
Chapter 8
Unsupervised Learning: Graph Vector

Graph data involves rich and complex potential relationships and plays an impor-
tant role in many real-world applications, being used extensively in areas such as
social networks, recommendation systems, science, and NLP. As AI continues to
gain popularity, a growing number of machine learning tasks need to analyze and
process graph data. One effective method for graph analysis is to map a graph’s
elements to a low-dimensional vector space while retaining the graph’s structure
and property information. This low-dimensional vector is called a graph vector (or
“graph embedding”), which is described below.

8.1 Graph Vector Overview

A graph is a data structure comprising a set of vertices, which are interconnected by
lines called edges, and relationships between the vertices, as shown in Fig. 8.1. The
graph is called a directed graph if each edge has a direction (in this case, the edges
are similarly known as directed edges). Conversely, the graph is called an undirected
graph if the edges have no direction. Two graphs are isomorphic if they have the same
number of vertices and edges and if the second graph can be obtained by permuting
all vertices in the first graph one by one to the names of the vertices in the second
graph. For example, a pentagon with five vertices and a five-pointed star with five
vertices are considered isomorphic. The number of edges associated with the vertex
represents the degree of a vertex. A common storage representation of a graph is the
adjacency matrix, which can be represented by the vertex set V and the edge matrix
E, as shown in Formula (8.1).
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Fig. 8.1 Common storage
representation of a graph
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(8.1)

Graphs are used in all sorts of real-world applications (e.g., in communi-
cation networks, social networks, e-commerce networks, and traffic networks).
Because they contain rich information, comprising potentially billions of vertices and
relationships between the vertices (edges), graph analysis is of particular importance.

However, these graphs are usually high-dimensional ones that contain massive
volumes of information, making it difficult to directly process them. An important
method for analyzing and processing such graphs is the graph embedding method
(GEM), which uses a low dimension, dense vector to represent a graph’s vertex and
reflect its structure information. The following key features [1] are paramount in a
good GEM [1].

1. Neighborhood awareness: The distance between hidden vectors on vertices
reflects the distance between the vertices on the graph.

2. Low dimension: This feature is necessary to facilitate subsequent calculations.
3. Adaptation: Adding a vertex (or edge) should not cause all calculation processes

to be repeated.
4. Continuity: Continuous representations have smooth decision boundaries and

enable refined representations of the graph members.

Depending on the application scenario, the GEM can be divided into vertex
embedding, edge embedding, mixed embedding, and whole graph embedding. In
the first category, vertex embedding, algorithms such as the classical DeepWalk
and Node2Vec, and graph-based neural network ones such as graph convolutional
networks (GCNs) and graph attention networks (GATs), are used.



8.1 Graph Vector Overview 153

The classical GEMs have two disadvantages: First, during the learning embedding
process, parameters are not shared between vertices, and calculation efficiency is low.
Second, because learning is directly performed on a particular structure graph, there
is a lack of generalization ability, and new or dynamic graphs cannot be processed.
Although CNNs are well known for processing Euclidean data, non-Euclidean data
is difficult to process. CNNs and GEMs have promoted the development of the graph
neural network (GNN) model, which captures the dependence of graphs through
message transfer between vertices of graphs.Despite the originalGNNbeing difficult
to train and offering suboptimal results, researchers have made significant improve-
ments in its network architecture, optimization methods, and parallel computing,
enabling it to achieve good learning capabilities. Over the last few years, GNN has
become a popular graph analysis method [2] due to advantages such as excellent
performance and high interpretability. In addition, the algorithms represented by
GCNs and graph attention networks are gaining significant attention.

This chapter explores the vertex embedding algorithm,with each section centering
on the following topics:

1. Section 8.2 focuses on the classical graph embedding method DeepWalk.
2. Section 8.3 examines the classical graph embedding method Large-scale

Information Network Embedding (LINE).
3. Section 8.4 discusses the classical graph embedding method Node2Vec.
4. Sections 8.5 and 8.6 cover the algorithms based on graph neural networks,

including GCN and GAT.
5. Section 8.7 delves into the application of graph neural networks in the

recommendation system.

8.2 DeepWalk Algorithm

The sparsity of graph representation data (such as the adjacency matrix) makes it a
challenging task to design algorithms. We need to eliminate the adverse impacts of
data sparsity during network application (such as network classification, recommen-
dation, and anomaly detection) in order to develop high-quality machine learning
algorithms. Establishing a method to map the complex and high-dimensional sparse
graph data to the low-dimensional dense vector is therefore of the utmost impor-
tance. Because machine learning cannot directly deal with natural languages, we
must convert words into vectors composed of numeric values so that we can subse-
quently establish models for analysis. In the field of NLP, one of the most prominent
algorithms is Word2Vec, which was inspirational in Bryan Perozzi’s proposal of
the DeepWalk algorithm [1] in 2014. DeepWalk, a classical unsupervised learning
algorithm in graph embedding, performs well in the absence of information and is
readily usable by statistical models.
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8.2.1 Principles of the DeepWalk Algorithm

TheDeepWalk algorithm learns the low-dimensional vector representation of a vertex
in a graph by truncating the local information of the random walk (which is often
used as a similarity measure in content recommendation and community discovery).
In the field of natural language, we can consider the vertex as a word, and the
sequence of the vertices obtained through the random walk is like a sentence. The
input of the DeepWalk algorithm is a connected graph (either directed or undirected),
and the output is a vector representation of all vertices in the graph. Figure 8.2
provides an example of low-dimensional vector representation of the DeepWalk
learning vertex, where (a) shows that the input is a graph and (b) shows that the
output is a two-dimensional vector representation of each vertex in the input graph.

(a) Input (graph)
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(b) Output (vector representation)

Fig. 8.2 Example of low-dimensional vector representation of the DeepWalk learning vertex
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The vector dimension is determined to be 2 because the two-dimensional vector is
easy to visualize. In the figure, the vertices shown in the same color are similar to
each other. The more vertices that two vertices have in common, the shorter the
distance between the two-dimensional vectors corresponding to the two vertices.

In order to performmodel learning using the natural languagemodeling algorithm,
datasets are required, which are the corpus of several sentences and the vocabulary of
several words. Conversely, in the DeepWalk algorithm, the corpus is a set of random
walk vertex sequences with limited length, and the vocabulary is the vertex of the
graph.

