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Abstract. In this paper, we propose a novel adaptive multimodal fusion network
MIMF that is driven by the mutual information between the input data and the
target recognition pattern. Due to the variant weather and road conditions, the real
scenes can be far more complicated than those in the training dataset. That con-
structs a non-ignorable challenge for multimodal fusion models that obey fixed
fusion modes, especially for autonomous driving. To address the problem, we
leverage mutual information for adaptive modal selection in fusion, which mea-
sures the relation between the input and target output. We therefore design a
weight-fusion module based on MI, and integrate it into our feature fusion lane
line segmentation network. We evaluate it with the KITTI and A2D2 datasets, in
which we simulate the extreme malfunction of sensors like modality loss prob-
lem. The result demonstrates the benefit of our method in practical application,
and informs the future research into development of multimodal fusion as well.

Keywords: Multimodal fusion · Mutual information · Dynamic algorithm ·
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1 Introduction

Autonomous driving requires robust models to sense the environment with multiple
sensors and generate the perception accordingly, however, though existing multimodal
methods can perform well in most scenes, their fusion strategies may fail severely in
some abnormal scenarios [1, 2]. For instance, bad weather like rainy and foggy days
can put obstacles in the way of camera’s work [3]. The sensors themselves also contain
potential perception deviations such as the noise in the LiDAR point clouds intensity
[4]. In addition to these external and internal problems, there is another common but
disturbing trouble in practice, data streams from different sensors do not always match
in time due to the hardware limitation [5]. As the result, these problems lead to the
uncertainty in data, hence widen the model performance gap between the datasets and
real conditions and prevent the application of multimodal fusion methods.
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In order to overcome the obstacles, researchers have proposed several approaches
to enhance the robustness of models. Some research proposed to select a main modality
like images, to guide the fusion detection [5, 6] depending on the prior knowledge of
sensors under different conditions, but did not solve the problem yet. Others’ work was
about specific problems such as foggy [3] and illumination changes [7], which may not
be universal for other cases. These methods either focused on a specific issue, or were
not real robust models. Instead, Caltagirone et al. proposed to learn an adaptive fusion
weight in the LiDAR-camera network [2]. Mario et al. [3] and Yang et al. [8] applied
dropout to build adaptive models, while Kim et al. [9] used gate to decide which data to
fuse. These solution focus on the balance in multimodal fusion. That is, how to select
the proper sensor or feature dynamically, rather than using mixing them in a fixed way?

Inspired by the mutual information (MI) [10, 11], that measures the relation between
two variables, people refer to the amount of information in models [11–15]. A network
is supposed to reach its best during information acquisition. Therefore, the information
maximization equals to the fusion efficiency maximization to some extent. To address
efficient usage of MI, some research contributes to the MI estimation in neural network
[12, 13]. Based on the previousworkDeep InfoMax (DIM) [13],we proposed a novelMI-
based data fusion that figures the weight for feature fusion dynamically. The key idea of
our work is real-time calculation on theMI value of multimodal features and recognition
targets, which further generalize the fusion tendentiousness on them. We build an end-
to-end model and examine it on LiDAR-camera fusion lane line segmentation task on
the KITTI and A2D2 datasets [16–18].

The rest of the article is organized as follows. In the Sect. 2, we provide the definition
the adaptive multimodal fusion problem. In the Sect. 3, we first present the backbone of
our LiDAR-camera fusion network, then illustrate the integration of DIM. In the Sect. 4,
we present the experiment procedure, the results and discussion.

2 Problem Statement

Let X = [X1, . . . ,Xn]T denotes the data of different modalities,W presents the weight
matrix in neural networks, and Y denotes the target to be recognized. In deep learning,
we train the model with the optimization goal

W
∧

:= argminW‖Y − WX‖ + ‖W‖ (1)

where the multiplication contains normal matrix multiplication and Hadamard product.
Suppose {X1, . . . ,Xn} are coherent information source for recognition, for example, the
LiDAR point clouds X1 and camera images X2 provide relative measurements of the
same objects, although they are in different domains. For the common and basic fusion,
weighted-sum as feature fusion, it can be formulated as,

Z(X) = AW0[X1,X2]T = W0[α1X1, α2X2]T (2)

whereA = [α1I, α2I]T andW = W1AW0. Notice thatW0 = [W01,W02]T is individual
for different modalities, that means for W0X we use Hadamard product, but for W0iXi

we use both matrix product and Hadamard product.
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Then, Eq. 1 is written as,

Ŵ := argminWY − W1Z(X) + W = argminWY − W1AW0X + W (3)

Now we consider the computation of A. Usually, A is an empirical preset coefficient
matrix or is learned from the training data. However, in practical usage, the real-time
collected X̂ is different from the training set, that indicates the domain-gap between
AW0X and AW0X̂, and constructs a severe bias in fusion. Therefore, the key is to figure
out a dynamic adjustment algorithm for A. In the following section, we will present how
to apply the mutual information to obtain it by A ∼ MI := I(X;Y).

