
Chapter 5
Convolutional Neural Network

In this chapter, we describe the CNN. This network is a special neural network that
uses convolution instead of general matrix multiplication at one or more layers. In
essence, it is a feedforward neural network that uses convolutional mathematical
operations.

5.1 Convolution

The convolution operation is fundamental in the CNN. Unlike the dot product accu-
mulation operation in theMLP, the convolution operation is like a slidingwindow that
slides from left to right and from top to bottom. (In this section, we focus exclusively
on two-dimensional convolution operations.) Each time the window slides from one
point to another, a weighted mean value focused on a small piece of data or local
data is obtained. The convolution operation consists of two important components:
input matrix and convolution kernel (also known as the filter), which correspond to
the input and the weight in the perceptron, respectively. As shown in Fig. 5.1, we
can obtain the desired output matrix (also known as a feature map) given the input
matrix by sliding the kernel matrix on the input matrix.

The calculation is performed as follows during the convolution operation: First,
the kernel matrix is applied to the 3 × 3 blocks in the upper left corner, as shown in
Fig. 5.2a. The first output value 5 is obtained from the dot product. Then the kernel
matrix is moved to the right twice. For eachmove, the output in one block is obtained,
as shown in Fig. 5.2b, c. The output values 5, 8, and 5 in the first row are obtained.
Similarly, the convolution of the second row is calculated to obtain the final output
result, as shown in Fig. 5.2f.

We can see that the convolution kernel repeatedly calculates convolution for the
input matrix and traverses the entire matrix. Furthermore, each output corresponds to
a local feature of a small part of the input matrix. One advantage of the convolution
operation is that the output 2 × 3 matrix shares the same kernel matrix; that is, it

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_5&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_5

62 5 Convolutional Neural Network

Input matrix Feature mapConvolution kernel

Fig. 5.1 Components of the convolution operation

 (a) Convolution operation 1 (b) Convolution operation 2 (c) Convolution operation 3

 (e) Convolution operation 2 (f) Output result (d) Convolution operation 1

Fig. 5.2 Steps of the convolution operation

shares the same parameter setting. If the full-connection operation is used, a 25 × 6
� 3× 3matrix is required, and each convolution operation in Fig. 5.2 is independent.
This means that we do not need to slide the window from one point to another in
order to perform convolution calculation. Instead, the convolutional values of all the
blocks can be calculated concurrently for efficient operation.

Sometimes the output matrix needs to be resized, and this can be accomplished
by using two important parameters: stride and padding. As shown in Fig. 5.3, the
stride for lateral movement is 2 instead of 1, (this means that the 3 × 3 blocks in the
middle are skipped), whereas the stride for longitudinal movement is 1. By setting a
stride greater than 1, we can reduce the size of the output matrix. The other important
parameter is padding. As shown in Fig. 5.4, padding allows the calculation of the
kernel matrix to be extended beyond the confines of the matrix. This is achieved by
padding one row of 0 s (false pixels), one column of 0 s, and two columns of 0 s on
the lower, left, and right sides of the original matrix. The padding increases the size
of the output matrix and allows the kernel function to be calculated around the edge
pixels. In convolution calculation, the size of the output matrix can be controlled
based on the stride and padding parameters. This can be useful if we want to obtain

5.1 Convolution 63

Fig. 5.3 Stride

Fig. 5.4 Padding

a feature map with the same length and width, or half-length and half-width, for
example.

The convolution operation above involves only one input matrix and one kernel
matrix. However, we can superimpose multiple identical matrices together. As an
example, take an image, which typically includes three channels that represent the
three primary colors: red, green, and blue. In a multi-channel convolution operation
of an image (as shown in Fig. 5.5), the red, green, and blue channels are tiled first.
These channels are convoluted by using their respective kernel matrices, and then
three output matrices are added to obtain a final feature map. Note that each channel
has its own kernel matrix. If the number of input channels is c1 and the number of
output channels is c2, a total of c1 × c2 kernel matrices are needed.

