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Abstract

Plants encounter variable stresses in the environment which lead to huge crop
losses worldwide. Environmental stresses that a plant can undergo are categorized
into two categories as (a) biotic and (b) abiotic stress. Biotic stresses include
attacks by different insects, nematodes, and microbial pathogens like fungi,
bacteria, and viruses. While on the other hand, abiotic stresses include high
salinity, heat, cold, drought, osmotic stress, and heavy metal. Plants are quite
susceptible to both kinds of stressful situations and have adopted different
mechanisms to encounter these situations. Plants sense these stresses and
stimulated specific stress responses thereby activating different stress response
signaling pathways and generating appropriate cellular responses helping in
combating these stresses. This chapter gives an overview of the major stresses,
plants encounter during growth and transgenic implications that have been made
to modify these stress-tolerant properties to produce crops with improved crop
yield and minimize crop losses.
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9.1 Introduction

The plant undergoes different kinds of stresses in nature that contribute to adverse
growth and compromised plant productivity. Any kind of stress induces a series of
adaptive responsive in plant-like alteration in gene expression and induction of
defensive cell metabolism. Plant stress could be divided into two major categories
termed as biotic (microbial pathogens, nematode, insects, and weed) and abiotic
caused through various environmental cues (heat, cold). Both kinds of stressors
contribute to both pre- and post-harvest losses. Furthermore, it is also noticeable that
with increasing global warming and changing climate situations, agricultural crops
significantly encounter an increased event incidence of both abiotic and biotic
stresses compromising plant yield (Mahalingam 2015; Ramegowda and Senthil-
Kumar 2015; Kumar and Srivastava 2016, 2020a, 2020b; Srivastava et al. 2016;
Parmar et al. 2017; Gambhir et al. 2020; Kumar et al. 2018a, 2018b, 2018c). Both
kinds of stresses concurrently cause more destruction when compared to either of the
stress occurring solely. For instance, abiotic stress directly influences the occurrence,
survival, and dissemination of the different pathogens, insects, and weed growth.
Additionally, these stress situations also influence plant physiology and host-defense
responses to promote plant–pest interactions. However, this effect is not always
additive as the outcome could be influenced by the nature of the interaction between
these stress factors (Pandey et al. 2015; Ramu et al. 2016).

Tackling any kind of stress is a bigger problem for gradually increasing world
population, estimated to reach ten billion by 2050 (Bengtsson et al. 2006; Secretariat
UNIS for DR 2015). All this needs a significant increase in crop production by
minimizing crop losses in any kind of stressful situation. The improvement could
either be achieved by a traditional breeding method like wide-cross hybridization,
mutation breeding or by modern technology including transgenics. Despite several
attempts, the conventional plant breeding methods have failed in combating this
issue. Current studies propose that the tolerance to any kind of stress is multigenic
and quantitative QTL (quantitative trait locus) in nature (Collins et al. 2008), which
could be a possible reason for this failure. Modern transgenics serve as an alternative
to tackle this issue as this includes the introduction of exogenous genes into the host
or an alteration in the expression of a host’s gene that can help in improving stress
tolerance (Roy and Basu 2009). Besides, modern transgenics require comparably
less time than conventional plant breeding methods with a benefit of transfer of only
desired gene(s) to the host plant, it always has an upper hand over the conventional
crop breeding methods (Yamaguchi and Blumwald 2005). Due to ease in the use of
transgenics for crop improvement, the technology has been used extensively world-
wide (Wani et al. 2016a). However, the employment of genetic engineering needs
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the identification of the key genes underlying these processes of plant stress
tolerance.

It is well known that any kind of stress induces a series of adaptive responses in
the cells contributing to changes in the physiology and molecular makeup of the
plants that could be dangerous to the cellular machinery. If we talk at the molecular
level, any kind of stress leads to different molecular responses like the production of
reactive oxygen species causing damages to cellular molecules like protein, nucleic
acids, and lipids by the process of oxidation or peroxidation. In severe conditions,
these stress situations may also lead to programmed cell death and thus cause the
death of the entire plant (Sharma and Dubey 2007). Hence, exploring the underlying
molecular mechanisms and key molecules contributing to stress signaling could be
an alternative strategy for crop engineering for stress-tolerant properties, which
could be done by application of the modern transgenic approaches like sequencing
and functional genomics (Heidarvand and Amiri 2010). Usually, a cell signaling
cascade is triggered upon any kind of stress upregulating the different transcription
factors inducing various stress-responsive genes coding for proteins helping in
stress-tolerant phenotypes. As stress-sensitive plants are compromised in
synthesizing these proteins, they are susceptible to all these stressors impeding
their overall growth. Several genes have been identified that code for stress-
protective compounds and proteins in the different organisms (plants, animals, or
microbes). The ideal genes for this kind of targeted insertion have been classified
into three major categories; (a) associated with osmolyte synthesis like mannitol,
glycine betaine, proline, and heat shock proteins, (b) associated with the uptake of
ion and water, and (C) associated to transcriptional control and different signaling
pathways. Progress in understanding the underlying mechanism of these stress
responses has undergone major development in recent years (Jaspers and
Kangasjärvi 2010). The transgenics have been successfully employed to produce
plants with different attributes like an increase in grain yield, increase tolerance to
high salt and drought stress in rice, barley, maize, etc. (Wani et al. 2016b). Following
is a brief introduction of the different kinds of stressors contributing to significant
crop losses and the genetic developments created to combat these losses associated
with stressful situations. As losses due to both kinds of stressors cause severe crop
losses worldwide, it is conceivable that the development of the plant with improved
traits for abiotic and biotic stress requires identification and improvement of stress
adaptive traits in these plants. This book chapter is a brief introduction about these
stresses (biotic and abiotic) and the genetic improvement approaches that have been
implicated for improving stress-responsive properties in plants.
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9.2 Biotic Stresses

9.2.1 Insect Pest and Nematodes Resistance

The control of insect pests in commercially grown agricultural crops is predomi-
nantly based on the indiscriminate use of synthetic insecticides which is deleterious
to human health and the environment. Transgenic crops have revolutionized modern
agriculture and have become a major tool of integrated pest management leading to a
reduction in insecticide use, protecting the environment and human health. Insect-
resistant plants were also developed about two decades ago in other crops (Ansari
et al. 2015). The search for novel useful genes encoding insecticidal proteins is still
in progress and information deriving from the prolonged cultivation of
commercialized GM products confirms the efficacy of this biotechnological tool.
The new research area includes the use of novel transgenes and improved transfor-
mation protocols especially for the development of insect-resistant cultivars in
economically grown agricultural crops.

