b) Recovery Rate, γ(t) > 0. (c) Death Rate, η(t) > 0.

Fig. 6 Time-dependent coefficients
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N0 N0 + 1

N0λ (N0 + 1)λ

. . . m

(m − 1)λ mλ
. . .

Fig. 7 Initial phase: the pure birth process, N (t)

N∗ N∗ − 1

N∗μ (N∗ − 1)μ

. . . 1

2μ

0

μ

Fig. 8 Intermediate phase is described by the process S(t), t ≥ T1

As before, we denote the cumulative number of infected individuals at time t
by N (t). We assume that N (t) follows the pure birth process [7] in the interval
t ∈ [0, T1]. The process starts from the initial state N0. The intensity of jump from
the state m to the next state, m + 1, is mλ.

Fig. 7 describes the transition graph of the model in the initial phase. The proba-
bilities Pk(t) = P(N (t) = k) satisfy for t ∈ [0, T1],

dPk(t)

dt
= −λkPk(t) + λ(k − 1)Pk−1(t), k = N0 + 1, . . . , (13)

dPN0(t)

dt
= −λN0PN0(t),

and the initial condition
PN0(0) = 1.

The time of the SDR enforcement is denoted by T1 in (13). The probability distribu-
tion, Pk(t), is negative binomial on the set of non-negative integer numbers [7]:

PN0+ j (t) =
(
N0 + j − 1

j

)
e−N0λt

(
1 − e−λt

) j
, j = 0, 1, . . . . (14)

The first moment and the variance of this process are also well-known:

E[N (t)] = N0e
λt , 0 ≤ t ≤ T1, (15)

σ 2(Nt ) = N0 · (
e2λt − eλt

)
.
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3.4 The Process N(t) in an Intermediate Phase

We assume that during the initial phase of the pandemic a group of people following
the SDR is formed. Individuals in this group will never be infected. The rest of the
population is susceptible. The size of this group at time t is denoted by S(t). We
assume that S(T1) = N ∗. The number of infected individuals in this group increases
from 0 to N ∗. Therefore, the number of registered cases satisfies the relation

N (t) = N (T1) + N ∗ − S(t), t ≥ T1, (16)

in the intermediate phase.

Remark 1 It is not difficult to see that the latter equation defines a monotonically
increasing process N (t) for t ≥ 0.

The transition graph for S is presented in Fig. 8. The probabilities Qk(t) := P(S(t) =
k) satisfy for t ≥ T1 [7]

Qk(t) =
(
N ∗

k

)
e−kμ(t−T1)

(
1 − e−μ(t−T1)

)N ∗−k
, k = 0, 1, . . . , N ∗, (17)

QN ∗(T1) = 1.

The random time, TN ∗ , of the transition from the state N ∗ to state 0 has the distribution
[7]

P (TN ∗ > t) = 1 − (1 − e−μt )N
∗
.

Then the expected value E[TN ∗ ] = ∫ ∞
0 P (TN ∗ > t)dt and we derive

E[TN ∗ ] = 1

μ

N ∗∑
m=1

1

m
(18)

∼ 1

μ
log N ∗,

as N ∗ → ∞. Therefore, for sufficiently large N ∗ the average length of the inter-
mediate phase is proportional to the logarithm of N ∗. The probability generating
function

Ĝ(t, z) := E[zS(t)], | z | ≤ 1,

satisfies for t ≥ T1

Ĝ(t, z) = (
ze−μ(t−T1) + 1 − e−μ(t−T1)

)N ∗
. (19)

The expectation
E[S(t)] = N ∗e−μ(t−T1), t ≥ T1
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and
σ 2(S(t)) = N ∗e−μ(t−T1) · (1 − e−μ(t−T1)), t ≥ T1.

If N ∗ → ∞ such that limN ∗→∞ N ∗e−μt = ητ , we obtain

limN ∗→∞Ĝ(t, z) = eητ(z−1). (20)

Thus, the limiting stochastic process after a deterministic time change is just a Poisson
process.5

We would like to stress that convergence result (20) seems to be related to the
stage of the pandemic at which the number of individuals with a sufficient level of
antibodies is sufficiently large.

3.4.1 The Process I (t) and Distribution of Sickness Time

The second key element of the model is the process I (t), the number of active cases
at time t . The random variable I (t) satisfies the equation

N (t) = I (t) + R(t) + D(t),

linking together the number of registered cases and the numbers of recovered and
dead patients. Suppose that all individuals have the same deterministic sickness time
τ . Then at time t all cases registered at time t − τ will be either recovered or dead.
Therefore

I (t) = N (t) − N (t − τ)

in this case. Naturally, this assumption on τ is unrealistic and we need a different
line of reasoning. At the same time, the process I (t) is observable and comparison
of the processes N and I allows one to obtain an approximation to the sickness time
distribution of all individuals recovered or dead at time t . The start time of sickness
of the nth individual is

tn = min{t : N (t) ≥ n}.

Denote R̂(t) = R(t) + D(t). Then

τn = min{t : R̂(t) ≥ n}

is the end of the sickness time of nth individual. Thus, for each n, N0 ≤ n ≤ R(t)
we know the sickness time, sn = τn − tn . We assume that {sn}n≥N0 is a sequence of
independent identically distributed randomvariables. The distribution of the sickness

5 Weak convergence of stochastic processes discussed in this section represents an independent
interest. The rigorous presentation with the proof of (20) is deferred to a more specialized journal
on stochastic processes.
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Fig. 9 Sickness time distributions

time, Fs(x) = P (sn ≤ x), depends on the geographical region, age, sex and many
other individual parameters. For the purpose of our research, we aggregate the dis-
tribution of the sickness time at the country level. Figure9 demonstrates distinction
of the sickness times in Canada and the US. In particular, the maximal density in
Canada has the group with 2 weeks sickness time. In the US, maximal density has
the group of individuals with 6 weeks sickness time.6

3.5 Approximation to PPM

Weconsider a deterministic approximation to the process N (t). It can be described by
the equations representing the first two phases of the process N (t). For 0 < t ≤ T1,
the number of registered cases, in accordance with (15), is N (t) = N0 · eλt .

After time T1, the number of registered cases is approximated by the solution to
the equation

dN (t)

dt
= k(N (t)) · N (t), t > T1,

6 We hope that in the nearest future we will have more reliable data that would allow us to infer the
statistical properties of the sickness time distribution.
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Table 1 Parameters of the approximation, Y (t)

Country k b σ T1 (days)

US 0.286 4.01 0.63 28

CA 0.223 2.394 0.44 28

with the initial condition
N (T1) = N0 · exp(λT1),

where k(N ) = k0
(
1 − N (t)

N ∗

)
. As N (t) → N ∗ the growth rate k(N ) → 0. Then we

derive

N (t) = N ∗ exp (k0(t − T1))

exp (k0(t − T1)) + N ∗/N1 − 1
, t ≥ T1. (21)

The process R̂(t) is computed using the sickness time distribution, Fs .

3.6 Calibration of PPM

The first step in the calibration procedure is estimation of the parameters of the
process N (t) in the initial pandemic phase. In Fig. 2 we depict the dynamics of
the number of registered cases, in the US, and Canada, in the log-scale (that is the
logarithm of the number of cases as a function of time).

It is known that initially the process N (t) exhibits an exponential growth [1], [3],
[8]. In Fig. 2 the least-square approximation to the observed values of log(N (t)) is
presented. In the initial phase, a deterministic approximation to the observed process
N (t) is described by the equationY (t) = ekt+b. The parameters k and b, are estimated
using the Least Square Method. The values of these coefficients are shown in Table1
7

The initial phase of the process N (t) ends at T1: after this time the growth rate
deviates from the estimated value of k.

3.6.1 Calibration of Parameters of the Birth-Death Processes

Let us now show how to find themaximum likelihood estimator (MLE) of the param-
eter λ in the PPM to describe the pure birth process in the initial phase of the process
N (t). Assume that the process is observed at times t = 0,�t, . . . ,m�t and denote
the observations N0, N1, . . . , Nm . It is also convenient to introduce the integer incre-
ments nk = Nk − Nk−1, (k = 1, 2, . . . ,m) of the observed process N (k�t). The

7 The measurement date is 29/03/2020.
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initial phase is the pure birth process having transition probabilities

P�t (Nk−1 → Nk) =
(
Nk − 1

nk

)
· e−λ�t Nk−1

(
1 − e−λ�t

)nk
, k = 1, 2, . . . ,m.

The process N (t) is Markovian process. Its likelihood function

Lm(λ) =
m∏

k=1

(
Nk − 1

nk

)
· e−λ�t Nk−1

(
1 − e−λ�t

)nk

can be written as

Lm(λ) = Cm · exp
(

−λ�t
m∑

k=1

Nk−1

) (
1 − e−λ�t

)∑m
k=1 nk ,

where

Cm =
m∏

k=1

(
Nk − 1

nk

)
.

For λ > 0, the function Lm(λ) has a unique point λ∗ = argmaxλ>0Lm(λ):

λ∗ = − 1

�t
log

(∑m
k=1 Nk−1∑m
k=1 Nk

)
. (22)

Equation (22) defines the MLE for the process, N (t) in the initial phase, starting
from the state N0, observed at tk = k · �t .

The MLE for the process N (t) in the intermediate phase is more challenging
because the state of the Markovian, pure death process, S(t), is unknown at time
T1, S(T1) = N ∗ (as well as at all times t > T1). Again, we assume that the changes
of the process are observed at times tk = T1 + k�t , k = 1, 2, . . . ,m and denote the
observed decrements Dk := S(tk−1) − S(tk). Our goal is estimation of the parame-
ters N ∗ and intensity μ.

Denote p = e−μ�t . Then the likelihood function

LS
m(N ∗, p) = Cm · pN ∗m−Km · (1 − p)K

∗
m , (23)

where

Cm = N ∗!∏m
k=1 Dk ! · (N ∗ − K ∗

m)! ,

Km =
m∑

n=1

Dn · (m − n + 1), and K ∗
m =

m∑
n=1

Dn.
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The MLE of the parameters is a solution to the optimization problem

(N̂ , p̂) = argmaxLS
m(N ∗, p), 0 < p < 1, N ∗ > K ∗

m . (24)

From the relation
∂LS

m(N ∗, p̂)
∂p

= 0, (25)

we derive

p̂ = mN̂ − Km

K ∗
m + mN̂ − Km

. (26)

The second equation needed to solve (24) can be conveniently obtained for the log-
likelihood function if we consider N ∗ as a continuous variable and use Stirling’s
formula, N ! ≈ (

N · e−1
)N √

2πN , to approximate ∂logLS
m(N ∗, p)/∂N ∗ for large

N ∗.
We have

logLS
m(N ∗, p) ≈ N ∗(log N ∗ − 1) + 1

2
log

(
N ∗

N ∗ − K ∗
m

)
+ D̃m (27)

− (N ∗ − K ∗
m)(log(N ∗ − K ∗

m) − 1) + (m · N ∗ − Km) log p

+ K ∗
m · log(1 − p),

where

D̃m = log

(
m∏

k=1

Dk !
)

does not depend on p and N ∗. Then (27) implies

∂ logLS
m(N ∗, p)

∂N ∗ = log

(
N ∗

N ∗ − Km

)
+ 1

2

(
1

N ∗ − 1

N ∗ − K ∗
m

)
+ m log p. (28)

From (26) and (28) we derive that the root N̂ of the equations (24) and (25) is a
solution to the transcendental equation

N̂

N̂ − Km

·
(

mN̂ − Km

K ∗
m + mN̂ − Km

)m

= exp

(
1

2
· K ∗

m

N̂ (N̂ − K ∗
m)

)
. (29)

Equation (29) has a unique solution that can be found numerically and after rounding
delivers the MLE of the parameter N ∗. Finally, from (26) we calculate the estimator
of the probability p̂ and find an estimate of intensity parameter

μ̂ = − 1

�t
log p̂.
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3.6.2 Calibration of Parameters of Approximate Model

In the case of approximate PPM the dynamics of the process N (t) are defined by
Equation (21). The calibration algorithm for the approximate deterministic model
solves numerically the optimization problem

(N ∗, k0) = argminY (t; N ∗, k0), t = (t1, . . . , tm), t1 < t2 < · · · < tm,

where

Y (t; N ∗, k0) =
m∑

k=1

(
N (tk; N ∗, k0) − Nob(tk)

)2

is the distance between the theoretical values, N (tk; N ∗, k0), defined by (21), and
the vector of observations, Nob(tk), (k = 1, 2, . . . ,m).

This problem requires global optimization techniques, since the objective function
in (21) is not a convex function of the parameters N ∗ and k0. Our implementation
is based on the Quasi Monte Carlo sampling of the initial points of the Sequential
Quadratic Programming solution algorithm.

3.7 Mapping Epidemic Variables to Financial Risk Factors

We propose a regression model that links financial risk drivers such as the SP500
and the V I X indices to epidemic variables such as the number individuals who are
actively infected (I ) and susceptible (S):

ỹt = β0 · ỹt−1 + β1 · f̃ (St , t) + β2 · f̃ (It , t) + εt , εt ∼ N (0, σε). (30)

where8 yt is the natural logarithm transformation of the risk driver price P , i.e.,
yt = ln(Pt ) where P ∈ {SPX500, V I X}. In addition, the quantity x̃ indicates that
variable x is standardized, i.e.,

x̃ = x − AVG(x)

STD(x)
, (31)

where AVG and STD refer to the arithmetic mean and standard deviation, respec-
tively. The function f (xt , t) refers to the running standartization of the variable xt ,
that is,

f (xt , t) = xt − AVG(t)(xt )

STD(t)(xt )
, (32)

8 Recall that since we are not including the bias corrector β0, then there may be a small, but
insignificant, mean in the distribution of ε.
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Table 2 SP500 calibration summary statistics

Dep. Variable: ỹt = ˜ln(PSP500
t ) R-squared (uncentered): 0.906

Model: OLS Adj. R-squared (uncentered): 0.903

Method: Least Squares F-statistic: 327.6

No. Observations: 105 Prob (F-statistic): 3.32e-52

Df Residuals: 102 Log-Likelihood: -24.361

Df Model: 3 AIC: 54.72

BIC: 62.68

coef std err t P> |t| [0.025 0.975]

f̃ (I, t) 0.6658 0.278 2.392 0.019 0.114 1.218

f̃ (S, t) 0.8548 0.292 2.930 0.004 0.276 1.433

ỹt−1 = ˜ln(PSP500
t−1 ) 0.7764 0.053 14.533 0.000 0.670 0.882

whereAVG(t) andSTD(t) refer to the running arithmeticmean and standard deviation
up to time t > 0, respectively. The difference between AVG and AVG(t) is that the
former calculates the mean over the whole sample while the latter calculates the
mean only up to the running time t (the same applies to the standard deviation). The
autoregressive term yt−1 captures the momentum of the most recent prices during
the pandemic event (β0 ∈ (0, 1) implies that recent prices are more significant than
older price levels).

Under this specification, the index price Pt has the solution,

Pt = exp
(
STD(ln(P))

(
β0 · ỹt−1 + β1 · f̃ (St , t) + β2 · f̃ (It , t)

)

+ AVG(ln(P)) + STD(ln(P)) · εt

)
, εt ∼ N (0, σε). (33)

The solution implies that if we are able to (independently) forecast S and I we
can simulate the index price Pt using Monte Carlo methods.

We illustrate our regression model of Eq. (30) by calibrating the S&P500 and
VIX indices using the data available from February 1 to July 1, 2020. The regression
summaries are shown in Tables2 and 3. We can observe that for this estimation
period all three parameters are significant. Figure10 illustrates the index prices and
the corresponding prediction values using (33). In conclusion, we can observe that
the regression (30) provides us with a reasonable model to describe the dependency
during the CV-19 pandemic crisis. We will use this model to shock our risk drivers.
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Table 3 VIX calibration summary statistics

Dep. Variable: ỹt = ˜ln(PVIX
t ) R-squared (uncentered): 0.934

Model: OLS Adj. R-squared (uncentered): 0.932

Method: Least Squares F-statistic: 482.0

No. Observations: 105 Prob (F-statistic): 4.51e-60

Df Residuals: 102 Log-Likelihood: -5.6967

Df Model: 3 AIC: 17.39

BIC: 25.36

coef std err t P> |t| [0.025 0.975]

f̃ (I, t) -0.5972 0.233 -2.562 0.012 -1.060 -0.135

f̃ (S, t) -0.6896 0.246 -2.798 0.006 -1.178 -0.201

ỹt−1 = ˜ln(PVIX
t−1 ) 0.8746 0.049 17.689 0.000 0.777 0.973

Fig. 10 Index price calibration

4 Simulation of Stress Scenarios

Let us now consider stress scenario generation in our framework.

4.1 Simulation of Risk Drivers Under the SIRD Model

The simulation of risk drivers according to (33) has two sources of uncertainty:
the running standardized number of susceptible and actively infected people

( f̃ (St , t), f̃ (It , t)), and the error term εt , (t > 0) , where σε is estimated as the
residuals standard deviation of the regression model defined in (30).
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Under the SIRD model of Sect. 3.1 the tuple ( f̃ (St , t), f̃ (It , t)) can be simulated
using Monte Carlo techniques for CTMCs (e.g., we can approximate Eq. (7) to Pois-
son processes and simulate them using Euler schemes). Alternatively, one can simply
assume that the dynamics of the SIRD compartments are deterministic using their
expectation (i.e., use Eq. (8)), and hence, only simulate εt . Due to space limitations
we focus our discussion on the second approach.

In order to generate sample paths of the risk driver Xt ∈ {SP&500, V I X}we use
the following steps:

1. Consider the time grid tgrid = (t1, . . . , tN ), where t1 is the most recent date, and
tN is the end date for the simulation.

2. Forecast the SIRD compartments (e.g., in expectation), from time t0 to time tN by
solving theODE system (8)where the time-dependent parameters (βt , γt , ηt ) are
obtained from the calibration described inSect. 3.2.Onemayuse constant extrap-
olation for the parameters beyond the calibration horizon. The numerical solution
to Eq. (8) can be easily implemented in Python using the scipy.integrate.odeint
library.

3. Compute ( f̃ (St , t), f̃ (It , t)) for all t ∈ tgrid using Eq. (32). Observe that these
running standardized values are computed from an expanding window starting
at time t0, where t0 is the initial pandemic date (i.e., t0 < t1).

4. For i = 1 to N :

a. Draw εti ∼ N (0, σε)

b. Compute Pti as in Eq. (33) using Pti−1 and ( ˜f (Sti , ti ), ˜f (Iti , ti )). The parame-
ters (β0, β1, β2) of Eq. (33) correspond to the regression parameters obtained
from the regression model (30).

In this example, we simulate 1000 sample paths, from July 1st to August 3rd,
2020. In Figs. 11 and 12 we illustrate the sample paths of the S&P500 and VIX
indices and the corresponding empirical confidence intervals, respectively. One can
see that the sample paths imply high volatility levels. This can be explained by the
fact that the dynamics of the model (33) are not from a geometric Brownian motion,
but most importantly, by the fact that the residual’s standard deviation σε is estimated
only during the pandemic event, which is quite high during this crisis period. Hence,
we recommend the application of this methodology for short time horizons as one
can argue that the assumptions are only valid during the pandemic crisis.

4.2 PPM Simulation

Similar approach is used when the simulation model is PPM. Once we constructed a
regression model linking the pandemic variables to the market variables we generate
a set of stress scenarios on the variables N (t) and I (t) using estimated values of the
parameters. After that the regression model transforms the pandemic stress scenarios
into the scenarios on financial indices.
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Fig. 11 Simulations

Fig. 12 Confidence Intevals

This process is represented in Fig. 13 where a stress scenario on N (t) and I (t) is
transformed into stress scenario on the financial indices DJI, TSX and CAD/USDFX
rate. The explanatory power of the PPM is 10% lower than that of the SIRD model.
For this reason, application of the regressed scenarios on the pandemic variables
includesMCnoise (the blue line representing the financial scenarios in the subfigures
of Fig. 13. The red line in these subfigures describes the regression result.)

5 Conclusion

We proposed a framework for generation of stress scenarios on financial indices
for analysis of the pandemic impact on financial markets. This framework includes
pandemic models, their calibration algorithms and mapping of the non-financial
pandemic processes to the financial indices driving the financial markets.

We think that the proposed models can be used not only for the purpose of this
research but in a more general context. For instance, one can use the extended SIRD
model or the PPM for the short-term prediction of the pandemic processes.
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Fig. 13 Simulation of DJI, TSX and FX rate using PPM

Among the next steps we plan to analyze impact of Covid-19 on the European and
Asian financial markets, extending both geography and the list of financial indices.
The methods developed in this paper can be used for advanced historical and hypo-
thetical scenario generation.
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Symptom-Based Testing in a
Compartmental Model of Covid-19

Ferenc A. Bartha, János Karsai, Tamás Tekeli, and Gergely Röst

Abstract Testing and isolation of cases is an important component of our strategies
to fight SARS-CoV-2. In this work, we consider a compartmental model for Covid-
19 including a nonlinear term representing symptom-based testing. We analyze how
the considered clinical spectrum of symptoms and the testing rate affect the outcome
and the severity of the outbreak.

Keywords Covid-19 · Compartmental model · Testing · Outbreak mitigation

Classifications 92D30 · 34H05 · 34C60

1 Introduction

Since a cluster of pneumonia cases of unknown origin was discovered in Wuhan,
China in late 2019, Covid-19, the disease caused by the novel coronavirus SARS-
CoV-2, has spread around the world giving rise to a pandemic. By early August
2020, around eighteen million cases and seven hundred thousand deaths have been
reported worldwide [1].

One of the key difficulties in controlling Covid-19 is that many infections result
in mild symptoms or none at all, making the detection of infectious Covid-19 cases
particularly challenging [2]. Moreover, a considerable portion of secondary infec-
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Table 1 Several key symptoms of Covid-19 and their prevalence among clinical Covid-19 cases

Name Prevalence Reference

Cough 67.8% [9]

Fatigue 38.1% [9]

Sputum production 33.7% [9]

Diarrhea 3.8% [9]

Fever 33.7% [10]

Anosmia 70.2% [8]

Ageusia 65% [10]

tions, generated by those infectors who later develop symptoms, have been observed
to take place before symptom onset, i.e. pre-symptomatic transmission occurs [3–5].

Covid-19 is classified as a respiratory disease, accordingly, it mainly affects the
respiratory tract (similarly to other coronaviruses) but other classes of symptoms
have been observed aswell, e.g. affecting the gastrointestinal [6] andmusculoskeletal
systems [7]. In particular, the loss of smell (anosmia) and/or taste (ageusia) could
be a key indicator symptom of Covid-19 [8]. We summarize findings of some recent
studies regarding Covid-19 symptoms and their prevalence among clinical Covid-19
cases in Table1.

The primary confirmation of Covid-19 infection, as of now, happens via real-time
reverse transcription polymerase chain reaction (rRT-PCR) based testing of samples
taken from e.g. nasopharyngeal or oropharyngeal swabs, sputum, lower respiratory
tract aspirates, etc. [11].

A classical approach for modeling and understanding epidemics is constructing
a system of ordinary differential equations (ODE) having a compartmental struc-
ture. Also, such models are widely utilized as an important tool of assessing the
effectiveness of various control strategies [13, 14].

In particular, the transmission dynamics of the spread of Covid-19 has been ana-
lyzed via compartmental ODE models in a vast number of studies. Yang and Wang
[15] investigated the outbreak of Covid-19 in Wuhan, China considering multiple
transmission pathways in the infection dynamics. Non-constant transmission rates
were employed, changing with the epidemiological status and environmental con-
ditions reflecting the impact of the ongoing disease control measures. Boldog et
al. [16] developed a tool comprised of three major components to assess the risk
of global spread of Covid-19 with origin from Wuhan. A time-dependent SEIR
model (Suceptible-Exposed-Infectious-Removed) was used to estimate the cumu-
lative number of cases in China from which probability distributions were obtained
for the number of potential disease spreaders outside China. Finally, for a given desti-
nation country, the initial spread of Covid-19 was approximated via a Galton-Watson
process. Berger et al. [17] utilized an extended SEIR model to understand the role
of testing and case-dependent quarantine with fixed rates and compared simple test-
ing and quarantine policies. Weitz [18] developed an extended, age-stratified model
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analyzing both asymptomatic and severe courses of the disease in order to estimate
the burden on the healthcare system by modeling hospital and intensive care unit
(ICU) bed needs. Röst et al. [19] studied an age-stratified compartmental model and
presented a comprehensive analysis exploring several post-lockdown scenarios with
age-specific measures, seasonality, and spatial heterogeneity.

In this work, we consider an extended SEIR-type compartmental model for
the transmission dynamics of Covid-19. We incorporate symptom-based testing of
patients and isolation upon positive result i.e. removal from the infectious chain. The
clinical symptoms that trigger the testing of individuals is referred to as indicator
symptom. The force of testing is defined as the rate at which infected individuals are
tested, see Sect. 2. It is described by a nonlinear function of the state of the epidemic
and of all individuals displaying the indicator symptom at a given time, with or with-
out Covid-19 infection, hence, it is considerably different from previous approaches.
Our goal is to understand the impact, and especially the limitations of this testing
strategy, hence we model neither contact-tracing of patients with positive tests nor
the testing of a fraction of non-symptomatic contacts, both of which are common and
efficient improvements and result in removal of additional patients from the infec-
tious chain. Moreover, we assume perfect testing, that is we do not consider false
positive or false negative results.

According to the current understanding of the disease, none of the symptoms
are specific solely for Covid-19, thus, the chosen indicator symptom may and will
be present amongst other individuals not infected with SARS-CoV-2. All patients,
with or without Covid-19 infection, displaying the indicator symptom form the so-
called primary symptom pool, whilst, those without Covid-19 infection (but with the
same indicator symptom) are members of the secondary symptom pool, see Sect. 2.
Naturally, choosing the indicator symptom for a testing campaign should be affected
by its prevalence andby the historical statistics for the size of the associated secondary
symptom pool. We emphasize that the latter might undergo seasonal variations as is
typicalwith respiratory symptomspeaking in influenza season [20]. This is a common
but not uniform feature of Covid-19 symptoms, e.g. gastrointestinal symptomsmight
show no seasonal variations, depending on age-groups [21].

The chapter is structured as follows. Section2 presents the compartmental epi-
demic model and its parametrization. In addition, the next generation matrix com-
putations are included that are used to derive formulae for the reproduction number.
Then, Sect. 3 establishes several boundedness and monotonicity-type results on key
characteristics of the epidemic model. The results of numerical simulations are dis-
cussed in Sect. 4. Finally, we present our conclusions in Sect. 5.
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2 The Epidemic Model of Indicator Symptom-Based
Testing

To assess the effectiveness of indicator symptom based testing in controlling the
spread of Covid-19, we developed a compartmental population model based on the
general SEIR formulation without vital dynamics.

We divide the population into five classes: susceptible (S), latent (L), pre-
symptomatic (P), infected (I ), and removed (R). Susceptibles are those who can get
infected by SARS-CoV-2. The members of the latent compartment L have already
been infected, but are not yet infectious nor do they display any symptoms. After
that, latent individuals move to the pre-symptomatic class P meaning that, due to the
increased viral load, they are able to infect susceptible individuals, even though, they
still not display any symptoms. The existence of pre-symptomatic transmission is of
particular importance in analyzing Covid-19 as it is one of the key features of the
disease that makes controlling the outbreak difficult. Then, in our model, after the
incubation period, at disease onset, members of P move to the infected class I . We
note that another challenge with Covid-19 is that many patients will develop mild
symptoms or none at all, yet being infectious. It is thus customary to collect these
individuals in a separate compartment of asymptomatic individuals [18, 19]. Nev-
ertheless, this distinction is not needed in our model as we will explain later in this
section. Finally, patients transit to the removed compartment R by either recovery
or by isolation after testing positive for Covid-19.

The above considerations are formulated in the following system of ordinary
differential equations

S′(t) = −β
S(t)

N (t)
(P(t) + I (t)) ,

L ′(t) = β
S(t)

N (t)
(P(t) + I (t)) − αL(t),

P ′(t) = αL(t) − ρP(t),

I ′(t) = ρP(t) − γ I (t) − k
pI (t)

pI (t) + σ
,

R′(t) = γ I (t) + k
pI (t)

pI (t) + σ
.

(1)

The disease transmission rate is denoted by the parameter β, the incubation period
is α−1 + ρ−1, which is the sum of the duration of the latent period and the pre-
symptomatic period, and, finally, γ −1 stands for the symptomatic infectious period.
The transmission diagram of (1) is depicted on Fig. 1.

The force of infection is the rate associated with the outward flow from S to L ,
namely,

λ = β
1

N
(P + I ).
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Fig. 1 The transmission diagram of the SLPIR model (1). Arrows represent the transition rates
between the compartments

The indicator symptom-based testing is represented by the term

k
pI

pI + σ
,

where k gives the number of tests done per unit time also referred to as the testing rate,
the probability p describes how likely is that a member of compartment I displays
the chosen indicator symptom. Note that this probability removes the need for an
asymptomatic/mild compartment as it is straightforward to adjust p to account for
all Covid-19 patients. The final term σ (possibly time-dependent) represents those
individuals who are not infected by Covid-19, yet they show the very same symptom
we base our testing upon. In this chapter, we refer to σ as the secondary symptom
pool, whereas, the primary symptom pool � is composed of all members (with or
without Covid-19 infection) of the population displaying the indicator symptom at
a given time, that is

� = pI + σ.

The testing rate k has a natural upper bound, namely,

k ≤ �

as we solely test patients displaying the indicator symptom. By reformulating the
testing term as

k
pI

pI + σ
= k

�
· p · I,

it is interpreted as the removal of the k
�
fraction of Covid-19 patients displaying the

indicator symptom.
The rate of the testing-induced outward flow from I to R is referred to as the force

of testing given by

τk,p,σ = k
p

pI + σ
. (2)

Finally, we introduce the positivity rate of testing as
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Table 2 Parameters of the SLPIR model

Parameter Notation Value

Transmission rate β Sect. 2.1.

Latent period α−1 2.5 days

Pre-symptomatic (infectious)
period

ρ−1 3 days

Infectious period γ −1 4 days

Testing rate k varies

Secondary symptom pool σ varies

Probability of symptom
amongst Covid-19 patients

p varies

θ = pI

pI + σ
, (3)

that may serve as a real-time indicator of the severity of an ongoing epidemic, and
the adequateness of the testing rate.

Note that (1) is, in part, simpler than many other variants that have been used
to assess the spread of Covid-19 as the infectious and latent compartments are not
split into multiple stages [16, 18, 19, 22, 23]. However, these additional classes
carry little significance for the testing strategies and to the analysis presented in this
chapter. Hence, we chose to use this less complicated structure so that the emphasis
is put on the testing itself.

We have parametrized (1) following [14]. From the infectivity profile of Covid-19
[3–5], we can see that most transmissions occur between 3 days prior to and 4 days
after symptomonset, with the pre-symptomatic infection fraction being 43.7%.Thus,
it is a reasonable approximation to set the pre-symptomatic period ρ−1 as 3 days,
and the symptomatic infectious period γ −1 as 4 days, with the same infectiousness
β during this period. The estimated mean incubation period of Covid-19 is 5.5 days
[24], thus, the latent period α−1 is taken as 2.5 days, see Table2. The choice of the
transmission rate β is discussed in Sect. 2.1 and the testing parameters k, p, σ are
varied throughout the analysis.

2.1 Choosing the Transmission Rate β

Now, we concentrate on establishing the relationship between the transmission rate
β in (1) and the basic reproduction number R0 of the epidemic. We shall follow the
terminology and techniques of [25] to compute the Next Generation Matrix (NGM)
and the R0 as its spectral radius.

First, let us consider the infectious subsystem of (1), namely, equations describing
L(t), P(t), and I (t). Linearizing this subsystem w.r.t. the disease free equilibrium
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Table 3 The basic reproduction number R0 and the corresponding transmission rate β

R0 2.2 1.8 1.3 1.1

β 0.338 0.277 0.2 0.169

yields the linearized infectious subsystem

X ′(t) = (F + V) · X (t),

where the matrices F and V are referred to as the transmission part and transitional
part, respectively; the state is described by

X (t) =
⎡
⎣

L(t)
P(t)
I (t)

⎤
⎦ .

The transmission matrix F has the form

F =
⎡
⎣
0 β β

0 0 0
0 0 0

⎤
⎦ ,

and the transitional matrix V is, clearly, written as

V =
⎡
⎣

−α 0 0
α −ρ 0
0 ρ −γ

⎤
⎦ .

The basic reproduction number R0 is then obtained by computing the spectral radius
of −FV−1 that is

R0 = ρ(−FV−1).

Therefore, as

−FV−1 =
⎡
⎣

β

γ
+ β

ρ

β

γ
+ β

ρ

β

γ

0 0 0
0 0 0

⎤
⎦ ,

it follows that

R0 = β

(
1

ρ
+ 1

γ

)
,

providing a scheme for computing β. We list the corresponding transmission rates
for the sample values of R0 used for illustrations in Table3.
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The basic reproduction number R0 is descriptive for the epidemic at the very
beginning of an outbreak and in absence of control measures. For simplicity, we use
the phrase basic reproduction number even if social distancing is in place, and by
control measure in this chapter we mean the testing, the absence of which is modeled
by k = 0. Similar key characteristics are the control reproduction number Rc and the
effective reproduction number Rt . The former describes the epidemic incorporating
the effect of interventions, in our case indicator symptom-based testing, but still at
the beginning of the outbreak. In contrast, the latter is suitable to measure the spread
of the disease as the epidemic is progressing. The corresponding formulae may be
obtained via analogous computations to those above as

Rc = β

(
1

ρ
+ 1

γ + k p
σ

)
= β

(
1

ρ
+ σ

σγ + kp

)
(4)

and

Rt = β
S(t)

N

(
1

ρ
+ 1

γ + τk,p,σ

)
= β

S(t)

N

(
1

ρ
+ �

�γ + kp

)
= β

S(t)

N

(
1

ρ
+ 1

γ + k
� p

)
.

As the testing rate k is bound by the size of the primary symptom pool �, it is
apparent that both of the above reproduction numbers satisfy

β
S

N

(
1

ρ
+ 1

γ + p

)
≤ Rc,Rt ≤ R0. (5)

3 Dependence of Key Epidemic Quantities on the Testing
Strategy

This section analyzes the symptom-based testing strategy with emphasis on how the
force of testing and the effective reproduction number are affected by the particular
choice of strategy. Repeatedly, we shall utilize the monotonicity of

f (x) = a + x

b + x
, x1 ≤ x2 ⇒ f (x1) ≤ f (x2),

where 0 < a ≤ b and 0 ≤ x .
First, we summarize trivial monotonicity properties of the force of testing τk,p,σ .

Proposition 1 Given a fixed state of (1), the force of testing τk,p,σ is

(a) monotonically increasing in k,
(b) monotonically increasing in k

�
.

In particular, as τk,p,σ = kp
�
, if k

�
= const, then τk,p,σ = const, i.e. the force of testing

strongly correlates to what portion of the primary symptom pool is being tested.
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As the epidemic is progressing, we may want to maintain the force of testing by
increasing the testing rate k that is testing the same portion of individuals displaying
the indicator symptom. Clearly, the required adjustment is linear w.r.t. the size of
compartment I , thus, the given constant force of testing may be maintained as long
as other logistical constraints make increasing the testing rate feasible.

The choice of the indicator symptom that serves as a basis for selecting patients
for testing is clearly of importance. Different indicator symptoms typically have
different associated probabilities and secondary symptom pools of non-equal sizes.
Thus, it is natural to ask what (p, σ ) pair is optimal.

Proposition 2 The force of testing τk,p,σ is monotonically increasing in σ
p .

Proof Clearly,

k
p1

p1 I + σ1
= τk,p1,σ1 ≤ τk,p2,σ2 = k

p2
p2 I + σ2

is equivalent to
1

I + σ1
p1

≤ 1

I + σ2
p2

that, in turn, simplifies to
σ2

p2
≤ σ1

p1

yielding the required result. �

Aswehave seen, keeping the fraction k
�
constant results in constant force of testing

τk,p,σ . The authorities might obtain some data on the size of the primary symptom
pool � during an outbreak and use this information for adjusting k on-the-go. When
planning for a second wave, historical data on the size of the secondary symptom
pool σ may give information on the required level of preparedness. Namely, if we
know that σ has now a different size compared to the former outbreak, e.g. due to
a seasonal variation, we may utilize the size difference of the secondary symptom
pools as a guidance for the need for testing capacities as follows.

Proposition 3 Given a fixed state of (1), consider two secondary symptom pools,
0 ≤ σ1 ≤ σ2 for the same indicator symptom that appears amongst members of the
compartment I with probability p. Let k1 and k2 be two testing rates corresponding
to the testing strategies for σ1 and σ2, respectively. Then,

k2
k1

= σ2

σ1

implies
τk1,p,σ1 ≤ τk2,p,σ2 .
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Proof As the state is fixed, the two strategies having equal effect corresponds to the
equality

k1
p

pI + σ1
= τk1,p,σ1 = τk2,p,σ2 = k2

p

pI + σ2

that simplifies to
k2
k1

= pI + σ2

pI + σ1
.

Then, using the aforementioned monotonicity of f (x), we obtain

k2 ≤ σ2

σ1
k1.

Finally, the monotonicity of τk,p,σ in k completes the proof. �

Recall, that the force of testing τk,p,σ explicitly appears in the formula for the
effective reproduction number Rt as

Rt = β
S

N

(
1

ρ
+ 1

γ + τk,p,σ

)
.

Accordingly, Rt may be kept decreasing by varying k as discussed in the first half
of this section that is by keeping τk,p,σ constant or increasing. However, in practice,
increasing k may eventually become infeasible. At that point, the force of testing
will decrease, hence, Rt may increase temporarily, within the bounds given in (5),
despite the constantly decreasing number of susceptible individuals S(t).

A reasonable goal for the authorities is to keep Rt close to a designated value,
ideally close to 1 to suppress the epidemic. Running estimates of the actual Rt might
be obtained [19, 27, 28], hence, we investigate if, by an increase of the testing rate,
we can alter Rt as desired.

Proposition 4 Let 0 ≤ k1 ≤ k2 be two testing rates. Consider an epidemic described
by (1) with daily testing rate k1, and the associated effective reproduction number
Rt (k) as a function of k.

Then, the ratio of the effective reproduction numbers corresponding to altering
the testing rate from k1 to k2

r = Rt (k2)

Rt (k1)

satisfies the following inequality

max

{
k1
k2

,
γ

ρ + γ

}
≤ r ≤ 1.

Proof The right bound is trivial as Rt is monotonic in k. Now, observe that
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r =
�

k2 p+�γ
+ 1

ρ

�
k1 p+�γ

+ 1
ρ

.

Then,

r =
�ρ+�γ+k2 p
k2 pρ+�γρ

�ρ+�γ+k1 p
k1 pρ+�γρ

= �(ρ + γ ) + k2 p

�(ρ + γ ) + k1 p
· k1 pρ + �γρ

k2 pρ + �γρ
= �(ρ + γ ) + k2 p

�(ρ + γ ) + k1 p
· k1 p + �γ

k2 p + �γ
.

The first term is ≥ 1, thus,

r ≥ k1 pρ + �γρ

k2 pρ + �γρ
≥ k1 p

k2 p
= k1

k2

using the monotonicity of f (x) noted at the beginning of this section.
Now, consider reordering the product as

r = �(ρ + γ ) + k2 p

k2 p + �γ
· k1 p + �γ

�(ρ + γ ) + k1 p
.

Again, the first term is ≥ 1, therefore,

r ≥ k1 p + �γ

�(ρ + γ ) + k1 p
≥ �γ

�(ρ + γ )
= γ

ρ + γ

holds using, again, the monotonicity of f (x).
Combining the two inequalities above completes the proof. �

The implications of Proposition 4 on goals for the testing strategy are rather
important as they point out some hard limitations. Clearly, as

0.43 ∼ γ

ρ + γ
,

no matter our testing capacity or indicator symptom, we may not suppress the epi-
demic any further. As an example, if our current estimates for Rt are above 2.4,
then we cannot expect the pure indicator symptom-based testing strategy (without
contact-tracing) to be able to suppress the epidemic as 2.4 · 0.43 ∼ 1.03. Addition-
ally, as the indicator symptom limits our testing rate to k ≤ � = pI + σ , we obtain
another hard constraint, namely,

r ≥ k1
�

that is the ratio describing what proportion of the primary symptom pool is being
tested directly limits the factor which the effective reproduction number may be
decreased with via larger testing rates. Finally, we note that reordering the inequality
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yields k2 ≥ k1
r as a lower requirement for the required testing rate—given that the

reduction by factor r is achievable.
We have discussed from various aspects that increasing the testing rate k decreases

the effective reproduction number Rt that is it has a positive effect on the severity of
the epidemic. Nevertheless, this positive effect is gradually decreasing as described
by the following Proposition.

Proposition 5 Consider the logarithmic derivative of Rt w.r.t. the testing rate k that
is

R∗
t = ∂

∂k
log(Rt ).

Then, R∗
t is negative and monotonically increasing in k.

Proof Clearly,

R∗
t =

∂Rt
∂k

Rt
= −�ρp

(kp + �γ )(kp + �(ρ + γ )
≤ 0.

Then,
∂R∗

t

∂k
= (�ρp)(2kp + �p(ρ + 2γ ))

(kp + �γ )2(kp + �(ρ + γ )2
≥ 0

completes the proof. �

This logarithmic derivative is a measure of the relative change in Rt w.r.t. the testing
rate k. Proposition 5 states that the relative change is decreasing in absolute value as
k increases.

4 Numerical Simulations

This section presents the results from several numerical simulations demonstrating
the impact of the key parameters of the epidemic model (1). All simulations were
executed with a sample population of size 10,000,000 with initial conditions placing
1000 individuals into the class L and the rest into S.

First, Sect. 4.1 presents the numerical analysis of the control reproduction number
Rc. Then, we investigate the connection between the progress of an outbreak and the
positivity rate of testing in Sect. 4.2. We study the implications of maintaining a
constant force of testing τp,k,σ in Sect. 4.3. The significance of the seasonality of the
secondary symptom pool σ is analyzed in Sect. 4.4. Finally, in Sect. 4.5, we assess
how an increased testing rate may delay the progress of Covid-19.
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Fig. 2 The effect of indicator symptom-based testing on Rc for p = 0.25

4.1 The Effect of Testing on the Control Reproduction
Number Rc

The control reproduction number Rc, given in (4), describes the initial progress of
the epidemic at its very beginning. Figure2 demonstrates what effect of indicator
symptom-based testing has on Rc for various values of R0 and σ .

Clearly, largermaximal testing rate k results in lowerRc. The size of the secondary
symptom pool σ apparently greatly affects the decrease we may achieve by larger k.

4.2 The Progress of an Outbreak and the Positivity Rate θ

Recall that the positivity rate θ , see (3), is a key feature of the testing strategy thatmay
be readily observed during an outbreak. If the efforts aimed at suppressing Covid-
19 are not successful, the rate θ will increase as the term pI (t) will eventually
dominate the secondary symptom pool σ . Figure3 demonstrates that the changes in
θ are in close connection with the dynamics of I (t). This relationship between θ and
I (t) carries a certain benefit for the authorities as the increase of the positivity rate
precedes that of the epidemic curve, hence, it may serve as a primary indicator for
the progress of an epidemic.
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Fig. 3 Evolution of the positivity rate during outbreaks of different magnitudes. The prevalence
of the indicator symptom is p = 0.1 with a maximal testing capacity k = 10,000 and secondary
symptom pool σ = 10,000

4.3 Implications of Constant Force of Testing τ p,k,σ

As we have discussed in Sect. 3, a constant force of testing τp,k,σ is achieved by
testing a fixed portion of the primary symptom pool �, i.e. k

�
is constant. For an

ongoing epidemic this results in a constant increase in the required daily testing rate
k. We have analyzed the maximal required testing capacity w.r.t. Covid-19 patients
in Fig. 4.

Note that for constant τp,k,σ , the system (1) is independent of the secondary
symptom pool σ , thus, this requirement must be adjusted based on historical data on
the size of σ to obtain the total maximal required capacity.
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Fig. 4 Required testing capacity to maintain a constant force of testing τp,k,σ . The vertical axis
describes the desired portion for testing the primary symptom pool and the horizontal axis represents
the underlying basic reproduction number R0. The prevalence of the indicator symptom is set to
p = 0.1

4.4 Seasonality of the Secondary Symptom Pool σ

Now, let us investigate the epidemic curves in case of a periodically varying secondary
symptom pool. To that end, we employ a commonly used seasonality function

ω(t) = 365 · 10
b cos

(
2π(t−c)

365

)

∫ 365
0 10

b cos
(

2π(t−c)
365

)
dt

,

with b = 0.5 and consider σ = σavg · ω(t). The parameter c is used to model shift
in the seasonality, i.e. to analyze the differences between an outbreak starting at
minimal or maximal secondary symptom pools. The function ω(t) is displayed on
Fig. 5 for the case of minimal secondary symptom pool at time t = 0 that is for a
shift c = 183.

Figure6 demonstrates the effect of having seasonality in σ and the Covid-19
outbreak beginning around the minimal size of the secondary symptom pool. This
comparison shows that we may expect a slight, but notable, delay in this scenario
compared to the non-seasonal setting.
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Fig. 5 The seasonality function ω(t) with c = 183. This corresponds to minimal secondary symp-
tom pool at the beginning of an outbreak
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Fig. 6 The impact of seasonal σ with minimal size at the beginning of the outbreak. R0 = 1.9,
p = 0.1, k = 10,000, σ = 10,000. The blue curve corresponds to assuming a constant (average)
secondary symptom pool, whilst, the red curve depicts the effect of seasonality

A similar shift in the opposite direction takes place if we consider the beginning
of the outbreak to coincide with the maximal state of σ , see Fig. 7.
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Fig. 7 The impact of seasonal σ with maximal size at the beginning of the outbreak. R0 = 1.9,
p = 0.1, k = 10,000, σ = 10,000. The blue curve corresponds to assuming a constant (average)
secondary symptom pool, whilst, the red curve depicts the effect of seasonality

0 50 100 150 200 250 300 350

0

2×106

4×106

6×106

8×106

1×107

Days

N
o.
of
in
di
vi
du
al
s

Susceptible individuals

0 50 100 150 200 250 300 350

0

50000

100000

150000

200000

250000

300000

Days

N
o.
of
in
di
vi
du
al
s

Infected individuals

Fig. 8 The impact of increasing the testing rate from 1,000 (red) to 10,000 (blue) using parameters
R0 = 1.6, p = 0.1, 1, 000 ≤ k ≤ 10,000, σ = 10,000

4.5 The Effect of Varying the Testing Rate k

Increasing the testing rate k has a beneficial effect. We demonstrate this via transi-
tional plots on Fig. 8. Note that a larger maximal k both delays in time and decreases
in size the peak of the epidemic.

5 Conclusions

We have investigated the effects of indicator symptom-based testing on Covid-19.
The benefits of increasing the testing rate k are demonstrated, suggesting that, as
long as other logistical constraints allow, the authorities should aim to keep it as high
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as possible. The choice of the indicator symptom is of importance. We have shown
that not just its prevalence p should be taken into account but the size and seasonality
of the associated secondary symptom pool σ as well. Note that the analysis in this
chapter did not directly consider contact/transmission-reducing nonpharmaceutical
interventions (NPIs), i.e. curfew, closures of schools, wearing of masks, etc. Natu-
rally, these interventions would affect not just the spread of Covid-19, but of other
diseases, hence, potentially decreasing the secondary symptom pool σ as well. Such
NPIs may be fitted into the presented framework by varying the basic reproduction
number R0 and σ , as seen in Sect. 4.1.

The quality of tests was not considered. The false negativity rate could be easily
modeled by a reduction factor in k. Handling the false positivity rate is more involved
as susceptible individuals (susceptible to Covid-19, but still displaying the indicator
symptom, i.e.members of σ ) may be temporarily removed from the infectious chain
just to reappear later, after a precautionary quarantine. However, rRT-PCR-tests have
very high specificity, hence, false positives are rare.

We have modeled the transmission of Covid-19 using identical rates for the
presymptomatic P and symptomatic I classes. This choice is influenced by the
current understanding that according to the inferred infectivity profiles, the trans-
missibility prior to and after the onset of symptoms is of similar magnitude, and
the ratio of presymptomatic transmissions is almost 50% [3–5]. Nevertheless, using
different rates for the two compartments would not alter the computations heavily.

It is clear from the numerical simulations that indicator symptom-based testing,
alone, cannot prevent an outbreak. It has a modest effect in delaying and slowing
down the epidemic. Thus, symptom based testing alonemay have clinical importance
by providing guidance about how to treat a given patient, but its impact as epidemic
mitigation is negligible. Therefore, in practice, authorities should opt to perform
agile contact-tracing based on positive Covid-19 tests. The effect of this additional
intervention is not included in our analysis. Nevertheless, it is safe to claim that the
addition of contact-tracing would considerably increase the benefits of any testing
strategy, in particular, some individuals would get removed from the presymptomatic
compartment P and the latent compartment L aswell via additional testing or general
quarantine for contacts of Covid-19 patients with positive test result.

In summary, testing and isolation of cases is a key tool in combating the pandemic.
However, symptom-based testing alone is not sufficient to control Covid-19. To
significantly ease the disease burden on the society, it must be used in combination
with other measures.

Acknowledgements This work was done in the framework of the Hungarian National Devel-
opment, Research, and Innovation (NKFIH) Fund 2020-2.1.1-ED-2020-00003 and of the grants
TUDFO/47138-1/2019-ITM and EFOP-3.6.2-16-2017-00015. Some authors were also supported
by NKFIH KKP 129877 (J.K.), NKFIH FK 124016 (T.T.), János Bolyai Research Scholarship of
the Hungarian Academy of Sciences (F.B.).