5.2 Pooling

As described in Sect. 5.1, we can reduce the size of the output matrix by increasing
the stride parameter. Another common method for such reduction is pooling. For
example, a 4 × 4 feature map can be reduced to 2 × 2 regions, which are then
pooled as a 2 × 2 feature map, as shown in Fig. 5.6. There are two common types of

64 5 Convolutional Neural Network

Fig. 5.5 Multi-channel convolution operation

Maximum value 3 Mean value 1.5

Fig. 5.6 Pooling

pooling: max-pooling and mean-pooling. As the names imply, max-pooling selects
the maximum value of a local region, whereas mean-pooling calculates the mean
value of a local region.

Max-pooling can obtain local information and preserve texture features more
accurately. It is ideal if we want only to determine whether an object appears in
an image, not for observing the specific location of the object in the image. Mean-
pooling, on the other hand, can usually preserve the features of the overall data
and is more suitable for highlighting background information. Through pooling,
some unimportant information is discarded, while information that is more important
and more favorable to a particular task is reserved, to reduce dimensionality and
computational complexity.

Similar to the convolution operation, the pooling operation can be adapted to
different application scenarios by overlapping and defining parameters such as stride.
Unlike the convolution operation, however, the pooling operation is performed on a
single matrix, and convolution is a kernel matrix operation on an input matrix. We
can understand pooling as a special kernel matrix.

With a basic understanding of the convolution and pooling operations, we can take
LeNet in Fig. 5.7 as an example to examine what comprises a CNN. Given a 1 × 32

5.2 Pooling 65

Input layer

Convolutional
layer 1 Pooling

layer 1

Convolutional
layer 2

Pooling
layer 2 Fully

connected
layer 1

Fully
connected

layer 2

Output
layer

Convolution Pooling Convolution Pooling Fully
connected

Fully
connected Output

Fig. 5.7 LeNet

× 32 single-channel grayscale image, we can first use six 5 × 5 convolution kernels
to obtain a feature map of 6 × 28 × 28, which is the first layer of the network. The
second layer is the pooling operation, which reduces the dimension of the feature
map to obtain one that is 6 × 14 × 14. At the last two layers, the convolution kernel
performs further pooling operations, giving us a 16 × 5 × 5 feature map. After the
convolution operation is performed at the last layer, each output is a 1 × 1 point. In
addition to this, we obtain an eigenvector with a length of 120. Finally, we obtain
an output vector, that is, a category expression, through two fully connected layers.
This is the classical LeNet model, in which the CNN is used to extract the feature
map, and the fully connected layer is used to convert the feature map into the vector
expression and output form.

5.3 Residual Network

By increasing the number of layers in theCNN,we are able to extract deeper andmore
general features. In other words, we can deepen the network level in order to enrich
the feature level. However, when the number of network layers increases, gradient
disappearance or explosion may occur, making it difficult to train the network. This
section introduces residual network (ResNet), a solution that effectively solves the
problem caused by increasing the depth of the neural network.

The basic element of the residual network is called a residual block and is shown
in Fig. 5.8. Unlike the common connection network, the residual block includes a
special edge, which is called a shortcut. The shortcut enables the input xl of the upper
layer to be directly connected to the output xl+1, that is, xl+1 = xl+F(xl), whereF(xl)
= W2ReLU(W1xl) indicates a nonlinear transformation and is also called residual.
Let us assume that we want to learn a mapping function H(x) = x. In this case,
learning F(x) = 0 is much easier than learning F(x) = x, because it is easier to fit
the residuals. This is why such a structure is called a residual block.

As mentioned earlier, the residual network can solve the problem of gradient
disappearance or explosion.We are able to observe this by deducing backpropagation

66 5 Convolutional Neural Network

Fig. 5.8 Residual block

ReLu

W2

W1

x1

F(xl)

xl+1

in the residual network. Ifwe assume that the network includesL layers,we can obtain
the output from any layer l through recursion:

xL = xl +
L−1∑

i=l

F(xi) (5.1)

Assuming that the loss function is E, then we can obtain the gradient of the input
xl according to the chain rule:

∂E

∂xl
= ∂E

∂xL
· ∂xL

∂xl
= ∂E

∂xL

(
1 + ∂

∂xl

L−1∑

i=l

F(xi)

)
(5.2)

The independent “1” allows the gradient of the output layer to be propagated
directly back to xl, thereby avoiding gradient disappearance. Although the gradient
expression does not explicitly give the reason for preventing the gradient explo-
sion problem, the use of the residual network helps solve this problem in practical
applications.

