
Cognitive Intelligence and Robotics 

Lei Chen

Deep Learning 
and Practice 
with MindSpore



Cognitive Intelligence and Robotics

Series Editors

Amit Konar, ETCE Department, Jadavpur University, Kolkata, India

Witold Pedrycz, Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, AB, Canada



Cognitive Intelligence refers to the natural intelligence of humans and animals, it is
considered that the brain performs intelligent activities. While establishing a hard
boundary that distinguishes intelligent activities from others remains controversial,
most common behaviors and activities of living organisms that cannot be fully
synthesized using artificial means are regarded as intelligent. Thus the acts of
sensing and perception, understanding the environment, and voluntary control of
muscles, which can be performed by lower-level mammals, are indeed intelligent.
Besides the above, advanced mammals can perform more sophisticated cognitive
tasks, including logical reasoning, learning, recognition, and complex planning and
coordination, none of which can yet be realized artificially to the level of a baby,
and thus are regarded as cognitively intelligent.

This book series covers two important aspects of brain science. First, it attempts
to uncover the mystery behind the biological basis of cognition, with a special
emphasis on the decoding of stimulated brain signals or images. Topics in this area
include the neural basis of sensory perception, motor control, sensory-motor
coordination, and understanding the biological basis of higher-level cognition,
including memory, learning, reasoning, and complex planning. The second
objective of the series is to publish consolidated research on brain-inspired models
of learning, perception, memory, and coordination, including results that can be
realized on robots, enabling them to mimic the cognitive activities performed by
living creatures. These brain-inspired models of machine intelligence complement
the behavioral counterparts studied in traditional artificial intelligence.

The series publishes textbooks, monographs, and contributed volumes.

More information about this series at http://www.springer.com/series/15488

http://www.springer.com/series/15488


Lei Chen

Deep Learning and Practice
with MindSpore



Lei Chen
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Kowloon, Hong Kong

Translated by
Yunhui Zeng
Beijing, China

ISSN 2520-1956 ISSN 2520-1964 (electronic)
Cognitive Intelligence and Robotics
ISBN 978-981-16-2232-8 ISBN 978-981-16-2233-5 (eBook)
https://doi.org/10.1007/978-981-16-2233-5

Jointly published with Tsinghua University Press
The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the
print book from: Tsinghua University Press.
ISBN of the Co-Publisher’s edition: 978-730-25-4661-0

Translation from the Chinese Simplified language edition:深度学习与MindSpore实践 by Lei Chen, and
Yunhui Zeng, © Tsinghua University Press 2020. Published by Tsinghua University Press. All Rights
Reserved.
© Tsinghua University Press 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-2233-5


Foreword by Zhijun Xu

MindSpore Empowers All-Round AI

AI has spread much faster and wider than any other general-purpose technology
in history. There is little doubt that this new general-purpose technology will have
a profound impact on every aspect of the economy and society. However, different
industries and organizations have adopted AI at different rates: Traditional industries
are still in the initial stages of adoption, whereas the Internet industry embraced it
from the beginning. Although most industries are already using AI to some extent,
they have not witnessed the expected changes, meaning that there is still huge room
for improvement. Some industries have still not found an effective way to realize the
value of AI.

In general, there are three main reasons for this. First, the development of AI
applications and solutions is challenging, requiring an expert skill set that millions
of IT engineers have yet to acquire. Second, unlike the Internet, which has a rela-
tively simple environment,AI applications have complex operating environments and
must adapt to meet a diverse range of requirements. For example, the various cloud,
edge computing, and terminal device scenarios have different requirements, and AI
applications must not only collaborate with existing production systems in various
industries and related processes, but also integrate with traditional IT applications.
Third, the diversity and complexity of applications in various industries bring new
requirements, such as robustness, security, and interpretability, for AI algorithms and
theories. AI has therefore undergone rapid, continuous improvement and adaptation,
creating a range of challenges for new entrants wanting to master AI technologies.

Central to Huawei’s AI strategy is the continuous investment in full-stack, all-
scenario AI solutions with the aim of accelerating AI development. To this end,
Huawei released its full-stack, all-scenario AI solution in October 2018, and offi-
cially unveiled MindSpore—an all-scenario AI computing framework—in August
2019. Many people have asked why Huawei launched MindSpore despite there
being many other frameworks available. The main considerations for investing in
MindSpore at that time were as follows. First, no existing framework was able

v



vi Foreword by Zhijun Xu

to support all scenarios seamlessly. Because Huawei services cover device, edge,
and cloud scenarios, and privacy protection is becoming increasingly important,
we need a computing framework that supports all scenarios to empower all-round
AI. Second, we have learned from Huawei’s AI applications and research over
the past few years that the development of AI computing frameworks is far from
converging. Exploratory research into technologies such as AI acceleration for just-
in-time compilation (which is used in automatic differentiation and tensor calcula-
tion) and automatic parallelization for ultra-large neural networks, as well as new
research areas such as deep probabilistic programming and graph neural networks,
require further development of AI computing frameworks.

MindSpore is a connecting link in the full-stack, all-scenario solution, playing a
pivotal role in tackling the practical challenges involved in AI development. When
developing MindSpore, Huawei’s main objectives were to enable both a friendly
development environment—to minimize the development time and training costs—
and efficient operations. The optimization technology for just-in-time compilation,
when used in collaborationwithHuaweiAI processors that feature the self-developed
Da Vinci architecture, can maximize the hardware capabilities and deliver optimal
performance. More importantly, MindSpore enables AI to adapt to every scenario
(including the device, edge, and cloud) and implement on-demand collaboration
among these scenarios, empowering all-round and trusted AI while also ensuring
user privacy.

This book takes a systematic approach in providing youwith a basic understanding
of deep learning and related practical applications of MindSpore. It aims to help you
not only achieve greater results more quickly in your basic research and develop-
ment of AI applications and solutions, but also fully utilize MindSpore and the AI
computing power of Ascend series chips. Through this book, we hope to achieve a
wider, deeper, and all-round application of AI.

January 2020 Zhijun Xu
Deputy Chairman of the Board and Rotating

Chairman of Huawei
Shenzhen, China



Foreword by Wenfei Fan

Over the last decade, we have witnessed not only surging volumes of data, but
also major improvements in computing power and breakthroughs in algorithms, all
of which have driven rapid development in the new generation of AI. By giving
machines perception, cognition, and even intelligence capabilities, AI touches every
aspect of society. It is pleasing to see that Huawei’s AI strategy focuses on layout
and investment in basic research, full-stack solutions, open ecosystem, and talent
development, and contributes to inclusive intelligence.

From the perspective of data scientists, data is undoubtedly a vital element of
deep learning. Huge volumes of data are generated due to the explosive growth
of information, laying a rich and solid foundation for AI. However, deep learning
requiresmore than justmass data—it also requires the data to be high quality. Someof
the key aspects that affect the precision and performance of training models include
how the raw data is processed, how the training data is labeled, and how the inferior
data is cleaned up. This book enables you to understand the basics and applications of
deep learning by describing the related theories and practical applications in a simple,
easy-to-understand way, and provides unique insights into data processing. Through
its clear explanations of data preparation, data augmentation, and data visualization
technologies, this book shows that rational data processing significantly helps reduce
model complexity, shorten training times, and improve model performance.

With MindSpore—Huawei’s self-developed AI computing framework—data
scientists working with AI no longer need to master complex programming skills
in order to apply deep learning frameworks; instead, they are able to focus on algo-
rithms and logic. This is extremely attractive to researchers across multiple fields,
such as data science, physics, mathematics, chemistry, and life sciences, because it
can help them quickly develop AI applications.

It is a pleasure to see Prof. Lei Chen publishing this book in cooperation with
Huawei, uncovering the charms of deep learning and helping not only developers
to develop ideal AI applications, but also graduates and undergraduates who are
majoring in AI. It will also benefit engineers and scientists who are involved in AI
development with access to MindSpore’s AI ecosystem. The book offers readers the

vii



viii Foreword by Wenfei Fan

chance to explore the combination of deep learning and logical methods in order
to achieve success in the field of AI and advocates us embracing the future era of
intelligence to facilitate an inclusive AI.

December 2019 Wenfei Fan
Foreign Member of the Chinese Academy of
Sciences (CAS), Fellow of the Royal Society

(FRS), Fellow of the Royal Society of Edinburgh
(FRSE), Fellow of the Association for Computing

Machinery (ACM), and Member of Academia
Europaea (MAE)
Edinburgh, UK



Preface

From computers to the Internet and then to AI, people from my generation have
witnessed and participated in the magnificent feast of science and technology in
society that has turned science fiction into reality. Technologies such as machine
learning, virtual reality, and cloud computing—technologies that were once used by
only leading scientists—have now become a part of our lives and are familiar to
ordinary people. Realizing how deep learning will affect all walks of life, Huawei
has launched MindSpore, its self-developed all-scenario AI computing framework.
By combining hardware and software, and leveraging the superb computing power
of Huawei Ascend chips, MindSpore unlocks the full potential of the hardware.

Supporting the models used in all current mainstream deep learning frameworks,
MindSpore enables full-stack, all-scenario device–edge–cloud collaborative devel-
opment. By adapting to all AI application scenarios, MindSpore significantly lowers
the development threshold and dramatically shortens the time needed for model
development. In addition, MindSpore supports local AI computing, further resolving
the problem of privacy security and protection, which is a big concern in the industry.

In the current era where speed and execution are crucial, AI developers need to
simplify complicated things, and quickly learn how to use different tools properly and
efficiently, in order to resolve the problems they encounter. Helping people achieve
this is the ultimate goal of this book. Unlike many deep learning textbooks that focus
on theories and the basics, this book aims to make theory simple while focusing
on practical application. It offers you a basic understanding of deep learning and
describes various related models in a simple way, using multiple examples to explain
how you can use MindSpore to implement deep learning theories and algorithms
while leveraging the strong computing power of Ascend chips to create many things
that other frameworks cannot do.

I sincerely hope that this book enables all developers to benefit from the powerful
functions of MindSpore as soon as possible and allows them to realize their full
potential while playing their part in this great, rapid, and thrilling technological
revolution.

ix



x Preface

I would like to thank the MindSpore development team for taking time out of
their busy schedules to write and proofread all the sample program code in this book.
Without their full support, it would have been a difficult task to complete the book. I
would also like to thank the MindSpore documentation team for reviewing the book
from cover to cover. They went to extraordinary lengths in terms of content arrange-
ment and text layout and made significant contribution to the writing of this book.
My thanks also go to Ms. Shen Yanyan, a teacher from Shanghai Jiao Tong Univer-
sity, and Zhang Yongqi and Di Shimin, students from The Hong Kong University of
Science and Technology, for their contributions. I must also express my gratitude to
my colleagues in the book reviewing team for meticulously checking omissions and
adding in the missing parts, and for giving many valuable suggestions. Furthermore,
thank you tomy colleagues at the Central SoftwareArchitecture andDesignManage-
ment Department for their careful editing and modification of illustrations, ensuring
that the content is clear and vivid, and for explaining concepts more specifically and
definitively. In addition, I am extremely grateful for my colleagues at the Strategy
and Business Development Department, Cloud BU, who frequently communicated
with Tsinghua University Press to get this book published quickly. My thanks also
go to Mr. Sheng Dongliang and Ms. Zhong Zhifang from Tsinghua University Press
for their strong support. Their careful and meticulous work has ensured the quality
of this book. Finally, I’d like to thank Huawei for its support during the writing of
this book.

I have written this book to the best of my ability but due to limited knowledge,
there might be omissions or deficiencies. I therefore welcome and encourage your
comments and criticisms.

Kowloon, Hong Kong
November 2019

Lei Chen



About This Book

This book systematically introduces the theory of deep learning and explores prac-
tical applications based on the MindSpore AI computing framework. Split across
14 chapters, the book covers deep learning, deep neural networks (DNNs), convo-
lutional neural networks (CNNs), recurrent neural networks (RNNs), unsupervised
learning, deep reinforcement learning, automated machine learning, device–cloud
collaboration, deep learning visualization, and data preparation for deep learning.
To help clarify complex topics, this book includes numerous examples and links to
online resources based on MindSpore.

In addition to providing a reference aswell as learningmaterial for software devel-
opment engineers and scientific researchers engaged in deep learning, this bookoffers
a solid foundation for graduates and undergraduatesmajoring in artificial intelligence
(AI), intelligent science and technology, computer science and technology, electronic
information engineering, and automation.

xi



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The History of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What is Deep Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Practical Applications of Deep Learning . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Image Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Other Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Introduction to MindSpore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Simple Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Device–Cloud Collaboration . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.3 Easy Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Exceptional Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5 Open-Source Components . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Deep Learning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Regression Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Overfitting and Underfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Feedforward Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Generalization Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Implementing Simple Neural Networks Using MindSpore . . . . . . 36

3.4.1 Parameters at Each Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Implementation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



xiv Contents

4 Training of DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Main Challenges to Deep Learning Systems . . . . . . . . . . . . . . . . . . 41

4.1.1 Large Dataset Requirement . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Hardware Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . 42
4.1.5 Non-transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.6 Low Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 L2 Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 L1 Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Adaptive Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 AdaGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Implementing DNNs Using MindSpore . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Parameters at Each Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.2 Implementation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Residual Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Application: Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Implementing Image Classification Based on the DNN

Using MindSpore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.1 Loading the MindSpore Module . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Defining the ResNet Network Structure . . . . . . . . . . . . . . 73
5.5.3 Setting Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.4 Importing a Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.5 Training a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Deep RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Challenges of Long-term Dependency . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 LSTM Network and GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Application: Text Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Implementing Text Prediction Based on LSTM Using

MindSpore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.1 Loading the MindSpore Module . . . . . . . . . . . . . . . . . . . . 90
6.6.2 Preparing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Contents xv

6.6.3 Defining the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6.4 Parameter Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.5 Training a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Unsupervised Learning: Word Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.5 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1.6 Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.5 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.6 Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.5 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.6 Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.5 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.6 Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Comparison Between Typical Word Vector Generation
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Application: Automatic Question Answering . . . . . . . . . . . . . . . . . 132
7.6.1 Relevant Concepts of Automatic Question

Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6.2 Traditional Automatic Question Answering

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.6.3 Automatic Question Answering Method Based

on Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xvi Contents

7.7 Implementing BERT-Based Automatic Answering Using
MindSpore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.7.1 Preparing the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.7.2 Training the BERT Network . . . . . . . . . . . . . . . . . . . . . . . . 145

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Unsupervised Learning: Graph Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1 Graph Vector Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 DeepWalk Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2.1 Principles of the DeepWalk Algorithm . . . . . . . . . . . . . . . 154
8.2.2 Implementation of the DeepWalk Algorithm . . . . . . . . . . 156

8.3 LINE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.3.1 Principles of the LINE Algorithm . . . . . . . . . . . . . . . . . . . 158
8.3.2 Implementation of the LINE Algorithm . . . . . . . . . . . . . . 161

8.4 Node2Vec Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.4.1 Principles of the Node2Vec Algorithm . . . . . . . . . . . . . . . 163
8.4.2 Implementation of the Node2Vec Algorithm . . . . . . . . . . 165

8.5 GCN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5.1 Principles of the GCN Algorithm . . . . . . . . . . . . . . . . . . . 167
8.5.2 Implementation of the GCN Algorithm . . . . . . . . . . . . . . 170

8.6 GAT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.6.1 Principles of the GAT Algorithm . . . . . . . . . . . . . . . . . . . . 172
8.6.2 Implementation of the GAT Algorithm . . . . . . . . . . . . . . . 174

8.7 Application: Recommendation System . . . . . . . . . . . . . . . . . . . . . . 175
8.7.1 Recommendation System in Industry Applications . . . . . 176
8.7.2 Graph Neural Network Model

in a Recommendation System . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Unsupervised Learning: Deep Generative Model . . . . . . . . . . . . . . . . . 183
9.1 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.1.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.1.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.1.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.1.5 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.2 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2.2 Development Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.3 Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.4 Technical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.2.5 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.2.6 Framework Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.3 Application: Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.3.1 Definition of Data Augmentation . . . . . . . . . . . . . . . . . . . . 200
9.3.2 Purpose of Data Augmentation . . . . . . . . . . . . . . . . . . . . . 200



Contents xvii

9.3.3 Conventional Data Augmentation Methods . . . . . . . . . . . 200
9.3.4 Data Augmentation Methods Based on Deep

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.4 Implementing GAN-Based Data Augmentation Using

MindSpore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.1 Basic Concepts of Reinforcement Learning . . . . . . . . . . . . . . . . . . 217

10.1.1 Basic Concepts and Theories . . . . . . . . . . . . . . . . . . . . . . . 217
10.1.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.1.3 Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2 Basic Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.2.1 Dynamic Programming Method . . . . . . . . . . . . . . . . . . . . . 222
10.2.2 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.2.3 Temporal Difference Method . . . . . . . . . . . . . . . . . . . . . . . 224

10.3 Deep Reinforcement Learning Algorithm . . . . . . . . . . . . . . . . . . . . 226
10.3.1 DQN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.3.2 DDPG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.3.3 A3C Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.4 Latest Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.4.1 Recommendation System . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.4.2 Gambling Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

10.5 Implementing DQN-Based Game Using MindSpore . . . . . . . . . . . 242
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

11 Automated Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.1 AutoML Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

11.1.1 NAS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.1.2 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

11.2 Existing AutoML Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.2.1 AutoWeka, Auto-Sklearn, and HyperOpt . . . . . . . . . . . . . 266
11.2.2 Microsoft NNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.3 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.3.1 Learning Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.3.2 Learning Parameter Initialization . . . . . . . . . . . . . . . . . . . . 275
11.3.3 Learning Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
11.3.4 Learning Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.4 Implementing AutoML Using MindSpore . . . . . . . . . . . . . . . . . . . . 279
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

12 Device–Cloud Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
12.1 On-Device Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
12.2 Device–Cloud Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
12.3 Device–Cloud Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 288

12.3.1 Federated Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



xviii Contents

12.3.2 Gradient Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
12.4 Device–Cloud Collaboration Framework . . . . . . . . . . . . . . . . . . . . 293
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

13 Deep Learning Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

13.1.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
13.1.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
13.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
13.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

13.2 MindSpore Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
13.2.1 Visualization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
13.2.2 Dataset Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
13.2.3 Model and Training Visualization . . . . . . . . . . . . . . . . . . . 318
13.2.4 Format of Summary Data . . . . . . . . . . . . . . . . . . . . . . . . . . 325

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

14 Data Preparation for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
14.1 Overview of Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
14.2 Data Format in Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

14.2.1 Original Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
14.2.2 Annotation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

14.3 Common Data Formats for Deep Learning . . . . . . . . . . . . . . . . . . . 336
14.3.1 TFRecord Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
14.3.2 LMDB Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
14.3.3 REC Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
14.3.4 MindSpore Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
14.3.5 MindSpore Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

14.4 Training Data Preparation Using the MindSpore Data
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
14.4.1 Generation of Data in the MindSpore Data Format . . . . . 350
14.4.2 Statistics and Retrieval of Data in the MindSpore

Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.4.3 Reading MindSpore Training Data . . . . . . . . . . . . . . . . . . 357

MindSpore: An All-Scenario Deep Learning Computing
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Chapter 1
Introduction

This chapter starts by outlining the historical development trends of AI and then
explains what deep learning is and how it performs in practical applications. The
chapter concludes by briefly describing the features of MindSpore, Huawei’s self-
developed deep learning framework.

1.1 The History of AI

AI dates back to the 1950s. Its development was extremely slow in those days
because each field had a unique definition, and understanding of AI, the content and
methodology of studies were inconsistent, and the sharing of technology and infor-
mation was limited. At the 1956 Dartmouth Summer Research Project on Artificial
Intelligence, John McCarthy et al. unified the descriptions of “human-like comput-
ing” and “machine intelligence” in different fields for the first time, and formally
proposed the term “AI”. This gave birth to the development of artificial intelligent
and clarified its primary mission: using algorithms to build a dynamic computing
environment to mimic human intelligence. Over the two decades that followed, AI
achieved remarkable milestones in speech processing and problem solving. During
that period, the “general problem solver” and “LISPAI voice”were two amongmany
successful applications of AI. Nevertheless, AI in those days was severely limited
and could only handle simple problems, offering unsatisfactory performance in prac-
tical applications. Furthermore, perceptron theory—a cutting-edge achievement in
neural networks—was strongly criticized at that time, leading to a rapid cooling in
the first wave of AI development. Various investors, including governments, stopped
funding projects involving AI, resulting in it entering its first winter.

A resurgence did not occur in the field of artificial intelligent until the end of
the 1980s, when expert systems began attracting research. Affected by symbolism,
researchers of expert systems—deemed to be of high commercial value—hoped
that machines could perform logical inference like a human does and then mimic

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_1&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_1


2 1 Introduction

a human’s cognitive process. This led to the emergence of many programming
languages, such as Prolog, oriented to logical calculus, but the resurgence did not last
long because the expert systems were dependent on expensive computing platforms.
As the performance of personal computers improved, expert systems were gradually
phased out in favor of low-cost personal computers. In the end, the hardware market
built up around AI declined sharply and AI entered its second winter.

Since the mid-1990s, in accordance with Moore’s Law, computing power has
increased exponentially and various machine learning algorithms have been rapidly
verified, trained, and applied, directly triggering a renaissance of AI. During this
period, machine learning methods such as support vector machine (SVM), boosting,
and kernel method achieved excellent performance in practical applications such as
handwritten digit recognition, stock prediction, sentiment classification, and click-
through rate prediction. In 1997, Deep Blue—a chess-playing computer developed
by IBM—defeated Garry Kasparov, the then world champion, in a chess match. This
milestone event attracted a great deal of attention and rekindled people’s interest in
artificial intelligent. Since then, a new wave of AI has gradually swept the world.

In today’s burgeoning field of AI, one of the most valuable and influential areas of
research is deep learning,which has already achieved revolutionary advances inmany
aspects such as data representation, feature extraction, and feature interaction. As
a representative method of machine learning, deep learning uses an artificial neural
network (ANN) as the basic framework and benefits from the continuous accumu-
lation of big data and rapid development of computers. Massive data resolves the
problem of overfitting during neural network training, and high-performance hard-
ware makes model training possible. In recent years, as research into deep learning
has grown, we have witnessed Google’s AlphaGo beat a human world-champion
Go player. With the vigorous development of various intelligent technologies, such
as unmanned vehicles, there is again hope that AI will eventually surpass human
intelligence.

Due to the remarkable effects brought by AI and the rapid pace at which it is
developing, various industries have integrated it into practical applications across
fields such as computer vision, natural language understanding, speech recognition,
and intelligent games. There is little doubt that AI will have a profound impact on
society as a whole, and it is already changing our daily lives, albeit gradually at this
time.

As a new AI technology, deep learning absorbs knowledge from massive data,
interacts with the external environment, and learns interactive policies through feed-
back. In both the theoretical methods and practical applications of deep learning,
a number of disruptive results have already been achieved. In the next section, we
explore what deep learning is and how it can be applied practically.



1.2 What is Deep Learning? 3

1.2 What is Deep Learning?

Deep learning is a class of machine learning algorithms that use a multi-layer struc-
ture to automatically learn and extract higher-level features from raw data. In most
cases, this extraction process is extremely difficult to achieve. Deep learning repre-
sents the raw data as a nested hierarchy of features, enabling each layer containing
these features to be defined and calculated using simpler features. Of particular
importance is deep learning’s ability to automatically learn how to place different
features optimally at specific layers. Unlike traditional machine learning algorithms
that require features to be handcrafted, deep learning automatically learns how to
extract features. There is therefore no need for complex and time-consuming manual
feature engineering in deep learning, unlike traditional machine learning algorithms.

The word “deep” in deep learning represents the use of multiple layers needed to
transformdata into the required data. For a givenmodel usedwith data input, the depth
of the model is equal to the length of the longest path in the flowchart that describes
how the model obtains output. Conversely, in the deep probabilistic model, the depth
of the model is equal to the depth of the graph that describes how the concepts are
associated with each other, rather than the depth of the computational graph. It is
worth noting that the computational graph represented by the latter for calculation
may be much deeper than the conceptual graph. Because these two opposing views
exist, there is generally no consensus on how deep a model needs to be before
it can be considered a “deep” model. Broadly speaking, however, deep learning
generally refers to models that require more calculation steps or concept learning
than traditional machine learning.

The ANN is the foundation on which most deep learning models are built. Based
on the human brain, the ANN is a set of interconnected, hierarchically organized
units called neurons, where different layers perform different transformations on the
input to obtain different levels of abstraction and feature extraction. The connections
between different neurons are assigned different weights, representing the impact of
one neuron on another. The earliest model that is able to learn weights from sample
data is perceptron, whose learning algorithm is a parameter learning method for
the linear model. Although the linear model is still in widespread use, it has many
defects, most notable of which is perceptron’s inability to learn the XOR function.

Today, the most common deep learning model framework is the feedforward
neural network, also known as multi-layer perceptron (MLP). “Feedforward” means
that the information flow passing through the network is transferred in the forward
direction. Specifically, data is used as input, and it is then computed at the intermediate
layer to obtain the final output. The entire structure has no feedback connection, and
the information is propagated in one direction only: forward. The feedforward neural
network is the foundation for many practical deep learning models—an example of
this is the CNN for computer vision tasks. When a feedforward neural network
is extended to allow feedback connections, it is called an RNN. Both CNNs and
RNNs have achieved significant success in practical applications, and these networks



4 1 Introduction

form the basis for implementing many of deep learning’s practical applications, as
described in the following section.

1.3 Practical Applications of Deep Learning

In recent years, the deep learning revolution has profoundly changed—and
is expected to succeed in—many fields of application, including automatic
speech recognition (ASR), image recognition, natural language understanding, and
numerous other interdisciplinary fields (such as health care, biology, and finance).
The following briefly describes these typical practical applications of deep learning.