3 MIMF Network

3.1 Multimodal Feature Fusion Network

In this paper, we select the common middle feature fusion (MF) as backbone network,
which presents robustness in general tests and is regarded as the balance among early
fusion, middle fusion, and late fusion [1]. We use an encoder-decoder architecture, in
this way, the network can be easy to modify and compare the performance change. The
network comprises two pipelines in the encoder for point clouds and images, with 3
convolutional blocks in both branches. To process more complex features in the images,
we replace the convolutional blocks with ResNet-34 blocks except the first one. We fuse
the features of two modalities by concatenation when two pipelines merge as shown in
the Eq. 2. The information will be mix up in the following convolutional layers. Each
convolutional block includes a convolution layer, a batch normalization layer, and a
ReLU activation layer. The blocks in decoder distinguish the ones in the encoder for
they use transposed convolution to recover the feature maps. In order to better utilize
the raw information, we add skip-connection between the encoder layers and decoder
layers. In MF, we do not assign a fusion weight, instead, the network learns the adaptive
weight. But in MIMF, we embed the DIM module to provide a prior weight that can not
only work as regularization, but also avoid influence of bad observations.

3.2 DIM Module for MI Estimation

DIM was proposed by Hjelm et al. [13]. Based on MINE [12], which is regarded as an
efficient estimator for mutual information of two feature maps in neural networks. in
this paper, we modify the DIM to fit our fusion network. For two variables X,Y , their
mutual information I(X;Y) is,

I(X;Y) = �x∈X�y∈Yp(x, y) log p(x,y)
p(x)p(y) (4)

I(X;Y) = DKL(PXY ||PX ⊗ PY) (5)

where DKL is the KL-divergence. It is defined as:

DKL(P‖Q) :=EP

[

log
dP

dQ

]

(6)
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We mark PXY as J, and PX ⊗PY as M. By using the DV-distribution form and nature
of KL-divergence, we obtain the lower bound Î of I(X;Y):

I(X;Y) ≥ Î(X;Y) = EJ
[
Tω(x, y)

] − logEM
[
eTω(x,y)

]
(7)

where Tω : x × y → R is a function parameterized by ω that can be used in the Eq. 7
to approximate I(X;Y). We simply present a sample of Tω and consider it enough to
the expected function [13]. Provided that the multimodal features X1,X2 have the same
dimension, which can be achieved by feature alignment, and the size is (C,H,M,N). C
is the number of channels in convolutional layers, and (H,M,N) is the size of a channel.
We note the map in each channel as Xin , n ∈ [1,C]. Therefore, we rewrite the Eq. 7 as:

I
(
Xin;Y

) =̇ Î
(
Xin;Y

) = log
(
�Seu−umax

) + umax − log(�S) − �(uavg ·S)
�S

(8)

where S = 1 − S, and S = H × H is a diagonal matrix. Besides, U = Xn × Y , and
umax is the maximum value in matrix U , while uavg is the average value. Therefore, the
mutual information is represented as below, C ∈ {1, 2} in our model:

I(Xi;Y ) = 1
C

C∑

n=1
I
(
Xin;Y

)
(9)

Fig. 1. The structure of DIM block in our fusion network. It adopts features from two modalities,
the images and point clouds respectively, as X1 and X2, while taking the features from the last

convolution layer as Ŷ . Then, DIM block figures out the mutual information I
(
Xi, Ŷ

)
.

3.3 Mutual Information-Driven Multimodal Fusion

Recurrent Training Process. In the Sect. 3.2, we present how to compute the MI. To
apply it in the weighted-fusion model, we integrate it into the network and training-
testing procedure as well. As shown in Fig. 1, we take two branches in the DIM block,
which are for two data. DIM block computes the mutual information between them and
the expected feature Y respectively. However, we cannot obtain Y ahead of the network
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computation. Instead, we make the time-continuity assumption: for each i, Xi is a given
stable time sequence, that means Xt

i ≈ Xt−1
i and Y t ≈ Y t−1. In autonomous driving,

that indicates two frames of a sensor observations are similar because of the continuity
of scenarios and events. With this assumption, when we acquire a well-trained model in
test, we can treat the recognition of last frame as an approximation of the target at current
time, especially in a sequence model. Obviously, the fault rate of the last recognition
will be enlarged. But when DIM is integrated into a robust backbone, we can ignore it
in most time, and use a reset strategy to reduce the cumulative error. However, we have
only implemented a single-frame recognition model and lack enough time-series data,
thus we simply use compute the current data cyclically. Specifically, we compute on it
for the first time to simulate the ‘last frame result’, and use it in the second computation.
Therefore, we finish a DIM process approximately in testing. The Fig. 2 presents the
overall structure of MIMF. The yellow block is the DIM module, and the rest is the MF
baseline. The RGB images and point clouds are processed in two separated pipelines in
the encoder, and get fused in the DIMmodule. The sizes of feature maps are not changed

in DIM. That means DIM is flexible for most models. When DIM outputs the I
(
Xi, Ŷ

)

as above, we normalize them by

Fig. 2. The overview of the architecture of MIMF. It comprises a standard feature fusion in the
middle of an encoder-decoder network, and the DIM block during fusion. Before fusion, MIMF
has two individual pipelines to process different modal data.