In Fig. 5.9,1 we can see that the residual network includes layers of residual
blocks. Each intermediate residual block adjusts the padded value to ensure that the
number of input dimensions is equal to the number of output dimensions, and the
shortcut allows us to add or reduce the number of network layers in order to ensure
the feasibility of model training. The residual network, therefore, has significant
influence in the development of the CNN.

1 Source: https://arxiv.org/pdf/1512.03385.pdf.

https://arxiv.org/pdf/1512.03385.pdf

5.3 Residual Network 67

Output
224×224

Output
112×112

Output
56×56

Output
28×28

Output
14×14

Output
7×7

Output
1×1

VGG-19
Image

3×3 convolution, 64

3×3 convolution, 64

3×3 convolution, 128

3×3 convolution, 128

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

Fully connected 4096

Fully connected 4096

Fully connected 1000

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512,/2 3×3 convolution, 512,/2

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256,/2 3×3 convolution, 256,/2

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128,/2 3×3 convolution, 128,/2

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 128 3×3 convolution, 128

Image of 34-layer directly
connected network

Image of 34-layer
residual network

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2 Pooling,/2

Mean-pooling Mean-pooling

Fully connected 1000 Fully connected 1000

Fig. 5.9 Residual network

68 5 Convolutional Neural Network

5.4 Application: Image Classification

Image classification is a simple task for humans, but is a difficult one for computers.
The traditional method used for image classification is heavily dependent on humans
having strong image processing skills. In this method, humans manually design
features, extract local appearances, shapes, and textures on the image and then use
a standard classifier, such as an SVM, to classify the image. However, the emer-
gence of the CNN has had a significant impact on image classification, promoting its
ongoing development. TheDNNcandirectly extract deep semantics from the original
image level, enabling the computer to understand the information in the image and
distinguish between different categories. Taking Fig. 5.10 as an example, different
convolution kernels can perform different operations on images, such as edge contour
extraction and image sharpening. Unlike the traditional method mentioned earlier,
where features are manually extracted, the CNN can automatically learn feature
extraction according to specific task requirements. This means that the CNNs are

ResultConvolution kernelOperation

Self-mapping

Edge detection

Sharpening

Fig. 5.10 Functions of different convolution kernels on images

5.4 Application: Image Classification 69

Fig. 5.11 MNIST handwritten image recognition

able to deliver better image classification effects as well as being suitable for more
task data scenarios.

The earliest application of image classification is MNIST handwritten image
recognition—one that has subsequently become a classic. As shown in Fig. 5.11,
data samples are 10 handwritten numbers ranging from 0 to 9, and each image is a
grayscale image of 28 × 28 pixels. If a fully connected network is used for classi-
fication, each image needs to be expanded into a vector with a length of 784. This
approach will result in the loss of the image’s spatial information, and requires too
many training parameters, potentially leading to overfitting. We can solve these two
problems by using CNNs. First, the operations of the convolution kernels will not
change the spatial pixel distribution of the images, meaning that no spatial infor-
mation is lost. Second, because the convolution kernels are shared on images, the
overfitting problem can be solved more effectively.

The CNN first extracts the contour information of the numeral image by using
the lower convolution kernel. It then reduces the dimension of the image, abstracts
the information into features that the computer can understand, and finally classifies
the number through the fully connected layer. As shown in Fig. 5.12, many of the
images that are misclassified by the neural network are also difficult for humans to
identify. However, this indicates that the CNNs have actually learned the semantics
of the numbers in the images.