1.3.1 ASR

ASR is a technology that converts speech into text. From early template-based
methods to strict statistical models, and on to deep models in use today, speech
recognition technologies have undergone several generations of change. Prior to
deep learningmodels, the hiddenMarkovmodel (HMM)was themost popular speech
recognitionmodel, which required a four-step procedure for all ASR systems: feature
extraction, acoustic modeling, language modeling, and decoding search. Before a
speech signal enters the acoustic model, which is mainly used for feature conversion
and representation, noise must be eliminated and the signal amplified and converted
from the time domain to the frequency domain. A language model is then used to
sort the results during the decoding search, and the text sequence with the highest
score is selected. An early approach to implementing acoustic modeling was to use a
DNN.However, because theDNN required fixed-size inputs, amethod for processing
speech signals of different lengths was needed. In addition, effectively modeling the
long-term dynamic correlation is important due to the speech signal being a non-
stationary timing signal. RNNs excel in performing these tasks, leading to the long
short-term memory (LSTM) network—a variant of the RNN—becoming the most
widely used deep learning model for ASR. Speech recognition systems based on the
RNN significantly lower the recognition error rate and are therefore the go-to choice
for mainstream commercial speech recognition devices (such as Amazon’s Alexa).

1.3.2 Image Recognition

Image recognition is one of the most successful applications of deep learning. The
first breakthrough in the field of computer vision came in 2012, when Professor
Hinton’s research team used AlexNet, a CNN architecture, to significantly reduce



1.3 Practical Applications of Deep Learning 5

the error rate of image classification at the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), winning the contest. Since then, new architectures based
on CNNs have been proposed (including GoogleNet, VGGNet, ResNet, DenseNets,
and Inception), offering continuous improvement in the accuracy of image classifi-
cation while also continuously increasing the depth of the network. In addition, deep
learning has been applied to other computer vision tasks, including object detection,
image segmentation, image annotation, behavior analysis, facial recognition, and
neural style transfer and video generation that are based on the generative adver-
sarial network (GAN). The deep CNN, a deep learning model, plays a key role in
these tasks. It involves convolution and pooling—the most important operations in
the CNN—and is well suited for processing image data due to its parameter sharing
and sparse connectivity. By stacking multiple layers, the CNN can continuously
extract higher-level features from lower-level ones and achieve superior processing
of downstream tasks. As proposals for new network architectures continue to emerge,
it is hoped that deep learning will make significant headway in the field of image
recognition.

1.3.3 Natural Language Processing

Neural networks have been applied to language models gradually since 2000 and
have achieved promising results in natural language understanding tasks such as
constituent parsing, sentiment analysis, information extraction, machine translation,
and text classification. One of the most significant among these results has been
the learning of word vectors. A word vector is a method for converting a word into
a vectorized positional representation in the hidden space by using a DNN. Word
vectors, when used as input into an RNN, enable sentences and phrases to be parsed
effectively through the synthetic vector grammar, which can be considered a proba-
bilistic context-free grammar implemented by the RNN. In terms of machine trans-
lation and language modeling, as well as other aspects, the RNN represented by the
LSTM network performs exceptionally well. Over the past few years, proposals have
emerged for new DNN structures (such as Transformer), in addition to the RNNs.
By learning the long-term dependency and hierarchical structure in text sequences,
these structures have achieved remarkable results in natural language processing
(NLP) tasks. In addition, unsupervised models based on pre-training, such as the
Bidirectional Encoder Representations from Transformers (BERT) model based on
Transformer, use transfer learning and fine-tuning to further push the technical fron-
tier of deep learningmethods inNLP tasks. As the deep learning architecture for NLP
tasks continues to evolve, its use in both reinforcement and unsupervised learning is
expected to yield enhanced models.



6 1 Introduction

1.3.4 Other Fields

Deep learning is also prevalent in other fields, such as biology, health care, and
finance. For example, in biological research, deep learning algorithms can discover
features that are either impossible or unfeasible for humans to capture. Researchers
use these algorithms to classify cell images, establish genome connections, and speed
up drug development. In the healthcare field, deepCNNs are applied tomedical image
analysis tasks, such as cancer cell classification, lesion detection, organ segmentation,
and image enhancement, achieving good results. Deep learning is also applied in the
financial field, where it is used to detect financial fraud and money laundering, and
even to complete complex tasks such as stock screening, timing, and risk control by
simulating the behavior of traders. Additionally, it can be used for credit scoring and
detecting abnormalities.

1.4 Structure of the Book

This book introduces deep learning at three levels, starting with an introduction to
various deep learning models and algorithms from a theoretical perspective. It then
explores how deep learning methods can be used in various applications, and the
performance results these methods achieve, from a practical application perspective.
Finally, the book combines theory and practical application in explaining how to
implement high-performance deep learning models and achieve effective learning
through MindSpore, Huawei’s self-developed deep learning computing framework.

1.5 Introduction to MindSpore

MindSpore is Huawei’s next-generation deep learning framework. By leveraging
the computing power of Huawei Ascend processors, enabling flexible deployment
in device, edge, and cloud scenarios, and integrating the industry’s best practices,
MindSpore lowers the threshold for AI development and defines a new paradigm in
AI programming.

At Huawei Connect 2018, Huawei set out the ten key challenges of AI technology,
among which were the long training time (taking days or even months), the lack of
powerful and cost-effective computing, and the labor-intensive approach used in
data annotation. Issues such as huge development costs, long deployment cycles,
and reliance on highly skilled experts have impeded the development of the AI
developer ecosystem. In order to help developers and the industry tackle these system-
level challenges and lower the threshold for AI development, MindSpore delivers
a wealth of features such as simple programming, device–cloud collaboration, easy
debugging, exceptional performance, and open-source components.



1.5 Introduction to MindSpore 7

1.5.1 Simple Programming

Many developers involved in deep learning know how complex and error-prone the
development process can be. MindSpore is based on a differentiable programming
architecture that enables developers to focus on the mathematical primitive expres-
sion of themodel algorithm, thereby allowing them to automate this complex process
and minimize potential errors through automatic differentiation.

The technologies that enable automatic differentiation in deep learning frame-
works are categorized into the graph method (represented by Google’s TensorFlow),
the operator overloading method (represented by Facebook PyTorch), and the source
code conversion method (represented by MindSpore Source to Source, S2S), as
shown in Fig. 1.1.

The graph method is easy to implement, while the data structure of a graph is easy
to optimize and parallel. However, programmability is challenging, as this method
requires users to understand the concepts and interfaces of the graph, including data,
communication, and computing nodes, and data, dependency, and reference edges.
Furthermore, representations of the control flow and higher-order derivation in the
graph method are complex.

The operator overloading method suits the programming habits of users and is
especially popular in academia.Nevertheless, thismethod introduces high overheads,
as it uses the interpreter of the host language and records the running process to a tape
(sometimes called a Wengert list). Additionally, the dynamic nature of this method
makes it unsuitable for optimization of the reverse performance.

The S2S automatic differentiation technology balances both programmability and
performance. It not only offers a consistent programming experience, but can also
utilize the optimization capabilities of modern compilers due to being based on the
intermediate representation (IR) granularity. This technology uses a differentiable
programming architecture that is highly efficient and easy to debug. Through Python
programming interfaces at the interface layer, including control flow representations,
users are able to get started quickly. For example, as shown in Code 1.1, we start
by defining a computational graph (function) using Python code. Then, we use the
reverse interface provided by MindSpore to perform automatic differentiation, and
obtain a backward computation graph (function). Following this, we provide some
inputs in order to obtain the derivative of the computational graph (function) at a given
point. In this example, the results of automatic differentiation are the derivatives of

Path of 
automatic 

differentiation 
technologies

Graph method: TensorFlow

● Graph-based, non-Python native 
programming
● Complex representations of the 
control flow and higher order derivation

● High runtime overhead
● Backward performance is 
difficult to optimize

● Python programming interface 
delivers higher efficiency
● IR-based compilation and 
optimization delivers better performance

Source code conversion method:
MindSporeOperator overloading:

PyTorch

S S

Fig. 1.1 Path of automatic differentiation technologies



8 1 Introduction

all inputs in the graph. The reverse interface of MindSpore also provides an option
to calculate the derivatives of one or a given number of inputs.

Code 1.1 Native Python Programming Experience

def cost(x, y): return x * (x + y)

@mindspore

def test_grad (x, y):

return grad_all(cost)(x, y)

def main():

test_grad(2, 1)

As mentioned earlier, S2S is based on the IR granularity, meaning that it can
convert user-defined network source code into the IR defined by MindSpore (Mind-
Spore IR) and then generate the reverse code by using the IR mutator method. Other
techniques such as operator fusion are also used in this process to further improve
the reverse performance.

As shown in Fig. 1.2, a control flow expressed in MindSpore includes loops
and conditions. The programming style is consistent with native Python, but
unlike Python, MindSpore does not expand the loop when it generates the reverse
control flow. Instead, it performs IR-based reverse computation, thereby improving
performance by avoiding the need to expand the expression.

Compared with other frameworks, MindSpore reduces the amount of core code
by up to 20%, lowering the threshold for development and increasing the efficiency
by over 50% in some cases. Furthermore, because MindSpore inherently supports
compilation optimization, it significantly improves code efficiency and simplifies
research projects. MindSpore’s automatic differentiation code is as follows:

Code 1.2 Example of Automatic Differentiation Code at the Graph Level

class Net(Cell):

def __init__(self):

self.w = Parameter(Tensor(np.ones([10])))

def forward(x, y)

return x + y

#Defining net

net = Net()

x = Tensor(np.ones([10]))

y = Tensor(np.ones([10]))

#Automatic differential derivation

gout = grad_all(net)(x, y)



1.5 Introduction to MindSpore 9

Natural support for control flows such as 
loops and conditions

Block

HeadBlock

BodyBlock

AfterBlock AfterBlock

Block

TrueBlock FalseBlock

AfterBlock

def test_while(x):
    rval=x
    while rval % 2==0:
              rval=rval/2
    return rval

def test_if(x):
    if x<0:

return 0
    return x

Fig. 1.2 MindSpore expression of a control flow

In addition to graph-level automatic differentiation, MindSpore also supports
operator-level automatic differentiation. As well as providing operators of main-
stream deep learning networks, MindSpore provides a tensor engine (and related
interfaces) that enables users to customize operators using Python domain specific
language (DSL). Through Python DSL, users can customize operators in Python
as a mathematical form, similar to defining functions as formulas in mathematics.
The operator-level automatic differentiation interfaces provided by the tensor engine
can directly differentiate operators that are defined by DSL, again similar to mathe-
matics where we would use a differential sign to express derivation. This approach
more closely matches the code writing habits of users, as shown in Code 1.3. In
the example code, we use DSL to define the forward operator, which is the objec-
tive of operator-level automatic differentiation, and use the tensor engine’s reverse
interface to derive the backward operator. For a multi-input operator, we can specify
one or more forward operator inputs for the backward operator interface, enabling
automatic differentiation calculation to be performed concurrently on these inputs.
In operator-level automatic differentiation, the result of automatic differentiation on
the upper-level operator in the reverse graph (the lower-level operator in the corre-
sponding forward graph) is used as the input, and the result of the backward operator



10 1 Introduction

is calculated based on the chain rule—this approach differs from graph-level auto-
matic differentiation. Using MindSpore, we can use the reverse interface repeatedly
to calculate the higher-order derivative of the operator. This is similar to mathe-
matics, where we would obtain the higher-order derivative by repeatedly performing
calculation on the function by using the differential operator.

Code 1.3 Example of Automatic Differential Code at the Operator Level

def sigmoid(x): 

#DSL implementation of the forward operator

From te.lang.cce import vrec, vadds, vexp, vmuls

res = vrec(vadds(vexp(vmuls(x, -1.0)), 1.0))

return res

def sigmoid_ad(dout, x): 

import te

#Forward operator reference

out = sigmoid(x)

#Generate a backward operator after automatic 
#differentiation of the forward operator

[dx] = te.differentiate(out, [x], dout)

return dx

We can apply many optimization techniques to operator-level automatic differ-
entiation at the IR layer because it uses the IR method. For example, MindSpore’s
tensor engine provides zero-removal optimization at the IR layer according to the
operator features of deep learning. The efficiency of operations such as summation
may be significantly compromised if there aremany zero elements in the unoptimized
backward operator, so the tensor engine uses automatic differentiation to eliminate
these zero elements through cyclic axis merging and cyclic domain scheduling trans-
formation. This not only improves code efficiency but also simplifies the code to
facilitate subsequent deployment. In addition, the tensor engine adopts the polyhe-
dral model to overcome cyclic deformation dependence; to implement automatic
operator scheduling, automatic memory optimization, and optimal memory configu-
ration; and to deliver optimal operator performance. This frees users from the details
of manual scheduling and tuning, allowing them instead to focus their attention on
the algorithms.

Through the operator-level automatic differentiation interface, MindSpore
supports not only automatic generation of the backward operator, but also manual
optimization of the derivative formula. Specifically, the operator-level automatic
differentiation function divides the operator into several complex operations of
simple functions. Derivation is then performed sequentially by using the derivatives
of the known basic functions and the derivation rule, following which the derivative
of the composite function is calculated according to the chain rule. Once this has



1.5 Introduction to MindSpore 11

been completed, the tensor engine’s built-in mathematical formula simplifier is used
to simplify the derivative. Although this is sufficient for most users, MindSpore also
provides an interface that allows users with higher requirements for performance or
code deployment to use their own optimized derivative formulas in order to replace
one ormore of the steps involved in automatically generated differentiation, as shown
in Code 1.4. While MindSpore can complete the derivation of the sigmoid function
in the preceding example, some users may want to calculate it using the manually
derived derivative dy = y (1 − y) of the sigmoid function so that they can use the
result obtained through the forward function. In this case, the manual derivative
formula is added to the function custom_sigmoid_fdiff, and the derivation of this
part is reloaded in the automatic differentiation. The custom_sigmoid_fdiff param-
eter is used as the output to calculate the derivative of xwhile automatic generation of
other parts is preserved. By taking this approach, MindSpore ensures consistency of
the automatically differentiated backward operator and themanually tuned backward
operator, making it easier for users to call the operator at the graph layer.

Code 1.4 Example of Automatic Differentiation Code for Manual Tuning

def sigmoid_ad_optimized(dout, x): 

import te

#Forward operator reference

out = sigmoid(x)

#Manual tuning

def custom_sigmoid_fdiff(out, inputs, grad):

return [out * (1.0 – out)]

#Generating backward operator

[dx] = te.differentiate(out, [x], dout, override= {out:([x], 
custom_sigmoid_fdiff)})

return dx

In summary, by saying that MindSpore realizes simple programming, we mean
that it simplifies the development process and improves both code readability and
efficiency by not only considering user requirements for manual tuning of the back-
ward operator, but also combining automatic differentiation and manual tuning. In
addition to supporting operator-level automatic differentiation, MindSpore also opti-
mizes the backward operator at the IR layer, therebymeeting developer requirements
for automatic generation of the backward operator.

1.5.2 Device–Cloud Collaboration

By leveraging Huawei’s “device–edge–cloud” service scenarios, MindSpore
supports all-scenario deployment and enables cloud-to-device processes with a



12 1 Introduction

particular focus on ensuring complete privacy protection. It enables developers
to quickly develop and deploy cloud-based, edge-based, and mobile-based AI
applications—and interconnects all scenarios to improve resource utilization and
privacy protection—by providing capabilities such as consistent development and
deployment along with on-demand collaboration capabilities for any scenario.

Although the industry and academics have yet to define “device–cloud collabora-
tion”, the device–cloud interactive learning pattern is generally considered a device–
cloud collaboration system. For example, the application of technologies such as
model compression, on-device inference, on-device training, transfer learning, and
federated learning can be considered as device–cloud collaboration. This involves
building, pre-training, or hosting models on the cloud, executing or training models
on the device, and transferring models or weights between the cloud and the device.

In on-device inference, the cloud model is compressed and converted into an on-
device inference model, which is then loaded into an on-device inference framework
to infer local data. The dataset used for cloud-based model pre-training and the real
device data typically differ, so to achieve an accurate and personalized user experi-
ence, real device data needs to be used for model training. Because of device limita-
tions in terms of computing power, energy, and data storage, training a model from
scratch is impractical and therefore transfer learning technology is used for on-device
learning. A number of device–cloud federated learning methods and frameworks
have been proposed to combine multiple devices in order to train a global model and
implement on-device privacy protection, aiming to make full use of device data and
on-device training capabilities. For example, Google pioneered a federated learning
approach and framework in 2016, following which Yang Qiang et al. proposed
methods such as horizontal federated learning, vertical federated learning, federated
transfer learning, federated reinforcement learning, and their corresponding frame-
works. On-device inference, transfer learning, and federated learning are different
stages of device–cloud collaboration, all of which are combined in MindSpore’s
device–cloud collaboration framework in order to streamline the entire device–cloud
process, as shown in Fig. 1.3.

Cloud

Automatic model 
generation

Model 
compression

Compilation &
optimization

On-device 
inference

Transfer 
learning

Federated 
learning

Device

Fig. 1.3 Device–cloud collaboration architecture



1.5 Introduction to MindSpore 13

This process, covering model generation, model compression, compilation opti-
mization, and on-device learning, is streamlined through MindSpore’s device–cloud
collaboration framework integrating both the cloud and device frameworks. In
terms of establishing model libraries, MindSpore provides neural architecture search
(NAS) capabilities for automated model generation and uses its model compression
module to prune and quantize models. And to subsequently convert and optimize the
models, MindSpore uses its compilation optimization capabilities while also accel-
erating operator execution through methods such as neural processing units (NPUs),
graphics processing units (GPUs), and ARM NEON.1 MindSpore’s device–cloud
collaboration framework offers the following features2:

(1) Rapid deployment in multiple scenarios. The framework constructs a diver-
sified model library by using NAS technology so that models can be quickly
adapted to different types of hardware on multiple devices. In this way, we can
search the library for a model that satisfies the performance constraints of a
given application, and use the model directly without additional training.

(2) Full stack performance optimization. The framework enables users to opti-
mize the precision, size, and latency of models in order to achieve ultimate
performance through methods such as NAS, model compression (pruning,
distillation, and quantization), and compilation optimization (operator fusion,
constant folding, and hardware acceleration).

(3) High flexibility and ease of use. The framework supports multiple strategies,
including model generation, model compression, and compilation optimiza-
tion, and not only streamlines the entire device–cloud process, but also centrally
manages the strategies and configurations throughout the process, delivering
tangible benefits in terms of improved ease of use.

(4) Various learning patterns. The framework supports advanced learning patterns
that require on-device training capabilities, including transfer learning and
federated learning, as well as basic patterns such as on-device inference
(support for different learning patterns is being added gradually).

1.5.3 Easy Debugging

Along with visualized AI development, MindSpore makes the debugging process
simple and offers both dynamic and flexible development debugging. After devel-
oping a single codebase, we can easily switch between the dynamic and static graph
debugging modes by changing only one line of code. For example, if we frequently
need to perform development debugging, we can select the dynamic graph mode for
convenient and flexible debugging using a single operator or subgraph. Or if we need
to ensure high running efficiency, we can switch to the static graph mode, compile

1 See: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon.
2 The framework is continuously evolving in order to remain at the cutting edge of AI development.
Get the most up-to-date information at https://mindspore.cn.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://mindspore.cn


14 1 Introduction

and execute the entire graph, and obtain high performance through efficient graph
compilation optimization. The simple code needed to change between debugging
modes in MindSpore is as follows:

Code 1.5 Example of Code for Switching Debugging Modes

def ssd_forward_run():

net = ssd_resnet34_224(batch_size=8)

#Switching to the graph execution mode

context switch_to_graph_mode()

model.train(epoch=10, train_dataset=dataset)

#Switching to the debugging execution mode

context.switch_to_pynative_mode()

model.train(epoch=10, train_dataset=dataset)

1.5.4 Exceptional Performance

MindSpore not only maximizes the heterogeneous computing power of all Huawei
“device–edge–cloud” scenarios through AI Native, but also leverages Huawei
Ascend chips for on-device execution, highly efficient AI data format processing, and
depth map optimization to deliver optimal performance, helping minimize training
time and improve inference performance. In addition, MindSpore implements auto-
matic model parallelization, automatically dividing and optimizing models by using
flexible policies and cost models. This is especially important due to the difficulty
involved in dividing and debugging the models manually, which would lower the
development efficiency, and addresses the fact that a single computer is unable to
provide sufficient memory and computing power to handle the ever-increasing size
of datasets and models. MindSpore’s automatic parallelization code is as follows:

Code 1.6 Example of Automatic Parallelization Code

def ssd_forward_compile_auto_parallel(loss, opt, dataset):

net = ssd_resnet34_224(batch_size=8)

#Defining a distributed optimizer

distributed_opt = DistributedOptimizer(optimizer=opt, 
degree=1)

#Automatic parallelization among eight devices

model = Model(net,loss,distributed_opt,data_parallel_size=8)

model.train(epoch=10, train_dataset=dataset)



1.5 Introduction to MindSpore 15

1.5.5 Open-Source Components

One of the key objectives of MindSpore is to ensure the continued prosperity of
the AI development ecosystem. Through open-source components and an exten-
sible architecture, MindSpore helps developers flexibly expand the capabilities of
supporting third-party frameworks and third-party chips in order to meet a multitude
of different customization requirements. As MindSpore continues to evolve, more
andmore learning resources, online support, and additional services will be provided
at https://www.mindspore.cn/en and in open-source communities.

https://www.mindspore.cn/en


Chapter 2
Deep Learning Basics

This chapter describes several commonly used algorithms and basic concepts related
to deep learning.

2.1 Regression Algorithms

Regression algorithms typically use a series of properties to predict a value, and the
predicted values are continuous. For example, the price of a house is predicted based
on the house’s features, such as its location and number of bedrooms, or weather
forecasts are predicted according to the previous week’s temperatures and weather
maps. Using the first example, if the actual house price is CNY 5 million, and the
value predicted through regression analysis is CNY 4.99 million, the regression
analysis is considered accurate. For machine learning problems, regression analysis
includes linear regression, polynomial regression, logistic regression, and others.
This section focuses on linear regression algorithms due to their simplicity, offering
an ideal starting point for those wanting to quickly understand the basics of deep
learning. Section 2.3 builds on this basic understanding by elaborating on logistic
regression.

Let’s start by looking at a linear regression problem with only one variable. Table
2.1 shows the given data, also called a dataset.

Each group of data is denoted as (x(i), y(i)), and there arem groups of data in total.
The goal is to obtain a model through which a value of y is predicted based on a
newly given value of x. For linear regression, the model is a linear function, and the
formula is as follows:

h(x (i)) = w0 + w1x
(i) (2.1)

where w0 and w1 represent parameters that need to be obtained through training.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_2&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_2


18 2 Deep Learning Basics

Table 2.1 Given data

x – 12 – 4 1 10 20 29 43 60 …

y 0 2 3 5 8 7 10 15 …

This model is also called hypothesis. Linear regression aims to obtain an optimal
group of w0 and w1, so that the hypothesis is close to the dataset shown in Table 2.1.
In this way, we hope that the w0 and w1 obtained through training can fit the given
dataset as closely as possible, as shown in Fig. 2.1.

So how do we obtain the optimal w0 and w1? We can achieve this by converting
the training goal into minimization of the following function:

J (w) = 1

2m

m∑

i=1

(h(x (i)) − y(i))2 (2.2)

A function that needs to be minimized is called a loss function, and more than one
may exist. The one given above is called the mean square error function, which is
typically used to solve regression problems. For classification problems, the cross-
entropy loss function is typically used. An example of this is:

J (w) = − 1

m

m∑

i=1

y(i) log h(x (i)) + (1 − y(i)) log(1 − h(x (i))) (2.3)

The final optimization goal is to minimize the error between the predicted value
h(x(i)) and the actual label y(i) in the training data.

For the sake of simplicity, let’s assume that the input data x has only one property,
although in practical applications it may include n properties (n ≥ 1). In this case, n
+ 1 parameters w need to be obtained through training, w = [w0, w1, …, wn], where
w0 is a bias, and wi (i = 1, 2, …, n) is a weight of the ith property. In summary, the
regression problem can be expressed as follows:

Fig. 2.1 Linear regression
model

10.0

7.5

5.0

2.5

0

-2.5

-5.0

-7.5

-10.0
-8 -6 -4 -2 0 2 4 6 8

x

y



2.1 Regression Algorithms 19

(1) Dataset

{(x (i), y(i))}mi=1, x = [x1, x2, · · · , xn] (2.4)

(2) Parameter

w = [w0,w1, · · · ,wn] (2.5)

(3) Hypothesis

h(x (i)) = w0 +
n∑

j=1

wj x
(i)
j (2.6)

(4) Loss function

J (w) = 1

2m

m∑

i=1

(h(x (i)) − y(i))2 (2.7)

For brevity, the dataset is expressed as an m × (n + 1) matrix X, where the first
element of each row is always 1, which is followed by n properties of x(i), that is:

X =

⎡

⎢⎢⎢⎣

1 x (1)
1 x (1)

2 · · · x (1)
n

1 x (2)
1 x (2)

2 · · · x (2)
n

...
...

...
. . .

...

1 x (m)
1 x (m)

2 · · · x (m)
n

⎤

⎥⎥⎥⎦ (2.8)

In addition, the target value is also denoted as a vector form y = (y(1); y(2); …;
y(m)), meaning that the linear regression problem can be expressed as follows:

w∗ = argmin
w

1

2m
( y − Xw)T( y − Xw) (2.9)

In order to find an extremum w*, we can calculate the gradient of w to obtain:

∂ J (w)

∂w
= 1

m
XT(Xw − y) (2.10)

When XTX is a full-rank matrix or a positive-definite matrix, let the gradient
∂ J (w)

∂w = 0 in order to obtain:

w∗ = (
XTX

)−1
XT y (2.11)

where (XTX)–1 is an inverse matrix of the matrix XTX.