The DeepWalk algorithm is divided into two parts—the input (graph) and the
output (vector representation)—as shown in the following figure.

1. Generating a vertex sequence through random walk

We define a random walk W vi with vertex vi as its root vertex. For graph G, we
first perform an even, random sampling on a vertex vi, which is the root vertex of
the random walk W vi . We then perform uniform sampling on the neighbors of the
currently sampled vertex until the number of vertices in the random walk reaches
the maximum length t. Note that the lengths of vertex sequences in the random walk
can be different. Random walk not only captures community information, but also
has the following two advantages:

1. Parallel local exploration for the vertex is easy to implement.
2. Global recalculation is not required when minor changes occur locally, thereby

facilitating online learning.

2. Skip-Gram

Skip-Gram is a Word2Vec algorithm in NLP [3] and can learn the random walk
W vi to obtain a vector representation. Given a keyword, Skip-Gram calculates the
probability of maximizing the occurrence of surrounding words; that is, it predicts
the context. This is explained in more detail in Sect. 7.1. Skip-Gram traverses all
possible collocations appearing in the random walk window w. For each collocation,
the occurrence probability of neighbor vertices is maximized by each vertex vi and its
representation vector Φ(vj) ∈ R

d . The label dimension is equal to the number |V| of
vertices (similar to the one-hot vector), and the number of vertices is generally large.
Using Softmax to calculate this probability directly would consume a large amount
of computing resources for learning, so instead we can use the hierarchical Softmax
[4, 5], which approximates the probability to accelerate the training. Hierarchical
Softmax takes the prediction problem and, by assigning vertices to leaf nodes of a
binary tree, converts it into maximizing the probability of a path. If we assume that
the path to the vertex uk is a sequence (b0, b1, …, b�log|V |�) regarding the tree node,
we can obtain the following:

P(uk |�
(
ν j

)
) =

�log|V |�∏
l=1

P(bl |�(
ν j

)
) (8.2)
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Fig. 8.3 Process of the DeepWalk algorithm

where

P(uk |Φ(vj)) is the probability that the vertex uk is the context of the vertex vj;
Φ(vj) is the vector representation of the vertex vj; and
P(bl |Φ(vj)) is the probability that the lth node in the path of the vertex uk is selected
along the binary tree starting from the vertex vj.

For P(uk |Φ(vj)), the calculation of time complexity decreases from O(|V |) to
O(log|V |).

Figure 8.3 and the subsequent description provide details about the process used
in the DeepWalk algorithm.

1. In Fig. 8.3a, a randomwalk sequenceW v4 with v4 as the root vertex is obtained.
2. In Fig. 8.3b, a sample is generated on a sequence W v4 by continuously sliding

thewindow (with a length of 2w+ 1). If we assume that the vertex in thewindow
is [1, 3, 5] and the sample is {(1, 3), (1, 5)}, we can conclude that the center
vertex v1 is mapped to its vector representation Φ(v1).

3. In Fig. 8.3c, Hierarchical Softmax decomposes P(v3|Φ(v1)) and P(v5|Φ(v1))
into probability distribution that corresponds to the path from the root to v3
and v5. It maximizes the two probabilities by updating Φ, which is the vertex
representation matrix that needs to be calculated.

8.2.2 Implementation of the DeepWalk Algorithm

This section builds on the theoretical information provided earlier by outlining the
pseudocode necessary to implement DeepWalk and Skip-Gram.
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Algorithm 8.1 Pseudocode for Implementing DeepWalk

Algorithm 8.2 Pseudocode for Implementing Skip-Gram

8.3 LINE Algorithm

DeepWalk performs well on many datasets because it is a graph embedding method
based on random walk. However, the DeepWalk algorithm considers the similarities
between points based on only the explicit connections between such points (e.g.,
points 6 and 7 in Fig. 8.4); it ignores the possibility that similaritiesmay exist between
points that are not connected in the information network. In Fig. 8.4, for example,
there is no direct connection betweenpoints 5 and6.But there are similarities between
them, because they share points 1, 2, 3, and 4.

We can use an analogy here: If two people have many mutual friends, we can
assume that those twopeople probably have commonhobbies andhabits. By carefully
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Fig. 8.4 Information
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designing the loss function and considering the similarities between points 6 and 7
as well as those between points 5 and 6, we can ensure that the vector representation
obtained by the LINE algorithm [6] retains information about both the local and
global network architectures.

The LINE algorithm has strong universality and can be used for both directed and
undirected graphs. Furthermore, it can be used for both weighted and unweighted
graphs. The following sections provide a brief overview of the LINE algorithm and
pseudocode for its implementation.

8.3.1 Principles of the LINE Algorithm

Directly connected points always exhibit similarities between them. If there is a
direct connection between two vertices, the weight wij of the edge connecting the
two vertices represents a first-order similarity, which is a direct similarity between
the pairs of vertices. Conversely, if no direct connection exists between two vertices,
the first-order similarity is 0. Figure 8.4 shows a first-order similarity, between points
6 and 7.

The first-order similarity applies only to undirected graphs. For each undirected
edge (i, j) in an information network, the joint probability between the vertices vi
and vj is defined as follows:

p1(vi , v j ) = 1

1 + exp(−�(vi )T • �(v j ))
(8.3)

where

p1 (vi, vj) is the joint probability between the vertices vi and vj;
Φ (vi) is the low-dimensional vector representation of the vertex vi, andΦ (vi)∈Rd .

1 Source: http://www.www2015.it/documents/proceedings/proceedings/p1067.pdf.

http://www.www2015.it/documents/proceedings/proceedings/p1067.pdf
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This formula defines probability distribution p (•, •) in |V | × |V |, where V
denotes the number of vertices. p̂1 = wi j

W is the empirical probability, where W =∑
(i, j)∈E wi j . To preserve the first-order similarity,we can useKullback–Leibler (KL)

divergence to define the following objective function:

DKL
(
p̂1(•, •), p1(•, •)

) =
∑

(i, j)∈E
p̂1(vi , v j )(log p̂1(vi , v j ) − logp1(vi , v j )) (8.4)

where

DKL( p̂1 (•, •), p1(•, •)) is the KL divergence of the empirical joint probability
distribution and the ground truth joint probability distribution;
p̂1 (•, •) is the empirical joint probability distribution between vertices; and
p1 (•, •) is the ground truth joint probability distribution between vertices.