Nowwewill look at the application of color image classification—Canadian Insti-
tute for Advanced Research-10 (CIFAR-10) data classification. The dataset includes
60,000 32 × 32 color images that represent 10 categories of natural objects, such
as aircrafts, automobiles, and birds. Figure 5.13 shows the 10 categories and some
examples of each category. The semantic information in CIFAR-10 is more complex

70 5 Convolutional Neural Network

Fig. 5.12 Misclassified MNIST images

than that in numbers, and the input color data includes three channels rather than
only one in the grayscale image.

Figure 5.14 shows convolution kernels at different layers of CNNs. The layers
progressively get deeper from left to right. We can see that the convolution kernels
at shallow layers are used to learn the features of edges. With the deepening of the
layer, the local contour and even the overall semantics are gradually learned, and the
initial states of these convolution kernels are all random noises. We can also see that
the CNNs have a strong ability for learning image features, resulting in the rapid
development of computer vision in 2012.

As the CNN has developed, the application of image classification has grown to
cover the classification of complex objects in photographs (as shown in Fig. 5.15),
facial recognition (as shown in Fig. 5.16), and other fields such as plant identification.
We can therefore conclude that the application of image classification is inseparable
from the CNN.

5.4 Application: Image Classification 71

Aircraft

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Fig. 5.13 CIFAR-10 dataset

Fig. 5.14 Convolution kernels at different layers of the CNN

72 5 Convolutional Neural Network

Fig. 5.15 Complex objects in photographs

Fig. 5.16 Application of image classification

5.5 Implementing Image Classification Based on the DNN
Using MindSpore

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

In Sect. 5.4, we described the functions of the CNN in image classification.
Building on that, we use MindSpore in this section to systematically implement
an image classification application based on the ResNet50 network.

https://mindspore.cn/resource

5.5 Implementing Image Classification Based … 73

5.5.1 Loading the MindSpore Module

Before network training, it is necessary to import the MindSpore module and third-
party auxiliary library. The core code is as follows:

Code 5.1 Importing the MindSpore Module and Third-party Library

import numpy as np

from mindspore.nn import Conv2d, BatchNorm2d, ReLU, Dense,
MaxPool2d, Cell, Flatten

from mindspore.ops.operations import TensorAdd, SimpleMean

from mindspore.common.tensor import Tensor

from mindspore.train.model import Model

from mindspore.nn import SoftmaxCrossEntropyWithLogits

from mindspore.nn import Momentum

from mindspore import context

5.5.2 Defining the ResNet Network Structure

The steps for defining ResNet50 are as follows:

(1) Perform operations such as conv, batchnorm, relu, and maxpool for the bottom
input connection layer.

(2) Connect four sets of residual modules, each with a different input, output
channel, and stride.

(3) Perform max-pooling and fully connected layer operations on the network.

The details of each step are as follows.

1. Define basic operations

(1) Define a variable initialization operation.

Because each operation for constructing the network requires initialization of vari-
ables, a variable initialization operation needs to be defined. Here, we use shape to
construct a tensor that is initialized to 0.01. The core code is as follows:

Code 5.2 Defining the Variable Initialization Operation.

def weight_variable(shape):

ones = np.ones(shape).astype(np.float32)

return Tensor(ones*0.01)

74 5 Convolutional Neural Network

(2) Define a conv operation.

Before constructing a network, define a set of convolutional networks, that is, conv.

Set the convolution kernel sizes to 1 × 1, 3 × 3, and 7 × 7, and set the stride to 1.
The core code is as follows:

Code 5.3 Defining conv

def conv1x1(in_channels, out_channels, stride=1, padding=0):

"""1x1 convolution"""

weight_shape = (out_channels, in_channels, 1, 1)

weight = weight_variable(weight_shape)

return Conv2d(in_channels,

out_channels,

kernel_size=1,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")

def conv3x3(in_channels, out_channels, stride=1, padding=1):

"""3x3 convolution"""

weight_shape = (out_channels, in_channels, 3, 3)
weight = weight_variable(weight_shape)

return Conv2d(in_channels,

out_channels,

kernel_size=3,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")

def conv7x7(in_channels, out_channels, stride=1, padding=0):

"""1x1 convolution"""

weight_shape = (out_channels, in_channels, 7, 7)

weight = weight_variable(weight_shape)

return Conv2d(in_channels, out_channels,

kernel_size=7,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")

5.5 Implementing Image Classification Based … 75

(3) Define a BatchNorm operation.