20 2 Deep Learning Basics

After obtaining w*, for any sample x, let x
∧ = [1, x], so that we can predict a

regression value of x as follows:

h(x) = x
∧T

(XTX)−1XT y (2.12)

However, in practical applications, XTX is unlikely to fully meet the conditions
of the full-rank matrix or the positive-definite matrix. For example, the quantity of
properties in some tasks might be large, potentially even large enough to exceed the
quantity m of samples, that is, n ≥ m. As a result, the quantity of columns in the
sample matrix X would be much larger than the quantity of rows. In this case, XTX
is unable to meet the conditions of the full-rank matrix.

In the linear regression problem, let ∂ J (w)

∂w = 0, so that we can obtain an analytical
solution of the optimal parameter w*. However, for models or loss functions that
are more complex, there is usually no analytical solution. Section 2.2 will describe
gradient descent, an algorithm that has found wide use in the field of machine
learning. By minimizing the loss function, this algorithm obtains, through training,
the parameter w* that needs to be calculated.

2.2 Gradient Descent

Gradient descent is a first-order optimization algorithm used to find the local
minimum of a loss function (or objective function). Using this algorithm, also called
steepest descent, we need to move a distance proportional to the negative of the
gradient (or approximate gradient) corresponding to the current point of the function
in order to implement iterative search. The converse of this is called gradient ascent,
whereby if we move a distance proportional to the positive of the gradient, we will
approach the local maximum point of the function. This section focuses exclusively
on gradient descent.

Gradient descent is based on the following observation: If a real function J(w)
is differentiable and defined at w, then J(w) decreases fastest at the point w along
the direction −∇J(w), which is opposite to the gradient. As shown in Fig. 2.2, if we

Fig. 2.2 Gradient over
ridges



2.2 Gradient Descent 21

follow the middle route, we would travel a much shorter distance than if we traveled
along either the left or right route.

Based on this, the concept of gradient descent includes the following parts:

(1) Selecting an initial point w0.
(2) Gradually updating the parameter in the negative direction of the gradient, wt

= wt−1 −α ∇J(wt−1) until convergence.

Here, α > 0. Also known as learning rate, α is step size whose value can be
set before training, or it can be adjusted according to the training situation. Based
on the definition of gradient, if the value α is small enough, J(wt) ≤ J(wt−1). If
an appropriate step size is given, starting from w0, smaller loss functions J(w0) ≥
J(w1)≥ J(w2)≥…are obtained gradually. In theory, the sequence wt will gradually
converge to the minimum of the loss function, as shown in Fig. 2.3.

Assume that the loss function J is defined on a plane and looks like a bowl. The
elliptical curves represent contour lines; that is, the function J is a curve formed by
a set of constants, where the value becomes smaller as it approaches the center. If
an initial point w0 is selected arbitrarily, the arrows point to the negative direction of
the gradient (the gradient direction is perpendicular to the contour line of the point).
In this case, the parameter w is gradually updated along the descending direction of
the gradient until it reaches the bottom of the bowl, that is, it reaches the minimum
point of the function J.

Because we can convert the problem of solving the linear regression, mentioned in
Sect. 2.1, into one of minimizing the loss function J(w), we can use gradient descent
here. For a given dataset {(x(i), y(i))}, the parameter w is defined according to the
number of properties of x. The linear equation h(x(i)) and the loss function are as
follows:

J (w) = 1

2m

m∑

i=1

(h(x (i)) − y(i))2 (2.13)

Fig. 2.3 Illustration of
gradient descent

w3

w2

w1

w0



22 2 Deep Learning Basics

First, we need to randomly select an initial point w0 and an appropriate step size
α. The gradient calculation formula is as follows:

∇ J (w) = 1

m

m∑

i=1

(h(x (i)) − y(i))x̂ (i) (2.14)

where x̂ (i) = [1, x (i)]. A dimension of a constant 1 is added to the original property
vector to update the bias w0.

The parameter wt can be updated step by step based on the gradient ∇J(w), and
the optimal parameter value can be obtained by using wt = wt−1 − α∇J(wt−1). In
addition to being used in linear regression, gradient descent can also be used for
minimizing the loss function to solve many problems in machine learning.

This versatile algorithm is also called batch gradient descent,where “batch”means
that the total quantitym of training samples is used. In practical problems, the quantity
of samples may be large (e.g., the quantity of students in a school, clients in a bank,
and files on a hard disk). The quantity of parameters may also large, especially for
complex learning models such as the DNN. Using all data samples in each gradient
calculation will produce large results or even make the calculations impossible. The
batch gradient descent algorithmcan be thought of as a randomprocess, inwhich only
one point is randomly selected at a time, which is expected to be roughly similar to
the sum of all points. This means that the gradient of a single point, called stochastic
gradient, can be used instead of the average gradient, and the overall gradient can
be regarded as an expected value of the stochastic gradient. An iterative algorithm
for a linear programming problem based on stochastic gradient descent involves the
following formula:

wt = wt−1 − α(h(x (i)) − y(i))x̂ (i) (2.15)

where x(i) is the sample randomly selected from m data samples during the tth
iteration.

Because only one sample is used for each update without traversing all datasets,
the speed of iteration is relatively fast. However, the gradient direction selected each
time may be not optimal due to a deviation of random sampling, meaning that the
quantity of iterations and theminimumvalue of convergencemay also not be optimal.

In practical applications, mini-batch gradient descent—a trade-off between batch
gradient descent and stochastic gradient descent—is a more popular algorithm. A
small batch of samples with a sample quantity of b (b < m) are randomly selected
each time, speeding up calculation of the entire batch. In addition, using a small
batch in calculating the gradient direction yields greater accuracy than the stochastic
gradient direction, which is based on only one sample. Mini-batch gradient descent
is shown in Algorithm 2.1.



2.2 Gradient Descent 23

Algorithm 2.1 Mini-batch gradient descent

Input: Dataset , step size α, mini-batch training sample size b, and iteration 

quantity T

Output: Converged parameter wT

(1) Initialize the parameter w0

(2) for t ϵ {1, 2, ..., T}.

(3) Select b samples uniformly at random from m samples

(4) Calculate the gradient and update the parameter

wt ← wt−1 − α

b

∑

i∈mb

∂w Ji (w) (2.16)

Algorithm2.1 summarizes themain process ofmini-batch gradient descent,where
mb is an index set of b samples randomly selected from m samples, and Ji(w) is a
loss function on the ith sample. We will describe selection of a step size, conditions
for convergence, and other relevant aspects in subsequent sections.

2.3 Classification Algorithms

Unlike a regression problem, the output of a classification problem is a discrete
value rather than a continuous value, that is, the category of the sample. Classifica-
tion problems are widely used in real-world applications, for example, to perform
handwritten digit recognition, email spam classification, and facial recognition, and
even to distinguish cats and dogs in images. Such problems include binary classifica-
tion (“yes” or “no”) and multi-class classification (where one of multiple categories
needs to be determined). All multi-class classification problems can be converted
into multiple binary classification problems. For example, when animals are clas-
sified, each animal can be systematically determined using “yes” or “no” in order
to achieve the goal of multi-class classification. This section focuses on the binary
classification problem.

Consider the following question: Can we solve a classification problem by using
the same method we use to solve a regression problem? The answer is yes. The
main difference between classification and regression problems is that a series of
discrete values, rather than a straight line or curve, is to be fit. The logistic regression
mentioned in Sect. 2.1 is ideal for the linear binary classification problem.

Logistic regression is based on the logistic function (also known as a log
probabilistic function) shown in Fig. 2.4, that is:



24 2 Deep Learning Basics

Fig. 2.4 Logistic function
sigmoid(x) = 1

1+e−x
1.0

0.8

0.6

0.4

0.2

0

-8 -6 -4 -2 0 2 4 6 8
x

y

sigmoid(x) = 1

1 + e−x
(2.17)

where e(.) is an exponential function.
Any given input value x is mapped by the logistic function to a value in the range

0–1. The output value is closer to 1 if x > 0, and closer to 0 if x < 0. When x = 0,
it indicates an inflection point with the maximum slope value. The output value of
the logistic function is usually regarded as the probability that the output is 1. The
logistic function is a monotonically differentiable function, which is an important
property that allows gradient descent to be used for model training.

For a given sample property x, assume that the label y ∈ {0, 1}, and the predicted
value z(x) = wTx

∧

, where x
∧ = [1, x]. For classification problems, if z(x) > 0, the

predicted value is 1, whereas if z(x) < 0, the predicted value is 0. In this way, the
predicted value z(x) can be substituted into the logistic function to obtain:

h(x) = 1

1 + e−wTx
∧ (2.18)

From the perspective of probability, the classification probability can be expressed
as P(y = 1|x,w) = 1

1+e−wTx
∧ . Similarly, P(y = 0|x,w) = 1

1+ewTx
∧ .

For a given dataset {(x (i), y(i))}mi=1, in the linear regression problem, the optimiza-
tion goal is to minimize the mean square error. However, in the logistic regression
model, the optimization goal is tomaximize the likelihood functionL.The calculation
formula for L is as follows:

L(w) =
n∏

i=1

P(y(i)|x (i),w) =
n∏

i=1

(h(x (i)))y
(i)
(1 − h(x (i)))1−y(i)

(2.19)

If the quantity of samples is too large, numeric overflowmayeasily occur due to the
characteristics of computer floating-point numbers. Because the form of consecutive
addition is easier than consecutivemultiplication, in terms of gradient calculation, we
usually take the logarithm of multiple consecutive multiplication terms. Specifically,
we can use the log-likelihood function shown in the following formula:



2.3 Classification Algorithms 25

l(w) = log L(w) =
n∑

i=1

y(i) log(h(x (i))) + (1 − y(i)) log(1 − h(x (i))) (2.20)

Now we can use the gradient descent described in Sect. 2.2 to minimize the loss
function in order to train the parameter w, that is:

J (w) = −
n∑

i=1

y(i) log(h(x (i))) + (1 − y(i)) log(1 − h(x (i))) (2.21)

This loss function is also called cross-entropy. When the value of y(i) is 1 or 0,
the loss function J(x(i), y(i), w) on a single sample corresponds to the left or right
part of formula (2.21) respectively. As shown in Fig. 2.5, when y(i) = 0, if h(x(i))
approaches 0, the value of the loss function becomes smaller, as too does the slope.
The opposite is true if y(i) = 1. The logistic function generates larger penalty values
and larger gradients for incorrectly classified samples.

The logistic regression model defines linear binary classification problems from
the perspective of regression probability. Figure 2.6a shows agraphical representation
of the linear classifier. For dark-colored samples, y = 0; for light-colored samples,
y = 1. The boundary in the middle is the linear classification boundary z(x) = wTx
= 0, which is obtained through training. When z(x) < 0, that is, a point is above the
boundary, the predicted value is 0; otherwise, the predicted value is 1.

The linear classifier offers good interpretability, but in practice, the boundary
of samples is not linear for a nonlinear classifier shown in Fig. 2.6b. This means
that different parameter models need to be defined, such as the polynomial model,
the SVM, and the neural network model, to learn complex nonlinear classifiers.
Nevertheless, it is worth noting that the nonlinear classification problem can also be
split into two parts:

y=0
y=1

6

5

4

3

2

1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

h(x(i))
0.9 1.0

J(
x( i)

, y
(i)

,w
)

Fig. 2.5 Curve of a relationship between a single sample and a loss function



26 2 Deep Learning Basics

(a) Linear classifier (b) Nonlinear classifier 

Fig. 2.6 Representation of the linear classifier and the nonlinear classifier

(1) Mapping samples to linear space by using the feature function.
(2) Learning the final classification boundary by using the linear classification

model.

Chapter 3 will describe how to use the logistic regression model to train neural
networks.

2.4 Overfitting and Underfitting

In machine learning, the terms overfitting and underfitting mean that the selected
model does not optimally fit the data. In other words, the model is either too complex
or too simple. An overfit model typically includes more parameters than the features
of the data. In order to fit as much data as possible, some incorrect samples are
included. However, these parameters may produce noise due to overfitting of data.
The opposite of overfitting is underfitting, in which the selected parameter or model
is not sufficiently complex. For example, using a linear model to fit a nonlinear
structure can be considered as underfitting.

Figure 2.7 shows the problems of overfitting and underfitting in the classification
problems. For a nonlinear model, if the linear model in Fig. 2.7a is used, it will not
be possible to fit the nonlinear boundary. This case is called underfitting, in which
the model cannot provide a good prediction effect. To fit as much data as possible,
the complex model shown in the curve in Fig. 2.7c may be selected. Although such
a model distinguishes the data completely, it does not optimally fit the data features.
For a new test point, this overfit model may cause an error in distinguishing the
data. The curve in Fig. 2.7b offers better generalization and is therefore the model
of choice.

If the regression problem shown in Fig. 2.8 is fit by using a light-colored poly-
nomial curve, although all data points can fit perfectly, the features of the data are
lost. This means that the model cannot be satisfactorily generalized. For example, for



2.4 Overfitting and Underfitting 27

(a) Underfitting (b) Well-fitting

(c) Overfitting

Fig. 2.7 Underfitting, well-fitting, and overfitting in classification problems

Fig. 2.8 Overfitting in
regression problems

10.0

7.5

5.0

2.5

0

-2.5

-5.0

-7.5

-10.0
-8 -6 -4 -2 0 2 4 6 8

x

y

any unknown data point between the first point and the second point on the left, the
predicted value is extremely large, resulting in a significant deviation. Conversely,
the dark-colored linear model reflects a change trend of the data and can achieve
higher accuracy when predicting a new data point.



28 2 Deep Learning Basics

Fig. 2.9 Overfitting and
underfitting of the model

Model complexity

Er
ro

r v
al

ue

In the preceding problem, the concepts of overfitting andunderfitting are explained
from the perspective of the graph. Now we will explain them from the perspective
of data.

In a machine learning problem, the data is comprised of both training data and
testing data—the model needs to be selected and trained based on the training data,
and the testing data is invisible to the model. Using an underfit model would achieve
a noticeably poor effect on the training data. So how can we determine whether the
model is overfit? We can extract some samples from the training data to form one
piece of validation data. Assuming that the distribution of validation data is similar
to that of the training data and testing data, we can determine whether the model is
overfit based on the model’s performance on the validation data.

In Fig. 2.9, the horizontal coordinate represents model complexity, the vertical
coordinate represents an error value, the lower curve represents an error on the
training data, and the upper curve represents an error on the validation data. We
can see that, when the model complexity increases, the error on the training data
gradually decreases. This is because the complex model fits the data more easily.
However, the error on the validation data decreases before it increases, because the
model undergoes a gradual transition from underfitting to overfitting. The validation
data is intended to help select the model at the dashed line. The model optimally fits
the data, meaning that we can expect a better generalization effect—the algorithm
can better adapt to new samples (testing data).

Chapter 4 will describe some methods for enhancing the generalization ability
of the model to prevent overfitting. Controlling the model complexity can alleviate
overfitting and help learn the rules behind the data.



Chapter 3
DNN

This chapter introduces several important concepts related to DNN and presents
some examples of using MindSpore to implement simple neural networks.

3.1 Feedforward Network

Deep learning uses neural networks to perform high-level data abstraction—a key
difference compared with traditional machine learning. The most basic neural
network structure is feedforward neural network (FNN), also known as MLP.

Before describing MLP, we will first look perceptron, which is the basic unit
of a neural network. As shown in Fig. 3.1, x1, x2, …, xn are inputs, w1, w2, …,
wn are corresponding weights, and w0 is a bias. The perceptron performs weighted
summation on these inputs and adds the bias w0, and then obtains the outputs of
neurons byusing the activation function f (•). The logic function sigmoid(x) = 1

1+e−x ,
which we mentioned in the classification problem, is a commonly used activation
function. It can be used to squeeze a value that changes within a large range to an
output value range of (0, 1) or to output a probability value corresponding to 0/1.
The double cosine function tanh(x) = ex−e−x

ex+e−x and the rectified linear unit (ReLU)
function ReLU(x)=max(x, 0) are also common activation functions for neurons. All
these activation functions can be used to perform nonlinear operations on neurons,
but note that nonlinear functions are more expressive than linear ones. Figure 3.2
shows the shapes of these three activation functions.

Although a single neuron of a nonlinear activation function has a nonlinear feature,
this function has only one layer of neurons. It has a very limited learning ability
and can handle only linearly separable problems. To solve nonlinearly separable
problems, which are more complex, MLP is therefore proposed.

Figure 3.3 is a simple three-layer FNNmodel that includes an input layer, a hidden
layer, and an output layer. Data x is provided to the input layer as inputs, which are
processed through linear mapping and nonlinear activation functions at the hidden

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_3&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_3


30 3 DNN

Input Weight Bias

Summation Activation function Output

x1

x2

xn

w1

w2

wn

w0

∑ f

Fig. 3.1 Perceptron

layer. The processed data is then transferred to the output layer. At the input layer,
the number of nodes depends on the number of properties of the data, whereas at
the output layer, the number of nodes is equal to the number of categories, abstract
features, or other dimension. The number of hidden layers is specifiedmanually to be
one or more, and at each hidden layer, one category of nonlinear activation functions
can be set. After linear combination and nonlinear transformation, the functionmodel
formed by multiple layers of neurons develops a more powerful learning ability.

3.2 Backpropagation

Chapter 1 explored how we can use the gradient decent algorithm to train the regres-
sion model. Although we must use this algorithm in the neural network model to
update parameters, a neural network usually includes millions of parameters. This
means that it is important to calculate these parameters in an efficient manner. To
this end, the backpropagation algorithm is used in neural networks to improve the
calculation efficiency.

Before describing backpropagation, we will first explain the chain rule. Assume
that there are two functions y = g(x) and z = h(y). The derivative of z with respect
to x is obtained as follows:

∂z

∂x
= ∂z

∂y

∂y

∂x
(3.1)

Now assume that there are three functions x = g(s), y = h(s), and z = k(x, y). The
derivative of z with respect to s is obtained as follows:

∂z

∂s
= ∂z

∂x

∂x

∂s
+ ∂z

∂y

∂y

∂s
(3.2)



3.2 Backpropagation 31

Fig. 3.2 Shapes of the three
common activation functions

2.5
2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.5

y

2.5
2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.5

y

2.5
2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.5

y
-3 -2 -1 0 1 2 3

x
(a)

-3 -2 -1 0 1 2 3
x

(b)

-3 -2 -1 0 1 2 3
x

(c)

ReLU

sigmoid

tanh

The gradient calculation of neural networks relies on layer-by-layer backpropa-
gation based on the chain rule.

In the FNN shown in Fig. 3.4, the input layer includes n properties x1, x2, …, xn,
the intermediate hidden layer includes p neurons, and the jth neuron is hj, where j ∈
(0, p − 1).

The output layer has q dimensions. For each neuron hj at the hidden layer, we use
the following formula first to perform linear transformation:



32 3 DNN

Input layer Hidden layer Output layer

x1

x2

x3

y1

y2

Fig. 3.3 Three-layer FNN model

Input layer

Hidden layer

Output layer

h1 h2 hj hp

x1 xi xn

υk1 υk2 υkj υkp

wj1 wji wjn

Fig. 3.4 Neural network structure

ĥ j = wj0 +
n∑

i=1

wji xi (3.3)

where wj0 is a bias, and wj1, wj2, …, wjn are weights applied to properties x1, x2, …,
xn.

After we input ĥ j to the neuron and apply the activation function, we obtain
h j = α1(ĥ j ). Similarly, a neuron is input at the second layer:

ŷk = vk0 +
p∑

j=1

vk j h j (3.4)



3.2 Backpropagation 33

The output is ỹ j = α2(ŷ j ). This is the forward propagation process of the FNN.
For a single data sample (x, y), if we assume that the loss function is a mean square

error, then the loss for the kth output is:

Jk = 1

2
(ỹk − yk)

2 (3.5)

Through the chain rule, the gradient of the loss function to the weight vkj is:

∂ Jk
∂vk j

= ∂ Jk
∂ ỹk

· ∂ ỹk
∂ ŷk

· ∂ ŷk
∂vk j

(3.6)

where the first term is ∂ Jk
∂ ỹk

= (ỹk − yk), and the third term is ∂ ŷk
∂vk j

= h j .
For the second term, ifwe assume that the activation function is a sigmoid function,

we can determine that the gradient has a good property, namely:

∂ ỹk
∂ ŷk

= ỹk(1 − ỹk) (3.7)

We can then multiply the three terms to obtain:

∂ Jk
∂vk j

= ỹk(ỹk − yk)(1 − ỹk)h j (3.8)

Because the label yk is given by the data, and both the output values ỹk and hj
are calculated by using the forward propagation algorithm, each intermediate layer
weight vkj can be easily calculated. In addition, the calculation process can be carried
out concurrently.

To obtain the cumulative gradient of the loss value on the hidden unit hj, we can
use the following:

eh j = ∂ J

∂h j
=

q∑

k=1

∂ Jk
∂ ỹk

·∂ ỹk
∂ ŷk

· ∂ ŷk
∂h j

=
q∑

k=1

ỹk(ỹk − yk)(1 − ỹk)vk j (3.9)

Similarly, we can obtain the gradient of the loss function to the first layer weight
wji based on the chain rule (assuming that the activation function of the hidden layer
is a ReLU function):



34 3 DNN

∂ J

∂wji
= ∂ J

∂h j
· ∂h j

∂ ĥ j

· ∂ ĥ j

∂wji

= eh j · ∂h j

∂ ĥ j

· xi (3.10)

where ∂h j

∂ ĥ j
=

{
0, ĥ j ≤ 0
1, ĥ j > 0

.

After eh j is calculated,
∂ J

∂wji
can also be calculated efficiently and concurrently.

In the preceding process, we assume that the loss function is a mean variance error
and that the activation functions are sigmoid or ReLU functions. These assumptions
are effective for any differentiable loss function and activation function. As we can
see from the calculation process, after the values of the hidden and output layers are
obtained through forward propagation, the gradient is calculated starting from the
loss function and then the top layer, and the gradient is propagated layer-by-layer back
to the input layer. The sequence in which this process is performed is the reverse of
forward propagation, and therefore the algorithm is called backpropagation. After we
have obtained the gradients of all parameters through backpropagation (see Fig. 3.5),
we can use the gradient descent algorithm to update and iterate the parameters in
order to train the neural network. The neural network training process is described
in Algorithm 3.1.

Input layer

Hidden layer

Output layer

υkj

h1 h2 hj hp

wji

x1 xi xn

Fig. 3.5 Backpropagation



3.2 Backpropagation 35

Algorithm 3.1 Neural Network Training Process

Input: Dataset , step size α, mini-batch training sample size b, and the number 

T of iterations

Output: Trained neural network

(1) Initialize the network parameter w0

(2) for t ϵ {1, 2, ..., T} 

(3) Select b samples mb uniformly at random from m samples

(4) Perform forward propagation and calculate parameters of hidden layers layer-by-

layer to obtain sample output y~

(5) Calculate the error by using the loss function to obtain the gradient of the output 

layer

(6) Perform backpropagation and calculate gradients of the hidden layers layer-by-layer

(7) Calculate the gradients of the connection parameters, and update the parameters

wt ← wt−1 − α

b

∑

i∈mb

∂w J
(i)(w) (3.11)

3.3 Generalization Ability

In earlier sections that explained overfitting and underfitting, we introduced the
concept of generalization ability, that is, the ability of a machine learning algorithm
to adapt to new samples. Overfitting of the training set can easily occur because
the neural network includes a large number of parameters and has a strong nonlinear
transformation ability.Although the accuracy of themodel is very high on the training
set and the loss is very low, the accuracy is quite low on the test data. In other words,
the model cannot adapt to the new samples due to lack of generalization ability. If
the model remembers the labels of some samples, it is possible that the model will
have high accuracy on the training set; however, it will not learn the features of the
data. This memory-based learning does not work on new test samples.

A lack of generalization ability may result from noise in the dataset, insufficient
training data, or high model complexity due to over-training of models. In order to
improve themodel’s generalization ability, a number of solutions have beenproposed,
some of which are as follows: reducing the depth and width of the model to reduce
its complexity; performing data augmentation on datasets such as image rotation,
translation, or zooming; adding regular noise such as Gaussian noise; adding the



36 3 DNN

regularization term to control parameter complexity; and using the early stopping
method during training.

In Sect. 3.4, we will introduce the specific training methods used to improve the
generalization ability of the DNN.

3.4 Implementing Simple Neural Networks Using
MindSpore

The interfaces and processes of MindSpore may constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

LeNet is typically used to identify and classify handwritten characters. Proposed
in the 1990s, it has been used in a number of banks across America to automatically
classify handwritten digits on bank checks. Comprised of several different layers,
such as the convolution layer, pooling layer, and ReLU layer, LeNet is a CNN that
was unable to handle complex problems due to the limited performance of computing
hardware and lack of large-scale training data at that time. However, because of its
simple structure, LeNet is ideal for beginners wanting to gain an understanding of
neural networks.

3.4.1 Parameters at Each Layer

LeNet-5 is highly representative of early CNNs. Excluding the input layer, it is
comprised of seven layers, each of which includes training parameters and multiple
feature maps. Each feature map includes multiple neurons and extracts an input
feature by using a convolution filer.

1. Input layer
The first layer is a data input layer, where the size of each input image is
normalized to 32 × 32.
Note that this layer is not included in the LeNet-5 structure, as traditionally it
is not considered as one of the network hierarchies.

https://mindspore.cn/resource


3.4 Implementing Simple Neural Networks Using MindSpore 37

2. C1 layer—Convolution layer
Details about the C1 layer are as follows:

(1) Input image size: 32 × 32.
(2) Convolution kernel size: 5 × 5.
(3) Convolution kernel type: 6.
(4) Output feature map size: 28 × 28 (28 is obtained by calculating “32 − 5

+ 1”).
(5) Number of neurons: 28 × 28 × 6 = 4704.
(6) Training parameters: (5 × 5 + 1) × 6 = 156.
(7) Number of connections: (5 × 5 + 1) × 6 × 28 × 28 = 122,304.