Symptom-Based Testing in a Compartmental Model of Covid-19 375

References

1. WHO. Novel Coronavirus (2019-nCoV): situation reports. World Health Organization 2020.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

2. Vetter, P., Vu Diem, L., L’Huillier, A.G., Schibler, M., Kaiser, L., Jacquerioz, F., et al.: Clinical
features of COVID-19. BMJ 2020, 369: 1470. https://doi.org/10.1136/bmj.m1470

3. He, X., et al.: Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat.
Med. 26, 672–675 (2020). https://doi.org/10.1038/s41591-020-0869-5

4. Ashcroft, P., Huisman, J.S., Lehtinen, S., Bouman, J.A., Althaus, C.L., Regoes, R.R., Bon-
hoeffer, S.: COVID-19 infectivity profile correction. Swiss Med. Wkly, 150:w20336 (2020)
https://doi.org/10.4414/smw.2020.20336

5. He, X., et al.: Author Correction: Temporal dynamics in viral shedding and transmissibility of
COVID-19. Nat Med. 26, 1491–1493 (2020). https://doi.org/10.1038/s41591-020-1016-z

6. R. Mao et al.Manifestations and prognosis of gastrointestinal and liver involvement in patients
with COVID-19: a systematic review and meta-analysis. The Lancet 5(7), 667–678 (2020).
https://doi.org/10.1016/S2468-1253(20)30126-6

7. Docherty, A.B., et al.: Features of 16,749 hospitalised UK patients with COVID-19 using the
ISARIC WHO Clinical Characterisation Protocol. medRχ iv 2020.04.28. https://doi.org/10.
1101/2020.04.23.20076042

8. ECDC. Clinical characteristics of COVID-19. European Centre for Disease Prevention and
Control (2020). https://www.ecdc.europa.eu/en/covid-19/latest-evidence/clinical

9. Guan, W., et al.: Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J.
Med. 382, 1708–1720 (2020). https://doi.org/10.1056/NEJMoa2002032

10. Menni, C., et al.: Real-time tracking of self-reported symptoms to predict potential COVID-19.
Nat. Med. 26, 1037–1040 (2020). https://doi.org/10.1038/s41591-020-0916-2

11. CDC. Real-Time RT-PCR Panel for Detection 2019-nCoV. Centers for Disease Control and
Prevention 2020.01.29.

12. Lia, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying
total population size. Math. Biosci. 160(2), 191–213 (1990). https://doi.org/10.1016/S0025-
5564(99)00030-9

13. Feng, Z.: Applications of epidemiological models to public health policymaking: the role of
heterogeneity in model predictions. World Scientific (2014)

14. Péni, T., Csutak, B., Szederkényi, G., Röst, G.: Nonlinear model predictive control for COVID-
19 management. Nonlinear Dyn. in press

15. Yang, C., Wang, Y.: A mathematical model for the novel coronavirus epidemic in Wuhan,
China. Math. Biosci. Eng. 17(3), 2708–2724 (2020). https://doi.org/10.3934/mbe.2020148

16. Boldog, P., Tekeli, T., Vizi, Zs., Dénes, A., Bartha, F.A., Röst, G.: Risk Assessment of Novel
Coronavirus COVID–19 Outbreaks Outside China. J. Clin. Med. 9(2), 571. https://doi.org/10.
3390/jcm9020571

17. Berger, D.W., Herkenhoff, K.F., Mongey, S.: An SEIR infectious disease model with testing
and conditional quarantine. NBERWorking Paper No. 26901 (2020). https://doi.org/10.3386/
w26901

18. Weitz, J.S.: COVID-19 Epidemic Risk Assessment for Georgia. Github 2020.03.24. https://
github.com/jsweitz/covid-19-ga-summer-2020

19. Röst,G., et al.: Early phase of theCOVID-19outbreak inHungary andpost-lockdown scenarios.
Viruses 12(7), 708 (2020). https://www.mdpi.com/1999-4915/12/7/708

20. Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., Naumova, E.N.: Influenza seasonality:
underlying causes and modeling theories. J. Virol. 81(11), 5429–5436 (2007). https://doi.org/
10.1128/JVI.01680-06

21. Olson, K.L., Mandl, K.D.: Seasonal patterns of gastrointestinal illness. Adv. Dis. Surveill. 4,
262. http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2188.pdf

22. Giordano, G., et al.: Modelling the COVID-19 epidemic and implementation of population-
wide interventions in Italy. Nat. Med. 26, 855–860 (2020). https://doi.org/10.1038/s41591-
020-0883-7

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1136/bmj.m1470
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.4414/smw.2020.20336
https://doi.org/10.1038/s41591-020-1016-z
https://doi.org/10.1016/S2468-1253(20)30126-6
https://doi.org/10.1101/2020.04.23.20076042
https://doi.org/10.1101/2020.04.23.20076042
https://www.ecdc.europa.eu/en/covid-19/latest-evidence/clinical
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1038/s41591-020-0916-2
https://doi.org/10.1016/S0025-5564(99)00030-9
https://doi.org/10.1016/S0025-5564(99)00030-9
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.3390/jcm9020571
https://doi.org/10.3390/jcm9020571
https://doi.org/10.3386/w26901
https://doi.org/10.3386/w26901
https://github.com/jsweitz/covid-19-ga-summer-2020
https://github.com/jsweitz/covid-19-ga-summer-2020
https://www.mdpi.com/1999-4915/12/7/708
https://doi.org/10.1128/JVI.01680-06
https://doi.org/10.1128/JVI.01680-06
http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2188.pdf
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1038/s41591-020-0883-7


376 F. A. Bartha et al.

23. Barbarossa, M.V., et al.: Modeling the spread of COVID-19 in Germany: Early assessment and
possible scenarios. PLOS ONE 15(9), e0238559 (2020). https://doi.org/10.1371/journal.pone.
0238559

24. Lauer, S.A., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from pub-
licly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582
(2020). https://doi.org/10.7326/M20-0504

25. Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G.: The construction of next-generation matri-
ces for compartmental epidemic models. J. R. Soc. Interface 7(47), 873–885 (2020). https://
doi.org/10.1098/rsif.2009.0386

26. Chowell, G., Fenimore, P., Castillo-Garsow, M., Castillo-Chavez, C.: SARS outbreaks in
Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mech-
anism. J. Theor. Biol. 224(1). https://doi.org/10.1098/rsif.2007.1036

27. Cori, A., Ferguson,N.M., Fraser, C., Cauchemez, S.: A new framework and software to estimate
time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178(9), 1505–1512
(2020). https://doi.org/10.1093/aje/kwt133

28. Wallinga, J., Lipsitch. M.: How generation intervals shape the relationship between growth
rates and reproductive numbers. Proc. R. Soc. B: Biol. Sci. 274(1609), 599–604 (2020). https://
royalsocietypublishing.org/doi/full/10.1098/rspb.2006.3754

https://doi.org/10.1371/journal.pone.0238559
https://doi.org/10.1371/journal.pone.0238559
https://doi.org/10.7326/M20-0504
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1098/rsif.2007.1036
https://doi.org/10.1093/aje/kwt133
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2006.3754
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2006.3754


Challenges in Modeling of an Outbreak’s
Prediction, Forecasting and Decision
Making for Policy Makers

Altaf H. Khan

Abstract In this work an attempt has been made to review the current state of arts
in epidemiological modeling, assessment of predictive models as well as forecast-
ing of new pathogen. The primary concern is the containment of the outbreak from
wide spread of the disease among the whole population. This article also focuses for
the development of management tools and techniques in decision making for policy
makers that are based on scientific evidence. Moreover, the identification, detec-
tion and reporting for outbreak of an infectious disease particularly a new pathogen
in timely manner is quite challenging and tedious. Apparently understanding and
reporting of such events are commonly rely on statistical and mathematical tools and
both these approaches commonly depend upon a priory estimates as well as some
reliable data. For example: statistical models requires a sizable number of events to
develop predictive models, which is impossible at the outset of an outbreak of the
disease to collate enough number of samples. Whereas, the mathematical models are
reliable as well as have better predictive behavior, but they also require better initial
guess apart from some rigid constraints to fully satisfy the model’s assumptions.
Apart from these issues, the other important features to study in epidemiology of the
disease is how fast and quickly the scientific community promptly can pinpoint and
able to address any causal factor which may suffice to account for the magnitude and
severity of the epidemics of new pathogen that may have been taken place to any
geographic locations. Hence in this work, first of all the SIR model (susceptible: S,
infected: I, and recovered: R) will be outlined, as it is the most commonly usedmodel
in epidemiology of infectious diseases. Moreover, the applicability and utilization of
R0 in public health domain especially adaptive policy with management tools will be
developed for the healthcare workers as well as the higher management of healthcare
facility.
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1 Introduction

The infectious diseases related acute respiratory infections (ARIs) are the primary
source ofmorbidity andmortality around theworld, since each and every year approx-
imately 5 to 6 million people die due to ARIs, and 98% of these deaths are due to
lower respiratory tract infections see: Fig. 1 (the percentage of fatality rate on log-
scale for some influenza types are shown, Source: New York Times). Mortality rates
are higher among infants, children, and the elderly, and it’s commonly prevalent
in low-income and middle-income countries [6–8]. Influenza may also cause of an
increase risk of strokes and heart attacks apart from disease complications [9–11].
The emergence of the current outbreak of the new pathogen started from Wuhan
City, Hubei Province, China. This new outbreak cases were reported in the I st week
of December, 2019, and the World Health Organization (WHO) on December 31,
2019 had declared this new pathogen as a ’Global-Pandemic’. It was soon identified
as a novel coronavirus and termed as Covid-19, and belongs to the family of viruses
that include the common cold and viruses such as SARS and MERS. On January 20,
2020, this has been also confirmed that the coronavirus can be transmitted between
humans, and has wider risk of spread globally. Hence, the identification, detection
and reporting for outbreak of an infectious disease particularly a new pathogen in
timely manner is vital for the safety of general public health. Apparently reporting
of such events are quite challenging and difficult, since it requires a complete under-
standing of the new pathogen. And to comprehend and stop from spreading any new
such vicious viruses (like Covid-19) commonly rely on statistical and mathematical
tools. Both these approaches commonly depend upon a priory estimates and some
reliable data. For example: statistical models requires a sizable number of events to
develop predictive models, which is impossible at the outset of an outbreak of the
disease to collate enough number of samples. Whereas, the mathematical models are
reliable as well as have better predictive behavior, but they also require better initial
guess apart from some rigid constraints to fully satisfy the model’s assumptions.
Apart from these issues, the other important features to study in epidemiology of the
disease is how fast and quickly the scientific community can pinpoint any causal fac-
tor which may suffice to account for the magnitude and severity of the epidemics of
new pathogen that may have been taken place to any geographic locations.Moreover,
some commonly utilized modeling tools in infectious diseases will be outlined here,
whereas taking into account the primary aim of infectious disease modeling is: (i) to
understand the mechanisms of spread, (ii) to estimate the time period of the latent
and infectious periods, and (iii) the size of the epidemic, and the main focus is to
determine strategies for disease control. Some of the commonly utilized approaches
to model epidemic diseases are briefly outline here:
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Fig. 1 The figure describes the percentage of different respiratory syndromes,the percentage of
fatality rate is log scale: (Source New York Times)

1.1 Deterministic Compartmental Models (DCMs)

The DCMs based models are based on systems of differential equations which take
into account the movement of the population through discrete states, including entry
into and exit from the population, at specified rates. DCMsmodels are the most com-
monly used in the field ofmathematical epidemiology, and can be solved analytically,
or using numerical analysis. They can represent discrete forms of heterogeneity in the
population. With DCMs, once the structure and parameters have been set explicitly,
then there is no variation in model outcomes. In 1776, Daniel Bernoulli developed
a model to analyze the life expectancy and death rates based on the inoculation or
variolation in a public health enivironment, see: Dietz (2000) [37]. Some other sci-
entists, for example namely: Philip-Charles Alexandre Louis, William Farr, Ronald
Ross hadmade tremendouswork in epidemiological sciences. Lately, epidemiologist
now applying and utilizing new computational algorithms to analyze the infectious
diseases based on modeling, and simulation of the dynamics of disease generation
and propagation, see: Koopman (1996) [38].

1.2 Stochastic Individual Contact Models (ICMs)

The stochastic individual contact models (ICMs), also known as individual-based or
agent based models, explicitly represent individual units in the population and the
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Fig. 2 Visual display of a
two-dimensional
agent-based model. Each
square represents an
individually programmable,
mobile agent. Color-coding
allows easy visual tracking
of agents with different
properties. Source https://
www.ncbi.nlm.nih.gov/
books/NBK221490/figure/
mmm00027/?
report=objectonly

contacts between them are unique with discrete events. In contrast to DCMs, they
allow heterogeneity while specifying the contact process and other epidemiologi-
cally relevant events, and their stochasticity provides information on the range of
plausible outcomes resulting from a given set of parameters. The setbacks with these
models are they may require large amounts of input data that is needed for param-
eterization as well as the computational burden associated with running multiple
stochastic simulations. Agent-based modeling are used extensively in biology such
as: spread of epidemics, population dynamics, stochastic gene expression, plant-
animal interactions, vegetation ecology, as well as modeling 3D breast tissue forma-
tion/morphogenesis etc. They are agent-based computational models using computer
programs in which a population of individual entities is created, and each individual
is endowed with simple rules for interactions with the environment and with other
individuals, see: Holland (1995) [41]. They are used to model all manner of complex
scientific phenomena. Some important studies had used the agent-based modeling to
examine infectious diseases (e.g., influenza) and the immune response, see: Hofmeyr
and Forrest (2000), [40]. For example, the Swarm Development Group (ref: http://
www.swarm.org/wiki/Main_Page) had made the development of a wide variety of
infectious disease modeling using the agent-based modeling, see: Figure 2 display
of two-dimensional agent based model.

https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00027/?report=objectonly
http://www.swarm.org/wiki/Main_Page
http://www.swarm.org/wiki/Main_Page
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1.3 Network Models

Network models are also stochastic and represent individual units, but unlike ICMs,
they providea flexible framework for representing repeated contacts with the same
person or persons over time. These repeated contacts may give rise to persistent
network configurations for example: pairs, triples, and larger connected components
which in turn establishes the temporally ordered pathways for infectious disease
transmission across a population. The R-package ’EpiModel’ is a good tools for
simulation of models for network analysis. It provides a generalized framework for
both estimation and simulation of dynamically evolving networks. Network models
provide the most accurate control over the contact process, but have greater com-
putational burden than ICMs, both because they require statistical estimation of the
network model parameters. Network models offer a versatile means of capturing
heterogeneity in populations during an epidemic. In this approach, highly connected
individuals tend to be infected at a higher rate early during an outbreak than those
with fewer connections, see: Romanescu and Deardon [39]. Figure3 shows the rep-
resentation of evolving bit strings in a fitness landscape, and its clear that network
models inspired by the Internet will productively inform the modeling of microbial
pathogen networks, Albert et al. (2000) [42], Pastor-Satorras and Vesignani (2001)
[43], and Lloyd and May (2001) [45]. As we know that the social networks had
made a major role to determine the rate and pattern of epidemic spread of microbial
diseases in human societies. Although it had been primarily focused in the role of
population heterogeneity and sub-networks to study the spread of sexually trans-
mitted diseases, especially HIV/AIDS. However, not too much attention had been
paid in role of network topology to monitor the spread of other infectious diseases.
Currently, computer scientists as well as physicists are more concerned about the
spread of infectious agents, for example: computer viruses, worms, etc., through the
Internet and the World Wide Web. This had made the development of new interest in
network topology that have evolve as a revolution in network modeling, see Fig. 3,
for references see the work of Barabasi (2002) [44], and Watts (1999).

1.4 Harmonic Decomposition Analysis

It should be noted that the biological scientists particularly in health-care’s though
were lagging behind to utilize sophisticated mathematical tools such as: Fourier
transform as well as the wavelets theory, etc. but now these powerful analytical tools
are also utilized by them for example: Fourier analysis has been used to decompose
dengue and malaria data sets to reveal the weather-independence of interepidemic
variability, Rogers et al. (2002) [47]; Hay et al. (2000) [48]. The power of wavelet
analysis is evident as it was used to decomposemeasles epidemic harmonics to reveal
recurrent spatial spreading patterns which were not evident in the undecomposed
epidemic data, see Fig. 4 . With this successes the decompositional technique made
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Fig. 3 Internet routing map (80,000 nodes). See http://www.cs.bell-labs.com/~ches/map/

Fig. 4 Continuous wavelet transform decomposition of 1928–1964 Baltimore measles time series
data showing that the incidence curve is decomposable into a shorter component with a periodicity
of 12 months, and a longer component with a variable periodicity of 24–36 months. The longer
component correlates closely with changes in birth rates. Source https://www.ncbi.nlm.nih.gov/
books/NBK221490/figure/mmm00026/?report=objectonly

it possible to analyze and explain the dynamics of many infectious diseases, see:
Grenfell et al. (2001) [49]; Strebel and Cochi (2001) [50].

http://www.cs.bell-labs.com/~ches/map/
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00026/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00026/?report=objectonly
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Fig. 5 Representation of evolving bit strings in a fitness landscape. In this example populations of
strings are shown as dots colonizing local fitness optima in sequence space, Source https://www.
ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly

1.5 Digital Microbes

The last decade had seen a see change after it’s initial downfall in early nineties that
evolutionary techniques would now be incorporated into machine learning, artificial
intelligence, and computer programming. The genetic algorithms is the first and
now a standard evolutionary computational technique—code strings are iteratively
mutated, recombined, and selected for fitness, just as if they were nucleic acid strings
evolving in nature, Burke et al. (1998) [51], see Fig. 5. This algorithms are widely
employed to solve practical computationally intensive problems, such as protein
folding, but only a few studies have appeared in which evolving code strings are
used to simulate microbial evolution and adaptation. Preliminary studies suggest
that the rules governing code string evolution may be independent of the stuff from
which the evolving code strings are made, and that experiments on digital microbes
with code string evolution and epidemiology “in silicon” may be a productive way to
understand and solve problems that are difficult to study in nature, Ray (1995) [52];
Wilke et al., Adami et al. (2000) [53]; Radman et al. (1999) [54].1

In following sections: SIR model (susceptible: S, infected: I, and recovered: R)
based on ordinary differential equations (ODEs) will be outlined, and it is the most

1 Agent based, network based, harmonic decomposition analysis, and digital microbes notes were
adopted from: Computational Modeling and Simulation of Epidemic Infectious Diseases Donald S.
Burke (M.D.) Bloomberg School of Public Health, Johns Hopkins University (USA), and appendix
from:Microbial Threats toHealth: Emergence,Detection, andResponse (2003),NationalAcademic
Press.

https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK221490/figure/mmm00029/?report=objectonly
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commonly used model in epidemiology of infectious diseases. The basic reproduc-
tion number known as: R0 pronounced as R-naught will be estimated for the basic
SIR and the extended SIRmodels and computed estimates of R0 will be compared in
different scenarios as well as computational algorithms will be outlined for solving
SIR model. Next, the stochastic modeling will be briefly discussed.The applicability
and utilization of R0 in public health domain especially adaptive policy with man-
agement tools will be described for the healthcare workers as well as for higher
management of healthcare facility.

2 Mathematical Modeling: The Basic SIR Model

The basic compartment models are: SIS, SIR, and SEIR, where the different com-
partments are symbolically denoted as letters S, E, I, and R. S: individual subjects in a
population are susceptible to the disease, similarly E, I, and R mean that subjects are
exposed (E), infected (I) from the disease and able to transmits to others, and R com-
partment signifies subjects have recovered from the disease, immune or have died.
The disease parasite or virus dictates the choice or selection of the compartments and
depends on the characteristics of the particular disease.It ought to be also noted that
the inclusion of too many compartments into the model could be computationally
intensive as well as tedious apart from risk of making unreliable prediction as well
as may pose greater challenges in policy and decision making.

Historically, Daniel Bernoulli had formulated and solved a model for smallpox in
1760, and based on this he evaluated the efficacy by inoculating on healthy subjects
the smallpox virus [12]. A discrete time model by Hamer in 1906 was formulated
to understand the recurrence of the outbreak of measles [13]. Sir Ronald Ross was
awarded the Nobel Prize, as he had developed a mathematical model for malaria as a
host-vector disease in 1911 which was based on the differential equation differential
[14]. Another interesting model was developed by Kermack and McKendrick [1] on
epidemic models and introduced the threshold result that the density of susceptible
must exceed a critical value in order for an epidemic outbreak to occur [8].Moreover,
recent development in mathematical modeling are numerous such as passive immu-
nity, gradual loss of vaccine [3] and disease-acquired immunity, stages of infection,
vertical transmission, disease vectors, vaccination, quarantine, social and sexualmix-
ing groups and age structure [15–21]. The SIS, SIR, and SEIRmodels are graphically
shown in Fig. 1. In SIR modeling the population is divided into three groups namely:
(i) the group of individuals who are not infected and susceptible (S) of catching the
disease, the group of individuals who are infected (I) by the concerned pathogen, and
(iii) the group of recovered (R) individuals who have acquired a permanent immunity
to the disease. Some of the basic ideas, assumptions, transmission, and recovery for
an SIR model (adopted from [22]) are summarized in Table 1. Moreover, a system
of differential equations for an SIR model for three compartments are modeled as
follows:
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Fig. 6 The compartmental
model: S represents the
group of the subjects not
infected and susceptible to
the risk of the disease, I is
the group of the subjects are
infected by the new
pathogen: virus or bacteria
and R are those group of
people who recovered and
acquired immunity from the
new pathogen

dS

dt
= −β I S (1)

d I

dt
= −β I S − γ I (2)

dR

dt
= −γ I (3)

where in the above equations: S denotes the number of susceptible, I the number of
infected individuals and R the number of immune individual at time t, and the total
population is given by: N = S + I + R is constant by assumption as we have: dN

dt =
dS
dt + d I

dt + dR
dt = 0. In equations (1) and (2): the first term β I S represents the disease

transmission rate by contact between susceptible and infected individuals. This rate
is assumed to be proportional to the sizes of both groups with a proportionality
coefficient β and equations (2) and (3) the parameter γ is the specific rate at which
infected individuals recover from the disease. For example: consider an epidemic
outbreak in a population where, at the initial time, only a few individuals are infected,
then the initial conditions for SIR model can be assumed as: S(0) ≈ N , I (0) =
N − S(0) ≈ 0, R(0) = 0.

2.1 Phase Analysis

Sometimes, it’s desired to have the dynamics in the phase-plane via deriving the
isocline’s and divide the plane into regions of increase and decrease of the various
state variables. The phaseR package is a wrapper around ode that makes it easy
to analyze 1D and 2D ode’s. The R-state in the SIR model does not influence the
dynamics, so we can rewrite the SIR model as a 2D system. So divide equation (1)
by (2) gives the ODE:
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Fig. 7 The phase-plane diagram for the SI model

dS

d
I = −βSI

βSI − γ I
(4)

The solutionof the aboveODEcanbe foundanalytically, using separationof variables
the above equation can be rewritten as (for I > 0):

∫
βS − γ

βS
dS = −

∫
d I (5)

After integrating the above equation and for every t ≥ 0

I (t) + S(t) − γ

β
logS(t) = I (0) + S(0) − γ

β
logS(0) (6)

The above expression gives the solutions (S(t), I(t)) in the S-I plane contains the level
curves of the function (S(t); I(t)) viewed in the S–I plane (orbits) are contained in
the level curves curves of this function F(S; I ) = I (t) + S(t) − γ

β
logS(t), and it’s

shown in Fig. 7.

2.2 Endemic of the Disease

The above SIRmodel describes the long term state of the epidemic. The questionmay
naturally arise: “How long the pandemic may last?”. It should be noted that always
there will be a some portion of the population of susceptible individuals can never
get infected. Mathematically, this can be answered by the SIR model by dividing Eq.
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Fig. 8 The stochastic model
for the endemic of the
disease based on SIR
branching approximation

(1) by Eq. (3), and integrating with respect to R, we have

S(t) = S(0)e−R(t)R0 (7)

From the above expression S(0) will be always positive, whereas the exponential
term R(t)R0 has negative sign, ultimately there will no susceptible individual get
infected over the time, and pandemic will be ceased to an end. Using stochastic SIR
branching approximation and the MultiBD an R-package https://cran.r-project.org/
web/packages/MultiBD/.

2.3 Computational Methods for Solving SIR Model

The SIRmodel’s equations can be solved numerically using: Explicit time, Backward
Euler, and Crank-Nicolson discretization schemes. The Explicit time discretization
are explicitODE(ordinarydifferential equation)methods, for exampleForwardEuler
scheme, Runge-Kutta methods, Adams-Bashforth methods, and all these schemes
evaluate the function at time levels. The Backward Euler method is an implicit
method, also used to solve ODEs. The Crank-Nicolson method is based on the finite
difference scheme and commonly used to solve ODEs/PDEs, and is a 2nd order
method in time. This method is implicit in time and can be written as an implicit
Runge–Kutta method, and this method has numerically stability. Rewriting the SIR
model as follows:

S′ = −βSI (8)

I ′ = βSI − γ I (9)

R′ = γ I (10)

whereS(t) , I(t), andR(t) are susceptible, infected and recovered respectively,whereas
the constants, β > 0 and γ > 0 should be given as the initial conditions: S(0), I(0),

https://cran.r-project.org/web/packages/MultiBD/
https://cran.r-project.org/web/packages/MultiBD/
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Table 1 The assumptions for SIR model (Source lecture notes by V. A. Bokil, “Mathematical
Modeling and Analysis of Infectious Disease Dynamics”)

SIR model’s basic assumptions transmission, and recovery

Basic ideas and assumptions Transmission assumptions Recovery assumptions

1. Populations under study are
divided into compartments.

1. β is the average number of
adequate contacts (i.e.,
contacts sufficient for
transmission) of a person per
unit time.

1. A fraction α of infectives
leave the infective class in unit
time.

2. Rates of transfer between
compartments are expressed
mathematically as derivatives
with respect to time of the
sizes of the compartments:
systems of ordinary
differential equations

2. β I
N is the average number of

contacts with infectives per
unit time of one susceptible.

2. There is no entry or
departure from the population
except possibly through death
from the disease.

3. The community size is
constant over the duration of
the epidemic and is a large
number, N

3. ( β I
N )S is the number of new

cases per unit time due to the S
susceptibles. (Horizontal
Incidence)L

4. The infection is transmitted
primarily by person-to person
contacts (e.g., measles)

5. Individuals are
homogeneous and mix
uniformly.

Ignore demography, i.e., births
and deaths

and R(0). Now, applying the Implicit time discretization for the Crank-Nicolson
scheme will make a 33 system of non-linear algebraic equations in the unknowns as:
Sn+1, I n+1, and Rn+1, and they are written below

Sn+1 − Sn

�t
= β[SI ]n+0.5 ≈ 0.5β(Sn I n + Sn+1 I n+1) (11)

I n+1 − I n

�t
= β[SI ]n+0.5 − γ I n+0.5 ≈ 0.5β(Sn I n + Sn+1 I n+1) − 0.5γ (I n + I n+1)

(12)

Rn+1 − Rn

�t
= γ I n+0.5 ≈ 0.5γ (I n + I n+1) (13)

Denoting S for Sn+1, S(1) for Sn , I for I n+1, I (1) for I n , and R for Rn+1, R(1) for Rn ,
now writing the system of equations as
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FS(S, I, R) = S − S(1) + 0.5�tβ(S(1) I (1) + SI ) = 0 (14)

IS(S, I, R) = I − I (1) − 0.5�tβ(S(1) I (1) + SI ) + 0.5�tγ (I (1) + I ) = 0 (15)

RS(S, I, R) = R − R(1) − 0.5�tγ (I (1) + I ) = 0 (16)

Applying Picard’s iterative approximation method and assume that Ŝ, Î and R̂, for
S, I, and R as to linearize the non-linear terms., and solving the above equations with
respect to the unknowns: S, I, and R.

S = S(1) − 0.5�tβS(1) I (1)

1 + 0.5�tβ Î
(17)

I = I (1) + 0.5�tβS(1) I (1) − 0.5�tγ I (1)

1 − 0.5�tβ Ŝ + 0.5�tγ
(18)

R = R(1) − 0.5�tγ (I (1) + Î ) (19)

The non-linear system of equation (10), (11), and (12) can be written as G(u) = 0,
where G =GS,GI ,GR), so the Jacobian can computed as

J =
⎡
⎣

∂GS
∂S

∂GS
∂ I

∂GS
∂R

∂GI
∂S

∂GI
∂ I

∂GI
∂R

∂GR
∂S

∂GR
∂ I

∂GR
∂R

⎤
⎦ =

⎡
⎣1 + 0.5�tβ I 0.5�tβS 0

0.5�tβ I 1 − 0.5�tβS + 0.5�tγ 0
0 0.5�tγ 0

⎤
⎦ (20)

Updating after each iteration with new updates, using Newton method to solve the
Jacobian as an algebraic equation, the solution could be obtained for unknowns S, R,
and R. Moreover, for the above SIR model, an explicit time integration approaches
work well, the 4th order Runge-Kutta method is a suitable choice since it is efficient,
accurate and is based on the simple algorithms. Moreover, in order to fit the model
with the observed or real data, broadly, two things need to be taken into account, first
a solver for the system of differential equations and an optimizer. For solving DEs the
function’ode’ from the’deSolve’ an R package, and to optimize’optim’ function from
base R; both these functions are also available in other softwareMATLAB,MAPLE,
R andMathematica (computational packages). So tominimize the sumof the squared
differences between the number of infected I at time t and the corresponding number
of predicted cases by our model ˆI (t).

RSS(β, γ ) =
∑
t

(I (t) − Î (t))2 (21)

Using these tools from COVID19.analytic and R-package, the estimated cases for
susceptible,infected, and recovered are shown below in Fig. 9, the plots on the right
side are on semi-log- scale, the plots show that the model fit with the observed data
quite well.
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Fig. 9 Based on the SIR model the susceptible, infected, and recovered cases for Saudi Arabia is
shown right hand side graphs on log-scale

Moreover, if the graphical plots do not fit well due to algorithm does not converge
to the optimal solution. The reason could be the’optim’ stops too early before it
could not find an appropriate solution. Now, further explore the’optim’ algorithm, the
optim function uses the gradient algorithms such as:” “BFGS (by Broyden, Fletcher,
Goldfarb and Shanno)”, “CG (Fletcher andReeves developed the conjugate gradients
method” and “L-BFGS-B (method is by Byrd et al.)” methods. as well as a finite-
difference approximation algorithms. These gradient based algorithmsmay try to find
an optimum estimate via repeatedly improving the current estimate and finding a new
solution with a lower residual sum of squares (RSS) each time. Gradient methods do
this by computing for a small change of the parameters in which direction the RSS
will change the fastest and is based on the linear search approach.
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2.4 Estimating the Reproducing Number R0

The basic reproduction number was introduced in 1886 by (the Director of the Sta-
tistical Office of Berlin) Richard Bockh, see: [23] and [24]. The basic reproduction
number also commonly known as R0 pronounced as ’R-nought’ could be defined
as the expected number of secondary cases produced by a single individual infected
subject in a completely susceptible population [25]. It is a dimensionless number
and not a rate. We can use the fact that R0 is a dimensionless number to help us in
calculating it

R0 ∝
(
in f ection

contact

)
×

(
contact

time

)
×

(
t ime

in f ection

)
(22)

R0 can be estimated from the above SIRmodel’s equations (1) to (3), since it depends
on the transmissibility, contact rates and expected duration of infection. Based on the
model’s assumption the population N is closed have N number of subjects, whereas
number of susceptible S and infected I , and R subjects are removed, So rewriting
the SIR model in terms of proportion, we have

ds

dt
= −βis (23)

di

dt
= −βis − γ i (24)

dr

dt
= −γ i (25)

where s = S
N , i = I

N , and r = R
N . The trajectory of the system solution in the I − S

plane is presented in Fig. 2; from this the existence of a ’threshold effect’ can be
observed. The maximum value of the curve occurs at S = γ

β
. It implies that an

epidemic will start and amplify only if S(0) ≈ N is larger than γ

β
, or equivalently if

R0 = Nβ

γ
> 1

So under this condition, the number of infectious people will increase until the num-
ber of susceptible is reduced to γ

β
and will decrease thereafter. Thus the number R0

represents a threshold for an epidemic to happen, and this number is also commonly
known as ’basic reproduction ratio’, since it represents the average number of sus-
ceptible which are contaminated by one infectious person. now divide Eq.2 by 1, we
get:

d I

dS
= (

γ

βS
− 1)
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Integrating this equation, we get:

I = γ

β
logS − S + C wi th C ≈ N − γ

β
logN

From the above equation, the instantaneous maximum number of infectious subjects
can computed as:

Imax = N (1 − 1 + logR0

R0
)

The trajectory terminates on the S-axis at a positive value as shown in Fig. 7, which
can be seen from Eq.4 that I must vanish at some positive value of S. So the epidemic
terminates before all susceptible have become infected and some individual subjects
escape the new pathogen completely. Further, we can estimate howmany susceptible
subjects remain or equivalently the final value R(∞) of immune population size.
Divide Eq.2 by Eq.3, so we have:

dS

dR
= −β

γ
S =⇒ S(R) = S(0)e− β

γ
R ≈ Ne− β

γ
R

So
dS

dt
= γ I = γ (N − S − R) = γ (N − Ne− β

γ
R
)

Therefore

t → ∞ =⇒ I → 0 =⇒ dR

dt
= 0 =⇒ N [1 − e− β

γ
R(∞)] = R(∞) (26)

Eq.5 has unique solution R(∞) between 0 and N as long as R0 > 1. Denote
x = R(∞)

N the fraction the population that has contracted the disease before the epi-

demic collapses. SolvingEq.5,we have: R0 = log(1−x)
x , and R0 estimates for different

pandemics are shown in Fig. 10, see: https://www.the-scientist.com/features/why-
r0-is-problematic-for-predicting-covid-19spread-67690ga=2.205136600.9300868
60.1594988120-662736184.1594988120.

2.4.1 Challenges and Issues in Estimating R0

As above an estimate for R0 is described for an SIR model, and has been called
“arguably the most important quantity in the study of epidemics”. Since it’s playing
a vital role as well as desiderata especially for public health professionals in their
decision and policy making. Hence, it’s very crucial and important to produce accu-
rate and reliable estimates of this quantity R0. This quantity precisely presents the
whole outbreak of a disease, and it assess the magnitude and severity as well as helps
to quantify the percentage of the population needed to be vaccinated to avoid the

https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
https://www.the-scientist.com/features/why-r0-is-problematic-for-predicting-covid-19 spread-67690ga=2.205136600.930086860.1594988120-662736184.1594988120
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Fig. 10 R0 estimates for different pandemic is shown adopted from The Scientist an article by
Katarina Zimmer, July13, 2020

epidemic roughly as 1 − 1
R0

is utilized to estimate final size of the total number of
infected individuals; and is related to the probability of observing an outbreak under
the same conditions (Anderson and May, 1992; Britton, 2010). Although there is an
explicit definition of R0, it is still difficult for an epidemiologists to standardize an
estimator for R0 (Hethcote 2000). An obvious issue in quantifying an estimate for
R0 is that it’s solely depend on the property of the disease model apart from the com-
monly encountered noises inhibit in statistical models as well assumptions made by
the researchers about the disease which had been transmitted in a population (Brown,
Oleson, & Porter, 2016; Diekmann, Heesterbeek, & Roberts, 2009). To develop a
good estimate for R0 numerous research works had been done and the difficulties
and nuances that’s involved in estimating R0 can be found in Diekmann et al. (2009)
[26], Heathcote [21], and Van den Driessche (2017), [27]. Based on eight different
approaches Gallagher, et al. [25] had discussed the nuances pertaining in estimating
R0 for the 2009 pandemic influenza. The authors utilized the basic SIR model by
adding the random into the model, and adding the noise the new compartment model
as an stochastic model, and the expression with “hats” and without “hats” are distin-
guishes as stochastic and deterministic in equations (as observations were generated
from the ODEs), are noises are given as below:

ˆS(t) = S(t) + εS,t (27)

ˆI (t) = N − ˆS(t) − ˆR(t) (28)

ˆR(t) = ˆR(t) + εR,t (29)
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where and εS,t and εR,t are the random noises in the model. Moreover, Gallagher, et
al. [25] has utilized the above Eqs. 28-30 to estimate the R0 by the data generated
from these equations as follows:

Data = { ( ˆS(t) = s(t), ˆI (t) = i(t), ˆR(t) = r(t)
)

: t = t0, t1, ..., tT
}

(30)

R̂0 = m(Data) (31)

where m is a function of the data, and the eight models by these authors have been
briefly outlined and their comparison of estimates for R0 for the pandemic influenza
is shown in Table2.

• Exponential Growth(EG)
The effective reproduction number R0 and hence the initial reproduction number
R0, was derived by Wallinga and Lipsitch (2007) [31] on the hypothesis that
“counts increase exponentially in the initial phase of an epidemic.” So to estimate
r, the per capita change in the number of new cases per unit of time andω the serial
interval, the distribution of time between a primary and secondary infection, then,
R0 = erω. This equation is based on the Lotka-Euler survival model, commonly
utilized in demography, ecology as well as evolutionary biology. Expanding this
equation R0 = erω by using Taylor series expansion up to first order to estimate R0,
whereas in Nishiura, Chowell, Safan, and Castillo-Chavez (2010) [32] had derived
it’s variant. This approach assumes an exponential growth during early phase as
well as the occurrence of initial phase growth. The model has an advantage since
it relies on estimates of the number of susceptible, how and when such a method
should be used because of the initial growth assumption, Nishiura et al. (2010) [32]
had given some guidelines. Moreover, there are several adjustments that could be
done to this approach, for example: Wallinga and Lipsitch (2007) [31] describes to
estimate R0 by assumingω a random variable, whereas Obadia, Haneef, & Boëlle,
(2012) [33] assumed that r has it’s own distribution.

• Ratio Estimator (RE)
The second approach the Gallagher et al. applied to the SIR model is to minimize
the joint mean square error for the data collected at each time point:

(β̂, γ̂ ) = argminβ,γ

∑
t

[
(s(t) − S(t;β, γ ))2 + (i(t) − I (t;β, γ ))2 + (r(t) − R(t;β, γ ))2

]
(32)

So the equation for the ratio estimator (RE) for R0 will be as:

R̂0 = β̂

γ̂
(33)

The above estimate could be found for the β and γ either with optimization algo-
rithm or grid search methods.

• Re-parameterized Ratio Estimator(rRE)
As the approach used to estimate β and γ to compute R0 can also be estimated
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by simply reparametrization of ODEs directly with R0 via using the relationship
R0 = β

γ
, and we have:

(R̂0, γ̂ ) = argmin0,γ
∑
t

[
(s(t) − S(t; R0, γ ))2 + (i(t) − I (t; R0, γ ))2 + (r(t) − R(t; R0, γ ))2

]

(34)
The above estimate can again be found either grid search algorithmor optimization
tools.

• Log Linear (LL)
In Log-Linear model, the SIR model was reduced to ODEs by Harko, Lobo, and
Mak(2014) [34] in two ODEs with one constraint for each equations as follows:

log

(
S(t)

S(0)

)
= −R0

R(t)

N
(35)

and estimated the R0 as below:

R̂0 = −
∑T

t0
log

(
S(t)
S(0)

)
∑T

t0
R(t)
N

(36)

• Markov Chain (MC)
Based on Reed-Frost model Abbey(1952) [35] using the Reed-Frost Chain Bino-
mial which as specific form of I(t), the number of infected individuals at time point
t. So we have

ˆS(t) = Ŝ(t − 1) − ˆI (t) (37)( ˆI (t)|Ŝ(t − 1), Î (t − 1)
)

∼ Binomial
(
Ŝ(t − 1), 1 − (1 − α) Î (t−1)

)
(38)

ˆR(t) = R̂(t − 1) + ˆI (t) (39)

Using the likelihood method and the optimization tools, R̂0 can be obtained as:

R̂0 = log

(
1

1 − α

)
(40)

• Likelihood-Based Estimation (LBE)
Using the likelihood based estimate the R0 is given by see for detail Gallagher et
al. [25]

R0 = β̂

γ̂
(41)

• Incidence to Prevalence (IPR)
The incidence to prevalencemethodwas described byNishiura andChowell (2009)
[32], the estimate for R̂0 is:
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Table 2 Comparison of R0 estimates for 2009 influenza, SourceExploring the nuances of R0: eight
estimates and application to 2009 pandemic influenza, by Shannon Gallagher, Andersen Chang,
and William F. Eddy (a preprint), March 25, 2020

Estimation of R0 using eight models: a comparison

Methods SEIR R0 (SE) SIR R0 (SE)

EG 1.001 (<1e-04) 1.002 (2e-04)

RE 1.977 (0.0161) 1.767 (0.137)

rRE 1.977 (0.0162) 1.767 (0.0795)

LL 1.989 (0.021) 1.789 (0.0042)

MC 1.31 (0) 1.619 (0)

LBE 1.893 (0.0135) 1.742 (5.5501)

IPR 4.254 (0.8687) 1.177 (0.9889)

LMA -0.645 (2.5491) 2.565 (0.175)

R̂0 = 1

γ
· I P R(t∗) (42)

• Linear model approximation (LMA)
Chen and Li, 2009; and Hu, Teng, andLong (2014) [36] described method to
estimate R̂0 by applying the linear approximation of theKermack andMcKendrick
SIRmodel, this emthod is further extended by Gallagher et al. [25], so the estimate
for R0 is given as:

R̂0 =
ˆS′(0)
ˆR′(0)

· N
ˆS(0)

(43)

2.4.2 Next Generation Method: R0

As R0 is the number of secondary infections in which a single individual subject
is infected in a population. The issue is: how we deal if there were multiple types
of infected subjects; for example malaria which is vector-borne disease or sexually
transmitted disease (HIV). Such type pf problems can be handled using the structured
epidemic models, the basic idea is simply average the expected number of new
infections over all possible infected types. Now assuming that a system havemultiple
discrete type of infected individual subjects. Now introducing a ’next generation
matrix’ as square matrix G, and the elements of this matrix are denoted as gi j , where
i and j are the rows and columns of thematrixG. The gi j gives the expected number of
secondary infection type i, and it is caused by a single individual infected individual
subjects of type j, whereas the population of type i completely susceptible. Hence
all the elements in the matrix G are the reproduction number. The spectral radius of
the matrix G gives the reproduction number, which is also known is the dominant
eigenvalue. For example, consider G as a 2 by 2 matrix defined as:
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G =
[
a b
c d

]

The eigenvalue of matrix G can be given as

λi = T

2
±

√(
T

2

)2

− D (44)

where T = a + d is the trace and D = ad - bc is the determinant of the matrix G.
The next generation matrix has a number of desirable properties such as it is a

non-negative matrix and, it guarantees that there will be a single, unique eigenvalue
which is positive, real, and strictly greater than all the others.

The estimation of reproduction number R0 is discussed, and the next generation
method is outlined in this subsection, a detail work can be found in [26–28].

2.5 Stochastic Modeling

Since with any modeling tools, there are always limitation, and it also exist with
compartmental models. For example, the model may not able to describe the real
or observed data. Due to the assumptions were not fully met namely: homogeneity
assumption, not a close system, imbalance equations, where as in general with real
world data compartments models fail to describe the system. These limitation could
be avoided by extending the deterministic compartmental models into a stochastic
model which incorporates the probabilistic theory. So it can be done by keeping
time discrete and utilizes the stochastic processes. Another approach may be using
continuous framework and time to infection as stochastic.

2.5.1 Reed-Frost Model

The Reed-Frost model is based on the chain binomial model since the infection
spread dynamically through direct contact and assume that it’s independent and have
constant probability, and this model has the following characteristics [29, 30]:

• It is similar to compartmental model where each individuals are either susceptible,
infectious or recovered.

• The population of the study population is closed and constant and have initial
values such as: s0 and i0 ∈ N , where s0 = S0, and i0 = I0 are susceptible and
infected individual subjects.

• The infection dynamic can be explained via discrete time Markov chain.

{
It+1| St = st , It = it ∼ Bin (st , 1 − (1 − ω)it ) ),

St+1 = St − It+1
(45)
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where t = 1, 2, ... are time steps andω is the probability of an infectious individual
who is a susceptible subjects in span of one time step.

• The epidemic final size is: Z = ∑∞
i=0 Ii .

Now consider if ω is the probability of infection, then the probability of not infected
subject will be 1 − ω, so the probability to escape from infection from contact will
be (1 − ω)i i , hence the probability of infection will be 1 − (1 − ω)i . The Reed-Frost
model can be interpreted as an SIR model in which the incubation period and the
recovery time is one unit time, whereas the basic reproduction number can be given
as ωS0. Moreover, the likelihood of the Reed-Frost model can be given as

L(ω : {i0, i1, , ..., iT , s0}) =
T−1∏
i=0

θ
it+1
t (1 − θt )

si−si+1 , θt = 1 − (1 − ω)it (46)

where T denotes the number of time steps.

2.5.2 Gillespie’s Direct Method

The Gillespie’s direct method asks two questions if the system is in a given state:

• When does the next event occur? The time to the next event (τ ) is exponentially
distributed and the rate equal to the sum of the rates over all possible events. The
probability density function is given by

f (τ ) = (
∑
i

ai )e(−τ
∑

i ai ) (47)

• Which event occurs next? We convert event rates into probabilities, and randomly
select one of these events according

P(Event = v) = av∑
i ai

(48)

where ai are event rates.
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Assuming the above distributions the algorithm is as follows:

1. Set initial population numbers t �→ 0.
2. Calculate the ai for all i.
3. Choose τ from an exponential distribution with parameter

∑
i ai as in Eq. (30).

4. Choose the event v according to the distribution in Eq. (31).
5. Change the number of individuals to reflect the event, v. Set t �→ t + τ .
6. Go to step 2.

The above algorithm simulates stochastic realizations of the exact process described
by what’s known as the master equation. Assume that pSI R(t) is the probability and
it is in state (S,I,R) at a given time t, and N = S + I + R, then the master equation is
given as follows describes as how this probability distribution evolves over the time:

dpSI R(t)

dt
=pS−1,I,R [μ(N − 1) ] + pS+1,I,R [μ(S + 1) ]+

pS+1,I−1,R [β (I − 1)

N
(S + 1) ] + pS,I+1,R−1 [γ (I + 1) ]

+ pS,I+1,R [μ(I + 1) ] + pS,I,R+1 [μ(R + 1) ]
− pS,I,R [μN + μS + β

I

N
S + γ I + μI + μR ]

(49)

2.5.3 Example Based on SIR Model Using SimInf R-Package

The following example is based on the ’SimInf’ an R-package https://cran.r-project.
org/web/packages/SimInf/vignettes/SimInf.pdf.

Specification of the SIR model without scheduled events

This example is based on the predefined three compartments (SIR) model (sus-
ceptible: S, infected: R, and recovered: R). The mode of transmission of infection is
to susceptible individuals is through direct contact between susceptible and infected
individuals, this model has two transitions at each node i as follows:

Si
βSi Ii/(S+ Ii+Ri )−−−−−−−−−→ Ii

Ii
γ Ii−→ Ri

where β, and γ are the transmission and recovery rates respectively. In order to create
and SIRmodel object, define u0, a data.framewith the initial number of individuals in
each compartment when the simulation starts, assume that a node has 999 susceptible
with 1 infected and there are no recovered individuals. As the assumptions made in
this example is that there are no interaction between nodes, so the stochastic model
does not disturb any nodes in the model. So the R-code is as follows:

https://cran.r-project.org/web/packages/SimInf/vignettes/SimInf.pdf
https://cran.r-project.org/web/packages/SimInf/vignettes/SimInf.pdf
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> install.packages(’SimInf’)

> library(SimInf)

> n <- 1000

> u0 <- data.frame(S = rep(999, n), I = rep(1, n), R = rep(0, n))

> tspan <- seq(from = 1, to = 180, by = 7)

> model <- SIR(u0 = u0, tspan = tspan, beta = 0.16, gamma = 0.077)

> model

> model

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

- Empty, please run the model first

> set.seed(123)

> set_num_threads(1)

> result <- run(model = model)

> result

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

S 108.0 368.0 993.0 755.4 999.0 999.0

I 0.0 0.0 1.0 30.4 38.0 235.0

R 0.0 1.0 5.0 214.2 484.0 891.0

> plot(result)

> plot(result, node = 1:10, range = FALSE)

> plot(result, node = 1:5, range = FALSE)

%%%%%

> head(trajectory(model = result, node = 1))

node time S I R

1 1 1 999 1 0

2 1 8 998 1 1

3 1 15 991 8 1

4 1 22 973 21 6

5 1 29 935 42 23

6 1 36 886 61 53

Specification of scheduled events in the SIR model Further continuing with
predefined SIR model, and taking into account the demographic data. So specify
each event as one column in the select matrix E using the select attribute of the event.
The non-zero entries in the selected column in E specify the compartment involved,
define E as
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Fig. 11 The output result from a stochastic SIR model in 1000 nodes starting with 999 susceptible,
1 infected and 0 recovered individuals in each node (β = 0.16, γ = 0.077). There are no between-
node interactions. Left (1a: The default plot shows the median and inter-quartile range of the count
in each compartment through time across all nodes. Right 1b: Realizations from a subset of 10
nodes

1 2 3 4( )1 0 0 1 S
0 1 0 1 I
0 0 1 1 R

In order to operate on a single compartment (S, I or R) as well as an event that
involves all three compartment, we need to specify a scheduled event. When several
compartments are involved in an event, the individuals affected by the event will
be sampled without replacement from the specified compartments. The numerical
solver performs an extensive error checking of the event before it is processed. And
an error will be raised if the event is invalid, for example, if the event tries to move
more individuals than exists in the specified compartments. Consider we have 4
scheduled events to include in a simulation. Below is a data.frame, that contains the
events.

> u0 <- data.frame(S = rep(0, 5), I = rep(0, 5), R = rep(0, 5))

> add <- data.frame(event = "enter", time = rep(1:10, each = 5),

+ node = 1:5, dest = 0, n = 1:5, proportion = 0, select = 1, shift = 0)

> infect <- data.frame(event = "enter", time = 25, node = 5,

+ + dest = 0, n = 1, proportion = 0, select = 2, shift = 0)

> infect <- data.frame(event = "enter", time = 25, node = 5,

+ dest = 0, n = 1, proportion = 0, select = 2, shift = 0)

> move <- data.frame(event = "extTrans", time = 35:45, node = c(5, 5, 5,

+ 5, 4, 4, 4, 3, 3, 2, 1), dest = c(4, 3, 3, 1, 3, 2, 1, 2, 1, 1, 2),
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+ n = 5, proportion = 0, select = 4, shift = 0)

> remove <- data.frame(event = "exit", time = c(70, 110),

+ node = rep(1:5, each = 2), dest = 0, n = 0, proportion = 0.2,

+ select = 4, shift = 0)

> model <- SIR(u0 = u0, tspan = 1:180, events = events, beta = 0.16,

+ + gamma = 0.077)

> set.seed(3)

> set_num_threads(1)

> result <- run(model)

> plot(result, node = 1:5, range = FALSE)

> result

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

S 103.0 337.0 992.0 744.5 999.0 999.0

I 0.0 0.0 2.0 31.4 41.0 239.0

R 0.0 1.0 5.0 224.1 528.0 896.0

3 Role of Reproduction Number and Growth Curve
in Decision and Policy Making

The basic reproduction number plays a vital role in epidemiological sciences as
well as in public health management, since it has been used to explain the dynamic
of epidemics in population. For example Covid-19 (an infectious disease), R0 is
estimated between 2 and 2.5, whereas for measles it lies between 12 to 18. R0 spread
is order of exponential, for example if R0 = 2, then a single person can generate new
infections exponentially as 2n , whereas if this number if less than 1 then it decays
fast as well exponentially:

I generation = 2 new in f ections

I I generation = 4 new in f ections

I I I generation = 8 new in f ections

I V generation = 16 new in f ections

V generation = 32 new in f ections

Moreover in practice or real life the e f f ective reproduction number is utilized
and denoted as R and defined as: the average number an infected person goes on to
infect in a population where some people are immune (or some other interventions
are in place). It related with R0 as: R = sR0 , where is the proportion of susceptible
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Fig. 12 The effective reproduction number based on laboratory-confirmedCorona virus (Covid-19)
Cases in Wuhan, China (Source https://jamanetwork.com/journals/jama/fullarticle/2765665)

subjects for a population.AsR is not a rate, and it cannot explain how fast the epidemic
is growing in the population, and this can by quantified by using the growth curve,
so the growth curve can be defined as exponential curve:

N (t) = constant eλt (50)

where N is the number of cases and depends on time t in days and λ is the growth
rate of of the disease per day. If the growth rate is positive this implies the rise in the
epidemic cases whereas if sign of growth rate is negative means there are decrease in
number of epidemic cases, and for growth rate zero gives number of cases constant.
Now the question is: R or growth rate λ is better? The pros and cons as given in Table
3 below:

3.1 Challenges and Issues in Modeling Infectious Diseases

• Provide a systematic framework for when we should try to eradicate
• Develop quantitative models of the economics of control versus eradication
• Identify the most effective approaches to achieve eradication
• Quantify the landscape of susceptibility

https://jamanetwork.com/journals/jama/fullarticle/2765665
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Fig. 13 Global growth rate of Corona virus: confirmed, recovered, deaths and active cases by using
Covid-19analytics (R-package)

Fig. 14 Stages towards and after elimination in a given location and milestones on the path to
elimination. Adapted from (Townsend et al., 2013b, World Health Organization, 2007). Shading
illustrates control intensity (darker grey for heightened efforts), also see: https://www.sciencedirect.
com/science/article/pii/S175543651400070X

https://www.sciencedirect.com/science/article/pii/S175543651400070X
https://www.sciencedirect.com/science/article/pii/S175543651400070X
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Table 3 Comparing R and the growth rate, Source https://plus.maths.org/content/epidemic-
growth-rate)

Comparison between reproduction number and the growth rate

Reproduction ratio: R Growth rate per day:

1. In planning to dealwith the spread of epidemic using
any intervention, then the reproduction number is
most suitable in planning of the control measures
such as:

• if R=1.5means thenwe need to plan for one third
of reduction in transmission.

• if R=2 means need to vaccinate half the suscep-
tible people in the population;

An intuitive way of predicting the strength of future
interventions needed to stop an epidemic then con-
sideration of R is a better choice.

2. if R>1 then exponential growth in epidemic cases if
R=1 then the epidemic cases are constant or flat if
R<1 then exponential decay in epidemic cases.

3. R a ratio of cases by infection generation. It is not a
rate: there is no timescale involved.

4. R is not at all easy to measure in practice, but can be
fitted using models if the timescales of infection are
known. In principle it could be estimated by detailed
epidemiological data on exactly who got infection
fromwhom, but this is not usually feasible in typical
settings.

1. Growth rate is more natural for thinking about how
cases are oscillating over time. For example

• λ = 0.01 per day means cases will increase by
about 1% a day.

• λ = -0.02 per day means cases will decrease by
about 2% a day.

The growth rate is a good description of what’s hap-
pening now: if we have a certain number of cases
today then we can work out how many to expect
tomorrow, the day after, and so on.

2. if λ >0 then exponential growth if λ = 0 then the
growth is flat or constant if λ <0 then growth curve
is exponential decay

3. The growth rate λ is a rate, usually given in days for
Covid-19.

4. The growth rate λ is relatively easy to estimate from
time series data of cases or deaths (but see below
about small numbers). A simple approach is just to
find the gradient of the logged cases.More advanced
approaches, which can take into account a time-
varying growth rate, or heterogeneous population,
again involve fitting epidemic models.

• Improve monitoring during and after the endgame
• Identify post-eradication opportunities and threats

4 Summary

The basic SIR, and stochastic models were outlined along with some notes on com-
putational tools for these models. Briefly, the reproduction number R0 was dis-
cussed based on different approaches. A famous quote by greatmathematicianDaniel
Bernoulli:

I simply wish that, in a matter which so closely concerns the well being of the human race,
no decision shall be made without all the knowledge which a little analysis and calculation
can provide.” (Daniel Bernoulli,1760)

https://plus.maths.org/content/epidemic-growth-rate
https://plus.maths.org/content/epidemic-growth-rate
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Dynamics of Inter-community Spread
of Covid-19

Emmanuel J. Dansu and Samuel T. Ogunjo

Abstract We developed a model for the spread of Covid-19 within a community,
we paid attention to the sensitivity of the derived basic reproduction number to each
model parameter. This model was extended to investigate the impact of migration
between two communities on the spread of the disease. Three special cases: uni-
directional migration, unrestricted bidirectional migration, and partial bidirectional
migration, were considered. Covid-19 data for two Nigerian states, namely Lagos
(high burden community) and Ogun (low burden community) were obtained from
the website of the Nigeria Centre for Disease Control for parameter estimation and
simulation. Our results show that the basic reproduction number of the originalmodel
is most sensitive to the recovery rate of symptomatic infectious individuals. From
the inter-community spread model, we find that the rate of coupling plays a vital role
in the control of the pandemic. Our results project the different possible scenarios
based on different lockdown and infection rates in two different communities.

Keywords SEIR · Prediction · Stochastic modeling · Epidemic · Endemic ·
Reproduction number

1 Introduction

Mankind has always been plagued by pandemics which generally cause loss of
human lives and negative economic impact across different regions of the world.
The origin of many pandemic diseases have been traced to animals such as swine
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(HIN1 Influenza), camels (Middle East Respiratory Syndrome Coronavirus- MERS-
CoV) and bat (Severe Acute Respiratory Syndrome- SARS). Influenza pandemics
were recorded in 1918 [23], 1957 [21], 1968 [46], and 2009 [45]. Other historical
pandemics recorded include cholera in 1817 and 1961 [10], MERS-CoV in 2012
[7], SARS in 2002 [15], Acquired Immunodeficiency Syndrome (AIDS) in 1981
[43], and Ebola in 2013 [40]. The most recent global pandemic is the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

SARS-CoV-2, officially known as coronavirus disease (Covid-19), began in
Wuhan, Hubei Province of China in December 2019. It was said to have been caused
by a family of animal viruses called Coronaviridae in the order and subfamily of
Nidovirales and Coronavirina respectively. Coronaviridae are enveloped viruses with
a positive sense, single-stranded RNA genome. The four subgroups of Coronaviri-
dae are alpha (αCoV), beta (βCoV), gamma (γCoV), and delta (δCoV). δCoV and
γCoV have avian genetic origin while the genetic origin of αCoV and βCoV have
been found to be bats [30].