Define the BatchNorm operation to perform the normalization operation. The core
code is as follows:

Code 5.4 Defining the BatchNorm Operation

def bn_with_initialize(out_channels):

shape = (out_channels)

mean = weight_variable(shape)

var = weight_variable(shape)

beta = weight_variable(shape)

gamma = weight_variable(shape)

bn = BatchNorm2d(out_channels,

momentum=0.1

eps=1e-5,

gamma_init=gamma,

beta_init=beta,

moving_mean_init=mean,
moving_var_init=var)

return bn

(4) Define a dense operation.

Define the dense operation to integrate the features of the previous layers. The core
code is as follows:

Code 5.5 Defining the Dense Operation

def fc_with_initialize(input_channels, out_channels):

weight_shape = (out_channels, input_channels)

bias_shape = (out_channels)

weight = weight_variable(weight_shape)

bias = weight_variable(bias_shape)

return Dense(input_channels, out_channels, weight, bias)

2. Define the ResidualBlock module

Each ResidualBlock operation includes Conv > BatchNorm > ReLU, which are
delivered to the MakeLayer module. The core code is as follows:

76 5 Convolutional Neural Network

Code 5.6 Defining the ResidualBlock Module

class ResidualBlock(Cell):

expansion = 4

def init(self,

in_channels,

out_channels,

stride=1,

down_sample=False):

super(ResidualBlock, self).__init__()

out_chls = out_channels // self.expansion

self.conv1 = conv1x1(in_channels, out_chls,
stride=stride, padding=0)

self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=1,
padding=0)

self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1,
padding=0)

self.bn3 = bn_with_initialize(out_channels)

self.relu = ReLU()

self.add = TensorAdd()

def construct(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

out = self.relu(out)

out = self.conv3(out)

out = self.bn3(out)

out = self.add(out, identity)

out = self.relu(out)

return out

5.5 Implementing Image Classification Based … 77

Code 5.7 Defining the ResidualBlock Module

class ResidualBlockWithDown(Cell):

expansion = 4

def __init__(self,

in_channels,

out_channels,

stride=1,

down_sample=False):

super(ResidualBlockWithDown, self).__init__()

out_chls = out_channels // self.expansion

self.conv1 = conv1x1(in_channels, out_chls,
stride=stride, padding=0)

self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=1,
padding=0)

self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1,
padding=0)

self.bn3 = bn_with_initialize(out_channels)

self.relu = ReLU()

self.downSample = down_sample

self.conv_down_sample = conv1x1(in_channels,
out_channels, stride=stride, padding=0)

self.bn_down_sample = bn_with_initialize(out_channels)

self.add = TensorAdd()

def construct(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

out = self.relu(out)

out = self.conv3(out)

out = self.bn3(out)

78 5 Convolutional Neural Network

identity = self.conv_down_sample(identity)

identity = self.bn_down_sample(identity)

out = self.add(out, identity)

out = self.relu(out)

return out

3. Define the MakeLayer module

Define a set of MakeLayer modules with different blocks. Set the input, output
channel, and stride. The core code is as follows:

Code 5.8 Defining the MakeLayer Module

def construct(self, x):

x = self.a(x)

x = self.b(x)

x = self.c(x)

return x

class MakeLayer1(Cell):

def __init__(self, block, layer_num, in_channels,
out_channels, stride):

super(MakeLayer1, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels,
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

self.d = block(out_channels, out_channels, stride=1)

class MakeLayer0(Cell):

def __init__(self, block, layer_num, in_channels,
out_channels, stride):

super(MakeLayer0, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels,
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