After removing constant terms from Formula (8.4), we can obtain the first-order
similarity objective function:

O1 = −
∑

(i, j)∈E
wi j logp1(vi , v j ) (8.5)

where

O1 is the first-order similarity objective function of the LINE algorithm;
wij is the edge weight between the vertices vi and vj; and
p1(vi, vj) is the ground truth joint probability between the vertices vi and vj.

As mentioned earlier, the first-order similarity represents the similarity between
the points that have direct connections. However, the information network may
containmany other points that have no direct connections. For such cases, the second-
order similarity is defined to cover the similarity between the neighbor network
architectures of the vertices u and v. If we use pu = (

wu,1, wu,2, . . . , wu,|V
)
to

indicate the first-order similarity between the vertex u and all other vertices, we can
conclude that the similarity between pu and pv is the second-order similarity between
the vertices u and v. Similar to the first-order similarity, the second-order similarity
between the vertices u and v is 0 if no vertex is connected to both u and v. Figure 8.4
shows a second-order similarity, between points 5 and 6.

For the second-order similarity, each vertex exists not only as itself but also as
the context of other vertices, meaning that two additional vectors are required: Φ(vi)
and Φ(vi)′. Φ(vi) is the vector representation of the vertex vi when it is regarded as
itself, andΦ(vi)′ is the vector representation of the vertex vi when it is regarded as the
context of other vertices. The second-order similarity can be used for both directed
graphs and undirected graphs. In the information network, one undirected edge can
be regarded as two directed edges, so for any directed edge (i, j), the probability that
the vertex vjbecomes the context of vi is defined as:
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p2(v j |vi ) = exp(�(v j )
′ T • �(vi ))∑|V |

k=1 exp(�(vk)
′ T • �(vi ))

(8.6)

where

p2(vj | vi) is the probability that the vertex vj becomes the context of vi;
Φ(vi)′T is the low-dimensional vector representation of vj as the context; and.
|V | is the number of vertices in the information network.

For each vertex vi, Formula (8.6) defines conditional distribution p2(• | vi).
Its empirical distribution p̂2(• |vi ) is defined as p̂2

(
v j |vi

) = wi j

di
, where di =∑

k∈N (i) wik (which is the out-degree of the vertex vi). To preserve the second-order
similarity, we can use KL divergence to define the following objective function:

DKL
(
p̂1(•, •), p1(•, •)

) =
∑

(i, j)∈E
di p̂2(v j |vi )(log p̂2(v j |vi ) − logp2(v j |vi )) (8.7)

where

DKL ( p̂1(• , •), p1(• , •)) is the KL divergence of the empirical joint probability
distribution and the ground truth probability distribution between the vertices used
as contexts;
p̂2 (vj | vi) is the empirical probability that the vertex vj becomes the context of
the vertex vi; and.
di is the out-degree of the vertex.

After removing constant terms fromFormula (8.7),we can obtain the second-order
similarity objective function:

O2 = −
∑

(i, j)∈E
wi j log p2(v j |vi ) (8.8)

To preserve both the first- and second-order similarities, the LINE algorithm
minimizes O1 and O2 and then concatenates the low-dimensional vectors obtained
based on O1 and O2. This makes it possible to obtain the low-dimensional vector
representation Φ(vi) of each vertex vi.

IfO2 is minimized directly, we must calculate the sum of all vertices when calcu-
lating the conditional distribution p2(• | vi), resulting in the time complexity of
minimizing O2 reaching O(|V |2). Here, the objective function that defines negative
sampling becomes:

logσ(�(v j )
′ T • �(vi )) +

K∑
n=1

En∼Pn(v)[logσ(−�(vn)
′ T • �(vi ))] (8.9)
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where

σ is the sigmoid function, and σ(x) = 1
1+exp(x) ;

K is the number of negative samples in each data sampling; and
Pn(v) ∝ d3/4

v .

If we replace logp2(vj | vi) with the objective function for negative sampling, the
objective function of the second-order similarity becomes:

O2 = −
∑

(i, j)∈E
wi j

⎧⎨
⎩logσ(�(v j )

′ T • �(vi )) +
K∑

n=1

Evn j Pn (v)[logσ(−�(vn)
′ T • �(vi ))]

⎫⎬
⎭
(8.10)

In addition, when O1 is minimized directly, uik = ∞, where i = 1, 2, …, |V |;
and k = 1, 2, …, d. To avoid uik = ∞, we need to change the objective function by
performing negative sampling:

O1 = −
∑

(i, j)∈E
wi j

⎧⎨
⎩logσ(�(v j )

T • �(vi )) +
K∑

n=1

Evn∼Pn (v)[log σ(−�(vn)T • �(vi ))]
⎫⎬
⎭ (8.11)

Regardless of whetherO1 orO2 is minimized, the objective function includes wij,
which appears in the gradient when we use the gradient descent method for mini-
mization. For different edges, wij may vary significantly, making it difficult to select
an appropriate learning rate. If we select a higher learning rate, gradient explosion
may occur on the edge with a larger wij. Conversely, if we select a lower learning
rate, gradient disappearance may occur on the edge with a smaller wij. To overcome
this conundrum, we therefore need to perform edge sampling for optimization, by
using the Alias method to sample the original weighted edges. The probability of
each sampled edge is proportional to the weight of the edge in the original graph,
and the sampled edge weight is used as a binary edge (the weight is 0 or 1). This
solves the problem of wij differing for different edges.