Covid-19 belongs to the βCoV group and it is transmitted through contact
with droplets/aerosols or with infected individuals or surfaces. The response of the
immune system to the virus attack on the respiratory system triggers mucus gen-
eration. Infected persons with underlying diseases such as diabetes can have their
infection escalated [44]. Covid-19 has also been found to affect the nervous system
[48]. The first confirmed case in Nigeria, and by extension, sub-Saharan Africa was
declared on February 27, 2020. On March 11, 2020, the World Health Organization
(WHO) officially declared Covid-19 a global pandemic [13].

The impact of Covid-19 extends to different facets of human existence. The pan-
demic has been found to severely affect transportation and tourism [20], health ser-
vices [12], economy [6, 34] as well as the education/academic landscape [42]. As
at June 28, 2020, a total of 9,843,073 persons had been infected with Covid-19 with
495,760 deaths worldwide [36]. The different attempts by governments around the
world to reduce the spread of Covid-19 include local and international travel restric-
tions, isolation of infected persons, implementation of personal hygiene policies
[27], among others. Being a novel disease with constantly evolving knowledge and
little data to work with, it is imperative to use alternative approaches for the study,
simulation and control of the pandemic.

Mathematical models offer a way to study the evolution, spread and impact of the
pandemic using available data set. Mathematical models can be regarded as abstract
realizations of physical events. They have been applied to several disciplines and
subjects including population [24], neuronal dynamics [1], romantic love [47], alco-
holism and drug abuse [9, 41], insurgency [26], and finance [25]. Mathematical
models of pandemics and diseases can either be difference equations, ordinary dif-
ferential equations, partial differential equations, stochastic differential equations,
fractional order differential equations, etc. Due to their simplicity and accuracy,
several diseases, infections and pandemics have been analysed using mathematical
models such as Lassa fever [35], Ebola [8], West Nile virus [11], Influenza [32],
Hepatitis B [50], Zika virus [3], and others [19, 39].
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The need to understand the transmission ofCovid-19 has led to differentmodelling
approaches. The transmission dynamics of any pandemic is crucial in understanding
and reducing its impact. A stochastic transmission dynamic model was designed for
Covid-19 in the Wuhan region of China [28]. [18] developed a probabilistic cellular
automata model for the spread of Covid-19, as well as the effectiveness of different
control measures adopted by several countries. Macroscopic laws based on logistic
growthmodels were developed to study the complex dynamics involved in the spread
of Covid-19 [29]. The Susceptible Exposed Infectious Recovered (SEIR) model is
the most common approach to describe disease epidemics. Since the beginning of
the pandemic, several models for Covid-19 based on the SEIR idea has been pro-
posed. The SEIR framework was extended to include insusceptible, quarantined and
dead cases for Covid-19 by [38]. [37] proposed a fractional form of SEIR with ver-
tical transmission to estimate infection rates of Covid-19. For better efficiency, [22]
divided infected persons into “infected and detected” and “infected and undetected”
in their model while new categories such as quarantined, hospitalized but fatal, dead,
“recovered and detected”, and “recovered but undetected” were also created. [33]
modified the SEIR model to consider super-spreaders, infectious but asymptomatic,
hospitalized, recovered, and fatal classes in a Covid-19 community. [31] accounted
for latency of Covid-19 infections. The SEIR model with time delay was proposed
by [4] for modelling of Covid-19.

Most of the developed Covid-19models accounted for intra-community transmis-
sions rather than inter-community spread. In this study, we propose a simple model
for the propagation of Covid-19 infections and its transmission between two commu-
nities with sharply contrasting disease burdens. This is essential as travel restrictions
are being lifted across communities globally. The results from this study will help
to give an important perspective to policy makers on how to proceed with the fight
against the raging Covid-19 pandemic.

2 Basic Model

The model used in this study is defined as

dS

dt
= − B1

E

N
S − B2

I

N
S

dE

dt
= B1

E

N
S + B2

I

N
S − AE − �1E

d I

dt
= AE − �2 I − �I

d R

dt
= �1E + �2 I

(1)
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Fig. 1 Representation of the basic model

with initial condition (S(0), E(0), I (0), R(0)) = (S0, E0, I0, R0) where B1 is the
coefficient of transmission of infection from asymptomatic infectious people to sus-
ceptible people, B2 is the coefficient of transmission of infection from symptomatic
infectious people to susceptible people, A, �1, �2,� are the transition rate from
asymptomatic to symptomatic infectious, recovery rate from the asymptomatic infec-
tious state, recovery rate from the symptomatic infectious state, and death rate due
to Covid-19 respectively. We see that S + E + I + R = N and dN/dt = −�I . It
should be noted that dN/dt is solely dependent on the disease-induced death. The
diagrammatic representation of the model and the temporal variation of the system
are shown in Figs. 1 and 2 respectively.

Fig. 2 Temporal variation of the system
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2.1 Properties of Solution

Theorem 1 The system (1) gives only positive solutions for positive initial condi-
tions.

Proof From
dS

dt
= −B1

E(t)

N (t)
S(t) − B2

I (t)

N (t)
S(t), we have

1

S(t)

dS(t)

dt
dt = −

(
B1

E(t)

N (t)
+ B2

I (t)

N (t)

)

S(t) = S(0) exp

[
−

∫ t

0
B1

E(T )

N (T )
+ B2

I (T )

N (T )
dT

]
.

This result guarantees that the population size of susceptibles is always non-
negative as required for our model. The same holds true for the other variables.

��
Theorem 2 The closed set D = {

(S(t), E(t), I (t), R(t)) ∈ R
4+ : S(t) + E(t) + I (t) + R(t) ≤ S0

}
is positively invariant and attracts all solutions in R

4+ .

Proof We have

dN (t)

dt
= dS(t)

dt
+ dE(t)

dt
+ d I (t)

dt
+ dR(t)

dt

= −�I (t)

N (t) = S0 − �

∫ t

0
I (T )dT .

At the disease-free equilibrium, N (t) = S0. In the extreme situation that the whole
population dies as a result of the pandemic, that is, �I (t) = S0, then N (t) = 0. By
consequence,

N (t) ∈ [0, S0]

and this completes the proof. ��

2.2 Basic Reproduction Number

The basic reproduction number R0 is about the most important index that has been
identified in quantitative epidemiology and it is defined as the expected number of
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secondary infections generated by a single infectious person in the midst of suscepti-
ble individuals. It helps to predict whether a disease will become an epidemic, will be
endemic or it will be eliminated over time. Many methods have been developed for
the derivation ofR0 and the new generation matrix method is one of such approaches
[14, 16]. We proceed with the method as follows.

We obtain the matrices Tm and Ts representing transmissions (occurrence of new
infections) and transitions (changes in state) from the asymptomatic infectious and
the symptomatic infectious compartments in model (1). We have

dE

dt
= B1

E

N
S + B2

I

N
S − AE − �1E

d I

dt
= AE − �2 I − �I

(2)

such that

Tm =
⎛
⎜⎝B1

S

N
B2

S

N

0 0

⎞
⎟⎠ → Tm =

⎛
⎝B1 B2

0 0

⎞
⎠ (3)

at the disease free equilibrium (S∗, E∗, I ∗, R∗) = (N , 0, 0, 0) and

−Ts =
⎛
⎝−A − �1 0

A −� − �2

⎞
⎠ → Ts =

⎛
⎝A + �1 0

−A � + �2

⎞
⎠ . (4)

Next, we have

TmT
−1
s =

⎛
⎜⎝

B1

A + �1
+ AB2

(A + �1)(� + �2)

B2

� + �1

0 0

⎞
⎟⎠ . (5)

The basic reproduction number, being the spectral radius of TmT−1
s , is given as

R0 = max

{ B1

A + �1
+ AB2

(A + �1)(� + �2)
, 0

}
(6)

= B1

A + �1
+ AB2

(A + �1)(� + �2)
(7)

= Rai + Rsi . (8)

where Rai and Rsi are the basic reproduction numbers for the asymptomatic and
symptomatic infectious respectively. The disease free equilibrium (S(0), E(0), I (0),
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R(0)) = (S0, E0, I0, R0) = (N , 0, 0, 0) is always locally asymptotically stable if
R0 < 1. This guarantees that the disease dies out. However, it is unstable for R0 > 1
in which case the disease breaks out.

2.3 Sensitivity Analysis of R0

It is important to see howR0 respondswhen the parameters uponwhich it depends are
tweaked. As such, the sensitivity analysis approach presented by [5] is quite helpful.
The normalized sensitivity elasticity, E(.), which estimates the marginal change in
the value of R0 due to a marginal change in the value of a certain parameter with
other parameters kept constant is given by

E(.) = (.)

R0
· ∂R0

∂(.)
. (9)

For the parameters A, B1, B2, �1, �2 and �, we have the following elasticities:

EA = A
R0

· ∂R0

∂A = A[B2�1 − B1(� + �2)]
(A + �1)[AB2 + B1(� + �2)] .

EB1 = B1

R0
· ∂R0

∂B1
= B1(� + �2)

AB2 + B1(� + �2)
.

EB2 = B2

R0
· ∂R0

∂B2
= AB2

AB2 + B1(� + �2)
.

E�1 = �1

R0
· ∂R0

∂�1
= − �1

A + �1
.

E�2 = �2

R0
· ∂R0

∂�2
= − �2(A + B2)

(� + �2)[A + B1(� + �2) + B2] .

E� = �

R0
· ∂R0

∂�
= − �(A + B2)

(� + �2)[A + B1(� + �2) + B2] .

The signs indicate that R0 increase withA, B1, B2 and decrease with �1, �2 and
�. As such, strategies to eradicate the disease should be about reducing A, B1, B2

and increasing �1, �2 and � such that R0 goes below unity.

3 Inter-community Transmission Model

3.1 Assumptions

The inter-community transmission model between community 1 and community 2
is developed based on the following assumptions.

• There are two communities, community 1 with a significantly heavier burden of
Covid-19 infections compared to community 2.
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• In each community, there are susceptible people (S), asymptomatic infectious/
exposed people (E), symptomatic infectious people (I ) and recovered people (R).

• Susceptible and asymptomatic infectious people tend to move freely between the
communitieswhile symptomatic infectious and recovered people don’t get tomove
that freely due to restrictions based on their health conditions and awareness of
the reality of the disease respectively.

• Population change due to natural causes is negligible.

3.2 Model

The bidirectional coupling approach proposed by [49] is used to study the dynamics
of two communities under Covid-19 infection.

Community 1 is defined by

dS1
dt

= − B1
E1

N1
S1 − B2

I1
N1

S1 + d11(S2 − S1)

dE1

dt
= B1

E1

N1
S1 + B2

I1
N1

S1 − AE1 − �1E1 + d12(E2 − E1)

d I1
dt

= AE1 − �2 I1 − �I1 + d13(I2 − I1)

dR1

dt
= �1E1 + �2 I1 + d14(R2 − R1)

(10)

and community 2 by

dS2
dt

= − β1
E2

N2
S2 − β2

I2
N2

S2 + d21(S1 − S2)

dE2

dt
= β1

E2

N2
S2 + β2

I2
N2

S2 − αE2 − γ1E2 + d22(E1 − E2)

d I2
dt

= αE2 − γ2 I2 − φ I2 + d23(I1 − I2)

dR2

dt
= γ1E2 + γ2 I2 + d24(R1 − R2)

(11)

where the di j ’s represent net migration rates between the communities. The initial
condition is
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Fig. 3 Representation of the coupled model

(S1(0), E1(0), I1(0), R1(0), S2(0), E2(0), I2(0), R2(0))

= (S10, E10, I10, R10, S20, E20, I20, R20)

and N (t) = N1(t) + N2(t). Furthermore, we have Bi (transmission coefficients in
community 1), A (transition rate from asymptomatic to symptomatic infectious in
community 1),�i (recovery rates in community 1),� (mortality rate due to Covid-19
in community 1), βi (transmission coefficients in community 2), α (transition rate
from asymptomatic to symptomatic infectious in community 2), γi (recovery rates in
community 2) and φ (mortality rate due to Covid-19 in community 2). The schematic
diagram of the coupled model is shown in Fig. 3.

The new generation matrix for the system inter-community model, based on the
disease-free equilibrium (S∗

1 , E∗
1 , I∗1 , R∗

1 , S∗
2 , E∗

2 , I∗2 , R∗
2 ) = (N1, 0, 0, 0, N2, 0, 0, 0), is

given as

M =

⎛
⎜⎜⎝
B1 − d12
A + �1

d12
α + γ1

d22
A + �1

β1 − d22
α + γ1

⎞
⎟⎟⎠ (12)

with characteristic polynomial

λ2 − (Trace M)λ + (Determinant M) = 0 (13)

where

Trace M = B1 − d12
A + �1

+ β1 − d22
α + γ1
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and

Determinant M = (B1 − d12)

(A + �1)

(β1 − d22)

(α + γ1)
− d12d22

(α + γ1)(A + �1)
.

The basic reproduction number in this case is then given as

R0 = 1

2

[
Trace M +

√
(Trace M)2 − 4(Determinant M)

]
. (14)

3.3 Stability of Coupled System

Let community 1 and community 2 be denoted by X and Y respectively. The state
vectors can then be represented as

Ẋ = AX + g(X) + D1(Y − X)

Ẏ = AY + g(Y ) + D2(X − Y )
(15)

where D1, D2 are n × n diagonal matrices which control the rate of migration
between the two communities. If we define the error between system (10) and system
(11) as e = x − y, then the error dynamics can be expressed as

ė = (A + MX,Y − (D1 + D2))e (16)

where MX,Y = g(X) − g(Y ).

Theorem 3 ([49]) If there exists a positive definite symmetric constant matrix P
and a constant ε > 0, such that

(A + MX,Y − (D1 + D2))
T P + P(A + MX,Y − (D1 + D2)) ≤ −ε I (17)

where I is an identity matrix, then the error between system (10) and system (11) is
stable.

Using the above theorem, we obtained for the systems (10) and (11)

A =

⎛
⎜⎜⎝

−B1+B2
N −B1

N −B2
N 0

B1+B2
N

B1
N − �1 − A B2

N 0
0 A −�2 − φ 0
0 �1 �2 0

⎞
⎟⎟⎠ (18)

and
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M =

⎛
⎜⎜⎝

−E1 − I1 S2 S2 0
E1 + I1 S2 S2 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (19)

D1 = diag(d11, d12, d13, d14), and D2 = diag(d21, d22, d23, d24). We chose a posi-
tive definite symmetric constant matrix P = diag(p1, p2, p3, p4)with p{i = 1, 2, 3, 4} > 0.
Then,

(A + MX,Y − (D1 + D2))
T P + P(A + MX,Y − (D1 + D2)) + ε I

=

⎛
⎜⎜⎜⎜⎜⎝

2p1
(
g1 − ε

2p1

)
p2g2 − p1

(
B1
N + S2

)
−p1

(
B2
N − S2

)
−p4 (d14 + d24)

p2g2 − p2
(
B1
N − S2

)
2p2

(
g2 − ε

2p2

)
Ap3 + p2

(
B2
N + S2

)
0

−p1
(
B2
N − S2

)
Ap3 + p2

(
B2
N + S2

)
2p3

(
g4 − ε

2p3

)
0

0 0 0 −2p4
(
d14 + d24 − ε

2p4

)

⎞
⎟⎟⎟⎟⎟⎠

(20)

where g1 = −k1 − E1 − I1 − d11 − d21, g2 = B1+B2
N + E1 + I1, g3 = B1

N − �1 −
A + S2 − d12 − d22, and g4 = −�2 − φ − d13 − d23.

Matrix (20) is negative definite, if and only if, D1 < 0, D2 > 0, D3 < 0, and
D4 > 0. This condition is fulfilled if and only if it is observed that all positive values
of di j , i = 1, 2; j = 1, 2, 3, 4 satisfy the inequalities in Eqs. (21)–(24).

D1 = −2p1

(
k1 + E1 + I1 + d11 + d21 − ε

2p1

)
< 0 (21)

D2 = 4p1 p2

(
g1 − ε

2p1

) (
g2 − ε

2p2

)
−

[
p2g2 − p1

(
B1
N

+ S2

)]
[
p2g2 − p2

(
B1
N

− S2

)]
> 0 (22)

D3 = 2p3

(
g4 − ε

2p3

)
D2 −

(
Ap3 + p2

(
B2
N

+ S2

)) [
D1

(
Ap3 + p2

(
B2
N

+ S2

))]

+ p1

(
B2
N

− S2

)(
p2g2 − p2

(
B1
N

− S2

))
− p1

(
B2
N

− S2

)
[
(
p2g2 − p1

(
B1
N

+ S2

))
(
Ap3 + p2

(
B2
N

+ S2

))
+ 2p1 p2

(
g2 − ε

2p2

)(
B2
N

− S2

)
] < 0 (23)

D4 = −2p4

(
d14 + d24 − ε

2p4

)
D3 > 0 (24)

It was observed that all positive values of di j , i = 1, 2; j = 1, 2, 3, 4 satisfy the
inequalities in Eqs. (21)–(24).
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Table 1 Sensitivity of R0 to model parameters

Parameter Elasticity Value

A EA 0.6218

B1 EB1 0.1835

B2 EB2 0.8165

�1 E�1 -0.8047

�2 E�2 -0.8954

� E� -0.0821

4 Numerical Simulation

For our simulation, we estimated model parameters and initial values based on data
from the Nigeria Centre for Disease Control website (https://covid19.ncdc.gov.ng/)
as at Saturday, 26th July 2020. We took Lagos and Ogun States of Nigeria as com-
munities 1 and 2 respectively. The population of each community is estimated based
on the total tested samples. The estimation approaches by [2] and [17] are quite
instructive in this regard.

For community 1 (N1 = 17500000), we have parameters B1 = 0.0714, B2 =
0.3572, A = 0.1429, �1 = 0.5888, �2 = 0.1472, � = 0.0135. For community 2
(N2 = 5900000), we have β1 = 0.0305, β2 = 0.1524, α = 0.1429, γ1 = 3.1360,
γ2 = 0.7840, φ = 0.0185.

Based on sensitivity analyses in Subsection 2.3 and the estimated parameters, we
have the numerical estimates of the elasticities of each parameter in Table1.

The coupled system was solved using the fifth order Dormand-Prince
method with a time step of 1 × 104. The initial conditions were chosen as
[17390783, 92830, 14300, 2087] and [5889674, 8075, 1244, 1007] for community
1 and community 2 respectively. To quantify the relationship between the trajectory
of the two communities, we define a parameter, δ as

δ = max I1 − max I2. (25)

Three distinct scenarios of the general case were considered. This quantity will give
an indication of differences between the total number of infected persons in the
two communities. A lower value of δ means the total infected persons in the two
communities are very close.

4.1 Unidirectional Migration

We consider the case where susceptible, exposed, infected, and recovered people are
free to move from community 1 to community 2 with varying degrees of restriction.
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Fig. 4 Unidirectional case with d11 = d12 = d13 = d14 = 0

However,movement of all categories of people fromcommunity 2 to community 1 are
restricted totally. In this case, we set d11 = d12 = d13 = d14 = 0, d21 = d22 = d23 =
d24 = D2 and studied the variation of δ in the range 0 < d22 < 3 and 0 < B2 < 1.
The resulting spatial plot is shown in Fig. 4. The maximum number of infected
persons in the two communities become very close as the coupling strength D2

increases. This implies that individual communities need to take proactive actions to
limit transmission of the virus. Unrestricted movement from a high risk community
to a low risk community will drive the number of infected persons to the level in
high risk community. This is more pronounced at high values of B2.

4.2 Unrestricted Bidirectional Migration

There exist situations where two neighbouring communities do not enforce control
measures such as lock-down of borders. In this case, there is free movement of all
categories of people from community 1 to community 2 and vice versa. For ease of
computation, we set d11 = d12 = d13 = d14 = D1 and d21 = d22 = d23 = d24 = D2.
The coupling strengths are considered in the range 0 < D1, D2 < 3. A graphical
representation of the scenario is shown in Figure 5. It is noted that the highest
difference between maximum number of infected persons in the two communities
are maximum when lock-down is enforced (D1 = 0 and D2 = 0). The change in δ
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Fig. 5 Case of unrestricted bidirectional migration between an high risk community and a low risk
community

is not strongly influenced by migration rate from community 1. However, the value
of δ reduces as migration rate from community 2 increases.

4.3 Partial Bidirectional Migration

In this case, we consider the possibility ofmigrations of only exposed people between
the two communities. Thus, we set d11 = d13 = d14 = 0 and d21 = d23 = d24 = 0.
The migration rates are then considered in the range 0 < D12, D22 < 2. Figure 5
shows the variation of δ values with changing values of D1 and D2. In this case, we
consider the possibility of migrations of only exposed people between the two com-
munities. Thus, we set d11 = d13 = d14 = 0 and d21 = d23 = d24 = 0. Themigration
rates are then considered in the range 0 < D12, D22 < 2. Figure 6 shows the variation
of δ values with changing values of D1 and D2. As the number of exposed persons
moving from community 1 to community 2 increases, the difference between the
infected persons of the two communities reduces. This implies that the movement
of exposed persons alone is sufficient to increase the number of infected persons in
community 2.
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Fig. 6 Partial migration from community 1 to community 2

5 Conclusion

In this study, we have developed a simple SEIR model for the spread of Covid-19
within a community. We established the properties of the solution of the system,
investigated the sensitivity of the basic reproduction number of the basic model to
the parameters on which it depends. We also considered the stability of the system.
From the sensitivity analysis, it can be inferred that the basic reproduction number
for the one-community model is most sensitive to the recovery rate of symptomatic
infectious individuals followed by the transmission coefficient from symptomatic
infectious, recovery rate of asymptomatic infectious, rate of incubation (rate of tran-
sition from asymptomatic to symptomatic infectious), transmission coefficient from
asymptomatic infectious, and the death rate.

The basic model was extended to study the interaction between two communities
with respect to Covid-19 transmissions. This was done by bidirectional coupling
which represents the role of movement between the two communities. Our results
showed that, with very low coupling between the two communities, rate of infections
are reduced. As coupling strengths between the two communities increases, so does
the number of infectedpersons in them.Weconsidered the casewhere one community
limits the movement of persons into her region while the other community does not.
Our results indicate that to reduce the spread of Covid-19, all communities have roles
to play.
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The simple model we have studied can be extended to higher order SEIR models
to consider more peculiarities of Covid-19. It can also be extended to consider the
spread of Covid-19 in a network of interconnected communities. Furthermore, the
roles of both bidirectional coupling and environmental coupling could be considered
in future studies.
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Similarity Measure of q-Rung Orthopair
Fuzzy Soft Sets and Its Application in
Covid-19 Problem

Manash Jyoti Borah and Bipan Hazarika

Abstract In this chapter, we introduce q-rung orthopair fuzzy soft sets (q-ROFSSs)
and somebasic properties.Alsowedefine a similaritymeasure of q-ROFSSs and their
properties are studied. Finally, we provide an application of q-ROFSSs in Covid-19.

Keywords 34-XX Ordinary differential equations · 37N25 Dynamical systems in
biology · 92D25 Population dynamics (general) · 92D30 Epidemiology · 93A30
Mathematical modeling

1 Introduction

Zadeh [35], in 1965 was the first to come up theory of fuzzy set for dealing with
uncertainties problems in our daily life, where conventional mathematical tools fail.
In 1986, Atanassov [2] extended the fuzzy set to intuitionistic fuzzy set (IFS) by
adding the non-membership degree. Yager [30] generalized the IFS and introduced
the Pythagorean fuzzy set (PFS) P =< xi , (μP(xi ), νP(xi )); xi ∈ X >, where 0 ≤
μ2

P(xi ) + ν2
P(xi ) ≤ 1. The PFS has been widely studied and applied in many fields,

one can see [8, 28, 31] related to PFS. Yager [32, 33] introduced a new form of
fuzzy set known as q-rung orthopair fuzzy set (q − ROFS),which can be described
as Q =< xi , (μQ(xi ), νQ(xi ))q; xi ∈ X >,where 0 ≤ μ

q
Q(xi ) + ν

q
Q(xi ) ≤ 1.When

q = 1 and 2, we can see that the IFS and PFS are special cases of q-ROFS,
respectively. The cosine similarity measures and distance measures between q-rung
orthopair fuzzy sets was studied by Liu et al. [14] in 2019.
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In 1999, Molodtsov [24] initiated fuzzy soft set theory, which is developed and
applied Maji et al. [16–18]. Afterwards many researchers have worked several direc-
tions of fuzzy soft sets e.g. intuionistic fuzzy soft sets [2, 3, 19], interval-valued fuzzy
soft sets [34], interval-valued intuionistic fuzzy soft sets [11], generalized fuzzy soft
sets [13, 21] and references therein. The q-rung orthopair fuzzy soft set and their
basic operators were discussed by Hussain et al. [10] in the year 2020.

Similarity measure play a vital role in fuzzy soft sets. Chen [5–7], Li and Xu [15],
Hong and Kim [9], Pappis [27], Majumdar and Samanta [20, 22], Karaaslan [12] and
many other researchers have studied the problem of similarity measurement between
fuzzy sets, fuzzy numbers, vague sets, fuzzy soft sets and possibility neutrosophic
soft sets. This paper is an extension work of similarity measure of soft sets initiated
by Majumdar and Samanta [20, 22].

The whole world is fight against Covid-19 more than one year from end of 2019.
The first case was detected in the city of Wuhan China which is the capital of Hubei
province on end of 2019. There are currently several research directions work by
researchers [1, 23, 29, 36] on Covid-19. On March 11, 2020, the World Health
Organization (WHO) formally declared the outbreak of novel corona virus as a
Global panedemic. As of March 18, 2021 a total of 122,149,402 cases are confirmed
in more than 219 countries. There are 20,974,059 active cases, 98,478,189 recovered
and 2,697,154 deaths. Now India has become largest affected countries in Asia. As
of March 18, 2021 a total of 11,513,524 cases are confirmed in India. There are
2,52,364 active cases, 11,081,335 recovered and 1,59,402 deaths., against the global
1.39. Total number of vaccinated people are 3,71,43,255 onMarch 18, 2021 in India.

The Government of India is proposing multiple lockdowns to prevent the spread
of this virus. Initially, in lockdown 1.0 (March 25, 2020, to April 14, 2020), the entire
nation was under complete lockdown except for essential services and lockdown 2.0
(April 15, 2020, to May 3, 2020) was implemented with relaxation in areas where
the virus was contained and lockdown 3.0 (May 4, 2020, to May 17, 2020) with
more relaxations in areas where there were fewer number of coronavirus cases. Due
to these lockdowns, there has been a decrease in the number of cases. Lockdown 4.0
(May 18, 2020 to 31 May 2020)and lockdown 5.0 (1st June, 2020 to ongoing) only
for containment zones.

The remainder of this chapter organized as follows. In Sect. 2, some basic concepts
of Intuitionistic fuzzy sets, Pythagorean fuzzy sets, q-ROFSs, fuzzy soft sets and q-
ROFSSs are briefly reviewed, which will be used in the analysis throughout this
chapter. In Sect. 3, similarity measures between q-ROFSSs and q-rung orthopair
fuzzy soft points(q-ROFSPs) are proposed and proved. In Sect. 4, weighted similarity
measures between q-ROFSSs and q-ROFSPs are proposed and proved. In Sect. 5,
we give one application of similarity of q-ROFSSs in Covid-19. In Sect. 6, we give
another application of weighted similarity of q-ROFSSs in Covid-19. The chapter is
concluded in Sect. 7.
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2 Preliminary Definitions

In this section we recall some basic concepts and definitions fuzzy soft sets, q-ROFSs
and q-ROFSSs.

Definition 1 [33] Let X = {x1, x2, ..., xn} be a fixed set; then the q-Rung orthopair
fuzzy set (q-ROFS) Q on X is defined as

Q = {< xi , (μQ(xi ), νQ(xi )) >; xi ∈ X},

where μQ(xi ) : X −→ [0, 1] and νQ(xi ) : X −→ [0, 1] represent the membership
and non-membership degrees of xi ∈ X, respectively. For each xi ∈ X, they satisfy
with 0 ≤ μ

q
Q(xi ) + ν

q
Q(xi ) ≤ 1, and the hesitancy degree πQ(xi ) = 1 − μQ(xi ) −

νQ(xi ). Obviously, 0 ≤ πQ(xi ) ≤ 1.

If the set X = {x1, x2, ..., xn} has only one element, that is, X = {xi }, then the
q-ROFS Q is reduced to Q = (μQ(xi ), νQ(xi )) = (μi , νi ). For convenience, we call
Q = (μi , νi ) an q-Rung orthopair fuzzy number (q-ROFN).

Definition 2 [33] Let Q1 = (μQ1 , νQ1)q , and Q2 = (μQ2 , νQ2)q , be any two q-
ROFNs; then the operation laws between them can be defined as:

(i) Q1
⋃

Q2 = (max{μQ1 , μQ2},min{νQ1 , νQ2})q .
(ii) Q1

⋂
Q2 = (min{μQ1 , μQ2},max{νQ1 , νQ2})q .

(iii) Q1 ≤ Q2if and only if μQ1 ≤ μQ2 , νQ1 ≥ νQ2 .

Definition 3 [18] LetU be an initial universe and F be a set of parameters. Let P̃(U )

denote the power set of U and A be a non-empty subset of F. Then FA is called a
fuzzy soft set over U where F : A → P̃(U ) is a mapping from A into P̃(U ).

Definition 4 [10] Let U be an initial universe and F be a set of parameters. Let A
be a non-empty subset of F. Then FQ

A is called a q-rung orthopair fuzzy soft set over
U, where F : A → q − ROFS, which is defined as

FQ
A =

{
< xi , (μ

q

ei (F
Q
A )

, ν
q

ei (F
Q
A )

)q >; xi ∈ U and q ≥ 1
}

,

where q-ROFS represent the collection of all q-ROFSs ofU.Hereμ
q

ei (F
Q
A )
and ν

q

ei (F
Q
A )

,

denotes the membership and non-membership degrees of an object xi ∈ U and satis-
fying the condition that 0 ≤ μ

q

ei (F
Q
A )

+ ν
q

ei (F
Q
A )

≤ 1 and q ≥ 1. Moreover, the degree

of hesitancy for q-ROFS number is defined as π
q

ei (F
Q
A )

=
√

1 −
(
μ
q

ei (F
Q
A )

+ ν
q

ei (F
Q
A )

)
.

Definition 5 [10] Let Fq
A = (μ

q

ei (F
Q
A )

, ν
q

ei (F
Q
A )

)q , and Gq
B = (μ

q

ei (G
Q
B )

, ν
q

ei (G
Q
B )

)q , be

any two q-ROFNs; then the operation laws between them can be defined as:
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(i) Fq
A

⋃
Gq

B =
(
max

{
μ
q

ei (F
Q
A )

, μ
q

ei (G
Q
B )

}
,min

{
μ
q

ei (F
Q
A )

, μ
q

ei (G
Q
B )

})
.

(ii) Fq
A

⋂
Gq

B =
(
min

{
μ
q

ei (F
Q
A )

, μ
q

ei (G
Q
B )

}
,max

{
μ
q

ei (F
Q
A )

, μ
q

ei (G
Q
B )

})
.

Definition 6 [22] Let FE and GE be two fuzzy soft sets overU. Then the similarity
between them, denoted by S̃(FE ,GE ) is defined by

S̃(FE ,GE ) =

n∑

i=1
{F(ei ) • G(ei )}

n∑

i=1

{
(F(ei ))2 ∨ (G(ei ))2

} .

Definition 7 [22] We denote M̃(FE ,GE ) the similarity between the soft sets FE

and GE , and M̃i (FE ,GE ) the similarity between the two ei approximations F(ei )
and G(ei ). Then

M̃i (FE ,GE ) =

n∑

i=1
(Fi j ∧ Gi j )

n∑

i=1

(
Fi j ∨ Gi j

)

and
M̃(FE ,GE ) = maxi M̃i (FE ,GE ).

Definition 8 [20] Let FA and GB be two fuzzy soft sets over the same universe U.

We call the two soft sets significantly similar if S̃(FA,GB)>̃0.5.

3 Similarity Measures Between Q-ROFSSs and Q-ROFSPs

In this section, define similarity measure between two q-rung orthopair fuzzy soft
sets (q-ROFSSs) and q-rung orthopair fuzzy soft points (q-ROFSPs). Also some of
its examples and properties are studied.

Definition 9 Let FQ
A and GQ

B be two q-rung orthopair fuzzy soft sets. Then the
similarity between them, denoted by S̃(FQ

A ,GQ
B ) is defined by

S̃(FQ
A ,GQ

B ) =

n∑

t=1

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)] ,

where i = 1, 2, 3, ...,m.

Problem 1 Let FQ
A = {F(e1) = {< h1, (0.9, 0.5) >,< h2, (0.8, 0.2) >,< h3, (0.9, 0.2) >},

F(e2) = {< h1, (0.8, 0.4) >,< h2, (0.5, 0.1) >,< h3, (0.7, 0.3) >}}
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GQ
A = {G(e1) = {< h1, (0.6, 0.3) >,< h2, (0.7, 0.6) >,< h3, (0.5, 0.4) >},

G(e2) = {< h1, (0.9, 0.4) >,< h2, (0.8, 0.3) >,< h3, (0.7, 0.2) >}}.
Now we have expressed FQ

A and GQ
A in tabular form as given below.

FQ
A e1 e2
h1 (0.9, 0.5)q (0.8, 0.4)q
h2 (0.8, 0.2)q (0.5, 0.1)q
h3 (0.9, 0.2)q (0.7, 0.3)q
GQ

A e1 e2
h1 (0.6, 0.3)q (0.9, 0.4)q
h2 (0.7, 0.6)q (0.8, 0.3)q
h3 (0.5, 0.4)q (0.7, 0.2)q

Now if we consider q = 3, then we have expressed q-rung orthopair fuzzy soft
sets FQ

A and GQ
A in tabular form as given below.

FQ
A e1 e2
h1 (0.729, 0.125)3 (0.512, 0.064)3
h2 (0.512, 0.008)3 (0.125, 0.001)3
h3 (0.729, 0.008)3 (0.343, 0.027)3
GQ

A e1 e2
h1 (0.216, 0.027)3 (0.729, 0.064)3
h2 (0.343, 0.216)3 (0.512, 0.027)3
h3 (0.125, 0.064)3 (0.343, 0.008)3

Therefore similarity measure of q-rung orthopair fuzzy soft sets FQ
A and GQ

A , for
q = 3 is S̃(FQ

A ,GQ
B ) = 0.5680.

Proposition 1 Let FQ
A and GQ

B be two q-rung orthopair fuzzy soft sets. Then

(i) S̃(FQ
A ,GQ

B ) = S̃(FQ
A ,GQ

B ).

(ii) 0≤̃S̃(FQ
A ,GQ

B )≤̃1.
(iii) S̃(FQ

A ,GQ
B ) = 1, if FQ

A = GQ
B .

Proof (i) For i = 1, 2, 3, ...,m, we get

S̃(FQ
A ,GQ

B ) =

n∑

t=1

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)]

=

n∑

t=1

{

μ
q

ei (G
Q
B )

(ht ) • μ
q

ei (F
Q
A )

(ht ) + ν
q

ei (G
Q
B )

(ht ) • ν
q

ei (F
Q
A )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)]

= S̃(GQ
B , FQ

A ).
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(ii) obvious.
(iii) Let FQ

A = GQ
B and for i = 1, 2, 3, ...,m, we have

S̃(FQ
A ,GQ

B ) =

n∑

t=1

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)]

=

n∑

t=1

{

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)]

=

n∑

t=1

{

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

}

n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

= 1.

�	
Definition 10 Let ei (F

Q
A ) and e j (G

Q
B ) be two q-rung orthopair fuzzy soft sets. Then

the similarity between them, denoted by S̃(ei (F
Q
A ), e j (G

Q
B )) is defined by

S̃(ei (F
Q
A ), e j (G

Q
B )) =

n∑

t=1

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

e j (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

e j (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

e j (G
Q
B )

(ht ) + ν
2q

e j (G
Q
B )

(ht )

)] ,

where i = 1 or 2 or . . . or m; j = 1 or 2 or . . . or m.

Problem 2 FromProblem 1. Let e1(F
Q
A ) = {< h1, (0.9, 0.5) >,< h2, (0.8, 0.2) >

,< h3, (0.9, 0.2) >}; e2(GQ
A ) = {< h1, (0.9, 0.4) >,< h2, (0.8, 0.3) >,

< h3, (0.7, 0.2) >}}.
Now we have expressed e1(F

Q
A ) and e2(G

Q
A ) in tabular form as given below.

e1(F
Q
A ) e1

h1 (0.9, 0.5)q
h2 (0.8, 0.2)q
h3 (0.9, 0.2)q

e2(G
Q
A ) e2

h1 (0.9, 0.4)q
h2 (0.8, 0.3)q
h3 (0.7, 0.2)q
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Now if we consider q = 3, then we have expressed q-rung orthopair fuzzy soft
points e1(F

Q
A ) and e2(G

Q
A ) in tabular form as given below.

e1(F
Q
A ) e1

h1 (0.729, 0.125)3
h2 (0.512, 0.008)3
h3 (0.729, 0.008)3

e2(G
Q
A ) e2

h1 (0.729, 0.064)3
h2 (0.512, 0.027)3
h3 (0.343, 0.008)3

Therefore similarity measure of q-rung orthopair fuzzy soft points e1(F
Q
A ) and

e2(G
Q
A ), for q = 3 is S̃(ei (F

Q
A ), e2(G

Q
A )) = 0.784.

Proposition 2 Let ei (F
Q
A ) and e j (G

Q
B ) be two q-rung orthopair fuzzy soft sets. Then

(i) S̃(ei (F
Q
A ), e j (G

Q
B )) = S̃(e j (G

Q
B ), ei (F

Q
A )).

(ii) 0≤̃S̃(ei (F
Q
A ), e j (G

Q
B ))≤̃1.

(iii) S̃(ei (F
Q
A ), e j (G

Q
B )) = 1, if ei (F

Q
A ) = e j (G

Q
B ).

Proof Obvious. �	

4 Weighted Similarity Measures Between Q-ROFSSs and
Q-ROFSPs

In this section, definitions and examples of weighted similarity measures between
q-ROFSSs and q-ROFSPs are studied. Further some of its properties are introduced.

Definition 11 Let E = {e1, e2, ..., em} be the set of parameters and wi be the weight
of ei , and wi ∈ [0, 1], but not all zero. Let FQ

A and GQ
B be two q-rung orthopair

fuzzy soft sets over (U, E). Then their weighted similarity between them, denoted
by W̃ S(FQ

A ,GQ
B ) is defined by

W̃ S(FQ
A ,GQ

B ) =

n∑

t=1
wi .

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)] /

m∑

=1

wi ,

where i = 1, 2, 3, ...,m.
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Problem 3 From Problem 1. We have expressed FQ
A and GQ

A in tabular form (for
q=3) as given below.

FQ
A e1 e2
h1 (0.729, 0.125)3 (0.512, 0.064)3
h2 (0.512, 0.008)3 (0.125, 0.001)3
h3 (0.729, 0.008)3 (0.343, 0.027)3
GQ

A e1 e2
h1 (0.216, 0.027)3 (0.729, 0.064)3
h2 (0.343, 0.216)3 (0.512, 0.027)3
h3 (0.125, 0.064)3 (0.343, 0.008)3

Nowwe consider 0.3 and 0.6 are the weight of e1 and e2 respectively. Then q-rung
orthopair fuzzy soft sets FQ

A and GQ
A in tabular form (for q=3) as given below.

FQ
A e1(0.3) e2(0.6)
h1 (0.219, 0.037)3 (0.307, 0.038)3
h2 (0.154, 0.002)3 (0.075, 0.001)3
h3 (0.219, 0.002)3 (0.206, 0.016)3
GQ

A e1(0.3) e2(0.6)
h1 (0.065, 0.008)3 (0.437, 0.038)3
h2 (0.103, 0.065)3 (0.307, 0.016)3
h3 (0.038, 0.019)3 (0.206, 0.005)3

Therefore weighted similarity measure of q-rung orthopair fuzzy soft sets FQ
A and

GQ
A , for q = 3 is W̃ S(FQ

A ,GQ
B ) = 0.076.

Proposition 3 Let FQ
A and GQ

B be two q-rung orthopair fuzzy soft sets. Then

(i) W̃ S(FQ
A ,GQ

B ) = W̃ S(GQ
B , FQ

A ).

(ii) 0≤̃W̃ S(FQ
A ,GQ

B )≤̃1.
(iii) W̃ S(FQ

A ,GQ
B ) = 1, if FQ

A = GQ
B .

Proof (i) For i = 1, 2, 3, ...,m, we obtain

W̃ S(FQ
A ,GQ

B ) =

n∑

t=1
wi .

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)] /

m∑

=1

wi

=

n∑

t=1
wi .

{

μ
q

ei (G
Q
B )

(ht ) • μ
q

ei (F
Q
A )

(ht ) + ν
q

ei (G
Q
B )

(ht ) • ν
q

ei (F
Q
A )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)] /

m∑

=1

wi

= W̃ S(GQ
B , FQ

A ).
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(ii) obvious.
(iii) Let FQ

A = GQ
B , and for i = 1, 2, 3, ...,m, we get

W̃ S(FQ
A ,GQ

B ) =

n∑

t=1
wi .

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)] /

m∑

=1

wi

=

n∑

t=1
wi .

{

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)] /

m∑

=1

wi

=

n∑

t=1
wi .

{

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

}

n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

) /

m∑

=1

wi

= 1.

�	
Definition 12 Let E = {e1, e2, ..., em} be the set of parameters and wi be the weight
of ei and wi ∈ [0, 1], but not all zero. Let FQ

A and GQ
B be two q-rung orthopair fuzzy

soft sets over (U, E), and
m∑

=1
wi = 1. Then their weighted similarity between them,

denoted by W̃ S(FQ
A ,GQ

B ) is defined by

W̃ S(FQ
A ,GQ

B ) =

n∑

t=1
wi .

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

ei (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

ei (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

ei (G
Q
B )

(ht ) + ν
2q

ei (G
Q
B )

(ht )

)] ,

where i = 1, 2, 3, ...,m.

Definition 13 Let E = {e1, e2, ..., em} be the set of parameters and wi be the weight
of ei , and wi ∈ [0, 1], but not all zero. Let ei (F

Q
A ), and e j (G

Q
B ) be two q-rung

orthopair fuzzy soft points. Then the weighted similarity between them, denoted by
W̃ S(ei (F

Q
A ), e j (G

Q
B )) is defined by

W̃ S(ei (F
Q
A ), e j (G

Q
B )) =

n∑

t=1
wi .

{

μ
q

ei (F
Q
A )

(ht ) • μ
q

e j (G
Q
B )

(ht ) + ν
q

ei (F
Q
A )

(ht ) • ν
q

e j (G
Q
B )

(ht )

}

max

[
n∑

t=1

(

μ
2q

ei (F
Q
A )

(ht ) + ν
2q

ei (F
Q
A )

(ht )

)

,
n∑

t=1

(

μ
2q

e j (G
Q
B )

(ht ) + ν
2q

e j (G
Q
B )

(ht )

)] /

m∑

i=1

wi ,

where i = 1 or 2 or . . . or m; j = 1 or 2 or . . . or m.
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Problem 4 FromProblem 3.We have expressed e1(F
Q
A ) and e2(G

Q
A ) in tabular form

as given below.

FQ
A e1(0.3)
h1 (0.219, 0.037)3
h2 (0.154, 0.002)3
h3 (0.219, 0.002)3
GQ

A e2(0.6)
h1 (0.437, 0.038)3
h2 (0.307, 0.016)3
h3 (0.206, 0.005)3

Therefore weighted similarity measure of q-rung orthopair fuzzy soft points
e1(F

Q
A ) and e2(G

Q
B ), for q = 3 is W̃ S(e1(F

Q
A ), e2(G

Q
B )) = 0.157.

Proposition 4 Let ei (F
Q
A ) and e j (G

Q
B ) be two q-rung orthopair fuzzy soft points.

Then

(i) W̃ S(ei (F
Q
A ), e j (G

Q
B )) = W̃ S(e j (G

Q
B ), ei (F

Q
A )).

(ii) 0≤̃W̃ S(ei (F
Q
A ), e j (G

Q
B ))≤̃1.

(iii) W̃ S(ei (F
Q
A ), e j (G

Q
B )) = 1, if ei (F

Q
A ) = e j (G

Q
B ).

Proof Obvious. �	

5 Application of Similarity of Q-ROFSSs in Covid-19

Now India has become largest affected countries of Covid-19 in Asia. It can be
easily seen that the virus has spread to entire country with the worst hit states being
Maharashtra (74,761 cases), Gujarat (32,643), Tamil Nadu (90,167) and Karnataka
(15,242) on 30th Jun, 2020. Figure 1, show the total cases in these states on Jun 30,
2020.

In this section, we have tried to find similarity between two region of India being
with the help of q-rung orthopair fuzzy soft set. We consider Two states Maharashtra
and Gujarat of West region and Tamil Nadu and Karnataka of south region of India.
Based on the data available from crowdsourced database of Covid-19 India dot org
[36], four states details(Confirmed, Active and Recovered cases) created.Here only
20th April, 20th May and 20th July 2020 data were collected.

In our model universal set contain three elements i.e. U = {h1, h2, h3}, where
h1 = 20th April, h2 = 20th May, h3 = 20th Jun.Different States of regions of India
is considered as a parameter set E. Let E = {e1(Maharashtra), e2(Gujarat),
e3(Tamilnadu), e4(Karnataka)}. Here we have used the following algorithms.
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Fig. 1 Covid-19 cases in India (Jun 30, 2020)

Algorithms:
Step (i): To Collect data from crowdsourced database of Covid-19 India dot org [36]
in tabular form.
Step (ii): To convert Step(i) data to decimal form with the help of confirmed cases.
Step (iii): To express step(ii) data q-RFSSs model FQ

A and GQ
B in tabular form.

Step (iv): To Express q-RFSSs model FQ
A and GQ

B for q=3,in tabular form.
Step (v): Find the similarity measures between q-RFSSs model FQ

A and GQ
B for q=3.

Step (vi): Find the similarity measures between q-rung orthopair fuzzy soft points
of q-RFSSs model FQ

A and GQ
B for q=3.

Step (vii): If similarity values of Step(v) and Step(vi) are greater than 0.5 [20], then
we conclude that the regions and states are possibly spread of Covid-19 similar.
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Table 1 Date wise collected data

Date Regions State Confirmed Active Recovered

20th April, 2020 West India Maharashtra 4,666 3,862 572

20th April, 2020 West India Gujarat 1,939 1,737 131

20th April, 2020 South India Tamil Nadu 1,520 1,046 457

20th April, 2020 South India Karnataka 408 280 112

20th May, 2020 West India Maharashtra 39,297 27,589 10,318

20th May, 2020 West India Gujarat 12,539 6,571 5,219

20th May, 2020 South India Tamil Nadu 13,191 7,221 5,882

20th May, 2020 South India Karnataka 1,462 864 556

20th Jun, 2020 West India Maharashtra 1,28,205 58,054 64,153

20th Jun, 2020 West India Gujarat 26,737 6,396 18,702

20th Jun, 2020 South India Tamil Nadu 56,845 24,825 31,316

20th Jun, 2020 South India Karnataka 8,697 3,168 5,393

Fig. 2 Active cases in four states

We express active and recover cases in bar diagram from Table 1 in Figs. 2 and 3.
Now we have express data (Table-2) q-ROFSSs FQ

A and GQ
B in Table-3. After

this, we have convert q-ROFSSs FQ
A and GQ

B in Table-4 for q=3.
From Table 4 we have draw FQ

A and GQ
B with the help of Matlab in Graph 1,

Graph 2 and Graph 3 as follows:
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Fig. 3 Recovered cases in
four states

Table 2 Date wise converted Data

Date Regions State Active Recovered

20th April, 2020 West India Maharashtra 0.828 0.122

20th April, 2020 West India Gujarat 0.895 0.068

20th April, 2020 South India Tamil Nadu 0.688 0.301

20th April, 2020 South India Karnataka 0.686 0.275

20th May, 2020 West India Maharashtra 0.702 0.263

20th May, 2020 West India Gujarat 0.524 0.416

20th May, 2020 South India Tamil Nadu 0.547 0.446

20th May, 2020 South India Karnataka 0.591 0.380

20th Jun, 2020 West India Maharashtra 0.453 0.500

20th Jun, 2020 West India Gujarat 0.239 0.699

20th Jun, 2020 South India Tamil Nadu 0.437 0.551

20th Jun, 2020 South India Karnataka 0.364 0.620

Table 3 Tabular form of FQ
A and GQ

B

FQ
A e1 e2

h1 (0.828, 0.122)q (0.895, 0.068)q
h2 (0.702, 0.263)q (0.524, 0.416)q
h3 (0.453, 0.500)q (0.239, 0.699)q

GQ
B e3 e4

h1 (0.688, 0.301)q (0.686, 0.275)q
h2 (0.547, 0.446)q (0.591, 0.380)q
h3 (0.437, 0.551)q (0.364, 0.620)q
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Table 4 Tabular form of FQ
A and GQ

B for q=3

FQ
A e1 e2

h1 (0.5677, 0.0018)3 (0.7169, 0.0003)3
h2 (0.3459, 0.0182)3 (0.1439, 0.0720)3
h3 (0.0930, 0.1250)3 (0.0137, 0.3415)3

GQ
B e3 e4

h1 (0.3257, 0.0273)3 (0.3228, 0.0208)3
h2 (0.1637, 0.0887)3 (0.2064, 0.0549)3
h3 (0.0835, 0.1673)3 (0.0482, 0.2383)3
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Finally, we have find the following values.
From the Table 5, we have seen that all the values greater than 0.5 except

S̃(e2(F
Q
A ), e3(G

Q
B )). Therefore both North and South region, and all states spread

similarly Covid-19 except the states Gujarat and Tamil Nadu.
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Table 5 Similarity in tabular form

S̃(Fq
A,Gq

B) = 0.550. > 0.5.

Similarity between States Values

S̃(e1(F
Q
A ), e3(G

Q
B )) 0.5828 > 0.5.

S̃(e1(F
Q
A ), e4(G

Q
B )) 0.6214 > 0.5.

S̃(e2(F
Q
A ), e3(G

Q
B )) 0.4899 ∼= 0.5.

S̃(e2(F
Q
A ), e4(G

Q
B )) 0.5286 > 0.5.

6 Application of Weighted Similarity of Q-ROFSSs in
Covid-19

In this section, we have been applying weight similarity measure of q-ROFSSs in
Covid-19. Aim of the this section, to reduce to spread of the Covid-19 virus in
the mention regions and states. Based on the number of tested samples of par-
ticular state, we have applied weight . Maharashtra, Gujarat, Tamil Nadu and
Karnataka are completed 1.3M, 449.3K, 1.5M and 798.4K sample test on Jun
10, 2020. On basis of this data we find the weight 0.32, 0.11, 0.37 and 0.20
of the given states. Therefore weight of {e1(Maharashtra) = 0.32, e2(Gujarat) =
0.11, e3(Tamilnadu) = 0.37 and e4(Karnataka) = 0.20}.

Here we have used the following algorithms.

Algorithms:
Step (i): To consider all the collected data of Sect. 5.
Step (ii): To multiplying the data(Table 4) by corresponding weight of parameters.
Step (iii): Find the weighted similarity measures between q-RFSSs model FQ

A and
GQ

B for q=3.
Step (iv): Find the weighted similarity measures between q-rung orthopair fuzzy soft
points of q-RFSSs model FQ

A and GQ
B for q=3.

Step (v): If similarity values of Step(iii) and Step(iv) are near to zero, then we con-
clude that the regions and states are reduce to spread of Covid-19 virus.

We have consider the data from Sect. 5 and implement of weight of the corre-
sponding parameters, the Table 4 convert to Table 6 as
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Table 6 Tabular form of e1(F
Q
A ) and e2(G

Q
B ) for q=3

FQ
A e1(0.32) e2(0.11)

h1 (0.18166, 0.00058)3 (0.07886, 0.00003)3
h2 (0.11069, 0.00580)3 (0.01583, 0.00792)3
h3 (0.02976, 0.04000)3 (0.00151, 0.03757)3

GQ
B e3(0.37) e4(0.20)

h1 (0.12051, 0.01010)3 (0.06456, 0..00416)3
h2 (0.06057, 0.03282)3 (0.04128, 0.01098)3
h3 (0.03090, 0.06190)3 (0.00964, 0.04766)3

Finally, we have find the following values.

Table 7 Weighted similarity in tabular form

W̃ S(FQ
A ,GQ

B ) = 0.03

Weighted similarity between States Values

W̃ S(e1(F
Q
A ), e3(G

Q
B )) 0.06.

W̃ S(e1(F
Q
A ), e4(G

Q
B )) 0.03.

W̃ S(e2(F
Q
A ), e3(G

Q
B )) 0.11.

W̃ S(e2(F
Q
A ), e4(G

Q
B )) 0.06.
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From the Table 7, we have seen that all the values of weighted similarity nearest
to zero.

7 Conclusion

In this chapter, a new similarity measure and a weighted similarity measure for
q-RFSSs and q-RFSPs are presented and some of its basic properties are being
discussed. Moreover, we provide an application of q-ROFSSs in Covid-19 virus. we
have proposed deep learning models for predicting the number of Covid-19 confirm
cases in Indian states. Based on the number of active and recovered cases of Covid-
19 of the states, we have prepared the algorithm. A control-theoretic approach is
used to develop an epidemic model to find similarity of four most effected states of
two regions of India. Results depict a rapid increase in the number of cases in the
coming days. However, it is pertinent to mention that the future estimation provide is
subjected to certain system parameters and can vary based on the external inputs like
lock-downmeasures, social-distancing, vaccine/drug development, rapid testing, etc.
This approach will be useful to handle several realistic uncertainty problems such as
problems in pattern recognition, image processing, coding theory, economic system
etc.
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Local Fractional Calculus to Design the
Growth System of Covid-19 Using
Measure of Non-compactness

Hemant Kumar Nashine and Rabha W. Ibrahim

Abstract In this chapter, we use the concept of local fractional calculus andmeasure
of non-compactness to design the growth system of Covid-19. To achieve this, we
establish a fixed point and coupled fixed point theorems for new μ-set contraction
condition in partially ordered Banach spaces, whose positive cone K is normal.
We provide adequate examples to validate the epidemic dynamics with graphical
presentations. We also use present available data to validate it.