5.5 Implementing Image Classification Based … 79

self.e = block(out_channels, out_channels, stride=1)

self.f = block(out_channels, out_channels, stride=1)

def construct(self, x):

x = self.a(x)

x = self.b(x)

x = self.c(x)

x = self.d(x)

x = self.e(x)

x = self.f(x)

return x

class MakeLayer3(Cell):

def __init__(self, block, layer_num, in_channels,
out_channels, stride):

super(MakeLayer3, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels,
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

def construct(self, x):

x = self.a(x)

x = self.b(x)

x = self.c(x)

return x

def construct(self, x)

x = self.a(x)

x = self.b(x)

x = self.c(x)

x = self d(x)

return x

class MakeLayer2(Cell):

def __init__(self, block, layer_num, in_channels,
out_channels, stride):

super(MakeLayer2, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels,
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

self.d = block(out_channels, out_channels, stride=1)

80 5 Convolutional Neural Network

4. Define the overall network

Once the MakeLayer modules have been created, define the overall ResNet50
network structure. The core code is as follows:

Code 5.9 Defining the Overall ResNet50 Network Structure

stride=2)

self.layer3 = MakeLayer2(

block, layer_num[2] in_channels=512, out_channels=1024,
stride=2)

self.layer4 = MakeLayer3(

block, layer_num[3] in_channels=1024,
out_channels=2048, stride=2)

self.pool = SimpleMean()

self.fc = fc_with_initialize(512 * block.Expansion,
num_classes)

self.flatten = Flatten()

def construct(self, x):

x = self.conv1(x)

x = self.bn1(x)

x = self.relu(x)

x = self.maxpool(x)

x = self.layer1(x)

x = self.layer2(x)

x = self.layer3(x)

x = self.layer4(x)

x = self.pool(x)

x = self.flatten(x)

x = self.fc(x)

return x

def resnet50(num_classes):

return ResNet(ResidualBlock, resnet_shape, num_classes)

class ResNet(Cell):

def __init__(self, block, layer_num, num_classes=10):

super(ResNet, self).__init__()

self.conv1 = conv7x7(3, 64, stride=2 padding=3)

self.bn1 = bn_with_initialize(64)

self.relu = ReLU()

self.maxpool = MaxPool2d(kernel_size=3, stride=2,
pad_mode="same")

self.layer1 = MakeLayer0(

block, layer_num[0] in_channels=64, out_channels=256,
stride=1)

self.layer2 = MakeLayer1(

block, layer_num[1] in_channels=256, out_channels=512,

5.5 Implementing Image Classification Based … 81

5.5.3 Setting Hyperparameters

Set hyperparameters related to the loss function and optimizer, such as batches,
epochs, and classes. Define the loss function as SoftmaxCrossEntropyWithLogits,
using Softmax to calculate the cross-entropy. Select the momentum optimizer, and
set its learning rate to 0.1 and momentum to 0.9. The core code is as follows:

Code 5.10 Defining Hyperparameters

epoch_size = 1

batch_size = 32

step_size = 1

num_classes = 10

lr = 0.1

momentum = 0.9

resnet_shape = [3, 4, 6, 3]

context.switch_to_graph_mode()

5.5.4 Importing a Dataset

Create an ImageNet dataset using theMindSpore data format APIs. For details about
these APIs and how to implement the train_dataset() function, see Chap. 14.

5.5.5 Training a Model

1. Use train_dataset() to read data

ds = train_dataset()

2. Use resnet() to create the ResNet50 network structure

net = resnet50(num_classes)

net.set_train()

82 5 Convolutional Neural Network

3. Set the loss function and optimizer

loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
sens = (1.0/batch_size))

opt = Momentum(lr, momentum, net.trainable_params())

4. Create a model and call the model.train() method to start training

model = Model(net, loss, opt)

model.train(epoch_size, ds)

	5 Convolutional Neural Network
	5.1 Convolution
	5.2 Pooling
	5.3 Residual Network
	5.4 Application: Image Classification
	5.5 Implementing Image Classification Based on the DNN Using MindSpore
	5.5.1 Loading the MindSpore Module
	5.5.2 Defining the ResNet Network Structure
	5.5.3 Setting Hyperparameters
	5.5.4 Importing a Dataset
	5.5.5 Training a Model