The soil bacterium (B. Thuringiensis, Bt) produces a wide range of proteins
(δ-endotoxins) that are included in crystals formed during sporulation and
characterized by distinct insecticidal spectra (de Maagd et al. 2001; Sharma and
Srivastava 2013). Bt spores contain high levels of δ-endotoxins harmful to specific
insects of Lepidopteran, Dipteran, and Coleopteran orders which are the major pests
of agricultural crops and perennial tree species. The Bt spores and the crystal (Cry)
proteins are ingested by the insect and solubilized within the alkaline midgut. The
protoxins are then activated by proteinases and finally, the active Bt toxin binds to
specific molecular receptors causing the irreversible damage of the midgut epithe-
lium by colloid osmotic lysis. B. thuringiensis has been used as a commercial
insecticide for more than 50 years and to date, an extensive number of reports
have demonstrated that Bt proteins have negligible potential adverse effects against
humans, animals, and non-target invertebrates. More than 130 Bt genes encoding
different δ-endotoxins have been isolated and, among this extremely large gene
array, those coding for the CryIA(a) and CryIA(c) proteins have been used to develop
transgenic crops resistant to Lepidoptera. Also, the CryIIIA(a) protein has been
chosen by different research groups to specifically target Coleopteran pests. Insect
resistance was firstly reported in tomato using Bt. gene in 1987. Cotton was the first
commercially successful crop in which cry genes were incorporated to provide
resistance against lepidopteron insect pest (Perlak et al. 1991). After the success of
transgenic cotton, cry genes have been incorporated in many crops, viz., potato rice,
canola, soybean, maize, chickpea, alfalfa, and tomato. Insect-resistant transgenic
crops have the second largest area under cultivation which is 23.3 million hectares in
2017 (ISAAA 2017), 304 events have been approved in different crops worldwide
for commercial cultivation. Out of these events, 208 events comprising various
insect resistance (IR) genes in maize have been approved for cultivation. The
commercialized crops having various IR genes are cotton (49 events), potato
(30 events), soybean (6), rice (3), sugarcane (3), poplar (2), brinjal (1), and
tomato (1).
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Apart from cry genes, other insecticidal genes such as Proteinase inhibitors (PIs)
are also used to develop insect-resistant GM crops. PIs are natural compounds
abundantly found in seeds and storage organs of a wide range of plant species and
contributing to the plant defense system against insect pests and pathogens (Schuler
et al. 1998). Proteinase inhibitor families are specific for each of the four classes of
proteolytic enzymes (cysteine, serine, aspartic, and metalloproteinases). Serpins and
Cysteine are the most explored plant PIs against insect pests. Green and Ryan
proposed this concept in a pioneer study reporting rapid accumulation of protease
inhibitors in potato and tomato leaves attacked by Colorado potato beetles, both
locally as well as systemically (Green and Ryan 1972). A few years later, a seminal
study by Hilder et al. (1987) reported PI-expressing transgenic tobacco lines by
utilizing the potentials of plant genetic transformation. With the advancement of
gene transfer technology, this agronomically useful gene was introduced in rice
cultivars that enhanced protection to stem borers (Xu et al. 1996) and wheat (Altpeter
et al. 1999) to protect from leaf-feeding and storage pest. Since then, various
research groups have reported numerous studies of enhanced herbivore protection
in multiple plants involving bioassays, PI-expressing transgenic plants, and insect
feeding assays. The inhibiting activity of PIs is due to the ability to form stable
complexes with proteinases, blocking, altering, or preventing the access to the
substrate-binding region of their catalytic site. To develop effective strategies for
plant protection against insect pests based on PIs transgenesis, it is imperative to
know the class of proteolytic enzymes present in the insect guts, which ultimately
results in the extended developmental period, reduce fecundity and increase mortal-
ity due to amino acid deficiencies. Different proteinases predominate in different
insects. Most of the Lepidopteran species have serine proteinases as the major
digestive enzymes. Coleoptera has a wider range of dominant gut proteinases
(Schuler et al. 1998). Broadway and Duffey (1986) suggested that the PI mediated
inhibition of proteinases is responsible for hyperproduction of digestive enzymes,
enhanced loss of essential amino acids, and finally inhibition of insect growth rates.
However, some insect species seem to be able to modify dynamically the spectra of
their digestive enzymes by the production of insensitive proteinases. Besides several
reports of successful PIs-transformed plants enhanced protection to insect pests, this
promising strategy of crop protection could not be successfully commercialized.

9.2.2 Nematodes Resistance

Plant-nematode parasitism is one of the most damaging uncontrollable biotic stresses
on crops, and the cumulative effect on agriculture is severe. The majority of these
losses are inflicted by relatively few species. The most damaging are root-knot
nematodes (Meloidogyne species) and cyst nematodes (Heterodera and Globodera
species), with root-knot nematodes the major contributors to yield losses (Koenning
et al. 1999). Management of nematode parasitism is therefore imperative. Integrated
use of chemicals, resistant varieties, and cultural and biological practices provide the
most successful management strategy. These approaches are, however, becoming
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increasingly unsatisfactory. Although conventional intensive farming methods rely
largely on the use of nematicides, dependence on this approach must diminish as
environmental and health concerns around these toxic chemicals increase. Crop
rotation as a strategy to limit nematode infestation has limited utility against those
species with cosmopolitan host ranges, such as M. incognita, which may potentially
parasitize up to 3000 plant species (Abad et al. 2003). Resistance in plants is
therefore an attractive approach for controlling nematode populations. This may be
either naturally occurring or transferred to crop cultivars from wild relatives or
breeding lines through conventional breeding methods or engineered through molec-
ular techniques. Biotechnology offers several benefits for nematode control in
integrated management strategies such as reducing risks to the environment and
human health, accessibility for food producers in the developing world, and the
possibility of achieving durable, broad-spectrum nematode resistance (Thomas et al.
2006).

Several nematode resistance (Nem-R) genes have been isolated from plants
which confer resistance against sedentary endoparasites. The first nematode resis-
tance gene to be cloned was Hs1pro-1 from sugar beet, which confers resistance
against the sugar beet cyst nematode (Cai et al. 1997). The encoded protein does not
have obvious similarities to known plant genes. However, other cloned Nem-R
genes closely resemble known plant R-genes in their domain structure. Four of
these genes, Mi-1, Hero A, Gpa2, and Gro1–4, all cloned from tomato or potato
relatives, fall into the NBS-LRR class of R-genes. The tomato genes Mi-1 and Hero
A confer broad-spectrum resistance against several root-knot nematode species
(Milligan et al. 1998) and against several pathotypes of two potato cyst nematode
species (Ernst et al. 2002), respectively. By contrast, the potato genes Gpa2 and
Gro1–4 confer resistance to a narrow range of pathotypes of a single potato cyst
nematode species. Mi-1, Gpa2, and Hero A are members of the NBS-LRR class of
plant R-genes that does not contain an N-terminal toll-interleukin receptor-like (TIR)
domain. The Hero A gene product is 32% identical to Mi-1 and w22% identical to
Gpa2 at the amino acid level (Williamson and Kumar 2006).

9.2.3 Antifungal Resistance

Antifungal proteins like chitinase, glucanase, defensin, thaumatin-like proteins,
osmotin-like protein, phytoalexins, RIPs, etc. are produced by different flowering
plants (Vigers et al. 1991), fungi (Guo et al. 2008), invertebrates and vertebrates (Raj
and Dentino 2002) to combat the fungal pathogens. Some of this plant protein comes
under the pathogenesis-related protein group (PR). Genes of these antifungal
proteins were transferred to different plants to increase fungal resistance against
fungal pathogens. Below is a summarized different antifungal protein which was
used to produce transgenic plant against fungi.
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9.3 Chitinase and Glucanase