3. S2 layer—Pooling layer (downsampling layer)
Details about the S2 layer are as follows:

(1) Input size: 28 × 28.
(2) Sampling area: 2 × 2.
(3) Sampling mode: Four inputs are added up, the sum is multiplied by the

training parameters, and then the training bias is added to the product.
(4) Sampling type: 6.
(5) Output feature map size: 14× 14 (the size is one-fourth of that in C1; i.e.,

“28/2”).
(6) Number of neurons: 14 × 14 × 6 = 1176.
(7) Training parameters: 2 × 6 = 12.
(8) Number of connections: (2 × 2 + 1) × 6 × 14 × 14 = 5880.

4. C3 layer—Convolution layer
Details about the C3 layer are as follows:

(1) Input: Combination of all or some of the six feature maps in S2.
(2) Convolution kernel size: 5 × 5.
(3) Convolution kernel type: 16.
(4) Output feature map size: 10 × 10 (each feature map in C3 includes all six

features connected to S2, indicating that the feature map at this layer is
different combinations of those extracted from the previous layer).

(5) Training parameters: 6 × (3 × 25 + 1) + 6 × (4 × 25 + 1) + 3 × (4 ×
25 + 1) + (25 × 6 + 1) = 1516.

(6) Number of connections: 10 × 10 × 1516 = 151,600.

5. S4 layer—Pooling layer (downsampling layer)
Details about the S4 layer are as follows:

(1) Input size: 10 × 10.
(2) Sampling area: 2 × 2.
(3) Sampling mode: Four inputs are added up, the sum is multiplied by the

training parameters, and then the training bias is added to the product.
(4) Sampling type: 16.



38 3 DNN

(5) Output feature map size: 5 × 5 (the size is one-fourth of that in C3; i.e.,
“10/2”).

(6) Number of neurons: 5 × 5 × 16 = 400.
(7) Training parameters: 2 × 16 = 32.
(8) Number of connections: 16 × (2 × 2 + 1) × 5 × 5 = 2000.

6. C5 layer—Convolution layer
Details about the C5 layer are as follows:

(1) Input: All 16 feature maps of the S4 layer (fully connected to S4).
(2) Convolution kernel size: 5 × 5.
(3) Convolution kernel type: 120.
(4) Output feature map size: 1× 1 (1 is obtained by calculating “5− 5+ 1”).
(5) Training parameters/Connections: 120 × (16 × 5 × 5 + 1) = 48,120.

7. F6 layer—Fully connected layer
Details about the F6 layer are as follows:

(1) Input: C5 120-dimensional vector.
(2) Calculation mode: The dot product between the input vector and weight

vector is calculated, to which the bias is added.
(3) Training parameters: 84 × (120 + 1) = 10,164.

8. Output layer—Fully connected layer
The output layer is a fully connected layer that includes ten nodes, which are
represented by 0–9.

3.4.2 Implementation Process

The following describes how to implement training and inference using LeNet and
includes a number of code examples to help clarify the process.

1. Loading the MindSpore module

Import the MindSpore API and auxiliary module. The core code is as follows:

Code 3.1 Importing the MindSpore API and Auxiliary Module

import mindspore.nn as nn

from mindspore.train import Model

from mindspore import context

2. Importing a dataset

Create an MNIST dataset using the MindSpore data format APIs. For details about
these APIs and how to implement the train_dataset() function, see Chap. 14.



3.4 Implementing Simple Neural Networks Using MindSpore 39

3. Defining LeNet

Define the LeNet-5 network structure. The core code is as follows:

Code 3.2 Defining the LeNet-5 Network Structure

self.fc1 = nn.Dense(16 * 5 * 5, 120)

self.fc2 = nn.Dense(120, 84)

self.fc3 = nn.Dense(84, 10)

self.relu = nn.ReLU()

self.max_pool2d = nn.MaxPool2d(kernel_size=2)

self.flatten = nn.Flatten()

def construct(self, x):

x = self.conv1(x)

x = self.relu(x)

x = self.max_pool2d(x)

x = self.conv2(x)

x = self.relu(x)

x = self.max_pool2d(x)

x = self.flatten(x)

x = self.fc1(x)

x = self.relu(x)

x = self.fc2(x)

x = self.relu(x)

x = self.fc3(x)

return x

class LeNet5(nn.Cell):

def __init__(self):

super(LeNet5, self).__init__()

self.conv1 = nn.Conv2d(1, 6, 5, pad_mode="valid")

self.conv2 = nn.Conv2d(6, 16, 5, pad_mode="valid")

The __init__() function initializes the convolution layers and the fully connected
layers. Initialization parameters include the number of inputs, number of outputs,
parameters of the convolution layers, and size of the convolution kernel. Because the
image size of the original dataset is 28 × 28, the input size needs to be converted to
32 × 32 when the dataset is imported.

The construct() function implements forward propagation. Operations such as
convolution, activation, and pooling are performed successively on the inputs
according to the definition, following which the calculation result is returned. Before
the data is propagated to the fully connected layer, we can expand the data using the
Flatten() function, which flattens the input tensor while retaining axis 0.



40 3 DNN

4. Setting hyperparameters and creating networks

Define the loss function as SoftmaxCrossEntropyWithLogits, using Softmax to
calculate the cross entropy. Select the Momentum optimizer, and set its learning
rate to 0.1 and momentum to 0.9. The core code is as follows:

Code 3.3 Setting Hyperparameters and Creating Networks

batch_size = 32

epoch_size = 2

lr = 0.1

momentum = 0.9

ds = train_dataset()

network = LeNet5()

network.set_train()

loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, 
sparse=True)

opt = nn.Momentum(lr, momentum, network.trainable_params())

5. Training a network model

Load the network, loss function, and optimizer into the model, and call train() to start
training. The core code is as follows:

Code 3.4 Training the Network Model

model = Model(network, loss, opt)

model.train(epoch_size, ds)



Chapter 4
Training of DNNs

This chapter starts by describing themain challenges that face deep learning systems.
It then explores the fundamentals involved in the training of DNNs, and concludes
with some examples of using MindSpore to implement DNNs.

4.1 Main Challenges to Deep Learning Systems

In this section, we look at the main challenges that face the deep learning systems
from six aspects: large dataset requirement, hardware requirement, overfitting,
hyperparameter optimization, non-transparency, and low flexibility.

4.1.1 Large Dataset Requirement

To train an effective deep learning model in the deep learning systems, we often
need extremely large datasets. In most cases, the larger the dataset is, the more likely
we will be in obtaining a more powerful deep learning model. In the field of speech
recognition, for example, a large amount of voice data covering different accents and
intonations is required to train a model for learning a language. Researchers must
therefore have extremely strong data-processing capabilities and spend a great deal
of time processing the data. To some extent, the size of a dataset often determines
the effects of the deep learning systems.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_4&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_4


42 4 Training of DNNs

4.1.2 Hardware Requirement

Even if researches can obtain large datasets for the deep learning model, they often
face another challenge: How can they process the data quickly and efficiently. To
overcome this challenge, the machines involved in the deep learning system need
to have sufficient computing power. Data scientists now tend to use multi-core,
high-performance GPUs in computing, but GPUs are expensive and power-hungry.

In addition, different application scenarios have different hardware requirements.
For example, industrial deep learning systems require powerful data-processing
centers, and mobile intelligent devices such as drones and robots often require small
but efficient computing devices. Based on the preceding information, we can there-
fore surmise that it is an expensive and complex task to deploy deep learning systems
in the real world.

4.1.3 Overfitting

In deep learning systems, models are often judged by the data collected for them,
even though there are significant differences between training datasets and unknown
datasets. Typically, researchers train models to deliver maximum performance on
training datasets. This means that the models memorize the examples on the training
datasets, but are unable to fit new cases and examples; we call this the overfitting
phenomenon of the deep learning system. In practical applications, we should judge
the ability of amodel by unknown and invisible data, not by the training data provided
to it.

4.1.4 Hyperparameter Optimization

Unlike the parameters in model training, hyperparameters are defined before model
learning begins. In practice, the settings of hyperparameters have a significant impact
on a model’s performance, with even minor adjustments leading to dramatic effects.
If they are not optimized and instead their default settings are used, a model may not
deliver the expected performance.

Unfortunately, the settings or adjustments of hyperparameters often depend on
the experience of researchers or the final training results of the model. This means
that for people without the relevant experience, it can be a long and laborious process
to obtain a good set of hyperparameters.



4.1 Main Challenges to Deep Learning Systems 43

Input Neural network Output

Fig. 4.1 Black-box problem in deep learning

4.1.5 Non-transparency

To train deep learning models, we provide the models with known data. Then, from
millions of data points, deep learning algorithms find and select patterns and corre-
lations that may be imperceptible to humans, thereby providing us with solutions.
However, the way in which these models make inferences from the given data is
often not understood.

As shown in Fig. 4.1, the deep learningmodel is essentially a black-box algorithm.
If the model is given an input, we are only able to observe the output. Because the
model’s internal learning and operations are largely invisible to us, it is extremely
difficult for us to understand the advanced knowledge of deep learning at the abstract
level. This is not a problem when the deep learning system is used to perform a
trivial task, as it achieves high performance with little chance of making a harmful
wrong decision. However, such a system does not apply to areas that focus on critical
validation processes. For example, if a deep learning system was used to determine
someone’s fate in a court case or the treatment of a patient, a wrong decision may
have catastrophic consequences.

4.1.6 Low Flexibility

Asmentioned earlier, a well-trained deep learning model can provide extremely effi-
cient and accurate solutions to specific problems. However, this also poses a problem
to the deep learning system. At present, most deep learning systems are designed
specifically for a given subject and can only be used for that subject. Regardless of
how good they are at solving the original problem, these systems usually cannot be
applied directly to solving a new problem, even if both problems are similar. To over-
come this limitation, researchers are currently working on developing deep learning
models that can be used for multitasking without retraining and assessment.



44 4 Training of DNNs

4.2 Regularization

In Sect. 2.4, we described the concepts of overfitting and underfitting in deep learning
systems and the problems they entail. Overfitting and underfitting can be considered
as poor performance ofmodels in testing data. To solve these problems, regularization
aims to reduce the generalization error of the model by modifying the learning
algorithm; however, this approach often increases the training error of the model.
In general, the only way to modify a learning algorithm is to add or reduce some
functions. Using weight decay in linear regression, the following describes how to
modify the learning function in the model.

In Sect. 2.1, we explained that the loss function J(w) of linear regression is a mean
square error. The linear regression of weight decay is designed to minimize both the
mean square error and a weight expression that prefers a smaller L2 norm, that is:

J̃ (w) = 1

2m

m∑

i=1

(
h
(
x (i)

) − y(i)
)2 + λwTw (4.1)

where λ is defined in advance to represent the desire to have a small weight.
When λ is set to 0, it indicates that the L2 norm of the weight is not considered.

Conversely, when λ is set to a larger value, the model will force the L2 norm of
the weight to be smaller. Minimizing J̃ (w) leads to a tradeoff of weight w between
fitting the training data and selecting a smaller L2 norm. This determines whether
the solution focuses more on having a smaller slope or obvious features.

In Fig. 4.2, the graphs show the model fit with different weight decay parameters
λ when data is distributed over the quadratic function. Because a large λ is used in
Fig. 4.2(a), the model is forced to learn a constant function with no slope (a constant

y y y

x0 x0 x0

 (a) Underfitting  (c) Overfitting (b) Appropriate weight decay

Fig. 4.2 Weight decay for linear regression



4.2 Regularization 45

function can only underfit the model). Figure 4.2(c) uses a λ close to 0, so that
the model allows a larger slope but leads to overfitting. In Fig. 4.2(b), the model
is fitted closely when an appropriate λ is set. Although this model can represent
more complex functions than the model shown in Fig. 4.2(a), the small weight decay
coefficient forces it to output a simpler function.

In general, the model fitting can be adjusted and controlled by expressing a prefer-
ence for a function. In weight decay, we expressed our preference for a linear model
defined with a smaller weight, but there are many other ways to express preferences
for different models and solutions. Themethods used for adjustingmodels are collec-
tively called regularization. Typically, researchers regularize a deep learning model
by adding a regularization term to the original loss function. In the preceding weight
decay example, the regularization term is �(w) = wTw; yet there are many methods
for regularizing deep learning. The following sections describe some of the important
methods.

4.2.1 L2 Norm Regularization

The weight decay, also known as ridge regression, is L2 norm regularization. Based
on Occam’s razor, which states that the simpler or falsifiable hypothesis should
be adopted if more than one exists for the same phenomenon (and was applied to
the statistical learning theory in the twentieth century), the L2 norm regularization
prevents overfitting by reducing the model complexity. The objective of the original
linear regression model is to minimize empirical risks. The formula is as follows:

min imizeJ (w) = minimize (Loss(Data|Model))

= minimize MSE (4.2)

L2 norm regularization aims to minimize loss and complexity, that is, to minimize
the structure risk. The formula is as follows:

minimize J̃ (w) = minimize (Loss(Data|Model) + complexity(Model)) (4.3)

In L2 norm regularization, the quadratic sum of all feature weights is defined as
the complexity of the model, that is, wTw. To gain a greater understanding, we will
examine the gradient of the objective function for L2 norm regularization. Assume
that a model has a regular objective function, as shown in the following formula:

J̃ (w) = λ

2
wTw + J (w) (4.4)

The corresponding gradient can be calculated as follows:



46 4 Training of DNNs

∂ J̃ (w)

∂w
= λw + ∂ J (w)

∂w
(4.5)

After the stride of ε is used and the weights are updated iteratively, the following
result is obtained:

w ← (1 − ελ)w − ε
∂ J (w)

∂w
(4.6)

We can see from Formula (4.6) that the learning rule is modified when the weight
decay increases. The weight decay methodmultiplies the weight vector by a constant
factor at each step before performing the usual gradient update. So how does weight
decay affect actual machine learning? The following uses the same linear regression
problem as an example to answer this question:

w∗ argmin
w

1

2m
( y − Xw)T( y − Xw) (4.7)

The corresponding solution of the objective function is as follows:

w∗ = (XTX)−1XT y (4.8)

After L2 norm regularization is added to the original objective function, the
objective function becomes:

w∗ = arg min
w

1

2m
( y − Xw)T( y − Xw) + λ

2
wTw (4.9)

And the solution becomes:

w∗ = (XTX + λI)−1XT y (4.10)

The matrix XTX in the original solution is replaced by the matrix (XTX + λI)−1.
As a result, the original matrix is added with a diagonal matrix of λ, which repre-
sents the variation of each input feature. L2 norm regularization enables the learning
algorithm to perceive the input data with a larger variance, which also reduces the
weight of the feature compared with the covariance of the output target.

4.2.2 L1 Norm Regularization

L2 norm regularization, described in Sect. 4.2.1, is one of the most popular weight
decay algorithms. Another way to control the complexity of weights is through L1
norm regularization, also known as Lasso regularization. Unlike L2 regularization,



4.2 Regularization 47

L1 regularization adds the absolute value of the weight coefficient as a regulariza-
tion term to the loss function. Given the weight coefficient w of the model, the L1
regularization term is defined as follows:

�(w) = ‖w‖1 =
∑

i

wi (4.11)

where || • ||1 indicates the L1 norm.
Compared with L2 norm regularization, L1 norm regularization reduces some

insignificant feature coefficients to zero during training so that some features disap-
pear completely. Thismeans that L1 norm regularization allows appropriate selection
of features for the model when there are a large number of features. The regularized
loss function formula is as follows:

J̃ (w) = λ‖w‖1 + J (w) (4.12)

The corresponding gradient is:

∂ J̃ (w)

∂w
= λ sign(w) + ∂ J (w)

∂w
(4.13)

According to the above formula, we can see that L1 norm regularization has a
completely different effect on the gradient compared with L2 norm regularization,
which makes w affect the gradient of each step linearly. In L1 norm regularization,
the effect of w on the gradient becomes a constant factor, and its symbol is consistent
with that of w.

4.3 Dropout

In deep learning systems, training a large network is often a slow and time-consuming
process. Although the regularization approaches described in Sect. 4.2 can alleviate
overfitting to some extent, another method to achieve this is called dropout. Dropout
was first proposed by Hinton to solve the overfitting problem. However, subsequent
research has proven that it can be used not only to alleviate overfitting of deep learning
systems, but also to shorten the time needed for network training.

Unlike the regularization approach,which adds a regularization term to a loss func-
tion, dropout changes the learning process in the training process. The functioning
of some detectors in the training of deep learning models relies on other detec-
tors—this is called interaction between detectors. To prevent overfitting, dropout
proposes to improve the performance of neural networks by blocking the interaction
between feature detectors. In each training batch, dropout aims to reduce the inter-
action between hidden-layer nodes, and thereby alleviate the overfitting problem, by
ignoring half of these nodes in the network.



48 4 Training of DNNs

(a) Standard neural network (b) Neural network using dropout

Fig. 4.3 Comparison between neural networks (1)

As shown inFig. 4.3, dropout allows certain neuronal activations to stopworking at
a certain probabilitywhen the standardneural networkperforms forwardpropagation.
By doing so, the dependence of the model on local features can be reduced, and the
generalization ability of the model can be improved. This therefore alleviates the
overfitting problem. The following describes the general process of implementing
dropout in the deep learning system.

In the standard neural network, after the given input x is propagated in the forward
direction on the network, the error is propagated in the reverse direction. This is
performed to determine how best to update the parameters for optimal learning,
resulting in the output y. In the network on which dropout is used, the process is as
follows:

(1) Delete half of the hidden-layer neurons in the network at random, but do not
change the input and output neurons. In Fig. 4.3b, the gray circles represent
the deleted neurons in this training batch.

(2) Propagate the input x in the forward direction through the neural networkmodi-
fied in the previous step and then propagate the loss result in the reverse direc-
tion. After a batch of training samples is completed, the corresponding param-
eters are updated on the remaining neurons by using the stochastic gradient
descent method.

(3) Restore the deleted neurons. Note that the deleted neurons remain unchanged,
but the neurons that were not deleted are updated in the previous batch.

(4) Execute the next batch of training samples and repeat the preceding steps.

Derivation of a series of formulas after the neural network uses dropout is intro-
duced below. For the sake of simplicity, we will review the standard neural network
as shown in Fig. 4.4a. The calculation formulas are as follows:



4.3 Dropout 49

+1 +1
l
ny

l
iy

ly1

1
lw

+1

+1+1

+1

+1

+1+1
+1

l
ib

f f
l
iz

l
iy

l
nr

l
ny

l
ny~

l
ir

l
iy

l
iy~

lr1
ly1

ly1
~

l
iw

l
ib

l
iz

l
iy

(a) Standard neural network (b) Neural network using dropout

Fig. 4.4 Comparison between neural networks (2)

zl+1
i = wl+1

i yl + bl+1
i (4.14)

yl+1
i = f (zl+1

i ) (4.15)

In a neural network on which dropout is used, some hidden-layer neurons are
randomly closed before each training batch. If we assume that the probability of each
neuron being closed is p, we can use Bernoulli distribution to express the probability
of closing the jth neuron at layer l as follows:

rlj ∼ Bernouli(p) (4.16)

where when rlj is 0, the jth neuron at layer l is closed;
when rlj is 1, the jth neuron at layer l is opened.
The corresponding forward process is shown in Fig. 4.4b, and the expression

formulas are as follows:

ỹl = r l ∗ yl (4.17)

zl+1
i = wl+1

i ỹl + bl+1
i (4.18)

yl+1
i = f (zl+1

i ) (4.19)

In practical applications, dropout is more effective than other regularization
approaches. The test results of a model using dropout on the validation dataset
are often better than those when using other regularization approaches. With large
datasets, dropout can significantly improve the generalization ability of the model.
Furthermore, dropout has a very low computational overhead, meaning that only
the time complexity of O(n) in each training batch is increased. In addition, unlike
many regularization approaches that have clear limitations on applicable models,



50 4 Training of DNNs

dropout can be used in a variety of neural network models, such as feedforward,
convolutional, and recurrent neural networks.

Why can we improve the final performance of the model by randomly closing part
of hidden-layer neurons in each training batch? To answer this question, we need to
examine how we can improve the performance of a standard model without dropout.
Similar to what we can do with ensemble learning, we can use the same training
dataset to train multiple different neural networks. Through this, we can obtain
different results, and then average these results—this method can usually prevent
overfitting. In each step, dropout randomly closes part of the hidden-layer neurons,
meaning that the entire dropout process is equivalent to averaging on many different
neural networks (averaging offsets different overfitting on different networks). In
addition, dropout reduces the complex coadaptation relationship between neurons.
Because two neurons may not be opened every time when dropout is used, the update
of weights no longer relies on the co-action of hidden-layer nodes with fixed rela-
tionships. This forces the network to learn more robust features rather than only a
few local ones.

4.4 Adaptive Learning Rate

Following an introduction to the methods for improving the performance of deep
learning models, this section focuses on how to optimize the training process of deep
learning systems. The learning rate in the training process is problematic for both
the basic gradient descent algorithm and other optimization algorithms described in
Chap. 2. The invariable learning rate affects a model’s convergence speed, while the
training time increases and the computational overhead remains high. If, however,
we use a variable learning rate, we can significantly improve the convergence speed.
In this section, we describe three commonly used adaptive learning rate algorithms:
AdaGrad, RMSProp, and Adam.

We start by reviewing the gradient descent formula:

wt = wt−1 − α ∇ J (wt−1) (4.20)

where α, is the learning rate, and

∇J(wt-1) is the direction.

4.4.1 AdaGrad

Each parameter has a different updating direction and amplitude when the gradient
descent algorithm is applied. At any given time, some variables may approximate
their minimum values while others remain close to their initial positions, leading



4.4 Adaptive Learning Rate 51

to problems occurring when the learning rate remains unchanged. If the learning
rate is high, the parameters close to their minimum values may become unstable,
whereas if the learning rate is low, the convergence is slow even when a small
number of parameters are updated. AdaGrad attempts to solve this problem by setting
different learning rates for different parameters. The learning rate is first set to a
larger value in order to decrease the gradient quickly, and then the learning rates of
the parameters that have fallen considerably are reduced (a higher rate is retained for
other parameters).

AdaGrad calculates the gradient and then accumulates its square. The formulas
are as follows:

gt = ∇ J (wt−1) (4.21)

r ← r + gt ⊕ gt (4.22)

Based on the cumulative square of the gradient, the update calculation formula is
as follows:

wt ← wt−1 − ε

δ + √
r

⊕ gt (4.23)

where

δ is a minimum value used to prevent the denominator from being 0, and.

ε is a global learning rate.
As the training process continues, the cumulative gradient becomes larger and

larger, thereby lowering the overall learning rate. Although AdaGrad can automat-
ically change learning rates through iterations, it has one significant disadvantage:
The cumulative sum of its denominators is always increasing. Due to this disadvan-
tage, the learning rate is reduced and becomes infinitely low, preventing the algorithm
from updating the weights. The AdaGrad algorithm is shown in Algorithm 4.1.

Algorithm 4.1 AdaGrad Input: Global learning rate ε, minimum value δ (generally

set to 10–7), and cumulative gradient variable r = 0.

Output: Converged parameter wT .

(1) Initialize the parameter w0

(2) Execute the following when the stopping conditions are not met:
(3) Select m samples uniformly at random from data {(x(i), y(i))}
(4) Calculate the gradient:

gt ← 1

m
∇

∑

i

J (wt−1) (4.24)



52 4 Training of DNNs

(5) Calculate the cumulative gradient:

r ← r + gt ⊕ gt (4.25)

(6) Calculate the update:

wt ← wt−1 − ε

δ + √
r

⊕ gt (4.26)

4.4.2 RMSProp

With AdaGrad, the main problem is that the learning rate will be infinitely low.
RMSProp, as an extension toAdaGrad, solves this problembyfinding the logarithmic
mean value of the square gradient in the current state. The formula for defining the
mean square gradient of time t is as follows:

rt = γ rt−1 + (1 − γ )gt ⊕ gt (4.27)

where rt is the mean square gradient at time t−1, and.

γ is the proportionality coefficient of the logarithmic mean.
The corresponding gradient update is as follows:

wt ← wt−1 − ε√
δ + rt

⊕ gt (4.28)

where the settings of δ and ε are the same as those in AdaGrad. RMSProp differs
from AdaGrad in that averaging, rather than summing, is performed to effectively
avoid an infinitely low learning rate.

The RMSProp algorithm is summarized in Algorithm 4.2.

Algorithm4.2RMSProp Input: Global learning rate ε, minimumvalue δ (generally

set to 10–7), and proportionality coefficient γ (generally set to 0.9).

Output: Converged parameter wT .

(1) Initialize the parameter w0

(2) Execute the following when the stopping conditions are not met:
(3) Select m samples uniformly at random from data {(x(i), y(i))}
(4) Calculate the gradient:

gt ← 1

m
∇

∑

i

J (wt−1) (4.29)



4.4 Adaptive Learning Rate 53

(5) Calculate the mean square gradient at time t:

rt = γ rt−1 + (1 − γ )gt ⊕ gt (4.30)

(6) Calculate the update:

wt ← wt−1 − ε√
δ + rt

⊕ gt (4.31)

The RMSProp algorithm outperforms AdaGrad in non-convex settings by accu-
mulating gradients into a weighted mean value, but AdaGrad can quickly converge
whenbeing applied to convex functions. Trainingof a neural networkusually involves
non-convex functions. As AdaGrad reduces the learning rate, it may become too low
before reaching the minimum value. To achieve quick convergence, RMSProp uses
a weighted mean value to discard distant information. Through many deep learning
experiments, the RMSProp algorithm has been proven an effective and practical
neural network optimization algorithm.