Keywords Fractional calculus · Epidemic model · SIR system · Partial ordered
Banach spaces · Fixed point · Measures of noncompactness

1 Introduction

The application of mathematical representations to designate infectious disease
changing aspects is a methodical approach of converting molds and information
(statistical, numerical info) concerning disease diffusion into quantitative approxi-
mations of how an epidemic progresses through time and space. Alike methods are
utilized in traditional physics to calculate the movement of a body by transforming
inactivity and gravity and the force and direction at which a body is thrown (the infor-
mation) into the curve of the body (the prediction). Epidemics of infectious diseases
between persons are motivated by diffusion of the infectious mediator among per-
sons directly, either by fomites (items or materials which are likely to carry infection,
such as clothes, utensils, and furniture.) in the environment or by animal paths. Dis-
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ease diffusion can similarly depend on biological features of both the pathogen and
the host, as well as shared, communication and environmental factors. It is promis-
ing to definite these dynamics in expressions of mathematical equations. While the
dynamics of infectious diseases can be exceedingly complex, in numerous suitcases
comparatively parsimonious simulations can be utilized to designate the necessary
properties of epidemic dynamics.

The outcome Susceptible-Infectious-Recovered (SIR) system can be utilized to
refer to the number of persons in each class on time t, (ς(t), ϒ(t) and ρ(t)) based on
two supplementary molds. Originally, the rate at which predisposed persons become
infected through any interval of fractal time�γ (see [35]) is expected to be related to
the frequency of infectious persons. Secondly, infected persons recover with lifelong
immunity after an average infectious period. These conventions can be interpreted
into the following fractal equations labeling the epidemic dynamics:

�γ ς(t) = −Bϒ(t)ς(t)

�γ ϒ(t) = Bϒ(t)ς(t) − Aϒ(t),
(1)

where

�γ ς(t) = �(γ + 1)[ς(t) − ς(t0)]
(t − t0)γ

, γ ∈ (0, 1]

similarly,

�γ ϒ(t) = �(γ + 1)[ϒ(t) − ϒ(t0)]
(t − t0)γ

, γ ∈ (0, 1]

and A and B are the connection constants. Basically, theses constant are defined the
reproductive number � := BN

A ,where N = ς + ϒ at time t. This rate is indicated as
the regular number of secondary cases created by an index instancewhen an epidemic
arises in a entirely inclined people. If � < 1, then an amount will die, out devoid
of producing extensive infections. For a given � > 1, the epidemic could yield an
epidemic and a smaller generation time would be related with higher growth rate.

In 1930, Kuratowski [15] discussed a new direction of research with the notion
of MNC that combines with some algebraic arguments are useful for studying the
mathematical formulations, particularly for solving the existence of solutions of
some nonlinear problems under certain conditions. The Kuratowskii and Hausdorff
MNC in a metric space are well-known in the literature. Fixed point theory has two
main branches: Constructive fixed point theorems in the line of Banach Contraction
Principle, and nonconstructive fixed point theorems, where results are obtained by
using topological properties in the direction of Brouwer’s/ Schauder’s/ Darbo’s fixed
point theorem. Schauder discussed the convexity of domains and the compactness
of operators. Darbo relaxed the strong condition of compactness of operators with
the use of MNC and defined appropriate classes of operators [8] which is extended
and generalized by many authors [1, 2, 4, 5, 14, 16–22, 32].

On the other hand, Ran and Reurings [31] was the first who extended the Banach
contraction principle to partially ordered sets with applications to linear and nonlin-
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ear matrix equations. Subsequently, Nieto and Rodríguez-López [28, 29], Nashine
and Samet [25] and many others extended the results [31] and given application to
ordinary differential equation and integral equation. The combination of MNC with
partially ordered normed and Banach spaces are discussed in the literature [9, 10,
23, 24, 26, 27, 30, 33, 34].

With above discussion in mind, an attempt has been made to give monotone
version with the relaxed conditions of domain of underlying operator into partially
ordered Banach spaces. To achieve the proposed results in partially ordered Banach
spaces, we define a notion of MNC. Then we use this notion to prove some FPTs for
μ−set contraction condition in partially ordered Banach spaces whose positive cone
K is norm. We will relaxed the conditions of bounds, closed and convexity of the
domain of operator at the expense that the operator ismonotone and bounded. Further
we apply the coupled fixed point result to get solution of epidemic dynamic system
for γ = 1. Finally we illustrate some examples to validate the epidemic dynamics
with graphical presentations. We also use present WHO available data to verify it.

2 Preliminaries

Let (X, ‖ · ‖) is an infinite dimensional Banach space and θ be its zero element.
B(ϑ, ζ ) will denote the closed ball with center ϑ are radius ζ and Bζ will stand for
B(θ, ζ ). Moreover, MX will denote the family of nonempty bounded subsets of X
and NX its subfamily consisting of all relatively compact sets.

Definition 1 [6] A mapping μ : MX → R
+ is said to be a measure of noncompact-

ness (MNC, for short) inX if it satisfies the following conditions (Y,Y1,Y2 ∈ MX):

(1◦) kerμ := {Y ∈ MX : μ(Y) = 0} �= ∅ and kerμ ⊂ NX,
(2◦) Y1 ⊆ Y2 ⇒ μ(Y1) ≤ μ(Y2),
(3◦) μ(Y) = μ(Y),
(4◦) μ(convY) = μ(Y),
(5◦) μ(λY1 + (1 − λ)Y2) ≤ λμ(Y1) + (1 − λ)μ(Y2) for λ ∈ [0, 1],
(6◦) μ(Y1 ∪ Y2) = max{μ(Y1), μ(Y2)},
(7◦) If (Yn) is a decreasing sequence of non-empty closed sets in MX and if

limn→∞ μ(Yn) = 0, then the setY∞ = ⋂∞
n=1 Yn is non-empty and compact.

A map α : MX → R
+ is said to be a Kuratowski MNC [15] if

α(Y) = inf

{

ε > 0 : Y ⊂
n⋃

k=1

Sk,Sk ⊂ X, diam(Sk) < ε (k ∈ N)

}

. (2)

We denote �(X) a nonempty, bounded, closed and convex set on Banach space X.
The following extensions of topological Schauder fixed point theorem and classical
Banach fixed point theorem were proved by Darbo (DFPT, in short) in 1955.
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Theorem 1 [6] Let X be a Banach space, Y ∈ �(X) and T : Y → Y be a con-
tinuous operator such that there exists a λ ∈ [0, 1) with

μ(T (A)) ≤ λ μ(A)

for any ∅ �= A ⊂ Y, here μ is the Kuratowski MNC on X. Then we can conclude
that T has a fixed point.

3 Fixed Point Results

Let X be a Banach space with the norm ‖ · ‖ whose positive cone is defined by
K = {x ∈ X : x ≥ 0}. We have (X, ‖ · ‖) is a partially ordered Banach space with
the order relation � induced by cone K.

Definition 2 [7] A continuous mapping F : R2+ → R is called a C-class function
if it is satisfies

(1) F(s, t) ≤ s,
(2) F(s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ R+.

Definition 3 [7] AC-class function has a property CF , if there exists aCF ≥ 0 such
that

(1) F(s, t) > CF ⇒ s > t ,
(2) F(t, t) ≤ CF , for all s, t ∈ R+.

Definition 4 [7]. Let �(�,CF ) be the family of extended CF -simulation functions
� : R2+ → R satisfying following conditions:

(�1) �(s, t) < F(t, s) for all s, t > 0, where F ∈ C with property CF ;
(�2) if {sn}, {tn} ∈ (0,+∞) such that limn→∞ sn = limn→∞ tn = �, where � ∈

(0,+∞) and tn > � for all n ∈ N, then lim supn→∞ �(sn, tn) < CF ;
(�3) if {sn} ∈ (0,+∞) such that limn→∞ sn = � ∈ (0,+∞),�(sn, �) ≥ CF implies

� = 0.

We denote Geraghty function [12] as family of functions,
� := {β : [0,+∞) → (0, 1)| for {ζn} ⊂ [0,+∞) and limn→+∞ β(ζn) = 1− implies
ζn → 0+ as n → +∞}.

We now discuss our results in partially ordered Banach spaces.

Theorem 2 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, nondecreasing and
bounded mapping satisfying the following contraction:

�(μ(TV), β(μ(V))μ(V)) ≥ CF (3)
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for all nonempty bounded subset V in X, where μ denotes the arbitrary MNC,
� ∈ �(�,CF ) and β ∈ �.

If there exists an element ς0 ∈ X such that ς0 � Tς0, then T has a fixed point �∗
and the sequence {T nς0} of successive iterations converges monotonically to �∗.

Proof Assume ς0 ∈ X and define a sequence {ςn} ⊂ X by

ςn+1 = Tςn, n ∈ N
∗ = N ∪ {0} (4)

Since T is nondecreasing and ς0 � Tς0, we have

ς0 � ς1 � ς2 � . . . � ςn � . . . (5)

DenoteUn = conv{ςn, ςn+1, . . .} for n ∈ N
∗. By (4) and (5), eachUn is a bounded

and closed subset in X and

U0 ⊃ U1 ⊃ . . . ⊃ Un ⊃ . . . . (6)

Following (3), we obtain

�(μ(Un+1), β(μ(Un))μ(Un)) = �(μ(Conv(TUn)), β(μ(Un))μ(Un))

= �(μ(TUn), β(μ(Un))μ(Un))

≥ CF ,

that is,

CF ≤ �(μ(Un+1), β(μ(Un))μ(Un))

≤ F(β(μ(Un))μ(Un), μ(Un+1))

β(μ(Un))μ(Un) > μ(Un+1) (7)

μ(Un) > μ(Un+1)

for all n ∈ N.

By the construction of Un , it is clear that Un+1 ⊂ Un and so by the Definition
1.1, the sequence {Un} is nonincreasing and nonnegative. Thus, there exists � → 0
such that μ(Un) → � when n → ∞.

Suppose, to the contrary, that � �= 0. Therefore from (7) we have

μ(Un+1)

μ(Un)
≤ β(μ(Un)) < 1.

This yields
β(μ(Un)) → 1 as n → ∞.

Since β ∈ �, we get � = 0, and hence
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μ(Un) → 0, as n → ∞.

Since Un ⊂ Un−1, we have

U∞ =
∞⋂

n=1

Un �= ∅ and U∞ ∈ Kerμ.

Hence, for every ε > 0 there exists an n0 ∈ N such that

μ(Un) < ε ∀ n ≥ n0.

This concluded that Un0 and consequently U0 is a compact chain in X. Hence,
{ςn} has a convergent subsequence. Applying the monotone property of T and the
normality of cone K, the whole sequence {ςn} = {T nς0} converges monotonically
to a point, say �∗ ∈ U0. Finally, from the continuity of T , we get

T�∗ = T ( lim
n→∞ ςn) = lim

n→∞Tςn = lim
n→∞ ςn+1 = �∗.

��
On different setting of functions � ∈ �(�,CF ) and β ∈ � satisfying the condition
(3) in Theorem 2, we can get some new fixed point results.

Theorem 3 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, nondecreasing and
bounded mapping satisfying the following contraction:

�(μ(TV), β(μ(V))μ(V)) ≥ 0 (8)

for all nonempty bounded subset V in X, where μ denotes the arbitrary MNC,
� ∈ �(�,CF ) and β ∈ �.

If there exists an element ς0 ∈ X such that ς0 � Tς0, then T has a fixed point �∗
and the sequence {T nς0} converges monotonically to �∗.

Proof If we set �(�,CF ) with CF = 0 in Theorem 2, we get the result. ��
If we set

ψ(ζ ) =
{

ϕ(ζ ), for 0 ≤ ζ ≤ μ(X),

ϕ(β(X)), for ζ > μ(X)
(9)

and β(ζ ) = ψ(ζ )

ζ
for ζ > 0 and β(0) = 1

2 .

Theorem 4 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, non-decreasing and
bounded mapping satisfying the following contraction:
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�(μ(TV), ϕ(μ(V))) ≥ CF (10)

for all nonempty bounded subset V in X, where μ denotes the arbitrary MNC,
� ∈ �(�,CF ) and ϕ : R+ → R+ is a nondecreasing and upper semi-continuous
function such that ϕ(ζ ) < ζ for all ζ > 0.

If ∃ an element ς0 ∈ X such that ς0 � Tς0, then T has a fixed point �∗ and the
sequence {T nς0} of successive iterations converges monotonically to �∗.

Proof The proof follows of Theorem 2 and Corollary 2.2 in [1], with ϕ given in (9).
��

Theorem 5 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, nondecreasing and
bounded mapping satisfying the following contraction:

�(μ(TV), λ μ(V)) ≥ 0 (11)

for all nonempty bounded subset V in X, where μ denotes the arbitrary MNC,
� ∈ �(�,CF ) and λ ∈ [0, 1).

If there exists an element ς0 ∈ X such that ς0 � Tς0, then T has a fixed point �∗
and the sequence {T nς0} of successive iterations converges monotonically to �∗.

If we take diam(U) = diameter of U, then we have

Proposition 1 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, nondecreasing and
bounded mapping satisfying the following contraction:

�(diam(T (V)), λ diam(V)) ≥ CF (12)

for all nonempty bounded subsetV in X, where � ∈ �(�,CF ) and λ ∈ [0, 1).
If there exists an element ς0 ∈ X such that ς0 � Tς0, then T has a fixed point �∗

and the sequence {T nς0} of successive iterations converges monotonically to �∗.

Proof Theorem 2 and Proposition 3.2 [11] claim the existence of a T -invariant
nonempty closed convex subset V with diam(V∞) = 0, that is, V∞ has singleton
element, hence fixed point of T �= ∅.

To prove uniqueness, we suppose that there exist two distinct fixed points ζ, ξ ∈
V, then we may define the setU := {ζ, ξ}. In this case diam(U) = diam(T (U)) =
‖ξ − ζ‖ > 0. Then using (12), we get

CF ≤ �(diam(T (U)), λ diam(U))

≤ F(diam(U), λ diam(U)),

a contradiction from Definition 3 and hence the result. ��
Following is the generalized classical fixed point result derived fromTheorem 4.
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Theorem 6 Let (X, ‖ · ‖,�) be a partially ordered Banach space, whose positive
cone K is normal. Suppose that T : X → X is a continuous, nondecreasing and
bounded mapping satisfying the following contraction:

�(‖T ζ − T ξ‖, λ ‖ζ − ξ‖) ≥ CF (13)

for all ζ, ξ ∈ X, where � ∈ �(�,CF ) and λ ∈ [0, 1). If there exists an element
ς0 ∈ X such that ς0 � Tς0, then T has a unique fixed point �∗ and the sequence
{T nς0} of successive iterations converges monotonically to �∗.

Proof Let μ : MX → R
+ be a set quantity defined by the formula μ(X) = diamX,

where diamX = sup{‖ζ − ξ‖ : ζ, ξ ∈ X} stands for the diameter of X. It is easily
seen that μ is a MNC in a space X in the sense of Definition 1. Therefore from (13)
we have

CF ≤ sup
ζ,ξ∈U

�(‖T ζ − T ξ‖, λ ‖ζ − ξ‖)
≤ �( sup

ζ,ξ∈U
‖T ζ − T ξ‖, λ sup

ζ,ξ∈U
‖ζ − ξ‖)

= �(diam(T (U)), λ diam(U))

which implies that
�(diam(T (U)), λ diam(U)) ≥ CF .

Thus following Theorem 4, T has an unique fixed point. ��
Definition 5 [13] An element (u∗, v∗) ∈ X2 is called a coupled fixed point of a
mapping G : X2 → X if G(u∗, v∗) = u∗ and G(v∗, u∗) = v∗.

Definition 6 Let (X, ‖ · ‖,�) be a partially ordered Banach space and letG : X2 →
Xbe amapping.AmapG is said to have themonotoneproperty ifG(u, v) ismonotone
nondecreasing in both variables u and v, that is, for any u, v ∈ X,

u1, u2 ∈ X, u1 � u2 ⇒ G(u1, v) � G(u2, v)

and
v1, v2 ∈ X, v1 � v2 ⇒ G(u, v1) � G(u, v2).

Lemma 1 [3] Suppose that μ1, μ2, . . . , μn are MNCs (in Banach spaces X1,

X2, . . . ,Xn), respectively. We assume that the function G : Rn+ → R+ is convex
and G(ζ1, ζ2, . . . , ζn) = 0 if and only if ζi = 0 for i = 1, 2, 3, . . . , n. Then

μ(B) = G(μ1(B1), μ2(B2), . . . , μn(Bn)),

defines a MNCs in X1 × X2 × X3 × . . . × Xn whereBi denotes the natural projec-
tion of B into Xi , for i = 1, 2, 3, . . . , n.
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Theorem 7 Let (X, ‖ · ‖,�) be a partially ordered Banach space whose positive
coneK is normal. Suppose that G : X2 → X is a continuous and bounded mapping,
having monotone property and satisfying

�(μ(G(B1 × B2)), β(max{μ(B1), μ(B2)})max{μ(B1), μ(B2)}) ≤ CF (14)

for all bounded subsetsB1,B2 inX, whereμdenotes theMNC inX2,� ∈ �(�,CF )

and β ∈ �. If there exist elements u0, v0 ∈ X such that u0 � G(u0, v) for any v ∈ X
and v0 � G(v0, u) for any u ∈ X, then G has at least a coupled fixed point (u∗, v∗).

Proof We consider the map Ĝ : X2 → X2 defined by

Ĝ(u, v) = (G(u, v),G(v, u)).

Then Ĝ is a continuous and bounded mapping, having monotone property.
For any B = B1 × B2, we define a new MNC in the space X2 as

μ̂(B) = max{μ(B1), μ(B2)}
whereBi , i = 1, 2 denote the natural projections ofB. Now letB ⊂ X2 withB =
B1 × B2 be a nonempty bounded subset. We can conclude

�(μ̂(Ĝ(B)), β(μ̂(B))μ̂(B))

≤ �(μ̂(G(B1 × B2) × G(B2 × B1)), β(max{μ(B1), μ(B2)})max{μ(B1), μ(B2)})
= �(max{μ(G(B1 × B2)), μ(G(B2 × B1))}, β(max{μ(B1), μ(B2)})max{μ(B1), μ(B2)})
= max

{
�(μ(G(B1 × B2)), β(max{μ(B1), μ(B2)})max{μ(B1), μ(B2)}),
�(μ(G(B2 × B1)), β(max{μ(B2), μ(B1)})max{μ(B2), μ(B1)})

}

≥ CF .

That is,

�(μ̂(Ĝ(B)), β(μ̂(B))μ̂(B)) ≥ CF .

Next, we show that there is a û0 ∈ B such that û0 � Ĝ(̂u0). Since there exist elements
u0, v0 ∈ X such that u0 � G(u0, v) for any v ∈ X and v0 � G(v0, u) for any u ∈ X,
set û0 = (u0, v0). Then by the definition of Ĝ, we have

û0 = (u0, v0) � (G(u0, v0),G(v0, u0)) = Ĝ(u0, v0)

= Ĝ(̂u0)

Theorem 2 implies that Ĝ has a fixed point, and hence G has a coupled fixed point. ��
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4 Application

In this section,we aim to discuss themost recent issue in theworld, which is Covid-19
mathematically. When γ = 1, we have the well-known SIR system [36]. To proceed
to investigate the existence and uniqueness of (1) by using Theorem 7, we put the
system in the formula

�γ ς(t) = σ1(t, ς,ϒ)

�γ ϒ(t) = σ2(t, ς,ϒ),
(15)

whereσ1(t, ς,ϒ) := −Bϒ(t)ς(t) andσ2(t, ς,ϒ) := Bϒ(t)ς(t) − Aϒ(t) are local
fractal continuous on an interval J := [a, b]. We denote this space by Cγ (J ); that
is for all ε > 0 there is δ > 0 such that

|σ1(t, ς,ϒ) − σ1(t0, ς,ϒ)| ≤ εγ

when |t − t0| ≤ δ. Similarly for σ2. The fractal integral system corresponding to (15)
is formulated as follows for t ∈ [a, b]:

ς(t) = 1

�(1 + γ )

∫ b

a
σ1(t, ς,ϒ)(dt)γ

ϒ(t) = 1

�(1 + γ )

∫ b

a
σ2(t, ς,ϒ)(dt)γ ,

(16)

where (dt)γ = t1−γ

�(2−γ )
dtγ . The variation of σ1 and σ2 can be indicated by ς and ϒ

to be autonomous of frequency that is there exists positive constants c1 and c2 such
that c2 ≥ c1 and

c1 ≤ sup
t∈[a,b]

|σ1(t, ς,ϒ)| ≤ c1 (‖ς‖‖ϒ‖) , c1 ∈ (0,∞)

and
c2 ≤ sup

t∈[a,b]
|σ2(t, ς,ϒ)| ≤ c2 (‖ς‖‖ϒ‖) , c2 ∈ (0,∞).

Moreover, since σ1 and σ2 are fractal continuous functions then by the mean value
theorem for local fractional integrals

I γ σ1(ς,ϒ) := 1

�(1 + γ )

∫ b

a
σ1(t, ς,ϒ)(dt)γ = σ1(ζ )

(b − a)γ

�(1 + γ )
, ζ ∈ (a, b)

and

I γ σ2(ς,ϒ) := 1

�(1 + γ )

∫ b

a
σ2(t, ς,ϒ)(dt)γ = σ2(ζ )

(b − a)γ

�(1 + γ )
, ζ ∈ (a, b).
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Therefore, for i = 1, 2, we have

I γ σi ∈ [σ i

(b − a)γ

�(1 + γ )
, σ̄i

(b − a)γ

�(1 + γ )
],

where σ i , σ̄i indicate the lower and upper bounds of σi respectively. Consequently, a
non-decreasing sequence (ηn) ⊂ [σ i

(b−a)γ

�(1+γ )
, σ̄i

(b−a)γ

�(1+γ )
] converges to η∗ := σ̄i

(b−a)γ

�(1+γ )
.

Based on the properties of σ1(J ) ⊆ σ2(J ), it is sufficient to consider σ2 := σ to
obtain our result, where

c ≤ sup
t∈[a,b]

|σ(t, ς,ϒ)| ≤ c (‖ς‖‖ϒ‖) , c ∈ (0,∞).

Moreover, we can define a positive fractal cone on a fractal continuous set Cγ := X
as follows: Kγ := {χ ∈ X : χ ≥ 0}.

We have the following outcome:

Theorem 8 Let (X := Cγ [0, b], ‖ · ‖,�) be a partially ordered Banach space
whose positive fractal cone Kγ = {χ ∈ X : χ ≥ 0} is normal. Define the mapping
G : X2 → X achieving the assumptions

G(ς,ϒ) = 1

�(1 + γ )

∫ b

0
σ(t, ς,ϒ)(dt)γ (17)

If bγ c
�(1+γ )

(‖ς‖‖ϒ‖) ∈ [1,∞) then G admits a couple fixed point.

Proof It is clear that

|G(ς,ϒ)| = | 1

�(1 + γ )

∫ b

0
σ(t, ς,ϒ)(dt)γ |

≤ bγ c

�(1 + γ )
(‖ς‖‖ϒ‖) .

(18)

Thus, G is bounded. Moreover, since σ is nondecreasing function, then

ς1 � ς2 ⇒ ‖ς1‖ ≤ ‖ς2‖ ⇒ G(ς1, ϒ) � G(ς2, ϒ);

and
ϒ1 � ϒ2 ⇒ ‖ϒ1‖ ≤ ‖ϒ2‖ ⇒ G(ς,ϒ1) � G(ς,ϒ2).

Hence, G admits the monotone nondecreasing property. Now, we proceed to achieve
all the conditions in Theorem 7. Now by letting β(max{.}) = (0, 1), we have
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�
(
max{‖G(ς,ϒ)‖, ‖G(ϒ, ς)‖}, β (max{‖ς‖, ‖ϒ‖}) × max{‖ς‖, ‖ϒ‖}

)

≤ �
(
max{‖G(ς,ϒ)‖, ‖G(ϒ, ς)‖},max{‖ς‖, ‖ϒ‖}

)

= �
(
max{‖G(ς,ϒ)‖, ‖G(ϒ, ς)‖},max{‖ς‖, ‖ϒ‖}

)
> 0.

(19)

By using the condition bγ c
�(1+γ )

(‖ς‖‖ϒ‖) ∈ [1,∞), it remains to show the following
assertion: it is clear that

‖ς0‖ ≤ bγ c

�(1 + γ )
(‖ς0‖‖ϒ‖) , ‖ϒ0‖ ≤ bγ c

�(1 + γ )
(‖ς‖‖ϒ0‖)

which imply that ς0 � G(ς0, ϒ) and ϒ0 � G(ς,ϒ0). Combining the above facts,
we obtain

(ς0, ϒ0) �
(
G(ς0, ϒ),G(ς,ϒ0)

)
.

Hence, G admits a couple fixed point. ��

4.1 Numerical Examples

In this part, we shall use Theorem 8 to exam the solution of fractal SIR system (1)
for different values of γ ∈ (0, 1] and X = Cγ [0, 1].
Example 1 Consider the system

�0.9ς(t) = −0.3ϒ(t)ς(t)

�0.9ϒ(t) = 0.3ϒ(t)ς(t) − 1.4ϒ(t), .
(20)

subject to the initial condition (0.6, 0.2). In this case, one can take A = 1.4 and
B = 0.3 which imply the Lyapunov exponent: λ = 0.4 ≈ � < 1 after two iterations.
It is clear that 0 < λ = 0.4 ≤ max{A, B} := c and

bγ c

�(1 + γ )
(‖ς‖‖ϒ‖) = 1.4

0.88
= 1.6 > 1.

This implies that the system has a solution (by Theorem 8) taking the fractal value

(ς,ϒ) =
(

0.12411

�(1 + γ )
,
0.25688

�(1 + γ )

)

=
(
0.12411

0.88
,
0.25688

0.88

)

≈ (0.14, 0.29).

Figure1 shows the behavior of the solution, where the system has no limit cycle.
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Fig. 1 Bifurcation diagrams of System (20), when A = 1.4, B = 0.3 and λ = 0.4 The left graph
represents the attraction solution while the right indicates the Bifurcation diagrams (iterations and
chaotic)

Example 2 Consider the system

�0.5ς(t) = −0.2ϒ(t)ς(t)

�0.5ϒ(t) = 0.2ϒ(t)ς(t) − 1.1ϒ(t), .
(21)

subject to the initial condition (0.4, 0.2). In this case, we select take A = 1.1 and
B = 0.3 which give the Lyapunov exponent: |λ| ≈ 0.1, while � = 0.2×1

1.1 = 0.18 < 1
in the first iteration. It is clear that 0 < λ = 0.18 ≤ max{A, B} := c and

bγ c

�(1 + γ )
(‖ς‖‖ϒ‖) = c

�(1.9)
= 1.1

0.96
= 1.1 > 1.

This implies that the system has a couple solution (by Theorem 8) having the formal

(ς,ϒ) =
(

1.0240

�(1 + γ )
,

0.0800

�(1 + γ )

)

=
(
1.0240

0.96
,
0.0800

0.96

)

≈ (1, 0.01).

Figure2 represents the behavior of the solution, where the system has a limit cycle
of iteration 4.

Table1 shows the simulation of Example 2. The value of � is closed to the value
of λ (Lyapunov exponent) and λ in Theorem 8. Also, it indicates the infection fatality
rate (IFR) which is the ration between death and infection numbers. The data of the
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Fig. 2 Bifurcation diagrams of System (21), when A = 1.1, B = 0.2 and λ = 0.18.The limit cycle
of iteration four

Table 1 Simulated data of Covid-19 in Jun (see [37]) by (1)

Country Name Total (N ) Infected number
(I )

Death IFR

USA 2,983,155 1,560,897 132,571 10%

Brazil 1,604,585 561,070 64,900 11%

Russia 687,862 223,237 10,296 5%

Spain 297,625 196,958 28,385 14%

system are: |λ| = 0.11 ≈ IFR, A = 0.96, B = 0.2 with the initial condition (0, 0)
(see Fig. 3). Note that

bγ c

�(1 + γ )
(‖ς‖‖ϒ‖) = 0.96

0.96
= 1

and the solution formulated by

(ς,ϒ) =
(

1.985

�(1 + γ )
,
0.00800

�(1 + γ )

)

=
(
1.985

0.96
,
0.00800

0.96

)

≈ (2, 0.01).

In this case, the solution is defined in X = Cγ [0, 2].



Local Fractional Calculus to Design the Growth System of Covid-19 … 461

Fig. 3 Bifurcation diagrams of System (21), when A = 0.96, B = 0.2 and λ = 0.11 The limit
cycle of iteration two
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Social Opinion Influence on Epidemic
Scenarios

Alejandro Carballosa, Mariamo Mussa-Juane, and Alberto P. Muñuzuri

Abstract The current global health situation has forced governments all over the
world to rule policies to control the expansion of the Covid-19 pandemic. One con-
clusion coming out from these events is the necessity to have a realistic mathematical
model to predict the evolution and avoid uncontrollable situations. Confinement of
drastic reduction of the populationmobility has become one of themost popular poli-
cies established by governments. Under these circumstances, it has been observed
that the population behavior (the human factor) is critical in order to achieve the
desired goal. We considered different scenarios describing the eagerness of the pop-
ulation to accept the confinement policies and propose a way to directly include this
information into an epidemic model.

Keywords Social networks · Social opinion influence in epidemiology · SIR
epidemic model · Control · Complex networks

1 Introduction

The coronavirus pandemic has dramatically changed the way people relate to each
other. It is well known that social interactions are carriers of diseases [6, 13]. For
instance, the Black Death (The Plague) in the 1300s killed up to 25–200 million
people in Eurasia and North Africa. The population was, then, decimated by a 30
to 60% of Europe’s total population. As mobility in that time was through short-
range movements (walking, carts pulled by animals, horses, ...), the spreading of
the pandemic may be considered to be diffusive [7, 15], and the total epidemic
event could take several decades. As time goes by, transport evolved and so did the
infection timing. Think about the First Industrial Revolution and the onset of the rail
transport. This new technology enabled the transference of goods and passengers
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through longer distances in shorter times. Pandemics could move even faster and
reach locations inaccessible before.

This is what happened in the late XIX century with the Third Plague. This pan-
demic was initiated in China in 1894. However, it was not as severe as the first one,
in Europe victims could be counted by thousands, the geographical hot spots being
pretty similar to those in the actual coronavirus epidemic. Not so its timing. The pace
was much slower. And, again, it strongly depended on human mobility. This plague
traveled through cargo ships from the busy port of Hong Kong. The plague bacteria
could spend years till reaching the most remote places. In 1896, it arrived to Bombay
(now Mumbai), India’s leading port and a central node of the British colonies and
from there to the world aided by ships and the railway. With the passage of time and
the emergence of the airplane, this lapse of years turns into days as in the coronavirus
scenario, where the smaller innermost village is not free of infection. The important
lesson we infer from the previous pandemics is that the mobility is crucial in the spa-
tial spreading of the infection [8]. The trade network, that constitutes an important
type of social interaction, is behind the advance of a pandemic.

In addition, we can find similarities if we analyze the phenomena going from
local to global mobility. Diffusive networks operate in a local scale. Think about
families, villages or urban neighborhoods where face-to-face interactions dominate.
As the scale increases, that diffusive network turns into a small world network where
certain long-range interactions appear [1]. This could be the case of cities or mobility
among a district of cities and villages interacting. Richer network structures emerge
analyzingwider territories like countries or continents: Capital cities provide services
and functions as strong sources and sinks of people and occupy central locations of
the network. Meanwhile, villages occupy the peripheries of the network pointing to
cities but also between them, resulting in short-range networks.

Thus, historical context and geography are of relevance to determine the propa-
gation of a pandemic. These are environmental factors that, individually, we cannot
change so easily. We cannot change neither the transportation nor the era we are liv-
ing in. However, we can change the social predisposition to establish or not contact.
During the medium age plagues, cities locked their walls in order to control or even
avoid the epidemic. Nowadays, we continue using similar measurements adapted
to our never-stopping frenetic way of life. Thus, social distancing and quarantines
appear back. Today, as many centuries ago, the population faces the same dilemma,
either accept the policies imposed by the ruling class or try to avoid the restrictions
and continue interacting with the rest of the population. The evolution of the pan-
demic curves will strongly depend on this decision. In fact, the positioning of the
population with respect to this dilemma produces a polarized spectrum of opinion,
basically a bimodal distribution. Along thismanuscript, we consider different scenar-
ios describing the spectrum of approaches of the population to the social distancing
measurements. This information is introduced in the classical epidemic models, and
the results are analyzed.
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The text is organized as follows. First, we present the model used to describe
the evolution of the pandemic. Here we also describe how the mobility restrictions
can be incorporated in such models and the different opinion spectra that we will
consider. In the next section, the results of intensive numerical simulations are pre-
sented analyzing the different scenarios considered. We finish with the discussion
and conclusions.

2 Coupling an Opinion Distribution with the SIR Model

Along this section, we present the epidemic model used for our simulations and the
way to couple it with opinion distributions. The opinion distributions describe theo-
retical scenarios of population response to confinement and social distance policies.

2.1 SIR Model in Extended Systems

In order to incorporate the opinion distribution into epidemic models, first we need
to introduce the model itself and how this model can be interpreted and adapted in an
extended system. We choose to consider a simple model that still preserves the basic
features of a pandemic spread. In particular, we consider the classical SIR model [4]
named by the initials of the three compartments, and the population is considered to
be (susceptible, infected and recovered or death) as we will explain in more details
below. More complicated models have been implemented in the literature in order
to accurately predict the coronavirus expansion [11]. As we are trying to illustrate
how the effect of the opinion can modify the infection curves, we chose a basic
generic model for the propagation of a pandemic. Nevertheless, our way to introduce
the opinion distribution is generic and could be similarly implemented in different
models. The SIR model contemplates three epidemiological classes: susceptible (S),
the group of people that are prone to get infected; infected (I), already carrying the
infection; recovered (R), this group describes both the recovered population that are
supposed to be immune (at least for the considered timescale) and the death. See
Fig. 1 for a scheme of the mechanism.

In the scheme of Fig. 1, β and μ are the probabilities of infection and recovery,
respectively. β measures the chance of the susceptible group to get infected. In this
context,β measures the rate of the pandemic spreading.Once a susceptible individual

Fig. 1 Scheme of the SIR
model
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is infected, the individual moves to the infected class. Once in the infected class, they
have a chance μ to get recovered. The recovered class gains immunity and cannot
get infected again.

We consider that all individuals interrelate with each other as they are part of a
complex network of connections. Depending on the structure of the network, inter-
actions between the individuals from the different groups may happen and, thus,
induce a change from an epidemiological class to another. The topology of the
network of connections may change completely the output of the model and the
infection curves. For the present study, we consider that such a network follows a
Watts–Strogatz topology [17]. This is a paradigm for a small world network config-
uration. As we briefly discussed in the introduction, the kind of interaction among
individuals of our population and during a period of disease spreading is proba-
bly confined to interactions with physically close individuals with the exception of
a limited number of interactions with distant individuals. A small world network
mainly structures itself with short-range connections, and some long-range ones,
thus, accurately describes the situation we aim to investigate. This type of network
is characterized by a quite homogeneous connectivity (number of connections of a
specific node) with small deviations, meaning that almost all individuals within the
network have the same degree. This allows to describe societies with simple internal
structures such as families, neighborhoods and villages. In this context, thus, each
node of the network represents one of the aforementioned social units (i.e., families,
neighborhoods, etc.). This is just an extension of the SIR model to extended systems
described by a complex network whose nodes are described above.

In order to build a Watts–Strogatz network, we consider that the individuals are
interconnected forming a ring of N nodes with k initial neighbors and a probability
p of rewiring or establishing new connections. The higher is p, the closer the graph
is to a fully random network with the characteristics of a Erdos–Renyi graph [5]. If
we relate this ring-shaped network with a spatial distribution of individuals, when
p tends to 0, random interactions far from our neighborhood are prohibited, alike a
confinement situation with strictly reduced mobility. This makes the Watts–Strogatz
network a suitable one to study our concerned case where a restricted mobility can be
mimicked reducing the rewiring probability p. Note that the choice of the network
is important because its topology may result in completely different behaviors as
analyzed in [9].

Once the Watts–Strogatz network is generated, all nodes are set to the susceptible
state except for a given amount of randomly chosen nodes that are infected. Simula-
tions are run as follows. At each time step, the chance that each infected individual
spreads the disease to each of its susceptible connections is evaluated by means of
a Monte Carlo method [2] with a probability given by β. Then, the chance of each
infected individual being recovered is evaluated at the end of the time step in the same
manner. This process is repeated until reaching the stationary state where infected
individuals disappear.

Each simulation presented along this manuscript was run at least 1000 times in
order to have some statistical significance of the results. The dynamic equations were
integrated using a fourth-order Runge–Kutta method [12].
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2.2 Opinion-Biased SIR Model

So far we have introduced several notions about why measuring the social state of a
population can be of use to different dynamic processes and especially the modeling
of an epidemic spread. This section intends to give the reader a practical example of
how to implement these ideas from a theoretical point of view, although the method
could be extrapolated to real data sets obtained through statistical polls, social media,
etc. We also explore and analyze a few statistics of interest that can be exploited
to extract information on how the different control parameters of the model could
affect the evolution of the disease. For that purpose, we have carried out a series of
simulations based on the mechanisms explained in the previous sections and show
here the results. The parameters used on the epidemic model, namely the infection
and recovery parameters β and μ are not chosen to fit any data but to highlight the
impact of the opinion on the epidemic. The same criterion is applied to the parameters
of the synthetic network in which the disease propagates, i.e., the mean connectivity
of the network and its size.

In this manuscript, we create an imaginary society with a more or less polarized
spectrum of opinion. Social polarization can be implemented as a bimodal distri-
bution ({ui }) [18] where two distinct opinions depict the centers of two Gaussian
distributions with standard deviation σ . This bimodal distribution ensembles two
populations: N0 and N1. Population N0 has an opinion closer to 0. We consider that
this population does not follow the recommendations of the government and disobeys
the confinement policies of staying home or social distancing. Population N1, closer
to the opinion 1, follows the social restrictions. The opinion distribution considered
here is a simplified image of an actual society as certainly several sensibilities are
not reflected here, nevertheless we consider it as a good approach still preserving
the main features we want to outline. The distribution of opinions is given by {ui }
where ui is the opinion of individual i that lays between 0 and 1 being 0 complete
disagreement with mobility restrictions and 1 complete agreement.

In this context, if two individuals, one susceptible and another one infected, are
within the population N0, meaning that they do not follow the confinement policies,
then they aremore prone to get infected. In order to incorporate this into the epidemic
model, we consider the infection rate parameter β to be dependent on the two nodes
interacting, thus βi j . We define

βi j = βui · u j (1)

which accounts for the effective susceptibility of infection between an infected node
i and a susceptible node j . Here ui quantifies themobility of node i that ranges from 0
(nomobility and full adhesion to confinement policies) to 1 (normalmobility and total
neglect of mobility restrictions).We define this mobility factor as the complementary
to the opinion of such node, 1 − ui . u j is the equivalent magnitude for individual j .
Note that if both individuals (nodes) are likely to follow the social distance rules,
their opinion will be close to 1 and, thus, their mobility factor, ui will approach 0. In
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Fig. 2 Susceptibility to get
infected taking into account
a spectrum of opinion. Red
links interconnect infected
and susceptible individuals
and trace the possible
spreading path of the
pandemic

this case, the probability to get infected diminishes dramatically approaching zero.
Figure2 exemplifies the process through a network diagram, where blue, red and
green nodes represent susceptible, infected and recovered individuals, respectively.
Red connections account for possible infections with chance βi j .

Along the manuscript, we will be comparing the different opinion scenarios with
the situation described as free mobility, where all infection rates βi j approach the
constant value β as all mobility factors equal 1 (all the opinions lay down to 0). We
want to know how the opinions of the individuals within this social network with a
bimodal spectrum of opinion interfere with the basic disease’s model propagation,
the SIR, described in the previous section.

In order to generate a bimodal distribution, we have two main free parameters,
namely the width σ of the Gaussian distributions and the amount of counts that
compose each Gaussian distribution. If we sample a higher number of counts on the
Gaussian centered on zero, we shall say that the generated distribution represents
a set of opinions that tends to disagree with the external given opinion, while if a
higher number of counts are sampled on the Gaussian located on one, our opinion
distribution will tend to agree with the external opinion. Following the previous
notation, we shall refer to the counts located around the zero value as N0 and to
the counts located around the value of one as N1, so we can specify if a opinion
distribution tends to one of the extreme values accordingly to the ratio:

ν = N1

N0
(2)
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Note that if ν � 0, the general trend of the distribution will be to disagree with
the rulers’ opinion and vice versa (ν � 1). Thus, in summary, with σ and ν, we
can tune how much distributed our opinions are and which one is the trend of these
opinions. In general, measuring the social state of a group of citizens or a whole
population is a difficult task since real data obtained through statistical polls or
social media is usually hugely heterogeneous. Being in either complete agreement
or disagreement with an idea (values 1 and 0, respectively) is less common than
being in an intermediate state or even has an intermediate opinion (value of 0.5)
describing people that are likely to follow or not the social distancing policies with
equal probability (depending on the circumstances one may say) [3]. Therefore,
trying to model opinions through mathematical means can be a little naive because
of the richness of the data and the susceptibility to the topic: The distribution of
opinions would probably be strongly different if one is to choose between his or her
favorite food rather than his or her political affiliation, for example. Describing how
a social state is measured or modeled would require a whole book for itself to be
covered properly, and it is beyond the scope of this chapter. Nevertheless, considering
some theoretical clearly differentiated scenarios may help understanding the main
configurations that can be present in a more complex and real situations.

Here, for the sake of focusing on how these opinions can be implemented in the
epidemic dynamics, we will center our efforts in proposing different theoretical sce-
narios, and we will use the parameter σ , which marks the full width at half maximum
of the Gaussian distributions, as a measure of the dispersion on the opinions. We are
mainly interested in studying polarized cases, and this are topics where the popula-
tion either tends to have an either high affinity with the opinion at hand or a very low
one and see how the different trends affect to the global evolution of the epidemic.
On the other hand, a state where all opinions are approximately uniformly distributed
is easy to model, and we shall study this case too. These examples of distributions
that will lately be used are found on Fig. 3, for three different values of σ and three
different trends for each of the ν values.

3 Results

3.1 Generating the SIR Dynamics in a Network

As previously mentioned, complex networks offer a nice and suitable framework
for epidemic models, allowing for the possibility of scaling down to the individual
interactions if one considers a multi-agent-based simulation [14], where each node
represents an individual of a population, or spatial distribution if one considers a
metapopulation model [16], where each node represents a population itself where
the disease is transmitted locally. Besides, complex networks accommodate easily
the combination of the epidemic model with the opinion distributions, since we can
extrapolate the latter to assign to each individual node an opinion value. In this
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Fig. 3 Normalized opinion distributions generated accordingly to a bimodal distribution, for dif-
ferent values of the dispersion parameter σ . Panels on the left show scenarios where opinions tend
to be in total disagreement with the external given opinion, panels on the middle scenarios where
around the same amount of population have opposite opinions and panels on the right where opin-
ions tend to be in high agreement. Each row belongs to a different value of the dispersion parameter,
being, respectively, σ =0.05, 0.2, 1.0. Note that the lower row represents an approximately uniform
distribution of opinions

subsection, we will see the different outcomes of including the opinion distributions
of Fig. 3 to the SIR model as we explained in the previous sections.

Let us recapitulate now what exactly the external given opinion meant and how it
can affect the dynamics of the epidemic. If this external opinion is, for example, to
stay at home and isolate from society, we are imposing a restriction to the population
in terms of mobility. This translates in the complex network as a rupture of edges
and isolation of nodes, reducing drastically the connectivity and the possibility that
an infectious node can transmit the disease to its connections or “nearest neighbors”.
Thus, if all opinions tend to 0, the connectivity of the network remains unaltered,
while in the opposite case all nodes become isolated and the disease dies out in the
infected nodes. For the implementation in the epidemic model, it is important to
remember that we do not use the value of the opinion u directly, but that of its inverse
value u = 1 − u (the mobility) and it is this new variable which then multiplies the
infection parameter β. In this way, an opinion of u = 1 would become a mobility
factor u = 0 that when multiplied by β would cancel the probability of infection
(this is equivalent to removing all the edges of this node, leaving it isolated).

The effect that the opinion induces on the dynamics of the epidemic is clear with
the behavior of the curves as shown in Fig. 4. All figures represent the evolution of the
total number of infected individuals in the network with time. Each curve represents
the averaged behavior observed over more that a 1000 simulations of each case (note
the colored shadow of each curve meaning the dispersion of the simulated cases).

Figure4a correspondswith simulationswithσ = 0.05, the population described is
very polarized, and almost only two opinions are considered (namely adhesion to the
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Fig. 4 Time evolution of new infected cases according to the SIR model biased with the opinion
distributions shown in Fig. 3
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Fig. 5 Peak statistics for the scenarios presented on Fig. 4

confinement policies or not).Here, three infection curves are presented corresponding
to different ratios of N1/N2. As this ratio becomes larger, more and more individuals
acceptmobility restrictions and the peak of the curve is delayed aswell as its intensity
is decreased (meaning in a practical case that the health system does not saturate).
The higher the agreement with the confinement restrictions, the more flattened is the
curve of new infected cases over time. As the value of σ is increased (Fig. 4b) to
σ = 0.2, the infection curves present, roughly, the same behavior as in the previous
case. The last of the cases considered in this figure (Fig. 4c) corresponds with a value
of σ = 1.0. In this case, the distribution of opinions is homogeneous, and so it is
the mobility factors distribution. All opinions have the same representation in this
distribution. Changes in the ratio N1/N2 do not introduce any significant difference
in the final infection curve. Just note that the intensity and location of the peak almost
coincide with the least favorable case in the previous two figures.

Although the visualizations are clear enough, it would be desirable to quantify
these effects and explore how the tuning of the parameters impacts on the main
statistic that we have here: the peak of infection and the time it happens. Accurately
quantifying these parameters is usually one of the main goals of epidemiology, since
there are limits to the hospitalization of patients on the healthcare system of a nation.
We present all our results comparing them with a simulation of the SIR model (same
parameters for infection and recovery,β and γ ) without opinion factor included.With
this comparison, we can extract two sources of information: On one hand we have
the reduction of the number of absolute cases on the peak, and on the other hand, the
temporal delay of the peak. We shall express these new statistics in a relative fashion
and refer to them as peak statistics.

Let us focus our attention now to Fig. 5, in which we summarize the peak statistics
of the curves of Fig. 4. Figure5a presents the variation of the intensity of the peak
for the different scenarios considered (varying σ and the opinion ratio N1/N0).
Figure5b plots the values of the induced time delay in the infection peak for the
different scenarios. Regarding the reduction of the number of new infected cases on
the peak, breaking down the network mobility carries out at least a 40% reduction
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Fig. 6 Time evolution of new infected cases for a range of values of the parameter ν, for σ = 0.05.
The rewiring probability was fixed to p = 0.25

for every scenario contemplated, which scales up to an 85% reduction in the most
optimistic scenario, this is, low dispersion of the opinions (σ = 0.05) with a marked
tendency to agreewith the external opinion (ν = 2). The latter case, as one could have
expected, is the one which outcomes the higher reductions on the infections, since
it is the one with higher restrictions on the mobility (remember that the higher the
value of the opinion, the more likely it is the node to be isolated). Now, with respect
to the time delay of the peak, incorporating the opinion distribution to the network
delays at least a 100% the timing of the peak, which makes sense considering that if
the connections between nodes are largely broken, the outbreak of the epidemic will
take far longer to reach its tipping point. This delay is exaggerated again in the most
optimistic scenario, obtaining delays of almost a 400% of the original timing. An
interesting point that this secondfigure highlights is that of the behavior of the statistic
with the dispersion parameter, which is telling us that no further delay is achieved by
increasing it, or at least for σ < 0.2. For the uniform opinion distribution, we have
found that similar values are obtained in the three cases, although this was already
pointed out by Fig. 4c.

Now that we have introduced the main concepts and statistics; let us explore more
in detail how a wider sweep of the parameters affects the peak statistics. We com-
mented earlier at the beginning of this section that the opinion distribution responds
mainly to two parameters: the ratio ν between counts on both extremes of the distri-
bution, and the dispersion of the distributions σ . Let us introduce now another control
parameter regarding the topology of the network that was previously mentioned in
this chapter: the probability of random rewiring between nodes of theWatts–Strogatz
model. Remembering that, if this probability is set to 0 or near zero, the outcome is a
highly clustered population in which the epidemic has a lot of difficulties to percolate
[10]. Values of this rewiring probability close to 1 mean that the network stops being
a small world network and becomes a random one. These three parameters will be
considered in the following section.
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Fig. 7 Peak statistics for a range of values of the parameter ν, for σ = 0.05, σ = 0.2 and σ = 0.5.
The rewiring probability was fixed to p = 0.25

The time evolution of the infection curves for different values of the opinion ratio ν

is represented on Fig. 6. Note that for comparison purposes, the temporal evolution of
the infected individuals in the SIRmodel without opinion is plotted in a dashed black
line. It can easily grasp the two asymptotic behaviors of the parameter, for ν → 0
almost all opinions tend to completely disagree with the external given opinion
(government opinion imposing social distancing measures), and the dynamics of
the usual SIR model are recovered. On the other hand, for ν > 2 the outbreak of the
epidemic dies out or it never really happens. In Fig. 7, these two asymptotic behaviors
can be grasped from the peak statistics. Again, we are plotting the intensity of the
peak reduction as well as the time delayed induced by the opinion effect. The dashed
blue and orange bars in Fig. 7b represent the absence of a clear peak of infection. For
larger values of the dispersion parameter σ , namely σ = 0.2 and σ = 0.5, although
the same tendency is observed, larger values of ν are required for the epidemic
outbreak to die out. Note how for ν = 3 and ν = 4 there is still a peak of infection
with dispersion σ = 0.2, although it is heavily delayed (7 to 10 times the original
peak predicted by the SIR model). For a higher value of the dispersion parameter,
σ = 0.5, the slope of the trend is significantly reduced with increasing ν, until this
slope becomes practically zero as we saw on Fig. 5 with the dispersion parameter
σ = 1.0. For values of σ > 0.5, the distribution begins to becomemore uniform each
time, which tends to homogenize the number of counts of the opinion spectrum. This
effect is responsible for the higher values on the statistics obtained for σ = 0.5 when
ν is smaller than 0.5.

Let us move on now to the dispersion parameter σ , fixing ν at 0.5 to represent a
more pessimistic scenario where the trend is to disagree the given opinion and break
the social distancing policies. Our intention is to grasp in this scenario how a lower or
higher dispersion could improve or worsen the evolution of the disease. According to
the peak statistics in Fig. 8, it is curious to find that low to none dispersion produces
a further reduction on the number of absolute cases on the peak of infection. This
can be understood as follows: With σ � 0, the counts are located either at 0 or at
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Fig. 8 Infection peak statistics for different values of the parameter σ , with ν = 0.5 and the
probability of rewiring set to p = 0.25

1. Counts very close to one are isolated and thus cannot be infected by any means,
while counts on 0 are all susceptible to the disease with its original connectivity.
As σ increases, counts with a precise value of 1 decrease and become vulnerable,
while the opposite process occurs with those with a precise value of 0. In this balance
between counts that are increasingly isolated and others that are increasingly more
vulnerable, the effects of the latter predominate for lower values of σ since there
are now more nodes susceptible to infection, while the former have still plenty of
mobility. A point of equilibrium seems to be found around σ = 0.2, point fromwhich
the net reduction of the infection peak starts to increase due to the wider spread of
opinions. On the other hand, regarding the delay of the peak, we see that this statistic
grows slightly but monotonically with the dispersion parameter.

Finally, another parameter of interest is the grade of clustering in our synthetic
society, controlled by the rewiringparameter of theWatts–Strogatz networkmodel, p.
As previous studieswith small world-type networks have shown [10], the phenomena
of clustering in a complex network affect the percolation of the disease, as the panels
on Fig. 9 show. For increasing values of the rewiring probability, both reduction
and delay of the infection are decreased to the point of saturating around a 30%
and a 100%, respectively, existing barely no differences for values of the rewiring
probability p ≥ 0.3 This can be understood in terms of the average shortest path of
the network [1], which is a measure of the network topology that tells the average
minimum number of steps required to travel between any two nodes of the network.
The rewiring of edges starting from a ring topology where only the nearest neighbors
are connected introduces in the network a series of shortcuts between long-distance
nodes, which decreases the average shortest path exponentially fast. Thus, it makes
sense that the epidemic is able to propagate faster through the network on the presence
of these shortcuts. These saturation points can also be understood in terms of a
percolation process, as p increases, the clustering of the network decreases and the
probability of global infection becomes 1. From the data in Fig. 9, this percolation
threshold takes place at p � 0.3.
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Fig. 9 Peak statistics for different values of the rewiring probability p of the Watts–Strogatz
network model, with σ = 0.2 and ν = 0.5

3.2 Adding More Complexity to the Model: Trimodal
Opinion Distributions

So far we have considered the case where we have two opposite opinions, 0 and 1,
and themost intermediate case consisted of a uniform distribution. But, as we pointed
out before, another plausible situation involves the existence of a thirdmayor opinion
that, basically, decides to keep the social distance or not with equal probability. This
opinion corresponds with people that behaves differently depending on the occasion
or simply reduces their interactions but not dramatically. This is an state in which
they do not have a formed opinion, want to remain skeptical or are not concerned
with the topic, to figure out some possibilities. Let us picture, for example, the
case in which the government recommends to wear a facial mask in order to help
with the constraining of a virus. Experience has told us that population is divided
between concerned people (opinion 1) who wear it at all times, skeptical ones that
are suffocated by the breathing restriction or see their free will cropped and refuse
to wear it (opinion 0), and another group who although are slightly concerned and
neither want to catch the disease nor propagate it, and they wear it only occasionally
due to its uncomfortability or any other reason (opinion 0.5 approximately).

