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Abstract Websites like YouTube, Facebook, Twitter, etc. encounter large amounts
of videos every day,mostly uploaded frommobile devices, digital cameras, etc. These
videos rarely have metadata (semantic tags) attached, without which it is very diffi-
cult to retrieve similar videos without using content-based search techniques. More
recently, two-dimensional convolutional networks (2d-CNN) have shown break-
through performance over hand-engineered methods on image-related tasks in all
aspects of computer vision field. The video is also composed of 2D frames arranged
along time dimension, which can also be processed by 2d-CNN. In this paper, we
investigate the significance of activations of CNN layers for video representation and
analyzed its performance on the basis of nearest the neighbor search task, i.e. video
retrieval. Three well-knownCNN networks (AlexNet, GoogleNet and ResNet18) are
exploited for feature extraction, and UCF101 dataset is chosen to conduct the exper-
iment. The results showed that feature fusion of multiple CNN layers can strengthen
the video representation.

Keywords CNN · Content-based search · Deep learning · Video feature
extraction · Video retrieval

1 Introduction

With the availability of cheap devices such as digital cameras, smartphones, etc.,
video has become an essential part of the multimedia communication environment.
As a result of these advances in technology, we are seeing a sudden increase in videos
with or without semantic tags on social networking sites. According to YouTube
statistics, approximately 200 hours of video content is uploaded to YouTube every
minute and approximately 11 million videos are posted to Twitter every day without
bad text or tags. As online videos without semantic tags are on the rise in popularity,
robust content-based video analysis techniques are demanding. With content-based
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video retrieval (CBVR) as a technology, it opens and provides solutions to applica-
tions like in-video advertising, content filtering, video navigation, video indexing and
video surveillance. In-video advertising, the goal is to retrieve target videos that are
similar and suitable to include advertisement between it. In content filtering, unap-
propriated activity is excluded,which can also be solved by retrieving unappropriated
videos to an unappropriated query video.

Significant research progress has been made over the last decades in image
retrieval [1] including fine-grained search [2], but CBVR has received insufficient
attention in themultimedia community comparedwith image retrieval domain. Tradi-
tional search techniques are difficult to process large-scale database videos due to
the high cost of computing. Lots of efforts have been applied in this field. In [3], a
video content indexing by objects is presented. In their approach, moving object is
detected in wavelet domain by a combination ofmorphological color segmentation at
a lower scale with global motion estimation. Then histograms of wavelet coefficients
of objects at multi-scale are computed and matched with database for retrieval of
similar videos. The limitation is that the system is dependent on how much object
segmentation is accurate, and technique is needed to exploit temporal dynamics even
if the objects are roughly segmented.

In recent, CNN shows tremendous success in the field of computer vision, espe-
cially for the tasks like image classification, object detection, segmentation and image
retrieval. This progress also led to video retrieval problem. Like, Lou et al. [4] propose
compact and discriminative CNNs descriptor for video retrieval. Limitation is that
they do not consider the relationship between feature maps of CNN, which can be
incorporated to compute temporal features. Podlesnaya et al. [5] use CNN features
for video clip representation. Its limitation is that the size of feature vectors causes
cost complexity while matching videos. The feature vector dimensionality can be
reduced in order to search in log time scale. Kumar et al. [6] deal the problem of
movie scene retrieval with CNN and LSTM. There are also works done in the scope
of hashing-based video search like [7–9]. All these works learn a new subspace in
binary (hash) domain where similar videos are closer and dissimilar videos are far
away. For instance, [8] proposes a deep auto encoder–decoder framework utilizing
two-layered hierarchical LSTM to learn binary codes. Kumar et al. [9] also exploit
CNNwith lstm for video retrieval problem.Moreover, several recent research studies
are performed by researchers using AI/ML approaches [10–12].

In this paper, we investigate the significance of the 2d-CNN’s middle and higher
layer’s features for video representation. First, we conduct systematic assessment of
the performance of features from different layers of CNN in video retrieval tasks.
Then, we find which features fusion combination can boost the performance.
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2 Materials and Method

2.1 CNN Architecture

CNN can be considered as an extension of the multi-layer perceptron (MLP) that
exploits the rich 2D spatial structure of image that MLP fails to do, where initial
layers (convolutional) are responsible for sensing spatial relationship within nearby
pixels and the final layers are responsible for generating lower dimensional repre-
sentation with higher level abstraction of image. The general CNN network looks as
in Fig. 1. Once the network is trained with a sufficiently large dataset (proportional
to the number of network’s parameters), then each layer extracts the rich information
present in the image in a hierarchical manner. The early layers extract the low-level
image properties like edges, objects contour. Middle layers extract the shape, color,
texture, and higher layers extract features responsible for global level abstraction like
face, month, nose, etc.