Most of the fungi contain chitin and glucan in their cell wall as major components.
Chitinase and glucanases are hydrolytic enzymes that can degrade chitin and glucan,
thus leads to the degradation of the cell wall of fungi. Chitinase comes under the
glycosyl hydrolase family and it hydrolyzes glycosidic bond in chitin. On the basis
of isoelectric pH, the sequence at N-terminal, enzyme localization, and signal
peptides chitinase enzyme was found to belong to 18 and 19 families of glycosyl
hydrolases. Classes III and V of chitinase come under glycosyl hydrolase 18 and I,
II, and IV under family 19. These enzymes are PR-3 group members (PR-Pathogen-
related proteins) are first described in the orchid bulb by Bernard as an antifungal
factor (Sharma et al. 2011). These are probably the most frequently studied and
described PR proteins. These hydrolytic enzymes can cause lysis of fungal hyphae,
inhibition of fungal growth, and exhibit in vitro antifungal activity (Boller 1993;
Neuhaus 1999). Chitinase was reported to be present in plants, animals, microbes,
and human beings. But the most preferred one is microbial chitinase because they
can be easily produced in bulk and also available is more. But the first group of PR
families is plant chitinases which are abundantly present in the plant kingdom and
found to be effective against many phytopathogenic fungi like Ascomycota and
Basidiomycota phyla (Punja 2004). It was also reported that these hydrolytic
enzymes can also be produced in plants in response to abiotic stress as well as
growth conditions. The number of chitinase gene isolated from different sources has
been studied, sequenced, cloned as well as transformed into plants to develop fungal
resistance. It was found out that when glucanase and chitinase genes were expressed
in transgenic plants, then it results in more resistance to fungal pathogens (Nishizawa
et al. 1999). But the expression of these genes in transgenic plants at a low level is a
key issue. Lee and Raikel (1995) reported that in rice and tobacco, the expression of
chitinase genes increased the plant’s resistance to phytopathogenic fungi. Jabeen
et al. (2015) studied for the first time that transgenic tomato plants showed resistance
to two major fungal pathogens, i.e. Fusarium oxysporum f. sp. lycopersici (Fol)
causing fusarium wilt and Alternaria solani causing early blight (EB) when rice
chitinase (RCG3) was expressed in tomato. Agrobacterium-mediated transformation
of cotyledonary petioles with an endochitinase gene (chit33-cDNA) isolated from
Trichoderma atroviride under CaMV35S constitutive promoter showed increased
resistance against Sclerotinia sclerotiorum in canola (R line Hyola 308) (Solgi et al.
2015). EuCHIT2, a new chitinase gene that was isolated from Eucommia ulmoides
Oliver was overexpressed in tobacco plants showed resistance to Erysiphe
cichoracearum DC (Dong et al. 2017). Khan et al. (2017) also developed transgenic
potatoes using the Agrobacterium-mediated method that overexpressed
endochitinase gene and showed resistance against Alternaria solani. Novel chitinase
gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against
sheath blight pathogen Rhizoctonia solani in rice (Kamboj et al. 2017). Chitinase
enzyme gained attention towards biocontrol of fungal pathogen, but glucanase
enzymes are less studied as compared to chitinase. Only a few reports are available
on glucanase gene transformation in plants, but some transgenic plants
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overexpressing glucanase gene was successfully produced. Glucanase gene of
tobacco was overexpressed in groundnut which showed tolerance to Cercospora
arachidicola and Aspergillus flavus (Sundaresha et al. 2010). It was found out that
transgenic groundnut was not only resistant to fungi but also produced less aflatoxin.
In another report, grapevine, b-1,3-glucanase (VvGHF17) gene was overexpressed
in Arabidopsis plants, showed resistance to Colletotrichum higginsianum and Botry-
tis cinerea (Fujimori et al. 2016). However, the synergistic action of these hydrolytic
enzymes with each other as well as with other antifungal proteins has resulted in
excellent in vitro and in vivo antifungal action (Melchers and Stuiver 2000). For
example, when chitinase (chi11) and osmotin (ap 24) antifungal proteins encoding
genes isolated from rice and tobacco, respectively, were expressed in tobacco, then
this synergistic action can cause enhancement of sheath blight tolerance in trans-
genic rice (Sripriya et al. 2017).

9.4 Defensin

Defensin is a small antimicrobial cationic peptide that is present in various living
organisms such as plants, microbes, and mammals. It contains about 45–54 amino
acid residues which form a highly conserved structure scaffold with cysteine amino
acid to forms αβ conformation. In plants, γ-thionin of wheat and barley was renamed
as defensin based on structure and function similarity with insect defensin. The
tertiary structure of plant defensin is formed of 3 antiparallel strands and 1 α- helix
strand stabilized with disulfide bridges is highly conserved to form CSα/β (Cysteine
stabilized α-helix β sheet motif) (Zhu et al. 2005). 3D Structures of different plant
defensins are almost similar instead of low-level amino acid identity. Plant defensin
is secreted in extracellular space in plant cells except for some floral defensin which
is targeted to the vacuole. Plant defensin is naturally synthesized and present in every
organ of plants. In plants defensing, major role is in the inhibition of phytopatho-
genic fungal growth at a very less concentration (Lay and Anderson 2005). Main
mechanism of how defensin prevents fungal growth is not clear but it was found out
that defensin bound to fungal cell membrane because of some electrostatic or
hydrophobic interactions and at a very high concentration it causes membrane
permeabilization which leads to the death of fungi (Sagaram et al. 2011; Thevissen
et al. 2003; Valente et al. 2013; Hayes et al. 2013). The transgenic expression of
defensins has enhanced plant resistance to phytopathogenic fungi. However, so far,
there are no reports of enhanced resistance through the transgenic overexpression of
defensin genes in those plants from which it was initially originated. Defensin gene
isolated from plants was overexpressed in many plant species. For example, a
defensin gene Rs-AFP2 was isolated from Raphanus sativus and overexpressed in
transgenic rice showed antifungal ability against Rhizoctonia solani and
Magnaporthe oryzae (Jha and Chattoo 2010). This gene causes direct inhibition of
theses pathogen (Lacerda et al. 2016). Spore germination and growth of obligate
biotrophic fungi Fusarium tucumaniae and Colletotrichum gossypii var.
cephalosporioides was inhibited in transgenic Pichia pastoris expressing rDrr230a
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defensin protein gene. This gene also showed inhibition of the Asian soybean rust
pathogen Phakopsora pachyrhizi and was used against cotton and soybean fungal
diseases. A defensin gene J1–1 was overexpressed in transgenic pepper showed
increased resistance against Colletotrichum gloeosporioides fungi which is the
causal agent of fruit-specific anthracnose fungus (Seo et al. 2014). Transgenic poplar
plant expressing a putative defensin gene showed enhanced resistance against
Septotis populiperda (Wei et al. 2020).

9.5 Thaumatin-like Proteins

Thaumatin-like proteins are present in plants such as Kalemfe which is a tropical
flowering plant. It is a very sweet tasting protein that is almost about 100,000 times
sweeter than sucrose. These proteins also come under the PR-5 Proteins family.
These are low molecular weight proteins of about 20–24 kDa with 200 residues and
16 conserved cysteine which are involved in 8 disulfide bond formation which gives
stability to this protein (Fierens et al. 2009). TLPs are present in different kingdoms
such as plants (angiosperms, gymnosperms), animals, and fungi also (Liu et al.
2010). These proteins also expressed in plants against biotic and abiotic stress
(Muoki et al. 2012; Singh et al. 2013). TLPs are also found to be antifungal proteins
when overexpressed in transgenic plants (Singh et al. 2013; Wang et al. 2011a, b;
Liu et al. 2012; Mahdavi et al. 2012; Acharya et al. 2013). It’s unclear how these
thaumatin-like antifungal proteins interact with the fungal pathogen, and more
research is needed. Thaumatin-like proteins possess the antifungal activity and
overexpression of these proteins showed tolerance to fungal pathogens (Wang
et al. 2011a, b; Liu et al. 2012; Mahdavi et al. 2012; Acharya et al. 2013; Singh
et al. 2013). Thirty-three putative TLPs gene of grape was studied for grape disease
resistance and it was found that overexpression of TLP29 in Arabidopsis thaliana
causes powdery mildew resistance (Yan et al. 2017). ObTLP1 which is an ocimum
thaumatin-like protein was found to be an antifungal protein and was reported to
inhibit the growth of Ceratonia sclerotiorum and Botrytis cinerea. When this gene
was overexpressed in transgenic Arabidopsis, then it led to resistance against these
fungi and also against dehydration and salt stress; thus suggesting their role in abiotic
stress also (Misra et al. 2016). Agrobacterium-mediated transformation of Ostlp, a
thaumatin-like protein in cassava inhibits Colletotrichum gloeosporioides f. sp.
Manihotis growth (Ojola et al. 2018).