8.3.2 Implementation of the LINE Algorithm

This section builds on the theoretical information provided earlier by outlining the
pseudocode necessary to implement the LINE algorithm.
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Algorithm 8.3 Pseudocode for Implementing the LINE Algorithm

8.4 Node2Vec Algorithm

The DeepWalk and LINE algorithms described in Sects. 8.2 and 8.3, respectively,
depend on the strict concept of network neighborhood and both are insensitive to
the network-specific connection mode. The DeepWalk algorithm samples the vertex
neighborhood by using depth-first search (DFS) random walk, whereas the LINE
algorithm samples vertices by using breadth-first search (BFS). As shown in Fig. 8.5,
the Node2Vec algorithm—a graph embedding method and an extension of the Deep-
Walk algorithm—integrates both DFS and BFS. In Fig. 8.5, the neighborhood for
DFS is composed of vertices sampled in ascending order of distance to the source
vertex u (e.g., s4, s5, and s6), whereas that for BFS is limited to the vertices adjacent
to the source vertex u (e.g., s1, s2, and s3).



8.4 Node2Vec Algorithm 163

Fig. 8.5 DFS and BFS
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8.4.1 Principles of the Node2Vec Algorithm

The Node2Vec algorithm, proposed by Aditya Grover in 2016 [7], is used to learn
the continuous vector representations of a graph’s vertices. Compared with both the
DeepWalk and LINE algorithms described earlier, Node2Vec can effectively explore
different neighborhoods (homogeneity and structural equivalency) by designing a
biased random walk process for vertices, allowing it to learn more comprehensive
representations of the vertices. The Node2Vec algorithm functions in a similar way
to the DeepWalk algorithm and can be divided into two processes: biased random
walk and learning vector representations.

1. Biased random walk

The biased random walk process is implemented by assigning different sampling
probabilities to different vertices. If we assume that the source vertex is u, the random
walk length is l, the ith vertex is ci, and the start vertex is c0 = u, we can use the
following formula to calculate the sampling probability of the vertex ci:

P(ci = x |ci−1 = v) =
{

πvx
Z , (v, x) ∈ E
0, else

(8.12)

where

π vx is the unnormalized transition probability between the vertex v and the vertex
x; and
Z is a normalization constant.

To implement the biased random walk process, Node2Vec introduces p and q—
two parameters that are used in calculating the transition probability in Formula
(8.12). If we assume that the walk is performed through edge (t, v) to the vertex v, we
can calculate the transition probability of the edge (t, v) on the basis of v, allowing
us to determine the next vertex for the walk. We use the following unnormalized
transition probability:

2 Source: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
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Fig. 8.6 Example of random
walk

πvx = αpq(t, x) • wvxαpq(t, x) =

⎧⎪⎨
⎪⎩

1
p dtx = 0

1 dtx = 1
1
q dtx = 2

(8.13)

where dtx is the shortest path distance from the vertex t to the vertex v.
dtx must be one of {0, 1, 2} so that the two parameters p and q can adequately

control the walk process, as shown in Fig. 8.6. The return parameter p controls the
probability of subsequently accessing the vertex in the previous step. If the current
vertex is v, and p is greater than max(q, 1), the probability of accessing the vertex
t in the previous step will decrease. Conversely, the probability will increase if p is
less than min(q, 1). The “in–out” parameter q controls whether the walk process is
more like BFS or DFS. A larger q indicates that the vertex for the random walk is
closer to the vertex t, meaning that the walk process is more like BFS. Conversely,
a smaller q indicates that the vertex is farther away, which is more like DFS.

Each sampling step in biased random walk is based on the transition probability
π vx. We can pre-calculate this probability by using the Alias sampling method [8, 9]
and then use it directly in the sampling process. In this case, the sampling complexity
is O(1), meaning that the walk process of the algorithm is faster.

2. Vector representations of vertices

The biased random walk process enables us to obtain a set of vertex sequences for
random walk. Now we will introduce learning vector representations of vertices.

For a given graph G = (V, E), the mapping function from a vertex to a vector
representation is f : V →R

d, where d is the dimension of a representation vector. For
each vertex u ∈ V, an algorithm is used to learn the vertex vector representation. This
enables us to subsequently optimize the following formula of the objective function:

f ∗ = argmax
f

∑
u∈V

logP(Ns(u)| f (u)) (8.14)
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where

f (u) is the vector representation of the vertex u; and
NS(u) is the neighborhood of the vertex u under the neighborhood sampling
strategy S.

However, due to the complexity involved in solving the optimization problem, we
introduce the following two assumptions:

1. Conditional independence assumption:

P(NS(u)| f (u)) =
∏

ni∈NS(u)

P(ni | f (u)) (8.15)

where ni is the vertex in the neighborhood of the vertex u under the neighborhood
sampling strategy S.

2. Feature space symmetry assumption:

P(ni | f (u)) = exp( f (ni ) • f (u))∑
v∈V exp( f (v) • f (u))

(8.16)

Given these two assumptions, we can simplify the objective function in Formula
(8.14) as follows:

∂E

∂u j
= t j − y j = e j f

∗

= argmax
f

∑
u∈V

[−logZu +
∑

ni∈NS(u)

f (ni ) • f (u)]
(8.17)

where Zu is the partition function of each vertex, and Zu = ∑
v∈V exp( f (u)•( f (v)).

By using negative sampling, we are able to minimize the calculation costs of the
partition function. And to optimize Formula (8.17), we can use SGD—similar to
training a neural network—in order to continuously learn the parameters of mapping
f to obtain the vector representation of each vertex.

8.4.2 Implementation of the Node2Vec Algorithm

Similar to the DeepWalk algorithm, the Node2Vec algorithm is mainly used to
generate random walk sequences and learn vector representations. In this section,
we describe how to implement the Node2Vec algorithm through pseudocode.
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Algorithm 8.4 Pseudocode for Implementing Node2Vec

8.5 GCN Algorithm

In the field of computer vision, CNNs achieve good results because discrete convo-
lution can effectively extract spatial features. For low-dimensional matrices (such
as images or videos) where pixels are ordered, CNNs calculate weighted summa-
tion of center and adjacent pixels to extract spatial features. But when given high-
dimensional graph data that lacks an ordered structure, CNNs find it difficult to
process the data. In order to solve this problem, Bruna et al. proposed GCNs, which
aggregate the vertex information of irregular graph data.