Three types of CNN architectures are used in this paper: AlexNet [13], GoogleNet
[14] and ResNet18 [15]. Tables 1, 2 and 3 show the respective CNN’s layers name
and its output’s sizes. Moreover, reader may refer [13–15] for detailed information
on the implementation of CNN.

AlexNet: This CNN consists of five convolutional layers and three dense layers.
It achieves first position in ILSVRC 2012. It takes 227× 227× 3 RGB image as an
input and passes it through all intermediate layers to output final class score. Due to
the dense layers at the end, the network makes over 61 M parameters. GoogleNet:
This CNN is deeper compared with AlexNet and introduces a concept of inception
block and achieves first position in ILSVRC 2014. Each inceptionmodule consists of
multiple convolutions of kernel sizes 1× 1, 3× 3 and 5× 5. The 1× 1 convolutional
layers in the middle are for the dimensionality reduction of the feature space. In total,
nine inception modules are connected sequentially. More info can be found in [14].

Fig. 1 General CNN architecture
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Table 1 AlexNet
architecture

Layer Output size

Conv1 55 × 55 × 96

Pool1 (max) 27 × 27 × 96

Conv2 27 × 27 × 256

Pool2 (max) 13 × 13 × 256

Conv3 13 × 13 × 384

Conv4 13 × 13 × 384

Conv5 13 × 13 × 256

Pool5 (max) 6 × 6 × 256

F6 4096

F7 4096

F8 1000

Table 2 ResNet18
architecture

Layer Output size

Conv1 112 × 112 × 64

Conv2_x 56 × 56 × 64

Conv3_x 28 × 28 × 128

Conv4_x 14 × 14 × 256

Conv5_x 7 × 7 × 512

Pool5 (Avg) 1 × 1 × 512

Fc 1000

ResNet18: This is another CNN that introduces the residual connection by which it
solves the problem of vanishing gradient in training deeper CNN.With the inclusion
of residual connection in CNN, it provides the shortcut to the gradients so that it can
easily reach the input without vanishing that much as in without residual case. It is
the winner of ILSVRC 2015. In this model, there are four residual blocks of length
{2, 2, 2, 2}. For more info, refer [15].

2.2 Feature Extraction

To represent the video frame, activations from the particular layer of CNN can be
extracted. Following the findings of [16] and [17], we choose the last two convo-
lutional and fully connected layers as feature representation (see in Tables 1, 2 and
3, bolded font ones used as descriptors). Let fCNN be the feature transformation
function that maps the Rm×nvideo frame (m × n is resolution of video) to Ru×v(u
× v is size of feature map) feature space. Given a set of T consecutive frames of ith
clip sampled from the nth video, the feature vector for ith clip for a particular Lth
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Table 3 GoogleNet
architecture

Layer Output size

Conv1 112 × 112 × 64

Pool1 (max) 56 × 56 × 64

Conv2 56 × 56 × 192

Pool2 (max) 28 × 28 × 192

Inception 3a 28 × 28 × 256

Inception 3b 28 × 28 × 480

Pool3 (max) 14 × 14 × 480

Inception 4a 14 × 14 × 512

Inception 4b 14 × 14 × 512

Inception 4c 14 × 14 × 512

Inception 4d 14 × 14 × 528

Inception 4e 14 × 14 × 832

Pool4 (max) 7 × 7 × 832

Inception 5a 7 × 7 × 832

Inception 5b 7 × 7 × 1024

Pool5 (avg) 1 × 1 × 1024

Fc 1000

layer is denoted as CFmaxL
niand CFmeanL

ni , which is computed as:

CFmaxL
ni = max

(
f LCNN

(
V (1:T )
ni

))
(1)

CFmeanL
ni =

∑
t

f LCNN

(
V (t)
ni

)/
T (2)

where, CFmax and CFmeanrepresent the features associated with max and mean
pooling over temporal dimension.

All clip level features are averaged to generate the descriptor at video level.

