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Abstract. Multi-robot systems are becoming more and more significant in indus-
trial, where allocating tasks for every robot in a reasonable way is a tedious process.
The current research mainly focused on reducing the distance between robots and
tasks while ignoring the balance of workloads between robots. To address the
aforementioned issues, this paper proposes an adaptive K-means clustering algo-
rithm (adpK-means) in order to control a team of robots to accomplish all tasks
with a good balance and at a minimal cost. Compared with the K-means clus-
tering algorithm, our proposed algorithm has better performance, where through
adaptive dynamic scaling of the clustering space in the iterative process, multiple
robots can complete missions with well-distributed workloads. The experimental
results show that the algorithm effectively reduces the total energy consumption
of the entire robot system and ensures that the tasks of robots are comparative.
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1 Introduction

With the development of modern industry and manufacturing, industrial robots are
widely used in automobiles, electronics, logistics, metals, food, and chemicals [1]. In
recent years, with the highly coupled and coordinated development of multiple dis-
ciplines such as computer technology, electronic communication, automation control,
artificial intelligence, chips, robots have almost replaced highly repetitive and danger-
ous tasks [2]. However, the single-robot system cannot undertake the complex task
requirements of industry and manufacturing because of its weak individual perception
and processing information ability and single task execution ability, and the multi-robot
system has emerged as the times require [3]. The multi-robot system is composed of
multiple intelligent robots that can perceive the environment and perform different tasks.
The collaborative work of multi-robots can make full use of the advantages of multi-
machine collaboration and carry out industrial production more efficiently and stably,
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but it also brings scholars [4]. Here comes a huge challenge, that is, how to allocate tasks
for the multi-robot system.

The core problem of the multi-robot system’s task allocation is to make the task
allocation of different robots more balanced as much as possible to minimize the overall
consumption of the multi-robot system. The collaborative work of multi-robot systems
usually has two stages [5]. The first link is multi-robot task allocation, and the second link
is multi-robot path planning. Usually, the task allocation result of the first stage directly
affects whether the second stage can be solved to obtain the lowest cost work path.
If the distribution is unreasonable or unbalanced, it isn’t easy to find an efficient path
planning sequence in the second stage of planning [6]. Multiple Traveling Salesman
Problem [7] (Multiple Traveling Salesman Problem, MTSP) is a way to model this
problem. This modelling method compares each robot to a travelling salesman, and the
waypoint represents the city location that the traveling salesman needs to visit. The goal
of optimization is to meet the constraint conditions; all path points will be called, and
optimize the objective function [8].

Many types of research on task allocation for multi-robots system have been per-
formed. For instance, these studies include combinatorial auction algorithm [9], genetic
algorithm [10], agent-based algorithm [11], pattern formation algorithm [12], the graph
matching algorithm [13] and so on. For example, Xu et al. [14] proposed a two-
stage MTSP solution method, which clustered all cities through the K-means clustering
method. The number of clusters is the number of traveling salesmen. During the clus-
tering, the workload of a different travelling salesman is guaranteed to be as balanced
as possible. The upper limit is set for the number of cities allocated by each travelling
salesman after clustering to make the distribution result more reasonable. In the second
stage, a genetic algorithm is used to plan and solve the results after clustering. Xie [15]
uses the multi-knapsack algorithm to allocate the welding path points and improves the
genetic algorithm to realize the path planning of a single robot. Shi Dechao [16] also
used the multi-knapsack algorithm to learn the distribution of welding points and added
the limit of the number of welding points so that the workload of each robot could be
balanced, which solved the problem of welding point path distribution in white body
welding. In the planning stage, detailed parameter analysis and adjustment are carried
out according to the actual scene to realize welding path planning. Burger et al. [17] pro-
posed a dichotomous variable method based on 2-index. Each time the next path point is
selected, the selection is based on the current path point, which reduces the complexity
of running time and improves the efficiency of the algorithm. Kitjacharoenchai et al.
[18] used K-means clustering pre-allocation for the logistics and distribution of trucks
to obtain the set of goods that each car needs to be responsible for. In planning, the idea
of a greedy strategy is adopted, and the cargo location with the shortest distance from
the current location is selected as the next route point.

