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Abstract. Brain-computer interface is currently a rapidly developing technology.
In recent years, it has received extensive attention and high expectations in the
fields of biomedical engineering and rehabilitation medicine engineering. Brain-
computer interfaces can enable patients with communication skills or physical
disabilities to communicate with machines and equipment, and brain-computer
interfaces based on imagined speech can provide patients with normal and effec-
tive language communication. At present, its related research has achieved certain
results. This article introduces the principles, advantages and disadvantages of
several common BCI systems, as well as the two most widely used brain signals
EEG and EcoG, and then studies some related feature extraction and data clas-
sification algorithms used in current research. Finally, the current problems and
future development trends of brain-computer interfaces based on imagined speech
are discussed.
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1 Introduction

The brain-computer interface (BCI, hereinafter referred to as BCI) is a direct connection
channel created between the human or animal brain and external equipment. The BCI is
divided into one-way BCI and two-way BCI; one-way BCI technology means that the
computer only accepts information from the brain or transmits information to the brain.
The two-way BCI allows two-way information exchange between the brain and external
devices. The emergence of BCI has provided great convenience to patients with speech
and physical impairments. Nowadays, patients can realize cursor movement through the
BCI system, control wheelchairs, letter input and prosthetic movements [1–3].

BCI system includes BCI system based on External Stimulation (Visual P300,
SSVEP) and Motor Imagery (SMR, IBK) system. First, the P300 component refers
to the positive waveform generated by the EEG signal about 220 to 500 ms after the
target stimulus occurs in a stimulation sequence with a small proportion of target stim-
uli [4]. The P300 paradigm includes auditory P300 and visual P300. At present, the
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visual P300 paradigm is more widely used [5, 6]. The advantage of P300-BCI is that it
is non-invasive, requires less training times, provides communication and control func-
tions, and is a stable and reliable BCI system. So, P300-BCI is the most suitable BCI
system for severely disabled patients to independently use in the home environment
for a long time. Second, the Steady State Visual Evoked Potential (SSVEP) is another
popular visual component used in BCI, SSVEP is also called an optical drive because
the generator of this response is located in the visual cortex. The subject must look
away and pay attention to the flickering stimulus, not the movement execution or imag-
inary movement, which requires highly precise eye control, common stimulus sources
include flash, light-emitting diodes and a checkerboard pattern of displays. The advan-
tage of SSVEP-BCI is that it has high information transmission rate and many output
commands. The subjects only need relatively little training to use it. The disadvantage
is that it needs to rely on a stimulus source. However, long-term use of flicker (mainly
low frequency) stimulation may cause subject fatigue [7–10]. Then, the SMR paradigm
is the most widely used Imagined Motor paradigms. Imagined Motor refers to the imag-
ination of the kinesthetic movement of larger parts of the body such as the hands, feet,
and tongue, which can lead to the regulation of brain activity. Specifically, it is the elec-
trophysiological phenomenon of Event-related Desynchronization (ERD/Event-related
Synchronization, ERS) to control the device [11]. Finally, Imaginary Body kinematics
(IBK) is a motor imagery paradigm derived from invasive BCI techniques [12, 13].
However, non-invasive research pointed out that this mode of information is extracted
from low-frequency SMR signals (less than 2 Hz) [14]. Although IBK belongs to SMR,
it is classified into a separate category due to its different training and analysis methods
from the SMR paradigm. The biggest advantage ofMI-BCI is that the BCI control signal
generated by the brain action intention is an endogenously induced EEG, so it does not
require external stimulation; but it requires multiple training, and the classification accu-
racy rate is not high, and individual differences cannot be resolved. Imagined speech
is similar to motor imagery, and we often use it in our lives, such as silently reading
magazines, books, the process of thinking about something in the brain, and recalling
conversations with others. The BCI system based on imagined speech extracts the brain
signals of the subjects when they imagine pronunciation, and then through a series of
data processing, it is finally converted into speech. In order to remove noise, the sub-
jects will be asked not to make a sound when imagining the pronunciation and try not to
change their expressions. The BCI system based on imagined speech and the BCI system
based on motor imagination are similar in that they both extract the brain signals of the
participant during the imagination and convert them into desired actions, such as body
movements or voice output, and neither need external stimuli. The BCI system based on
P300 and SSVEP requires external stimuli, such as light flicker. The BCI system based
on imagined speech also has great prospects in application. It can help patients with lan-
guage barriers, muscle atrophy, locked-in syndrome and other diseases to communicate
and communicate effectively with the outside world. Input letters, cursor selection, etc.
are more efficient and more convenient. However, compared with other BCI systems,
the technology of the BCI system based on imagined speech is not mature enough, and
there are still shortcomings in hardware and brain signal decoding, but the BCI system
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based on imagined speech has great potential and research significance. It is worth our
continued in-depth study.