The approaches that apply convolution to graph domain can be divided into spec-
tral and non-spectral. The GCN is a spectral approach that, by leveraging the spectral
graph theory, implements convolution operations on topologies, and uses the Lapla-
cian matrix to move convolution operations in the spatial domain to the spectral
domain. By representing any vector on a graph as a linear combination of Laplacian
eigenmatrices, the features of the graph can be extracted in the spectral domain.
This results in the GCN being more effective than the non-spectral approach, which
directly extracts the features in the spatial domain. Furthermore, because the GCN
model can extract information about the entire graph in one go, and the parameters of
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the filter can be shared at all positions in the graph [10], there is no need to calculate
the parameters of the filter for each vertex. This in turn significantly reduces the
complexity of the model.

Building on the first generation of GCN, Defferranrd et al. proposed to replace the
convolution kernel with the Chebyshev polynomial summation [11]. This method
enables us to obtain a smooth filter in the frequency domain while reducing the
model complexity. Subsequently, numerous approaches for replacing the convolu-
tion kernel with mathematical transformation have emerged. In the model described
in the following section, Kipf and Welling limit the filter to run in the first-order
neighborhood around each vertex, thereby reducing the calculation costs, increasing
the network efficiency, and improving the model accuracy.

8.5.1 Principles of the GCN Algorithm

The formula of the two-layer GCNmodel selected by Kipf andWelling is as follows:

Z = f (X,A) = Softmax
(
ÂReLU

(
ÂXW

(0))
W (1)

)
(8.18)

where Â = D̃
− 1

2 ÃD
− 1

2 , D̃i i = ∑
j Ãi j , and Ã = A + I N ;

A is the adjacency matrix of a graph;
W l represents W (0) and W (1), which are weight parameters; and
X is the vertex eigenmatrix of the graph.

The following explains the origin of Formula (8.18), starting with the formula:

L = IN − D−1/2LD−1/2 (8.19)

We use this formula to define the symmetric normalized Laplacian matrix, where
D is the vertex degree matrix.

The Laplacian matrix is then decomposed to obtain the following:

L = U�UT (8.20)

where

U is the normalized Laplacian eigenvector matrix (i.e., a spectral matrix), and
Λ is the corresponding eigenvalue matrix (a diagonal matrix).



168 8 Unsupervised Learning: Graph Vector

The spectral convolution on the graph may be defined as the product of the signal
x ∈ R and the filter diag(θ ) (θ ∈ R) in the Fourier domain, that is:

qϑ 	 x = Uqϑ UT x (8.21)

where

UTx is the graph Fourier transform of x; and
gθ is the function of the eigenvector L, that is, gθ (�).

Computing the Laplacian eigenmatrix involves substantial overheads if the graph
data is large, so to reduce the calculation complexity, we can use the K-order
truncation of Chebyshev polynomial and thereby approximate gθ (�).

gθ ′(
) ≈
K∑

k=0

θ
′
kTK (�̃) (8.22)

where

�̃ is the eigenvector matrix after scaling is performed based on the maximal
eigenvalue λmax, of L, and 
̃ = 2/λmax • 
 − IN; and
θ ′ is the Chebyshev parameter vector, where θ ′ ∈R

K . The Chebyshev polynomial
is defined by recursion: Tk(x) = 2xTk-1 − Tk-2(x), where T 0(x) = 1 and T 1 (x) =
x.

By replacing gθ with gθ
′
, we can obtain:

gθ ′ 	 x≈zU
K∑

k=0

θ
′
Tk(�̃)UT x

=
K∑

k=0

θ
′
UTk(�̃)UT x (8.23)

Tk(
̃) is a k-order polynomial of �, and U 
̃ kUT = (U 
̃ UT) k = L̃ k , where L̃
= 2

λmax
L– IN . Formula (8.22) can therefore be expressed as follows:

gθ ′ 	 x≈
K∑

k=0

θ
′
Tk(L̃)x (8.24)

With the Chebyshev polynomial approximation, the spectral convolution is no
longer dependent on the entire graph. Instead, it is related to only the k-order vertices
(i.e., the kth-order neighborhood) of the center vertex.
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After we perform the Chebyshev polynomial approximation, we can consider
each convolution operation as aggregating the k-order neighbor information for each
center vertex. Even so, the calculation amount remains high after approximation
because the graph structure data is large. In order to reduce the calculation costs, we
can further simplify the calculation by letting k = 1, meaning that the information of
only first-order neighbors is aggregated at any given time. In this case, the spectral
convolution can be approximated as a linear function of L̃. Asmentioned earlier, only
the dependence between the center vertex and the first-order neighbor is established.
In order to solve this problem, a stacked GCN must be used to establish the depen-
dence of k-order neighbors.We are able to obtain the first-order neighbor information
of the second-order graph convolution after superimposing the first-order neighbor of
the second-order graph convolution. This means that the center vertex will obtain the
second-order neighbor information through the first-order neighbor of the second-
order graph convolution, and so on. Furthermore, the Chebyshev polynomial does
not limit the dependence of k-order neighbors when this dependence is established.

We can further simplify the calculation. In the linear model of the GCN, we can
obtain the following first-order linear approximate expression of spectral convolution
by defining λmax ≈ 2:

gθ ′ 	 x≈θ
′
0x + θ

′
1(L − I N )x

= θ
′
0 x − θ

′
1D

− 1
2 AD− 1

2 x (8.25)

Formula (8.25) includes only two parameters: θ
′
0 and θ

′
1. So to establish the

dependence of k-order neighbors, we can use a k-layer filter.
We limit the number of parameters to avoid overfitting and minimize the matrix

multiplication of each layer to reduce the calculation complexity. If we let θ = θ
′
0 =

−θ
′
1, we can express Formula (8.25) as follows:

gθ 	 x ≈ ϑ
(
I N + D− 1

2 AD− 1
2

)
x (8.26)

The eigenvalue range of IN + I N + D− 1
2 AD− 1

2 is [0, 2], meaning that when
the operation is repeated continuously (in very deep networks), gradient explosion
or disappearance may occur. To avoid this problem, the renormalization trick is
introduced:

I N + D− 1
2 AD− 1

2 → D̃
− 1

2 Ã D̃
− 1

2 (8.27)
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where Ã=A+ IN , D̃i i =
∑

j ÃWhen the representation of each vertex in a graph
is not a separate scalar but is instead a vector of size C, we can use its variants for
processing:

Z = D̃
− 1

2 Ã D̃
− 1

2 Xϑ (8.28)

where

θ is a parameter matrix, and θ ∈ R
C × F; and

Z is the corresponding convolution result, and Z ∈ R
N×F

In this case, the vertex representation of each vertex is updated to a new F-
dimensional vector that includes the information of the corresponding first-order
neighbor.