This trimode scenario could be modeled following the current reasoning of this
chapter by introducing a third Gaussian distribution in the middle of the spectrum:
u = 0.5, obtaining a trimodal distribution which obeys the same parameters that we
have already explored. Again, note that this scenario is a purely theoretical one and
real experimental data on the proposed example could completely differ, but let us
cope with it for the time being and for the sake of simplicity. We intend not to redo
a complete sweep of the parameters, since adding a new distribution to the model
involves plenty of new realizations of the system, but to show further possibilitieswith
the proposed model. In particular, let us propose the scenarios presented in Fig. 10.
Here we consider three different opinion distributions clearly showing three different
opinions in each case. We have once more that one of the opinions predominates
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Fig. 10 Three possible opinion distributions (normalized) generated with a trimodal distribution
model, with the dispersion parameter set to σ = 0.05

clearly. We will refer to N0 as the one where opinion 0 predominates (Fig. 10a), N0.5

the one with a peak on u = 0.5 (Fig. 10b) and N1 where the trend is to follow the
government opinion (Fig. 10c). The dispersion parameter was set to σ = 0.05 so the
three Gaussians would not overlap, and the three peaks were clearly distinguishable.
We have chosen this specific configuration in order to compare the outcome of this
model with the results from Fig. 3.What if instead of a nicely and smooth distribution
of opinions across the whole spectrum they grouped themselves into three clear
clusters? That is what we intend to show briefly with this subsection.

Figure11 shows the comparison between the bimodal and the trimodal distribu-
tions according to the peak statistics of the infection curves. Note that in the bimodal
distributions, N0 refers to the scenario with ν = 0.5 and N1 to that with ν = 2.0, and
we have obviated the case with ν = 1.0. Instead, we have chosen the scenario with
an uniform distribution (σ = 1.0) to compare with the trimodal case where there is a
peak on u = 0.5 (N0.5). For the chosen σ of the trimodal distribution, we see that the
outcome for both statistics is practically identical to that of the uniform distribution,
which could point out that these two distributions are equivalent when applied to the
epidemic model. On the other hand, for the scenarios in which one of the opposite
opinions predominates, we see that the difference lies mainly in the chosen value
of the dispersion parameter. In the N0 scenario, the bimodal distribution outcomes
a further reduction of the infection peak for both values of σ , although in N1 the
trimodal distribution returns a further reduction than the bimodal distribution with
σ = 0.2, but still does not reach the one yielded by σ = 0.05. Regarding the time
delay of the peak, while for N0 and N0.5 all distributions outcome similar results, and
a clear difference is found for N1, where the trimodal distribution yields a significant
further delay of the infection peak. In other words, although the number of infected
individuals on the peak remains practically the same for both models, the timing of
this peak is strongly delayed with the trimodal distribution. A loss of counts with
opinion values near 1 in favor of those with opinion around 0.5 results in a far more
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Fig. 11 Peak statistics for the trimodal opinion distributions vs the bimodal distributions. N0
represents the case where the opinion 0 predominates, N1 the case where opinion 1 predominates
and N0.5 represents the case with a peak on u = 0.5 of the trimodal distribution and the uniform
distribution of the bimodal case

optimal control of the disease, giving actual importance to the opinionless individ-
uals. This can be understood in terms of the population that remains in an skeptical
attitude with opinion near 0 in the bimodal distribution. In the trimodal distributions,
those counts are now distributed not only around 0 but around 0.5 as well, leaving a
significant amount of vulnerable nodes that are protected from other infected nodes
� 50% of the time. In this scenario, although these nodes can be equally infected and
contribute to the amount of infected individuals on the peak, at each time step, there
are less active nodes and the disease has it more difficult to percolate, decreasing the
speed of the outbreak. In this sense, this could indicate that a policy of confinement
that leaves in circulation half of the nodes at each time step (in the sense that the nodes
are being intercalated) could be more effective on the control of the disease than a
policy that confines a huge part of the population and leaves a significant percentage
of the population circulating during the outbreak of the disease. However, to confirm
this premise further, more exhaustive studies on the topic should be carried out.

4 Discussion and Conclusions

Along this manuscript, we present a systematic way to include the state of opinion
of a society into the evolution of an epidemic. We considered some theoretical sce-
narios in order to identify the more important parameters and features of this model.
Once the opinion distribution is built (either from experimental observations or from
theoretical considerations such as in the present case), we know how the population
intends to react when facing mobility restrictions imposed by the ruling class. This
opinion distribution is directly translated into a mobility factor for each node in the
network that reduces or increases its risk or probability of infection.
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The results presented here are clear and confirm the experimental evidence, the
spread of an epidemic can be controlled by the people suffering it. The decision of
the population to adhere to social distancing policies can induce dramatic reductions
in the infection peak intensity (up to 100%) and significantly delay its occurrence.
For some cases, the peak can even be completely suppressed or inhibited only due
to the appropriate decisions of the population.

One first conclusion of the present work is the need to raise the awareness of
the importance of social distancing policies. The more aware the population is, the
larger the value of ν is and, thus, the infection peak is lowered and delayed signifi-
cantly. Another parameter that was analyzed is the dispersion of the opinions in the
distributions considered. It plays an important role that depending on the parameter
ν can help to control the epidemic or otherwise. The case shown in Fig. 8 consti-
tutes an example where the dispersion of opinions helps preventing the spread of
the epidemic. Large values of σ significantly decrease the amplitude of the infection
peak and induce large delays. Figure 7 shows both behaviors at the same time. For
lower values of ν < 0.5 (corresponding with a majority of the population opposing
the confinement restrictions), the increase of the opinion dispersion plays a positive
role to constrain the epidemic spread. On the other hand, for values of ν > 0.5, the
behavior is the opposite; an increase in the opinion dispersion (σ ) results in worse
conditions and a steeper infection curve that happens early in time.

Another parameter that was analyzed along the manuscript is the so-called
rewiring probability that controls the number of distant connections for each node.
In practical applications, it determines how clustered the network is. During its anal-
ysis, we observe the importance of keeping the connection of each node local and
low, avoiding distant connections. In this way, the number of individuals connected
with each node remains low (small hub), and the epidemic finds more difficult to
propagate. It is important to maintain the network clustered and avoid reaching the
percolation threshold that triggers the infection peak.

More complexity can be added into the opinion models and distributions, but the
main features remain basically the same. We believe the method deployed here to
include opinion factors into infection curves is crucial as we demonstrate that can
dramatically change the outcome of themodel and completely influence the evolution
of the epidemic.
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Modelling the Significant Effect of Public
Health Interventions on Covid-19
Transmission

Abhineshwary Bhalraj and Amirah Azmi

Abstract Amajor Coronavirus outbreak, whichwas first identified inWuhan, China
in December 2019, has rapidly spread all over the world. On 11 March 2020, the
WorldHealth Organization (WHO) has declared the novel Coronavirus Disease 2019
(Covid-19) outbreak a global pandemic. The increase in the number of reported
infections and deaths due to Coronavirus outbreak inspired many countries to imple-
ment intervention measures. In this work, we use Susceptible-Exposed-Infected-
Recovered (SEIR) model to predict the outbreak of the disease. SEIR model was
chosen compared to SIRmodel because exposed individualswhomare asymptomatic
or having mild symptoms contribute to the increase of number of infections. We also
work on modelling the transmission dynamics of Covid-19 in the presence of three
intervention measures. The proposed model describes the evolution of the disease
in the population when preventive measures, active case-finding and hospitaliza-
tion interventions are implemented as strategies to control and eradicate the disease.
Variation in the effectiveness of combined interventions for infectious individuals
are observed and analyzed by simulating the Covid-19model with interventions. Our
simulation results shows that more rigorous and stringent public health interventions
would reduce the risk of Covid-19 spreading. It is of great importance and practical
significance to ensure early prevention, early detection and early treatment to combat
Covid-19.

Keywords Public Health Interventions · Modelling · SEIR Covid-19 model

1 Introduction

The World Health Organization (WHO) China Country Office was informed of a
total of 44 cases of pneumonia detected in Wuhan City, Hubei Province of China
on 31 December 2019 [1]. Majority of these cases were exposed to Huanan South
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China SeafoodMarket inWuhan city [2]. After a series of investigation, a novel type
of Coronavirus was isolated from a patient on 7 January 2020 [3]. The virus was
named as the 2019-novel Coronavirus (2019-nCoV) temporarily on 12 January 2020
and later, on 11 February 2020, the virus was officially named as Coronavirus disease
2019 (Covid-19) by the WHO [4]. The Covid-19 outbreak caused by Severe Acute
Respiratory SyndromeCoronavirus 2 (SARS-CoV-2)was declared as a PublicHealth
Emergency of International Concern on 30 January 2020 and it was proclaimed as a
pandemic by the WHO on 11 March 2020 [5].

Coronavirus are a large family of viruses that cause illness ranging from the
common cold to more severe illnesses like SARS, Middle East Respiratory Syn-
drome (MERS) and Covid-19 [6]. Coronavirus is confirmed to be human to human
transmission as soon as it was brought into the crowd from the seafood market. For
example, when one infected person returned home, six out of seven of the family
members whom have not visited the seafood market got infected [7]. When an
infected person coughs or sneezes, SARS-CoV-2 virus spread mainly through close
contact from person-to-person in respiratory droplets [8]. The most common symp-
toms of Covid-19 are fever, cough, shortness of breath, muscle ache, confusion,
headache, sore throat, rhinorrhea, chest pain, diarrhea, nausea and vomiting [9].
The incubation period (time from exposure to the development of symptoms) of the
virus is estimated to be between 2 and 14days [10]. The average time from onset of
symptoms to clinical recovery for mild cases is approximately 2weeks whereas for
patients with severe or critical disease, the mean time is 3–6weeks [11].

As of 23 July 2020, Covid-19 has been affecting 213 countries and territories
around the world, with a total of 15, 405, 273 confirmed cases, 631, 021 deaths and
9, 381, 496 recovered cases. Among them, a total of 2, 726, 918 confirmed cases were
reported in Europe, 4, 806, 569 in North America, 3, 618, 687 in Asia, 3, 463, 246 in
South America and 774, 134 in Africa [10]. In this work, we restrict our study area
to five countries in Asia. India, Bangladesh, Iraq, Indonesia and Philippines have
been selected for analysis purposes because these are some of the countries in Asia
that are still in the acceleration stage of Covid-19 outbreak.

With the outbreak of Covid-19, it is essential for us to forecast the trend and peak
of the infection so that effective strategies can be carried out for every country. The
number of infected people is expanding and the effect of containment measures are
being assessed on an empirical basis due to the incomprehensible of the mechanisms
for the propagation of Covid-19. These circumstances raised many questions. When
will the spread of the pandemic reaches the peak or turn to stabilize? How many
people will be at the risk of being infected? How do interventions curtail Covid-19
and to what extent interventions help in managing the pandemic? Therefore, it would
be much more interesting if more quantitative analysis can be done on the pandemic
spreading.

There have been several mathematical models developed by various researchers
to forecast the dynamics of Covid-19 since the outbreak of the pandemic in Wuhan
[6, 8, 12–25]. However, most of the models ignored birth and death rate of the
population. Although the number of paediatric cases remains small, it is vital to
make sure everyone is counted in the model.
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From analysis point of view, a number of studies analyzed the effects of par-
ticular intervention in order to combat Covid-19. Falco et al. [26] investigated the
consequences of variations in the social distancing level on the evolution over time of
Covid-19 spreading in Italy by optimizing SEIRmodel. Li et al. [27] built a modified
SEIR model to assess quarantine measures based on current clinical and epidemio-
logical data in China. Read et al. [3] explored the effectiveness of travel restrictions
from and to Wuhan by considering air travel only. As far as we know, no previous
research has evaluated the effect of combined interventions such as implementing
preventive measures, active case-finding and hospitalization.

The objective of the current study is to implement SEIR mathematical model to
forecast the future of Covid-19 in terms of the number of days it will take to reach
the peak and also to contain the outbreak. The study also aims to analyze the impact
of combined interventions on the spread of the pandemic. The scope of this study
is limited to estimate the trend of Covid-19 for India, Bangladesh, Iraq, Indonesia
and Philippines and uses ordinary differential equations (ODEs) based forecasting
methods which are easy to build, easy to describe our nature of problem and the
solutions can be obtained efficiently.

The research is organized as follows. Section2 briefly discusses the mathematical
model of Covid-19with the absence and presence of interventions. Themathematical
analysis of the models with the absence and presence of interventions are carried
out in Sect. 3. In Sect. 4, we present the numerical simulations and analysis of the
proposedmodel for each of the countries stated above. Finally, we conclude our work
in the closure section.

2 Covid-19 Mathematical Model

In this section, we describe the transmission of Covid-19 by an SEIR model. SEIR
refers to Susceptible, Exposed, Infected and Recovered individuals respectively. The
total population for humans is denoted by N , where we assume that initially all indi-
viduals are susceptible to Covid-19. Figure1 below shows the compartment diagram
of SEIR Covid-19 model. When Covid-19 is introduced to a population, it splits the
human population from Susceptible compartment to Exposed compartment by the
transmission rate, β and then to Infected compartment by infectious rate, ε. When
individuals reach Recovered compartment by recovery rate, γ , we assume that they
either survived the disease and are now immune or succumbed to the illness and are
out of the population. We also assume that the population is closed, which means
the increase or decrease of population is only caused by birth and death while the
increase and reduction caused by other factors is ignored. Besides, death caused by
factors other than Covid-19 infection is considered a natural death.

The population of susceptible individuals is increased by birth rate (which is
assumed susceptible), at the rate of b. The susceptible human population decreased
by following the effective contact with the SARS-CoV-2 virus at the rate β. The
population of susceptible human is further decreased with the natural death rate of
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Fig. 1 Compartment diagram of SEIR Covid-19 model

human, μ. So, we can write, the rate of change of the susceptible human population
is given by

dS

dt
= b − βSI − μS.

The population of exposed individuals is generated by the transmission rate, β.
The population of exposed human is decreased by the infectious rate, ε, where the
exposed individuals develop symptoms of Covid-19. The exposed human population
is further decreased by the natural death rate of human, μ. So, we can write, the rate
of change for exposed human population is given by

dE

dt
= βSI − (ε + μ)E .

The population of infected individuals is increased by infectious rate, ε. The
population of infected human is decreased by the natural death rate of human, μ.
Infected individuals can either recover at a rate γ or they die from Covid-19 at the
rate δ. So, we can write, the rate of change for infected human population is given
by

d I

dt
= εE − (γ + μ + δ)I.

The population of recovered individuals is generated by the recovery rate of
human, γ while decreased by the natural death rate of human, μ. Thus, the rate
of change for recovered human population can be expressed as follows

dR

dt
= γ I − μR.

We assume that all the parameters stated in Fig. 1 are non-negative. The trans-
mission of Covid-19 pandemic is described by the following system of nonlinear
ODEs:
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dS

dt
= b − βSI − μS, S(0)≥0,

dE

dt
= βSI − (ε + μ)E, E(0)≥0,

d I

dt
= εE − (γ + μ + δ)I, I (0)≥0,

dR

dt
= γ I − μR, R(0)≥0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Next, we discuss the transmission of Covid-19 model by incorporating three
intervention strategies into System (1). The implementation of these strategies is
motivated by the idea of the Ebola virus disease (EVD) article [28]. Figure 2 below
depicts the compartment diagram of SEIR Covid-19 model with interventions. The
main strategy to halt further spread of the disease is through interventions, which we
include them as parameters into System (1). This can be done through preventive
measures, u1 which encourage behavioral changes like the use of hand sanitizer
regularly, the use of face mask whenever being in public especially for sick person
or close contact with people, maintain social distancing in crowded area and the best
option is to stay at home.

The second strategy that we are proposing is to gain more information on possi-
ble infections in the population through active case-finding or detection, u2 which
consists of searching for and recording cases in the community by talking to local
leaders, families or any possible informants. It significantly helps in limiting further
contamination of Covid-19 infection.

The final strategy is considering the case when an individual is infected by Covid-
19, his chances of recovery can be increased through hospitalization, u3 which consist
of providing essential medical equipment for infected individual as well as personal
protective equipment (PPE) for medical frontliners. The reason we chose the inter-
ventions mentioned above is because, as we are all aware, the three key to a healthier
lifestyle during this hard situation of the Covid-19 pandemic are early prevention,
early detection and early treatment in order to reduce the risk of Covid-19 infection.

Fig. 2 Compartment diagram of SEIR Covid-19 model with interventions

We assume that all the parameters stated in Fig. 2 are non-negative. The parameters
involved in Systems (1) and (2) are described below in Table1. The transmission
of Covid-19 pandemic with interventions is described by the following system of
nonlinear ODEs :
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dS

dt
= b − (1 − u1)βSI − μS, S(0)≥0,

dE

dt
= (1 − u1)βSI − (u2ε + μ)E, E(0)≥0,

d I

dt
= u2εE − (u3γ + μ + δ)I, I (0)≥0,

dR

dt
= u3γ I − μR, R(0)≥0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Table 1 Description of parameters used in systems (1) and (2)

Parameter Description

β Transmission rate

ε Infectious rate

γ Recovery rate

δ Death rate due to Covid-19

b Birth rate

μ Natural death rate

u1 Level of preventive measures

u2 Level of active case-finding

u3 Level of hospitalization

3 Mathematical Analysis

In this section, the Covid-19 models with the absence and presence of interventions
are analyzed by determining the equilibrium points and the basic reproduction num-
ber. Then,we investigate the local stability analysis of the equilibriumpoints obtained
from Systems (1) and (2). By setting the left hand side of each of the systems equal
to zero and solving them simultaneously, we obtain the equilibrium points in which
they can be classified into two categories; disease free equilibrium point (DFEP) and
pandemic equilibrium point (PEP). Through some algebraic manipulation, we obtain
the solutions given in Tables 2 and 3.

Table 2 Equilibrium points for system (1)

Variable DFEP (E01) PEP (E11)

S b
μ

(ε+μ)(γ+μ+δ)
βε

E 0 b
ε+μ

− μ(γ+μ+δ)
βε

I 0 −μ
β

+ bε
(ε+μ)(γ+μ+δ)

R 0 − γ
β

+ bεγ
μ(ε+μ)(γ+μ+δ)
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Table 3 Equilibrium points for system (2)

Variable DFEP
(E02)

PEP (E12)

S b
μ

(μ+εu2)(μ+δ+γ u3)
βε(−1+u1)u2

E 0 μ3+bβε(−1+u1)u2+εμu2(δ+γ u3)+μ2(δ+εu2+γ u3)
βε(−1+u1)u2(μ+εu2)

I 0 μ3+bβε(−1+u1)u2+εμu2(δ+γ u3)+μ2(δ+εu2+γ u3)
β(−1+u1)(μ+εu2)(μ+δ+γ u3)

R 0 γ u3(μ3+bβε(−1+u1)u2+εμu2(δ+γ u3)+μ2(δ+εu2+γ u3))
βμ(−1+u1)(μ+εu2)(μ+δ+γ u3)

The basic reproduction number, R0, which represents the expected number of
secondary infections per infected individual in a totally susceptible population. If
R0 > 1, the number of infected people will increase, if R0 = 1, the disease becomes
pandemic and when R0 < 1, the number of infected people is likely to decline [29].
This can be calculated by employing the next generation matrix approach [30]. The
basic reproduction number of Systems (1) and (2) are given respectively as follows:

R01 = bβε

μ(ε + μ)(γ + μ + δ)
, (3)

R02 = bβ(1 − u1)(u2ε)

μ(εu2 + μ)(γ u3 + μ + δ)
. (4)

Next, we examine the local stability analysis of DFEP and PEP of each of the
Systems (1) and (2) by the theorem below:

Theorem 1 The disease free equilibrium point, E01 is locally asymptotically stable
if R01 < 1 and unstable if R01 > 1 [31].

Proof First, we compute the Jacobian matrix, J of the System (1) by taking partial
derivatives with respect to S, E , I and R. The Jacobian matrix, J is then evaluated
at the disease free equilibrium, E01 as follows:

J (E01) =

⎡

⎢
⎢
⎣

−μ 0 −β b
μ

0
0 −(ε + μ) β b

μ
0

0 ε −(γ + μ + δ) 0
0 0 γ −μ

⎤

⎥
⎥
⎦ .

Byperforming elementary row operations, the characteristic equation of the above
matrix can be written as

(μ + λ)(μ + λ)(λ2 + a1λ + a0) = 0, (5)

where
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a1 = (2μ + δ + γ + ε)

a0 = (μ + δ + γ )(ε + μ)(1 − R01)

It is easy to see that the roots of the characteristic equation (5) are −μ and −μ

(which is the same root repeated) have negative real parts. The other two roots can
be obtained from the second order polynomial of the characteristic equation (5).
The Routh-Hurwitz stability criterion for quadratic polynomial is satisfied as a1 > 0
and a0 > 0 if R01 < 1 . Thus, all the eigenvalues of the characteristic equation (5)
have negative real parts. Therefore, the disease free equilibrium point, E01 is locally
asymptotically stable if R01 < 1. .

Theorem 2 The pandemic equilibrium point, E11 is locally asymptotically stable if
R01 > 1 and unstable if R01 < 1. [31]

Proof First, we compute the Jacobian matrix, J of the System (1) by taking partial
derivatives with respect to S, E , I and R. The Jacobian matrix, J is then evaluated
at the pandemic equilibrium, E11 as follows:

J (E11) =

⎡

⎢
⎢
⎣

−β I ∗ − μ 0 −βS∗ 0
β I ∗ −(ε + μ) βS∗ 0
0 ε −(γ + μ + δ) 0
0 0 γ −μ

⎤

⎥
⎥
⎦ ,

where S∗ = (ε+μ)(γ+μ+δ)

βε
, and I ∗ = μ

β
(R01 − 1).

By performing elementary row operations, the characteristic equation of the above
matrix can be written as

λ4 + a3λ
3 + a2λ

2 + a1λ + a0, (6)

where

a0 = (εμ3 + μ4 + εμ2γ + μ3γ + εμ2δ + {μ3δ − βεμ2S∗} + βεμ2 I∗ + βμ3 I∗

+ βεμγ I∗ + βμ2γ I∗ + βεμδ I∗ + βμ2δ I∗),

a1 = (3εμ2 + 4μ3 + 2εμγ + 3μ2γ + 2εμδ + {3μ2δ − 2βεμS∗} + 2βεμI∗ + 3βμ2 I∗

+ βεγ I∗ + 2βμγ I∗ + 2βμδ I∗),

a2 = (3εμ + 6μ2 + εγ + 3μγ + εδ + {3μδ − βεS∗} + βε I∗ + 3βμI∗ + βγ I∗ + βδ I∗),

a3 = (ε + 4μ + γ + δ + β I∗).

The Routh-Hurwitz stability criterion for quartic polynomial is satisfied as a0 >

0, a1 > 0, a2 > 0, a3 > 0 and a1a2a3 − a21 − a0a23 > 0 if R01 > 1 and the terms
under braces are positive. Thus, all the eigenvalues of the characteristic equation (6)
have negative real parts. Therefore, the pandemic equilibrium point, E11 is locally
asymptotically stable if R01 > 1 and the terms under braces are positive.
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Theorem 3 The disease free equilibrium point, E02 is locally asymptotically stable
if R02 < 1 and unstable if R02 > 1. [31]

Proof First, we compute the Jacobian matrix, J of the System (2) by taking partial
derivatives with respect to S, E , I and R. The Jacobian matrix, J is then evaluated
at the disease free equilibrium, E02 as follows:

J (E02) =

⎡

⎢
⎢
⎣

−μ 0 −(1 − u1)β
b
μ

0
0 −(u2ε + μ) (1 − u1)β

b
μ

0
0 u2ε −(u3γ + μ + δ) 0
0 0 u3γ −μ

⎤

⎥
⎥
⎦ .

Byperforming elementary row operations, the characteristic equation of the above
matrix can be written as

(μ + λ)(μ + λ)(λ2 + a1λ + a0) = 0, (7)

where

a1 = (2μ + δ + γ u3 + εu2),

a0 = (μ2 + εu2(δ + γ u3) + μ(δ + εu2 + γ u3))(1 − R02).

It is easy to see that the roots of the characteristic equation (7) are −μ and −μ

(which is the same root repeated) have negative real parts. The other two roots can
be obtained from the second order polynomial of the characteristic equation (7).
The Routh-Hurwitz stability criterion for quadratic polynomial is satisfied as a1 > 0
and a0 > 0 if R02 < 1 . Thus, all the eigenvalues of the characteristic equation (7)
have negative real parts. Therefore, the disease free equilibrium point, E02 is locally
asymptotically stable if R02 < 1.

Theorem 4 The pandemic equilibrium point, E12 is locally asymptotically stable if
R02 > 1 and unstable if R02 < 1. [31]

Proof First, we compute the Jacobian matrix, J of the System (2) by taking partial
derivatives with respect to S, E , I and R. The Jacobian matrix, J is then evaluated
at the pandemic equilibrium, E12 as follows:

J (E12) =

⎡

⎢
⎢
⎣

−(1 − u1)β I ∗ − μ 0 −(1 − u1)βS∗ 0
(1 − u1)β I ∗ −(u2ε + μ) (1 − u1)βS∗ 0

0 u2ε −(u3γ + μ + δ) 0
0 0 u3γ −μ

⎤

⎥
⎥
⎦ ,

where
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S∗ = (μ + εu2)(μ + δ + γ u3)

βε(−1 + u1)u2
,

I ∗ = μ3 + εμu2(δ + γ u3) + μ2(δ + εu2 + γ u3)

β(1 − u1)(μ + εu2)(μ + δ + γ u3)
(R02 − 1).

Byperforming elementary row operations, the characteristic equation of the above
matrix can be written as

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (8)

where

a0 = (μ4 + δμ3 + βμ3 I∗ + {βμ2δ I∗ − βεμγ u1u2u3 I
∗ − βμ3u1 I

∗ − βμ2δu1 I
∗

− βεμ2u2S
∗ − βεμ2u1u2 I

∗ − βεμδu1u2 I
∗ − βμ2γ u1u3 I

∗} + εμ3u2 + εμ2δu2

+ βεμ2u2 I
∗ + βεμδu2 I

∗ + βεμ2u1u2S
∗ + μ3γ u3 + βμ2γ u3 I

∗ + εμ2γ u2u3
+ βεμγ u2u3 I

∗),

a1 = (3δμ2 + 4μ3 + 3βμ2 I∗ + {2βμδ I∗ − 3βμ2u1 I
∗ − 2βμδu1 I

∗ − 2βεμu2S
∗

− 2βεμu1u2 I
∗ − βεδu1u2 I

∗ − 2βμγ u1u3 I
∗ − βεγ u1u2u3 I

∗} + 3εμ2u2

+ 2εμδu2 + 2βεμu2 I
∗ + βεδu2 I

∗ + 2βεμu1u2S
∗ + 3μ2δu3 + 2βμγ u3 I

∗

+ 2εμγ u2u3 + βεγ u2u3 I
∗),

a2 = (3δμ + 6μ2 + 3βμI∗ + {βδ I∗ − 3βμu1 I
∗ − βεu2S

∗ − βδu1 I
∗ − βγ u1u3 I

∗

− βεu1u2 I
∗} + 3εμu2 + εδu2 + βεu2 I

∗ + βεu1u2S
∗ + 3μγ u3 + βγ u3 I

∗

+ εγ u2u3),

a3 = (εu2 + 4μ + γ u3 + δ + {β I∗ − βu1 I
∗}).

The Routh-Hurwitz stability criterion for quartic polynomial is satisfied as a0 >

0, a1 > 0, a2 > 0, a3 > 0 and a1a2a3 − a21 − a0a23 > 0 if R02 > 1 and the terms
under braces are positive. Thus, all the eigenvalues of the characteristic equation (8)
have negative real parts. Therefore, the pandemic equilibrium point, E12 is locally
asymptotically stable if R02 > 1 and the terms under braces are positive.



Modelling the Significant Effect of Public Health … 493

4 Numerical Analysis

In this section, we present the numerical solution of the Systems (1) and (2) for India,
Bangladesh, Iraq, Indonesia and Philippines. Since our main goal is to forecast the
trend of Covid-19 outbreak for the said countries, so our discussion will focus on
the number of infected people only. Thus, only infected compartment curves are
plotted throughout this section. Then, we compare the predicted number of infected
individuals without interventions and predicted number of infected individuals with
interventions with the real dataset from Worldometer [10] for each of the country
stated above. In addition, we also vary the effectiveness of combined interventions for
infected cases from50 to 90%.The given systems of equations are solved numerically
by using the built-in function, called NDSolve in MATHEMATICA. We obtained
the data of birth rate and death rate from the Countrymeters [32], number of infected
individuals, infectious rate anddeath rate due toCovid-19 from theWorldometer [10],
recovery rate from WHO report [11] and the transmission rate is estimated based
on real-world data. We also assumed level of preventive measures, level of active
case-finding and level of hospitalization to be 90% or equal to 0.9.

4.1 India

Theparameter values used in the numerical solution areb= 0.000056,β = 0.000062,
μ= 0.00002, ε = 0.142857, γ = 0.0714286, δ = 0.0246, u1 = 0.9, u2 = 0.9, and
u3 = 0.9. The initial conditions S(0) = 5, 000, 000, E(0) = 1, I (0) = 0 and R(0) =
0 are used in Fig. 3.

Fig. 3 Comparison of forecasted number of infected individuals without interventions (red curve)
and forecasted number of infected individuals with interventions (pink curve) with real data (blue
dots) of Covid-19 outbreak in India
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The top of Fig. 3 shows the forecasted trend of Covid-19 pandemic in the absence
of interventionswhereas the bottomfigure shows the forecasted trend of the pandemic
in the presence of interventions up to 90% in India with respect to time in days. Day
0 in each of the figures above corresponds to 17th day since the first pandemic case
was reported in India, that is on 15 February 2020. It can be seen from Fig. 3 that,
without any interventons, the number of infected people will reach its peak in about
180days with a total of approximately 950, 000 people. Then, this number tends to
decrease and will eventually approaches zero around 1 December 2020. Considering
the prediction on the number of cases when combined interventions is introduced,
it is shown that the number of infected people may reach a maximum of one person
only in 10day and will eventually come to an end after 150day from the period of
initial consideration. We can also see that the data plotted by System (1) are in good
accordance with the real-word data as shown in graph without any interventions
strategies applied.

4.2 Bangladesh

Theparameter values used in the numerical solution areb= 0.000055,β = 0.000444,
µ= 0.000015, ε = 0.142857, γ = 0.0714286, δ = 0.013, u1 = 0.9, u2 = 0.9, and
u3 = 0.9. The initial conditions S(0) = 600, 000, E(0) = 1, I (0) = 0 and R(0) = 0
are used in Fig. 4.

Referring to Fig. 4, the top curves show the forecasted and real trend of Covid-
19 pandemic in the absence of interventions whereas the bottom figure shows the
forecasted trend of the pandemic in the presence of interventions up to 90% in
Bangladesh with respect to time in days. Day 0 in each of the figures above cor-

Fig. 4 Comparison of forecasted number of infected individuals without interventions (red curve)
and forecasted number of infected individuals with interventions (pink curve) with real data (blue
dots) of Covid-19 outbreak in Bangladesh
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responds to 15 February 2020, that is 23days before the first pandemic case was
reported in Bangladesh. Without any interventions, we expects the peak of the infec-
tion to take place around 5 August 2020 with the number of infectious individuals
equal to approximately 116, 900 people. The curve alo tells us that the pandemic
cases would gradually disappear by the end of November 2020. On the other hand,
adapting maximum intervention strategies depicts that the outbreak in Bangladesh
will only reach its peak of the number of infected cases with one person in 12d. The
results also shows that, Bangladesh is expected to have no new cases or the infected
cases gradually being close to zero by the middle of July 2020. The data plotted from
System (1) whereby no interventions are taking into account is in good accordance
with the real-world data as shown in the without any interventions graph. Comparing
the real-word data in Figs. 3 and 4, it is clear that India reported higher number of
cases compared to Bangladesh in approximately 150days since 15 February 2020.

4.3 Iraq

Theparameter values used in the numerical solution areb= 0.000094,β = 0.000466,
μ= 0.000014, ε = 0.142857, γ = 0.0714286, δ = 0.0402, u1 = 0.9, u2 = 0.9, and
u3 = 0.9. The initial conditions S(0) = 600, 000, E(0) = 1, I (0) = 0 and R(0) = 0
are used in Fig. 5.

Moving on to Fig. 5, the top curves display the forecasted trend of Covid-19
pandemic in the absence of interventions whereas the bottom curve displays the
forecasted trend of the pandemic in the presence of interventions up to 90% in

Fig. 5 Comparison of forecasted number of infected individuals without interventions (red curve)
and forecasted number of infected individuals with interventions (pink curve) with real data (blue
dots) of Covid-19 outbreak in Iraq
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Iraq with respect to time in days. Day 0 in each of the figures above corresponds
to 15 February 2020, that is 8days before the first pandemic case was reported in
Bangladesh. System (1) placed the peak time of infection in Iraq as 189days after its
initiate date 15 February 2020, with a maximum number of about 77, 220 infected
individuals. Thefigure also shows that the number of infected people declines steadily
and then stabilizes at zero in December 2020. On the contrary, the bottom pink curve
portrays that with interventions, Iraq will reach its turning point of infection in
9days with an estimated number of one people infected. It will then decelerate and
finally leveled off in 118days to the value of zero. The data provided by System (1)
without interventions are in good accordance with the real-word data as it can be
seen in the top curves. It can be furthermore observe by comparing real-world data in
Figs. 3, 4 and 5 that India reported higher number of cases compared to Bangladesh
and Iraq whereas Bangladesh reported higher number of cases compared to Iraq in
approximately 150days since 15 February 2020.

4.4 Indonesia

Theparameter values used in thenumerical solution areb= 0.000056,β = 0.0.00044,
µ= 0.00002, ε = 0.142857, γ = 0.0714286, δ = 0.0486, u1 = 0.9, u2 = 0.9, and
u3 = 0.9. The initial conditions S(0) = 700, 000, E(0) = 1, I (0) = 0 and R(0) = 0
are used in Fig. 6.

Correspondingly, the numerical analysis for Indonesia without any interventions
is illustrated by the red curve in the top of Fig. 6. Whereas, the bottom pink curve
illustrates the forecasted trend of the pandemic in the presence of interventions up to

Fig. 6 Comparison of forecasted number of infected individuals without interventions (red curve)
and forecasted number of infected individuals with interventions (pink curve) with real data (blue
dots) of Covid-19 outbreak in Indonesia
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90% with respect to time in days. Day 0 in each of the figures above corresponds
to 15 February 2020, that is 17days before the first pandemic case was reported in
Indonesia. The estimated number of infections would reach the peak in early April,
with roughly 90, 000 people as evidenced in the red curve and this pandemic is
expected to completely disappear by early of December 2020. Undoubtedly, only
if the country is equipped with maximum combined interventions, the pink curve
shows that number of infected people will reach a maximum of one people in 9days
and then drop to zero in early of June 2020. The data provided by System (1) without
interventions are in good accordance with the real-word data as shown by the blue
dots compared to the red curve. On top of that, comparing real-world data in Figs. 3,
4, 5 and 6, it is easily seen that India reported higher number of cases compared
to Bangladesh, Iraq and Indonesia whereas Iraq reported higher number of cases
compared to Indonesia in approximately 150days since 15 February 2020.

4.5 Philippines

The parameter values used in the numerical solution are b = 0.000065,β = 0.00038,
µ = 0.0000182, ε = 0.142857, γ = 0.0714286, δ = 0.0255, u1 = 0.9, u2 = 0.9,
and u3 = 0.9. The initial conditions S(0) = 700, 000, E(0) = 1, I (0) = 0 and
R(0) = 0 are used in Fig. 7.

Similarly, as observed from the curves at the top of Fig. 7, the graph displays
the forecasted trend of Covid-19 pandemic in the absence of interventions whereas
the bottom pink curve displays the forecasted trend of the pandemic in the presence
of interventions up to 90% in Philippines with respect to time in days. Day 0 in
each of the figures above corresponds to 17th day since the first pandemic case was

Fig. 7 Comparison of forecasted number of infected individuals without interventions (red curve)
and forecasted number of infected individuals with interventions (pink curve) with real data (blue
dots) of Covid-19 outbreak in Philippines
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reported in Philippines, that is 15 February 2020 . System (1) placed the peak time
of infection in Philippines as 186days after its initiate date 15 February 2020, with a
maximum number of infected individuals of about 108, 800 people as demonstrated
in red curve. The number of infected people declines steadily and stabilizes at zero
in December 2020. The pink curve portrays that with interventions, Philippines will
reach its turning point of infection in 10days with an estimated number of one peo-
ple infected. It will then decelerate and finally leveled off in 130days to the value of
zero. The data provided by the model without interventions are in good accordance
with the real-word data as it can be seen in the top of Fig. 7. A comparison is made
between real-word data in Figs. 3, 4, 5, 6 and 7, we can see that India reported higher
number of cases compared to Bangladesh, Iraq, Indonesia and Philippines whereas
Indonesia reported higher number of cases compared to Philippines in approximately
150days since 15 February 2020. Among all of the countries in Figs. 3 , 4, 5, 6 and 7
without interventions, India has the highest number of infected people followed by
Bangladesh, Iraq, Indonesia and Philippines. In contrast, with interventions, India,
Bangladesh, Iraq, Indonesia and Philippines reach their peak of infection in approx-
imately 9 to 12days.

4.6 Variation Intervention Level

In this section, we will be looking at the variation of the combined interventions
levels of infectious individuals.

Combined interventions mentioned throughout this section includes all kind of
preventive measures, active case-finding and hospitalization. Although most of the
countries stated above have began to carry out some of the interventions to prevent
transmission of the pandemic, the number of infected people still rising. Due to
insufficient interventions which was assumed to be below 50%, so we estimate the
trend of number of infected people in each of the countries shown from Figs. 8, 9,
10, 11 and 12 with the effect of combined interventions ranging from 50 to 90%. We
do not consider the effect of combined interventions up to 100% because we assume
that it is impossible for each of the individuals to obey and practice the preventive
measures and as well as, it is difficult to obtain the essential medical equipment in a
shorter time. It is obvious from Fig. 8, 9, 10, 11 and 12 that, flattening of the curve
of infection cases occur as the implementation of combined interventions increases.
The main aim of flattening the curve is to prevent a sharp peak of cases and spread
out the infection over a longer period of time so that the healthcare system will not
be overwhelmed.

As can be observed from Figs. 8, 9, 10, 11 and 12, the peak of Covid-19 infections
will be 640, 000 in India, 92, 600 in Bangladesh, 35, 615 in Iraq, 37, 888 in Indonesia
and 66, 770 in Philippines with enforcement of interventions up to 50%. When
enforcement of interventions is raised up to 60%, the peak of infection cases will be
334, 900 in India, 48, 360 in Bangladesh, 10, 280 in Iraq, 11, 110 in Indonesia and 26,
940 in Philippines. If the enforcement of interventions is raised further up to 90%,
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Fig. 8 Effectiveness of combined interventions levels for infectious individuals in India

the number of infected people finally become manageable, reducing from thousands
to tens or merely a single digit as was discussed in previous parts of this section.
We can see the effectiveness of combined interventions for infectious individuals
as summarized below in Table4. Table4 outlines the forecasted maximum size of
Covid-19 outbreak without interventions and also with interventions ranging from
50% to 90% as has been observed in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 for each
of the respective countries
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Fig. 9 Effectiveness of combined interventions levels for infectious individuals in Bangladesh
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Fig. 10 Effectiveness of combined interventions levels for infectious individuals in Iraq
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Fig. 11 Effectiveness of combined interventions levels for infectious individuals in Indonesia
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Fig. 12 Effectiveness of combined interventions levels for infectious individuals in Philippines
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Table 4 The forecasted peak (maximum number) of the outbreak without interventions and with
interventions ranging from 50% to 90%

Intervention
Level

India Bangladesh Iraq Indonesia Philippines

Without
interventions

950, 000 116, 900 77, 220 90, 000 108, 800

50%
intervention

640, 000 92, 600 35, 615 37, 888 66, 770

60%
intervention

334, 900 48, 360 10, 280 11, 110 26, 940

70%
intervention

47, 190 7, 750 1 1 18

80%
intervention

1 1 1 1 1

90%
intervention

1 1 1 1 1

5 Conclusion

In this research, a compartmental SEIRmodel is constructed to describe the transmis-
sion of Covid-19 in human population. In order to curb Covid-19 outbreak, combined
interventions are crucial and hence, we incorporate three interventions strategies as
parameters into our SEIR model. These combined interventions include all kind of
preventive measures, active case-finding and hospitalization such as enforcement of
wearing masks, using hand sanitizer regularly, maintain social distancing, in-home
quarantine, minimizing outdoor activities, obeying lockdown and movement control
order, conducting active case-detection, providing essential medical equipment for
infected individual and as well as personal protective equipment for medical front-
liners. Then, we compare the forecasted simulation of the outbreak with the absence
and presence of interventions in India, Bangladesh, Iraq, Indonesia and Philippines.
In addition, variation in the effectiveness of combined interventions for infectious
individuals ranging from 50% to 90% are observed and examined graphically by
simulating the Covid-19 model incorporating interventions strategies. Numerical
simulation of the model reflects that by implementing combined interventions, it
could lead to flattening of the curve of infected cases. This indicates that increasing
the enactment of combined interventions up to 90% is of great significance for the
pandemic eradication, which means not only reduces the peak of infected human,
but also helping the healthcare management team to be under control. We hope this
study can serve as a useful guideline to Indian, Bangladeshi, Iraqi, Indonesian and
Philippines government as well as to the government of any other countries in which
Covid-19 spreading is occurring. From a purely scientific standpoint, putting in place
a combination of interventions as early as possible is the best way to alleviate the
transmission risk and reduce the size of the Covid-19 outbreak.
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Abstract The SEIR model is a compartmental model used to simulate the dynam-
ics of an epidemic. In this chapter, we introduce two control functions in the com-
partmental SEIR model representing vaccination and plasma transfusion. Optimal
control problems are proposed to study the effects of these two control measures, on
the reduction of infected individuals and increase of recovered ones, with minimal
costs. Up to our knowledge, the plasma transfusion treatment has never been con-
sidered as a control strategy for epidemics mitigation. The proposed vaccination and
treatment strategies may have a real application in the challenging and hard problem
of controlling the Covid-19 pandemic.
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1 Introduction

Likemany other physical and biological processes, epidemics can bemodelledmath-
ematically. Epidemic mathematical modelling is important, not only to understand
the disease progression, but also to provide predictions about the epidemics evolu-
tion and insights about the dynamics of the transmission rate and the effectiveness of
control measures. There are several compartmental models in epidemiology, like the
SI , SI R, SIC A and the SE I R model, see, e.g., [1–3] and references cited therein.
In this chapter, we consider the SEIR model, where the human population is divided
into four mutually exclusive compartments: susceptible S, latent E , infected I , and a
recovered or removed (dead) R. We assume that the population is homogeneous and
the various classes are uniformly mixed.We consider the case of constant total popu-
lation N , that is, S(t) + E(t) + I (t) + R(t) = N for every time t in the timewindow
t ∈ [0, T ] under study. In this case, the fraction of individuals in each compartment
is defined as s = S/N , e = E/N , i = I/N and r = R/N . The balance condition
becomes s + e + i + r = 1. The assumptions made about the transmission of the
infection and incubation period are reflected in the equations and parameters [2] and
are explained below. We consider the following parameters:

• transmission coefficient—β;
• infectious rate—γ ;
• recovery rate—μ.

Then the seir model is given by the following system of ordinary differential
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ds
dt (t) = −β s(t) i(t),
de
dt (t) = β s(t) i(t) − γ e(t),
di
dt (t) = γ e(t) − μ i(t),
dr
dt (t) = μ i(t) ,

(1)

represented graphically in the diagram of Fig. 1. The term β s i represents the gain in
the exposed class, which is proportional to the fraction of infective (and infectious)
and susceptible individuals, where the transmission coefficient β > 0 is a constant
parameter. Individuals are transferred from the susceptible class s to the exposed e
at this rate β s i . The incubation period is of 1/γ days, with γ > 0, and after that
time exposed individuals become infectious. The rate of removal of infective to the
removed class is proportional to the number of infective,μ i , withμ > 0, where 1/μ
is a measure of the time spent in the infectious state [2].

s e i r

Fig. 1 Diagram of the compartmental model (1)
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The seir model (1) is an extension of the classical Kermack–McKendrick 1927
model [4, 5], where the class of exposed (latent) individuals is considered. SEIR type
compartmental models have been extensively used to model the Covid-19 pandemic,
see, e.g., [6, 7], and researchers have shown that it can describe the spread ofCovid-19
in different countries: see [8] for a simulation of the Covid-19 spread in Lombardy
(Italy) and also modifications of the SEIR model in [9–11]. Namely, in [9] three
classes are added for confined, under quarantine and Covid-19 induced deaths. The
model in [10] considers the age of the population, time delay on the development of
the pandemic, and resusceptibility to Covid-19 with temporal immune response. An
age-structured SEIR model is proposed in [11] considering 5-year bands until the
age of 70years and a single category aged 75 and older (resulting in 16 age categories
for each class of individuals).

Optimal control theory is a branch of mathematics that involves finding optimal
ways of controlling a dynamic system [12, 13]. Optimal control has been applied to
epidemiological models for many different infectious diseases, such as HIV/AIDS,
malaria, Ebola, tuberculosis and cholera [14–17], and also non communicable dis-
eases like cancer: see [18] and references cited therein.

Optimal control theory allows the study of the most cost-effective intervention
strategy that changes the dynamics of a controlled system while minimizing a so-
called objective function. In this chapter, we introduce two control functions in the
seir model (1) that represent vaccination and plasma transfusion. Although vacci-
nation has been widely studied from an optimal control point of view applied to
epidemiological models, up to our knowledge, the plasma transfusion treatment has
never been considered before. Plasma transfusion has been considered as a possible
treatment for Covid-19, although it is still under study [19].

We propose five objective cost functionals and five corresponding optimal control
problems for the three control systems that correspond to vaccination only, plasma
transfusion treatment only, and combination of vaccination and plasma transfusion.

This chapter is organized as follows. In Sect. 2, the vaccination and plasma trans-
fusion are introduced in the seir model, isolated and in combination, giving rise
to three control systems that will be part of the optimal control problems proposed
in Sect. 3. In Sect. 4, the solutions of the optimal control problems are compared
numerically. We end with Sect. 5 of discussion and conclusions.

2 Control System: sei r Model with Vaccination and
Plasma Transfusion

In this section, in order to control the spread of the infection, two types of interven-
tions are introduced into the seir model (1): vaccination u and plasma transfusion
p. Instead of representing the vaccination and plasma transfusion by constant pos-
itive parameters, we assume that vaccination and plasma transfusion are given by
two functions u(·) and p(·), respectively, that change in time and that modify the
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dynamical behavior of model (1). In optimal control theory, functions u(·) and p(·)
are usually called controls.

Starting by the vaccine, we introduce a control u(·) that represents the vaccination
rate. By definition, it only makes sense to vaccinate people if they are susceptible
to the disease. After being vaccinated, these people would become immune to the
disease. In terms of the seir model states, this means that an individual in the s state
would jump to the r state after being vaccinated. Thus, the model must be rewritten
in the following way:

[vaccination based control]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ds
dt (t) = −β s(t) i(t) − u(t) s(t),
de
dt (t) = β s(t) i(t) − γ e(t),
di
dt (t) = γ e(t) − μ i(t),
dr
dt (t) = μ i(t) + u(t) s(t),

(2)

where the control function u(·) is bounded between 0 and umax ≤ 1.
Regarding treatment, the aim is to emulate a serological treatment, that is, a

plasma transfusion. A plasma transfusion consists on infusing sick individuals with
the blood plasmaharvested from the immune individuals. Thus, in terms of themodel,
it requires that a recovered individual r donates plasma to an infectious individual
i . The control is the rate at which this transfusion happens. Let the control be p(·).
Then, the seir model (1) is rewritten in the following way:

[plasma transfusion based control]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ds
dt (t) = −β s(t) i(t),
de
dt (t) = β s(t) i(t) − γ e(t),
di
dt (t) = γ e(t) − μ i(t) − p(t) r(t) i(t),
dr
dt (t) = μ i(t) + p(t) r(t) i(t),

(3)

where the control p(·) satisfies the control constraint 0 ≤ p(·) ≤ pmax ≤ 1.
Finally, the two previous controls are considered simultaneously, being the result-

ing model the following:

[vaccination and plasma transfusion]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ds
dt (t) = −β s(t) i(t) − u(t) s(t),
de
dt (t) = β s(t) i(t) − γ e(t),
di
dt (t) = γ e(t) − μ i(t) − p(t) r(t) i(t),
dr
dt (t) = μ i(t) + p(t) r(t) i(t) + u(t) s(t).

(4)

The set of admissible controls functions is given by

� =
{
(u(·), p(·)) ∈ (

L∞(0, T )
)2 | 0 ≤ u(t) ≤ umax , 0 ≤ p(t) ≤ pmax , ∀ t ∈ [0, T ]

}
.

(5)
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3 Optimal Control

Consider non-negative initial conditions for the state variables (s, e, i, r) ∈ (
R+
0

)4
:

s(0) ≥ 0 , e(0) ≥ 0 , i(0) ≥ 0 , r(0) ≥ 0 , (6)

where the state variables satisfy s(t) + e(t) + i(t) + r(t) = 1, for all t ∈ [0, T ]. In
order to formulate an optimal control problem, a cost functional needs to be proposed,
which in our case we intend to maximize. We propose an optimal control problem
for the control systems given by (2), (3) or (4), with five different L2 objective
functionals, denoted for simplicity by Ji , i = 1, . . . , 5. All of them are obtained
from

Jη =
∫ T

0

(
η1r(t) − η2i(t) − η3u

2(t) − η4 p
2(t)

)
dt

as follows: J1 = J(0,1,1,0), J2 = J(1,1,1,0), J3 = J(0,1,0,1), J4 = J(1,1,0,1), and J5 =
J(0,1,1,1). Other cases of cost functionals are obviously possible, but we found these
five to be the most interesting. We also do not consider all possible combinations
between the three control systems and the five costs to be maximized, restricting
ourselves to five optimal control problems. Regarding the vaccination based control
(2), we consider the two objective functionals

J1(u(·)) =
∫ T

0

(−i(t) − u2(t)
)
dt (7)

and

J2(u(·)) =
∫ T

0

(
r(t) − i(t) − u2(t)

)
dt . (8)

When the cost functional is considered to be J1, the main goal of maximizing the
functional is to minimize the fraction of infected individuals and, at the same time,
the vaccination costs. We compare the solution to this optimal control problem with
the one that maximizes J2, that is, the one that maximize the fraction of recovered
(immune) individuals and, simultaneously, minimizes the fraction of infected indi-
viduals and the vaccination costs. The numerical solutions are compared in Sect. 4.

When only the treatment by plasma transfusion is considered, that is, when we
focus ourselves on the control system (3), we use the objective functionals J3 and
J4:

J3(p(·)) =
∫ T

0

(−i(t) − p2(t)
)
dt , (9)

J4(p(·)) =
∫ T

0

(
r(t) − i(t) − p2(t)

)
dt , (10)
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where maximizing J3 corresponds to minimizing the fraction of infected individuals
and the costs associated with plasma transfusion treatment, and for maximizing J4
the main goal is to maximize the fraction of recovered individuals, by treatment, and,
at the same time, minimize the fraction of infected individuals with less treatment
cost as possible.

Finally, when both controls are considered simultaneously, modelled by the vac-
cination and plasma transfusion based control system (4), the objective functional
considered to be maximized was J5:

J5(u(·), p(·)) =
∫ T

0

(−i(t) − u2(t) − p2(t)
)
dt (11)

with the main goal to minimize the fraction of infected individuals and the costs
associated with vaccination and plasma transfusion treatment.

Associated to each of the cost functionals Ji , i = 1, . . . , 5, we propose an opti-
mal control problem of determining the state trajectories (s∗(·), e∗(·), i∗(·), r∗(·)),
associated to an admissible control u∗(·) ∈ � and/or p∗(·) ∈ � on the time interval
[0, T ], satisfying one of the control systems (2)–(4), as explained, the initial con-
ditions (6), and maximizing the corresponding functional. The five optimal control
problems are denoted by (OCi ), i = 1, . . . 5, and are now summarized.
Vaccination based control system (2) and maximizing the cost functional J1:

J1(u
∗(·)) = max

�

∫ T

0

(−i(t) − u2(t)
)
dt. (OC1)

Vaccination based control system (2) and maximizing the cost functional J2:

J2(u
∗(·)) = max

�

∫ T

0

(
r(t) − i(t) − u2(t)

)
dt. (OC2)

Plasma transfusion based control system (3) and maximizing the cost functional J3:

J3(p
∗(·)) = max

�

∫ T

0

(−i(t) − p2(t)
)
dt. (OC3)

Plasma transfusion based control system (3) and maximizing the cost functional J4:

J4(p
∗(·)) = max

�

∫ T

0

(
r(t) − i(t) − p2(t)

)
dt. (OC4)

Vaccination and plasma transfusion control system (4) and maximizing the cost
functional J5:

J5(u
∗(·), p∗(·)) = max

�

∫ T

0

(−i(t) − p2(t) − u2(t)
)
dt. (OC5)
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Note that all optimal control problems have a L2-cost functional, in other words,
the integrand of the cost Ji , i = 1, . . . , 5, is always convex with respect to the con-
trols u and p. Moreover, the control systems (2)–(4) are Lipschitz with respect to
the state variables (s, e, i, r). These properties ensure the existence of an optimal
control (u∗(·), p∗(·)) for the optimal control problems (OC1)–(OC5). Moreover,
we apply the Pontryagin Maximum Principle (see, e.g., [13]), which is a first order
necessary optimality condition. The obtained result, here formulated and proved for
the optimal control problem (OC1), can be trivially extended to the other optimal
control problems (OCi ), i = 2, . . . , 5.