3 Experimental Settings

3.1 Dataset and Setting

We conduct the experiments on UCF-101 dataset [18], which consists of 13 k
videos from 101 categories. The standard train/test split 1 of the dataset is used.
Retrieval is done by assuming the videos of the testing set as queries and training
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Table 4 Spatial pooling
strategy in different layers

Network (layer) Pooling
kernel/(stride)

Output feature
dimension

AlexNet (Conv4 and
Conv5)

3 × 3/(2, 2) 13,824, 9216

GoogleNet
(Inception 4e)

5 × 5/(3, 3) 13,312

GoogleNet
(Inception 5a)

3 × 3/(2, 2) 7488

ResNet18 (Conv4b) 5 × 5/(3, 3) 4096

ResNet18 (Conv5b) 7 × 7/(1, 1) 512

videos as retrieval set. We adopted the standard mean average precision (mAP@k)
for evaluation purposes. Matlab 2019b and tesla k40 GPU are employed for all
experiments.

3.2 Implementation

First, 10 clips per video evenly sampled fromeachvideo, then following [13] each clip
undergoes through spatial center cropping of network’s input size. All the networks
are pretrained on imagenet and are not trained on video dataset, which confirms the
experiments are conducted under unsupervised settings. Features are extracted as
discussed in the Sect. 2.2 and we choose T = 16 frames per clip. Convolutional
features costs in higher dimensionality, so we applying spatial average pooling (see
Table 4 for filter size) to extract lower dimensional features from it. For matching
the video clips, the cosine distance is adopted.

4 Results

In this section, we first explore the effectiveness of individual features, then we see
the usefulness of fusion of these features.

4.1 Effectiveness of Different Layer’s Features

In the following, we inspect each network’s performance.



Exploring the Strengths of Neural Codes for Video Retrieval 525

Ta
bl
e
5

N
eu
ra
lc
od

es
of

A
le
xN

et
an
d
its

pe
rf
or
m
an
ce

an
al
ys
is
on

ba
si
s
of

m
A
P@

k

D
es
cr
ip
to
r

Sp
at
io
-t
em

po
ra
lp

oo
lin

g

M
ax

po
ol
in
g

A
ve
ra
ge

po
ol
in
g

k
=

1
k
=

5
k
=

10
k
=

20
k
=

50
k
=

1
k
=

5
k
=

10
k
=

20
k
=

50

C
on
v4

36
.3
3

23
.0
2

19
.2
5

12
.1
7

9.
81

32
.1
3

20
.4
2

17
.1
2

11
.0
3

06
.7
6

C
on
v5

43
.5
9

34
.9
2

28
.2
1

22
.2
9

14
.3
7

43
.3
3

34
.0
2

28
.2
5

22
.1
7

14
.8
1

Fc
6

53
.9
5

46
.0
4

39
.9
2

32
.5
4

22
.9
2

50
.0
4

41
.5
2

35
.6
9

28
.5
8

19
.7
0

Fc
7

53
.3
0

45
.5
5

39
.6
6

32
.5
9

22
.6
7

52
.1
3

43
.6
1

37
.6
5

30
.8
4

21
.5
3



526 V. Kumar et al.

Fig. 2 mAP of different layers of three different networks; dotted line denotes performance under
temporal mean pooling otherwise max pooling

Experiment using AlexNet

In Table 5, we can see that higher layers (fc6 and fc7) outperform the middle layers
(conv4 and conv5), the reason being that the higher layer captures rich global level
distinctive features with high level abstraction compared with middle layers. Using
temporal max pooling, fc6 (53.95 mAP@1) performs slightly better than fc7 (53.30
mAP@1). The reason seems to that the last fully connected layer has class-specific
features that are generalized to only seen classes, but fc6 is better to generalize to
unseen classes. Also, we can observe temporal max pooling performs better than
temporal mean pooling (see Fig. 2).

Experiment using GoogLenet

In case of the last two layers of GoogleNet, temporal mean pooling performs better
than max pooling as reported in Table 6. But for the second last inception block
Inception4e, temporal max pooling performs better. Contrary to AlexNet, last layer
(pool5) outperforms others.

Experiment using ResNet18

With similar findings in the above two networks, max pooling performs better in the
second last residual block conv4b a.k.a res4b, and also in the case of pool5 but not
true for the con5b. Using mean pooling, conv5b outperforms others (see Table 7 and
Fig. 2).
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4.2 Influence of Fusion of Multiple layer’s Features

With the above finding, we wish to investigate the significance of fusion of different
features in context of video search. In this experiment, we use the CNN layers with
best performed temporal pooling for fusion (denoted as subscript in Table 8). We
also use two handcrafted features: LBP [19] and HOG [20] for sake of comparison.
Both LBP and HOG features are computed for each clip’s frame (grayscale frame)
and then averaged across all clips of the video to generate a video descriptor. For
fusion of CNN’s activations, first, we apply L2 norm on individual features and then
fusion (concatenate) of features.