4.4.3 Adam

Adaptive moment (Adam) is also a commonly used adaptive learning rate algorithm
and can be considered as an optimization of RMSProp. Unlike RMSProp, Adam has
less deviation in the early stages of model training. In Adam, selection of hyperpa-
rameters is usually quite stable, but the learning rate may need to be changed occa-
sionally. To begin with, Adam calculates the first-order gradient deviation according
to the following formula:

st = γ1st−1 + (1 − γ1)gt (4.32)

where
gt is the gradient at time t, and.
γ 1 is the first-order gradient cumulative coefficient.
Similar to RMSProp, Adam then calculates the square gradient cumulative

coefficient according to the following formula:

rt = γ2rt−1 + (1 − γ2)gt ⊗ gt (4.33)

where γ 2 is the square gradient cumulative coefficient.
After st and rt are calculated, Adam calculates the first- and second-order

corrections:

s̃t ← st
1 − γ1

(4.34)



54 4 Training of DNNs

r̃t ← rt
1 − γ2

(4.35)

Based on the first- and second-order corrections, Adam updates the weight:

wt ← wt−1 − ε
s̃t

δ + √
r̃t

(4.36)

The Adam algorithm is summarized in Algorithm 4.3.

Algorithm 4.3 Adam Input: Global learning rate ε (generally set to 0.001),

minimum value δ (generally set to 10-7), first-order coefficient γ 1 (generally set
to 0.9), and second-order coefficient γ 2 (generally set to 0.999)

Output: Converged parameter wT

(1) Initialize the parameter w0

(2) Execute the following when the stopping conditions are not met:
(3) Select m samples uniformly at random from data {(x(i), y(i))}
(4) Calculate the gradient:

gt ← 1

m
∇

∑

i

J (wt−1) (4.37)

(5) Calculate the first-order gradient deviation:

st = γ1st−1 + (1 − γ1)gt (4.38)

(6) Calculate the second-order gradient deviation:

rt = γ2rt−1 + (1 − γ2)gt ⊗ gt (4.39)

(7) Calculate the first-order correction:

s̃t ← st
1 − γ1

(4.40)

(8) Calculate the second-order correction

r̃t ← rt
1 − γ2

(4.41)

(9) Calculate the update:

wt ← wt−1 − ε
s̃t

δ + √
r̃t

(4.42)



4.5 Batch Normalization 55

4.5 Batch Normalization

In the deep learning system, adjusting the training parameters of the DNN is
extremely difficult. To help the model achieve faster convergence during training, it
is often necessary to try different regularization approaches and learning rates. One
of the main difficulties in training the DNN is the strong correlations between layers
of the neural network. These correlations lead to internal covariate shift.

Internal covariate shiftmeans that slight changes in the underlying network param-
eters are magnified with the deepening of network layers, because of the linear trans-
formation and nonlinear mapping at each layer. In addition, when the parameters of a
layer change, so does the distribution of inputs to subsequent layers. The network has
to continuously re-adapt to these shifts in input distributions, making it extremely
difficult to train models. In other words, parameter changes in the network will
shift the distribution of internal node data during the deep network training process.
Internal covariate shift poses two problems to the deep network training. The first
problem is that continuous re-adaptation to shifts in input distributions leads to a
lower learning rate. The second is that the training process may easily fall into the
gradient saturated region, slowing down the convergence of the network.

To overcome internal covariate shift, batch normalization provides a method that
simplifies calculation while also ensuring the original expression ability of data.
In addition, because the input of full-batch training data requires a large amount
of memory and each round of training is excessively long, mini-batch training is
typically used in a deep learning system. Batch normalization is a method based on
mini-batches.

Here we will start by reviewing the feedforward formulas of layer l + 1 of the
neural network:

zl+1
i = wl+1

i yl + bl+1
i (4.43)

yl+1
i = f (zl+1

i ) (4.44)

where yl is the output of layer l.
For all neural nodes at layer l +1, the mean value and variance are calculated

during batch normalization according to the following formulas:

μ = 1

m

m∑

i=1

zl+1
i (4.45)

σ 2 =
m∑

i=1

(zl+1
i − μ)2 (4.46)

After the mean value and variance are calculated, the output of layer l +1 is
normalized:



56 4 Training of DNNs

z̃l+1 = γ
zl+1 − μ√

σ 2 + ε
+ β (4.47)

yl+1
i = f (z̃l+1) (4.48)

In practice, batch normalization has been proven able to facilitate neural network
training. This is due to several advantages inherent in batch normalization. First,
batch normalization ensures that the mean value and variance of inputs at each layer
of the network are within a certain range, meaning that the next layer does not need
to continuously re-adapt to changes in the output of the previous layer. The distribu-
tion of inputs at each layer is relatively stable, facilitating a faster learning rate of the
model. Second, in theDNN, theweight initializationmethod and appropriate learning
rate are used carefully to ensure stable training of the network. Batch normalization
can reduce the model’s sensitivity to the parameters in the network and simplify the
process of parameter adjustment. In addition, batch normalization allows the network
to use saturated activation functions such as sigmoid and tand. Any changes in the
underlying network can easily accumulate in the upper-layer network, causing the
model to enter the gradient saturated region of activation functions and, subsequently,
causing the gradient to disappear. These saturated activation functions can alleviate
gradient disappearance. Finally, batch normalization can produce some regulariza-
tion effects in practical applications. As the mean values and variances of different
mini-batches are used as an estimate of all training samples, additional random noise
is caused in the learning process, which is similar to the random closure of neurons
in dropout.

4.6 Implementing DNNs Using MindSpore

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

AlexNet is a CNN designed by ImageNet championship winner Hinton and his
student Alex Krizhevsky in 2012. AlexNet has carried forward the ideas of LeNet
and applied basic principles of the CNN to deeper and wider networks.

https://mindspore.cn/resource


4.6 Implementing DNNs Using MindSpore 57

4.6.1 Parameters at Each Layer

Excluding the input layer, AlexNet is comprised of eight layers: The first five
are convolution layers, and the last three are fully connected layers, resulting in
a distribution covering 1000 class tags.

1. Input layer
The first layer is a data input layer, the size of which is 224 × 224 × 3.

2. C1 layer—Convolution layer
Details about the C1 layer are as follows:

(1) Input: 224 × 224 × 3.
(2) Convolution kernel size: 11 × 11.
(3) Convolution kernel type: 96.
3. C2 layer - Convolution layer

Details about the C2 layer are as follows:
(1) Input: 27 × 27 × 96.
(2) Convolution kernel size: 5 × 5.
(3) Convolution kernel type: 256.
4. C3 layer—Convolution layer

Details about the C3 layer are as follows:
(1) Input: 13 × 13 × 256.
(2) Convolution kernel size: 3 × 3.
(3) Convolution kernel type: 384.
5. C4 layer—Convolution layer

Details about the C4 layer are as follows:
(1) Input: 13 × 13 × 384.
(2) Convolution kernel size: 3 × 3.

Convolution kernel type: 384.

6. C5 layer—Convolution layer
Details about the C5 layer are as follows:

(1) Input: 13 × 13 × 384.
(2) Convolution kernel size: 3 × 3.
(3) Convolution kernel type: 256.
7. F1 layer—Fully connected layer

Details about the F1 layer are as follows:
(1) Input: 6 × 6 × 256.
(2) Output: 4096.
8. F2 layer—Fully connected layer

Details about the F2 layer are as follows:
(1) Input: 4096.
(2) Output: 4096.
9. F3 layer—Fully connected layer

Details about the F3 layer are as follows:
(1) Input: 4096.



58 4 Training of DNNs

(2) Output: 1000.

4.6.2 Implementation Process

The following describes how to implement training and inference using AlexNet and
includes a number of code examples to help clarify the process.

1. Loading the MindSpore module

Import the MindSpore API and auxiliary module. The core code is as follows:

Code 4.1 Importing the MindSpore API and Auxiliary Module

import mindspore.nn as nn 

from mindspore.train import Model 

from mindspore import context 

2. Importing a dataset

Create an ImageNet dataset using the MindSpore data format APIs. For details
about theseAPIs and how to implement the de_train_dataset() function, seeChap. 14.
According to the AlexNet model, the de_train_dataset() function uses the following
input:

resize_height = 227.
resize_width = 227.

3. Defining AlexNet



4.6 Implementing DNNs Using MindSpore 59

Define the AlexNet network structure. The core code is as follows:

Code 4.2 Defining AlexNet

def __init__(self, num_classes=10): 

super(AlexNet, self).__init__() 

self.conv1 = nn.Conv2d(3, 96, 11, stride=4, 
pad_mode="valid") 

self.conv2 = nn.Conv2d(96, 256, 5, stride=1, 
pad_mode="same") 

self.conv3 = nn.Conv2d(256, 384, 3, stride=1, 
pad_mode="same") 

self.conv4 = nn.Conv2d(384, 384, 3, stride=1, 
pad_mode="same") 

self.conv5 = nn.Conv2d(384, 256, 3, stride=1, 
pad_mode="same") 

self.relu = nn.ReLU() 

self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) 

self.flatten = nn.Flatten() 

self.fc1 = nn.Dense(6*6*256, 4096) 

self.fc2 = nn.Dense(4096, 4096) 

self.fc3 = nn.Dense(4096, num_classes) 

def construct(x): 

x = self.conv1(x) 

x = self.relu(x) 

x = self.max_pool2d(x) 

x = self.conv2(x) 

x = self.relu(x) 

x = self.max_pool2d(x) 

x = self.conv3(x) 

x = self.relu(x) 

x = self.conv4(x) 

x = self.relu(x) 

x = self.conv5(x) 

x = self.relu(x) 

x = self.max_pool2d(x) 

x = self.flatten(x) 

x = self.fc1(x) 

x = self.relu(x) 

x = self.fc2(x) 

x = self.relu(x) 

x = self.fc3(x) 

return x 

class AlexNet(nn.Cell): 



60 4 Training of DNNs

4. Setting hyperparameters and creating networks

Set hyperparameters such as batch, epoch, and classes import a dataset and
create a network. Define the loss function as SoftmaxCrossEntropyWithLogits, using
Softmax to calculate the cross-entropy. Select the Momentum optimizer, and set its
learning rate to 0.1 and momentum to 0.9. The core code is as follows:

Code 4.3 Setting Hyperparameters and Creating Networks

context.switch_to_graph_mode() 

batch_size = 32 

epoch_size = 2 

lr = 0.1 

momentum = 0.9 

num_classes = 1000 

dataset = de_train_dataset() 

network = AlexNet(num_classes) 

network.set_train() 

loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, 
sparse=True) 

opt = nn.Momentum(lr, momentum, network.trainable_params()) 

5. Training a network model

Load the network, loss function, and optimizer into the model, and call train() to
start training. The core code is as follows:

Code 4.4 Training the Network Model

model = Model(net, loss, opt) 

model.train(epoch_size, dataset) 



Chapter 5
Convolutional Neural Network

In this chapter, we describe the CNN. This network is a special neural network that
uses convolution instead of general matrix multiplication at one or more layers. In
essence, it is a feedforward neural network that uses convolutional mathematical
operations.

5.1 Convolution

The convolution operation is fundamental in the CNN. Unlike the dot product accu-
mulation operation in theMLP, the convolution operation is like a slidingwindow that
slides from left to right and from top to bottom. (In this section, we focus exclusively
on two-dimensional convolution operations.) Each time the window slides from one
point to another, a weighted mean value focused on a small piece of data or local
data is obtained. The convolution operation consists of two important components:
input matrix and convolution kernel (also known as the filter), which correspond to
the input and the weight in the perceptron, respectively. As shown in Fig. 5.1, we
can obtain the desired output matrix (also known as a feature map) given the input
matrix by sliding the kernel matrix on the input matrix.

The calculation is performed as follows during the convolution operation: First,
the kernel matrix is applied to the 3 × 3 blocks in the upper left corner, as shown in
Fig. 5.2a. The first output value 5 is obtained from the dot product. Then the kernel
matrix is moved to the right twice. For eachmove, the output in one block is obtained,
as shown in Fig. 5.2b, c. The output values 5, 8, and 5 in the first row are obtained.
Similarly, the convolution of the second row is calculated to obtain the final output
result, as shown in Fig. 5.2f.

We can see that the convolution kernel repeatedly calculates convolution for the
input matrix and traverses the entire matrix. Furthermore, each output corresponds to
a local feature of a small part of the input matrix. One advantage of the convolution
operation is that the output 2 × 3 matrix shares the same kernel matrix; that is, it

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_5&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_5


62 5 Convolutional Neural Network

Input matrix Feature mapConvolution kernel

Fig. 5.1 Components of the convolution operation

 (a) Convolution operation 1  (b) Convolution operation 2  (c) Convolution operation 3

 (e) Convolution operation 2  (f) Output result (d) Convolution operation 1

Fig. 5.2 Steps of the convolution operation

shares the same parameter setting. If the full-connection operation is used, a 25 × 6
� 3× 3matrix is required, and each convolution operation in Fig. 5.2 is independent.
This means that we do not need to slide the window from one point to another in
order to perform convolution calculation. Instead, the convolutional values of all the
blocks can be calculated concurrently for efficient operation.

Sometimes the output matrix needs to be resized, and this can be accomplished
by using two important parameters: stride and padding. As shown in Fig. 5.3, the
stride for lateral movement is 2 instead of 1, (this means that the 3 × 3 blocks in the
middle are skipped), whereas the stride for longitudinal movement is 1. By setting a
stride greater than 1, we can reduce the size of the output matrix. The other important
parameter is padding. As shown in Fig. 5.4, padding allows the calculation of the
kernel matrix to be extended beyond the confines of the matrix. This is achieved by
padding one row of 0 s (false pixels), one column of 0 s, and two columns of 0 s on
the lower, left, and right sides of the original matrix. The padding increases the size
of the output matrix and allows the kernel function to be calculated around the edge
pixels. In convolution calculation, the size of the output matrix can be controlled
based on the stride and padding parameters. This can be useful if we want to obtain



5.1 Convolution 63

Fig. 5.3 Stride

Fig. 5.4 Padding

a feature map with the same length and width, or half-length and half-width, for
example.

The convolution operation above involves only one input matrix and one kernel
matrix. However, we can superimpose multiple identical matrices together. As an
example, take an image, which typically includes three channels that represent the
three primary colors: red, green, and blue. In a multi-channel convolution operation
of an image (as shown in Fig. 5.5), the red, green, and blue channels are tiled first.
These channels are convoluted by using their respective kernel matrices, and then
three output matrices are added to obtain a final feature map. Note that each channel
has its own kernel matrix. If the number of input channels is c1 and the number of
output channels is c2, a total of c1 × c2 kernel matrices are needed.

5.2 Pooling

As described in Sect. 5.1, we can reduce the size of the output matrix by increasing
the stride parameter. Another common method for such reduction is pooling. For
example, a 4 × 4 feature map can be reduced to 2 × 2 regions, which are then
pooled as a 2 × 2 feature map, as shown in Fig. 5.6. There are two common types of



64 5 Convolutional Neural Network

Fig. 5.5 Multi-channel convolution operation

Maximum value 3 Mean value 1.5

Fig. 5.6 Pooling

pooling: max-pooling and mean-pooling. As the names imply, max-pooling selects
the maximum value of a local region, whereas mean-pooling calculates the mean
value of a local region.

Max-pooling can obtain local information and preserve texture features more
accurately. It is ideal if we want only to determine whether an object appears in
an image, not for observing the specific location of the object in the image. Mean-
pooling, on the other hand, can usually preserve the features of the overall data
and is more suitable for highlighting background information. Through pooling,
some unimportant information is discarded, while information that is more important
and more favorable to a particular task is reserved, to reduce dimensionality and
computational complexity.

Similar to the convolution operation, the pooling operation can be adapted to
different application scenarios by overlapping and defining parameters such as stride.
Unlike the convolution operation, however, the pooling operation is performed on a
single matrix, and convolution is a kernel matrix operation on an input matrix. We
can understand pooling as a special kernel matrix.

With a basic understanding of the convolution and pooling operations, we can take
LeNet in Fig. 5.7 as an example to examine what comprises a CNN. Given a 1 × 32



5.2 Pooling 65

Input layer

Convolutional 
layer 1 Pooling 

layer 1

Convolutional 
layer 2

Pooling 
layer 2 Fully 

connected 
layer 1

Fully 
connected 

layer 2

Output 
layer

Convolution Pooling Convolution Pooling Fully 
connected

Fully 
connected Output

Fig. 5.7 LeNet

× 32 single-channel grayscale image, we can first use six 5 × 5 convolution kernels
to obtain a feature map of 6 × 28 × 28, which is the first layer of the network. The
second layer is the pooling operation, which reduces the dimension of the feature
map to obtain one that is 6 × 14 × 14. At the last two layers, the convolution kernel
performs further pooling operations, giving us a 16 × 5 × 5 feature map. After the
convolution operation is performed at the last layer, each output is a 1 × 1 point. In
addition to this, we obtain an eigenvector with a length of 120. Finally, we obtain
an output vector, that is, a category expression, through two fully connected layers.
This is the classical LeNet model, in which the CNN is used to extract the feature
map, and the fully connected layer is used to convert the feature map into the vector
expression and output form.

5.3 Residual Network

By increasing the number of layers in theCNN,we are able to extract deeper andmore
general features. In other words, we can deepen the network level in order to enrich
the feature level. However, when the number of network layers increases, gradient
disappearance or explosion may occur, making it difficult to train the network. This
section introduces residual network (ResNet), a solution that effectively solves the
problem caused by increasing the depth of the neural network.

The basic element of the residual network is called a residual block and is shown
in Fig. 5.8. Unlike the common connection network, the residual block includes a
special edge, which is called a shortcut. The shortcut enables the input xl of the upper
layer to be directly connected to the output xl+1, that is, xl+1 = xl+F(xl), whereF(xl)
= W2ReLU(W1xl) indicates a nonlinear transformation and is also called residual.
Let us assume that we want to learn a mapping function H(x) = x. In this case,
learning F(x) = 0 is much easier than learning F(x) = x, because it is easier to fit
the residuals. This is why such a structure is called a residual block.

As mentioned earlier, the residual network can solve the problem of gradient
disappearance or explosion.We are able to observe this by deducing backpropagation



66 5 Convolutional Neural Network

Fig. 5.8 Residual block

ReLu

W2

W1

x1

F(xl)

xl+1

in the residual network. Ifwe assume that the network includesL layers,we can obtain
the output from any layer l through recursion:

xL = xl +
L−1∑

i=l

F(xi ) (5.1)

Assuming that the loss function is E, then we can obtain the gradient of the input
xl according to the chain rule:

∂E

∂xl
= ∂E

∂xL
· ∂xL

∂xl
= ∂E

∂xL

(
1 + ∂

∂xl

L−1∑

i=l

F(xi )

)
(5.2)

The independent “1” allows the gradient of the output layer to be propagated
directly back to xl, thereby avoiding gradient disappearance. Although the gradient
expression does not explicitly give the reason for preventing the gradient explo-
sion problem, the use of the residual network helps solve this problem in practical
applications.

In Fig. 5.9,1 we can see that the residual network includes layers of residual
blocks. Each intermediate residual block adjusts the padded value to ensure that the
number of input dimensions is equal to the number of output dimensions, and the
shortcut allows us to add or reduce the number of network layers in order to ensure
the feasibility of model training. The residual network, therefore, has significant
influence in the development of the CNN.

1 Source: https://arxiv.org/pdf/1512.03385.pdf.

https://arxiv.org/pdf/1512.03385.pdf


5.3 Residual Network 67

Output
224×224

Output
112×112

Output
56×56

Output
28×28

Output
14×14

Output
7×7

Output
1×1

VGG-19
Image

3×3 convolution, 64

3×3 convolution, 64

3×3 convolution, 128

3×3 convolution, 128

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 256

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

3×3 convolution, 512

Fully connected 4096

Fully connected 4096

Fully connected 1000

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512 3×3 convolution, 512

3×3 convolution, 512,/2 3×3 convolution, 512,/2

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256 3×3 convolution, 256

3×3 convolution, 256,/2 3×3 convolution, 256,/2

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128 3×3 convolution, 128

3×3 convolution, 128,/2 3×3 convolution, 128,/2

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 64 3×3 convolution, 64

3×3 convolution, 128 3×3 convolution, 128

Image of 34-layer directly 
connected network

Image of 34-layer 
residual network

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2

Pooling,/2 Pooling,/2

Mean-pooling Mean-pooling

Fully connected 1000 Fully connected 1000

Fig. 5.9 Residual network



68 5 Convolutional Neural Network

5.4 Application: Image Classification

Image classification is a simple task for humans, but is a difficult one for computers.
The traditional method used for image classification is heavily dependent on humans
having strong image processing skills. In this method, humans manually design
features, extract local appearances, shapes, and textures on the image and then use
a standard classifier, such as an SVM, to classify the image. However, the emer-
gence of the CNN has had a significant impact on image classification, promoting its
ongoing development. TheDNNcandirectly extract deep semantics from the original
image level, enabling the computer to understand the information in the image and
distinguish between different categories. Taking Fig. 5.10 as an example, different
convolution kernels can perform different operations on images, such as edge contour
extraction and image sharpening. Unlike the traditional method mentioned earlier,
where features are manually extracted, the CNN can automatically learn feature
extraction according to specific task requirements. This means that the CNNs are

ResultConvolution kernelOperation

Self-mapping

Edge detection

Sharpening

Fig. 5.10 Functions of different convolution kernels on images



5.4 Application: Image Classification 69

Fig. 5.11 MNIST handwritten image recognition

able to deliver better image classification effects as well as being suitable for more
task data scenarios.

The earliest application of image classification is MNIST handwritten image
recognition—one that has subsequently become a classic. As shown in Fig. 5.11,
data samples are 10 handwritten numbers ranging from 0 to 9, and each image is a
grayscale image of 28 × 28 pixels. If a fully connected network is used for classi-
fication, each image needs to be expanded into a vector with a length of 784. This
approach will result in the loss of the image’s spatial information, and requires too
many training parameters, potentially leading to overfitting. We can solve these two
problems by using CNNs. First, the operations of the convolution kernels will not
change the spatial pixel distribution of the images, meaning that no spatial infor-
mation is lost. Second, because the convolution kernels are shared on images, the
overfitting problem can be solved more effectively.

The CNN first extracts the contour information of the numeral image by using
the lower convolution kernel. It then reduces the dimension of the image, abstracts
the information into features that the computer can understand, and finally classifies
the number through the fully connected layer. As shown in Fig. 5.12, many of the
images that are misclassified by the neural network are also difficult for humans to
identify. However, this indicates that the CNNs have actually learned the semantics
of the numbers in the images.

Nowwewill look at the application of color image classification—Canadian Insti-
tute for Advanced Research-10 (CIFAR-10) data classification. The dataset includes
60,000 32 × 32 color images that represent 10 categories of natural objects, such
as aircrafts, automobiles, and birds. Figure 5.13 shows the 10 categories and some
examples of each category. The semantic information in CIFAR-10 is more complex



70 5 Convolutional Neural Network

Fig. 5.12 Misclassified MNIST images

than that in numbers, and the input color data includes three channels rather than
only one in the grayscale image.

Figure 5.14 shows convolution kernels at different layers of CNNs. The layers
progressively get deeper from left to right. We can see that the convolution kernels
at shallow layers are used to learn the features of edges. With the deepening of the
layer, the local contour and even the overall semantics are gradually learned, and the
initial states of these convolution kernels are all random noises. We can also see that
the CNNs have a strong ability for learning image features, resulting in the rapid
development of computer vision in 2012.

As the CNN has developed, the application of image classification has grown to
cover the classification of complex objects in photographs (as shown in Fig. 5.15),
facial recognition (as shown in Fig. 5.16), and other fields such as plant identification.
We can therefore conclude that the application of image classification is inseparable
from the CNN.



5.4 Application: Image Classification 71

Aircraft

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Fig. 5.13 CIFAR-10 dataset

Fig. 5.14 Convolution kernels at different layers of the CNN



72 5 Convolutional Neural Network

Fig. 5.15 Complex objects in photographs

Fig. 5.16 Application of image classification

5.5 Implementing Image Classification Based on the DNN
Using MindSpore

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

In Sect. 5.4, we described the functions of the CNN in image classification.
Building on that, we use MindSpore in this section to systematically implement
an image classification application based on the ResNet50 network.

https://mindspore.cn/resource


5.5 Implementing Image Classification Based … 73

5.5.1 Loading the MindSpore Module

Before network training, it is necessary to import the MindSpore module and third-
party auxiliary library. The core code is as follows:

Code 5.1 Importing the MindSpore Module and Third-party Library

import numpy as np

from mindspore.nn import Conv2d, BatchNorm2d, ReLU, Dense, 
MaxPool2d, Cell, Flatten

from mindspore.ops.operations import TensorAdd, SimpleMean

from mindspore.common.tensor import Tensor

from mindspore.train.model import Model

from mindspore.nn import SoftmaxCrossEntropyWithLogits

from mindspore.nn import Momentum

from mindspore import context

5.5.2 Defining the ResNet Network Structure

The steps for defining ResNet50 are as follows:

(1) Perform operations such as conv, batchnorm, relu, and maxpool for the bottom
input connection layer.

(2) Connect four sets of residual modules, each with a different input, output
channel, and stride.

(3) Perform max-pooling and fully connected layer operations on the network.

The details of each step are as follows.

1. Define basic operations

(1) Define a variable initialization operation.

Because each operation for constructing the network requires initialization of vari-
ables, a variable initialization operation needs to be defined. Here, we use shape to
construct a tensor that is initialized to 0.01. The core code is as follows:

Code 5.2 Defining the Variable Initialization Operation.

def weight_variable(shape):

ones = np.ones(shape).astype(np.float32)

return Tensor(ones*0.01)



74 5 Convolutional Neural Network

(2) Define a conv operation.

Before constructing a network, define a set of convolutional networks, that is, conv.