Theorem 1 The optimal control problem (OC1) with fixed final time T admits a
unique optimal solution (s∗(·), e∗(·), i∗(·), r∗(·)) associated to the optimal control
u∗(·) given by

u∗(t) = min

{

max

{

0,
(λ4(t) − λ1(t)) s(t)

2

}

, umax

}

(12)

on [0, T ], where the adjoint functions λi satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̇1(t) = −λ1(t) (−i(t) β − u(t)) − λ2(t) i β − λ4(t) u(t),

λ̇2(t) = λ2(t) γ − λ3(t) γ,

λ̇3(t) = 1 + λ1(t) β s(t) − λ2(t) β s(t) + λ3(t) μ − λ4(t) μ,

λ̇4(t) = 0,

(13)

with the transversality conditions λi (T ) = 0, i = 1, . . . , 4.

Proof The existence of an optimal control u∗(·) of the optimal control problem
(OC1) is due to the convexity of the L2-cost functional J1 and to the fact that the
vaccinated based control system (2) is Lipschitz with respect to the state variables
(s, e, i, r): see, e.g., [12]. The uniqueness of the optimal control u∗ comes from
the boundedness of the state and adjoint functions and the Lipschitz property of
system (2) (see [20, 21] and references cited therein). According to the Pontryagin
Maximum Principle, if u∗(·) is optimal for the problem (OC1) with fixed final time
T , then there exists a nontrivial absolutely continuous mapping � : [0, T ] → R

4,
�(t) = (λ1(t), λ2(t), λ3(t), λ4(t)), called the adjoint vector, such that

ṡ = ∂H

∂λ1
, ė = ∂H

∂λ2
, i̇ = ∂H

∂λ3
, ṙ = ∂H

∂λ4

and

λ̇1 = −∂H

∂s
, λ̇2 = −∂H

∂e
, λ̇3 = −∂H

∂i
, λ̇4 = −∂H

∂r
,
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where

H = H(s(t), i(t), c(t), a(t)) = −i(t) − u2(t)

+ λ1(t) (−β s(t) i(t) − u(t) s(t))

+ λ2(t) (β s(t) i(t) − γ e(t))

+ λ3(t) (γ e(t) − μ i(t))

+ λ4(t) (μ i(t) + u(t) s(t))

is the Hamiltonian, and the maximality condition

H(s∗(t), e∗(t), i∗(t), r∗(t), λ∗(t), u∗(t))
= max

0≤u≤umax

H(s∗(t), e∗(t), i∗(t), r∗(t), λ∗(t), u(t))

holds almost everywhere on [0, T ]. Moreover, the transversality conditions

λi (T ) = 0 , i = 1, . . . , 4,

hold. Furthermore, from the maximality condition, we have

u∗(t) = min

{

max

{

0,
(λ4(t) − λ1(t)) s(t)

2

}

, umax

}

.

The proof is concluded.

To solve optimal control problems numerically, two approaches are possible:
direct and indirect. Indirect methods are based on Pontryagin’s Maximum Principle
but not very much widespread since they are not immediately available by software
packages. We refer the reader to [22] for the implementation of Pontryagin’s Maxi-
mum Principle using Octave/MATLAB. Direct methods consist in the discretization
of the optimal control problem, reducing it to a nonlinear programming problem
[23, 24]. In the next section, we use the Applied Modeling Programming Language
AMPL [25] to discretize the optimal control problems (OCi ), i = 1, . . . , 5. Then, the
resulting nonlinear programming problems are solved using the Interior-Point opti-
mization solver developed by Wächter and Biegler [26], through the NEOS Server
[27]. For more details on the numerical aspects see [28].

4 Numerical Simulations and Results

In this section, we provide numerical simulations for the solutions of the optimal
control problems (OCi ), i = 1, . . . , 5, proposed in Sect. 3. The following values for
the initial conditions are considered:
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s(0) = 0.88 , e(0) = 0.07 , i(0) = 0.05 , r(0) = 0 , (14)

and the parameter values

β = 0.3 , γ = 0.1887 , μ = 0.1 . (15)

The initial conditions (14) were chosen arbitrarily, considering an hypothetical sit-
uation where 88% of the total population is susceptible to the disease and there is
a relatively small percentage of infected population and no recovered individuals.
The parameter values are chosen in such a way that model (1) simulates an epidemic
outbreak, caused by a communicable disease.Moreover, we consider the control con-
straints with umax = 0.5 and pmax = 0.3, that is, the admissible controls (u, p) ∈ �

must satisfy 0 ≤ u(t) ≤ 0.5 and 0 ≤ p(t) ≤ 0.3 for all t ∈ [0, T ].
All computations have been performed with an Intel i7-4720HQ 2.60GHz pro-

cessor, 8 GB of RAM, and an SSD disk of 128 GB underWindows 10, Home Edition
of 64 bits.

4.1 The sei r Model Without Controls

The seir model differential equations were integrated using the ode45 MATLAB
routine, which is based on an explicit Runge–Kutta method [29]. For the parameter
values (15), the dynamic evolution of the uncontrolled system (1) is described in
Fig. 2.

These results were obtained in “real time” under MATLAB.

Fig. 2 Joint evolution of the
state variables s, e, i and r of
the uncontrolled model (1),
during 200 time units
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Fig. 3 Effect of vaccinating the population during 20 time units considering (OC1). a seir state
variables applying vaccination. b Vaccination control u(·)
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Fig. 4 Effect of vaccinating the population during 20 time units considering (OC2). a seir state
variables applying vaccination. b Vaccination control u(·)

4.2 The sei r Model with Controls

It is desirable to minimize the fraction of infected individuals that get infected by the
disease with minimal costs.

4.2.1 Optimal Control Problems (OC1) and (OC2)

Firstly, we consider the effect of vaccinating the population at the first 20 time
units, aiming at maximizing J1 subject to the vaccination based control system (2),
the initial conditions (14), and the control constraint 0 ≤ u(t) ≤ 0.5. The results
obtained are given in Figs. 3 and 4.
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Fig. 5 Effect of infusing infectious individuals with plasma, during 20 time units, considering
(OC3). a seir state variables applying plasma transfusion. b Plasma transfusion control p(·)

We see that in both seir evolutions, the susceptible s and recovered r states seem
to interchange, as expected by the vaccination based control system (2). Further,
looking at the vaccination control u(·) evolution, it is possible to see that in both
Figs. 3 and 4 its value starts at amaximum and then decays as time passes. Thismakes
sense, since at the beginning of the epidemic there are more susceptible individuals s.
Thus, it is expected that the rate of vaccination is larger at this time in order to try
to vaccinate the most susceptible individuals s as possible before they start getting
infected. Further, comparing the vaccination control of Figs. 3 and 4, one can see that
applying the condition of maximizing the fraction of recovered individuals r with
the cost functional J2 translates into keeping the rate of vaccination at its maximum
for 3 units of time before starting to decay with a less steeper slope than its analogue
in J1.

4.2.2 Optimal Control Problems (OC3) and (OC4)

Regarding the plasma transfusion treatment, one can see that, in contrast to the
vaccine control, here the control p(·) peaks later in time (see Figs. 5 and 6). Again,
this is something that makes sense since, in order for the treatment to be applied,
there must be not only individuals in the infected i state, that are able to received
the plasma, but also individuals in the recovered r state, that are able to donate the
plasma. Evidently, these recovered individuals r must have been in the infected state
i before.

Because this is an intervention that presupposes that the disease has evolved for
some time, then a larger time window could allow one to visualize a stronger impact
in the fractions of the i and r states. That said, a simulation for optimal control
problems (OC3) and (OC4) is performed using T = 100.

The simulation that made the control increase the most with the time change was
the one for the optimal control problem (OC3) (Fig. 7). Further, the control peak
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Fig. 6 Effect of infusing infectious individuals with plasma, during 20 time units, considering
(OC4). a seir state variables applying plasma transfusion. b Plasma transfusion control p(·)
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Fig. 7 Effect of infusing infectious individuals with plasma, during 100 time units, considering the
cost functional J3. a seir state variables, applying plasma transfusion. b Plasma transfusion control
p(·)

at Fig. 7 also occurs before the control peak at Fig. 8. This is expected since (OC4)

requires maximizing the r state, which implies again that more individuals must
get into the i state so that they can get into the r state after recovering. It is also
interesting to note that, according to the (OC4) optimal control problem, one should
not proceed with plasma transfusion to any infected individual during the beginning
of the epidemic, in order to obtain the optimal control.

4.2.3 Optimal Control Problem (OC5)

Finally, the combined effect of the two controls for the optimal control problem
(OC5) is presented in Fig. 9. As expected, the peak of the vaccination rate occurs
before the peak of the plasma transfusion rate. Apparently, the results in minimizing
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Fig. 8 Effect of infusing infectious individuals with plasma, during 100 time units, considering the
cost functional J4. a seir state variables applying plasma transfusion. b Plasma transfusion control
p(·)
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Fig. 9 Effect of both vaccinating susceptible individuals and infusing infectious individuals with
plasma during 20 time units considering J5. a seir states applying vaccination and plasma transfu-
sion. b Controls u(t) and p(t)

the fraction of individuals in the infected state i are better, when comparing Fig. 9a
with Figs. 3a and 5a, but Fig. 10 gives us a better understanding of the controls effects
in the seir dynamics. Figure10 shows the effect of the controls in the individual s,
e, i , r states. Since the main objective of the control functionals is to minimize
the number of individuals in the infected state i , then, by looking at Fig. 10c, one
can see that the control that minimizes the i fraction the most is the conjugation
of both vaccination and plasma transfusion. This is also an intuitive result, since
the vaccination makes more people jumping into the r state, which is the pool of
individuals from where the plasma comes. On the other hand, the plasma transfusion
by itself seems to be the less effective control in minimizing the infected fraction i
(Fig. 10c). This is expected since, as explained above, the plasma transfusion control
needs more time to kick in the absence of a larger pool of recovered individuals r .
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Fig. 10 Individual evolution of the controlled and uncontrolled states s e i r , during 20 time units.
a susceptible state s. b exposed state e. c infected state i . d removed state r

Furthermore, if the aim is to maximize the recovered state r or to minimize the
susceptible s and exposed e states, then the vaccination is the best control (Fig. 10d),
a result also predicted by system (2). By analysing the control comparison at Fig. 11,
one can see that the control that benefits themost with the combined approach of both
vaccination and plasma transfusion is the plasma control. This can be explained since
one can think that if we apply vaccination in the beginning of the epidemics, then
the fraction of recovered individuals r increases faster, providing a bigger substract
to do plasma transfusion sooner and at a higher rate.

All the optimal control simulations were carried out using NEOS Server 6.0, their
duration varying between 0.508 and 1.149s, for 20 units of time, and between 24.431
and 30.702s, for 100 units of time.
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Fig. 11 Evolution of vaccination and plasma transfusion controls, during 20 time units. a Vacci-
nation control u(·). b Plasma transfusion control p(·)

5 Discussion and Conclusion

The seir model (1) was solved numerically in both uncontrolled and controlled
conditions. Of the controls employed, the combined action of vaccination and plasma
transfusion seems to have the higher impact in reducing the fraction of infectious
individuals. Moreover, the plasma transfusion acquires a more important role as the
fraction of individuals in the recovered state increases, which explains why whether
joining the vaccination or increasing the duration of the simulations leads to an higher
peak of the plasma transfusion rate. In fact, by joining the vaccination, one can not
only increase the plasma transfusion rate peak but also anticipate it.

To sum up, controls can act at different timings of the epidemics dynamics and
one control can bemore adequate in the beginning of the epidemic whilst other might
be more appropriated in a later state.

Code availability

The code is available from the authors on request.
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Fractional Diffusion Equation as a
Mathematical Model of the Incidence of
Coronavirus Disease Covid-19

Ludmila Kirianova, Temirkhan Aleroev , and Vladimir Griguletskiy

Abstract In present paper we provide the statistical analysis of the numerical indi-
cators of the incidence in Russian Federation in 2020 of Covid-19. These were con-
sructed corresponding histograms and theoretical distribution densities, and found
estimates of the distribution parameters by the maximum likelihood method. Based
on the statistical analysis of the data, were verified the parameters of the differential
equation containing fractional differentiation operator in Caputo sense. In connec-
tion with the spread of coronavirus infection Covid-19, it seems helpful to build
a mathematical model of the number of infected persons to predict the spread of
infection.

Keywords Fractional diffusion equation · Difference scheme · Model of the
spread of infectious diseases

1 Introduction

This paper is devoted to mathematical modeling of the spread of the coronavirus
infection Covid-19. As it known, the coronavirus infection Covid-19 spreads through
all the world and has serious clinical consequences. So, the subject of our paper will
undoubtedly attract attention.
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There are some methods of modelling the process of the infections, for example,
the kinetic equations constructed according to the law of mass action. This approach
unambiguously suggests the “quick mixing” of the reactants. It is justified when the
diffusive processes are proceeding much faster than the reaction kinetics. There are
hundreds of such kinetic models in population and epidemic dynamics. We formu-
lated an coronavirus spread model as a differential equation of fractional order (the
basic equation of a mathematical model of a random walk of a point particle over
a self-similar fractal set) with natural initial conditions and numerically solve this
problem. It is important to note that proposed model is adequate for any the pop-
ulation size. It is obvious, therefore, that the technique of the theory of fractional
differential equations can be applied to the study model’s dynamics (analytically or
numerically). We do not see the need to prove the theorems, such as those on the
existence and uniqueness of the solution because such theorems do not have signifi-
cant mathematical content in this particular case. In our opinion, the relevance of the
article could refer to epidemiology, such as to the forecast of the any infection prop-
agation and possible impact of medicines and social limitations. To approach reality,
we attempted to take into account the interplay of different organisms involved into
Covid-19 propagation.

2 Main Results

In connection with the spread of coronavirus infection Covid-19, it seems relevant
to build a mathematical model of the number of infected people to predict the spread
of infection.

Ronald Ross, a British physician and parasitologist, in 1911 was one of the first
who investigate the problem of the spread of malaria on Earth [1] and define the
basic equations that, with sufficient accuracy for practice, described the process of
the spread of malaria. These equations were later used by A. Lotka (1925), G. Gause
(1931), V. Volterra (1926–1932) for developing a general theory of the struggle for
existence for different physical and biological systems [2–4].

According to Ross, the spread of malaria is determined by two continuous and
simultaneously occurring factors: the number of new diseases depends on the total
number of people in a given area and the total number of people already infected:
thus, it is assumed that the rate of increase in diseases among people is equal to the
number of new diseases per unit time minus the number of recoveries per unit of
time.

A detailed analysis of Ross equations was carried out by Vito Volterra, who pro-
posed a more realistic definition of the growth rate (increment per unit time) through
the value of the potential increase in diseases and the degree of potential increase
in diseases. The experiments of G. Gause and A. Lotka confirmed the theoretical
studies of V. Volterra.

Note that V. Volterra used the following mathematical model: the growth rate
of infected persons is proportional to the potential increase of number of healthy
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persons and the degree of potential increase of number of infected persons, and the
growth rate of number of healthy persons is proportional to the potential increase of
number of infected persons and the degree of potential increase of number of healthy
persons.

So, Volterra’s general theory of the struggle for existence uses a system of two
ordinary differential equations:{

dX1
dt = b1X1

K1−(X1+uX2)

K1
dX2
dt = b2X2

K2−(X2+vX1)

K2

(1)

Here
X1—the number of infected persons;
X2—the number of healthy persons in the mixed population at a given time;
b1, b2—possible constant positive coefficients of increase of number of infected

(b1) and healthy (b2) persons;
K1, K2—the maximum possible values of the number of sick (K1) and healthy

(K1) persons with free growth;
dX1
dt , dX2

dt —the growth rates, of infected (N1) and healthy (N2) persons at a given
moment (t) in a mixed population respectively;

u, v—“coefficients of the struggle for existence” (according to R. Ross).
The coefficients of the struggle for existence (u, v) in the system of equations (1)

are easily determined from the experimental data {X̃1(t1), X̃1(t2), X̃2(t1), X̃2(t2)},
known for two values time t1 and t2 according to the formulas below:

⎧⎨
⎩
u = 1

X̃2(t1)

(
K1 − X̃1(t1) − X̃1(t2)

b1 X̃1(t1)
K1

)
v = 1

X̃1(t1)

(
K2 − X̃2(t1) − X̃2(t2)

b2 X̃2(t1)
K2

)
Changes in the coefficients of the struggle for the existence of two species in a mixed
population characterize the change in the nature of the interaction between infected
and healthy persons under anaerobic conditions: the number of infected persons per
unit time is determined by the number of new diseasesminus the number of recovered
persons per unit time, and the number of healthy persons per unit time is determined
by the number all healthy persons minus the number of deaths per unit of time.

In the general case, the rate of growth (or decline) in the number of infected and
healthy persons depends on the potential increase in each number and the unused
opportunity for growth (or decline) of each type of infected (or healthy) persons.

Such a model is not determined only by a rigorous calculation of the growth rate
(or decline) of persons of different species, therefore, a diffusion definition of the
distribution of coronavirus infection is used below.

The main disadvantage of system (1) is the fact that the basic ordinary differential
equations of the first order do not determine the conditions of equilibrium between
the number of infected and healthy persons: by definition, there should be a complete
displacement of healthy persons, or complete displacement of infected by healthy
persons, which does not correspond to the experimental and actual data. To substan-
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tiate this thesis, we pass from the system of differential equations to one equation,
introducing one more variable: M is the population size. Then

M = X1 + X2. (2)

Substituting (2) into (1) and use the first equation of the system, then we have

dX1

dt
= b1X1

(
1 − X1 + u(M − X1)

K1

)
.

Let’s denote

a1 = b1(1 − uM

K1
) a2 = b1{u − 1}

K1
).

We obtain a special case of the Riccati equation with constant coefficients (or the
Bernoulli equation):

dX1

dt
= a1X1 + a2(X1)

2. (3)

Assuming that someone got sick first to start the epidemic, we have the initial
condition:

X1(0) = 1. (4)

The solution of the problem (3)–(4) for a1 �= 0, a2 �= 0 is

X1(t) =
(

(1 + a2
a1

)e−a1t − a2
a1

)−1

.

For a1 > 0, a2 > 0 the limit value of the function X1(t) at the ∞

lim
t→∞ X1(t) = −a1

a2
.

Since the coefficients are of the same sign, the limiting value of the function turns
out to be negative, which does not correspond to the meaning of the problem being
solved.

For a1 > 0, a2 < 0 the limit value of the function X1(t) at infinity

lim
t→∞ X1(t) = −a1

a2
= K1 − uM

1 − u
.

That is, if the “coefficient of the struggle for existence” u is equal to 0, we obtain
that the entire population is infected in a rather distant future. So, the indicated signs
of the coefficients have a practical meaning.
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Fig. 1 Figures of the X1(t) and X ′
1(t) for a1 = 0.07, a2 = 0.0001

For a1 < 0 and any sign of a2, the limiting value of the solution to problem (3)–(4)
at infinity

lim
t→∞ X1(t) = 0

This value does not correspond to the meaning of the problem being solved.
Thus, the signs of the constants in Eq. (3) are justified.
The increase in the number of cases in this model with a1 �= 0, a2 �= 0 has the

following expression:

dX1

dt
= a1

(
(1 + a2

a1
)e−a1t − a2

a1

)−1

+ a2

(
(1 + a2

a1
)e−a1t − a2

a1

)−2

Figure1 shows an example of graphs of functions X1(t) - solutions of the problem
(3)–(4) and its derivative X ′

1(t) for a1 = 0.07, a2 = 0.0001.
In addition, there are two more “extreme” cases of solving problem (3)–(4): for

a1 = 0, a2 �= 0

X1(t) = 1

1 − a2t
.

In this case, we have a decreasing function, which does not make sense in the
context of the problem under consideration. for a1 �= 0, a2 = 0

X1(t) = ea1t .

In the latter case, we have an exponential growth in the number of cases without
restrictions, which is at odds with common sense.
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Analyzing the kinetics of growth of homogeneous populations of G. Gause in
1931, he established that under anaerobic conditions in two independent experiments
in a mixed population, there is an “extremely slow growth” of the volume of yeast.
One might think that this is how the spread of coronavirus infection in the human
population occurs: at a very low rate.

Experimental growth (decline) curves of yeast volume separately and in a mixed
population are usually reflected by logistic curves, which are graphs for solving
equations of the form:

dY

dt
= bY − b

K
Y 2

where
Y - volume of yeast; b, K - constants; t - time.
In such case, we have the problem (3)–(4) again.
To build a more accurate mathematical model, we shall to give up ordinary dif-

ferential equations and use methods of fractional calculus.
It is assumed below that the process of coronavirus disease disease has a diffusion

mechanism and is determined by a differential equation of a fractional order.
Let’s consider the process N (t) -the increase in the number of cases of illness

during the epidemic by time t . We will use the basic equation of a mathematical
model of a random walk of a point particle over a self-similar fractal set [1] to model
the process N (t), using the considerations detailed in one of author’s papers:

Dα
0x N (t) = η(t)N (t) (5)

Dα
0x N (t)- fractional derivative (fractional differentiation operator) according to

Caputo [3] of order α ∈ [0, 1]:

Dα
0x N (t) = 1

�(1 − α)

t∫
0

(t − τ)−αN ′(τ )dτ.

The multiplier η(t) known argument function of t . We establish the natural initial
condition:

N (0) = 1 (6)

We solve problem (5)–(6) numerically, assuming that α ∈ [0, 1]. Let’s divide the
interval [0; T ] to n equal parts:

t0 = 0; tk = kh; k = 1, ..., N ; h = T

n
;

h - uniform grid step.
Denote Nk = N (tk), assume N ′

k = Nk−Nk−1

h and consider the operator of fractional
differentiation, as well as in [4]:
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Dα
0t1N (t) = 1

�(1 − α)

⎡
⎣ t1∫

t0

N ′(τ )(t1 − τ)−αdτ

⎤
⎦ ≈ [N1 − N0]

h�(1 − α)

h∫
0

(h − τ)−αdτ =

[N1 − N0]
h�(1 − α)

−(h − τ)−α+1

−α + 1

∣∣∣∣
0

h

= [N1 − N0]
hα�(2 − α)

Similarly,

Dα
0t1N (t) = 1

�(1 − α)

⎡
⎣ m∑

k=1

tk∫
t−1

N ′(t)(tn − τ)−αdτ

⎤
⎦ ≈

≈ 1

hα�(2 − α)

m∑
k=1

[Nk − Nk−1][(m − k + 1)1−α − (m − k)1−α].

So,

Dα
0tm N (t) = 1

hα�(2 − α)

m∑
k=0

amkNk . (7)

Here,

amk = [(m − k + 1)1−α − 2(m − k)1−α + (m − k − 1)1−α]; , 1 ≤ k ≥ m − 1;

am0 = −m1−α + (m − 1)1−α; amm = 1.

Further, from (5), (6) and (7), denoting ηm = η(tm) we get the system⎧⎪⎪⎨
⎪⎪⎩

N0 = 1,
1

hα�(2−α)

m∑
k=0

amkNk = ηmNm,

m = 1, 2, ..., n.

Or resolving respectively Nm⎧⎪⎪⎨
⎪⎪⎩

N0 = 1,

Nm = 1
hα�(2−α)ηm−1

m−1∑
k=0

amkNk,

m = 1, 2, ..., n.

(8)
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Fig. 2 A histogram of the number of cases per 1000 population in Russia on July 2, 2020

System (4) is easily solved with known α and η.
To verify the proposed model (5)–(6), we analyze the statistical information avail-

able in open sources [5] on the spread of Covid-19 in Russian Federation. Figure2
shows a histogram of the number of cases per 1000 population in Russia at t = July
2, 2020.

The agreement with a stable distribution is much better than with a lognormal
one. Due to the asymmetry of the histogram, it makes no sense to check any sym-
metric distribution, in particular, the normal one. Due to the statistical analysis, the
distribution of the number of cases can be considered stable. Sustainable distribution
with parameters α, β, γ, δ has a characteristic function:

ϕ(z) =
{
exp

(−γ α|z|α [
1 + iβsign(z)tan πα

2 ((γ |z|1−α − 1)
] + iδz

)
, α �= 1

exp
(−γ |z| [1 + iβsign(z)tan 2

π
ln(γ |z|)] + iδz

)
, α = 1

Sustainable distribution parameters have the following meaning:
α—The characteristic indicator of the decrease of the “tails”ž of the distribution;
β—Asymmetry parameter;
γ—Scale parameter;
δ—Position parameter.
For α = 2 the stable distribution coincides with the normal, and at α = 1 with

Cauchy distribution. Estimates of the parameters of the stable distribution of the num-
ber of cases per 1000 population were carried out using the built-in fitdist function
of the Matlab application package α = 1.5, β = 1, γ = 1.2, δ = 3.1.

It is known [6] that stable distributions with the corresponding normalization are
fundamental solutions of the diffusion equation containing a fractional derivative.
Since we are considering an increase in the number of cases, we take in (1) the order
of the fractional derivative, α = 0.536.
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Fig. 3 Graphs of solving problem (5)–(6) for α = 0.5 and η(t) = 1
(1+t)0.85

for A=1, A=2, A=3

Note that for α = 1 and η(t) = A, the problem (5)–(6) has solution

N (t) = exp(At)

and the proposed model gives an exponential growth of the investigated function.
For the numerical solution, we set the factor on the right-hand side in a decreasing
power-law manner:

η(t) = 1

(1 + t)B

Figure3 shows graphs of the solution to problem (5)–(6) for α = 0.5 and

η(t) = 1

(1 + t)0.85

and for three parameters A = 1, A = 2, A = 3. Obviously, parameter A can be
interpreted as an “infection spread index” and it has a stronger effect at the initial
stage of spread (the graphs of the solution for two values of the parameter A = 1
and A = 2 seem to be the same due to their large difference from the graph of
the solution for the value A = 3. The parameters differ by equal values, i.e. taken
with a unit step, while the solutions differ unevenly from each other. This fact is
demonstrated in Fig. 3).

Figure4 shows graphs of the solution to problem (5)–(6) for α = 0.5 and

η(t) = 1

(1 + t)B
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Fig. 4 Graphs for solving problem (1)–(2) for α = 0.5 and η(t) = 1
(1+t)B

for B = 0.75; B =
0.80; B = 0.85

and three parameter values B = 0.75, B = 0.8, B = 0.85. Obviously, parameter
B can be interpreted as an “index of the effectiveness of measures taken to contain”
and it has a stronger effect on the second (final) stage of distribution.

Exact selection of the values of parameters A and B can be carried out by the
nomographic method. Based on the analysis of numerically found solutions to prob-
lem (5)–(6), we can conclude that the proposed model is flexible enough to model
the spread of an infectious disease.
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An SEIR Epidemic Model of Fractional
Order to Analyze the Evolution of the
Covid-19 Epidemic in Argentina

Juan E. Santos , José M. Carcione, Gabriela B. Savioli,
and Patricia M. Gauzellino

Abstract A pandemic caused by a new coronavirus (Covid-19) has spread world-
wide, inducing an epidemic still active in Argentina. In this chapter, we present a case
study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of
fractional order in time to analyze the evolution of the epidemic in Buenos Aires and
neighboring areas (Región Metropolitana de Buenos Aires, (RMBA)) comprising
about 15 million inhabitants. In the SEIR model, individuals are divided into four
classes, namely, susceptible (S), exposed (E), infected (I) and recovered (R). The
SEIR model of fractional order allows for the incorporation of memory, with hered-
itary properties of the system, being a generalization of the classic SEIR first-order
system, where such effects are ignored. Furthermore, the fractional model provides
one additional parameter to obtain a better fit of the data. The parameters of the
model are calibrated by using as data the number of casualties officially reported.
Since infinite solutions honour the data, we show a set of cases with different values
of the lockdown parameters, fatality rate, and incubation and infectious periods. The
different reproduction ratios R0 and infection fatality rates (IFR) so obtained indicate
the results may differ from recent reported values, constituting possible alternative
solutions. A comparison with results obtained with the classic SEIR model is also
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included. The analysis allows us to study how isolation and social distancing mea-
sures affect the time evolution of the epidemic.

Keywords 34A08 Fractional Differential Equations · 65L07 Numerical
investigation of stability of solutions · 92C20 Medical epidemiology · 34A55
Inverse problems

1 Introduction

We present an SEIR subdiffusion model of fractional order ν, with 0 < ν ≤ 1 to
analyze the time evolution of the Covid-19 epidemic in Buenos Aires and neigh-
boring areas (Region Metropolitana de Buenos Aires, (RMBA)) with a population
of about 15 million inhabitants. RMBA consists of Ciudad Autónoma de Buenos
Aires (CABA) plus forty municipalities covering an area of about thirteen thousand
square kilometers, where some of thesemunicipalities have rural areas. Thus, RMBA
has an average population density of 1100 people/km2, but in CABA and many of
its neighboring cities this number increases significantly. For example, CABA has a
population density of about 14000 people/km2. In this work, we consider that RMBA
has a uniform population distribution.

The epidemic started officially on March 9th with the number of cases and deaths
still increasing at the day of writing (September 22th, 2020). The classical SEIR
model (ν = 1) has been used by Carcione et al. [1] and Santos et al. [2] to model the
Covid-19 epidemic in Italy and Argentina, respectively.

Fractional calculus has been used to define diffusion and wave propagation mod-
els in biological and viscoelastic materials [3–10]. One important property of the
fractional-order SEIR model is that incorporates memory and hereditary properties,
a behavior exhibited by most biological systems. The use of fractional order deriva-
tives affects the duration of the epidemic, peaks of infected and dead individuals per
day and number of number casualties.

Among other authors that have applied fractional calculus to obtain solutions
of the SEIR model, we mention Scherer et al. [11], that used a Grünwald-Letnikov
time-discrete procedure, introduced byCiesielski andLeszczynski [12] (CLmethod).
Besides, Zeb et al. [13] presented an analysis of several numerical methods to solve
theSEIRmodel of fractional order. For generalworks on fractional calculus including
numerical methods, we refer to Podlubny [14] and Li and Zeng [15].

We first formulate an initial-value problem (IVP) for the classical SEIR model
(ν = 1) and the SEIR subdiffusion equations of fractional order ν at the contin-
uous level using the Caputo definition of the fractional derivative [6]. Existence
and uniqueness of the solution of this IVP, with positive values, is demonstrated in
[13]. The numerical solutions of the continuous IVP are computed by using the time-
explicit algorithm ofGorenflo-Mainardi-Moretti-Paradisi (GMMPmethod) [16, 17].
The conditional stability of the time-explicit GMMP method (and also of the CL
method) was demonstrated by Murillo et al. [19] [see their equation (19)]. The vali-
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dation of the GMMPmethod is performed by comparison of its results against those
of the classic SEIR model and those of the fractional Adams-Bashford-Moulton
method (ABM method) as defined in [15].

The parameters of the SEIR model are the birth and death rates, infection and
incubation periods, probability of disease transmission per contact, fatality rate and
initial number of exposed individuals. These parameters, together with the order of
the fractional derivative, are obtained by fitting the number of fatalities officially
reported. This is an inverse problem with an infinite number of solutions (local
minima) honouring the data, which is solved by using a quasi-Newton technique
for nonlinear least squares problem with the formula of Broyden-Fletcher-Goldfarb-
Shanno [20]. The numerical simulations give an effective procedure to study the
spread of the evolution of virus, analyze the effects of the lockdown measures and
predict the peak of infected and dead individuals per day.

2 The Caputo Derivative and Initial Value Problems

For 0 < ν ≤ 1, the time fractional Caputo derivative Dν
c (u(t) is defined as [3, 6, 16,

17]

Dν
c ( f (t) = 1

�(1 − ν)

∫ t

0

[
∂

∂ f (τ )

]
dτ

(t − τ)ν
, (1)

where �(·) denotes the Euler’s Gamma function.
Note that the Caputo derivatives of constant functions f (t) = 1 vanish and those

of powers of t , f (t) = t k are

�(k + 1)

�(k − ν + 1)
t k−ν.

The advantage of using the Caputo derivative in Caputo-type IVP’s is that the initial
conditions are the same as those of the classical ordinary differential equations. For
details on theCaputo derivative and its relationwith theRiemann-Liouville fractional
derivative we refer to [6].

To approximate the time-fractional Caputo derivative, we use a backward
Grünwald-Letnikov approximation at time tn = n�t, n = 0, 1, · · · ,with fn = f (n�t),
�t being the time step, as follows [16, 17]:

Dν
c ( f (t)|tn+1 ≈ 1

(�t)ν

n+1∑
j=0

(−1) j cν
j

(
ν

j

)
fn+1− j . (2)

The coefficients
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cν
j = (−1) j

(
ν

j

)

can be obtained in terms of Euler’s Gamma function using the recurrence relation

(
ν

j

)
= �(ν + 1)

�( j + 1)�(ν − j + 1)
= ν − j + 1

j

(
ν

j − 1

)
,

(
ν

0

)
= 1. (3)

The work by Abdullah et al. [18] presents an analysis of the fractional-order SEIR
model formulated in termsof theCaputoderivative and itsGMMPtimediscretization.

3 The Classical and Fractional-Order SEIR Models

The IVP for the classic SEIR system of nonlinear ordinary differential equations is

Ṡ = f1(S, E, I, R)(t) = � − μS(t) − βS(t)
I (t)

N (t)
, (4)

Ė = f2(S, E, I, R)(t) = βS(t)
I (t)

N (t)
− (μ + ε)E(t),

İ = f3(S, E, I, R)(t) = εE(t) − (γ + μ + α)I (t),

Ṙ = f4(S, E, I, R)(t) = γ I (t) − μR(t),

with initial conditions S(0), E(0), I (0) and R(0). A dot above a variable indicates
the time derivative, while N (t) is the number of live individuals at time t , i.e., N =
S + E + I + R ≤ N0, N0 being the total initial population. In (4), S is the number of
individuals susceptible to be exposed while E is the number of exposed individuals,
in which the disease is latent; they are infected but not infectious. Individuals in
the E-class become infected (I ) with a rate ε and infected become recovered (R)
with a rate γ . People in the R class do not move back to the S class since lifelong
immunity is assumed. Furthermore, 1/γ and 1/ε are the infection and incubation
periods, respectively, � is the birth rate, μ is the natural per capita death rate, α is
the average fatality rate, and β is the probability of disease transmission per contact.
All of these coefficients have units of 1/time. Given the short period of the epidemic
in Argentina (6 months at the time of writing), and that the average life expectancy is
about 76 years, it is reasonable to assume that � = μN , so that the deaths balance
the newborns.

Dead individuals D(t) are computed as D(t) = N0 − N (t), so that the deadpeople
per unit time Ḋ(t), can be obtained as [21]:

Ḋ(t) = α I (t). (5)
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Next, we reformulate the system (4) into a fractional-order system by using the
Caputo derivative in (1):

Dν
c S(t) = f ν

1 (S, E, I, R)(t) = μνN − μνS(t) − βνS(t)
I (t)

N (t)
,

Dν
c E(t) = f ν

2 (S, E, I, R)(t) = βνS(t)
I (t)

N (t)
− (μν + εν)E(t) (6)

Dν
c I (t) = f ν

3 (S, E, I, R)(t) = ενE(t) − (γ ν + μν + αν)I (t),

Dν
c R(t) = f ν

4 (S, E, I, R)(t) = γ ν I (t) − μνR(t).

The reproduction ratio, R0, indicates the number of cases induced by a single
infectious individual. When R0 < 1, the disease dies out; when R0 > 1, an epidemic
occurs. Al-Sheikh [22] analyzes the behavior of the SEIR models in terms of R0. For
the SEIR model, R0 is given by [23]

R0 = βνεν

(εν + μν)(γ ν + αν + μν)
. (7)

The infection fatality rate (IFR) is defined as

IFR (%) = 100 · αν

αν + γ ν
≈ 100 · αν

γ ν
, (8)

where this relation holds at all times, not only at the end of the epidemic.

3.1 Time Discretization

An explicit conditionally stable GMMP algorithm for the fractional order system (6)
is formulated as follows [16, 17]:

Sn+1 = −
m+1∑
j=1

cν
j S(m + 1 − j) + S0

m+1∑
j=0

cν
j + (�t)ν f1(Sn, En, In, Rn) (9)

En+1 = −
m+1∑
j=1

cν
j E(m + 1 − j) + E0

m+1∑
j=0

cν
j + (�t)ν f2(Sn, En, In, Rn) (10)

In+1 = −
m+1∑
j=1

cν
j I (m + 1 − j) + I0

m+1∑
j=0

cν
j + (�t)ν f3(Sn, En, In, Rn) (11)

Rn+1 = −
m+1∑
j=1

cν
j R(m + 1 − j) + R0

m+1∑
j=0

cν
j + (�t)ν f4(Sn, En, In, Rn) (12)
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The results of the GMMP method (9)–(12) will be validated against the solution of
the classical SEIR model (ν = 1) and the Adams-Bashford-Moulton (ABM) time-
explicit scheme as defined in [15] and included in the Appendix.

4 Numerical Results

4.1 Validation of the GMMP Algorithm

The results of the GMMP algorithm are cross-checked with those of the ABM solver
for the classical SEIR model (ν = 1 ) and SEIR models of fractional orders ν = 0.9
and 0.8.

We use the following parameters, given in Chowel et al. [24] and used byCarcione
et al. [1] to perform a parametric analysis of the model. Average disease incubation
1/ε = 3 days, infectious period 1/γ = 8 days, induced fatality rate α = 0.006/day,
β = 0.75/day, and� = μ = 0. The initial conditions are E(0) = 1, S(0) = N (0) −
E(0) − I (0), I (0) = 1 and R(0) = 0. The time step is dt = 0.01day and N0 = 10
million. This case corresponds to a high reproduction ratio R0 = 5.72.

Figures1, 2, 3, 4, 5 and 6 show the results of the four classes, S,E,I,R, and the dead
and dead per day individuals computed by using the GMMP and ABM algorithms.
First, an excellent agreement between the results of the two algorithms is observed
for all values of the fractional order derivative ν. To quantify this agreement, we
compute a mean squared relative error between the estimations of both methods.
For example, in the computation of infected individuals, the following errors are
obtained: 1.512 × 10−5 for ν = 1, 9.880 × 10−6 for ν = 0.9 and 1.053 × 10−5 for
ν = 0.8. In particular, the results for ν = 1 agree with those of Figs. 1 and 2 in [1].
Figure1 shows that decreasing the order of the fractional derivative causes a delay
and an increase in the number of susceptible individuals. While for the classical
model the number of infectious individuals vanish at long times, this is not the case
for the orders ν = 0.8 and ν = 0.9 (Fig. 3). We run the simulator up to a very long
time but the individuals do not vanish, so that the epidemic never ends (in theory).
This happens because R0 ≥ 1. We run other examples with different parameters
such that R0 < 1 and as expected the number of infectious individuals vanish and
the epidemic dies out. For brevity these plots are not shown. The case R0 < 1 is
analyzed in Sect. 4.2, when simulating the evolution of the epidemic in the RMBA
using fractional derivatives. This value of R0 is associated with the strict lockdown
imposed by the government, with a corresponding decrease in the number of infected
individuals.

Regarding the exposed infected classes (Figs. 2 and 3), a decrease in ν causes
delays and reduces the amplitude of the peaks of these classes. Furthermore, as ν

decreases the number of casualties increase as seen in Fig. 4 while Fig. 6 shows a
delay and increase of the peak in the number of dead individuals per day. Also, note
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Fig. 1 Susceptible individuals for the classical SEIRmodel (ν = 1) and fractional-order derivatives
ν = 0.8 and 0.9

that Fig. 5 shows a delay and decrease in the number of recovered individuals as the
order of the fractional derivative decreases.

These simulations consider a single value of β, the lockdown parameter. In a
realistic case, β is a function of time and the procedure is that every time β changes,
the algorithm has to be fully initialized from the beginning. Changing β in the same
time loop yieldswrong results. This fact has been verified by cross-checking different
algorithms and several fractional orders.

4.2 Analysis of the Covid-19 Epidemic in the RMBA

We model the Covid-19 epidemic in the RMBA, with a population N0 = 14839026
individuals according to the 2010 Census (https://www.indec.gob.ar/indec/web/
Nivel4-Tema-2-41-135). The prediction of the time evolution of the epidemic is
very difficult due to the uncertainty of the parameters defining the SEIR model.
Virus properties such as the infectious and incubation periods (γ −1 and ε−1) and life
expectancy of an infected individual (α−1) lie in certain bounded intervals. Instead,
the parameter β is time dependent, due to changes according to the lockdown and
social-distance measures imposed by the government. Most authors use the infec-
tious individuals to calibrate the model, e.g., González-Parra et al. [25], who model
the AH1N1/09 influenza epidemic in Bogotá, Colombia and in the Nueva Esparta
state in Venezuela.

Since the number of asymptomatic, undiagnosed infectious individuals in RMBA
is unknown, we choose to calibrate the model with the number of officially reported

https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135
https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135
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Fig. 2 Exposed individuals for the classical SEIR model (ν = 1) and fractional-order derivatives
ν = 0.8 and 0.9
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Fig. 3 Infected individuals for the classical SEIR model (ν = 1) and fractional-order derivatives
ν = 0.8 and 0.9
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Fig. 4 Dead individuals for the classical SEIR model (ν = 1) and fractional-order derivatives
ν = 0.8 and 0.9
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Fig. 5 Recovered individuals for the classical SEIR model (ν = 1) and fractional-order derivatives
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Fig. 6 Dead individuals per day for the classical SEIR model (ν = 1) and fractional-order deriva-
tives ν = 0.8 and 0.9

casualties as themost reliable data, fromday1 (March 9, 2020) to day 198 (September
22th, 2020) (https://www.argentina.gob.ar/coronavirus/informe-diario). Concerning
the parameters, fractional order and initial conditions of the model, we assume μ =
3.6 × 10 −5/ day, corresponding to a life expectancy of 76 years. Changes in the β

parameter are associated with different measures of lockdown and social distance
imposed by the goverment. Thus, we assume that β is a piecewise constant function,
where its variations are related to the inflection points observed in the curve of
casualties. After the initial time t0 = 1 day, this curve shows two inflection points at
times t1 = 31day and t3 = 50day. The fractional-order derivative ν, the values of α,
β, ε, γ and the initial exposed individuals E(0) are estimated by minimizing the L2-
norm between the simulated and actual casualties, which is an inverse problem with
an infinite number of solutions due to the existence of local minima. The estimation
is also performed for the classical case ν = 1. This inverse problem is solved by
using a quasi Newton approximation technique for nonlinear least-squares problems,
based on the formula of Broyden-Fletcher-Goldfarb-Shanno [20]. Application of this
technique to solve inverse problems in reservoir engineering can be found in [26].
Table1 shows ranges of the fractional derivative ν, of the parameters α, β, ε, γ and
the initial exposed individuals E(0) used in the inversion procedure. Table2 displays
the initial values and results of four outputs (Cases) of the fitting procedure.

Let us analyze four cases, resulting from theminimization algorithm.We obtained
the SEIRparameters, the fractional order and the initial exposed humans values fitting
the data. In all the cases, the initial number of infected individuals is assumed to be
I (0) = 100.

Figures 7 and 8 show the dead individuals and dead individuals per day for Case
1. The inflection point at t1 = 30 day, related to a change of R0 from 3.178 to

https://www.argentina.gob.ar/coronavirus/informe-diario


An SEIR Epidemic Model of Fractional Order to Analyze … 549

Table 1 Constraints and ranges of the estimation procedure

Variable → ν α day−1 β day−1 ε−1 day γ −1 day E(0)

Lower
bound

0.8 10−5 0.1 3 3 102

Upper
bound

1.0 10−1 0.9 9 9 104

Table 2 Initial values and results of the estimation procedure
Variable → ν α day−1 β1 day−1 β2 day−1 β3 day−1 ε−1 day γ−1 day E(0)

Case 1

Initial 0.9 6.00×10−3 0.5 0.2 0.3 5.0 4.0 500

Optimum 0.919 2.130761×10−4 0.66090 0.12507 0.34002 8.976007 5.335143 1623

R0
IFR =0.197

3.178 0.688 1.725

Case 2

Initial 0.85 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.812 4.179268×
10−4

0.77273 0.47231 0.56801 8.121503 3.022527 1138

R0
IFR =0.444

1.982 1.329 1.539

Case 3

Initial 1 6.00×10−3 0.5 0.2 0.3 5.0 4.0 500

Optimum 1 2.822018
×10−4

0.49040 0.10396 0.27568 8.975264 6.212071 2821

R0
IFR =0.175

3.041 0.645 1.710

Case 4

Initial 0.9 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.929 2.787611
×10−4

0.47289 0.10168 0.31122 8.244641 5.751017 4110

R0
IFR =0.254

2.526 0.606 1.713

0.688, shows a decay in the simulated curves, because of the effect of the lockdown.
After t1 = 50 day, the curves exhibits a continuous increase in casualties due to the
relaxation of the lockdownmeasureswith R0 = 1.725. Figure 9 shows the behavior of
all classes, with a a peak of 555 thousand infected individuals at day 188 (September
12th, 2020) while Fig. 10 exhibits a death toll of 19000 people after 800 days (May
17th, 2022) and a peak of 234 casualties at day 188.

The parameters of Cases 2 and 3 in Table 2 also fit the data, with graphs similar
to those in Figs. 7 and 8. Case 2 estimates peaks of 309 deaths and 285 thousand
infected individuals at day 222 (October 16th, 2020). At day 800 (May 17, 2022),
there are 34 thousand deaths and 7457 thousand recovered humans. This increase in
the number of casualties is due to the higher infection fatality rate IFR and higher
reproduction ratios R0 as compared with those of Case 1 (see Table 2).

Case 3, which corresponds to the classical SEIR model (ν = 1), exhibits a peak of
171 casualties at day 184 (September 8th, 2020) and 607 thousand people infected.
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Fig. 7 Dead individuals. The red dots represent the data and the solid line the fit using the SEIR
model of fractional order with ν = 0.919
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Fig. 8 Dead individuals per day. The red dots represent the data and the solid line the fit using the
SEIR model of fractional order with ν = 0.919

The end of the epidemic is consider the day at which the number of infected indi-
viduals is smaller than 1, which is day 594 (October 24th, 2021) for this case. At
this day, the total number of recovered and dead individuals are 10157 thousand and
18 thousand, respectively, so that the total number of infected people at the end of
the epidemic is 10175 thousand individuals. This is the case predicting the smallest
number of casualties.
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Fig. 9 Number of individuals in all classes (millions) for the SEIR model of fractional order with
ν = 0.919

Finally, since the reported number of deceased people could possibly be under-
estimated due to undeclared cases and delays in the upload of official data, we also
consider a case with 30 % more casualties to date (Case 4 in Table 2), giving IFR =
0.254 % and values of the parameters similar to those of Case 1. Besides, the peak
occurs almost at the same day of Case 1 (day 187: September 11th, 2020) with 592
thousand infected individuals and 296 casualties. This peak of casualties and the
death toll of 24400 individuals are approximately 30 % higher than those of Case 1.

In the following, we compare the behavior of all classes for the different orders
of the fractional derivative used in this analysis, i.e., ν = 1, 0.919 and 0.812. Figure
11 displays the number of infected individuals, where there is a delay and decrease
of the peak values as the order of the fractional derivative decreases. This behavior is
consistent with that observed in Fig. 3. Figure 12 shows an increase in the number of
casualties by decreasing the order of the fractional derivative, with a 47 % increase
between ν = 1 and ν = 0.812. Moreover, it can be seen that the curves stabilize
at later times as the fractional order decreases. Finally, Figs. 13 and 14 exhibit the
estimated recovered and susceptible individuals for the three values of ν. Recovered
individuals increase and, consequently, susceptible individuals decrease as the order
of fractional derivative increases. The curves exhibit asymptotic values at later times
as ν decreases, and the lower the value of ν the later individuals recover from the
virus infection. Note that the general trends of Figs. 11, 12, 13 and 14 are similar to
those of the figures in Sect. 4.1, in spite of the fact that parameters obtained from the
adjustment are different for the three cases.

In the four cases described above, we consider that the initial number of infected
individuals is I (0) = 100. Nevertheless, we tested other values: if I (0) belongs to the
interval [10, 150] a reasonable adjustment is obtained, with similar values to those
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Fig. 10 Total number of deaths and deaths per day for the SEIR model of fractional order with
ν = 0.919
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Fig. 11 Infected individuals for the SEIR model of fractional orders ν = 1, 0.919 and 0.812

shown in Table2 and a slight delay on the infected individuals peak as I (0) decreases.
Outside this interval, the fit is poor and the results have no physical meaning.
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Fig. 12 Dead individuals for the SEIR model of fractional orders ν = 1, 0.919 and 0.812

0 100 200 300 400 500 600
Time (days)

0

2

4

6

8

10

12

R
ec

ov
er

ed
 in

di
vi

du
al

s 
(M

)

ν = 1
ν = 0.919
ν = 0.812

Fig. 13 Recovered individuals for the SEIR model of fractional orders ν = 1, 0.919 and 0.812

5 Conclusions

We use a fractional SEIR (Susceptible, Exposed, Infected, Recovered) diffusion
model to analyze the evolution of the Covid-19 epidemic in Argentina, particularly
in the Region Metropolitana de Buenos Aires (RMBA), where a significant number
of the population is concentrated.

We solve the SEIR system of fractional order ν, 0 < ν < 1 and the classical
(ν = 1) SEIR model by using a time-explicit Gorenflo-Mainardi-Moretti-Paradisi
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Fig. 14 Susceptible individuals for the SEIR model of fractional orders ν = 1, 0.919 and 0.812

(GMMP) method. To validate this method, the results were cross-checked with those
of the time-explicit fractional Adams-Bashford-Moulton (ABM) method, obtaining
an excellent agreement between the two schemes.

Assuming that the birth and death rates are balanced, the parameters that charac-
terize the model are the infection and incubation periods, the probability of disease
transmission per contact, the fatality rate and the initial number of exposed individ-
uals. These parameters and the orderν of the fractional derivative are estimated by
fitting the number of casualties officially reported. This inverse problem is solved
by using a quasi-Newton technique for non-linear least-squares problem with the
Broyden-Fletcher-Goldfarb-Shanno formula.

In all the simulations we used three lockdown parameters (denoted by β), asso-
ciated with the different measures taken by the government during the evolution of
the epidemic. One important conclusion related with this time-dependent parameter
is that both the fractional GMMP and ABM algorithms need to be fully initialized
from the beginning in order to obtain correct results.

Different cases have been analyzed since the inverse problem has an infinite
number of solutions. We observe a similar behavior in all the cases, with a fatality
rate IFR varying in the range, [0.175, 0.444]. After the 50th day of lockdown, it is
observed a continuous increase in casualties due to the relaxation of the preventive
social isolation and community circulation of the virus.

The numerical simulations in RMBA show that when the order of the fractional
derivative decreases, i.e., higher subdiffusionof the virus, the durationof the epidemic
is extended, and the peak of infected individuals and number of casualties increase.
Furthermore, the classical SEIR model yield a smaller number of casualties and
infected individuals with associated peaks located at earliest times as compared with
those of the fractional-order cases.
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Appendix

The Adams-Bashford-Moulton explicit scheme for the fractional order SEIR equa-
tions is formulated as follows [15]

Predictor

Sp
n+1 = ((n + 1)�t)S0 +

n∑
j=0

b j,n+1) f
ν
1 (Sj , E j , I j , R j ) (13)

E p
n+1 = ((n + 1)�t)E0 +

n∑
j=0

b j,n+1) f
ν
2 (Sj , E j , I j , R j )

I pn+1 = ((n + 1)�t)I0 +
n∑
j=0

b j,n+1) f
ν
3 (Sj , E j , I j , R j )

E p
n+1 = ((n + 1)�t)R0 +

n∑
j=0

b j,n+1) f
ν
4 (Sj , E j , I j , R j )

N p
n+1 = Sp

n+1 + E p
n+1 + Rp

n+1 + I pn+1.

Corrector

Sn+1 = ((n + 1)�t)S0 +
n∑
j=0

a j,n+1 f
ν
1 (Sp

n+1, E
p
n+1, I

p
n+1, R

p
n+1) (14)

En+1 = ((n + 1)�t)E0 +
n∑
j=0

a j,n+1 f
ν
2 (Sp

n+1, E
p
n+1, I

p
n+1, R

p
n+1)

In+1 = ((n + 1)�t)I0 +
n∑
j=0

a j,n+1 f
ν
3 (Sp

n+1, E
p
n+1, I

p
n+1, R

p
n+1)

Rn+1 = ((n + 1)�t)R0 +
n∑
j=0

a j,n+1 f
ν
4 (Sp

n+1, E
p
n+1, I

p
n+1, R

p
n+1)

Nn+1 = Sn+1 + En+1 + Rn+1 + In+1.