We are now able to obtain the layer-by-layer propagation expression of the graph
CNN:

H (l+1) = σ
(
D̃

− 1
2 Ã D̃

− 1
2 H (l)W (l)

)
(8.29)

where the input of the l-layer network isH(l), and H(l) ∈ R
N×F (initial input is H (0) =

X);

N is the number of vertices in the graph, and each vertex is represented by a
d-dimensional eigenvector;
W (l) is the weight parameter that needs to be trained, and W (l) ∈ R

d×d ; and
σ is the activation function.

Through this derivation, we are able to obtain the GCN architecture:

Z = f (X, A) = Softmax
(
ÂReLU

(
ÂXW

(0))
W (1)

)
(8.30)

8.5.2 Implementation of the GCN Algorithm

This section describes how to implement the GCN algorithm through pseudocode.
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Algorithm 8.5 Pseudocode for Implementing GCN

8.6 GAT Algorithm

For the spectral approaches represented by the GCN, each calculation relies on the
Laplacian matrix eigenvector and graph structure. This makes it difficult to apply a
GCN model on other graphs once it has been trained on a particular graph structure.
Furthermore, because the GCN model lacks the inductive ability, it has a limited
scope for application.

For the non-spectral approaches, convolution is defined directly on the graph to
operate adjacent vertices in space. However, such approaches are problematic, in that
it is challenging to define an operation that can handle neighbors of different sizes
while also ensuring that CNN parameters can be shared. To address this challenge,
researchers have made a series of improvements [12–15]. For example, in 2017,
Hamilton et al. proposed a classical inductive learning algorithm called GraphSAGE.
In GraphSAGE, sampling is performed based on the neighborhood of a fixed size,
and each vertex is represented by an aggregate of its neighbors. This means that a
vertex not present during the training can still be appropriately represented by its
neighbor vertices if it subsequently appears at a later stage. GraphSAGE has shown
promising results in several large-scale induction benchmark tests.
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In practice, however, the impacts of neighbor vertices on the target vertices are
different. The methods referred to earlier do not take into account that fact that
different neighbors are of the same importance. In 2018, Petar et al., taking inspira-
tion from the attention mechanism widely used in deep learning models, proposed
the graph attention network (GAT) [16], a graph data vertex classification model
based on the attention mechanism [16]. The attention mechanism imitates human
intuition, focusing on salient parts helpful for the target task while ignoring other
invalid information. Similarly, theGATpays attention to its neighbors and determines
the weights of the neighbor vertices through the self-attention strategy. Different
neighbor vertices have different impacts on the target vertices, allowing the hidden
representation of each target vertex to be calculated more effectively.

8.6.1 Principles of the GAT Algorithm

This section focuses on the graph attention layer, which is an important component
of the graph attention network. Here we make the following assumptions:

• The input of the current attention layer is a set of vertex features: h = {�h 1, �h 2,
…, �h N}, �h i ε R

F , where N is the number of vertices, and F is the number of
features of each vertex.

• The output of the attention layer is a new set of vertex features: h′ = {�h
′

1 1, �h
′

2,

…, �h
′

N}, �h
′

i ∈ R
F ′.

Becausewe need at least one nonlinear transformation so thatwe can convert input
features into higher-level features, we perform linear transformation on each vertex,
and then use the self-attention mechanism a to calculate the attention correlation
coefficient eij. This coefficient indicates the importance of the feature of vertex j to
vertex i.

ei j = a
(
W �hi ,W �h j

)
(8.31)

where

W is the weight matrix, and W ∈ R
F ′×F; and

a is the self-attention mechanism a: RF ′×R
F ′→R.

We then introduce the attention mechanism into the graph structure through
masked attention: eij is calculated only for vertices of j ∈ Ni, where Ni is a neighbor
vertex of vertex i (and includes vertex i itself). To normalize all neighbor vertices j
of vertex i, making it easier to compare the coefficients of different vertices, we use
the Softmax function:

ai j = Softmax j (ei j ) = exp(ei j )∑
k∈Ni

exp(eik)
(8.32)
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(a) Calculation of the attention coefficient (b) Aggregation of the multi-head graph attention
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Fig. 8.7 Network architecture of the attention mechanism3

The attention mechanism a may be a single-layer feedforward neural network,
which is determined by �a ∈R

2F′ andLeakyReLUnonlinear activation function (slope
a = 0.2 when the input is negative). Figure 8.7a shows the network architecture of
the attention mechanism.

In order to calculate the attention coefficient, we use the following formula:

ai j = exp(LeakyReLU(�aT [W �hi ||W �h j ]))∑
k∈Ni

exp(LeakyReLU(�aT [W �hi ||W �hk]))
(8.33)

where • T indicates the transpose operation, and || indicates the concatenation
operation.

By performing the preceding calculation, we are able to obtain the normalized
attention coefficient, which we can subsequently use to calculate the output features
of each vertex.

�h
′

i = σ

⎛
⎝∑

j∈Ni

ai jW �h j

⎞
⎠ (8.34)

Similar to the Transformer model proposed by Vaswani et al., extending the self-
attentionmechanism to themulti-head attentionmechanism improves the calculation
stability. The calculationprocess involves performingK calculations separately based

3 Source: https://arxiv.org/pdf/1710.10903.pdf.

https://arxiv.org/pdf/1710.10903.pdf
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on the self-attention mechanism, and then concatenating the obtained features to
obtain the final vertex representation:

�h
′

i = ||Kk=1 σ

⎛
⎝∑

j∈Ni

ak
i j
W k �h j

⎞
⎠ (8.35)

where

ak
i j
is the normalized attention coefficient obtained through the Kth calculation

based on the self-attention mechanism; and
Wk is the corresponding input weight matrix for linear transformation.