Set the convolution kernel sizes to 1 × 1, 3 × 3, and 7 × 7, and set the stride to 1.
The core code is as follows:

Code 5.3 Defining conv

def conv1x1(in_channels, out_channels, stride=1, padding=0):

"""1x1 convolution"""

weight_shape = (out_channels, in_channels, 1, 1)

weight = weight_variable(weight_shape)

return Conv2d(in_channels,

out_channels,

kernel_size=1,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")

def conv3x3(in_channels, out_channels, stride=1, padding=1):

"""3x3 convolution"""

weight_shape = (out_channels, in_channels, 3, 3)
weight = weight_variable(weight_shape)

return Conv2d(in_channels,

out_channels,

kernel_size=3,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")

def conv7x7(in_channels, out_channels, stride=1, padding=0):

"""1x1 convolution"""

weight_shape = (out_channels, in_channels, 7, 7)

weight = weight_variable(weight_shape)

return Conv2d(in_channels, out_channels,

kernel_size=7,

stride=stride,

padding=padding,

weight_init=weight,

has_bias=False,

pad_mode="same")



5.5 Implementing Image Classification Based … 75

(3) Define a BatchNorm operation.

Define the BatchNorm operation to perform the normalization operation. The core
code is as follows:

Code 5.4 Defining the BatchNorm Operation

def bn_with_initialize(out_channels):

shape = (out_channels)

mean = weight_variable(shape)

var = weight_variable(shape)

beta = weight_variable(shape)

gamma = weight_variable(shape)

bn = BatchNorm2d(out_channels,

momentum=0.1

eps=1e-5,

gamma_init=gamma,

beta_init=beta,

moving_mean_init=mean,
moving_var_init=var)

return bn

(4) Define a dense operation.

Define the dense operation to integrate the features of the previous layers. The core
code is as follows:

Code 5.5 Defining the Dense Operation

def fc_with_initialize(input_channels, out_channels):

weight_shape = (out_channels, input_channels)

bias_shape = (out_channels)

weight = weight_variable(weight_shape)

bias = weight_variable(bias_shape)

return Dense(input_channels, out_channels, weight, bias)

2. Define the ResidualBlock module

Each ResidualBlock operation includes Conv > BatchNorm > ReLU, which are
delivered to the MakeLayer module. The core code is as follows:



76 5 Convolutional Neural Network

Code 5.6 Defining the ResidualBlock Module

class ResidualBlock(Cell):

expansion = 4

def init(self,

in_channels,

out_channels,

stride=1,

down_sample=False):

super(ResidualBlock, self).__init__()

out_chls = out_channels // self.expansion

self.conv1 = conv1x1(in_channels, out_chls, 
stride=stride, padding=0)

self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=1, 
padding=0)

self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1, 
padding=0)

self.bn3 = bn_with_initialize(out_channels)

self.relu = ReLU()

self.add = TensorAdd()

def construct(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

out = self.relu(out)

out = self.conv3(out)

out = self.bn3(out)

out = self.add(out, identity)

out = self.relu(out)

return out



5.5 Implementing Image Classification Based … 77

Code 5.7 Defining the ResidualBlock Module

class ResidualBlockWithDown(Cell):

expansion = 4

def __init__(self,

in_channels,

out_channels,

stride=1,

down_sample=False):

super(ResidualBlockWithDown, self).__init__()

out_chls = out_channels // self.expansion

self.conv1 = conv1x1(in_channels, out_chls, 
stride=stride, padding=0)

self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=1, 
padding=0)

self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1, 
padding=0)

self.bn3 = bn_with_initialize(out_channels)

self.relu = ReLU()

self.downSample = down_sample

self.conv_down_sample = conv1x1(in_channels, 
out_channels, stride=stride, padding=0)

self.bn_down_sample = bn_with_initialize(out_channels)

self.add = TensorAdd()

def construct(self, x):

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

out = self.relu(out)

out = self.conv3(out)

out = self.bn3(out)



78 5 Convolutional Neural Network

identity = self.conv_down_sample(identity)

identity = self.bn_down_sample(identity)

out = self.add(out, identity)

out = self.relu(out)

return out

3. Define the MakeLayer module

Define a set of MakeLayer modules with different blocks. Set the input, output
channel, and stride. The core code is as follows:

Code 5.8 Defining the MakeLayer Module

def construct(self, x): 

x = self.a(x)

x = self.b(x)

x = self.c(x)

return x

class MakeLayer1(Cell):

def __init__(self, block, layer_num, in_channels, 
out_channels, stride):

super(MakeLayer1, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels, 
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

self.d = block(out_channels, out_channels, stride=1)

class MakeLayer0(Cell):

def __init__(self, block, layer_num, in_channels, 
out_channels, stride):

super(MakeLayer0, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels, 
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)



5.5 Implementing Image Classification Based … 79

self.e = block(out_channels, out_channels, stride=1)

self.f = block(out_channels, out_channels, stride=1)

def construct(self, x): 

x = self.a(x)

x = self.b(x)

x = self.c(x)

x = self.d(x)

x = self.e(x)

x = self.f(x)

return x

class MakeLayer3(Cell):

def __init__(self, block, layer_num, in_channels, 
out_channels, stride):

super(MakeLayer3, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels, 
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

def construct(self, x): 

x = self.a(x)

x = self.b(x)

x = self.c(x)

return x

def construct(self, x)

x = self.a(x)

x = self.b(x)

x = self.c(x)

x = self d(x)

return x

class MakeLayer2(Cell):

def __init__(self, block, layer_num, in_channels, 
out_channels, stride):

super(MakeLayer2, self).__init__()

self.a = ResidualBlockWithDown(in_channels, out_channels, 
stride=stride, down_sample=True)

self.b = block(out_channels, out_channels, stride=1)

self.c = block(out_channels, out_channels, stride=1)

self.d = block(out_channels, out_channels, stride=1)



80 5 Convolutional Neural Network

4. Define the overall network

Once the MakeLayer modules have been created, define the overall ResNet50
network structure. The core code is as follows:

Code 5.9 Defining the Overall ResNet50 Network Structure

stride=2)

self.layer3 = MakeLayer2(

block, layer_num[2] in_channels=512, out_channels=1024, 
stride=2)

self.layer4 = MakeLayer3(

block, layer_num[3] in_channels=1024, 
out_channels=2048, stride=2)

self.pool = SimpleMean()

self.fc = fc_with_initialize(512 * block.Expansion, 
num_classes)

self.flatten = Flatten()

def construct(self, x): 

x = self.conv1(x)

x = self.bn1(x)

x = self.relu(x)

x = self.maxpool(x)

x = self.layer1(x)

x = self.layer2(x)

x = self.layer3(x)

x = self.layer4(x)

x = self.pool(x)

x = self.flatten(x)

x = self.fc(x)

return x

def resnet50(num_classes):

return ResNet(ResidualBlock, resnet_shape, num_classes)

class ResNet(Cell):

def __init__(self, block, layer_num, num_classes=10):

super(ResNet, self).__init__()

self.conv1 = conv7x7(3, 64, stride=2 padding=3)

self.bn1 = bn_with_initialize(64)

self.relu = ReLU()

self.maxpool = MaxPool2d(kernel_size=3, stride=2, 
pad_mode="same")

self.layer1 = MakeLayer0(

block, layer_num[0] in_channels=64, out_channels=256, 
stride=1)

self.layer2 = MakeLayer1(

block, layer_num[1] in_channels=256, out_channels=512, 



5.5 Implementing Image Classification Based … 81

5.5.3 Setting Hyperparameters

Set hyperparameters related to the loss function and optimizer, such as batches,
epochs, and classes. Define the loss function as SoftmaxCrossEntropyWithLogits,
using Softmax to calculate the cross-entropy. Select the momentum optimizer, and
set its learning rate to 0.1 and momentum to 0.9. The core code is as follows:

Code 5.10 Defining Hyperparameters

epoch_size = 1

batch_size = 32

step_size = 1

num_classes = 10

lr = 0.1

momentum = 0.9

resnet_shape = [3, 4, 6, 3]

context.switch_to_graph_mode()

5.5.4 Importing a Dataset

Create an ImageNet dataset using theMindSpore data format APIs. For details about
these APIs and how to implement the train_dataset() function, see Chap. 14.

5.5.5 Training a Model

1. Use train_dataset() to read data

ds = train_dataset()

2. Use resnet() to create the ResNet50 network structure

net = resnet50(num_classes)

net.set_train()



82 5 Convolutional Neural Network

3. Set the loss function and optimizer

loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, 
sens = (1.0/batch_size))

opt = Momentum(lr, momentum, net.trainable_params())

4. Create a model and call the model.train() method to start training

model = Model(net, loss, opt)

model.train(epoch_size, ds)



Chapter 6
RNN

6.1 Overview

Calculations performed in the CNN are independent, meaning that there is no rela-
tionship between the previous and current inputs. However, we need to deal with
sequence relationships in many tasks. Take a sentence as an example. If we try
to understand a sentence, we must deal with the entire sequence formed by all the
words—it is not sufficient to understand only each separate word.We need the ability
to predict what word will follow previous ones in a sentence. Another example is
video processing, where analyzing each frame separately would produce inadequate
results, meaning that we must analyze the entire sequence formed by all the frames.
The RNN has emerged to solve such problems.

Figure 6.1 shows the structure of a simple RNN. The structure includes an input
layer, a hidden layer, and an output layer. We can understand an RNN as multiple
replications of the same network—during each replication, a state is transferred to
the next layer.

In Fig. 6.1, Xt is the mini-batch input of the t-th time step in the sequence, and
Ht is the hidden variable of the time step. The RNN stores the hidden variable Ht−1

for the previous time step and introduces a new weight parameter Whh to describe
how the hidden variable of the previous time step is used for the current time step.
We can therefore ascertain that the calculation for the RNN is recurrent. The hidden
variableHt of the time step t is determined by both the input of the current time step
and the hidden variable of the previous time step. The formula is as follows:

H t = sigmoid (W xhX t + W hhH t−1 + br ) (6.1)

The hidden variables can be used to capture the historical information of the
sequence up to the current time step. This means that the neural network is able to
memorize information. Because the formula is recurrent, the neural network is called
an RNN. The calculation formula for the output layer is as follows:

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_6&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_6


84 6 RNN

Ot

Wht

Ht

Wxh

Whh

Xt

O0

Wht

Whh
H0

Wxh

X0

Wht Wht Wht
Whh Whh

O1 O2 Ot

Whh

Wxh Wxh Wxh

H1 H2 Ht

X1
X2 Xt

Fig. 6.1 Structure of a simple RNN

O t = sigmoid (W htH t + bo) (6.2)

The parameters of the RNN include the hidden-layer weights Wxh and Whh, the
hidden-layer bias br , and the output-layer weight Wht and bias bo. The RNN always
uses these parameters, even at different time steps. An expanded RNN calculation
formula is shown in Formula (6.3), demonstrating that the RNN can memorize and
use information about the previous time step.

O t = sigmoid (W htH t + bo)

= sigmoid (W htsigmoid (W xhX t + W hhH t−1 + br ) + bo)

= sigmoid (W htsigmoid (W xhX t + W hh(sigmoid (W htsigmoid (W xhX t

+ W hhH t−2 + br ) + bo)) + br ) + bo) (6.3)

6.2 Deep RNN

In deep learning applications, RNNs with multiple hidden layers (also called deep
RNNs) are often used. Figure 6.2 shows the hidden state of hidden layer i.

The calculation formula is as follows:

H t = sigmoid(W rX t + W hrH t−1 + br ) (6.4)

Like an MLP, the number L of hidden layers in Fig. 6.2 is a hyperparameter. If
we replace the calculation of the hidden state with that of the gated recurrence unit
(GRU) or short-term memory, we can obtain a GRU.

6.3 Challenges of Long-term Dependency

When the time step is relatively large or small, gradient decay or explosion may
easily occur in the RNN, and capturing the dependency of a large time step in a



6.3 Challenges of Long-term Dependency 85

O0 O1 O2

X0 X1 X2

Fig. 6.2 Hidden state of hidden layer i

time sequence is difficult in practice. Here, we will examine the gradient decay or
explosion by using the calculation for the backpropagation in theRNNas an example.

With an understanding of the forward propagation algorithm in the RNN, we can
deduce the process of the backpropagation algorithm. The idea of the backpropa-
gation algorithm in the RNN is the same as that in the CNN. Specifically, appro-
priate RNN model parameters Wxh, Whh, Wht, and bo are obtained iteratively using
the gradient descent method. Because this algorithm is time-based, it is sometimes
referred to as backpropagation through time (BPTT). However, the BPTT and the
backpropagation in the DNN differ significantly. That is, all model parameters are
shared at each location in the sequence, and the same parameters are updated during
backpropagation.

To simplify the description, we can assume that the loss function is a cross-entropy
loss function, the output activation function is the Softmax function (represented by
l), and yt represents the real result value. The activation function of the hidden layer
is the tanh function. For the RNN, because there is a loss function at the t-th time step
of the sequence, the loss function of T (the total number of time steps) time steps is
as follows:

L = 1/T
T∑

t=1

l(O t , yt ) (6.5)

We can determine the gradient calculation for output Ot by using the following
formula:

∂L
∂O t

= ∂l(O t , yt )

T × ∂O t
(6.6)



86 6 RNN

The gradient calculation for parameter Wht depends on Ot , and the formula is as
follows:

∂L
∂W ht

=
T∑

t=1

prod(
∂L
∂O t

× ∂O t

∂W ht
) (6.7)

The gradient calculation for hidden state Ht and parameters Wxh and Whh is
more complex. We can see from the RNN model that the gradient loss at a sequence
location t is determined by both the gradient loss corresponding to the output of the
current location and the gradient loss when the sequence index location is time step t
+ 1. We therefore need to calculate the gradient loss of W at the sequence location t
step by step from high to low in backpropagation. The gradient formula for defining
the hidden state at time step t of the sequence is as follows:

∂L
∂H t

= prod

(
∂L
∂O t

× ∂O t

∂H t

)
= W ht × ∂L

∂O t
(6.8)

Because L is also dependent onHt throughHt+1, the gradient calculation formula
based on the dependency is as follows:

∂L
∂H t

= prod

(
∂L
∂O t

× ∂O t

∂H t

)
+ prod

(
∂L

∂H t+1
× ∂H t+1

∂H t

)
(6.9)

After being expanded, the formula becomes:

∂L
∂H t

= W ht × ∂L
∂O t

+ W hh × ∂L
∂H t+1

(6.10)

∂L
∂H t

=
T∑

i=t

(W hh)
T−i×W ht × ∂L

∂OT−i
(6.11)

As described earlier, the RNN algorithm can deal with the time sequence problem
effectively. However, a number of problems remain—specifically, gradient disap-
pearance or explosion (which is caused by the backpropagation algorithm and the
long-term dependency). Note that the gradient disappearance here is different from
the backpropagation, and mainly refers to a phenomenon where the memory value is
small due to the excessively long time. Accordingly, a series of improved algorithms
have emerged, including LSTM and GRU. The LSTM and GRU algorithms employ
the following strategies for dealing with gradient disappearance or explosion:

(1) For gradient disappearance, because the two algorithms store memories using
a special approach, memories with a larger gradient in the past will not be
erased immediately (unlike a simple RNN). In this way, the algorithms are
able to overcome gradient disappearance to some extent.



6.3 Challenges of Long-term Dependency 87

(2) For gradient explosion, the solution to overcoming this issue is gradient clip-
ping. Specifically, the gradient is set to c or −c when the calculated gradient
exceeds the threshold c or is less than the threshold −c.

6.4 LSTM Network and GRU

The ability of the RNN to address current problems by applying previous information
has contributed significantly to its emergence. For example, a previous image can
help us understand the content of the current image, andwhenwedealwith the current
task, it is important for us to see some previous image information. We can take a
language model as another example, in which we would need to know the previous
text in order to predict what the next word might be. Given the words “the clouds are
in the”, we could easily assume that the next word would be “sky”, without needing
any more information. In this case, the gap between the content to be predicted and
the relevant information is very small, and the RNN can easily implement content
prediction by using the previous information.

6.4.1 LSTM

An LSTM network is a special RNN that was first proposed by Hochreiter and
Schmidhuber in 1997 [1]. It has since been improved bymany researchers andwidely
used to solve various problems, achieving remarkable results and gaining popularity.

The LSTM network is designed primarily to avoid the long-term dependency
mentioned earlier, and its key characteristic is to easily remember information for a
long time.

Figure 6.3 shows the LSTM network structure, which includes three gates: input
gate, forget gate, and output gate. It also includes memory cells with the same shape
as the hidden state to record additional information.

The forget gate controls whether to store or discard the previous cell information
Ct−1. The strategy is to calculate the sigmoid function based on the information of the
previous hidden stateHt−1 and the current input Xt . The output range is [0, 1], where
0 means “completely forgotten”, and 1 means “completely stored". The calculation
formula is as follows:

f t = sigmoid(W f X t + W hfH t−1 + b f ) (6.12)

The input gate controls new information that needs to be added to the cell state.
There are two steps: The input gate determines which values need to be updated,
and then the tanh layer creates a new Ct value (a candidate cell). The calculation
formulas are as follows:



88 6 RNN

Forget 
gate

Input 
gate

Output 
gate

tanh

tanh

Ct

Ht

Ct-1

Ht-1

Xt

σ σ σ

Fig. 6.3 LSTM network structure

it = sigmoid (WiXt +WhiHt−1 + bi ) (6.13)

Ct = tanh (WCXt +WhCHt−1 + bC) (6.14)

The cell state is then updated. The formula is as follows:

Ct = ftCt−1 + itCt (6.15)

Finally, the output needs to be determined, and is a filtered version based on the
current cell state. The output gate is calculated by using the sigmoid function to
determine which cell state needs to be output, and then the cell state is calculated by
tanh and multiplied by the output gate. The calculation formulas are as follows:

O t = sigmoid (W oX t + W hoH t−1 + bo) (6.16)

ht = O t × tanh (C t ) (6.17)

6.4.2 GRU

The GRU is proposed to capture the dependency more effectively if there is a rela-
tively large time step in a time sequence. The GRU controls the flow of information
by a learning gate, and introduces the concepts of reset gate and update gate. In this
way, it changes the calculation of the hidden state in the RNN, as shown in Fig. 6.4.



6.4 LSTM Network and GRU 89

σ σ tanh

Xt

HtHt-1

Ht

Reset 
gate

Update 
gate

Candidate 
hidden 
state

Fig. 6.4 GRU

The calculation process of the GRU is as follows:
(1) The reset gate is calculated, determining which of the previous hidden states

can be maintained. The calculation formula is as follows:

Rt = sigmoid (W rX t + W hrH t−1 + br ) (6.18)

(2) The calculation formula for the update gate is as follows:

Zt = sigmoid (W zX t + W hzH t−1 + bz) (6.19)

(3) The calculation formula for the candidate hidden state is as follows:

H t = sigmoid (W hX t + W hhH t−1 + bh) (6.20)

(4) The calculation formula for the output state is as follows:

H = Z × H + (1− Z)× H (6.21)

6.5 Application: Text Prediction

For text prediction, most sentences are meaningless without context, even if they
conform to grammatical rules. In Sect. 6.6, we will look at the model for imple-
menting text prediction by using MindSpore in the LSTM network. Although this
model cannot learn the meaning of words, we need to consider the following points.



90 6 RNN

(1) The model is character-based. When training starts, the model does not know
how to spell English words, nor does it know that a word is a unit of text.

(2) The output text structure is similar to the scenario structure: The text block
usually begins with the name of a speaker, and like the name in the dataset, the
name is in capital letters.

The model is trained on small batches of text (100 characters each) and is still
able to generate a longer sequence of text with a coherent structure.

6.6 Implementing Text Prediction Based on LSTM Using
MindSpore

The interfaces and processes of MindSpore may constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

6.6.1 Loading the MindSpore Module

Code 6.1 is an example operation for importing a dependency package.

Code 6.1 Example Operation for Importing a Dependency Package

import mindspore.nn as nn

from mindspore.ops import operations as P

from mindspore.train.model import Model

from mindspore import context

6.6.2 Preparing Data

Create an NLP dataset using theMindSpore data format APIs. For details about these
APIs and how to implement the train_dataset() function, see Chap. 14.

https://mindspore.cn/resource


6.6 Implementing Text Prediction Based on LSTM Using MindSpore 91

6.6.3 Defining the Network

Use the LSTM function in MindSpore to implement the LSTM layer. Multiple
network cells (nn.Cell) can be combined into the LSTM, which implements forward
propagation. The code for defining the LSTM layer is as follows:

Code 6.2 Defining the Network

vocab_size,

embed_size,

num_hiddens,

num_layers,

bidirectional,

labels,

weight= 'normal'):

super(LSTM, self).__init__()

self.embedding = nn.Embedding(vocab_size,

embed_size,

embedding_table=weight)

self.embedding.embedding_table.requires_grad = False

self.trans = P.Transpose()

self.perm =(1, 0, 2)

self.encoder = nn.LSTM(input_size=embed_size,

vocab_size=vocab_size,

hidden_size=num_hiddens,

num_layers=num_layers,

bidirectional=bidirectional,

dropout=0)

self.concat = P.ConcatV2(1)

if bidirectional:

self.decoder = nn.Dense(num_hiddens * 4, labels)

else:

self.decoder = nn.Dense(num_hiddens * 2, labels)

def construct(self inputs):

#(64, 500, 300)

embeddings = self.embedding(inputs)

embeddings = self.trans(embeddings, self.perm)

output, hidden = self.encoder(embeddings)

#states[i] size(64, 200) - > encoding.size(64, 400)

encoding = self.concat((output[0], output[-1]))

outputs = self.decoder(encoding)

return outputs

class SentimentNet(nn.Cell):

def __init__(self,



92 6 RNN

6.6.4 Parameter Description

Define the network parameters, loss function, and optimizer. The core code is as
follows.

Code 6.3 Defining the Network Parameters, Loss Function, and Optimizer

num_epochs = 5

vocab_size = 20000

embed_size = 300

num_hiddens = 100

num_layers = 2

bidirectional = True

batch_size = 64

labels = 2

lr = 0.8

loss = nn.SoftmaxCrossEntropyWithLogits (is_grad=False, 
sparse=True)

opt = nn.Momentum(lr, 0.9, net.trainable_params())

The parameters at each layer have the following meanings:

(1) num_epochs: The number of epochs
(2) vocab_size: The number of words
(3) embed_size: The dimension of the word vector
(4) num_hiddens: The number of dimensions of the hidden-layer state
(5) num_layers: The number of RNN layers
(6) bidirectional: It indicates whether the RNN is bidirectional. It is set to False

by default, indicating num_directions = 1. When set to True, num_directions
= 2.

(7) batch_size: The size of each batch
(8) labels: The number of categories.

The output of the LSTM network is: out. 0 indicates negative, whereas 1 indicates
positive.

After defining the parameters, define the loss function as SoftmaxCrossEntropy-
WithLogits, using Softmax to calculate the cross entropy. Then, select themomentum
optimizer, and set its learning rate to 0.8 and momentum to 0.9.



6.6 Implementing Text Prediction Based on LSTM Using MindSpore 93

6.6.5 Training a Model

Create the network,model, and trainingdataset. Then, load the network, loss function,
and optimizer into the model, following which call model.train() to start training.
The core code is as follows:

Code 6.4 Training the LSTM

context.switch_to_graph_mode()

ds = train_dataset()

net = SentimentNet(vocab_size=(vocab_size + 1),

embed_size=embed_size,

num_hiddens=num_hiddens,

num_layers=num_layers,

bidirectional=bidirectional,

labels=labels)

net.set_train()

model = Model(net, loss, opt)

model.train(epoch_size, ds)

Reference

1. S. Hochreiter, J. Schmidhuber, Long short-term memory, in Neural Computation (2017)



Chapter 7
Unsupervised Learning: Word Vector

In the field of NLP, as well as for the processing of text data, the first thing we need
to consider is how we can express the text mathematically. Through this, we are
then able to derive the concept of word vector or word embedding. Word vector, as
its name implies, maps a word to a vector space, maximally retaining the original
semantics of the word. In this important tool for understanding natural language, we
can use a word vector as the smallest unit for mining corpus data or as an input to
complex models.

Table 7.1 describes themainstreammethods for generating commonword vectors.

7.1 Word2Vec

Word2Vec, created by a team of researchers at Google, is a group of related models
used to produce word vectors. The Word2Vec algorithm uses a shallow neural
network to perform efficient training on hundreds of millions of datasets. After
training, each word can be mapped to a corresponding vector to represent the
relationship between the word and the word vector.