However, the current attempts made by the researchers concentrate only on minimiz-
ing the distance between the robots and the tasks, and not much importance is given to
the utilization of the robots. In industrial production, multi-robot systems mostly work
in an assembly-line manner. Uneven distribution of tasks among multiple robots will
result in higher system consumption. The K-means algorithm can divide all vectors in
the clustering space into K clusters. Formally, because of this, the clustering algorithm
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can be used to solve the multi-robot task allocation problem. However, it has limita-
tions. The algorithm is relatively affected by initialization and is more susceptible to
outliers. Therefore, it cannot guarantee the balance of multi-robot task allocation. To
overcome these deficiencies, this paper proposes an adpK-means clustering algorithm
through adaptive dynamic scaling of the clustering space in the iterative process.

2 Problem Statement

The multi-traveling salesman problem means that multiple traveling salesmen traverse
all cities under the condition of satisfying the constraints, and solve the planning path
of each traveling salesman when the objective function is optimized [19]. The path
planning problem of multi-robots is that n robots are responsible for executing m task
points. After completing the task, each robot returns to its starting position to ensure that
each task point will be executed by the robot and cannot be performed repeatedly. In this
article, we define it as a multi-source closed-loop multi-traveling salesman problem. The
traveling salesman can be abstracted as a robot, and the task point is abstracted as the
city that the traveling salesman wants to visit. The following will conduct mathematical
modeling and research on this problem.

There are two commonly used evaluation methods in the multi-source closed-loop
multi-traveling salesman problem: minimizing the maximum cost maxspan and min-
imizing the total cost mincost. Suppose there are a total of n traveling salesmen, and
the cost of the i-th traveling salesman is cost; - The description of maxspan is shown in
formula (1), and the description of mincost is shown in formula (2).

maxspan = max{costy, costy, - - - , costy} (D

n
mincost = Zi_l cost; 2)

Because the engineering problem faced by this article is a multi-robot collaborative
operation problem, in the actual operation process, only when all the robots complete the
operation can the operation of the next workpiece be successfully carried out. Consid-
ering that multi-robot systems are commonly oriented to industries, the robot’s working
time is based on the robot with the longest working time, so we use the minimized
maximum cost maxspan as the objective function.

The specific mathematical definition of the multi-source closed-loop multi-traveling
salesman problem is given here: Given a set of # cities, the number of traveling salesmen
is t, and the distance between city i and city j is defined as d (i, j). The number of cities
allocated by the k-th traveling salesman is county, and the sequence of cities visited is

1
Touty = (ck, ek, -+ k). Where Y county = n, each city will be Traverse and
k=1

only traverse once, according to formula (3), calculate the path length cos#; of the k-th

traveling salesman as shown in formula (3), and the objective function calculation is
shown in formula (2).

county—1 kK r k
costy = Zi:j d(cj , cj+1) + d(cl, cwumk> 3)



230 L. Chong et al.

Task allocation is to allocate tasks to the corresponding traveling salesman for plan-
ning, simplifying complex problems, and turning them into general traveling salesman
problems, which can significantly reduce the complexity of the problem and improve
calculation efficiency. The path point allocation process will have different restrictions
according to actual application scenarios. The scenario in this article is the collaborative
work of multiple robots, and it is stipulated that each robot has the same structure and
the same type of task point. Therefore, any task point can be assigned to any robot, and
there is no upper limit on the number of task points for each robot. In this paper, our
objective function metric is to minimize the maximum cost maxspan, which is also out
of consideration for practical problems. The multi-robot execution operation process is
an assembly line operation process in an industrial environment. Therefore, optimizing
the robot with the longest working time and reducing its running time can improve the
efficiency of industrial production.