αi = I
(
Xi,Ŷ

)

�I
(
Xi,Ŷ

) (10)

MI as Fusion and Regularization. With Eq. 10we obtain the fusionweightA in Eq. 2.
As a prior knowledge of the target of the tasks, MIMF pre-fetches data with a bias. It
further forces the fusion models to focus on more relevant information in testing. The
bias makes it unwilling to get affected by the fault measurements or information loss
data in complex scenes in practice. In addition, we observe that MIMF performs better
on the normal data. We explain the result with the random regularization effect which
is similar with the dropout. As MI is independent to the network or data, instead, it is
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determined by both the data and target simultaneously, it will be treated as a random
process under a distribution different from those of the noised data. Therefore, by learning
the data-independent input, the network avoids over-fitting the data. Notice our method
can only operate the case when as least one modality has good observation. Otherwise,
the dominated data will lead to serious problem.

4 Experiment

4.1 Dataset and Metrics

To evaluate our models, we select pictures by ignoring the roads with intersections or
without forward lines. Finally, we pick up around 400 data pairs from the KITTI road
detection track [17], and around 1000 pairs from the A2D2 dataset [18]. We use 60% of
the data as the training set, 10% for validation and rest for testing. The image resolution
is 1242 × 375 in KITTI, and 1920 × 1208 in A2D2. KITTI uses a 64-line Velodyne
to generate point clouds, but A2D2 combines one 8-line and two 16-line LiDARs. The
difference in LiDARs causes the gap in performance, but it would not matter in the
evaluation of the adaptive fusion. Because KITTI dataset has no lane line labels, we add
pixel-level annotation to it by hand. Labeled lines are supposed to be not only parallel to
the driving direction but also on the driving area. To reduce noise in the annotation, we
do not estimate any markings, behind obstacles like vehicles and poles on the roadside.
Different fromKITTI,A2D2provides similar lane line labels but they ignore the intervals
in dash lines.

We focus more on the recall of lane line and compute it as the lane accuracy. We
also consider the F2-score to balance in case the network over fits any class, and count
the mean recall on both class as the mAcc.

Implementation and Training. To integrate LiDAR point clouds and RGB images in
the same network, projection and value normalization are essential in preprocess. To
project the point clouds onto the image plane, given a point Pv = (

xv; yv; zv
)T, we

calculate:

Pv = Kv[Rv;Tv]Pv (11)

where Kv;Rv;Tv refer to the camera calibration matrix, rotation matrix and translation
matrix respectively. Then the projected front-view point cloud reflectance map will be
cropped to the same size of RGB images at 128 × 256. After that, the value of both
reflectance map and the RGB images will be normalize to [0, 1] interval. After data pre-
processing, we train our model for 250 epochs on two datasets respectively. As shown
in the Sect. 3, we generate the simulated ground truth of target features in the first round
of training, in which we also get the result of original MF model. Then in the second
round, we train the MIMF with the features. In testing, we use the pre-trained MF, just
as the procedure in training, to get target features, and test MF and MIMF.
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Result and Analysis. We present the training record in the Fig. 3, and the result of
testing in the Fig. 4. Note that we only put the training record of the last 50 epochs in
the figures, in which we can see the MIMF performs worse than MF at first, but they
converge together at last, that indicates the random disturbance from the independent
mutual information. However, in testing, we observe that MIMF performs better than
MF by 1–2%, which indicates the potential regularization function of MI-driven models
on the small training data. Note that due to the unknown unstable calculation in MIMF,
we have different output in testing, for which we process it tenth and count the average
value. Though the result is not deterministic, the DIM in MIMF output the stable fusion
weight, which is 1.25 : 0.75 for images and point clouds fusion in normal data in KITTI.
ForA2D2, the ratio is 1.35 : 0.65, and thatmeats the prior in dataset whenwe declare that
the LiDARs in A2D2 is not so suitable for segmentation tasks. We further complete the
modality loss on the KITTI dataset. With a prior knowledge of the MI of each sensor,
MIMF can keep the performance elimination in an acceptable range, while MF only
recall 50.29% of the lane pixels, far less than the result on normal data.

(a)                                                                 (b) 

Fig. 3. The comparison of training process between the baseline and MIMF on the KITTI and
A2D2 datasets. The blue lines are the MF baseline and the red are the MIMF. The lines present
the accuracy during training, which finally converge together. The X-axis indicates the epochs.
(Color figure online)

(a)                                                                 (b)

Fig. 4. The comparison of testing process between the baseline andMIMF on the testing datasets.
The blue lines are the MF baseline and the red are the MIMF. The X-axis indicates the epochs.
(Color figure online)
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5 Conclusion

In this paper, we propose a novel adaptive multimodal fusion network named MIMF. It
is driven by the mutual information between the input data and the target recognition
patterns. By leveraging the mutual information in fusion, our weight-fusion module is
able to performadaptively basedon the variant data.We further observe the regularization
effect of our MI-driven method. The evaluation result on the KITTI and A2D2 datasets
demonstrates the benefit of ourmethod in practical application. In the following research,
we will complete the experiments on more complex segmentation tasks and integrate a
more flexible MI-estimator will better real-time processing procedure.
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