7.1.1 Background

Words are the smallest granularity in an NLP task. They form sentences, and
sentences form paragraphs. Each word, in a language such as English, Latin, or
Chinese, is usually represented as a token and needs to be converted into a numerical
value. The process of embedding a word into a mathematical space is called word
embedding—a typical example of this isWord2Vec [2]. InWord2Vec, the main body
of the model is a three-layer fully connected neural network. Word2Vec includes the
continuous bag-of-word (CBOW) model, which predicts the current word according

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_7&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_7


96 7 Unsupervised Learning: Word Vector

Table 7.1 Summary of mainstream word vector generation methods

Category Meaning Representative algorithm

Bag-of-words
(BOW) model

BOW involves two steps:
(1) Creating a unique tag for each

word in the entire document (or
a document set) and forming an
out-of-order set of words
disregarding grammar and even
word order

(2) Creating an eigenvector for
each document (or each
document in the document set)
that primarily includes the
number of times each word
appears in the document. Some
words may rarely appear in a
document, potentially leading
to a sparse matrix

One-hot representation
Term frequency-inverse document
frequency (TF-IDF)
Text rank

Topic model Being a relatively simple vector
space model, it introduces the
concept of “topic” to facilitate
understanding of text semantics

Latent semantic analysis (LSA)
Singular value decomposition
(SVD)
Probabilistic latent semantic
analysis (PLSA)
Latent Dirichlet allocation (LDA)

Fixed representation
based on word
vectors

Fixed representation uses a static
word vector and cannot solve
problems such as polysemy

Word vector computing tool
(Word2Vec)
Word vector and text classification
tool (fast text)
Word representation tool based on
global word frequency statistics
(Global Vectors for Word
Representation, GloVe[1])

Dynamic
representation based
on word vectors

Dynamic representation uses a
word vector based on a language
model. Typically, it uses the LSTM
network or Google’s Transformer
to extract features and then uses a
unidirectional/bidirectional
language model

Embedded language model
(ELMo1)
Language model pre-training
method: Generative pre-training
(GPT)2

Bidirectional pre-training language
model (BERT)3

1 See: PetersME,NeumannM, IyyerM, et al. DeepContextualizedWordRepresentations [EB/OL].
2018 [2019-11-10] https://arxiv.org/pdf/1802.05365.pdf.
2 See: Radford A, Narasimhan K, Salimans T, et al. Improving Language Understanding by
Generative Pre-Training [EB/OL]. 2018 [2019-10-28] https://s3-us-west-2.amazonaws.com/ope
nai-assets/researchcovers/languageunsupervised/language understanding paper.pdf.
3 See: Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of Deep Bidirectional Transformers
for Language Understanding [EB/OL]. 2018 [2019-11-10] https://arxiv.org/pdf/1810.04805.pdf.

https://arxiv.org/pdf/1802.05365.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language
https://arxiv.org/pdf/1810.04805.pdf


7.1 Word2Vec 97

Fig. 7.1 Network
architecture of the CBOW
model

h

W W'

uj
xI

to the context, and the Skip-Gram model, which predicts the context according to
the current word.

In general, Word2Vec is a fast shallow neural network training method based
on word vectors. It aims to obtain word vectors, the by-product of training, and
overcomes the difficulties involved in handling discrete data in classifiers. To some
extent, Word2Vec provides smart feature representation, but it suffers from a number
of disadvantages. First, it is unable to obtain complete semantic information of the
word vector. For example, Word2Vec can obtain only one word vector for a poly-
semous word that has two or more different meanings. Second, Word2Vec uses a
BOWmodel and therefore ignores the word order. Instead, it assumes that words are
independent of each other, even though words typically interact with each other.

7.1.2 Development Status

The research team at Google published a set of open-source TensorFlow-based
Word2Vec code. As of August 2, 2019, there were 2952 Watches,4 56,068 Stars,
35,055 Forks, 1402 Open issues, and 3093 Closed issues on corresponding GitHub
pages.

7.1.3 Technical Principles

1. CBOW model

The CBOW model is primarily used to predict the current word according to a
number of surrounding context words. Figure 7.1 shows the model’s network archi-
tecture. Between the input layer and the hidden layer in the network, the weight

4 Watch, Star, etc., are code states on GitHub. “Watch” represents the number of people who pay
close attention to dynamics of the project; “Star” represents the number of people who like the
project; “Fork” represents the number of people who copy the project; “Issue” is similar to a to-do
list containing the tasks that need to be done (where “Open” represents the number of pending tasks,
and “Closed” represents the number of completed tasks).



98 7 Unsupervised Learning: Word Vector

matrix is W, W ∈ R
V×N . Here, V is the total number of words in the dictionary, N

is the number of units at the intermediate layer of the network, and V � N. If we
assume that there is only one word wI in the context, the input one-hot vector of the
word wI is xI = [x1, x2, …, xV ], where xI = 1, xI

′ = 0, and I
′
’ �= I, then we can

express the output vector of the hidden layer as:

h = WTxI = WT
I = vT

wI
(7.1)

where

h is the output vector of the hidden layer, and
vwI is the row vector of W, which is also the word embedding vector of the word
wI .

The weight matrix from the hidden layer to the output layer is W ′, W ′ ∈ R
N×V .

Basing our calculation on the matrix, we can obtain the following prediction value
of the output value:

u j = v′T
w j
h (7.2)

where

v′
w j

is the jth column vector of W ′, and
uj is the output value of the jth neuron at the output layer.

By combining the Softmax function, we are able to obtain the following posterior
probability distribution function of the prediction word:

p(w j |wI ) = y j
exp(u j )

∑V
j ′=1 exp(u j ′)

(7.3)

where

yj is the output of the jth unit normalized by using the Softmax function, j ∈ {1,
2, …, V}, and
p(wj |wI ) is the probability that the prediction result obtained based on the context
wI is word wj.

After we transpose formulas (7.1) and (7.2) into formula (7.3), we obtain the
following formula:

p(w j |wI ) = exp(υ ′T
w j

υT
wI

)
∑V

j=1 exp(υ
′T
w j

υTwI )
(7.4)

where



7.1 Word2Vec 99

υw j is the jth row vector of the matrixW from the input layer to the hidden layer;
υ ′

w j
is the jth column vector of the weight matrix W ′ from the hidden layer to the

output layer; and
υ ′

w j
and υw j are word embedding vectors of the word w, which are called word

vectors.

The parameters at each layer in the network are sequentially and reversely updated
based on the backpropagation process.

The backpropagation process is as follows:

(1) Updating the weight from the hidden layer to the output layer based on
backpropagation

The goal of the CBOW model is to derive the maximum likelihood function, which
we can express as follows:

L = max log p(wO |wI )

= max log y j∗

= max u j∗ − log
V∑

j ′=1

exp(u j ′) (7.5)

where j* is the ID number (or position or index) corresponding to the ground truth
prediction word in the dictionary, and j* = 1.

The partial derivative ej of L relative to uj is as follows:

e j = ∂L

∂u j
= t j − y j (7.6)

where

uj is the output of the jth unit of the output layer, and
yj is the output of the jth unit normalized by using the Softmax function.

yj is expressed as:

y j = exp(u j )
∑V

j ′=1 exp(u j ′)
(7.7)

t = [t1, t2, …, tV ], where t is the one-hot vector of the ground truth prediction
word, and tj* = 1. The partial derivative of L relative to uj is the deviation between
the prediction value obtained based on the model and the real value. The partial
derivative of L relative to the output-layer weight W ′

i j is expressed as follows:



100 7 Unsupervised Learning: Word Vector

∂L

∂W ′
i j

= ∂L

∂u j

∂u j

∂W ′
i j

= e j hi (7.8)

where

W ′
i j is the element in the ith row and the jth column of the weight W ′ from the

hidden layer to the output layer, and
uj is the output of the jth unit normalized by using the Softmax function.

According to the stochastic gradient ascent algorithm, we can therefore determine

that the column vector in the matrixW ′ is υ ′
w j
, where υ ′

w j
=

[
W ′

1 j
,W ′

2 j
, . . . ,W ′

N j

]
.

The update rule of the column vector is as follows:

υ ′
w j

= υ ′
w j

+ ηe jh, j ∈ {1, 2, . . . , V } (7.9)

where

ej is the partial derivative of L relative to uj;
h is the output vector of the hidden layer; and
η is the learning rate, which is greater than 0.

Given this, we can therefore conclude that the change of the word vector υ ′
w j

is
mainly related to the difference ej between the prediction value and the real value.

(2) Updating the weight from the input layer to the hidden layer based on
backpropagation

After the previous step is performed, the update rule of theweightW ′ from the hidden
layer to the output layer is obtained. According to the chain rule of backpropagation,
the partial derivative of the loss function L relative to the ith unit hi of the hidden
layer is:

ri = ∂L

∂hi
=

V∑

j=1

∂L

∂u j

∂u j

∂hi
=

V∑

j=1

e jW
′
i j (7.10)

where

ej is the partial derivative of L relative to uj, and
Wij

′
is the element in the ith row and the jth column of the weight W ′ from the

hidden layer to the output layer.

We can then obtain the weighted partial derivative from the input layer to the
hidden layer based on hi = ∑V

k=1 xk • wki by using the following formula:

∂L

∂Wki
= ∂L

∂hi

∂hi
∂Wki

= ri xk (7.11)



7.1 Word2Vec 101

where

ri is the partial derivative of L relative to hi, and
xk indicates the partial derivative of hi relative toWki.

The matrix form of formula (7.11) is as follows:

∂L

∂W
= xrT,rT = [r1,r2, . . . ,ri , . . . ,rN ] (7.12)

where ∂L
∂W is the partial derivative vector of L relative toW, and ∂L

∂W ∈ R
V×N .

Because x is a one-hot vector and there is only one nonzero element, only the row
vector corresponding to ∂L

∂W is nonzero.
Furthermore, given our assumption that there is only one word wI in the context,

only the word vector corresponding to wI is updated in the matrix W, as shown in
formula (7.13):

υWI = υWI + ηrT (7.13)

where

υWI is the representation vector of the word wI ;
rT is the partial derivative vector of L relative to h; and
η is the learning rate, which is greater than 0.

The partial derivatives of other row vectors are zero, so they remain unchanged.
υWI,1 ,υWI,2 , . . . , and υWI,C are input word vectors that correspond to the row vectors
of the matrixW. By averaging the word vectors of multiple words in the context, we
can obtain the output vector h of the hidden layer:

h = 1

C
WT(x1 + x2 + · · · + xC) = 1

C
(υwI,1 + υwI ,2 + . . . + υwI,C )

T (7.14)

where

x1, x2, …, xC are input one-hot vectors of C words in the context, and
υWI,1 ,υWI,2 , . . . ,υWI,C are the representation vectors of C words in the context.

Figure 7.2 shows the network architecture of the CBOW model, assuming that
(wI,1, wI,2, …, wI,C) is the set of multiple words in the context.

The input one-hot vectors are (x1, x2, …, xC), and multiple words in the context
are used to predict output words. The maximum likelihood function is as follows:

L = max log p(wO |wI,1, wI,2, . . . , wI,C )



102 7 Unsupervised Learning: Word Vector

Fig. 7.2 Network
architecture of the CBOW
model (in the multi-word
context)

h
W

W

W

W' uj

x1

x2

xC

= υ ′
wO

• h − log
V∑

j=1

exp(υ ′
w j

• h) (7.15)

where

υ ′
WO

is the representation vector of the prediction word wO, and
p (wO | wI,1, wI,2, …, wI,C) means predicting the probability of the word wO based
on the context (wI,1, wI,2, …, wI,C).

The update rule of the weight matrixW ′ from the hidden layer to the output layer
is the same as that of the word context, meaning that all word vectors are updated as
follows:

υ ′
w j

= υ ′
w j

+ ηe jh, j ∈ {1,2, . . . ,V } (7.16)

where

υ ′
Wj

is the jth column vector of the weight matrixW ′ from the hidden layer to the
output layer, and
ej is the partial derivative of L relative to uj.

For the weight matrixW from the input layer to the hidden layer, the row vectors
of the words (wI,1, wI,2, …, wI,C) in the context need to be updated as follows:



7.1 Word2Vec 103

υwI, c = υwI, c + 1

C
ηrT, c ∈ {1, 2, . . . ,C} (7.17)

where

the uppercase C is the number of words in the context;
the lowercase c is an integer in {1, 2, …, C} and generally indicates a word in the
context set;
υwI,c is the representation vector of the cth word in the context; and
rT is the partial derivative vector of L relative to h.

2. Skip-Gram model

Figure 7.3 shows the network architecture of the Skip-Gram model.
Different from the CBOW model, Skip-Gram uses the word wI to predict its

context. If we assume that its context includes multiple words {w1, w2, …, wC}, we
will obtain C prediction words as output, with the following output probability:

pc(w j |wI ) = yc, j = exp(uc, j )
∑V

j ′=1 exp(u j ′)
,

c ∈ {1, 2, . . . ,C} (7.18)

Fig. 7.3 Network
architecture of the
Skip-Gram model

h

W

W'

W'

W'

xI

u1

u2

uC



104 7 Unsupervised Learning: Word Vector

where

uc,j is the prediction value of the jth unit at the output layer when the cth word is
predicted;
yc,j is the output of the jth unit normalized by using the Softmax function when
the cth word is predicted; and
pc(wj | wI ) is the probability that the cth word in the context is the jth word wj in
the vocabulary.

The loss function of the Skip-Grammodel differs slightly from that of the CBOW
model. Given the wordwI , the likelihood function of the joint probability distribution
being the real context set {wO,1, wO,2, …, wO,C} is as follows:

L = log p(wO,1, wO,2, . . . , wO,C |wI ) = log
C∏

c=1

exp(u j∗c )
∑V

j ′=1 exp(u j ′)
(7.19)

where j∗c is the real location of the word wO,c, which is in the real context set, in the
dictionary.

The partial derivative of the loss function L relative to uc,j is as follows:

ec, j = ∂L

∂uc, j
= tc, j − yc, j (7.20)

where

yc,j is the output of the jth unit normalized by using the Softmax function when
the cth word is predicted, and
tc,j is the value (0 or 1) corresponding to the jth element in the one-hot vector
form of wO,c.

The vector o = [o1, o2, …, oV ] is defined, where the sum of errors between the
prediction value of each element being the word j and the true values of all the words
in the context set is expressed as follows:

o j =
C∑

c=1

ec, j (7.21)

where ec,j is the partial derivative of the loss function L relative to uc,j.
This means that the partial derivative of L relative to W ′ is as follows:

∂L

∂W ′
i, j

=
C∑

c=1

∂L

∂uc, j
• ∂uc, j

∂W ′
i j

=
C∑

c=1

ec, j hc,i (7.22)



7.1 Word2Vec 105

where hc,i is the output value of the ith unit at the hidden layer when the cth word is
predicted.

The element W ′
i j ∈ W is updated based on W ′

i j = W ′
i j + ∑C

c=1 ec, j hc,i , and
therefore, the column vector υ ′

w j
is updated based on the following:

υ ′
w j

= υ ′
w j

+ η

C∑

c=1

ec, jhc, j ∈ {1, 2, . . . , V } (7.23)

where hc is the output vector at the hidden layer when the cth word is predicted.
This formula is similar to formulas (7.15) and (7.16), except that the prediction

error is based on all the words in the context set. The method for updating the weight
matrix W from the input layer to the hidden layer is as follows:

υWI = υWI + ηrT (7.24)

where r is an N-dimensional vector. The N-dimensional vector of the ith element is
shown in formula (7.25).

ri =
C∑

c=1

∂L

∂hc,i
=

C∑

c=1

V∑

j=1

∂L

∂uc, j

∂uc, j
∂hc,i

=
C∑

c=1

V∑

j=1

ec, jW
′
i j (7.25)

where W ′
i j is the element in the ith row and the jth column of the weight matrix W ′

from the hidden layer to the output layer.

7.1.4 Technical Difficulties

In the three-layer network model of Word2Vec, when a training sample is received,
all outputs of the Softmax layer are calculated, and the weight matrix from the hidden
layer to the output Softmax layer is updated. In other words, the word vectors υ ′

w

of all the words in the dictionary are updated, and all the weight coefficients are
adjusted with billions of training samples. This requires a huge amount of compu-
tation. The computational complexity of the CBOW model is O(V ), whereas that of
the Skip-Gram model isO(CV ) due to its predicting C words. To address the signifi-
cant computational requirements and accelerate training,Mikolov [2] introduces two
optimization algorithms: hierarchical Softmax and negative sampling.



106 7 Unsupervised Learning: Word Vector

1. Hierarchical Softmax

Hierarchical Softmax is an efficient method for calculating Softmax functions. This
method offers high-speed training and is suitable for use with large data and deep
models. It uses a binary tree, as shown inFig. 7.4, to represent allwords in a dictionary.

The leaf nodes of the binary tree are words, and the total amount of words is
V, meaning that the binary tree includes V − 1 inner nodes. Before we can use
hierarchical Softmax, we must first calculate the Softmax probability for all output
elements and update V word vectors. Hierarchical Softmax starts with the root node
and traverses the tree structure to the leaf node where the prediction word is located.
Consequently, only logV inner nodes, approximately, need to be evaluated.

If we assume that a random walk process is performed from the root node to
the leaf node wO, the jth inner node corresponds to the output vector υ ′

n(wO , j) along
the path from the root node to the leaf node wO. In this case, we can calculate the
probability of wO being the output word as follows:

p(w = wO) =
T (w)−1∏

j=1

p(n(wO , j),left)d j p(n(wO , j), right)1−d j (7.26)

where

T (w) is the height of the binary tree, and
n(wO, j) is the jth inner node on the path from the root node to the leaf node wO

in the binary tree.

Binary classification needs to be performed once on each non-leaf node n(wO, j).
The probability of walking either left (dj = 1) or right (dj = 0) can be expressed by
using the logistic regression formula σ(x) = 1

1+e−x :

p(n(wO , j), left) = σ(υ ′T
n(wO , j)h) (7.27)

Fig. 7.4 Implementing
hierarchical Softmax using a
binary tree

n(w3,3)

n(w3,2)

n(w3,1)

w1 w2 w3 wV-1 wV



7.1 Word2Vec 107

p(n(wO , j), right) = 1 − σ(υ ′T
n(wO , j)h) = σ(−υ ′T

n(wO , j)h) (7.28)

where σ (•) is the sigmoid function.
In the Skip-Gram model, h = υwI , whereas in the CBOW model, h =

1
C

∑C
c=1 υwI,c .When the current node is n(wO,j), the probability of awalking direction

is determined by two factors: the inner product of the current node’s representation
vector υ ′

n(wO , j) and the output vector h of the hidden layer.
For a given training instance {wI , wO}, the goal is to maximize the likelihood

function. We can achieve this as follows:

L = max log p(w = wO |wI ) =
T (w)−1∑

j=1

log σ([•]υ ′T
w j
h) (7.29)

where [•] can be either 1 or −1, which indicate “walking left” or “walking right,”
respectively, and υ ′

w j
is a simplified form of υ ′

n(wO , j). The partial derivative of L
relative to υ ′

j h is as follows:

∂L

∂υ ′
j h

=
(
σ([•]υ ′T

w j
h) − 1

)
[•] = σ

(
υ ′T

w j
h
)

− t j (7.30)

where j = 1, 2, …, T (w) − 1; when [•] = 1, tj = 1; or when [•] = −1, tj = 0.
The partial derivative of the representation vector υ ′

w j
of L relative to the

intermediate node n(wi, j) is as follows:

∂L

∂υ ′
w j

= (σ (υ ′T
w j
h) − t j ) • h (7.31)

The update formula of υ ′
w j

is as follows:

υ ′
w j

= υ ′
w j

+ η(σ (υ ′T
w j
h) − t j ) • h (7.32)

Here, tj is equivalent to the true value. At inner node n(wi, j), tj = 1 if the next
step is walking left; otherwise tj = 0. υ ′T

w j
h is the prediction result. If the prediction

value υ ′T
w j
h is almost equal to the true value tj, it indicates that the vector υ ′

w j
has

changed slightly. Otherwise, υ ′
w j

will be updated to decrease the prediction error.
In order to backpropagate the error to the weight of the input layer, a partial

derivative of the output vector relative to the hidden layer needs to be obtained as
follows:

r = ∂L

∂h
=

T (w)−1∑

j=1

∂L

∂υ ′
w j

• ∂υ ′
w j
h

∂h
=

T (w)−1∑

j=1

(σ (υ ′T
w j
h) − t j ) • υ ′

w j
(7.33)



108 7 Unsupervised Learning: Word Vector

Formula (7.33) can be replaced with formula (7.17) for the CBOW model or
formula (7.24) for the Skip-Gram model to update the input word vector.

From the preceding information, we can see that the computational cost per
training sample is reduced from O(V ) to O(log(V )), which is a remarkable improve-
ment in speed. However, we still have the same number of parameters (V − 1 inner
nodes compared to the original V output units).

2. Negative Sampling

Negative sampling is more straightforward than hierarchical Softmax. It decreases
the training time by reducing column vector updates in the weight matrix W ′ of
the output layer per iteration. The column vectors corresponding to ground truth
prediction words are updated, whereas the remaining V − 1 negative words are
sampled and selectively updated according to the probability distribution function
pn(w).

Given the positive sample words {wO, wI}, where wI is the input context and wO

is the ground truth prediction word, we can maximize the following function:

L = log
∏

w j∈ωO∪Wneg

p(w j |wI ), p(w j |wI ) =
{

σ(υ ′T
w j
h), w j = wO

1 − σ(υ ′T
w j
h), w j ∈ W neg

(7.34)

where

υ ′
w j

is the corresponding output word vector of the ground truth prediction word
and
Wneg is

{
w j | j = 1, 2, . . . , K

}
, which is a set of negative words obtained through

sampling according to the probability distribution function pn(w).

The partial derivative of the loss function L relative to the word vector υ ′
w j

is as
follows:

∂L

∂υ ′
w j

= ∂L

∂υ ′T
w j
h

• ∂υ ′T
w j
h

∂υ ′
w j

= (t j − σ(υ ′T
w j
h))h,t j =

{
1, w j = wO

0, w j �= wO
(7.35)

The word vector υ ′
w j

is updated as follows:

υ ′
w j

= υ ′
w j

+ η(t j − σ(υ ′T
w j
h))h (7.36)

Only the ground truth prediction word wO and the negative words in the set Wneg

need to be updated, that is, wj ∈ {wO} ∪ Wneg. In order to propagate the error to the
hidden layer and update the input word vector, we need to obtain the partial derivative
of L relative to the output variable h of the hidden layer. We can achieve this with
the following formula:



7.1 Word2Vec 109

r = ∂L

∂h

=
∑

w j∈{wO }∪Wneg

∂L

∂υ ′T
w j
h

• ∂υ ′T
w j
h

∂h

=
∑

w j∈{wO }∪Wneg

(t j − σ(υ ′T
w j
h))υ ′

w j
(7.37)

We can obtain the partial derivative of the input vector in the CBOW model by
substituting formula (7.37) into formula (7.17). In the Skip-Gram model, the r value
for eachword in the context can be calculated and summed up, and the update formula
for the input vector can be obtained by substituting the sum into formula (7.24).

7.1.5 Application Scenario

Word2Vec, a tool that converts words into word vectors, is used in almost every NLP
task and often used with other language models. It can be replaced by any Item2Vec,
such as Book2Vec or Movie2Vec, and is widely used in recommendation systems.

7.1.6 Framework Module

The most common programming languages in GitHub include C and Python. In
these programming languages, Word2Vec based on the TensorFlow framework is
most widely used.

7.2 GloVe

GloVe is a learning algorithm for obtaining vector representations of words and was
widely used prior to proposals for BERT and other networks and algorithms. We
can use GloVe concepts such as the co-occurrence matrix and loss function, and
its implementation process, as reference. Compared with the more recent networks
and algorithms such as BERT, GloVe provides fewer pre-training models based on a
global corpus, undermining the convenience andpopularity of its use. In the following
sections, we will analyze the background, development status, technical principles,
and technical difficulties of GloVe.



110 7 Unsupervised Learning: Word Vector

7.2.1 Background

In 2013, Word2Vec was the most widely used algorithm in NLP. Although it was
essentially a language model, its ultimate goal was to obtain word vectors more
quickly and more accurately than other approaches. The following year, Jeffrey
Pennington, Richard Socher, and Christopher D.Manning fromStanford NLPGroup
published a paper [1] on EMNLP, in which they presented a word representation tool
called GloVe based on global word frequency statistics. This tool converts each
word in the corpus into a word vector formed by real numbers and captures semantic
features between words. An example of this is the tool’s ability to calculate similarity
based on the Euclidean distance or cosine similarity.

In general, GloVe is used to construct word vectors based on a global corpus and
context, and combines the advantages of latent semantic analysis and Word2Vec.

7.2.2 Development Status

As of July 15, 2019, there were 223 Watches, 3840 Stars, 926 Forks, and 65
Issues (including 42 Closed issues) on the corresponding GitHub page.5 From the
perspective of version development, GloVe has three iterative versions:

(1) GloVe v.1.0 was released at https://nlp.stanford.edu/projects/glove/ in August
2014.

(2) GloVe v.1.1 was released at https://github.com/stanfordnlp/GloVe/releases in
September 2015.

(3) GloVe v.1.2 was released at https://github.com/stanfordnlp/GloVe/releases in
October 2015.

7.2.3 Technical Principles

1. GloVe Construction Process

The GloVe construction process is as follows:

(1) Constructing a co-occurrence matrix based on a corpus. Each element Xij in
the matrix represents the number of times that the word i and the context word
j appear together in a context window of a specific size (the size of the context
window determines howmany words are included as context words before and
after a given word). If the word i appears in the background window of the
word j, the word j also appears in the background window of the word i, that
is, Xij = Xji. We can express the relationship between the two approximately
as follows:

5 See: https://github.com/stanfordnlp/GloVe.

https://nlp.stanford.edu/projects/glove/
https://github.com/stanfordnlp/GloVe/releases
https://github.com/stanfordnlp/GloVe/releases
https://github.com/stanfordnlp/GloVe


7.2 GloVe 111

wT
i w̃ j + bi + b̃ j = log Xi j (7.38)

where

wT
i and w̃ j are word vectors that need to be solved, and

bi and b̃ j are, respectively, the bias of wT
i and the bias of w̃ j .

(2) Constructing an approximate relationship between word vectors and the co-
occurrence matrix according to the following objective function:

J =
V∑

i, j=1

f (Xi j )(w
T
i w̃ j + bi + b̃ j − log Xi j )

2 (7.39)

where V is the number of words in a corpus. The objective function is the mean
square loss of the most basic form, except that only a new weight function f (Xij)
is added. In any corpus, a word with a high probability is likely to co-occur many
times, whereas one with a low probability may co-occur only a few times.

Our expectations are as follows:

➀ The weight of a word with a high probability is larger than a word with a low
probability, so the weight function is non-decreasing.

➁ The weight should not be too large; that is, it should not be increased after
reaching a certain degree.

➂ If two words do not appear together, that is, Xij = 0, they should not participate
in the calculation of the objective function. Specifically, the weight function
needs to satisfy f (Xij = 0) = 0.

A large number of functions satisfy the preceding conditions. Here, we can use the
following piecewise function:

f (x) =
{

(x/xmax)
α, x < xmax

1, else
(7.40)

If we assume that xmax = 100, we are able to observe that the value of xmax has
little effect on the results. However, if we use α = 3/4, we can obtain better results
than if we use α = 1.