3 AdpK-Means Clustering Algorithm

3.1 K-Means Clustering Algorithm

Researchers related to task allocation algorithm used K-means clustering or other clus-
tering algorithms [20] to solve the problem, and achieved good results. The cluster-
ing algorithm is an unsupervised algorithm used for sample classification problems in
machine learning [21]. K-means clustering algorithm (K-means) is the most common,
most commonly used, and most effective clustering algorithm. The K-means cluster-
ing result divides all vectors in the clustering space into K clusters [22]. It is precisely
because of this characteristic that the clustering algorithm can solve the path point allo-
cation problem in multi-robot path planning. Suppose the number of robots is K, then
the goal of clustering is to divide the path points into K sets, and one robot is responsible
for planning the path points in each group. The specific calculation process of K-means
is described in detail in Algorithm 1.

Algorithm 1: K-means clustering algorithm

1 Set the number of cluster center points K, select K points as the initial points

2 while The category of all points remains unchanged do

3 Calculate the Euclidean distance from all points to K cluster center points

4 Return points: the attribution category of each store is the closest cluster center point
5 Recalculate the new cluster center point for each cluster set: take the average

6 end while

Euclidean distance is commonly used in K-means clustering algorithm to estimate
the similarity between different samples [23]. Also, there are Manhattan distance [24],
cosine distance [25], etc. The distance measurement methods used for different types
of data and tasks are other. In this article, we plan the optimal path of the robot in the
geometric space. The length of the way of the robot between different path points is
calculated using Euclidean distance. Therefore, in this article, we also use Euclidean
distance to estimate the similarity between different samples.
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The K-means algorithm also has some limitations. The algorithm is more affected
by initialization, different initialization will bring different results, and it is more sus-
ceptible to outliers [26], Although the subsequent improved K-means++ algorithm [27]
improves this deficiency by selecting the initial point based on probability, the influence
of initialization still exists. Moreover, the distribution result obtained by K-means cannot
guarantee the balance of tasks between robots. During the operation of the algorithm,
which set the waypoint belongs to is determined by the distance from the waypoint to
the central point of the set, which cannot directly reflect different groups. Whether the
workload is balanced, especially when there is a long tail effect of outliers in the data
distribution, the imbalance of distribution is more serious. On this point, related experi-
ments have also been carried out in this article, which proves that the distribution results
obtained by the K-means clustering algorithm have room for improvement in the distri-
bution balance. However, it has particular applicability as a waypoint allocation scheme
in the multiple traveling salesman problem. It is necessary to avoid collisions as much as
possible when multi-robots work together. The different path point sets resulting from
K-means clustering are relatively independent, and there is no overlap. This can make
the planned paths of other robots fewer collision problems, which is very beneficial for
the subsequent collision detection optimization steps. Therefore, this paper proposes
an adpK-means clustering algorithm, which achieves the balanced distribution of path
points by adaptively scaling the clustering space in the iterative process, and proves the
effectiveness of the algorithm through experiments.

3.2 AdpK-Means Clustering Algorithm Task Allocation

The adpK-means algorithm is an iterative optimization algorithm, and the running pro-
cess is shown in Fig. 1. The adpK-means algorithm will count the current clustering
results during each iteration and dynamically scale the clustering space according to the
products until the termination condition is met. The optimal outcome is output. This way
of dynamic scaling and iterative optimization can make the distribution of path points
more balanced.