9.6 Osmotin-like Proteins

Osmotin or osmotin like proteins is a multifunctional protein that comes under the
PR-5 protein family because they are homologous to thaumatin. Osmotin structure
shows three motifs with similar folding as thaumatin and other PR-5 proteins. It
consists of three domains. Singh et al. (1987) characterized osmotin from salt
adapted cultures tobacco (Nicotiana tobaccum) cells. Osmotin is a multifunctional
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stress-responsive protein that enhances biotic and abiotic stress resistance in plants
(Anu et al. 2015; Le et al. 2018; Su et al. 2017). Osmotin gene expression and protein
formation is induced by any biotic stress such as fungal attack and its overexpression
in transgenic plants leads to less disease symptoms (LaRosa et al. 1992; Liu et al.
1994; Zhu et al. 1996). Osmotin protein attacks specifically the plasma membrane of
the pathogen which leads to signaling for cell death. Cell wall composition also
determines osmotin toxicity because it governs osmotin protein access to the plasma
membrane (Ibeas et al. 2000, 2001; Narasimhan et al. 2001, 2005). Oryza sativa,
Glycine max, Capsicum chinense, Vitis vinifera, and Sesamum indicum are examples
of plants in which osmotin gene was being transformed and showed increased
resistance to fungal growth (Kim et al. 2004; Elvira et al. 2008; Weber et al. 2014;
Katam et al. 2015; Chowdhury et al. 2017). ObTLP1, which showed similarity to
stress-responsive osmotin protein as well as to thaumatin-like protein, was isolated
from Nicotiana tabacum and showed resistance to Botrytis cinerea, Sclerotinia
sclerotiorum, and to salt stress and dehydration when expressed in Arabidopsis
(Misra et al. 2016). Chowdhury et al. (2017) reported that SindOLP when
overexpressed in sesame showed resistance against biotic as well as abiotic stresses.
Transgenic lines of potato cultivar “Kufri Chipsona 1” were developed containing
OsmWS osmotin gene isolated from Withania somnifera. These transgenic lines
showed 22 fold expression of this gene within 3 days and inhibit Alternaria solani
growth (Kaur et al. 2020).

9.7 Plant Ribosome-Inactivating Proteins

RIPs are RNA N-glycosidase which causes depurination of the highly conserved
region, i.e. α-sarcin loop of 28s rRNA and thus inactivates ribosome by inhibiting
the eF-Ia to bind with the ribosome. This inhibition leads to blockage of translation
on the ribosome (de Virgilio et al. 2010). RIPs are widespread in nature and are
distributed among different plant genera within different tissues. A number of RIPs
are found to possess different antimicrobial activities in nature such as antifungal,
antitumoural, antibacterial, and antiviral activities (Stirpe 2004; Puri et al. 2009;
Bian et al. 2010). In agriculture, it is demonstrated in vitro and in transgenic plants
that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and
insecticidal activities (Akkouh et al. 2015). For example, transgenic tobacco plant
containing maize proRIP antifungal protein showed increased resistance against
R. solani (Maddaloni et al. 1997). Yuan et al. (2002) reported that blast disease in
transgenic rice was found to be inhibited by a type I RIP TCS (Yuan et al. 2002).
Curcin-2 isolated from Jatropha curcas leaves was expressed in tobacco plants
showed antifungal activity against R. solani, this protein was found to exhibit
activity against different other stresses also (Huang et al. 2008). Agrobacterium-
mediated transformation of the potato cultivar “Desirée” with Ribosome-
Inactivating Protein (rip30) gene of barley produced a transgenic which showed
enhanced resistance to Rhizoctonia solani in greenhouse condition (M’Hamdi et al.
2013). Plant RIPs also showed enhanced resistance when co-expressed with other
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antifungal proteins, e.g. when rice basic chitinase (RCH10) and modified maize RIP
(MOD1) were co-expressed in rice, it showed good resistance against R. solani (Kim
et al. 2003). Transgenic plants of blackgram co-expressing chitinase gene from
barley and RIP showed Corynespora leaf spot fungal growth inhibition (Chopra
and Saini 2014). Transformation of RIP α-MMC gene into rice showed increased
resistance to blast fungus (Qian et al. 2014). A transgenic potato lines expressing
PhRIP I gene of Phytolacca heterotepala coding for a ribosome-inactivating protein
was found to possess more resistance to Botrytis cinerea and Rhizoctonia solani
fungal pathogens (Gonzales-Salazar et al. 2017).

9.8 Phytoalexin

Phytoalexin term was originally coined by Müller (1958) and they come under low
molecular weight plant antibiotic group. These are naturally produced secondary
metabolites that possess antimicrobial activity. These are produced naturally in plant
cells as normal growth metabolites or can be induced in the presence of pathogen
attack or other stress. They can inhibit bacteria, fungi, insects, nematodes, toxic
against animals or plants itself. About 350 phytoalexins have been identified and
characterized from 30 plant families, Leguminosae plant family produces maximum
130 phytoalexins. These phytoalexins are well diversified in the plant kingdom and
are characterized among different classes of chemical compounds such as
coumarins, diterpenes, flavonoids, alkaloids, phenolic compounds, luteolinidin,
apigenidin, and apigeninidin. Pisatin was the first phytoalexin isolated and
characterized from garden pea, Pisum sativum (Cruickshank and Perrin 1960). The
molecules that signal plants to begin the process of phytoalexin synthesis are called
elicitors. Elicitors of biotic origin may be involved in the interaction of plants and
potential pathogens, whereas abiotic elicitors are not involved in normal host–
pathogen interactions. Phytoalexins only showed resistance in a sufficient concen-
tration which will be produced by one or more phytoalexins along with another
component. Phytoalexins were biosynthesized by phenylpropanoid pathways
mainly around resistant tissue and also in necrotic lesions. Also, the acetate-
mevalonate and shikimate pathways are involved in flavonoid biosynthesis. These
all pathways are interconnected and are involved in the synthesis of some important
enzymes which play a crucial role in resistance such as chalcone isomerase (CHI),
chalcone synthase (CHS), phenyl-alanine ammonia lyase (PAL) CoA ligase, and
stilbene synthase. Overexpression of these potential enzymes shows resistance
against different diseases. Stark-Lorenzen et al. (1997) expressed the stilbene
synthase gene of grapevine in rice and found that disease resistance was increased.
Resveratrol synthase and isoflavone methyltransferase gene was also expressed in
alfalfa plants to increase disease resistance. Similarly, isoflavone reductase (GmIFR)
isolated from soybean enhanced resistance against Phytophthora sojae in Soybean
(Cheng et al. 2015).
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9.9 Antibacterial Proteins

These are small-sized lytic peptides which are having amphipathic α-helical struc-
ture. These proteins produce pores in the bacterial cell membrane causing lysis of
bacterial cells (Boman 1991). These antimicrobial proteins are produced by the
different living organisms from bacteria to animals as defense proteins. Some of
the antibacterial proteins which are transferred to plants to increase resistance against
bacteria are summarized below;

9.9.1 Cecropins

These are positively charged antimicrobial peptides which are isolated from giant
silk moth (Hyalophora cecropia) hemolymph. Cecropin term was given because of
its source of isolation. They are proteinaceous in nature consisting of 31–39 amino
acid residues and synthesized as lipid bodies in cells. Cecropin mainly lyses the cell
membrane of bacteria, on interaction with bacterial membrane, it forms an α-helical
structure interaction which causes ion channel formation. It also inhibits proline
uptake and leads to leaky membranes. It acts as the main constituent of insects
immune system of bacteria and at low concentration (0.1–5μM) inhibits many gram-
positive bacteria as well as some gram-negative bacteria (Chen et al. 1997).
Antibacterial activity of cecropins isolated from Antheraea pernyi, Hyalophora
cecropia, and Bombyx mori has been demonstrated towards different genes (Jaynes
et al. 1993; Sharma et al. 2000). Agrobacterium-mediated transformation of antimi-
crobial peptide cecropin P1 (cecP1) in rapeseed (Brassica napus L.) was done and it
has shown that these transgenic plants showed resistance to the bacterial and fungal
pathogens Erwinia carotovora and Fusarium sporotrichioides (Zakharchenkoa et al.
2020). Cecropin B isolated from Chinese tasar moth (Antheraea pernyi) has been
expressed in transgenic citrus to eliminate the effect of Huanglongbing (HLB),
associated with Candidatus liberibacter asiaticus bacteria (Zou et al. 2017).