In (13)-(14) the coefficients b j,n+1, a j,n+1 are

b j,n+1 = 1

�(1 + ν

[
(n − j + 1)ν − (n − j)ν

]

a j,n+1 = 1

�(2 + ν)
=

⎧⎪⎨
⎪⎩

(n)ν+1 − (n − ν)(n + 1)ν , j = 0,

(n − j + 2)ν+1 + (n − j)ν+1 − 2(n − j + 1)ν+1, 1 ≤ j ≤ n − 1

1, j = n + 1.
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Concerning the error of the numerical scheme ABM, Abdullah et al. [18] give a
bound in terms of the time step size �t . On the other hand, Li and Zeng [15] and Li
et al. [27] show that the fractional forward Euler and ABM methods are stable and
convergent of order one in �t .
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Modeling Effectiveness of Partial
Lockdown in Breaking Covid-19
Transmission Chain in Malaysia

Su Yean Teh, Hock Lye Koh, and Katia S. Joo

Abstract The Coronavirus Disease 2019 (Covid-19) was first reported in Wuhan,
China in early December 2019. On 11 March 2020, the World Health Organization
declared Covid-19 a worldwide pandemic. Within six months, this highly infec-
tious disease has rapidly spread over 200 countries in six continents, infecting more
than 12 million and killing more than 560,000. Malaysia recorded as of July 12,
a total of 8718 persons tested positive for Covid-19, with 122 deaths, and 8519
fully recovered, out of a population of 32.4 million. Unprecedented public health
and socio-economic policy have been formulated by the Malaysian government to
control the catastrophic pandemic spread and to resolve deep socio-economic dis-
ruptions and uncertainties. For Malaysia, a major pandemic control policy measure
is the Movement Control Order (MCO) over a period of 24 weeks from March
18 to August 31, 2020. This MCO decision is facilitated by the use of epidemiol-
ogy models such as SIR (Susceptible-Infected-Recovered) model. This MCO has
resulted in major socio-economic disruptions and uncertainty. To overcome these
immense economic disruptions and uncertainty, several major economic stimulation
packages amounting to RM 250 billion, equivalent to 17% of Malaysia 2019 GDP,
are formulated to revitalize Malaysia’s economy. Epidemiology models are widely
used worldwide to formulate socially acceptable policy measures for breaking the
infection transmission chain and for enhancing economic resilience. Since the start
of Covid-19 outbreak in Malaysia, we use and continuously calibrate the existing
SIR-based in-house FluSiM@USM model to examine the effectiveness of various
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intervention and mitigation measures in reducing the pandemic burden, the result of
which is presented in this chapter. Our epidemic model analysis suggests that MCO
has managed to effectively control the spread of Covid-19 by significantly reducing
the effective reproduction number Rt , from 3.5 to 0.2 over a period of 12 weeks. The
constantly evolving knowledge of Covid-19 transmission dynamics requires regular
data updates and model enhancements. Collaboration and communication between
modelers and public health authorities are essential to formulating and supporting
complex public health policy decision. This chapter highlights the effectiveness of
MCO in controlling Covid-19 spread. It discusses major socio-economic disruptions
and uncertainties caused by Covid-19 and MCO to the Malaysian and world econ-
omy. Guided by the Sendai Framework for Disaster Risk Reduction developed by
the United Nations, this chapter will focus the deliberation on the trade-offs between
saving life and saving the economy.

Keywords Covid-19 · SIR model · Pandemic control · Socio-economic impacts

1 Introduction

The Coronavirus Disease 2019 (Covid-19) first emerged in Wuhan city, China in
early December 2019. On January 23, 2020, China imposed a total lockdown in
Wuhan and other cities in Hubei to take effect through April 8 for a total of 76 days.
The lockdown involved suspension of all public transport, and imposed strict control
of movement within and out of the city of 11 million. The lockdown appeared to
have halted the spread of Covid-19 in Wuhan and China. By mid-February 2020,
it was obvious from model simulations that Covid-19 would soon become a global
pandemic. To confront the pandemic, Malaysian government was urged to be ade-
quately prepared in advance, including the preparation for lockdown to break the
infection transmission chain [1]. On March 11, 2020, the World Health Organiza-
tion declared Covid-19 a worldwide pandemic. On 16 March 2020 the Malaysian
Prime Minister announced the first two-week Movement Control Order (MCO) to
take effect beginning 18 March 2020 to contain the spread of Covid-19 [2]. Within
six months, the highly infectious disease has rapidly spread over 200 countries in
six continents. By 12 July 2020, the total global confirmed cases have exceeded 12
million cases, with deaths of over 560,000. The United States alone contributed a
total of 3,163,581 infections, resulting in 133,486 deaths [3].

In this introductory section, a brief description of the timeline of Covid-19 con-
trol measures in Malaysia, known locally as the Movement Control Order (MCO),
is presented. This timeline allows model simulations to be performed to evaluate
and improve on the effectiveness of MCO in containing Covid-19. The in-house
FluSiM@USMmodel simulations performed throughoutMarch-July 2020 indicated
that MCO is effective in containing community transmission. Further, model simu-
lations indicate that MCO is absolutely necessary over an extended duration of 12
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weeks to reduce the effective reproduction number Rt from 3.5 to around 0.2 in order
to prevent the resurgence of a second wave [4, 5].

1.1 MCO Timeline in Malaysia

Initiated by its first case on January 25, Covid-19 cases in Malaysia increased grad-
ually to a total of 22 by February 26. The subsequent big wave was triggered by
infections linked to the clusters who recently travelled overseas, and to those who
attended a tabligh gathering from Feb 27 to March 1 at Masjid Jamek Sri Petaling.
The religious event was attended by about 16,000 people including 1,500 foreigners.
On March 15, a staggering 190 new cases was reported, triggering the imposition
of a nationwide Movement Control Order (MCO) to take effect from March 18
to March 31. Throughout the various MCOs, contact tracing to find and contain
infected persons has been a key containment strategy, following the guideline stipu-
lated by CDC [6]. During MCO1, schools, universities and non-essential businesses
were closed, while essential businesses such as banks, petrol stations and non-sit-
in restaurants were allowed within reduced hours. Only one person per family was
allowed to leave home to get daily essentials. Inter-state or inter-district travels were
banned. The number of infections continued to increase throughout MCO1, reach-
ing a total of 2,320 cases by March 28. The short two-week MCO1 had only limited
impact because the infections were already prevalent among certain clusters spread
over large areas. Hence,MCO1was extended toMCO2 fromApril 1 toApril 14, with
stricter restrictions imposed. A 10-km movement restriction was imposed to limit
the movement of people to within 10km radius. Districts were categorized by four
color codes: Green, Yellow, Orange and Red according to the number of active cases
respectively (0, 1–20, 21–40, more than 40). In red districts, very strict enhanced
MCO (EMCO) was enforced to stop people from leaving or entering. The infection
curve began to show preliminary signs of flattening during MCO2, with reduction in
Rt from 3.5 to slightly more than 1.0 (Figs. 1 and 2). However, the persistent 3-digit
daily new cases throughout MCO2 prompted the extension of MCO2 to MCO3,
spanning from April 15 to 28, with tighter control measures imposed. During this
period ofMCO3 certain concern arose regarding undetected Covid-19 infections par-
ticularly among high-risk groups, such as the elderly in old folk’s homes and foreign
migrant workers living in cramped and unhygienic dormitories. This concern was
further highlighted by the persistent large surges of new cases in Singapore, exceed-
ing 1000 daily cases among migrant workers living in crowded quarters. The lesson
learned is that populations living in close contact with each other under unhygienic
environment such as migrant workers living in cramped dormitories can indeed be an
efficient source of Covid-19 transmission. The strict EMCO imposed on the identi-
fied clusters consisting of migrant workers helped to contain the spread of Covid-19
in Malaysia and Singapore. However, issues regarding humanitarian treatment of
migrant workers remain unresolved. This is a critical concern as there are close to
five million foreign workers in Malaysia.
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Fig. 1 FluSiM@USM projected cumulative active cases (black line) based on MOH data up to
March 17, 2020 without partial lockdown enforce-ment. FluSiM@USM projected a flattened epi-
demic curve (pink line) as a result of 24-week partial lockdown using a reduced simulated using
a constant contact rate β = 0.19day−1. To estimate Rt , FluSiM@USM result (red line) is fitted to
MOH data up July 10, 2020 using a piecewise-linear β(t) ∈ [0.1, 0.22] within the various MCO
periods. The horizontal axis is in weekly interval

Fig. 2 Estimated Rt based on the fitting of FluSiM@USM result to MOH data up July 10, 2020
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1.2 Economic Repercussions of MCOs

With the announcement of MCO4 (Apr 29 to May 12), emotional exhaustion and
economic anxiety had started to set in, particularly among low-income workers. As
nations close borders and enforce lockdowns, global trade could potentially shrink
by USD1.7 trillion to USD2.6 trillion or about 1.9 to 2.9% of global GDP [7]. Output
losses could reach between USD5.8 trillion to USD8.8 trillion (6.4 to 9.7% of global
GDP) under a 3 to 6-month containment scenario [7]. The impact on the Malaysian
economy is profound. The pandemic may cause a contraction of 2.6 to 6.9% of
Malaysia 2020 GDP [8]. With many non-essential businesses forced to close, layoffs
are inevitable, resulting in 1 to 2 million unemployment, out of which 68% are low-
skill jobs [8]. Small and medium enterprises (SMEs) provide jobs to 66% of the
nation’s workforce, and contribute to 40% of GDP. For SMEs, crowded working
spaces and limited online business platforms are not conducive to working remotely
and practising social distancing. SMEs are particularly vulnerable to the malaise
caused by the MCOs; hence assisting SMEs to enhance their resilience is crucial
to the nation’s economy recovery. About five million foreign migrant workers fill
employment gaps available in the low and middle skilled job sectors in Malaysia [9]
Their well-being is intimately connected to the overall health and wealth of the
nation. As part of the MCO containment strategy, all migrants will be provided with
free testing and treatment for Covid-19 during the MCOs [10].

1.3 Further Relaxations After MCO4

During the MCO4, the Rt values computed by FluSiM@USM dropped from 3.5 to
slightly below 1.0, but it was still significantly above 0.0. It was still not advisable to
abruptly abandon MCO altogether. Such an approach might trigger an unpredictable
resurgence of infections, given the uncertainty over infection clusters that lurk around
the corners. The trade-off between socio-economic recovery and epidemic control
dominated the debate over the continuation and protocol beyond MCO4. To stim-
ulate short-term and medium-term economic growth, the Government initiated the
economic stimulation measures and initiatives [2]. A major goal is to encourage
confidence of the people and to empower the investors on the Malaysian economy
resilience. The downward trend of daily new cases, now mostly of lower 2-digit fig-
ures, throughout MCO4 empowered the government decision to further relax some
MCO4measures. The relaxation of MCO4 is critical to stimulating economic recov-
ery and promoting social equity. Interstate travel was allowed to permit workers
trapped in their respective hometowns to return to the city where they work. About
100,000 students from public and private universities were permitted to return home,
from their university hostels where they had been stranded since MCO1. The degree
of relaxation of the standard operating procedures (SOPs) of MCO in each color-
coded district would depend on the infection status of the respective district, be it
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green, yellow or red. This approach of flexible and humanitarian pandemic contain-
ment MCO is commendable. It helps to narrow the conflict between saving life and
saving the economy, while leaving no one behind. It conforms to basic principles
enshrined in the Sendai Framework for Disaster Risk Reduction (SFDRR) developed
by the United Nations [11, 12]. However, the persistent global sharp surges in Covid-
19 in the US, Brazil and India, mandates vigilance to prevent a local resurgence from
hidden infection clusters originating from overseas. The time is ripe to cautiously
move on to the economic recovery phase with implementation of a business-friendly
recovery MCO to stimulate social economic growths.

2 Business-Friendly Recovery MCO

To promote economic recovery, MCO4 was replaced by a more business friendly
form of MCO, known as the conditional movement control order (CMCO). This
CMCO1 or MCO5 (May 4 to 12), witnessed the re-opening of almost all sectors of
the economy and businesses, albeit still under strict control conditions. Individual
travel between states was allowed with police permit. CMCO1 was extended to
CMCO2 or MCO6 with further business-friendly restrictions from May 13 to June
9. At this point, only four districts across the country were still classified as red
zones. It is important to avoid high risk and still banned activities, such as visiting
bars and night clubs, and to remain vigilant to potential infection clusters. Model
simulations by FluSiM@USMwill continue to provide a numerical approach to track
the infection progress via the Rt values, and to be readily adaptable to any sudden
resurgence of new infections. On June 10, the Recovery Movement Control Order
(RMCO) was implemented to take effect until Aug 31 to further spur economic
growths while saving life.

2.1 Spurring Economy Growth and Saving Life

The variations in MCO protocols has gradually evolved over time in the effort to
maintain a delicate balance between spurring economy growth and saving life. The
resurgence of renewed infections in Melbourne on July 7, however, would serve a
potent reminder regarding the constant need to be vigilant during the RMCO. Abrupt
reversal of RMCO containment policy might be possible. The abrupt resurgence of
Covid-19 cases in Melbourne on July 7 prompted the Victoria state government to
reimpose a six-week second lockdown starting from July 10. Abrupt resurgence after
lifting of lockdown is not an isolated event as many resurgences have emerged in
many other cities, such as in Hong Kong, Miami, Seoul and Tokyo. For the months
of June to July, many US states including Arizona, Florida, Georgia, Louisiana and
Texas recorded alarming resurgences in renewed infections. SevenUS states reported
record increases in cases on July 10: Alaska, Georgia, Louisiana, Montana, Ohio,
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Utah and Wisconsin. These continuing resurgences are cogent reminder to maintain
vigilant, particularly in cities where Rt hovers at levels around or above 1.0.

Sporadic spikes in Malaysian Covid-19 new cases associated with localized clus-
ters regularly emerged during the MCOs. It is essential to document these localized
clusters in order to properly assess the effectiveness and adaptation of the various
forms of MCOs. Amongst these clusters, the Sri Petaling tabligh cluster remained
the largest cluster with five generations of infection recorded. As of June 22, out of
42,002 samples taken from the Sri Petaling tabligh cluster, 3375 were tested positive,
representing an infection rate of 8%. Fortunately, this cluster infection has been elim-
inated with proper medical treatment and effective infection containment. Seventeen
weeks after the first confirmed case of the Sri Petaling tabligh cluster, this largest
cluster in Malaysia is officially declared to have ended on July 9. With a total of 647
positive cases detected by June 22, the Bukit Jalil Immigration Detention Depot (BJ
IDD) cluster was the second-largest Covid-19 cluster in Malaysia. The Pedas cluster
with 316 positive cases detected by June 22 was the third-largest Covid-19 cluster in
Malaysia. The source of this cluster was an infected local who subsequently spread
the infection to the foreign workers at the chicken factory in Negeri Sembilan. The
persistence of Covid-19 cases among migrant workers highlights the importance
of resolving the humanitarian treatment of crowded accommodation, unsatisfactory
practices of personal hygiene and unsanitary living environment among migrant
workers. Fortunately, the limited socializing and mixing between Malaysians and
these migrant workers prevented the spread of Covid-19 between the two population
sectors. It is important to combat the transmission among these migrant workers in
humanitarian terms without sidelining and stigmatizing them, following the SFDRR
framework guidelines for disaster risk reduction applied to pandemics [1]. After 15
weeks of MCOs, Malaysia has finally achieved a first zero local transmission case on
July 1, 2020, prompting the cautious optimism to re-open schools in phases starting
July 15, 2020. However, sporadic spikes prevented the infection Rt from quickly
levelling down to 0.0 (Fig. 2).

This chapter aims to simulate the evolution of Covid-19 epidemic curve for
Malaysia using the SIR model. An important task is to provide an early warning
signal to any potential surge of large-scale community transmissions. The epidemic
curve is first calibrated with the number of Covid-19 active cases from January 25
up to March 17. The reported number of Covid-19 daily active cases in Malaysia
fromMarch 17 to 28 was used to validate the model results. The classical SIR model
is able to satisfactorily represent the disease progression in Malaysia from January
25 to July 10, as shown in Fig. 1. Simulations were performed to investigate the
effectiveness of the two-week MCO1 (March 18–31), the result of which indicated
that the first two-week MCO1 was not sufficient to significantly reduce the spread
of Covid-19, due to its short duration and relaxed social and business restrictions.
Based on the SIR model simulation, the authors opined early on that the MCOs were
absolutely necessary and should be further extended, withmore strict restriction rules
imposed, to further reduce the infection rate [5]. This chapter documents the mathe-
matical modelling performed to address two critical issues: (1) How effective is this
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MCO and (2) What additional mitigation and adaptation measures can be employed
to prevent resurgence of infections.

3 Epidemiology Models

An overview of epidemiology models is presented in this section followed by the
introduction of FluSiM@USM.

3.1 Brief Literature Review

Epidemiology models have been successfully used to track and control the evolution
of Covid-19 in China recently [13–15]. The ultimate objective of these modelling
studies is to provide a framework for understanding how Covid-19 could spread
across the population and for informing local infection control measures and policy.
A brief literature review of epidemiological modelling of Covid-19 would provide
the scientific basis to formulate an appropriate modelling framework for this study,
and to inform current and future pandemic mitigation and adaptation measures and
policies in Malaysia. For this, a good knowledge on the transmission dynamics of
Covid-19 is essential for focusing on the critical factors that govern the disease
spread.

An age-structured SIR model was recently used by Singh and Adikari [16] to
study the impact of the most common social distancing measures that have been
initiated to contain the epidemic in India. Both morbidity and mortality rates for the
Covid-19 infection have significant differences across age-groups, with mortality
increasing rapidly among the elderly. An age-structured SIR model was proposed to
enable the assessment of age-structured impacts of social distancing measures. How-
ever, much is unknown about the true age-specific susceptibility and transmissibility
of Covid-19. Hence, such age-structured models with copious number of unknown
processes and ill-defined parameters are considered not reliable, as reliable estimates
of age-structured contact structures including susceptibility and transmissibility are
not available. Because of these shortcomings, the said authors candidly acknowl-
edged the high uncertainties in all the parameters used in their age-structured SIR
model. These uncertainties would ultimately translate into uncertainties in parameter
estimates and infection forecasts [16]. Further, the asymptomatic component in their
model could not be used due to the paucity of data on the prevalence of asymptomatic
cases. Their desktop study mainly suggested that prolonged and sustained periods of
lockdowns with periodic relaxations are required to substantially reduce the preva-
lence of cases to levels where individualized social contact tracing and quarantine
may become feasible. With R0 = 2.10, their model projected 900 million infections
for India, which is equivalent to 69%of India population of 1.3 billion. Such astonish-
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ing projection, without any supporting evidence, is truly beyond imagination, given
that India currently has less than one million cases.

Wu et al. [15] nowcasted and forecasted theWuhan outbreak size ofCovid-19 back
in January 2020 when the reported cases were rising exponentially. Their intention
was to provide useful insights for public health planning and control, both domes-
tically and internationally. Their model incorporated an “exposed” compartment
into their SEIR model to simulate the epidemic in Wuhan. To account for infections
among diverse populations across mega cities, they subsequently extended themodel
to SEIR-Metapopulation to simulate the epidemics across all major cities in China.
The one-month data (31 Dec 2019 to 28 Jan 2020) of internationally-exported cases
was used to infer the R0 using Markov Chain Monte Carlo methods. The inferred
R0 value was used in their SEIR model to simulate the outbreak in Wuhan. Then the
number of cases that had been exported fromWuhan to othermajor cities inmainland
China was estimated. The probable course of spread domestically and internationally
was forecasted. They assumed similar disease transmissibility as in the initial phase
in Wuhan. They then accounted for the potential mitigation impact of the various
social and personal non-pharmaceutical interventions that have been progressively
and quickly implemented since 23 January 2020. Based on the simulation results, it
was inferred that the epidemicswere already growing exponentially inmultiplemajor
cities of Chinawith a lag time of about 1 to 2weeks behind theWuhan outbreak. Their
study suggested that other major Chinese cities, which are global transport hubs with
huge numbers of both inbound and outbound passengers, were probably sustaining
localized outbreaks. Most importantly, the study highlighted that large cities over-
seas with close transport links to China could become outbreak epicenters, unless
substantial public health interventions at both the population and personal levels are
implemented immediately. To succeed in containment of the spread of infection,
draconian measures that severely restrict population mobility should be seriously
and immediately implemented in affected areas. At the same time, strategies were
required to drastically reduce within population contact rates through cancellation of
mass gatherings, through school closures, and through instituting work-from-home
arrangements [17]. Their findings are highly relevant to the implementation of MCO
in Malaysia beginning on March 18, 2020. However, several limitations in their
study were noted, namely (i) traveling behavior was not affected by disease status
and that all infections eventually show symptoms, (ii) estimate of transmissibility
and outbreak size was somewhat sensitive to the assumption regarding the zoonotic
mechanism that initiated the epidemic atWuhan, (iii) epidemic forecast was based on
inter-city mobility data from 2019 that might not necessarily reflect actual mobility
patterns in 2020, and (iv) little was known regarding the seasonality of coronavirus
transmission.

To lay a foundation for further modelling studies on the transmission of Covid-19
inWuhan, China, Lin et al. [13] adopted a Susceptible-Exposed-Infectious-Removed
(SEIR) model. The authors demonstrated the different effects of individual reaction
and governmental action and estimated themagnitude of these effects. Two additional
classes were incorporated into their SEIR framework, i.e. (i) the class D mimick-
ing the public perception of risk regarding the number of severe and critical cases
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and deaths and (ii) the class C representing the number of cumulative cases (both
reported and not reported). In their model, the transmission (contact) rate β(t) is
given by β(t) = β0(1 − α)(1 − D/N )κ , which incorporated the impact of govern-
mental action (α), and of the decreasing contacts among individuals responding to
the proportion of deaths (D). This model was conceptualized to address the indi-
vidual reaction (controlled by κ) and governmental action (controlled by α), as well
as time-varying reporting rate. The parameters in β(t) were largely unknown and
hence assumptions and curve fitting were used to estimate them. For example, β0

is derived by assuming that R0 = 2.8 when κ = 0. It is noted that Lin et al. [13]
reported a delay of 14 days between symptom onset and laboratory confirmation of
Covid-19. This is consistent with our modeling findings that there is a noticeable
time delay of about 10 days between the reported number of infected individuals
and the reported number of recovered individuals [5]. It was also noted that disease
transmission from asymptotically infected cases was reported but the contribution of
asymptomatic transmission was unclear (presumably small). Their study concluded
that both individual reaction and governmental action need to be considered in the
model to match the observed data in Wuhan. This observation is clearly reflected in
our model study.

The SEIRmodel was also used by Prem et al. [14] to estimate the effects of phys-
ical distancing measures on the progression of the Covid-19 epidemic. Social mix-
ing patterns vary across locations, across households, workplaces, and schools. But
these patterns were largely unknown. Their modelling study used synthetic location-
specific contact patterns in Wuhan and adapted these to account for school closures,
workplace closures, and social distancing in the general community. The SEIRmodel
used was age-structured with the population divided into 16 age classes. The infec-
tious properties of asymptomatic were largely unknown. Hence, the asymptomatic
cases were incorporated in the model using the probability coefficient (1 − p), indi-
cating the probability of an infected case being asymptomatic. It was further assumed
that younger individuals were more likely to be asymptomatic and were less infec-
tive. The values of the parameters used in their model were estimated from literature.
Consistent with our preliminary findings [4], they reported that sustained social dis-
tancingmeasureswill delay the time to peak and reduce the height of the peak, thereby
giving healthcare systemsmore time and better resources to adapt and respond. Their
model also suggested that the effects of the physical distancing strategies vary across
age categories. The reduction in mixing incidence was the highest among school
children and among older individuals and was the lowest among working-age adults.
The implication is that schools and universities should remain closed for longer
period during the MCO social distancing duration. Premature and sudden lifting
of interventions could lead to an earlier secondary peak. This observation provided
valuable insights to the implementation of MCO in Malaysia. Hence, relaxation of
the social distancing measures should be performed gradually and in stages, based
upon the infection curve and the computed Rt . Similarly, staggered return to work
should be implemented at the end of the intense control period to prevent resurgence
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should the disease have a longer duration of infectiousness. Prem et al. [14] admitted
limitations to their analysis, including large uncertainties around estimates of R0 and
the duration of infectiousness.

3.2 SIR Model: FluSiM@USM

The brief literature review on Covid-19 transmission modelling outlined in the previ-
ous section provides the justification for the selection of the SIR model in this study.
The “exposed” compartment is not included in our SIR model because the exposed
compartment would entail several unknown parameters. Further, their inclusion is
not likely to improve model performance. Complex models contain many unknown
processes andoften ill-definedparameters,with unreliable estimations, leading to dif-
ficulty in interpretation of simulation results. The transmission dynamics of an infec-
tious disease such as the Covid-19 within a population, can be effectively described
by a system of differential equations known as the SIR (Susceptible-Infectious-
Recovery) epidemic model. In this SIR model, the population is divided into three
groups: the susceptible group, denoted by S, the infected group, denoted by I , the
recovered group, denoted by R. In the normalized SIR model (1), we use s = S/N ,
i = I/N , r = R/N to denote fraction in each group. For a short period of outbreak
time, the total population is constant with N = 1. Table1 lists the definition and unit
of the parameters in SIR model.

ds

dt
= −βsi ,

di

dt
= βsi − γ i ,

dr

dt
= γ i . (1)

Epidemiologymodels such as the SIRmodel can provide the important concept of
infection transmission thresholds, such as the basic reproduction number R0, which
is used to determine if the disease can cause an epidemic outbreak. A key issue in
epidemiology modelling is to determine what can be done to ensure the outbreak
will die out quickly. The most important epidemic threshold is known as the basic
reproduction number typically denoted by R0. For the SIR model in (1), the basic
reproduction number R0 is a ratio between contact rate β and infectious rate γ as
shown in (2). The value of R0 reveals how fast the disease will spread by measuring
the expected number of cases generated by one case. For an epidemic to grow, the
basic reproduction number R0 must exceed 1. If R0 is less than 1, the disease will
die out.

R0 = β

γ
= βT (2)

To assess the effectiveness of intervention measures such as MCO, it is more
relevant to estimate the time-dependent variations of this transmission potential of
Covid-19, referred to as the effective reproduction number Rt . For this purpose,
an in-house simulation model known as FluSiM@USM that solves SIR equations
numerically using Runge-Kutta 4 was developed and applied [18]. The number of
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Table 1 Definition and unit of the parameters in SIR model (1)

Parameter Definition Unit Value Source

β Contact rate Per day 0.3045 Curve fitting

T Mean infective
period

Day 11.5 Lauer et al. [21]

γ Rate at which
infective
individual
recovers

Per day = 1/T = 0.087 –

s Susceptible
fraction of
population

Dimensionless – –

i Infectious
fraction of
population

Dimensionless – –

r Recovered
fraction of
population

Dimensionless – –

N Total population Dimensionless 1.0 –

confirmed infected cases in Malaysia [19], up to March 17, 2020, was used for
calibrating the epidemic curve. Subsequent confirmed cases up to July 10 were used
to estimate the time evolution of R0, also referred to as the effective reproduction
number Rt (3) [20].

Rt = βs

γ
= R0 × s (3)

The SIR model simulations indicated that Rt started with 3.5 around March 10
but was reduced gradually to 0.2 around July 10. As indicated in earlier sections. the
MCOs were regularly adjusted to achieve two major mutually conflicting goals: (i)
To break the Covid-19 transmission chain as quickly as possible by increasing the
duration and severity of MCO restrictions and (ii) To maintain good socio-economic
activities as much as possible by reducing the duration and severity of MCO restric-
tions. The estimation of Rt would help guide the decision towards the form of MCO,
particularly its duration and severity.

4 Simulation Results

Three important parameters must be estimated, namely R0, β and γ . This is per-
formed by fitting simulated results from FluSiM@USM to the actual data of con-
firmed and active Covid-19 cases reported by the Malaysian Ministry of Health
(MOH). Based on 181 confirmed cases, Lauer et al. [21] estimated that 95% of them
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developed symptoms within 5.1 days of infection, while 97.5% developed symp-
toms within 11.5 days. Therefore, it is reasonable to assume conservatively that the
effective infectious period T is 11.5 days, implying γ = 1/T = 0.087 per day. A
good fit of FluSiM@USM simulation result to the MOH data up to July 10, 2020, is
shown in Fig. 1. The best fitted epidemic curve is obtained by choosing the calibra-
tion parameters: γ = 0.087 per day, β = 0.3045 per day and R0 = 1.5 at the onset of
the disease on January 25, 2020. For Covid-19, R0 is largely reportedly between 2.00
and 3.00 [15, 22–24] while some studies reported R0 > 3.00 [25]. FluSiM@USM
predicted a higher peak of active cases that would arrive earlier around mid-April if
no MCO measures were taken. From March 18, the first day of MCO the number of
active cases was tracked and included in Fig. 1 for continuous curve fitting to obtain
the estimate of time dependent Rt .

The classical SIR model FluSiM@USM is able to adequately provide insights
on the effectiveness of MCOs in reducing the disease progression in Malaysia. As
illustrated in Fig. 1, if no MCO measures were taken, FluSiM@USM predicted that
the cumulative active infected cases could exceed 6000 cases around mid-April.
This large number of active cases would overwhelm the capacity ofMalaysian public
health system.Subsequent simulation is performed to examine the effectiveness of the
24-week MCOs, namely MCO1 (March 18–31), MCO2 (April 1–14), MCO3 (April
15–28), MCO4 (April 29-May 3), CMCO1/MCO5 (May 4–12), CMCO2/MCO6
(May 13-June 9) and RMCO (June 10-Aug 31). For this purpose, the pre-MCO
contact rate β = 0.3045 d−1 is reduced to β = 0.19 d−1 during the MCO periods.
Model projection demonstrated that the MCO is effective in managing to delay the
time to peak to around mid of April, with a sharp flattening of the curve (pink line,
Fig. 1). This delay in peak time and flattening of curve gave healthcare systems much
needed time to prepare and adapt. Further, this simulation allows the estimation of the
length of MCO needed for the disease to die off. The simulations performed allow us
to address two critical issues: (i) How effective is MCO and (ii) What additional soft
mitigation measures can be employed to further reduce the number of infections and
to prevent resurgence of infections. FluSiM@USM result is also fitted to the MOH
data up to July 10, 2020 (red line, Fig. 1) by varying β(t) ∈ [0.1, 0.22] within the
MCO period to allow the estimate of Rt . The estimated value of Rt based upon the
current trajectory of the disease is shown in Fig. 2. At the onset of the second wave of
Covid-19 inMalaysia, the Rt is estimated to be 3.5. The Rt declined to below2.5 upon
implementation of MCO1 and continued to decline throughout MCO2 and MCO3
to below 1.0 at the end of MCO3. The Rt slightly increased to above 1.0 during the
brief period of MCO4 due to the emergence of new clusters, consisting of migrant
workers living in crowded and unhygienic accommodations. Throughout MCO5 and
MCO6, Rt stayed below 1.0most of the time, with occasional spike due to cases from
migrant clusters. This is not yet the time to abandon the MCO altogether to prevent
resurgence. Subsequently during RMCO period Rt consistently maintained at value
below 1.0 and ultimately being reduced to 0.2. This suggests that the decision of
the Malaysian Government to implement MCO starting March 18 and continue with
various forms of MCOs is wise and timely. Public confidence in and adherence to
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the SOPs imposed by the Government are vital for the success in curbing the spread
of Covid-19.

5 Discussion

Epidemiology models are frequently used to forecast epidemic progression and
to investigate the effectiveness of intervention strategies. Subject to unpredictable
human social behavior during a pandemic, detailed forecasts are unlikely due to
the evolving complexity and uncertainty in the dynamics of pandemic transmission.
However, the general pattern of a local outbreak can be identified if the behavioral
uncertainties can be minimized by the imposition of effective MCOs as in the case in
Malaysia. The major goal of the MCO is to maintain a delicate balance between the
desire to prevent resurgence of infections and the wish to achieve quick and sustain-
able socio-economic recovery to prevent massive financial calamity across a wide
spectrum of the economy. At the time of the submission of this chapter, MCOs have
enabled Malaysia to successfully progress to the stage of epidemic recovery phase,
having reduced Rt to around 0.2 from 3.5. It is hopeful that this recovery would
be sustainable to allow a predictable and sustained socio-economic rehabilitation.
However, we aremindful of potential pitfalls, havingwitnessed recent resurgences of
infections in many cities and nations worldwide, such asMelbourne in Australia, and
manymajor cities in the US, Brazil and India. These resurgences were the immediate
repercussion of reopening the economy prematurely in attempts to rehabilitate the
economy from potential financial calamity. Tens of millions in the US alone have
lost their jobs. More will follow if a second wave was to resurge. Model simulations
performed in conjunctionwith integrated holistic approachmay be a useful analytical
tool for mitigating and adapting to evolving pandemic scenarios such as resurgence.

5.1 Resurgence of Infections

To curbCovid-19 spread,Australia quickly and vigorously enforced travel andmove-
ment restrictions early in the coronavirus outbreak compared to most other countries.
Slow and lethargic in response, the US has recorded more than three million infec-
tions and deaths of more than 133,000, with daily new infection exceeding 64,000
cases. Conversely, Australia has escaped a high number of casualties from the new
coronavirus, with just under 8900 infections and 106 deaths as of July 8. Australian
states and territories, other than Victoria, have recorded few or zero cases in recent
weeks and are continuing to reopen their economies. Australia began to ease its lock-
down in May to revive its economy after a significant slowdown in infection rates.
However, a flare-up in daily cases beginning July 6 forced the state of Victoria to
reimpose stay-at-home restrictions in metropolitan Melbourne and one regional area
of the state. On July 8, alarmed by abrupt 191 new infections within 24h, Melbourne
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went back into lockdown again for six weeks. Five million residents in Melbourne
will have to stay at home for all except essential business for the next six weeks,
beginning July 9. Three neighboring Australian states, i.e. Queensland, New South
Wales and South Australia have imposed a hard border lockdown with the state of
Victoria, of which Melbourne is the capital, after a resurge in infections. The state
of Queensland will ban non-residents from Victoria from entering Queensland from
July 10. Queensland residents were urged to avoid travelling to Victoria, and they
would have to quarantine in a hotel for 14 days at their own expense on their return
from Victoria. Similar preventive measures are imposed by New South Wales and
South Australia state to close their border with Victoria. There is anecdotal evidence
of gross negligence of pandemic prevention measures, such as blatantly inadequate
enforcement of quarantine that generated a major source of this abrupt resurgence.
Another main source of this resurgence is the lifting of premature lockdowns for a
quick economic recovery to prevent certain sectors such as tourism, hospitality and
aviation from financial calamity.

5.2 Recovery from Financial Calamity

The Covid-19 has caused large financial losses and stresses to many sectors, such as
the aviation, tourism, hospitality and retail industry, with abundant examples of busi-
ness failures and bankruptcy. The biggest low-cost carrier AirAsia Group reported
an 804 million-ringgit (USD188 million) first-quarter 2020 (January to March) loss,
with no sight of quick recovery. Technically, it is now classified under the PN 17
status, with implied risk of being delisted. AirAsia market conditions deteriorated
abruptly beginning in February as the outbreak began to spread rapidly, resulting in
collapsed demand for air travel in February and March as domestic and international
routes were halted. The Covid-19 crisis has resulted in border closures in AirAsia’s
key markets including Malaysia, Thailand, Indonesia, the Philippines, China and
India. It remains unclear if AirAsia is able to fully recover, as it is generally antici-
pated that the travel industry will need extraordinary multi-sector coordinated efforts
to recover.

Similarly, Singapore Airlines reported on May 14 a net loss of 732 million SGD
(USD512 million) in the fourth quarter of the financial year, dragging the whole year
performance into the red, its first annual net loss in its 48-year history. The loss was
attributed to the plunge in air travel demand. In response, the Singapore Airlines have
imposedmanagement pay cuts, voluntary and compulsory no-pay leave schemes, and
a shorter work month for ground staff. Due to the sharp decline in flight movements
because of the Covid-19 pandemic, terminal operations at Singapore Changi Airport
will be consolidated, including the suspension of operations in Terminals 2 and 4 for
18months.Manpower from the avian industries affected byCovid-19 are re-deployed
to take on new roles in the hospitals, as care ambassadors, by providing administrative
support and attending to patients, under the close supervisionof nursing staff.Another
major EU airline Lufthansa will be rescued by the German government with a bailout
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of nine billion euros (USD9.8 billion). Burdened by high debts and large losses
from cancelled flights, Virgin Atlantic Airways and Virgin Australia have entered
voluntary administration, theUK’s equivalent toChapter 11 bankruptcy to restructure
the airlines. Thai Airways International will submit a rehabilitation plan and an
application for restructuring proceedings to a bankruptcy court, the Thai equivalent
of the US Chapter 11 bankruptcy rule. Retailers J Crew and JC Penney filed for
Chapter 11, to seek bankruptcy protection in the wake of the Covid-19 crisis. Can
more sectors and corporations be saved from failures andbankruptcy by a quick return
to normal by reopening of the economy? Will premature reopening risk resurgences
of new infections? Finding a clear, unequivocal answer to these questions remains a
challenge.

6 Conclusion

A key objective in this study is to examine the effectiveness of the Malaysian MCO
in breaking the infection transmission chain in Malaysia. The aim of the MCO is
to bring the infection basic reproduction number R0 to 0.0 as soon as possible, in
such a manner as not to harm the economy excessively. For the SIR model, the basic
reproduction number is given by R0 = βT , where β is the contact rate and T is the
mean infective period. While we cannot reduce T , we certainly can and must do
everything possible to cut down the contact rate β, by effective implementation of
MCO by maintaining good social distancing, by self-isolation of Covid-19 positive
persons, by contact tracing and containment of infected persons and by good personal
hygiene. In this chapter, we use daily infected cases from January 25 to July 10
provided by MOH to calibrate and validate the FluSiM@USM model. For the first
phase between January 25 and March 7, Rt was about 1.6, allowing the infection
to grow slowly. But soon after March 8, Rt quickly skyrocketed to 3.5, pushing the
infection to growvery quicklywith 3-digit newcases daily. Simulation result revealed
that two months of MCO is needed to reduce Rt from 3.5 to 1.0. An additional one
and a half months of MCOs is required to bring Rt to 0.2, a level considered as safe
to vigilantly reopen the economy in stages, with the guarded hope that resurgence
would not occur.

In a highly interconnected globalized world, will premature reopening of the
economy plunge the world back into another more severe round of pandemic, with
potentially more destructive calamity?Will the US degrade into a deep and sustained
recession should the current rampant pandemic turn catastrophic as predicted by
some prominent epidemiological experts? In the absence of effective vaccines and
pharmaceutical treatments, sustainedvigilant and social distancing is urgently needed
to prevent an escalation of infections in a highly interconnected world. America
should lead by providing genuine support to the global coordinated efforts to contain
the pandemic by avoidance of risky actions and by demonstrating convincingly good
social distancing behavior.
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We acknowledge some limitations of this modelling study. Premised upon sev-
eral assumptions such as homogeneous mixing, the deterministic SIR model is a
simplification of reality. Deterministic models do not fully reflect the uncertainty
and stochasticity in disease transmission dynamics. Modelers need to fit models to
observed data to project the evolution of an epidemic and to estimate key parameters
as in the case of FluSiM@USM. Temporal variation in R0 is adjusted to reflect social
adaptations induced by MCOs and to fit evolving pandemic outcomes.
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An Extensive Time Series Analysis of
Covid-19 Data Sets on the Indian States

J. V. N. Lakshmi and Vandana Bhagat

Abstract Pandemic influenza coronavirus is causing a great loss to mankind. It is
creating a chaos on the global economy. Fight against this unseen enemy is affecting
all the sectors of the global economy. Mankind is quivering with fear and scared to
do something. This study gives a detailed presentation of the current position of virus
escalation in India. Sentiment analytics from Twitter data is evaluated on sentiment,
emotions and fear opinions are analyzed in the study. The analysis is on red, orange
andgreen zones in several states of India and also gave a comprehensive interpretation
on various phases of lockdown. Confirmed, active, recovered and deceased cases in
all states aremodeled to predict the increase of number of cases. Textual, geographical
and graphical analytics are extensively described in the research study. Time series
analysis is broadly elaborated as a case study till July 22, 2020, forecasting the
impact of virus on Maharashtra, Kerala, Gujarat, Delhi and Tamil Nadu. This study
will favor the administrative system to control the disease spread across the nation.

Keywords Covid-19 · SIR model · Pandemic control · Socio-economic impacts

1 Introduction

The research article focuses on significant critical issues: (1) sentiment analysis indi-
cating the status of Covid-19 in India (2) Twitter data is used of sentiment analysis
(3) textual analysis and data visualization of various statewise progress of Covid-19
in India and (4) textual classification by evaluating the association between the var-
ious tweets using machine learning techniques. Rapid increase of coronavirus has
paved a way for extensive analytics for interpreting the textual information from
masses in pandemic situation. Sentiment data from tweets articulates on care, health,
vaccine, preventive, masks, recovery, social distancing, agriculture, migration, lock-
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down, economic, financial, trade and network information. This data emphasizes on
swift increase of the virus and also association among the various sectors. World
Health Organization (WHO) discusses on handling the situation in pandemic, man-
aging the industry, economy and financial sectors becomes a tedious task for the
government to manage.

Natural language processing, data analytics, visualization, artificial intelligence
and deep learning are the various tools for analyzing the data in research and devel-
opment. Tokenization, stemming, frequency, association, classification, categoriza-
tion and polarity matching are various techniques for exploratory textual analytics.
Descriptive, statistical, prescriptive and predictive mechanisms are applied for the
current research study. Preventive measures, use of sanitization, wearing masks, vac-
cine invention, lockdown and hot zones are a frequently used terms from the Twitter
analysis. Behavioral study of electronic data, modeling the market trends and mining
the outcomes from extracted insights of complex information are typical machine
learning applications using textual analytics.

In the current scenario of pandemic Covid-19, sentiment analytics is collected
from Twitter data in the first stage of analysis fear sentiment which is visualized in
Fig. 1.

Many numbers of open-source communication platforms are rightly available for
expressing the opinions, moods, views, positive comments and negative texts with
respect to any phenomenon. The text posted in such communication platforms is
spontaneously available for textual analytics and performs rapid research on the post
available. Experiences, reviews, advertisement and personal associations are playing
an important source for research insights. Wide-ranging research study is executed
on text analytics gathered from social media data on product reviews, political polls,
stock market trend analysis and public emotions.

Fear Lowess curve in Fig. 1 represents the textual sentiment data visualization
to analyze the trend of change in people’s behavior from the tweets posted in India
which were gathered. From January 1, 2020, to June 15, 2020, there is an increasing
trend line of tweets posted on the Twitter, as the month on month increase of fear

Fig. 1 Fear sentiment analysis in India since January 2020
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Fig. 2 Word cloud from
tweets collected worldwide

sentiment tweets indicates the threat of fast spread of disease. In themonth of January,
hardly only a few people are fearful about the dreadful disease as the months pass,
and in the month of June the increase of tweets on fear was rapid.

The current research study focuses on spread of coronavirus and from the tex-
tual analysis conducted, and the fear building in the mind of people’s view is being
tracked. Keywords associated with the phenomenon are represented using the data
visualization with a communicative word cloud. Word clouds are popular commu-
nicators indicating the term frequency iterating over several words. Hence, Fig. 2
represents the word cloud representing the term frequency.

Ten thousand tweets were analyzed for representing, as shown in Fig. 2, word
cloud. These tweets were collected from all over the world. The most repetitive
terms are Covid, cases, Trump, new, died and many more. Size of the term indicates
the frequency of the word from the given tweets. Hence, the association can be easily
trailed from the word clouds.

From Fig. 3, tweets are taken by giving the geocode mentioning the latitudinal
and longitudinal degrees of India. Postponement of Eamcet exams, vaccine, mask,
home, quarantine and test are some of the special terms that can be identified from
the word cloud in Fig. 3. The classification of textual data into positive and negative
sentiment categories. The analytics also includes sentiment analysis of the textual
component of Twitter data.

Exploratory analysis conducted on the tweets reveals exciting truths, complex
relations and unknown facts can be drawn. From Table 1, use of certain words from
different Indian states has been interpreted. The number of tweets using these words
in Telangana, Kerala, Maharashtra, Delhi, Tamil Nadu and Andhra Pradesh narrates
a story behind each word frequency. Maharashtra state has higher tweet frequency
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Fig. 3 Word cloud from
tweets collected India wide

Table 1 Tweet features summarized by source category

Source Corona Flu Bear Vaccine Test

Telangana 14 75 17 17 10

Kerala 78 50 10 5 8

Maharastra 112 90 80 20 87

Delhi 85 74 74 15 21

Tamil Nadu 0 0 54 14 54

Andhra
Pradesh

0 0 14 13 4

on corona, flu, vaccine and test word. As the number of cases is more in this state
and initially the test was conducted vigorously in this state, hence the frequency
was more. Vaccine research is dynamically progressing in IIT Bombay and in IIT
Hyderabad, henceforth the table shows the tweets frequency in those states.

2 Literature Review

Exponential raise of Covid-19 cases all over theworld created fear. Using the descrip-
tive sentiment analysis and data visualization for textual data is implemented to eval-
uate the fear sentiment in this paper [1]. The paper also focuses on crucial machine
learning techniques for classifying the varied length tweets as a part of textual ana-
lytics. The observations from the paper are Naïve Bayes classification method gives
91% accuracy if the tweets are short and 74% accuracy from the logistic regression
for shorter length tweets. Both these algorithms are showing poor performance for
lengthier tweets.

EM inverse exponential exponential (EMIEE) model is introduced in Table 2
[2] fit data of confirmed Covid-19 cases in Pakistan from March 21 to May 29,
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Table 2 EMIEE model analysis on Covid-19 confirmed cases in Pakistan

• Provide a precise estimation for some measures of interest related to Covid-19 cases in
Pakistan (mean of cases, probability to have a certain number of cases and so on)

• Compare the repartitions of the number of Covid-19 cases in Pakistan with those in other
countries

• Propose an efficient strategy for fitting data on Covid-19 cases in other countries

•Model the distribution of the number of cases for any pandemic with similar features and under
a similar environment (with comparable populations, comparable climate, sanitary system, etc.)

2020. The proposed model was compared with the Weibull exponential (WE),
Lomax exponential (LE), gamma exponentiated exponential (GaE), beta Weibull
(BW), Kumaraswamy exponential (KE), Burr X exponential (BXE), exponentiated
exponential (EE), CS transformation of exponential (CE), standard exponential (E),
alpha power inverseWeibull (AIW),Gompertz inverse exponential (GomIE),Weibull
inverse exponential (WIE), inverseWeibull inverse exponential (IWIE), inverse expo-
nential (IE) and the ‘unexponentiated’ version of the proposed EMIEE model. The
proposed model was answering the questions in Table 2.

An extensive research on outbreak of Covid-19 has been conducted solving six
research survey questions to control the spread of disease in this paper [3].

A statistical model is created for analyzing the rapid increase of Covid-19 cases
in India. A wide range of research is conducted as a study of reported cases in India
till April 22, 2020. Exploratory data analysis implemented examines the impact of
coronavirus ondaily andweeklybasis.Acomparative study analyzingother country’s
pandemic situation and health structures is drafted in article [4] (Table3).

Social media and communication media play a significant role in such pandemic
scenarios.An interactive dashboardCO.ME.T.A. has been introduced to perform the
lexical analysis on social and mass media content. Text mining, textual networking,
latent topic modeling and sentiment analysis are merged together as a unique feature
of the dashboard. CO.ME. T. A. dashboard displays demographics of health, finance,
socialization and economic variances of the nation [5].

Topological segmentation of text helps researchers to systematize the knowledge
in a vast amount of textual information available right now. While performing the
segmentation and analyzing each segment, the whole volume of data gets split into
clusters, which simplifies the analysis and understanding of the data.

Susceptible infectious recovered dead (SIDR) model estimates were computed
by considering the infection mortality and recovery percentage per day in the first
phase of analysis. In the first phase as the asymptomatic courses were higher than
the actual, there is a requirement of updating the computations. Hence in the second
scenario, 20 times the infected cases and 40 times the recovered cases were taken into
consideration. This second scenario was resulting to be average leaving the number
of deaths neutral. Therefore, SIRD model was suggested to slow down the outbreak
of pandemic in Hubei [6].
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Table 3 Research questions
on Covid-19 outbreak in India

Research
question

Survey queries

RQ1 How has the situation changed in
post-lockdown period in India, i.e., what is
the outbreak situation after March 22, 2020,
in India as compared to pre-lockdown period?

RQ2 What are the short-term predictions for the
number of infected cases in India for the next
3–4 weeks based on current situation?

RQ3 Has the lockdown been followed by the
Indian citizens after March 22, 2020? Has the
social distancing worked for Indian citizens?
What are the mobility changes in the various
regions of India?

RQ4 Whether the community outbreak spread
started in India with the conduct of a religious
event in Delhi? How is the outbreak different
for citizens related to event and for citizens
not related to the event?

RQ5 Which are the prominent clusters which were
formed in the last few weeks with respect to
Covid-19 outbreak in India? Does network
analysis provide influential points in the
infected patient network?

RQ6 Whether the national lockdown should be
opened after April 14, 2020, in India or should
it continue? Are there any partial regions for
which lockdown can be removed? Which all
essential services should be opened in India
after one week under restricted lockdown?

Analyzing the present scenario to handle the spread of the disease plays a keen
role. From the available literature, running the regression model on the data resulted
in prediction [7]. ARIMA time series models, exponential smoothing technique,
patternmining and networkmodeling are variousmodels applied in various countries
comparing the several parameters with that of India [8]. These models discussed
in time series and could not accommodate the parameters associating the patient
information.

Mathematical models were developed for trend analysis on the outbreak of Covid-
19 in India. A model described the impact of implementing the social distance,
wearing masks and avoiding the use of contaminated items. Another research model
elaborates the necessary precautions with respect to various ages and gender [9].
Some structures from the literature discussed the entry of foreign national’s impact
in the spread of the disease. Death rate and recovery rate are analyzed in comparison
with many countries based on the medical and infrastructural resources [10].
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With respect to vaccine, all over the world, many countries are striving hard to
for its invention [11]. China, USA, Italy, Russia and India scientists are involved
in generating a hardcore antidote to control the spread of disease [12]. A research
model also described the effect of low immunity is the initial cause of infection and
its various with respect to age groups [13].

A network model was used to observe the other peculiar clusters formed and also
predicts the confirmed cases in a nation [14]. Themodel considered foreign nationals
coming to India. In another research paper, analysis was conducted onmedical practi-
tioners, laboratories, testing equipment and infrastructure for the increase of cases in
various countries [15]. Based on the resource availability, the required arrangements
are taken care.

In another paper by Lixiang analyses, the existing data of Hubei epidemic situa-
tion, corresponding model implemented and the simulation carried out is illustrated
in detail. The main factors affecting the spread of Covid-19, such as the number of
basic regenerations, the incubation period and the average number of days of cure
were analyzed under this research. Predicting the evolution trend of the existing epi-
demic data and found that imposing controls would have important impact on the
epidemic. In addition, according to the existing data abroad, strong predictions of the
epidemic development trends in SouthKorea, Italy and Iran, pointing out the possible
outbreaks and the corresponding control time and tracing the earliest transmission
dates of countries, were described in this article [16].

A research onquarantine facilities, equipment,medical resources andhealthwork-
ers is tomonitor the patients in various regions [17]. Accommodatingmassive groups
in quarantine and providing all the services is again a challenging task. Hospital beds
are not sufficient for the large groups. Hence, area wise quarantine locations are iden-
tified [18]. Government schools, colleges and private buildings are used as quarantine
locations by government [19].

From Table4, it is evident that available facilities such as physicians, beds and
health expenditure are comparatively very low per 1000 persons. GDP and per capita
are considerably minimum in comparison with other neighboring countries. In terms
of poverty lines, individual health expenditure is remarked all citizens cannot afford
medical facilities and government hospitals are not equipped with the required facil-
ities and physicians to [20].

Throughout the world, researchers have developed mathematical models to reveal
the spread of disease and analyzed country wise report discussing on the country’s
readiness in tackling the virus in order to get a down trend line. Research needs to be
reviewed and continuously monitored to examine the phases of the virus and also in
developing a vaccine. Therefore, current analysis attempts to give an absolute level
to report on Covid-19 in India. Various government strategies are analyzed both at
central and state level.
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Table 4 Health VS poverty in India

Health and Poverty India

Population 1352.6

Physicians (per 1000 persons) 0.8

Hospital beds (per 1000 population) 0.7

Current health expenditure (% of GDP) 3.5

Current health expenditure per capita ($) 253.3

General government expenditure (% health
Expenditure)

27.1

Individual average expenditure (% Health
Expenditure)

62.4

Poverty headcount ratio at national poverty
lines

21.9

GDP per capita ($) 6888.2

3 Sentiment Analysis

For textual analysis, determining the sentiments from the text plays a substantial
insight. Extracting the associated text and reviewing the relations from the emotions,
opinions, feedback and ideas in an extant study. Computing the polarity score from
the sentiments and assigning these scores to the respective categories assess the
positive, negative or neutral features of the content. Open-source statistical software
R also has standardized polarity sentiment score method for customized lexicons.
Anger, anticipation, disgust, fear, joy, negative, positive, sadness, surprise and trust
are few of the sentiment classes taken into the current study. Five thousand tweets are
classified under the above sentiment classes as shown in Fig. 5. The sentiment score
ranges between −1 and +1. +1 indicates the positive opinion, 0 indicates neutral,
and −1 indicates the negative polling (Fig. 4).

4 Textual Analytics

Various representations have been implemented using analytics based on theme of
textual data. Emotional analysis and text frequency are analyzed from the collected
tweets of 5000. Use of the words trust, fear, anticipation and sadness is emotionally
associated with the tweets. Fear in the people’s mind due to the increase of coron-
avirus is clearly visible from Fig. 5. People’s anticipations toward life expectation,
vaccine invention, immunity boosting and health care are significant parameters of
thought process; hence, these elements are categorized under anticipation. Hope for
tomorrow, life is achievement, stay home and stay healthy are some of the positive
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Fig. 4 Sentiment analysis score based on tweets in regard to pandemic

Fig. 5 Emotion percentages from the tweets

tweets representing the trust emotions. From Fig. 5, 5000 tweets are categorized into
various emotions as shown below.

Twitter data analysis assesses the person’s habits, likes, interests and relations by
evaluating human communication through tweets. Content selection, product posi-
tioning, information retrieval and psychological assessment are analyzed from emo-
tions of past research of social media.

This research also analyzed coronavirus tweet texts for potential association with
other variables, in addition to endogenous analytics. Words such as Covid, people
positive, doctors, test and cases are frequently repeated terms from the tweets. Elabo-
rate study applied using time-aware knowledge extraction (TAKE) technique demon-
strates acquittance of significant information frommassive data of social media. This
study gives a classified approach in summarizing the Twitter data to produce quality
outcome.

Figure6 is another word frequency graph representing high-frequency terminol-
ogy from the 5000 tweets associated with the coronavirus. Among 5000 tweets, 3363
tweets were based on Covid, and remaining tweets indicate the other sensitive issues
prevailing in the country. ‘Positive cases are increasing rapidly’, ‘people are trem-
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Fig. 6 Word frequency from the tweets

bling with fear’ and ‘Scientists are working hard for new vaccine invention’ such
tweets are depicting other word frequencies.