In order to describe the operation process of the algorithm more clearly, this article
will define the implementation steps and details of the adpK-means clustering algorithm
in a two-dimensional space. The algorithm operation flow in the three-dimensional space
is the same as that in the two-dimensional space, and only one dimension parameter
needs to be added. The specific operation flow is described in detail in Algorithm 1. The
number of clustering categories K is the number of robots, and the workload of the robots
is estimated as the length of the path sequence estimated by the greedy strategy. From the
description of the algorithm, it can be seen that in each iteration, the algorithm shrinks
the path points in the set with the smallest workload and enlarges the points in the group
with the most massive workload. After shrinking and zooming in, the distribution of path
points in the clustering space changes, and the results will also change after K-means
clustering. More path points will be allocated in the set with the smallest workload, and
the number of path points in the set with the largest workload will be reduced. This is
how the adaptive zoom operation makes the workload of different robots more balanced.
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Fig. 1. Flow chart of adpK-means clustering algorithm.

Algorithm 2: AdpK-means clustering algorithm

1 Set the maximum number of iterations Kmeans_max _iter, adaptive scaling Scale, the
number of categories is K

2 while Maximum number of iterations not reached do

3 Use K-means algorithm to cluster all path points into Ksets

4 Calculate the planned path obtained according to the greedy strategy in each set, and rec-
ord the path length as [;, where i = {1,2,-+-,K}

5 Inthe set [;, the set corresponding to the maximum value is the set with the largest work-
load. Calculate the center point of all path points in the set as Peoprer = (X — Y¢),and
perform the zoom operation on the path points in the set:

Pi = (Pf - X.) X Scale + X,
P! = (Bl - Y,) X Scale + Y,

6 Intheset [, the set corresponding to the minimum value is the set with the smallest work-
load. Calculate the center point of all path points in the set as  Peeprer = (Xo — Y;), and
perform the reduction operation on the path points in the set:

Pi = (Pl —X.) + Scale + X,
Pt =(Pi—Y.)+Scale +Y,
7 end while

8 Output the final classification result

To better illustrate the effect of adaptive scaling on the change of clustering space
and the balanced distribution of path points, this paper visualizes the scaling adjustment
process of the algorithm in the experiment of the TSPLIB dataset [28] pr76.tsp in Fig. 2.
In this data set, we set the number of robots to 4. After a K-means clustering, four point
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sets are obtained, marked with different colors in the figure. As described in Algorithm
2, a greedy strategy is used to find a path for other sets, and the workload of the robots
in the set is estimated according to the length of the path. The light red set is the set
with the largest amount of work path, and the light black set is the set with the smallest
amount of work. Algorithm 2 describes a scaling process. In the example, the center
point is calculated for the light red point group, and all points in the set are spread out
with the scaling factor of Scale. In Fig. 2. the spread point set is marked in dark red. The
light black point set also calculates the position of the center point, and all points in the
set are contracted inward by the scaling factor of Scale. The dark black point set in the
figure is the result of the contraction.
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Fig. 2. Schematic diagram of the change process of task points in adpK-means clustering.
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Fig. 3. Clustering result graph after change.

The points in Fig. 3 are the positions of all path points after dynamic shrinkage. The
K-means algorithm is used to cluster again on the new data distribution, and you can see
that the clustering results have changed. One of the path points in the red set is allocated
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to the green set, and one is assigned to the blue group. In Fig. 3, the waypoints where the
attribution category changes are marked with boxes. The red waypoint set is the set with
the most massive workload estimated in the previous iteration. After one adjustment, the
samples in the red waypoint set are allocated to other robots, and the workload of the
robots in this set will be reduced. The robot workload will increase. From the example,
we can intuitively see the change of adaptive clustering to the clustering results. Among
them, the scaling factor Scale plays a vital role. Adaptive scaling does not guarantee that
you can get better than the last time. As a result, setting an appropriate Scale value can
make the algorithm search for clustering results with a balanced workload faster.