9.9.2 Attacins

Attacins are also another type of antibacterial proteins that are much larger than
cecropins, i.e. about 180–190 aminoacids. There are about six different types of
attacins (A-F) that have been isolated from a moth, i.e. H. cecropia. These proteins,
i.e. A-F attacins differ from each other because of the processing step during
synthesis, protein from A-D constitute a basic group whereas E and F are acidic.
Attacins are found to attack gram-negative bacteria but these proteins do not cause
lysis but disrupt outer membrane structure. Attacin proteins are not broad spectrum
like cecropins but it can inhibit the growth of some bacteria like E. coli,
Acinetobacter calcoaceticus, and Pseudomonas maltophilia (Hultmark et al.
1983). Apples were transformed using cDNAs coding for attachin E which were
coupled to plant promoters (Norelli et al. 1994). Transformed plants of a susceptible
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apple rootstock N.26 possessed increased resistance to the fire blight pathogen
Erwinia amylovora compared to the untransformed control, but were still more
susceptible than the naturally resistant rootstock Liberty. Attacin expressed in
transgenic potato enhanced its resistance to bacterial infection by E. carotovora
subsp. atroseptica (Arce et al. 1999). Transgenic pear and apple expressing attacin
genes have significantly enhanced resistance to E. amylovora in in vitro and growth
chamber tests (Ko et al. 2000). Transgenic apple expressing attacin targeted to the
intercellular space, where E. amylovora multiplies before infection, has significantly
reduced fire blight, even in apple plants with low attacin production levels (Ko et al.
2000). Attacin A gene was transferred to citrus under the control of a phloem-
specific promoter to control Huanglongbing disease (Tavano et al. 2019).

9.9.3 Lysozyme

This is a low molecular weight self-defense enzyme that was discovered in 1922 by
Alexander Fleming. These enzymes come under antimicrobial proteins because they
are hydrolytic in nature and attack the peptidoglycan layer of bacteria. It specifically
cleaves between N-acetylmuramic acid and N-acetylglucosamine of cell wall pepti-
doglycan (Wohlkönig et al. 2010). The number of reports suggested that lysozyme
can kill gram +ve and gram –ve bacteria. T4 lysozyme (T4L), human lysozyme, and
Hen egg-white lysozyme (HEWL) are some of the classes of this antimicrobial
protein gene, which have been cloned and transformed to different plants. Trans-
genic tobacco plants expressing these lysozyme genes were found to be more
resistant against plant pathogenic bacteria (Trudel et al. 1995; Kato et al. 1998). E.
carotovora causes soft rot disease in potato, resistance against this disease has been
conferred in potato by expressing T4L gene from T4-bacteriophage (Düring et al.
1993). Fungal and bacterial growth was inhibited in transgenic tobacco expressing
human lysozyme gene suggesting its potential use for controlling plant disease
(Nakajima et al. 1997). A plant lysozyme was isolated from Momordica charantia
L., which can be used further to increase bacterial resistance in plants. Resistance to
these diseases could also be achieved by engineering potato with lysozyme gene
(chly) from chicken (Serrano et al. 2000), and complete resistance was achieved by
expression of the phage T4 lysozyme (Ahrenholtz et al. 2000).

9.10 Herbicide Resistance

Weeds are a major constraint to crop production because they compete for nutrients
and other resources with the main crops, posing a serious threat to crops (Fartyal
et al. 2018). Herbicide resistance is the most predominant trait that has been adopted
for cultivating GM crops. In the early 1990s, GM crops resistant to broad-spectrum
herbicides such as glyphosate and glufosinate have first been cultivated commer-
cially. These GM crops are highly valued worldwide and have shown economic,
social, and ecological benefits (Green and Castle 2010; Heap and Duke 2018). The
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herbicide glyphosate is known to inhibit 5-enolpyruvyl shikimate-3-phosphate
synthase (EPSPS), a key enzyme in the shikimate and phenylpropanoid pathway
that is responsible for the biosynthesis of aromatic amino acids and several second-
ary metabolites. In 1996, the first glyphosate-tolerant soybean (“Roundup Ready”)
harboring cp4epsps gene was commercialized and many other commercialized crops
harbor this gene. Glyphosate-resistant maize was introduced in the year 1998. Till
now, maximum events, i.e. 210 have been approved for maize for herbicide resis-
tance (ISAAA database 2020). Another important herbicide glufosinate also known
as phosphinothricin inhibits glutamine synthetase (GS) enzyme that catalyzes the
assimilation of ammonia with glutamate to form glutamine. The inhibition of
glutamine synthetase leads to the assimilation of ammonia that inhibits photosystem
I and II reactions and indirectly inhibits photosynthesis (Wang et al. 2018). Two
glufosinate resistance genes bar and pat, were isolated from soil bacteria. Out of
these two, pat (phosphinothricin N-acetyltransferase) gene was isolated from Strep-
tomyces viridochromeogenes and bar gene from S. hygroscopicus. These genes
encode resistance to phosphinothricin (PAT) and bialaphos (L-Alanyl-L-alanyl-
phosphinothricin; Bar). Thus, researchers primarily focused on these two genes in
basic research for the development of herbicide-resistant genetically engineered
crops. In the past few years, the glyphosate and glufosinate resistant genes (EPSPS
and bar) have been introduced into pepper, soybean, maize, millet, potato, and other
crops (Zhao et al. 2020). Besides these two above-mentioned herbicides, transgenic
crops specific to other herbicide groups such as 2,4-D (aad-1 and aad-12 genes),
dicamba (dmo gene), isoxaflutole, mesotrione, oxynil, and sulfonylurea, have been
commercialized recently. Currently, different multinational companies such as
Monsanto, Dow, Bayer, Syngenta, and BASF are developing new herbicide-
resistant traits in different crops. Agrobacterium-mediated gene transfer technology
has been used to introduce the EPSPS and bar genes, which confers resistance to
glyphosate, and glufosinate into castor (Zhao et al. 2020). Maize, soybean, cotton,
and canola are among the most widely grown commercial crops that confer herbicide
resistance (Brookes and Barfoot 2015).

9.11 Virus Resistance

Plant viruses have been a major threat to agricultural production and with the advent
of transgenic technology, there has been a revolutionary enhancement in the pro-
duction of GM crops resistant to various plant viruses through various strategies.
Significant resistance to a variety of plant viral diseases has been accomplished by
gene silencing techniques. Bonfim and co-workers in 2007 explored the concept of
using an RNA interference construct to silence the sequence region of the AC1 viral
gene and generated highly resistant transgenic common bean plants (Bonfim et al.
2007). This method has also been adopted for the engineering of plum pox virus
resistance (Scorza et al. 2013). Exceptional progress has been perceived for trans-
genic alfalfa, melon, potato, rice, tomato, and tobacco against a broad spectrum of
plant viruses, including alfalfa mosaic virus, cucumber mosaic virus, potato virus X
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(PVX), potato virus Y (PVY), and potato leaf roll virus (Parray et al. 2019). In recent
years, non-coding RNAs (ncRNAs) have gained unprecedented attention for
regulating cellular processes and engineering plant virus resistance (Taliansky
et al. 2021).

9.12 Abiotic Stress Tolerance

Variable photoperiod, nutrient deprivation, starvation, drought, high salt conditions,
temperature, and osmotic changes are some of the situations that contribute to abiotic
stress (Hirayama & Shinozaki 2010; Zhu 2016). These are of critical importance as
studies have estimated the loss caused to reach around 50% by 2050 by this kind of
stress situation (Bengtsson et al. 2006; Ahuja et al. 2010; Thakur et al. 2010; Lobell
and Gourdji 2012). Furthermore, it is also estimated that the frequency of drought,
salinity, and heat will increase in the coming years (Easterling et al. 2000; Bernstein
et al. 2008), standing as a challenge to agriculture production. Plant encounters
various kinds of abiotic stresses that contribute to a significant crop loss worldwide.
All the abiotic stresses are interconnected and include the following.