Table 8 reports themAP@kon a different combination of features.We can observe
that deep leaning features easily outperform the handcrafted ones with large margin.
We can also see the fusion of either combination of layers does not improve perfor-
mance as much as compared to the best standalone layer feature. For example, in
case ofGoogleNet, Pool5mean’s performance is higher than its fusionwith other lower
layers feature. The reason seems to be that the higher layer captures the essential
compact information from preceding layer, by fusing the lower layer with higher

Table 8 Comparison of mAP@k of different layers fusion strategies

Descriptor k = 1 k = 5 k = 10 k = 20 k = 50

LBP 21.97 15.27 10.45 08.28 2.97

HOG 30.12 23.29 18.59 13.51 8.59

AlexNet Conv5max 43.59 34.92 28.21 22.29 14.37

Fc6max 53.95 46.04 39.92 32.54 22.92

Fc7max 53.30 45.55 39.66 32.59 22.67

Conv5max + Fc6max 49.14 44.88 35.11 28.14 18.15

Fc6max + Fc7max 53.69 45.72 39.78 32.58 22.78

Conv5max + Fc6max + Fc7max 53.25 45.24 39.13 31.55 22.32

GoogleNet Inception4emax 56.75 48.63 42.73 35.34 24.84

Inception5amean 61.12 52.47 46.48 38.97 28.26

Pool5mean 63.92 56.29 50.49 43.80 33.18

Incep.4emax + Incep.5amean 57.15 49.77 43.49 36.67 25.47

Incep.5amean + Pool5mean 62.21 54.18 48.24 40.19 29.17

Incep.4emax + Incep.5amean + Pool5mean 59.80 50.25 46.68 37.24 26.96

ResNet18 Conv4bmax 47.11 37.82 31.71 24.83 16.06

Conv5bmean 62.01 54.72 49.13 42.35 31.87

Pool5max 59.58 51.78 45.94 39.24 29.10

Conv4bmax + Conv5bmean 54.62 46.50 38.71 35.18 23.04

Conv5bmean + Pool5max 61.21 53.03 47.12 40.15 30.12

Conv4bmax + Conv5bmean + Pool5max 57.02 48.14 44.13 37.80 25.84
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Table 9 Comparison of mAP@k of different networks fusion strategies

Fusion feature k = 1 k = 5 k = 10 k = 20 k = 50

Fc6max(AlexNet) 53.95 46.04 39.92 32.54 22.92

Conv5bmean(ResNet18) 62.01 54.72 49.13 42.35 31.87

Pool5mean(GoogleNet) 63.92 56.29 50.49 43.80 33.18

Fc6max(AlexNet) + Conv5bmean(ResNet18) 64.00 56.55 50.80 43.70 32.68

Fc6max(AlexNet) + Pool5mean(GoogleNet) 64.13 56.95 51.15 44.13 33.46

Conv5bmean(ResNet18) +
Pool5mean(GoogleNet)

66.06 59.04 53.55 46.81 35.96

Fc6max(AlexNet) + Pool5mean(GoogleNet) +
Conv5bmean(ResNet18)

66.69 59.19 53.72 46.85 35.99

layer makes redundant feature (logically). Hence, the direct fusion of layers within
same network is not feasible.

4.3 Effectiveness of Fusion of Different Network Features

Next, we wish to explore the influence of fusion of different network’s features on
nearest neighbor search. The results are reported in Table 9, where we can see that
any combination of fusion performs better than standalone performing layer. This
suggests that multi-model fusion works superior.

5 Conclusion

This paper analyzes and discusses the significance of different layer’s features of
network under the nearest neighbor search task. In particular, AlexNet, GoogleNet
and ResNet18 are deployed to extract features to represent videos. We explored the
effectiveness of each layer features and their fusion on the performance on video
retrieval. Results suggest that direct fusion of middle level features with higher layer
features of the samenetwork architecture does not seem to boost the performance than
standalone features. In the future, we will investigate how to tackle this issue. Results
also suggest that on fusion of different networks features can boost the performance,
but this also increases the memory requirement, time complexity etc. In addition,
learning video representations require a large dataset that is labor-intensive. Future
work will include to explore self-supervised learning approach as it is a promising
direction to tackle the need for large-scale video datasets.
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