2 Brain Sensor

The common methods of brain-computer connection can be divided into two types:
invasive and non-invasive. Non-invasive methods do not require surgery, mainly includ-
ing electroencephalography (EEG), magnetoencephalography (MEG), functional mag-
netic resonance imaging (fMRI), near infrared spectroscopy (NIRS), etc. In addition,
it also includes many invasive methods, which may cause certain harm to the human
body, including neuron firing signals (spikes), laminar potentials (electrocortex, ECoG),
etc. Most brain-computer interfaces have selected EEG signals as the input, which has
become the most important part of the brain-computer interface.

2.1 EEG Device

Electroencephalography (EEG) is a widely used non-invasive method for monitoring the
brain. It is based on the function of placing conductive electrodes on the scalp, which can
measure small electric potentials generated outside the head due to the action of neurons
in the brain. The original EEG acquisition device was: a user wore a cap with holes and
placed several electrodes next to the scalp. Each electrode had a long wire connected to
the recording instrument, the wires are tangled together, which is troublesome to install,
and the movement of the unshielded EEG wire will have a great impact on the quality
of the collected signal. At present, EEG collection equipment is very advanced, Ahn
JW [30] has developed a new wearable device that can measure both electrocardiogram
(ECG) and EEG at the same time to realize continuous pressure monitoring in daily life,
the developed system is easy to hang on two ears, is light in weight (ie 42.5 g), and
has excellent noise performance of 0.12 µVrms. [31] studied a wearable in-ear EEG
for emotion monitoring. The device is a low-cost, single-channel, dry contact, in-ear
EEG, suitable for non-invasive monitoring, based on the valence and arousal Emotion
model, the device can classify basic emotions with 71.07% accuracy, 72.89% accuracy
(awakening) and 53.72% (all four emotions). [32] studied the hat-shaped EEG device
EEG-Hat with candle-shaped dry microneedle electrodes. The current wearable EEG
device has two main problems: 1) it is not adaptable to each participant, 2) in EEG
cannot be measured on the hair area. The device can adjust the electrodes according
to the size of the subject’s head and can be used by multiple people. The device has a
louver-like structure to separate hair. After experiments, it was found that the EEG cap
successfully measured the EEG of 3 hair parts without manual separation. Currently,
the most widely used commercial products are: mBrainTrain Smarting, Brain Products
LiveAmp, g.tec g.Nautilus, Cognionics Mobile-128, Emotiv Epoc Flex.