9.12.1 Salinity

High salt situations in the soil and drought are two main abiotic stresses affecting
around 20% of the crop losses in irrigated fields (Qadir et al. 2014). The ions that
contribute to high salinity situations are Na+, Ca2+, Mg2+, K+, Cl�, SO42�, HCO3�,
CO32�, and NO3 (Flowers and Flowers 2005). The accumulation of either a single
type of ions or more than one type of ion may result in a condition that is termed
salination. High saline conditions can be caused due to various reasons like mineral
weathering, precipitation followed by the movement of salt towards land surfaces are
some primary causes of the salinity. High salt has a variable effect on crop plants,
though the primary effect includes osmotic stress and toxicity. These primary effects
may lead to another secondary effect on the cell-like compromised cell and mem-
brane expansion thereby a compromised metabolism. It is quite difficult to assess
which factor contributes to salinity tolerance in crops. It is conceivable that the
proper correlation studies between a trait and salinity tolerance could help in easing
out the direct relationship between the effects of any salt on crop productivity. In
past, many studies have been proposed to characterize the response of any biological
molecule, e.g. transcription factors and biomolecules (Negrão et al. 2017) towards
any kind of salt stress, however, these studies are still very limited. We propose that
engineering the biomolecules to produce stress-resistant crops could be a promising
approach because they all play a significant role in the plant’s adaptation to variable
salt conditions. Some of the development in major food crops has been described in
the coming sections.
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9.12.2 Heat

Global warming has led to a significant increase in temperature. It has been estimated
that average temperature rise by 3–4 �C has estimated to increase the crop losses to
15–35% in tropical regions like Africa and Asia and by 25–35% in the Middle East
(Ortiz et al. 2008). Despite a significant increase in global food production, a food
deficit still survives as global cereal production is declining because of increasing
temperature (Fischer and Edmeades 2010). The most common effect of high tem-
perature on any crop is an effect on their overall reproductive development due to
pollen infertility (Zinn et al. 2010). Heat stress is a major abiotic stress that plant gets
exposed in nature and affects every stage of plants life, however, the variability
could be seen in the patter they affect the plant that differs from species to species
(Sakata and Higashitani 2008). The noticeable effects of the increase of temperature
on plants are leaf and stem scorching, abscission, and senescence, inhibition of root
and shoot growth, finally causing the fruit damage and results in a decrease in plant
productivity (Vollenweider and Günthardt-Goerg 2005). In certain cases, high
temperature may also result in changes in plant architecture like elongated
hypocotyls and petioles (Hua 2009). Like any other stress, in response to heat stress,
plants undergo a series of cellular and metabolic responses that are necessary to
survive in these high-temperature situations. This includes changes in a cellular
organization like changes in cytoskeleton and membrane functions. These structural
changes are also accompanied by production transcription faction producing
biomolecules like heat shock proteins (HSPs) (Bray et al. 2000), and the production
of biomolecules like phytohormones (abscisic acid; ABA) and antioxidants (Maestri
et al. 2002).

9.12.3 Drought

Drought is a situation where the plant does not have a sufficient amount of water
which is necessary for the optimum growth of the plant. Various reasons responsible
for this kind of stress are low rainfall and compromised irrigation conditions.
Drought has a variety of effects on plant growth. The first is a lack of germination
and seedling establishment in various crops (Ashraf and Harris 2004; Kaya et al.
2006). It has been reported that in rice, drought during a vegetative state severely
compromises overall plant growth (Manickavelu et al. 2006). Drought situations are
often associated with compromised photosynthetic activity and finally wilting,
thereby compromising plant yield which could be followed by plant death.

9.12.4 Cold

Sensitivity to low temperature is another important abiotic stress that is of critical
importance contributing towards the significant yield loss in crops. Cold affects plant
life in different aspects, however, an ability to tackle this kind of stress may lead to
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cell death. Plant encounters temperature fluctuations in the natural environment and
thus need a different mechanism to different responses to minimize cellular
damages. Response to cold may involve an initiation of a signaling cascade to
cause metabolic changes significantly adding to the increased tolerance to chilling
temperatures (Chinnusamy et al. 2003). These changes are quite beneficial to plant
because these changes ease a plant to cope up with cold stress. These changes/
processes induce upon stress are collectively termed as “low temperature-induced
signal transduction (LTST).” LTST leads to the upregulation of certain genes that
produces specific proteins that help is an adaptation to freezing temperatures. From
the above sections, it is clear that any kind of abiotic stress on plants induces a series
of adaptive responses in the plant that are quite common in every kind of stress.

9.13 Genetic Engineering for Stress-Tolerant Properties

It is conceivable that the introduction of these alien/novel stress-responsive genes
into plants to bring a stress-tolerant property is a promising approach to tackle these
stress-sensitive phenotypes (Mittler 2002; Mittler and Blumwald 2010). Therefore,
an extensive part of the current genetic research has been dedicated to producing
stress-resistant plants by this kind of gene introduction. With the advancement of
genetic engineering technology, the cloning and overexpression of stress-resistant
genes has become an easy task. The conventional Agrobacterium-mediated gene
introduction is the common method for gene introduction into the host plant.
Besides, the Agrobacterium-mediated transformation other non-agrobacterium spe-
cies that have been identified for genetic transformation in plants are Rhizobium
sp. NGR234, Sinorhizobium meliloti, and Mesorhizobium loti. Herein, we describe
some important genes/proteins that have been identified and modified in plants for
their stress-responsive roles. Depending upon the type of response they belong to;
these genes can be divided into two major groups; ones involved in cellular
protection (osmoprotectants, membrane stabilization, detoxification), transcription
factors, and signaling molecules (Vendruscolo et al. 2007).

9.14 Abscisic Acid (ABA) Response Genes

Abscisic acid is one of the most important plant hormones that serves variable
functions in the plant. ABA is an important messenger that is involved in different
adaptive responses like regulation of accumulation of osmolytes, LEA (Late
Embryogenesis Abundant) protein synthesis, and antioxidant enzymes (Chaves
et al. 2003; Verslues et al. 2006). ABA levels in plants increase in response to
different stressors and result in stomatal closure to minimize the water loss occurring
due to the process of transpiration from leaves. Different cellular responses are
largely dependent on the ABA levels (Sreenivasulu et al. 2012), thus conceivable
that engineering this trait for crop improvement could be a promising approach.
ERA1 is one such gene that has been identified in Arabidopsis, and ß-subunit of a
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farnesyltransferase. It has been shown that plants that do not have this gene are
shown to have increased drought tolerance. This has been also shown that
downregulation of ERA1 by expressing under a drought inducible promoter through
antisense expression of ERA1 in Arabidopsis and canola (Jalakas et al. 2017).
Similarly, the mutants for ABA receptors like pyrabactin resistance 1-like 1 (pyl1),
pyl4, and pyl6 in rice have been shown to improve plant improvement for drought
resistance (Miao et al. 2018). Following a similar strategy, a Canadian company is
developing new transgenic plants under the name Yield Protection Technology™
and it has developed transgenic plants for maize, soybean, and cotton since 2011.