5 Geographical Analytics

Hot spots are regions in India that recorded higher rate of confirmed Covid cases.
Detected people do not belong to same family, hence the possibility of transmis-
sion is more in those areas. In order to prevent spreading, Indian government has
recognized and sealed those areas to restrict the people from unwanted moment.
Many districts of Indian states are recognized as hot spots by enforcing the harsh
lockdown. States have issued regulations during the lockdown to curb blowout of the
coronavirus. Maharashtra, Delhi, Punjab, Odisha, Meghalaya, West Bengal, Tamil
Nadu and Telangana states have extended lockdown beyond the date announced.

Government has taken a crucial step in identifying the hot spots and categorizing
as red zone, green zone and orange zones. Escalating cases and high severity is
represented as red zone, recovery rate is high, and recorded few cases are considered
as orange zone. Non-restricted areas are recognized as green zones. The zonal wise
categorization is represented in Fig. 7.

Zonal wise division of states is categorized into three representations red, orange
and green zones in Table 5 considering the months April and May 2020. In Fig. 7a,
green zones are represented in Madhya Pradesh, Chhattisgarh, Assam, Arunachal
Pradesh and Uttar Pradesh having fewer number of cases. In Fig. 7b, Uttar Pradesh,
Rajasthan, Bihar, Gujarat, Telangana and Tamil Nadu are represented as orange
zones. Finally, Delhi, Maharashtra, Uttar Pradesh and Tamil Nadu are darker repre-
senting the red zones in Fig. 7c. The observations from this are Maharashtra, Delhi,
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Fig. 7 Statewise zonal division based on the spread of coronavirus

Fig. 8 Georepresentation of cases in India

Rajasthan, Gujarat and Tamil Nadu that are the critical states rapidly becoming seri-
ous and spreading extensively.

As the statewise cases are increasing exponentially, an comprehensive analysis is
conducted on confirmed, active, recovered and deceased cases. From March 15 to
July 15, all the cases have been tracked and scrutinized. Following Table 5 gives a
detailed statewise report. Table5 shows the color scales depicting the regions with
red, yellowandgreen shades.Dark reddisplays higher number of cases, lighter shades
of red illustrate the relative less number of cases, and yellow shades exemplify fewer
cases than red shades. Finally, green shades demonstrate the safer zones.

In Fig. 8, Indian map is representing active, recovered and deceased cases from
March 15 to July 15. Active cases are recorded in Maharashtra, Tamil Nadu, Delhi,
Karnataka, Telangana, Andhra Pradesh, Gujarat and Uttar Pradesh. Recovered cases
are more in Maharashtra, Delhi and Tamil Nadu. Maharashtra, Gujarat, Delhi and
Tamil Nadu have recovered more number of death cases.
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Table 5 Regions in India indicating red, orange and green zones

States Red Orange Green States Red Orange Green

Andaman and
Nicobar

1 0 2 Ladakh 0 2 0

Andhra
Pradesh

5 7 1 Lakshadweep 0 0 1

Arunachal
Pradesh

0 0 25 Madhya
Pradesh

9 19 24

Assam 0 3 30 Maharashtra 14 16 6

Bihar 5 20 13 Manipur 0 0 16

Chandigarh 1 0 0 Meghalaya 0 1 10

Chhattisgarh 1 1 25 Mizoram 0 0 11

West Bengal 10 5 8 Nagaland 0 0 11

Daman and
Diu

0 0 2 Odisha 3 6 21

Delhi 11 0 0 Puducherry 0 1 3

Goa 0 0 2 Punjab 3 15 4

Gujarat 9 19 5 Rajasthan 8 9 16

Haryana 2 18 2 Sikkim 0 0 4

Himachal
Pradesh

0 6 6 Tamil Nadu 12 24 1

Jammu and
Kashmir

4 12 4 Telangana 6 18 9

Jharkhand 1 9 14 Tripura 0 2 6

Karnataka 3 13 14 Uttar Pradesh 19 36 20

Kerala 2 10 2 Uttarakhand 1 2 10

6 Graph Analysis

An interactive graph analysis on various Indian states is represented in Fig. 9. From
Fig. 9, the highest red zone regions are recorded in Maharashtra. Later Tamil Nadu,
Delhi, Gujarat and Madhya Pradesh are other states having more red zones. Uttar
Pradesh has the highest number of orange zone. Assam has themore number of green
zones.

Figure10 shows the statewise analysis of confirmed, recovered, active and
deceased cases that are illustrated in detail. The time span of data set is from March
23 to July 22, 2020. The highest number of recovered cases recorded on Maha-
rashtra, Delhi and Tamil Nadu are 1,00,000, 87,692 and 67,345 respectively. 43,000
active cases are recorded in Tamil Nadu. 11,000 are the highest confirmed cases from
Maharashtra. Joint plots using the seaborn package are divulged in Fig. 11. Four joint
plots are showing the confirmed, active, recovered and deceased cases efficiently.
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Fig. 9 Interactive graph representing zonewise cases in India

Fig. 10 Interactive graph representing statewise cases in India

• Active and Recovered Cases—Plot 11 (a) describes the number of recovered cases
is more than the active cases. By observation, it shows that there are high chances
of recovery.

• Active and Deceased Cases—Plot 11 (b) explains the number of death cases is
very less compared to the active cases. For 1,00,000 cases, there are 10,000 death
cases.

• Confirmed and Recovered Cases—Plot 11 (c) displays 1,40,000 recovered cases
out of 2,50,000 confirmed cases. It records more than 60% recovery rate.

• Confirmed and Death Cases—Plot 11 (d) elucidates 10,000 death cases out of
2,50,000 confirmed cases. Death rate is comparatively low showing a positive
analysis.

This paper presented a time series model in Sect. 8 and predicted number of
infected cases and the turning pointwhere the spread is at peak. Feasibility analysis of
controlling Covid-19 spread is by isolating infected cases and quarantine. Simulation
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Fig. 11 Join plots for scenario analysis in India

results show that if the restrictions would have been applied one week before, then
there would have been significant reduction in the number of infected cases. This
research aims to present statistical framework for combining various estimates of
this reproductive number into growth, interval and dispersion. The results generated
from this framework show that all estimates of reproductive number are not accurate.
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7 Results and Discussions Using Time Series Analysis

The recent data is used for analysis is taken from ‘Covid-19 India API’. This site
contains the recent data related to Covid-19 in various formats. This section puts
more focus on time series analysis and forecasting of Covid-19 data starting from
March 14, 2020, till July 21, 2020. Time series analysis can help to analyze the overall
spread and recovery of the pandemic during given time period. It helps to analyze the
impact of actions taken by government to decrease the spread and increase recovery
cases. This section is divided into time series analysis and forecasting.

• Time Series Analysis

This section contains time series analysis of specifically five states, namely Maha-
rashtra, Kerala, Gujarat, Delhi and Tamil Nadu. These five states are taken into
consideration, because these states come in the list of hights ten states of Covid-19
detected cases.

The analysis concentrates two types of cases, i.e., confirmed cases and recovered
cases. These parameters are taken into consideration to check the spread and recovery
of the pandemic in specific area.

Figure12 shows the time series analysis for Maharashtra state. From the graph,
following observations can be drawn:

1. Due to lockdown FromMarch till mid ofMay, the pandemic spared was in control
but after that the spread started increasing and after June 20 and the spread went
beyond 75 percentiles of the data. The overall trend is upward. It can be also
observed that the spread is very high and crossed the highest percentile.

Fig. 12 Time series analysis for Maharashtra state
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Fig. 13 Time series analysis for Kerala state

2. The recovery rate also shows upward trend in Maharashtra. The graph displays
some peaks which shows there are a greater number of recoveries on certain days.
The recovery rate is less compared to spread, but it is gradually increasing with
spread rate.

Figure13 shows the time series analysis forKerala state. From thegraph, following
observations can be drawn:

1. In Kerala state, Covid-19 spread is very high from the month of July. Till then,
the spread was very slow. After July 10, the spread has reached to the highest
percentile.

2. Compared to spread, the recovery rate in Kerala state is very low. The recovery
has just crossed the 75 percentiles of data.

Figure14 shows the time series analysis for Delhi state. From the graph, following
observations can be drawn:

1. From the graph, it can be observed that in mid of June, Covid-19 spared in Delhi
was at the peak during mid of June. After that it started coming down, and now
it has become less than 50 percentiles of the data.

2. In Delhi, recovery rate was also in the peak in mid of June, and it became stable
after that till date.

Figure15 shows the time series analysis for Gujarat state. From the graph, fol-
lowing observations can be drawn:

1. Gujarat state shows upward trendwhere it can be observed that there was a sudden
increase in the spread on mid of May 2020. That time the spread has reached to
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Fig. 14 Time series analysis for Delhi state

Fig. 15 Time series analysis for Gujarat state
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Fig. 16 Time series analysis for Tamil Nadu state

the highest percentiles but after that it has decreased and again started growing
gradually. The cases are increasing and again started reaching to the highest
percentile.

2. Recovery cases in Gujarat are showing equal upward trend like the spread. The
number of recoveries is almost equal to the number of spared. There is a consid-
erable recovery during the end of May and starting of June.

Figure16 shows the time series analysis for Tamil Nadu state. From the graph,
following observations can be drawn:

1. After lockdown, in Tamil Nadu state, the spread is increasing gradually till date.
It has crossed the highest percentile of the data.

2. The recovery rate shows upward trend similar to spread. With the spread, the
recovery rate is also high in Tamil Nadu state.

• Comparative weekly analysis of spread and recovery rate of Covid-19

The weekly analysis was done for confirmed and recovery rate of five states as
shown in Fig. 17. The graph shows interesting insights as follows:

1. Maharashtra has gradually increased the spread and recovery over the time period,
while the growth was very high from 25th week of the year.

2. In Delhi, cases started increasing from 23rd week and reached to the peak on 26th
week. But after that there is a gradual drop in spread and recovery rate.

3. In Tamil Nadu, there was increased number of confirmed cases from 25th week,
and then it came down after 29th week.



An Extensive Time Series Analysis of Covid-19 Data Sets on the Indian States 595

Fig. 17 Pandemic weekly time series analysis for Maharashtra, Delhi, Tamil Nadu, Gujarat and
Kerala state

4. In Gujarat till 27th week, the spread was quite gradual but after that confirmed
cases started increasing.

5. Similar to Gujarat, late in 27th week, the confirmed case number has increased
6. All the states have decreased number of confirmed cases after 29th week.
7. In all the states, the recovery rate is almost going parallel to the spread rate.

• Comparative daily analysis of spread and recovery rate of Covid-19

The daily analysis was done for confirmed and recovery rate of five states as
shown in Fig. 18. The graph shows following observations:

1. There is a gradual spread of Covid-19 in four states such as Maharashtra, Tamil
Nadu, Gujarat and Kerala, but there is a considerable drop of cases in Delhi.

2. In Maharashtra, frequently recovery rate has gone to the peak, but overall rate is
going parallel with confirm cases with little less number.

3. In Tamil Nadu and Gujarat state, the confirmed and recovery rates are going
parallel.

4. In Kerala, the number of confirmed cases is increasing gradually, but recovery
rate is stable with less number.
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Fig. 18 Pandemic daily time series analysis for Maharashtra, Delhi, Tamil Nadu, Gujarat and
Kerala state

8 Forecasting of Covid-19 on Five States

This section contains the forecasting of the confirmed and recovery cases of Covid-
19 in five states. Forecasting helps to understand the future activity of Covid-19
spread and recovery. It can also help government to take corrective action as per the
observation. Figure19 has shown the graphical representation of forecast ofCovid-19
for next two weeks after July 21, 2020.

From Fig. 19 graph, it can be observed from the following insights:

1. Therewill be considerable increase in spread and recovery inMaharashtra,Gujarat
and Tamil Nadu states.

2. In Delhi, spread will drop down, while recovery rate will increase in next two
weeks.

3. Reverse to Delhi, in Kerala spread rate will increase drastically while recovery
rate will be stable with a smaller number of recoveries. These observations will
illustrate the necessity of the state and requirements the government has to initiate
in the states. Series strategy has to be implemented to control the spread of virus.
In the view of above-mentioned related issues, we should promote ecumenical
and interfaith collaboration and peaceful coexistence during the Covid-19 pan-
demic, ensuring that the accurate information is shared with communities and
misinformation is addressed through ICT [21].
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Fig. 19 Pandemic daily time series analysis for Maharashtra, Delhi, Tamil Nadu, Gujarat and
Kerala state

9 Conclusion

Exponential spread of coronavirus has affected entire individual globally. It is an
immediate need to mitigate the virus and its spread by executing the scientific and
technical models on the Covid-19 cases. An elaborate study of literature describes
mathematical models for analyzing the medical perspective to empower the predic-
tions. Sophisticated analyses using Twitter data, geographical analysis, sentiment
analysis and time series analysis are various assessments conducted to analyze peo-
ple’s opinions and interpret the forecasts on five crucial states having high rate of
confirmed cases. Simulation outcome displays the critical situation that there are
2,60,000 confirmed cases in India. There is a sudden increase in the spike fromMay
to June. Hence, the research analysis conducted in this paper would help government,
pharmaceutical companies and the scientist to manufacture vaccine in a rapid mode.
Hope produced vaccine will help us to live coexisting.
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Abstract Nowadays, coronavirus disease 2019 (Covid-19) poses a great threat to
public health and economy worldwide. Unfortunately, there is yet no effective drug
for this disease. For this, several countries have adopted multiple preventive inter-
ventions to avoid the spread of Covid-19. Here, we propose a delayed mathemati-
cal model to predict the epidemiological trend of Covid-19 in Morocco. Parameter
estimation and sensitivity analysis of the proposed model are rigorously studied.
Moreover, numerical simulations are presented in order to test the effectiveness of
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the preventive measures and strategies that were imposed by the Moroccan author-
ities and also help policy makers and public health administration to develop such
strategies.

Keywords Covid-19 · Coronavirus ·Mathematical modeling · Basic reproduction
number · Prediction

1 Introduction

Coronavirus disease 2019 (Covid-19) is an infectious disease that appeared in China
at the end of 2019. It is caused by a new type of virus belonging to the coronaviruses
family and recently named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. On March 11, 2020, Covid-19 was reclassified as a pandemic by the
World Health Organization (WHO). The disease spreads rapidly from country to
country, causing enormous economic damage and many deaths worldwide. The first
case of Covid-19 inMoroccowas confirmed onMarch 2, 2020, in city of Casablanca.
It involved a Moroccan expatriate residing in Italy and who came from Italy on
February 27, 2020. As of April 17, 2020, the confirmed cases reached 2564 and the
number of recoveries reached 281 with a total number of 135 deaths [2].

Moroccan authorities have implemented multiple preventive measures and strate-
gies to control the spread of disease, such as the closing of borders, suspension of
schools and universities, closing coffee shops, the shutdown of all mosques in the
country, etc. Further, Morocco has declared a state of health emergency during the
period fromMarch 20 to April 20, 2020, to avoid the spread of Covid-19. During this
period, movement during the day should be limited to work, shopping, medical care,
purchasing medicine, medical supplies and emergency situations only. In addition,
and from April 6, 2020, the wearing of a mask became compulsory for all persons
authorized to move.

Mathematical modeling of Covid-19 transmission has attracted the attention of
many scientists. Tang et al. [3] used a susceptible–exposed–infectious–recovered
(SEIR) compartmental model to estimate the basic reproduction number of Covid-19
transmissionbasedondata obtained for the confirmedcases of the disease inmainland
China. Wu et al. [4] provided an estimate of the size of the epidemic in Wuhan on
the basis of the number of cases exported from Wuhan to cities outside mainland
China by using a SEIR model. In [5], Kuniya applied the SEIR compartmental
model for the prediction of the epidemic peak for Covid-19 in Japan by using the
real-time data from January 15 to February 29, 2020. Fanelli and Piazza [6] analyzed
and forecasted Covid-19 spreading in China, Italy and France by using a simple
susceptible–infected–recovered–death (SIRD) model. The authors of [7] present a
mathematical model and study the dynamics of Covid-19 that emerged recently in
Wuhan, China. For a fractional (non-integer order) model, see [8].

In the models cited above, the transmission of the disease was assumed to be
instantaneous, and therefore, they are formulated by ordinary differential equations
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(ODEs), without time delays. In this study, we propose a mathematical model gov-
erned by delay differential equations (DDEs) to predict the epidemiological trend
of Covid-19 in Morocco and taking into account multiple preventive measures and
strategies implemented by Moroccan authorities, related to the confinement period
between March 2 and June 20, 2020, in order to control the spread of disease. To do
this, Sect. 2 deals with the formulation of the model. Section3 is devoted to parame-
ters estimation and sensitivity analysis. Forecast of Covid-19 spreading in Morocco
is presented in Sect. 4. We end with a discussion of the results in Sect. 5.

2 Formulation of the Model

Around the world, all the countries that are attacked by the Covid-19 have imposed
several strategies, with different degrees, to fight against it, namely the reduction of
some rights by adopting the quarantine method in order to prevent contacts between
vulnerable and infected individuals, closing the geographical borders of the countries
and enforcing the capacity of the sanitary system. Similarly, theKingdomofMorocco
quickly followed all of the previous strategies when the pandemic was in its early
stages.

Remark 1 The terms “susceptibility” and “vulnerability” are often used inter-
changeably for populations with disproportionate health burdens [9]. The distinction
between vulnerability and susceptibility marks the difference between being intact
but fragile–vulnerable and being injured and predisposed to compound additional
harm–susceptible [10]. Here, we refer to “the potential to contract the Covid-19” as
vulnerability, to emphasize the environmental nature of the disease.

After the first reported positive case in Morocco, March 2, 2020, the closing of
schools and universities is done at March 16, 2020; the state of health emergency
(containment) is imposed to contain the outbreak from March 20, 2020; and the
closure of the borders is performed at March 24, 2020. Additionally, the face mask is
obligatory used in the general population at April 6, 2020. Based on these preventive
measures and strategies, we model the dynamics of the transmission of Covid-19 in
Morocco by extending the classical SIR model. Precisely, the population is divided
into eight classes, denoted by V , Is , Ia , Fb, Fg , Fc, R and D, where V represents the
vulnerable subpopulation, which is not infected and has not been infected before, but
is susceptible to develop the disease if exposed to the virus; Is is the symptomatic-
infected subpopulation, which has not yet been treated, it transmits the disease,
and outside of proper support it can progress to spontaneous recovery or death; Ia
is the asymptomatic-infected subpopulation who is infected but does not transmit
the disease, it is not known by the health system and progresses spontaneously to
recovery; Fb, Fg and Fc are the patients diagnosed, supported by theMoroccan health
system and under quarantine and subdivided into three categories: benign, severe and
critical forms, respectively. Finally, R and D are the recovered and died classes. The
schematic diagram of our extended model is illustrated in Fig. 1.
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Fig. 1 Schematic diagram
of our extended model

Therefore, the extendedmodel can be governed by the following system of DDEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV (t)

dt
= −β(1 − u)V (t)Is(t),

d Is(t)

dt
= βε(1 − u)V (t − τ1)Is(t − τ1) − (

μs + ηs + α(γb + γg + γc)
)
Is(t),

d Ia(t)

dt
= β(1 − ε)(1 − u)V (t − τ1)Is(t − τ1) − ηa Ia(t),

dFb(t)

dt
= αγb Is(t − τ2) − (

μb + rb
)
Fb(t),

dFg(t)

dt
= αγg Is(t − τ2) − (

μg + rg
)
Fg(t),

dFc(t)

dt
= αγc Is(t − τ2) − (

μc + rc
)
Fc(t),

dR(t)

dt
= ηa Ia(t) + ηs Is(t) + rbFb(t) + rgFg(t) + rcFc(t),

dD(t)

dt
= μs Is(t) + μbFb(t) + μg Fg(t) + μcFc(t),

(1)
where u represents the level of control strategies on the vulnerable population. We
adopt the bilinear incidence rate to describe the infection of the disease and use
parameter β to denote the transmission rate. It is reasonable to assume that the
infected individuals are subdivided into individuals with symptoms and others with-
out symptoms, for which we employ the parameter ε to denote the proportion for
the symptomatic individuals and 1 − ε for the asymptomatic ones. The parameter
α measures the efficiency of public health administration for hospitalization. Diag-
nosed symptomatic-infected population moves to the three forms: benign, severe and
critical, by the rates γb, γg and γc, respectively. The mean recovery periods of these
forms are denoted by 1/rb, 1/rg and 1/rc, respectively. The later forms die also
with the rates μb, μg and μc, respectively. Symptomatic-infected population, which
is not diagnosed, moves to the recovery compartment with a rate ηs or dies with a
rate μs . On the other hand, asymptomatic-infected population moves to the recovery
compartment with a rate ηa . The times delay τ1 and τ2 denote the incubation period
and the period time needed before hospitalization, respectively.

For biological reasons, we assume that the initial conditions of system (1) satisfy
the following:
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V (θ) = φ1(θ) ≥ 0, Is(θ) = φ2(θ) ≥ 0, Ia(θ) = φ3(θ) ≥ 0,
Fb(θ) = φ4(θ) ≥ 0, Fg(θ) = φ5(θ) ≥ 0, Fc(θ) = φ6(θ) ≥ 0,
R(θ) = φ7(θ) ≥ 0, D(θ) = φ8(θ) ≥ 0, θ ∈ [−τ, 0],

where τ = max{τ1, τ2}. Let C = C([−τ, 0],R8) be the Banach space of continuous
functions from the interval [−τ, 0] into R

8, equipped with the uniform topology. It
follows from the theory of functional differential equations [11] that system (1) with
initial conditions (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) ∈ C has a unique solution.

On the other hand, the basic reproduction number is an important threshold param-
eter that determines the spread of infection when the disease is introduced into the
population [12]. This number is defined as the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual.
By using the next-generation matrix approach [13], the basic reproduction number
R0 of system (1) is given by

R0 = ρ(FV−1) = βε(1 − u)

ηs + μs + α(γb + γg + γc)
, (2)

where ρ is the spectral radius of the next-generation matrix FV−1 with

F =
(

βε(1 − u) 0
0 0

)

and V =
(

ηs + μs + α(γb + γg + γc) 0
0 ηa

)

.

3 Parameter Estimation and Sensitivity Analysis

Based on the daily published Moroccan data [14], we estimate the values of some
parameters of themodel. The proportion of asymptomatic forms can vary from20.6%
of infected population to 39.9% [15]. Then, ε ∈ [0.61, 0.794]. The progression rates
γb, γg and γc from symptomatic-infected individuals to the three forms are assumed to
be 80% of diagnosed cases for benign form, 15% of diagnosed cases for severe form
and 5% of diagnosed cases for critical form, respectively [16]. The true mortality of
Covid-19 will take some time to be fully understood. The data we have so far indicate
that the crude mortality ratio (the number of reported deaths divided by the reported
cases) is between 3 and 4% [16]. As the Moroccan health system is not overloaded
at the moment, it is assumed that deaths mainly come from critical cases with a
percentage of 40% for an average period of 13.5 days [16]. Since the mortality rate
of symptomatic individuals differs from country to country [6], we assume that 1% of
symptomatic individuals die for an average period of 21 days, whereas the recovery
rate for asymptomatic cases is 100% and is the same for severe and benign forms
if a proper medical care is taken with an average period of 21 days. We employ a
least-square procedure with Poisson noise as in [5] to estimate the transmission rate.
The incubation period is estimated to be 5.5 days [17, 18] while the time needed
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Table 1 Parameter values for our model (1)

Parameter Value Source

β 0.4517 (95%C I ,
0.4484–0.455)

Estimated

u 0–1 Varied

ε 0.794 Mizumoto et al. [15]

γb 0.8 WHO [16]

γg 0.15 WHO [16]

γc 0.05 WHO [16]

α 0.06 Assumed

ηa 1/21 Calculated

ηs 0.8/21 Calculated

μs 0.01/21 Calculated

μb 0 Assumed

μg 0 Assumed

μc 0.4/13.5 Calculated

rb 1/13.5 Calculated

rg 1/13.5 Calculated

rc 0.6/13.5 Calculated

τ1 5.5 [17, 18]

τ2 7.5 [19–21]

before hospitalization is estimated to be 7.5 days [19–21]. The estimation of the
above parameters is given in Table1.

Sensitivity analysis is commonly used to determine the robustness of model pre-
dictions to some parameter values. It is used to discover parameters that have a high
impact on R0 and should be targeted by intervention strategies. The main objective
of this section is to examine the sensitivity of the basic reproduction numberR0 with
respect to model parameters by the so-called sensitivity index.

Definition 1 [22, 23] The normalized forward sensitivity index of a variable ν, that
depends differentially on a parameter ρ, is defined as

ϒν
ρ := ∂ν

∂ρ
× ρ

ν
.

According to Definition 1, we derive the normalized forward sensitivity index of
R0 with respect to β, ε, ηs , μs , γb, γg , γc and α, which is summarized in Table2. As
we observe in Table2, the most sensitive parameters, which have a higher impact on
R0, are β and ε, since ϒ

R0
β and ϒR0

ε are independent of any parameter of system (1)

with ϒ
R0
β = ϒR0

ε = +1. In addition, the parameter α has a middle negative impact
onR0, whileR0 is slightly impacted by the rest of the parameters.
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Table 2 Normalized forward sensitivity index of R0

Parameters Sensitivity index of R0 Value

β ϒ
R0
β = +1 +1

ε ϒ
R0
ε = +1 +1

ηs ϒ
R0
ηs =

− ηs

ηs + μs + (γb + γg + γc)α

−0.3864

μs ϒ
R0
μs =

− μs

ηs + μs + (γb + γg + γc)α

−0.0048

γb ϒ
R0
γb =

− αγb

ηs + μs + (γb + γg + γc)α

−0.487

γg ϒ
R0
γg =

− αγg

ηs + μs + (γb + γg + γc)α

−0.0913

γc ϒ
R0
γc =

− αγc

ηs + μs + (γb + γg + γc)α

−0.0304

α ϒ
R0
α =

− α(γb + γg + γc)

ηs + μs + (γb + γg + γc)α

−0.687

4 Prevision of Covid-19 in Morocco

In this section, we present the forecasts of Covid-19 in Morocco relating to different
preventive measures and strategies implemented by Moroccan authorities on the
confinement period between March 2 and June 20, 2020. Then the parameter u can
be defined as follows:

u =

⎧
⎪⎪⎨

⎪⎪⎩

u1, on (March 2, March 10];
u2, on (March 10, March 20];
u3, on (March 20, April 6];
u4, after April 6,

where ui ∈ (0, 1], i = 1, 2, 3, 4 measures the effectiveness of applying the multiple
preventive interventions imposed by Moroccan authorities presented in Table3.

To make a better illustration of the different strategies, we test the four decisions
made at the government level in Fig. 2.

We see in Fig. 2 the evolution of the number of diagnosed infected positive indi-
viduals with different sets of measures: low, middle, high and strict interventions.
Up to April 15, the curves corresponding to the first three sets of measures increase
exponentially, while the curve corresponding to the fourth set of measures has lost its
initial exponential character and tends to flatten over time. In addition, the last daily
reported cases in Morocco fromMarch 2 to April 17 confirm the biological tendency



606 H. Zine et al.

Table 3 Summary of non-pharmaceutical interventions considered

Policies Control values

Without any intervention measures u = 0, after March 2

First set of measures u = 0.2, after March 2

Second set of measures u = 0.2, (on March 2, March 10] and

u = 0.3, after March 10

Third set of measures u = 0.2, (on March 2, March 10],

u = 0.3, (on March 10, March 16] and

u = 0.4, after March 16

Fourth set of measures u = 0.2, (on March 2, March 10],

u = 0.3, (on March 10, March 16] and

u = 0.4, (on March 16, April 6] and

u = 0.8, after April 6

Dates
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Fig. 2 Comparison of the non-pharmaceutical interventions considered and the daily reported cases
of Covid-19 in Morocco from March 2 to April 17, 2020

of our model. Thus, our model is efficient to describe the spread of Covid-19 in
Morocco. However, we note that some clinical data are a little far from the values
of the model due to certain foci that appeared in some large areas or at the level of
certain industrial areas.

Next, we give the graphical results related to delays parameters to prove their
biological importance.

We observe in Fig. 3 a highly impact of delays on the number of diagnosed positive
cases, thereby the plot of model (1) without delays (τ1 = τ2 = 0) is very far from
the clinical data.
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Fig. 3 Effect of delays on the diagnosed confirmed cases

4.1 Peak Prediction

Now, we indicate the predicted relative impact of the model and especially the diag-
nosed infective individuals with and without interventions applied progressively in
Morocco.

Before finding the first positive-infected case in Morocco, the authorities have
begun with a suspension of international air lines to and from China and installed
health control checkpoints at the borders but without any interventions into the
Moroccan population. For this, we simulate model (1) in the case u = 0, which
is illustrated in Figs. 4 and 5.

We remark from Fig. 4 that the estimated epidemic peak is t∗ = 142 (95%C I ,
141–143), that is, starting fromMarch 2, 2020 (t = 0), the estimated epidemic peak
is July 21, 2020 (t = 142).

In the absence of any government intervention, the disease persists strongly and
almost all of the vulnerable population will be reached by the infection (Fig. 5).

After the first imported positive-infected case, Moroccan authorities began to
establish some preventive interventions betweenMarch 2 and 10, namely isolation of
positive cases, contact tracing, hygienemeasures, preventionmeasures inworkplaces
and ban of mass gathering events. For this reason, we have selected in this period
u = 0.2. From March 10 up to March 20, 2020, additional preventive measures
were established: gradual suspension of all international sea, ground and air lines
(including with Spain, Italia, Algeria, France, Germany, Netherlands, Belgium and
Portugal), closure of coffees, restaurants, cinemas, theaters, party rooms, clubs, sport
centers, hammams, game rooms and sport fields, closure of mosques, schools and
universities, disinfection of public transportation means, reduction of the carrying
capacity of taxis, buses and tramways, movement/travel restrictions and containment
measures of the general population. These measures correspond to the choice of the
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Fig. 4 Time variation of the diagnosed infective individuals without any intervention on theMoroc-
can population with different values of β (95%C I , 0.4484–0.455)
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Fig. 5 Time variation of the model with β = 0.4517 and R0 = 3.6385

controlu = 0.3. FromMarch 20up toApril 6, theMoroccan authority declared a state
of emergency with a complete lockdown, nighttime curfew, movement restrictions
24/24, ban of human movements between cities, suspension of railway lines, streets
disinfection and extensive cleaning and disinfection of port and airport facilities.
For this, we assume that u = 0.4. From April 6, the authority decided compulsory
wearing of masks in public spaces, which implies a significant positive influence
on the above interventions and an increase of their efficiency level. In this case, we
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Fig. 6 Time variation of the diagnosed infective individuals with high-level respect of measures
for different values of β (95%C I , 0.4484–0.455)
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Fig. 7 Time variation of themodelwithβ = 0.4517 andR0 = 2.9108 (March 2–10),R0 = 2.5469
(March 10–20), R0 = 2.1831 (March 20–April 6), R0 = 0.7277 (from April 6, 2020)

assume that u = 0.8. Tacking into account all these policies, we present Figs. 6 and
7.

We remark from Fig. 6 that the estimated epidemic peak is t∗ = 57 (95%C I , 56–
57), that is, starting from March 2 (t = 0), the estimated epidemic peak is April 28,
2020 (t = 57).

From Fig. 7, we see that all the measures taken into this second strategy have a
significant impact on the number of new positive diagnosed cases per day. Compared
to Fig. 5, the time required to reach the peak is reduced by 85 days, avoiding globally
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Table 4 Cumulative diagnosed cases, severe forms, critical forms and deaths, after 150 days of the
start of the pandemic in Morocco

Effectiveness 75% 80% 85%

Diagnosed 42834 29116 21432

Severe forms 6419 4361 3209

Critical forms 2139 1453 1069

Deaths 1500 993 661

an interesting number of new infections and new deaths. Furthermore, the computed
basic reproduction number R0 is less than 1, which means the extinction of the
disease if the measures cited above are strictly implemented.

4.2 Intervention Effectiveness

Here, on one hand, we compare the impact of different degrees of effectiveness on
the evolution of the number of positive-infected diagnosed individuals, symptomatic
individuals and deaths (see Figs. 8 and 9). In addition, we present the cumulative
cases in Fig. 10, and we summarize it in Table4. We remark that the effectiveness
of the policies plays an important role to reduce, or not, the human damage and
ensure the eradication of the illness. However, mitigation measures must be strictly
respected to maintain a good level of control over the spread of the virus.

On the other hand, we are carrying out a statistical study on a national scale, and
we note that the trend at the beginning was exponential and will undergo a break due
to the multiple interventions of the government, which is globally a good sign (see
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Fig. 9 Evolution of the positive-infected diagnosed individuals and deaths with different effective-
ness degrees
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Fig. 10 Cumulative diagnosed cases, severe forms, critical forms and deaths, with different effec-
tiveness degrees

Fig. 11), whereas it is needful to pay attention at the evolution of the curves in the
different regions in Morocco. Since the clinical data of Covid-19 were not available
on a daily basis at the start of the spread of the epidemic in Morocco, we proceeded
with a choice of unit of three days. We also remark that almost all the regions have a
homogeneous tendency with the national one, except Tangier–Tetouan–Al Hoceima
(TTA), Oriental, Marrakech–Safi (MS), and Casablanca–Settat (CS), which show a
mitigation of the epidemic that does not seem very stable (see Figs. 12 and 13).
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Fig. 11 Trends in the number of newCovid-19 reported cases per three days inMorocco, compared
to the cumulative number of Covid-19 reported cases with correlation coefficient R2 = 0.9897

Fig. 12 Trends in the number of new Covid-19 reported cases per three days in Morocco, by
regions, compared to the cumulative number of Covid-19 reported cases (CS: Casablanca–Settat;
FM: Fes–Meknes; MS: Marrakech–Safi; RSK: Rabat–Sale–Kenitra)
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Fig. 13 Trends in the number of newCovid-19 reported cases per three days inMorocco, by regions,
compared to the cumulative number of Covid-19 reported cases (BMK: Beni Mellal–Khenifra; DT:
Daraa–Tafilalet; SM: Souss–Massa; TTA: Tetouan–Tangier–Assillah)

5 Discussion

Our work followed several steps. First of all, we have formulated an adequate mathe-
maticalmodel to describe the evolution of theCovid-19 disease epidemic inMorocco.
This model allows us to have an idea on the number of resuscitation beds to prepare
for severe forms and intensive care units for critical forms. Second, we have esti-
mated the corresponding parameters based on the dailyMoroccan data. Furthermore,
we have applied the least-square method to determine the confidence interval of the
transmission rate β, which is given by (95%C I , 0.4484–0.455). Third, we have com-
puted the basic reproduction number R0 with the next-generation matrix method,
for which we have studied the sensitivity analysis in order to examine the robust-
ness of the model. We have observed that the transmission rate β and the proportion
of individuals with symptoms ε are the most sensitive parameters and have a high
impact onR0. By performing some numerical simulations, we have represented the
effect of measures taken by the government, step by step, with the control u. In the
first period, the appropriate basic reproduction number for u = 0.2 isR0 = 2.9108.
In the second period, R0 = 2.5469 for u = 0.3. Thirdly, R0 = 2.1831 for u = 0.4.
In the last period, R0 = 0.7277 for u = 0.8. Based on all strategies taken by the
Moroccan authorities, we affirm that the best one is to increase considerably the
level of the lockdown accompanied by the general use of the face masks. In this
case, the estimated endemic peak will take place around April 28. Finally, through
an analysis of regional data, we have shown that the evolution of the pandemic is
consistent with the general epidemiological tendency at the national level.
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We finish by mentioning that the used historic data and the different preventive
measures and strategies implemented byMoroccan authorities and considered in our
study are related to the confinement period in Morocco, between March 2 and June
20, 2020, whereas the use of historic data and other measures and strategies, linked
to the deconfinement phase, are left to another research work.
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Study of Transmission Dynamics of
Covid-19 Virus Using Fractional Model:
Case of Morocco

M. R. Sidi Ammi and M. Tahiri

Abstract In this paper, a generalized fractional order SEIRP model is proposed
in order to study the dynamic behavior of Covid-19 and the effect of lockdown of
susceptible population. Some sufficient conditions are supposed to ensure the local
asymptotic stability of disease-free and endemic equilibrium points. Our results are
applied to the case of Morocco country. The theoretical results are validated by some
numerical simulations.

Keywords Mathematical modeling of Covid-19 pandemic · Stability · Numerical
simulations · Basic reproduction number · Morocco case study

1 Introduction

Covid-19 (Coronavirus Disease-19) is a respiratory disease caused by an emerging
coronavirus, SARS-CoV-2. The epidemic began in the city of Wuhan, China in late
December 2019 and quickly spread around the world. The Covid-19 pandemic is the
world’s biggest health threat. At the time of last revision, according to aWHO report
released on September 19, 2020, the cumulative number of confirmed infected cases
have risen to 30,863,802 with 958,789 deaths. The global problem of the outbreak
has attracted the interest of researchers of different areas, giving rise to a number of
proposals to analyze and predict the evolution of the pandemic. In [4] Ndaïrou et al.
have proposed a mathematical model consisting of ordinary differential equations
with special focus on the transmissibility of super-spreaders individuals. TheSEIQRP
model with fractional order has been proposed in [13] with an incidence function of
type f (S)g(I ).

Fractional calculus can be used, among several possibilities, to deal with the
memory effect inmathematical modeling.Memory inmathematical modelingmakes
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important what happened in the past to explain the present [7]. In [10], a system of
fractional differential equations is used to study the effect of memory on epidemic
evolution. To illustrate the potential of fractional differential equations in epidemio-
logical processes with memory, we investigate the evolution of Covid-19 in a popu-
lation with effect of lockdown of susceptible population. Therefore, a SEIRP model,
considered as a generalized SEIR epidemic model, is proposed in this paper. How-
ever, due to the fact that this disease is little known and underreported, parameters
such as speed of propagation and recovery and contact rates are difficult to estimate.
Consequently, itsmodeling using classical differential equations can be inappropriate
to represent the dynamics of the populations involved. Thus, it is possible to adjust
the order of the differential equation to the real data of the spread of the disease.

The manuscript is organized as follows. In Sect. 2, we propose a new model for
Covid-19. A qualitative analysis of the model is investigated in Sect. 3. First, we
show that our model is well posed. We then compute the basic reproduction number
R0 of the Covid-19 systemmodel. In Sect. 4, we study the existence of equilibria and
their local stability in terms of R0. The sensitivity of the basic reproduction number
R0 is given in Sect. 5. In Sect. 6, the usefulness of our model is then illustrated by
numerical simulations, where we use real data from Morocco. We end with Sect. 7
of conclusion, and possible future research.

2 Proposed Covid-19 Model

We propose a new epidemiological compartment fractional model with general inci-
dence function, taking into account the effect of the lockdown of susceptible Individ-
uals. The total population of size N is subdivided into the following epidemiological
classes:

• Susceptible class S(t): the number of uninfected individuals at the time t .
• Exposed class E(t): the number of infected individuals at the time t but still in
incubation period (without clinical symptoms).

• Infected class I (t): the number of infected individuals at the time t (with obvious
clinical symptoms).

• Recovered class R(t): the number of recovered individuals at the time t .
• Insusceptible class P(t): the number of susceptible individuals who are not
exposed to the external environment at the time t .

Our fractional model takes the following form:
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Table 1 Values of the model parameters corresponding to the situation of Morocco, as discussed
in Sect. 6

Name Description Value Unit

� Birth density of
susceptible

6.00 × 105 dimensionless

β1 Transmission
coefficient due to
infected individuals

0.87 day−1

δ Isolation rate of
infected

0.26 day−1

λ Protection rate of
susceptible

0.04 day−1

β2 Transmission
coefficient due to
exposed individuals

0.90 day−1

μ Natural death rate 1.00 × 10−4 day−1

ξ Rate at which exposed
people become
infected

0.74 day−1

ρ Recovery rate
coefficient

0.64 day−1

d Death rate coefficient
due to infected

15.00 × 10−3 day−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
0 Dα

t S(t) = � − β1(1 − δ)(1 − λ) f (S(t), I (t)) − β2g(S(t), E(t)) − λS(t) − μS(t),
C
0 Dα

t E(t) = β1(1 − δ)(1 − λ) f (S(t), I (t)) + β2g(S(t), E(t)) − ξE(t) − μE(t),
C
0 Dα

t I (t) = ξE(t) − (ρδ + dδ)I (t) − μI (t),
C
0 Dα

t R(t) = ρδ I (t) − μR(t),
C
0 Dα

t P(t) = λS(t) − μP(t),
(1)

where the fractional derivative is considered in the sense of Caputo. For biological
reasons, we consider system (1) with the following initial conditions:

S(0) ≥ 0, E(0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0, P(0) ≥ 0. (2)

Different parameters intervening in the model are presented in the following table.
The number of death due to the disease at each instant of time is given by

D(t) := dδ I (t). (3)

The first four equations in system (1) do not depend on the last equation. Then,
the system (1) can be rewritten as
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dα

t S(t) = � − β1(1 − δ)(1 − λ) f (S(t), I (t)) − β2g(S(t), E(t)) − λS(t) − μS(t),

C
0 Dα

t E(t) = β1(1 − δ)(1 − λ) f (S(t), I (t)) + β2g(S(t), E(t)) − ξE(t) − μE(t),
C
0 Dα

t I (t) = ξE(t) − (ρδ + dδ)I (t) − μI (t),
C
0 Dα

t R(t) = ρδ I (t) − μR(t).
(4)

The incidence functions f (S, I ) and g(S, E) are assumed to be positive, continu-
ously differentiable in the interior of R2+ and satisfies the following hypotheses:

(H1) f (0, I ) = g(0, E) = g(S, 0) = 0 for all S, E and I non-negative,
(H2) ∂S f (S, I ) > 0, ∂I f (S, I ) > 0, ∂Sg(S, E) > 0, ∂Eg(S, E) > 0 for all S, E and

I positive,
(H3) φ1(S, I ) = f (S,I )

I andφ2(S, E) = g(S,E)

E are bounded andmonotone increasing
functions of I > 0 and E > 0 respectively, for any fixed S ≥ 0.

(H1) explains thatwhen the number of susceptible, infected or exposed equals to zero
then there are no incidences and there is no transmission of the disease. (H2) reflects
that when the number of susceptible, infected or exposed individuals increases then
the transmission of disease also increases. (H3) translates that when the number
of infected increases then the incidence between susceptible and infected increases
more quickly. The same is occurred for susceptible and exposed individuals.

3 Qualitative Analysis of the Model

3.1 Existence of Non-negative Bounded Solution

We assume that the functions S, E, I, R and their Caputo fractional derivatives are
continuous at t ≥ 0.

Theorem 1 The solution of system (4) are bounded and non-negative, and the closed

set � = {(S, E, I, R) ∈ R
4+ : S + E + I + R ≤ N (0) + �

μ
} is a positive invariant

set of system (4).

Proof The existence of the solution is obtained by applying [3, Theorem 3.1]. By
virtue of [3, Remark 3.2], we prove the uniqueness. It remains to prove that the
solution is non-negative. Observe first that:

C
0 D

α
t S(t)|S=0 = �,

C
0 D

α
t E(t)|E=0 = β1(1 − δ)(1 − λ) f (S(t), I (t)),

C
0 D

α
t I (t)|I=0 = ξE(t),

C
0 D

α
t R(t)|R=0 = ρδ I (t).

Using [1, Lemma 1] and a similar argumentation as used in the proof of [1, Theorem
2], we prove the desired result.
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Let N (t) = S(t) + E(t) + I (t) + R(t). By adding the equations of system (4),
one can deduce

C
0 D

α
t N (t) = � − μN (t) − λS(t) − dδ I (t)

≤ � − μN (t).

By applying the fractional order comparison theorem, one has

N (t) ≤ N (0)Eα(−μtα) + �

μ
(1 − Eα(−μtα)).

Because 0 ≤ Eα(−μtα) ≤ 1, we have N (t) ≤ N (0) + �

μ
. This completes the

proof. ��

3.2 Basic Reproduction Number

The system (4) has always a disease-free equilibrium point of the form E f =
(S f , 0, 0, 0), where S f = �

λ+μ
. Using the next generation matrix approach outlined

in [11] to ourmodel (4), the basic reproduction number can be computed by consider-
ing the generation matrices F and V given hereafter. Namely, the Jacobian matrices
associated to the rate of appearance of new infections and the net rate out of the
corresponding compartments, respectively,

F =
[

β2∂Eg(S f , 0) β ′∂I f (S f , 0)
0 0

]

; V =
[−(ξ + μ) 0

ξ −(ρδ + μ + dδ)

]

,

where β ′ = β1(1 − δ)(1 − λ). The basic reproduction number is then

R0 = −F · V−1 = ξ(β1(1 − δ)(1 − λ))∂I f (S f , 0)

(ξ + μ)(ρδ + μ + dδ)
+ β2∂Eg(S f , 0)

ξ + μ
. (5)

4 Existence of Equilibria and Local Stability

In this section, we firstly discuss the existence of equilibria for model (4).

Theorem 2 Assume that the hypotheses (H1), (H2) and (H3) hold. The fractional
SE I R model (4) has at most two equilibrium points:

1. a disease free equilibrium E f = (S f , 0, 0, 0), where S f = �
λ+μ

.
2. an endemic equilibrium point Ee = (S∗, E∗, I ∗, R∗) if R0 > 1, where S∗ =

�−(ξ+μ)E∗
λ+μ

, I ∗ = ξE∗
ρδ+μ+dδ

, R∗ = ρδξE∗
μ(ρδ+μ+dδ)

.



622 M. R. Sidi Ammi and M. Tahiri

Proof 1. For E = 0, it’s clair that E f is the unique steady state of system (4) .
2. By using the following system

C
0 D

α
t S(t) = C

0 D
α
t E(t) = C

0 D
α
t I (t) = C

0 D
α
t R(t) = 0,

we get the equation

β1(1 − δ)(1 − λ) f

(
� − (ξ + μ)E

λ + μ
,

ξE

δ + μ + d

)

+ β2g

(
� − (ξ + μ)E

λ + μ
, E

)

= (ξ + μ)E

for E 	= 0. The fact that S = �−(ξ+μ)E
λ+μ

≥ 0 yields to E ≤ �
ξ+μ

. Hence, there is no

positive equilibrium point if E > �
ξ+μ

. Now, we consider the following function h

defined on the interval
[
0, �

ξ+μ

]
by

h(E) = β1(1 − δ)(1 − λ)

f

(
�−(ξ+μ)E

λ+μ ,
ξE

ρδ+μ+dδ

)

E
+ β2

g

(
�−(ξ+μ)E

λ+μ , E

)

E
− (ξ + μ).

According to hypotheses (H2) and (H3), h is strictly increasing on
[
0, �

ξ+μ

]
. Since

h( �
ξ+μ

) = −(ξ + μ) < 0 and limE→0+ h(E) = (ξ + μ)(R0 − 1) > 0 for R0 > 1,

there exists a unique endemic equilibrium Ee with 0 < Ee < �
ξ+μ

. This completes
the proof.

Next, we study the local asymptotic stability of disease free equilibrium point E f
and endemic equilibrium point Ee for system (4). The Jacobian matrix of system (4)
at any equilibrium Ēq = (S̄, Ē, Ī , R̄) is given by

JĒq
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c −β2∂E g(S̄, Ē) −β ′∂I f (S̄, Ī ) 0

β ′∂S f (S̄, Ī ) + β2∂Sg(S̄, Ē) β2∂E g(S̄, Ē) − (ξ + μ) β ′∂I f (S̄, Ī ) 0

0 ξ −Δ 0

0 0 ρδ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where c = −β ′∂S f (S̄, Ī ) − β2∂Sg(S̄, Ē) − (λ + μ) andΔ = ρδ + μ + dδ.We recall
that a sufficient condition for the local stability of Ēq is

|arg(ξi )| >
απ

2
, i = 1, 2, 3, 4, (6)

where ξi are the eigenvalues of JĒ (see [6]). We begin by establishing the local
stability of E f .

Theorem 3 Assume that the condition (H1) holds. Then the disease-free equilibrium
E f is locally asymptotically stable if and only if R0 ≤ 1.
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Proof The eigenvalues of JE f are ξ1 = −(λ + μ), ξ2 = −(ξ + μ), ξ3 = −Δ, and
ξ4 = −μ. Since all eigenvalues are negative, then satisfy condition (6).

We are now concerned with the local stability of Ee.

Theorem 4 Assume that hypotheses (H1), (H2) and (H3) are verified. Then the
endemic equilibrium Ee is locally asymptotically stable, if and only if R0 > 1.

Proof At equilibrium Ee, the characteristic equation for the corresponding linearised
system of model (4) is ξ 4 + a1ξ 3 + a2ξ 2 + a3ξ + a4 = 0, where, if the coefficients
a1, a2, a3 and a4 are positives, from condition 6 in [14, Lemma 5.1] the positive
equilibrium point Ee is locally asymptotically stable. ��

5 Sensitivity Analysis

The sensitivity analysis for the basic reproduction number (3.2) tells us how each
parameter is important to disease transmission. This information is crucial not only
for experimental design, but also to data assimilation and reduction of complex
models [8]. Sensitivity analysis is commonly used to determine the robustness of
model predictions to parameter values, since there are usually errors in collected
data and presumed parameter values. It is used to discover parameters that have a
high impact on the threshold R0 and should be targeted by intervention strategies.
More accurately, sensitivity indices’ allows us to measure the relative change in a
variable when a parameter changes. For that purpose, we use the normalized forward
sensitivity index of a variable with respect to a given parameter, which is defined as
the ratio of the relative change in the variable to the relative change in the parameter.
If such variable is differentiable with respect to the parameter, then the sensitivity
index is defined as follows.

Definition 1 (See [2, 9]) The normalized forward sensitivity index of R0, which is
differentiable with respect to a given parameter θ , is defined by

ϒ
R0
θ = ∂R0

∂θ

θ

R0
.

Note that the sensitivity index may depend on several parameters of the system,
but also can be constant, independent of any parameter. For example, ϒ

R0
θ = +1

means that increasing (decreasing) θ by a given percentage increases (decreases)
always R0 by that same percentage. The estimation of a sensitive parameter should
be carefully done, since a small perturbation in such parameter leads to relevant
quantitative changes. On the other hand, the estimation of a parameter with a rather
small value for the sensitivity index does not require as much attention to estimate,
because a small perturbation in that parameter leads to small changes. The results of
this analysis are presented in Table2.
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6 Numerical Simulations

In the following discussion, the standard incidences rate are used to describe the
transmission of Covid-19. They are given by β1(1 − δ)(1 − λ) f (S, I ) = β1(1 −
δ)(1 − λ)SI , β2g(S, E) = β2SE . Hence, we get the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 D

α
t S(t) = � − β1(1 − δ)(1 − λ)SI − β2SE − λS(t) − μS(t),

C
0 D

α
t E(t) = β1(1 − δ)(1 − λ)SI + β2SE − ξE(t) − μE(t),

C
0 D

α
t I (t) = ξE(t) − (ρδ + dδ)I (t) − μI (t),

C
0 D

α
t R(t) = ρδ I (t) − μR(t).

(7)

We perform numerical simulations to compare the results of our model with the
real data obtained from worldometers [12]. The system (7) is numerically inte-
grated by using the fractional Euler’s method which can be seen as a generaliza-
tion of the classical Euler’s method for the numerical solution of ordinary differ-
ential equations [5]. The accuracy of the approximation depends on the step size
of discretization. It is worthwhile to mention that Morocco has a population of
about 34 million. As for the initial conditions, the following values have been fixed:
S(0) = 33999931, E(0) = 20, I (0) = 29, R(0) = 18, D(0) = 2. We can estimate
some parameters’values of Morocco from June 11th to August 9th (see Table1). One
computes the basic reproduction number, we obtain R0 = 1.0006. This epidemio-
logically means that the disease will persist in the population. During the Covid-19
pandemic, there were restrictions on the movement of individuals due to the lock-
down of susceptible population in the country. As a result, disease prevalence was
limited. However, starting June 11th, theMoroccan government has relaxed the mea-
sures it has taken regarding the epidemic, which led to the increase in the number of
infectious cases and death cases as can be seen in the Figs. 1 and 2. We remark also
the fitting effect of the fractional order system (7) notably for (α = 0.7) is better than
that of the integer order system (i.e. α = 1). It comes down to the memory effect
which represents precautions taken by susceptible individuals. Finally, let’s study
the effect of the protection rate of susceptible λ on the basic reproduction rate R0.
We note that R0 decreases when λ increases (see Fig. 3). Hence, we conclude the
importance of lockdown of susceptible population to keep the situation stable until
a vaccination for this disease is found.

Finally, the values of the sensitivity indices for the parameters values of Table1,
are presented in Table2.

We conclude that the most sensitive parameters to the basic reproduction number
R0 of the Covid-19 model (7) are � and λ. In concrete, an increase of the value of
� will increase the basic reproduction number by 99.9%. In contrast, an increase of
the value of λ will decrease R0 by 72.2%.
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Fig. 1 Number of infected
cases per day, by using a
Matlab code
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Fig. 2 Number of death
cases per day, by using a
Matlab code
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Fig. 3 Variation of R0
according to the lockdown
effect (λ)
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Table 2 Sensitivity of R0 evaluated for the parameter values given in Table1

Parameter Sensitivity index

� 0.999

β1 0.542

δ −0.541

λ −0.722

β2 0.180

μ −0.368

ξ −0.181

ρ −0.52

d −0.012

7 Conclusion

In this work, we presented a new model based on fractional nonlinear differential
equations for modelling Covid-19 in Morocco. The aim of our work, at first, is to
provide initial ideas and guidelines for a quantitative and qualitative study of our con-
sidered model. In particular, the positivity, boundness and the existence of a solution
are established. The importance of the effect of lockdown of susceptible population
is verified. We also showed that the model can be adjusted to real data, then, we
have obtained a good prediction of the evolution of the disease for α = 0.7. We hope
our work motivates new researchs to give significant improvements, especially the
suitable choice of the incidence function which models the transmissibility from
asymptomatic individuals.
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