2.2 EcoG Device

Cortical ECoG is used clinically for the detection of epileptic foci, ECoG electrodes
are very common and mature clinically, and neurosurgeons need to perform craniotomy
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or craniotomy to insert them. The electrode disk is inlaid on a silicon rubber sheet,
during the operation, the doctor covers the silicon rubber sheet on the patient’s cerebral
cortex and subdura, which can collect cortical EEG signals. Generally, the clinical detec-
tion of epileptic foci ranges from 1–2 weeks, experiments on mice and monkeys have
proved that the signals collected by EcoG can remain stable for up to 5 months. [34]
designed a novel spiral electric cortex (ECoG) electrode, which consists of three parts:
recording electrode, insulator and nut, compared with electroencephalogram (EEG), it
has a higher SNR and a wider frequency band, with higher sensitivity, and can capture
different responses to various stimuli. [33] et al. studied a flexible EcoG electrode for
studying spatiotemporal epilepsy morphological activity and multimodal neural encod-
ing/decoding. The flexible electrode has very little damage to patients and is of great
significance for clinical treatment and research. [35] studied a novel flexible and bioab-
sorbable ECoG device integratedwith an intracortical pressure sensor tomonitor cortical
swelling during operation. The flat and flexible ECoG electrode can minimize the risk
of infection and severe inflammation. Its good shape adaptability enables the device
to adapt to complex cortical shapes and structures to record brain signals with high
spatiotemporal resolution.

3 Research Status

In the experiment of [16], some native speakers were asked to tell a story, and the
subjects were asked to listen to the story carefully. After the story was told, the subjects
were asked some related questions to ensure that the subjects listened carefully. The
classification accuracy of Chinese phoneme clusters according to the pronunciation
position and pronunciation mode was tested by using the small Wave sign and support
vector machine classifier, with the accuracy of about 60%. In the experiment of [25],
RNN and DBN were used to classify and recognize five vowels respectively, and it
was found that DBN had a better effect, 8% higher than RNN. In the experiment [19],
subjects were asked not to perform any movements or activities, especially lips, tongue
and chin, and then brain signals were used to decode whether they were thinking “yes”
or “no” with an average accuracy of 69.3%. The subjects will be asked ten questions
with answers of “yes” or “no”, such as: Are you hungry? The subjects answered “yes” or
“no”, and the decoding of the brain signal was accurate 92 percent of the time compared
to the real thing [22]. In Dash [18]’s experiment, the screen went blank for the first
second, then text appeared. The subjects imagined it for one second, then read it aloud
for two seconds. They trained on five commonly used phrases and analyzed MEG using
CNN with 93% accuracy. Tottrup L [24] use of EMG signal to improve the training
effect, every action is secrecy speech or MI (interior), six seconds, then repeat openly
talking or ME (external), corresponds to a clock cycle time in front of the subjects had
a clock, subjects first imagine some action, such as stopping or walking, bending the
left arm, after 6 s, they repeat these movements overtly, the highest with 76% accuracy.
At present, many researches are based on monosyllables or monosyllables. It is still
difficult to carry out experiments on words or sentences, but some achievements have
been made. In the experiments of [26], using the same algorithm, the accuracy rate of
the experimental resultswas 57.4%/57CV, 61.2%/19cons, 88.2%/3VOWels, proving that
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the more difficult the task, the lower the accuracy rate. Subjects were asked to read and
read the story silently, then to convert the brain signals they collected into speech, and
to listen to the final synthetic sentence to complete the test. After hearing 101 sentences,
the accuracy rate was about 70% [17]. Anumanchipalli [17] and other experiments also
found that reading aloud was more effective than silent reading because sounds were
added to aid training. The accuracy of reading aloud was 3% higher in the experiment
than in silent reading training. MFCCS features are generally extracted from speech to
facilitate training, such as [28] and [17].Makin JG [28] also usedMOCHATIMITdata set
to decode and synthesize sentences, and they achieved 97% decoding accuracy by using
EcoG signal, and achieved certain results in transfer learning. Pre-training participant A’s
data improved participant B’s performance. For the least effective participant D, there
was no improvement, and all individual differences remained difficult to eliminate. See
Table 1 for more research status.

4 Conclusion

The brain-computer interface system based on imagined speech has achieved certain
results, but there is still a lot to go. At present, it is possible to improve the training effect
and improve the test accuracy by extracting the characteristics of the speech signal and
fusing the brain signal. Our application target is those who can’t speak, so we can only
use brain signals for training. Therefore, the brain-computer interface system based on
imagined speech has a good development prospect, but further research is needed.
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