9.15 Gene Encoding Compatible Solute

Stress-induced biosynthesis and accumulation of various organic metabolites is the
common and most effective defense mechanism plant display in response to any
kind of stress. Osmoprotective adaptation to a stressful situation is a widespread
response that is conserved in all kinds of living organisms (Saxena et al. 2013).
These solutes also act as scavengers for free radicals and stabilize the plant proteins
during stress (Nahar et al. 2016). These compounds have low molecular weight and
do not inhibit normal cellular functions and are termed as compatible osmolytes.
These chemicals are fundamental to all organisms from bacteria to plants and can be
characterized into different categories depending on their biochemical nature (Khan
et al. 2009; Jewell et al. 2010) (Table 9.1). The majority of these proteins are
hydrophilic and uncharged in nature and function in a vast variety of functions
including scavenging of the ROS (reactive oxygen species), as osmoprotectants, pH
stabilizers, proteins, enzymes, and membrane. The first report of this type of gene to
plant lies in the early 90s, where the introduction of these osmolytes has shown to
confer the cold and salt resistance properties to the host plants. Glycine betaine,
β-alanine, proline, and mannitol are some common compatible solutes that are
conventionally used for metabolic engineering for stress-resistant properties. How-
ever, glycine betaine is regularly used for this purpose in different crops. Various
transgenic plants that have been produced by this kind of gene introduction are listed
in Table 9.2.

Table 9.1 Categories of plant protectants based upon their biochemical nature

S. no. Categories Sub-groups

1. Amino acids Proline, glutamate, glutamine, alanine

2. Amino acid derivatives Ectoine, hydroxyectoine

3. Quaternary amines Glycine betaine, polyamines, dimethyl
sulfonioproprionate, DMSP

4. Sugars Trehalose, sucrose

5. Polyols including sugar
alcohols

Mannitol, sorbitol, galactinol
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Table 9.2 Recent examples of the plant development through gene modification in agriculturally
important crops

S. no. Gene Type of gene
Improved
tolerance References

Rice (Oryza sativa)

1. SiMYB56 R2R3-MYB transcription factor Drought (Xu et al.
2020)

2. PheASR2 Transcription factor Drought (Wu et al.
2020, p 2)

3. JcMADS40 MADS-box family genes Drought and
salt

(Tang et al.
2020)

4. OsARD1 Acireductone dioxygenase (ARD)
metal-binding protein family

Drought and
salt

(Liang et al.
2019)

5. OsZFP350 Zinc finger protein Heat, salt and
drought

(Kang et al.
2019)

6. OsMYB6 MYB family gene Drought and
salt

(Tang et al.
2019)

7. OsJMJ703 Rice histone demethylase gene Drought (Song et al.
2018)

8. OsCTZFP8 Zinc finger transcription factor Cold (Jin et al.
2018)

9. ZmPIF3 Phytochrome-interacting factors
(PIFs)

Drought (Gao et al.
2018)

10. PYL3 Pyrabactin resistance-like (PYL)
gene family

Cold and
drought

(Lenka et al.
2018)

11. OsJAZ1 JAZ (JASMONATE ZIM-domain)
proteins

Drought (Fu et al.
2017)

12. OsMAPK3 MAPK family Cold (Zhang et al.
2017)

13. OsbZIP46 bZIP transcription factor Drought and
temperature
stress

(Chang et al.
2017)

14. OsLOL5 Zinc finger proteins (ZFPs) Alkaline and
salt

(Guan et al.
2016)

Wheat (Triticum aestivum)

15. TaHsfA6f Heat shock factors (Hsfs) Salt (Bi et al.
2020)

16. TaOAT Ornithine amino transferase Salt (Anwar
et al. 2020)

17. TaDREB3 DREB transcription factors Heat, cold and
salt

(Niu et al.
2020)

18. AtWRKY30 Transcription factor Heat and
drought

(El-Esawi
et al. 2019)

19. ERF1-V AP2/ERF transcription factor Salt and
drought

(Xing et al.
2017)

Barley (Hordeum vulgare)

20. TaHsfA6bT Heat shock factor Heat (Poonia
et al. 2020)

(continued)
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9.16 Free Radicle Scavengers

Exposure to any kind of stress situation finally leads to the production of reactive
oxygen species, production of which negatively affects different processes like
enzyme and biochemical activities and thus affects the biosynthesis of DNA, protein
and carbohydrates, thus exceeding the oxidative stress in a cell. The exposure of
plants to these environmental stresses leads to reactive oxygen species (ROS)
(Verslues et al. 2006; Jewell et al. 2010). Production of the free radicle upon stress
situation is another phenomenon of the stress response that is seen in plants upon
waterlogging, drought, high salinity, and high temperatures. It is evident that ROS
influences the expression of different genes that influence growth, cell cycle,
response to pathogens, plant development, and even cell death (Gill and Tuteja
2010). Thus, modification and expression of the gene helping in scavenging these
reactive oxygen species could be an alternative approach to produce stress-tolerant
plants. Some of these genes that have already been shown to be successfully
introduced in plants for imparting stress-tolerant properties are; ascorbate peroxi-
dase, superoxide dismutase, and glutathione reductase.

9.17 Genetic Engineering of the LEA Proteins Coding Genes

The late embryogenesis abundant (LEA) protein is a stress-induced protein produced
in vegetative tissues of the plants. Although the exact functions of these stress-
induced proteins are not known, it has been known that these proteins are water-
binding molecules that are dehydration and cold-responsive. These are the proteins
that help in protecting the desiccation and protect the seed development during salt
stress, dehydration, and cold. These proteins are encoded by different genes in
different plant species, for instance, responsive to dehydration (RD), early respon-
sive to dehydration (ERD), inducible to cold (KIN), regulated by cold (COR), and
responsive to abscisic acid (RAB). Two members of this class of proteins are HVA1

Table 9.2 (continued)

S. no. Gene Type of gene
Improved
tolerance References

21. HvMYB1 Transcription factor Drought (Alexander
et al. 2019)

22. OSM Osmotic response gene Salt (Viktorova
et al. 2019)

23. HvSHN1 Ethylene responsive transcription
factor

Salt and
drought

(Djemal
et al. 2018)

24. AtVHA-C Vacuolar ATPase subunit C Salt (Adem et al.
2017)

25. CPK2a Calcium-dependent protein kinase Drought (Cieśla et al.
2016)
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(protein from barley) and LE25 (protein from tomato). The reports have shown that
the introduction of the LEA gene from barley into rice imparts tolerance to salinity
and water stress (Xu et al. 1996). A similar observation was made in yeast
transformed with LE24 from tomato (Imai et al. 1996). Similarly, expression of
the HVA gene in wheat has also been reported to improve the quality of plants to
grow in water-deficient situations with an ability to produce high biomass. A recent
example of this kind of gene introduction for stress resistance was achieved by
expressing Melon Y3SK2-Type LEA gene in tobacco. A recent study has shown that
the introduction of this gene increases resistance to drought and salt (Aduse Poku
et al. 2020).

9.18 Molecular Chaperones

Heat shock proteins (HSPs) are the to-date known molecular chaperons that help
incorrect folding of the proteins. Besides these, conventions protein folding
molecules other protein folding molecules that have been extensively studied are
known as peptidyl-prolyl-isomerases. It has been reported that HSP is produced in
response to rapid heat stress. Besides HSP’s are also known to get produced under
different stages of plant development like embryogenesis, seed germination, devel-
opment of pollen, and fruit maturation (Prasinos et al. 2005). The modification of
these molecules for developing stress-tolerant plants lies early in 1987, when the
transgenic tobacco expressing HSP17 were produced, though no conclusion was
made on the stress-tolerant property as a promoter was incompetent (Schöffl et al.
1987).