When the multi-head attention mechanism is used at the last layer of the network,
concatenation is less effective and so is replaced with an averaging operation. After
nonlinear activation, the vertex representation of the multi-head attention layer is
obtained:

�h
′

i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

ak
i j
W k �h j

⎞
⎠ (8.36)

Figure 8.7b illustrates the aggregation process of the multi-head graph attention
layer (K = 3). Different arrow styles in the graph represent separate attention calcu-
lation processes. The representation of a target vertex in the graph attention network
is the weighted sum of its first-order neighbor vertices including the target vertex,
which is a calculation process on a local graph.

The GAT has a number of advantages, such as high efficiency, flexibility, and
portability. To achieve high efficiency, the GAT implements parallel calculation for
the local graph vertex neighbor pair. To realize flexibility, it assigns different weights
to vertices of different degrees. And in terms of portability, themodel can be extended
to unknown graphs, representing the ability of inductive learning. TheGAT considers
the different importance of neighbor vertices to target vertices and has achieved good
results in some practical scenarios.

8.6.2 Implementation of the GAT Algorithm

This section describes how to implement the GAT algorithm through pseudocode.
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Algorithm 8.6 Pseudocode for Implementing the GAT Algorithm

8.7 Application: Recommendation System

We are currently in the midst of an information boom driven by the unprecedented
popularity of the Internet and the near-ubiquitous use of mobile terminals. In today’s
fast-paced world, people want information at their fingertips. But given the vast
amounts of information now available, it has become critical to ensure that people
can obtain what they want, when they need it. In order to meet such demands, the
recommendation system is developed.

The existing recommendation systems employ collaborative filtering, indicating
that similar users like the same items and, conversely, the same user likes similar
items. This type of filtering is divided into memory-based methods and model-based
methods.

Memory-based methods can be further divided into user-based and item-based
collaborative filtering. User-based collaborative filtering recommends items to
similar users, whereas item-based collaborative filtering recommends similar items
to users. In order to implement these two methods, we need to define the similarity
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between items or users. Although these methods are simple, easy to understand, and
easy to implement, a significant amount of time is required to calculate the similari-
ties between each pair of items or users, and to find similar items or users, especially
when there are a huge number of items or users.

For highly efficient recommendation systems, one of the most successful methods
for implementing collaborative filtering is the model-based matrix factorization. In
this model, a user and an item (a user-item pair) are modeled as implicit vectors in the
same space based on interactions between the user and item. For an unknown user-
item pair, the preferences are calculated based on the vectors of the corresponding
user and item (usually through the vector inner product operation). Two popular
models in the matrix factorization family are SVD and SVD + + . The SVD model,
which is based on the generalmatrix factorization, improves the stability of themodel
training by introducing user bias, item bias, and global bias variables. SVD ++ , as
an extension of SVD, improves the effectiveness by introducing an auxiliary feature:
the interaction history between the user and the item.

8.7.1 Recommendation System in Industry Applications

The recommendation system dates back to as early as the twentieth century, but
it wasn’t until the last decade when the industry began adopting it more widely.
For example, it is estimated that Amazon sells more than 35% of its listed items
through recommendation systems. In addition, by using recommendation systems,
Google generated revenue of $43 billion in Internet advertising in 2014, and in 2015,
Google Play and Apple’s App Store earned $10 billion and $21 billion, respectively.
Huawei—ranked highly in the Fortune Global 500 list—also applies the recom-
mendation system throughout its business operations. The recommendation system
involves an extensive range of content, so extensive in fact that we could write an
entire book dedicated exclusively to this topic. So, given the space limitations in this
book, we will focus on the recommendation system only from the perspective of
industry researchers.

Industry recommendation systems consist of three steps: candidate set generation,
matching prediction, and sorting. The number of items that these systems recommend
maybemillions ormore, butmatching predictions and sorting on such large candidate
sets cannot be performedwithin an acceptable timeframe.As a result, it is necessary to
generate a smaller candidate set (typically ranging fromhundreds to thousands) based
on the current recommendation scenario, the features of the item, and even the user’s
preferences. After the candidate set is generated, the matching prediction model
predicts the current user’s preference for each item in the candidate set. Ultimately,
the sorting step combines the results of the matching prediction model with business
rules to generate the final sorting results.
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An important part of industry recommendation systems is click through rate (CTR)
prediction, which first appeared in online advertisement scenarios and belongs to the
matching prediction step described earlier. In online advertisement scenarios using
the cost per click (CPC)model, revenue is generated for the platform each time a user
clicks on an advertisement. The amount of revenue is specified in a contract between
the advertiser and platform. In most cases, the platform uses CTR× bid sorting rules
for candidate advertisements, where CTR is an estimate of the current user’s CTR
for the advertisement, and bid represents the amount of money the advertiser will
pay to the platform if the user clicks on the advertisement. The sorting rules arrange
candidate advertisements according to the expected benefits; that is, they are sorted
based on the revenue they generate for the platform each time they are displayed.
Such rules are also used for real-time bidding advertisements, and similar rules are
used in game and video sorting scenarios. Game sorting is generally based on CTR×
LTV, where life time value (LTV) is the average fee a user pays for the game. Video
sorting generally uses CTR×WT, where watch time (WT) is the average time a user
spends watching the video. Given its wide scope of application, CTR prediction is
extremely important in the industry recommendation system.

The recommendation system models used by most enterprises have evolved from
the wide model—using logistic regression (LR) or factorization machine (FM)—to
the deep learning model, and then to the reinforcement learning model in addition
to the deep learning model where the graph structure is considered.

To understand the graph neural network-based model, we first need to under-
stand the input data form used in the recommendation system. This input data form
differs significantly from that used in NLP and computer vision. The recommenda-
tion system covers many discrete features, such as gender, city, and day of the week.
Because these features have no numerical meaning, they are typically represented
by one-hot encoding. In this encoding method, all possible values are represented by
a high-dimensional vector with a value of 0–1, where the corresponding bit is 1 and
all other bits are 0. The dimension of the one-hot vector is the number of all possible
values. For example, “Friday” can be represented as [0, 0, 0, 0, 1, 0, 0], the gender
“male” can be represented as [0, 1], and the city “Shanghai” can be represented as
[0, 0, 1, …, 0]. From the preceding information, we can see that the input data of the
recommendation system is usually high-dimensional and sparse.