3.3 Path Planning

To verify that the task allocation algorithm proposed in this paper can reduce the overall
consumption of the system after the task allocation is completed, the same path planning
algorithm is used, namely the discrete multi-group fruit fly algorithm (GA-DMFOA)
fused with genetic operators, Carry out path planning. Path planning is to transform the
problem into a general traveling salesman problem to solve it according to the distribution
result. The GA-DMFOA algorithm [29, 30] is used to complete the path planning of each
robot. As shown in Fig. 4, taking ten path points {1,2,3,4,5,6,7,8,9,10} as an example,
and three robots as an example, the distribution resultis {1,2,3},{4,5,6,7},{8,9,10} three
sets, each robot is responsible for planning a group, and the intended path of each robot is
obtained through the GA-DMFOA algorithm. To verify that the task allocation algorithm
proposed in this paper can reduce the overall consumption of the system after the task
allocation is completed, the same path planning algorithm is used, namely the discrete
multi-group fruit fly algorithm (GA-DMFOA) fused with genetic operators, Carry out
path planning.

GA-DMFOA

{123} > Pathl
AdpK-means GA-DMFOA

{1,2,3,4,5,6,7,8,9,10} {4,5,6,7} » Path2
GA-DMFOA

{8,9,10} P Path3

Fig. 4. Schematic diagram of path planning example.

3.4 Algorithm Overall Steps

This paper introduces the relevant steps and implementation details of the adpK-means
clustering algorithm and completes the balanced allocation of path points. The multi-
traveling salesman problem is decomposed into a single traveling salesman problem in
a two-stage manner. The improved fruit fly optimization algorithm GA-DMFOA is used
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to plan the path of each robot, and an effective solution to the multi-robot path planning
problem is proposed. The parameters used in the multi-robot path planning algorithm are
shown in Table 1, where Algorithm 3 describes the solution process of the multi-robot
path planning problem. Figures 5(a) and 5(b) show the comparison of the results before
and after optimization using the delayed wait strategy when the distance between robots
is less than the safe distance 1_safe.

Table 1. Multi-robot path planning parameter description table.

Parameter Description
Kmeans_max_iter Maximum iteration times of adpK-means clustering
Scale Adaptive scaling
K Number of robots
Lsafe Safe distance between multiple robots
v The speed of the robot
M Number of individuals in the population
MaxlIter The maximum number of iterations
Group Population size in multi-species co-evolution
Prutate Mutation probability in genetic operators
- T steds g — satea
00 g oo
a e a 4 — 002
- e
0 — o1.2) =0 \ :?3)
— (1.3 S
20 2. 3; 200 22 ;:
250
0
200
o
150
150
100
100
©
©
o 50 100 150 200 20 o ©0 100 150 0 0
t t
@ ®)

Fig. 5. Path planning results of 4 robots on the tsp225. (a) Robot spacing before optimization. (b)
The distance between the robots after optimization.
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Algorithm 3: Multi-robot path planning algorithm flow

1 The related parameters of initial adpK-means clustering and GA-DMFOA are described in
detail in Table 1

2 Use adpK-means clustering algorithm for task allocation

3 Each data set after allocation is planned by a robot, and the GA-DMFOA algorithm is used
for each robot to find the optimal path

Use collision detection algorithm 6 to optimize the planned path

if Collision then

Adopt a delayed wait strategy

end if

o e Y

Output the optimal solution for path planning of all robots

4 Experiments

4.1 Parameter Analysis Experiment

A key parameter of the adpK-means clustering algorithm is the scaling factor Scale,
which is used to dynamically adjust the clustering space. This parameter directly affects
the degree of change of the path points in the clustering space in each iteration and
has a certain impact on the results of the algorithm. So this article debugs this param-
eter and tests it in pr76.tsp, kroA100.tsp and tsp225. The value set of the parameter
Scale is {1.05,1.10.1.15, - -- , 1.5}, for these 10 different values conduct experiment.
The number of robots is set to K = 4, and the maximum number of iterations is
Kmeans_max_iter = 100. In order to ensure the accuracy of the experiment, this paper
runs the algorithm 20 times independently. It takes the average value of the maximum
path length maxspan estimated by the greedy strategy as the final evaluation result.