9.19 Proteins for Ion Homeostasis Across the Membrane

A high salt situation causes osmotic stress in the cell and leads to an increase in the
high salt situations in the cytoplasm. To counter this, plant has to develop a
mechanism where a plant can utilize these ions to minimize the adverse effects of
these ions in the cell. This is regulated by genes that regulate the ion channels like
Na+/H+ antiports and stress signaling through calcium- and calmodulin-dependent
protein phosphatase calcineurin. The first successful example of this kind of gene
introduction was achieved by overexpressing a single endogenous gene (AtNHX1)
encoding a vacuolar Na+/H+ antiport protein in Arabidopsis. The transgenic
Arabidopsis was found to be thriving well in the high salt situation, i.e. 200 mM
sodium chloride, which correlated well with higher levels of the AtNHX1 transcripts
and protein and vacuolar Na+/H+ antiport activity. Similarly, expressing catalytic
and regulatory subunit of yeast calcineurin in tobacco has also been shown to
generate transgenic tobacco with salt-tolerant properties.
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9.20 Transcription Factors

A number of genes that are activated upon abiotic stress are controlled by a complex
network of transcription factors (Yamaguchi-Shinozaki and Shinozaki 2006). The
stress-responsive genes can generally be classified into two groups; regulatory and
functional (Shinozaki et al. 2003). Functional proteins include different enzymes,
membrane proteins (water channel and transporters), heat shock proteins, all these
proteins have a direct role in stress response. Regulatory proteins include different
transcription factors, kinases, and phosphatases that regulate various stress
responses. Furthermore, a response to any kind of stress on the plant is multigenic
in nature, involving the role of two or more genes in a stress response mechanism.
Thus, the introduction of only a single gene is not sufficient to induce a series of
changes that may be necessary for a specific stress adaptation. Thus, engineering the
different transcription factors involved in controlling specific traits together may be a
promising alternative approach to achieve a specific stress-tolerant trait. Some
successful initial examples of this kind of gene modification have been achieved
by the overexpression of the HSPs have known to confer thermotolerance in
Arabidopsis (Lee et al. 1995). Similarly, overexpression of the CBF1 (“C-repeat
binding factor”), a transcriptional activator has been shown to confer tolerance to
freezing in Arabidopsis inducing the expression of four COR (“cold-regulated”)
genes (Jaglo-Ottosen 1998). Another transcription factor is the dehydration-
responsive Element (DREB1A), this TF is also known to upregulate different
stress-responsive genes. Both DRE and CBF factors are known as a cis-acting
element that regulates the gene expression in response to variable dehydrating
stressors (salt, cold, and drought) (van Rensburg and Krüger 1994). A member of
the DRE family, DREB1A, is reported to impart drought resistance in Arabidopsis
thaliana via inducing the expression of different stress-responsive genes
(Pellegrineschi et al. 2003). Another family of a transcription factor that is involved
in stress tolerance is the NAC gene family members. These transcription factors are
known to get expressed in different stages of growth and response to the environ-
ment. SNAC1 is a member of this family, expression of which is known to improve
drought resistance in rice (Hu et al. 2006). Other transcription factors like bHLH,
bZIP, NAC, AP2/ERF, MYB, Zinc finger, WRKY, and kinases are associated with
increase crop yield in rice (Dubouzet et al. 2003; Hu et al. 2006; Hossain et al. 2010).

9.21 Recent Advances in Plant Improvement for Abiotic Stress
Tolerance

In the above section, we have successfully described the traditional transgenic
methods to crop improvement. The current section focuses on the recent advance-
ment that has been made in crop development programs to improve plant for the
desired traits.
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9.22 Development of Abiotic Stress-Tolerant Crops by miRNA

MicroRNA (miRNA) can be described as the single-stranded RNAs that are approx-
imately 21–24 base pairs in length (Zhao et al. 2011). Studies have shown an
involvement of these microRNAs in imparting stress resistance to variable stress
on plants (Xia et al. 2012). These miRNAs inhibit the expression of target RNA by
binding to the 30 end of the RNA, thus inhibiting the translation (Meng et al. 2010; Li
et al. 2011; Ding et al. 2011). These miRNAs are involved in different cellular
processes like transcription, protein stability, and degradation (Shen et al. 2010;
Ding et al. 2011). Several studies have shown that 11 miRNAs exert tissue-specific
expression towards major abiotic stresses in Arabidopsis thaliana. According to the
reports in Arabidopsis thaliana, miRNA-169 has been shown to contribute towards
drought resistance. Similarly, other miRNA’s like 159, 396, and 393 also showed to
contribute to other abiotic stressors (salinity, cold, and heat) (Table 9.3).

Table 9.3 Recent examples of the plant development through miRNA technology

S. no.
Targeted
miRNAs

Transgenic
plant Response Reference

1. miR398 Wheat Cold tolerance (Lu et al.
2020)

2. MiR319 Rice Salt stress tolerance (Liu et al.
2019)

3. miR393a Creeping
bentgrass

Salt, drought and heat tolerance (Zhao et al.
2019)

4. miR166 Rice Drought tolerance in knocked-down
mutants

(Zhang et al.
2018)

5. miR5144 Rice Salinity and mercury stress tolerance (Xia et al.
2018)

6. miR827 Maize Drought tolerance (Ferdous et al.
2017)

7. miR159 Rice Increased drought resistance (Zhao et al.
2017)

8. miR156 Rice Reduced cold tolerance (Cui et al.
2015)

9. miR408 Chick pea Enhanced drought tolerance (Hajyzadeh
et al. 2015)

10. miR319 Bentgrass Enhanced salt and drought tolerance (Zhou et al.
2013)

11. miR319 Rice Enhanced tolerance to chilling stress (Yang et al.
2013)

12. miR395 Rapeseed Enhanced tolerance to oxidative stress
and heavy metal stress

(Zhang et al.
2013a, b)

13. miR828 Sweet
potato

Oxidative stress tolerance (Lin et al.
2012)

14. miR169 Tomato Enhanced drought tolerance (Zhang et al.
2011)
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9.23 Development of Abiotic Stress-Tolerant Crops by CRISPR
(Lustered Regularly Interspaced Short Palindromic
Repeats)/Cas9

CRISPR-Cas9 is a recent development developed for crop improvement in recent
years. This system depends on an RNA-DNA recognition system that employs a
double-strand break in the host genome. The technology has an upper hand over the
other crop improvement methods as this is a comparably fast, and efficient gene-
editing method for crop improvement (Mao et al. 2013). Besides, it is preferred over
the other gene-editing tools as this is simple in designing and efficiently introduces
mutation with a targeted introduction at desired locations (Ma et al. 2015; Malzahn
et al. 2017). The technique is preferred over other genetic improvement techniques
as this is comparable to less tricky and avoids the tedious screening of the desired
clone. Besides mutation, this technique can also be used to induce or repress the
expression of the particular gene using modified CRISPR where an inactive form of
Cas9 (dCas9) is fused with a transcriptional activator or a repressor (Bortesi and
Fischer 2015). Due to its vast potential in genome improvement, it has the potential
to replace other gene improvement methods. While the system is employed for the
improvement of animal cells (Gilbert et al. 2013; La Russa and Qi 2015); the system
has limited reports of successful use of this method in plant improvement (Piatek
et al. 2015). Some recent examples of CRISPR-Cas mediated plant improvement are
summarized in Table 9.4.

9.24 Conclusion

Overall, we have summarized the major biotic and abiotic stress mechanisms that
can be engineered for imparting stress-resistant properties to different plants.
Though, a huge effort has been already made in this area, there is a considerable
challenge that remains to be addressed. As the plant undergoes multiple
combinations of stress in field conditions, this area needs further addressing. We
propose that the plant’s response to multiple different stressors cannot be inferred
from assessing the plant’s response to individual stress. Thus, it is essential to test
different improved varieties to multiple stressors in field conditions where all
stressors occur at once. Another challenge to getting these improved varieties to
farmers is their development expenses and the approvals these GM plants require for

Table 9.4 Some recent examples of crop improvement via employing CRISPR/Cas9 system

S. no. TFs Species Response Reference

1. SST Rice Seedling salt-tolerant gene (Lian et al. 2020)

2. OsMYB30 Rice Cold tolerance gene (Zeng et al. 2020)

3. OsGA20ox2 Rice Lodging resistance (Nawaz et al. 2020)

4. ANAC069 Arabidopsis Salt and osmotic sensitivity (He et al. 2017)

5. ZmWRKY17 Maize Salt sensitivity (Cai et al. 2017)
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their field trials. As multiple precautions are already in the guideline to ensure the
safety associated with the GM crops, precautions to ensure this safety should not
become a barrier for future crop development programs.
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