8.7.2 Graph Neural Network Model in a Recommendation
System

Ultra-large recommendation systems face several challenges due to the high-
dimensional and sparse nature of their input data:

1. Storage: The data is structured and all features are arranged in a certain order,
with many of them duplicated. For example, if there are 10,000 male users, the
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system needs to store 10,000 male-represented vectors, such as [0, 1]. As the
number of features, users, and items increases, the amount of duplicated data
becomes larger.

2. Sparsity: For movie-recommending scenarios like MovieLens [17], the data is
usually represented by a “user-item” score matrix. As the number of users and
items increase, the dimensions and sparsity of the score matrix also increase.
This is becausemost users do not scoremost items, and the collaborative filtering
algorithm relies on the score matrix.

3. Scalability: The ability to process ever-increasing volumes of data and the expo-
nential growth of collaborative filtering calculation make it extremely difficult
for recommendation systems to scale easily [18].

The graph data structure makes it possible to address these challenges.

1. For repeated storage of features, male can be represented as a vertex on a graph,
with all male users having an edge from the user’s vertex to the male vertex.
This means that information about only the edge needs to be maintained. For
higher-dimensional features, the effectiveness of graph structure storage is more
pronounced.

2. In response to the sparsity challenge, graph structure storage is vertex-centric,
and only the in-edge and out-edge are maintained.

3. To facilitate scalability, the graph structure makes it easy to add new vertices
and edges, requiring the model to be updated only for the new additions.

PinSage [18], jointly published by Pinterest and Stanford University, is the
industry’s first commercial end-to-end recommendation model based on the graph
neural network. Pinterest, an image-based social networking site, displays images
in the form of a waterfall stream, where new images are automatically loaded at the
bottom of the page without needing users to change the current page. Users can pin
images of interest on the pinboard and can save and share the images, while other
users can follow and forward the images. The main items recommended on Pinterest
are images (called Pins), which may include images of food, clothes, products, etc.
Users group images they like into Boards. Pinterest data can be modeled to construct
a bipartite graph, which includes two types of vertices (Pins and Boards). In the
bipartite graph, shown in Fig. 8.8, there is no connection edge between vertices of

Fig. 8.8 Pinterest bipartite
graph

Pins Boards
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the same type, and the vertex features include images and textual annotations (title
and description).

In the traditional GCN, the entire graph is used for training. However, in industrial
recommendation scenarios such as Pinterest, there are billions of vertices and tens
of billions of edges, making it difficult to perform operations if the entire graph is
used for training. To solve this problem, PinSage took inspiration fromGraphSage to
make improvements to the GCN. GraphSage can be considered as a GCN based on
randomwalk and is an inductive variant of theGCN. It learns the vertex representation
by sampling the neighbor information of the aggregated vertex in order to avoid
operating the entire Laplacian matrix of the graph. This means that GraphSage can
be generalized to an unknown vertex if one exists, and its neighbor information can
be used to learn the representation of the vertex. The key improvements PinSage
made to the GCN are as follows:

1. Local graph convolution is performed by dynamically constructing a new
computational graph through random walk (short random walks) sampling of
vertex neighbors. Because the importance of different neighbors to the target
vertex is different, the neighbor will have an importance score during the
information aggregation.

2. Distributed training is performed based on mini-batch. The CPU is used to
sample vertex neighbors to obtain the features required for defining local convo-
lution. Through tensor calculation and hardware acceleration, the distributed
stochastic gradient descent calculation is performed for each pre-calculated
small graph. The convolution operation can be performed separately, and the
parameters of each convolutional layer are shared.

3. Repeated calculation of vertex neighbors is eliminated by using related
technologies during inference.

The PinSage algorithm uses the local graph convolution to learn the vertex embed-
ding of the web-level graph containing billions of objects, whereby high-quality
vertex embedding facilitates subsequent recommendations. The PinSage algorithm
can be summarized into two parts.

The first part is convolution, which is shown in Algorithm 8.7. The vertex embed-
ding calculation, vertex neighbors, weights of the vertex neighbors, and aggregate
function are used as the input. Through information aggregation, the neighbor embed-
ding (line 1 of the pseudocode) is calculated. Then, the neighbor and vertex embed-
dings are used to update the current vertex embedding (line 2 of the pseudocode).
Finally, the resulting vertex embedding is normalized (line 3 of the pseudocode).
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The method for sampling vertex neighbors during information aggregation has two
advantages: (1) the number of neighbors is fixed and the memory used for calcu-
lation is controllable; and (2) different importance of the neighbors to the vertex is
used for information aggregation. Each time the convolution operation (Algorithm
8.7) is used to obtain the new embedding of a vertex, more information about the
local graph structure around the vertex can be obtained by superposing several such
convolutions.

Algorithm 8.7 Convolution.
Input: Embedding zu of the current vertex u, neighbor embedding set {zv|v∈N

(u)}, neighbor weight set α, and aggregate function γ(•)
Output: New embedding zNEWu of the vertex u.
(1) Aggregate neighbor information

nu ← γ
({
ReLU

(
Qhv + q

)|v ∈ N (u)
}
, α

)

(2) Calculate and update the vertex embedding

zNEW
u ← ReLU (W • Concat (zu, nu) + w)

(3) Normalize the vertex embedding

zNEW
u ← zNEW

u /
∥∥ zNEW

u

∥∥
2

The second part of the PinSage algorithm is mini-batch, shown in Algorithm 8.8,
which stacks convolutions into a mini-batch of vertices M to generate the embed-
ding. The mini-batch vertex neighbor sampling process is performed to obtain the
neighbor of each vertex (lines 2–8 of the pseudocode). Then, K convolutions are
used to iteratively generate K representations of the target vertex (lines 9–16 of the
pseudocode). Finally, the vertex embedding is obtained through learning (based on
the previously obtained embedding) by using a fully connected neural network (lines
17–19 of the pseudocode). G1, G2, and g are the parameters of the fully connected
layer.
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Algorithm 8.8 Mini-batch.

PinSage has achieved positive results and encouraged the use of the graph convo-
lution algorithm in commercial recommendation systems. In the future, graph neural
networks can be expanded to solve the learning problems of other large-scale graph
representations and generate greater value in real-world scenarios.
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