Figure 6(a) is the data distribution diagram of pr76, and the experimental results of
the Scale parameter are shown in Fig. 6(b). Among them, the resulting curve obtained
by K-means clustering only once is marked as K-means, and the result obtained by the
adpK-means clustering algorithm is marked as adpK-means. It can be seen from Fig. 6(b)
that the experimental results of adpK-means are better than those of K-means under ten
sets of Scale parameter values, which can prove that the process of the adaptive clustering
algorithm is effective. Let’s analyze its experimental curve again. As the Scale parameter
increases, maxspan also tends to increase overall. This phenomenon is because the more
extensive the Scale, the greater the degree of displacement of the points in the clustering
space. The clustering results will also experience severe jitter. From the experimental
results log in the middle, we also observed that the larger the Scale, the larger the
clustering results will be in the iterative process. The maxspan fluctuates violently into a
broader data range. From the experimental results of pr76, the maxspan obtained when
Scale is 1.15 is the minimum value.

The parameter verification on a single data set is difficult to be convincing. This
paper conducted the same experiment on the larger-scale data set kroA100 and the
ultra-large-scale data set tsp225. The experimental results are shown in Fig. 7(b) and
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Fig. 6. The experimental results of the scaling factor Scale in the pr76 dataset. (a) pr76 data
distribution. (b) pr76 AdpK-means clustering allocation result

Fig. 8(b). In the experimental results, it can still be seen that after the Scale gradually
increases, the overall maxspan is also increasing. However, in the experimental results
of these two large-scale data sets, it can be seen that the larger the data scale, the greater
the difference in results caused by the changes in Scale. Because adpK-means is an
algorithm that dynamically adjusts the clustering space, when the data scale is large
and the point sets are denser, the Scale is too large, which will cause a large number of
sample categories to shift, and the results become of difficult to control. The iterative
process in adpK-means is to adjust the categories of samples at the edge of each point
concentration, and the category of a small number of samples should be changed during
each adjustment. Only in this way can we find a better solution, and the algorithm will
converge faster. In kroA100 and tsp225, Scale = 1.1 obtained the optimal solution in
the experiment. From the experimental results of the three data sets, it can be seen that
Scale = {1.05, 1.1, 1.15} is the three best solutions in the experimental results. Based on
this result, this paper uses Scale = 1.1 as a benchmark value, and dynamically adjusts
it on this basis when experimenting on different datasets.
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Fig. 7. The experimental results of the scaling factor Scale in the kroA100 dataset. (a) kroA100
data distribution. (b) kroA100 AdpK-means clustering allocation result
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4.2 Comparison with Basic K-Means Experiment

In order to verify the effectiveness of the algorithm, this paper compares the adpK-
means clustering algorithm (adpK-means) with the basic K-means clustering algorithm
(K-means) on different data sets. The path planning part adopts GA-DMFOA algorithm,
and the control parameters are consistent. Set the number of robots to K = 4, the adaptive
clustering scaling factor is Scale = 1.05, the number of adaptive clustering iterations
is Kmeans_max_iter = 100, the maximum number of iterations in the GA-DMFOA
algorithm is Maxlter = 500, and there are fruit flies in the population The number
of individuals is K = 60, the number of multi-group cooperation is Group = 3, and
the probability of mutation in the genetic operator is Pmuate = 0.05. In order to avoid
accidental interference, the algorithm was independently run 20 times in the experiment,
and the optimal value, average value, and worst value of the 20 results were compared.
The experimental results are shown in Table 2. From the experimental results, it can
be seen that on all the tested data sets, the experimental results obtained by the adpK-
means algorithm are better than the K-means regardless of the optimal value, average
value, or worst value. The development of the algorithm shows that the effectiveness
and applicability of the adpK-means algorithm are very high.

This paper visualizes the running results of the tsp225 data set and analyzes and
discusses the intermediate results of its running. Figure 9(a) shows the effect of path
allocation after using K-means clustering. In the figure, four different colors are used
to represent the results of varying robot allocation, and the path obtained under the
greedy strategy is drawn. Figure 9(b) shows the visualization of adpK-means results. It
can be seen from the figure that the clustering results of adpK-means and K-means are
inconsistent. According to the calculation process of the adaptive clustering algorithm,
it can be seen that the adpK-means clustering has found a better solution in the iterative
process. Observing the path curve drawn in the figure, it can be seen that the path is still
staggered, which further proves that the path planned under the greedy strategy is not the
optimal solution, and the GA-DMFOA algorithm is needed to prepare the path further.
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Table 2. Comparison of experimental results of adpK-means clustering algorithm.

239

Dataset Method Optimal Average Worst

St70 GA-MDFOA +K-means 199.87 200.10 228.56
Adp K-means 197.56 199.28 223.67

rat99 GA-MDFOA +K-means 376.57 388.10 414.36
Adp K-means 340.41 363.08 366.78

ch150 GA-MDFOA +K-means 2070.66 2082.37 2131.75
Adp K-means 2009.63 2056.08 2122.88

tsp225 GA-MDFOA +K-means 1237.29 1270.57 1298.11
Adp K-means 1180.17 1228.48 1263.70

tsp442 GA-MDFOA +K-means 16024.63 16362.57 16716.76
Adp K-means 15988.97 16316.12 16716.27

N
@) (b)

Fig. 9. On the tsp225 dataset, the path initialized after apdK-means is allocated. (a) K-means. (b)

apdK-means.

Table 3 shows the path length of each robot according to the greedy strategy. The
robot corresponds to the four colors of red, green, blue and black in Fig. 9(a) according
to the serial number. Directly from the maximum path length maxspan, adpK-means
obtains better results. Observing the data of each robot in the table, we can see that the
K-means distribution results are not balanced. The maximum and minimum values are
1358.25 and 965.48, respectively, while the maximum and minimum values are 1188.67
and 1047.10 in the results of adpK-means. It can be seen that adpK-means is deployed
between different robots, which makes the workload of each robot more balanced.

Table 3. The path length of each robot in the clustering result of tsp225.

Method Maxspan | Robotl | Robot2 | Robot3 | Robot4
K-means 1358.25 | 1358.25|1182.47 | 1042.91 | 965.48
AdpK-means | 1188.67 | 1188.67 | 1092.34 | 1047.10 | 1161.31
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In the second stage, the path planning needs to be redone after the path point allo-
cation. Table 4 shows the results of GA-DMFOA path planning. It can be seen from the
results that compared to Table 3, maxspan has been optimized slightly, which proves
the effectiveness of GA-DMFOA in the path planning stage, and also reflects that the
path obtained by the greedy strategy is closer to the optimal solution. Therefore, it is
reasonable to use the path length obtained by the greedy strategy as the workload of the
robot. The path planning results after K-means and adpK-means are allocated shown in
Fig. 10(a) and Fig. 10(b).

Table 4. Comparison of results after path planning.

Method Maxspan | Robotl | Robot2 | Robot3 | Robot4
K-means 1237.29 |1237.29 | 1049.92 | 966.37 | 920.74
AdpK-means | 1180.17 | 1154.30 | 1016.58 | 946.59 | 1180.17
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Fig. 10. On the tsp225 dataset, the effect of different allocation strategies on path planning. (a)
K-means. (b) apdK-means.

5 Conclusions and Future Work

Multi-robot systems are becoming an intensively investigated area of modern robotics
in the last few years. The key to using multi-robot systems is coordination. This paper
proposes an adaptive K-means clustering algorithm. Through experimental verification,
the algorithm improves the balance of multi-robot system task allocation, and reduces
the overall consumption of the multi-robot system, and improves the traditional K-
means algorithm from being initialized. And the influence of outliers. In the future, it
is necessary to consider how to allocate tasks when there are multiple tasks of different
types in a multi-robot system, that is, the task allocation of a heterogeneous multi-robot
system.
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