Figure 7.5 shows a function image of f (x) when α = 3/4. We can see that, for a
smaller Xij, the weight is also smaller.



112 7 Unsupervised Learning: Word Vector

Fig. 7.5 Function image of
f (x)

1.0

0.8

0.6

0.4

0.2

0

f
(X

ij)

Xijxmax

2. GloVe Training Process

GloVe is based on supervised learning. Though GloVe does not require manual
annotation, it has a label: logXij.

The trainingprocess ofGloVe, inwhichvectorsw and w̃ are learningparameters, is
essentially the same as the training method used in supervised learning. In AdaGrad,
the gradient descent algorithm is used to randomly sample all nonzero elements in
the matrix X, and the learning rate is set to 0.05. The vector is iterated 50 times if
the vector value is less than 300 or 100 times for other values, until convergence is
implemented.

Following this, we obtain the two word vectors w̃ and w. Because X is symmetric,
ω̃ and ω are theoretically symmetric, but because their initial values are different,
their final values are also different. Both ω̃ and ω can be used as the final results, but
in order to improve the model’s robustness, the sum of w + w̃ is selected as the final
vector. This is like adding different random noises, despite the initial values being
different.

3. GloVe Loss Function

The most difficult part of the objective function is the following formula:

wT
i w j = bi + b̃ j = log Xi j (7.41)

This formula is described in detail in the GloVe paper.

(1) Xij is the number of times that the word j appears in the context of the word i
in the same corpus.

(2) Xi is the total number of times that all words in the context of the word i appear
in the same corpus.

Xi =
V∑

k=1

Xik (7.42)

(3) Pij is the probability that the word j appears in the context of the word i in the
same corpus.



7.2 GloVe 113

Table 7.2 Probability statistics6

Probabilities and ratios k = Solid k = Gas k = Water k = Fashion

P(k|Ice) 0.00019 0.000066 0.003 0.000017

P(k|Steam) 0.000022 0.00078 0.0022 0.000018

P(k|Ice)/P(k|Steam) 8.9 0.085 1.36 0.96

Pi j = P( j |i) = Xi j/Xi (7.43)

Table 7.2 shows a probability statistical table that is defined in the GloVe paper.
We can use Table 7.2 to evaluate and compare the correlation between the words

i and k and between the words j and k. The following rules apply here:

(1) The correlation between the words Solid and Ice is stronger than that between
Solid and Steam. Table 7.2 shows that P(Solid|Ice)/P(Solid|Steam) is much
larger than 1.

(2) The correlation between the words Gas and Ice is weaker than that between
Gas and Steam. Table 7.2 shows that (Gas|Ice)/P(Gas|Steam) is much smaller
than 1.

(3) The correlation between the words Water and Ice is similar to that between
Water and Steam. Table 7.2 shows thatP(Water|Ice)/P(Water|Steam) is slightly
larger than 1.

(4) There is no correlation between thewordsFashion and Ice, nor betweenFashion
and Steam. Additionally, there is no significant correlation between the two
groups of words. Table 7.2 shows that P(Fashion|Ice)/P(Fashion|Steam) is
close to 1.

Given the information provided in Table 7.2, we can reasonably conclude that
a more appropriate approach to learning and obtaining word vectors is to use
probability ratios rather than probabilities.

To reflect the probability ratio, the following function is available:

f (wi , w j , w̃k) = Pik
Pjk

(7.44)

where

the form and parameters of the function f are not determined;
the parameters wi, wj, and w̃k are word vectors, but w and w̃ are different vectors;
and wi, wj, w̃k ∈ Rd .

Because vector space is linear, we can subtract the two vectors and modify the
function f as follows to express the ratio of two probabilities:

6 The data in Table 7.2 is obtained from the GloVe paper (available at https://nlp.stanford.edu/pubs/
glove.pdf) and differs slightly from the actual calculation.

https://nlp.stanford.edu/pubs/glove.pdf


114 7 Unsupervised Learning: Word Vector

f (wi − w j , w̃k) = Pik
Pjk

(7.45)

where the left side of the equal sign are two vectors, whereas the right side is a scalar.
In order to change the left side from the two vectors to a scalar, we can calculate the
inner product of the two vectors, as follows:

f ((wi − w j )
Tw̃k) = Pik

Pjk
(7.46)

The co-occurrence matrix X is a symmetric matrix, and the words and context
words in a corpus correspond to each other. This formula should remain valid if
we transform w ↔ w̃ to X ↔ X̃ . However, the function f must first satisfy
homomorphism.

f ((wi − w j )
Tw̃k) = f (wT

i w̃k)

f (wT
i w̃k)

(7.47)

By combining formula (7.46) and formula (7.47), we can obtain:

f (wT
i w̃k) = Pik = Xik/Xi (7.48)

If f (x) = ex, we can obtain:

wT
i w̃k = log Pik = log Xik − log Xi (7.49)

There is logXi on the right side of formula (7.49), so symmetry is not satisfied.
Because logXi is independent of k and related only to i, we can add a bias for wi,
that is, bi. The updated formula is as follows:

wT
i w̃k + bi = log Xik (7.50)

This formula also fails to satisfy the symmetry, meaning that we need to add a
bias for wk , that is, bk . The updated formula then becomes:

wT
i w̃k + bi + bk = log Xik (7.51)



7.2 GloVe 115

7.2.4 Technical Difficulties

GloVe is a typical representative of the word embedding model and was proposed
after Word2Vec. It uses the mean square loss as the loss function and implements
the following three changes in the loss function.

(1) The non-probability distribution variables Pik = Xik /Xi and exp(wT
i w̃k) = Pik

are used to calculate the log:

wT
i w̃k = log Pik = log Xik − log Xi (7.52)

(2) A scalar model parameter (i.e., bias bi) is added for each word wi; a scalar
model parameter (i.e., bias bj) is added for the background word w̃ j to obtain
the square loss (SquareLossij).

SquareLossi j = (wT
i w̃ j + bi + b̃ j − log Xi j )

2 (7.53)

(3) Because the weights of the loss should be different, we set the weight function
f (Xij), which is a monotonic non-decreasing function within [0, 1]. The goal
of the GloVe model is to derive the minimal loss function:

Loss =
V∑

i, j=1

f (Xi j )(w
T
i w̃ j + bi + b̃ j − log Xi j )

2 (7.54)

Unlike Word2Vec, which fits the asymmetric conditional probability Pij, the
GloVe model fits the symmetric logXij. This means that the word vector w and
background word vector w̃ of each word in a corpus are equivalent in the GloVe
model. Because their initial values are different (due to the addition of different
random noises), the word vector w and background word vector w̃ of each word may
be different after learning is complete. When the GloVe model learns to obtain the
word vector w and w̃ of each word in a corpus, the model uses the sum of w and w̃

of the word as its final word vector, thereby improving its robustness.

7.2.5 Application Scenario

The word vectors obtained by using GloVe can be used in a wide variety of applica-
tions, such as text classification, automatic text summarization, machine translation,
automatic question answering, and information retrieval.



116 7 Unsupervised Learning: Word Vector

7.2.6 Framework Module

The GitHub official homepage and other open-source projects have supported main-
stream frameworks such as TensorFlow, PyTorch, and Keras, covering Python, C++,
Java, and C in descending order of popularity.

7.3 Transformer

Transformer is a deepmachine learningmodel basedon the encoder–decoder network
architecture and is used primarily in the field of NLP. It offers many advantages, such
as resolving the problem of long-term dependencies, but it also has some disadvan-
tages. For example, it cannot be used in inference scenarios where the character
string length or type exceeds the training requirement.

From the perspective of network architecture, Transformer provides several refer-
ence substructures, such as positional encoding, multi-head attention, and position-
wise feedforward. Due to its advantages, Transformer has gained greater popularity
andwider use in the industry comparedwith algorithms such asGloVe. The following
sections provide the background of Transformer and analyze its development status,
technical principles, and technical difficulties.

7.3.1 Background

The Transformer model was proposed by Google in its 2017 paper Attention is
All You Need [3] for solving the Sequence2Sequence problem. Google enables
developers to invoke Transformer by providing an open-source third-party library
called Tensor2Tensor, which is based on TensorFlow. Transformer was first used
in machine translation to reduce the amount of computation while also increasing
the parallelization without compromising performance and has achieved significant
results.

As mentioned already, Transformer is based on the encoder–decoder network
architecture.7 In a traditional RNN based on the attention mechanism (see Fig. 7.6),
processing using the encoder–decoder architecture is performed as follows: (1) The
encoder receives a source language sequence, either word by word or token by
token. (2) It integrates information in the source language sequence and generates a
context vector based on the attention mechanism. (3) The decoder then generates a
target language sequence, word by word, based on the context vector. Because the
decoder is self-regressive, the output yt of the current word is based on the output
yt−1 of the previous word. Transformer uses only the self-attention feature, rather

7 See: Bahdanau D, ChoK, Bengio Y. Neural Machine Translation by Jointly Learning to Align and
Translate [EB/OL]. 2014 [2019-11-10] https://arxiv.org/pdf/1409.0473.pdf.

https://arxiv.org/pdf/1409.0473.pdf


7.3 Transformer 117

yt-1 yt

St-1 St

αt,1
αt,2 αt,3

αt,T

h1 h2 h3 hT

hTh1 h2 h3

XTX1 X2 X3

Fig. 7.6 Encoder–decoder network architecture of the traditional RNN based on attention

than architectures such as a CNN, RNN, LSTM, or GRU. Given its capability to
realize high parallelization, Transformer offers a significant increase in processing
speed compared with traditional architectures. It is also more effective at resolving
the problem of long-term dependencies. For example, the CNN needs to increase
the number of convolution layers to expand the field of view, and the RNN needs to
perform sequential calculations from 1 to n. Because of Transformer’s self-attention
feature, only one matrix calculation step is required, and any two words (or tokens)
can be directly interconnected.

Despite its many advantages, however, Transformer has a number of disadvan-
tages. For example, it is inflexible and cannot be adapted to some tasks that can other-
wise be performed easily with RNN models. Another disadvantage is Transformer’s
inability to replicate a character string or even complete simple logical inference if
the length of the string or formula exceeds that observed by the model in training. In
theory, Transformer, as well as its BERT model, is a non-RNN model considered as
non-Turing complete and unable to accomplish computation tasks such as inference
and decision in NLP. To address these issues, Google subsequently proposed the



118 7 Unsupervised Learning: Word Vector

Universal Transformer network architecture in 2018. For more information about
this architecture, you may wish to refer to the paper Universal Transformers,8 the
article Moving Beyond Translation with the Universal Transformer9 on Google AI
Blog, and the Universal Transformer source code.10

7.3.2 Development Status

Asmentioned in Sect. 7.3.1, Google provides Tensor2Tensor for developers to invoke
Transformer. You can find out more information about Tensor2Tensor in the paper
Tensor2Tensor for Neural Machine Translation.11

As of July 22, 2019, there were 429 Watches, 8394 Stars, 2136 Forks, 420 Open
issues, and 611 Closed issues in the corresponding GitHub page.12

The proposed datasets and models include mathematical language under-
standing, story question answering, image classification, image generation, language
modeling, sentiment analysis, speech recognition, data summary, and translation.

7.3.3 Technical Principles

As shown in Fig. 7.7, Transformer is based on the encoder–decoder network
architecture, with the encoder shown on the left and the decoder on the right.

From the perspective of processing, the input is converted into an input vector
for the encoder through embedding, positional encoding, and summation. This input
vector then enters the N groups of multi-head attention mechanisms and position-
wise feedforward network layers (N is set to 6 here). After the decoder receives
the vector, which is converted from the output through embedding and positional
encoding, the vector enters N (also set to 6) groups of superposition modules. These
modules consist mainly of masked multi-head attention, multi-head attention, and
positionwise feedforward layers. The vectors obtained by theN groups of multi-head
attention mechanisms and positionwise feedforward network layers in the encoder
are also used to predict the output probability based on the linear layer and the
activation function.

8 See: DehghaniM,Gouws S,VinyalsO, et al. Universal Transformers [EB/OL]. 2018 [2019-11-10]
https://arxiv.org/pdf/1807.03819.pdf.
9 See: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html.
10 See: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/
universal_transformer.py.
11 See: Vaswani A, Bengio S, Brevdo E, et al. Tensor2Tensor for neural machine translation
[EB/OL]. 2018 [2019-11-10] https://arxiv.org/pdf/1803.07416.pdf.
12 See: https://github.com/tensorflow/tensor2tensor.

https://arxiv.org/pdf/1807.03819.pdf
https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/universal_transformer.py
https://arxiv.org/pdf/1803.07416.pdf
https://github.com/tensorflow/tensor2tensor


7.3 Transformer 119

Linear layer

Activation 
function

Addition & 
normalization

Forward 
propagation

Addition & 
normalization

Multi-head 
attention 

mechanism

Input
embedding 
expression

Output
embedding 
expression

Mask multi-head 
attention 

mechanism

Addition & 
normalization

Multi-head 
attention 

mechanism

Addition & 
normalization

Forward 
propagation

Addition & 
normalization

Output
(Move right)

Input

Positional 
encoding

Positional 
encoding

Su
pe

rp
os

iti
on

Su
pe

rp
os

iti
on

Output
probability

Fig. 7.7 Network architecture of Transformer [3]

A number of documents provide further information that may be of interest. For
example, you may wish to read Transformer: A Novel Neural Network Architecture
for Language Understanding13 published by Google and two documents written

13 See: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


120 7 Unsupervised Learning: Word Vector

by Jay Alammar: The Illustrated Transformer14 and Visualizing Neural Machine
Translation Mechanics of Seq2seq Models with Attention.15

7.3.4 Technical Difficulties

The following sections cover several important substructures in the Transformer
network architecture, including positional encoding, multi-head attention, and
positionwise feedforward network layers.

1. Positional Encoding

In the field of NLP, the position information of each word (or phrase) is extremely
valuable. Because the Transformer network architecture does not include any subnet-
work of theRNNorCNN, the concept of positional encodingwas proposed in order to
use the input position information. As the name implies, positional encoding encodes
the position information that is input at each moment. For the purpose of summation,
positional encoding has the same dimension as the input embedding representation.
There are many alternative methods for positional encoding, two of which are as
follows: One is to obtain position information through direct training; the other is
to use the sine and cosine functions to represent the position information. Both of
these methods deliver similar effects; however, the second method was selected. Its
specific calculation is as follows:

PE(pos,2i) = sin
(
pos/10,0002i/dmodel

)
(7.55)

PE(pos,2i+1) = cos
(
pos/10,0002i/dmodel

)
(7.56)

where

“pos” is a token position that indicates the position of the current token;
i is the dimension, where each dimension corresponds to a sine wave; and
dmodel is the dimension of the input and output.

There are two reasons for selecting the secondmethod:One is due to the possibility
of representing a relative position; that is, PEpos+k can be obtained through linear
representation of PEpos, which is known from the expressions sin(α + β)= sinαcosβ
+ cosαsinβ and cos(α + β) = cosαcosβ–sinαsinβ. The other is the ability to help
the model generalize to a longer sequence than the training sequence.

2. Multi-head Attention

14 See: https://jalammar.github.io/illustrated-transformer/.
15 See: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-
models-with-attention/.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/


7.3 Transformer 121

Matrix 
multiplication

Activation 
function

Mask 
(optional)

Scale

Matrix 
multiplication Linear Linear Linear

Stack

Linear

Q K V V K Q

Scaled dot-product attention 
mechanism

h

(a) Scaled dot-product attention 
mechanism (b) Multi-head attention mechanism

Fig. 7.8 Structures of the scaled dot product attention mechanism and the multi-head attention
mechanism

The multi-head attention mechanism is composed of multiple scaled dot product
attention mechanisms, the structures of which are shown in Fig. 7.8.

In encoders and decoders, a query is usually the hidden state of the decoder, a
keyword is the hidden state of the encoder, and the corresponding value refers to the
weight of the keyword. Q, K, and V each represent matrices with multiple samples.

There are many options for weight calculation, with the most common being
“addition” and “dot product.” In theory, these two methods have the same level of
complexity, but in practice, the latter delivers higher computation speed and spatial
utilization, and is therefore the method of choice.

The dot product of the encoder’s hidden state K and the decoder’s hidden state
Q at time t is used as the weight of time t. A scaling operation is then performed to
ensure that the dot product is not too large; otherwise, the gradient will be too small
when the activation function is used to calculate the weight, potentially leading to
gradient disappearance. Due to the operations performed in this process, the attention
mechanism is called “scaled dot product attention mechanism.” The formula is as
follows:

Attention(Q, K , V ) = Softmax

(
QKT

√
dk

)

V (7.57)



122 7 Unsupervised Learning: Word Vector

where

Q, K, and V each represent matrices with multiple samples, and
dk is the dimension of the vector K.

In this way, we are able to obtain the multi-head attention mechanism; that is,
h scaled dot product attention mechanisms are used for parallel calculation. The
calculation formulas are as follows:

MultiHead(Q, K , V ) = Concat(head1, head2, · · · , headh)WO (7.58)

headi = Attention(QW Q
i , KWK

i , VWV
i ) (7.59)

where W Q
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , WV
i ∈ R

dmodel×dv , and WO ∈ R
hdv×dmodel .

Furthermore, h = 8, and dk = dυ = dmodel/h = 64 at each layer of the network.
From the perspective of overall network architecture, the following points need

to be clarified:

(1) For the self-attention feature of the encoder (or the decoder), Q, K, and V
are obtained from the output of the upper layer of encoding/decoding. In the
encoder,Q=K =V, and they are the results of input embedding representation
+ positional encoding.

(2) For the encoder–decoder attention layer,Q is obtained from the upper decoder,
and K and V are obtained from the encoder output.

(3) On both the encoder and decoder, positional encoding (information) is added
at the time of input. In other words, the self-attention feature of the encoder
and decoder considers the position information of the entire sequence.

(4) Amask is used at the decoder; that is, there is a mask layer under the activation
function in Fig. 7.8a. Because the next word in the decoder is unknown at
the current time, the mask is added to prevent incorrect position information
from affecting the decoder’s self-regressive feature (with all invalid links set
to negative infinity). In this way, we are able to ensure that only the first i
– 1 words are used for predicting the ith word when using the self-attention
feature.

The core idea of Transformer’s attentionmechanism is tomathematically compute
the relationships between each word in a sentence and all the other words in the
sentence, and then adjust the importance (weight) of each word based on the rela-
tionships. This enables it to obtain a new expression of each word, containing not
only the word itself, but also the relationships between the word and other words.
As a result, this expression can be considered more comprehensive.



7.3 Transformer 123

3. Positionwise Feedforward

In the Transformer structure (see Fig. 7.7), which is comprised of “linear trans-
formation + activation function,” a fully connected layer is superposed behind each
attention layer at the encoder and decoder. Themathematical expression is as follows:

FFN(x) = max(0, xW 1 + b1)W 2 + b2 (7.60)

According to formula (7.60),we can also understand the positionwise feedforward
as a CNN whose convolution kernel is 1. The convolution function convld() is used
in code implementation.

7.3.5 Application Scenario

The Transformer model is mainly used in machine translation, machine reading,
automatic question answering, emotion analysis, automatic text summarization, and
language modeling. To learn more about the applications, you may wish to visit
Google’s official GitHub page.16

7.3.6 Framework Module

By the end of July 2019, Transformer-supported frameworks included Google’s offi-
cial GitHub page and other non-official frameworks and models, such as A Tensor-
Flow Implementation of the Transformer: Attention Is All You Need17 based on
TensorFlow versions 1.2 and 1.12, and PyTorch-based TheAnnotated Transformer.18

Visit the related pages for an introduction to invocation and relevant examples.

7.4 BERT

The BERT model, used in language understanding, was proposed by Google in
October 2018. It uses the encoder of Transformer as the language model and
captures the long-term dependencies more effectively than the RNN does. Two
new target tasks—masked language model (MLM) and next sentence prediction—
were proposed during pre-training, during which BERT set 11 optimal performance
records for NLP tasks.

16 See: https://github.com/tensorflow/tensor2tensor.
17 See: https://github.com/Kyubyong/transformer.
18 See: http://nlp.seas.harvard.edu/2018/04/03/attention.html.

https://github.com/tensorflow/tensor2tensor
https://github.com/Kyubyong/transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html


124 7 Unsupervised Learning: Word Vector

7.4.1 Background

Research shows that the pre-trained language model can effectively improve many
tasks in NLP, such as automatic question answering, machine translation, topic clas-
sification, and token-based tasks (e.g., named entity recognition). We can pre-train
an unsupervised general language model by using the semantic context relationship
between sentences and words, and then use a supervised fine-tuning language model
to deal with specific tasks according to the specific application. Due largely to the
concept of transfer learning in the pre-training model, applications of NLP are able
to grow at a rapid rate.

In the pre-training model prior to the introduction of BERT, the context-sensitive
models include ELMo, Universal Language Model Fine-tuning (ULMFiT) for Text
Classification, and GPT. The first of these, the ELMo,19 uses a bidirectional LSTM
(BiLSTM) network for training to predict the maximum likelihood function of the
current word according to the context. Compared with the word vector, the ELMo
captures semantic information more effectively, provides a character-level represen-
tation, and does not limit the size of the vocabulary. However, each token needs to be
calculated—this is the main disadvantage in the ELMo and results in a low training
speed.

The second model, ULMFiT,20 uses a three-layer LSTM network, without the
attention mechanism and shortcut branch. This model, compared with the ELMo
one, is more suitable for non-language tasks with less training data. Although it
enables the easy transfer of sequence labeling and classification tasks, it requires a
new fine-tuning method to be designed for complex tasks such as automatic question
answering. The third of these three models is GPT.21 This model, proposed by the
OpenAI team, uses the Transformer network instead of the LSTM network as the
language model, due to the enhanced ability of Transformer’s attention mechanism
in capturing a long-distance language structure. The objective function of GPT is
a unidirectional language model one and uses only the first k words to predict the
current word.

Google’s paper BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding22 in October 2018 introduced a new language represen-
tation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. The overall framework of the BERT model is similar to that of
GPT, and both use the encoder of Transformer as the language model. Compared

19 See: Peters M E, Neumann M, Iyyer M, et al. Deep Contextualized Word Representations
[EB/OL]. 2018 [2019-11-10] https://arxiv.org/pdf/1802.05365.pdf.
20 See: Howard J, Ruder S. Universal Language Model Fine-tuning for text classification [EB/OL].
2018 [2019-11-10] https://arxiv.org/pdf/1801.06146.pdf.
21 See:RadfordA,NarasimhanK, SalimansT, et al. ImprovingLanguageUnderstanding byGenera-
tive Pre-training [EB/OL]. 2018 [2019-10-28] https://s3-us-west-2.amazonaws.com/openai-assets/
researchcovers/language unsupervised/language understanding paper.pdf.
22 See: Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of Deep Bidirectional Transformers
for Language Understanding [EB/OL]. 2018 [2019-11-10] https://arxiv.org/pdf/1810.04805.pdf.

https://arxiv.org/pdf/1802.05365.pdf
https://arxiv.org/pdf/1801.06146.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/language
https://arxiv.org/pdf/1810.04805.pdf


7.4 BERT 125

[CLS] I have a good friend [SEP] he is very clever [SEP]

E[CLS] EI Ehave Ea Egood Efriend E[SEP] Ehe Eis Every Eclever E[SEP]

EA EA EA EA EA EA EA EB EB EB EB EB

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

Input text

Token embedding 
vector

Segment 
embedding vector

Positional 
embedding vector

+ + + + + + + + + + + +

+ + + + + + + + + + + +

Fig. 7.9 BERT input composition

with GPT, the BERT pre-training model uses the masked language model to capture
real bidirectional context information.

7.4.2 Development Status

The Google team provided a set of open-source TensorFlow-based BERT code. As
of August 2, 2019, there were 825 Watches, 17,147 Stars, 4339 Forks, 401 Open
issues, and 266 Closed issues on the official GitHub page.23

The BERT code of PyTorch24 was also active on GitHub as of August 2, 2019,
with 295Watches, 10,217 Stars, 2480 Forks, 175Open issues, and 522Closed issues.

7.4.3 Technical Principles

The primary purpose of BERT is to pre-train the multilayer Transformer network
model in order to obtain a language understanding model. The downstream task
extracts the word embedding vector from the pre-training network as a new feature,
thereby supplementing the downstream task and fine-tuning the entire network. This
section describes the input representation, architecture, and two unsupervised pre-
training tasks of the BERT model.

1. Input Representation

One or a pair of sentences can be converted into amathematical vector representation,
as shown in Fig. 7.9, using the example text “I have a good friend, he is very clever.”

The input representation of the text is constructed by summing the corresponding
token embedding vector, segment embedding vector, and position embedding vector.
These three vectors are described below.

23 See: https://github.com/google-research/bert.
24 See: https://github.com/huggingface/pytorch-transformers.

https://github.com/google-research/bert
https://github.com/huggingface/pytorch-transformers


126 7 Unsupervised Learning: Word Vector

(1) Token embedding vector

The WordPiece model needs to tokenize the original text and can solve the problem
of out-of-vocabulary (OOV)words. Themain implementation ofWordPiece is called
byte pair encoding (BPE), which is a process that splits words. For example, the three
words “read,” “reads,” and “reading” all include the meaning of “read,” but they are
different words. Due to the large number of word variations in English, it is difficult
to achieve a high training speed along with effective training results. Consequently,
it is necessary to split the words in the corpus. Using the earlier example, the three
words are split into “read,” “s,” and “ing,” in order to separate the meaning and tense
of the words and effectively reduce the size of vocabulary. In addition, two special
tokens, [CLS] and [SEP], are inserted into the beginning and end of the tokenization
results, respectively.

The NLP deep learning model sends each word in the text to the token embedding
layer, which then converts the one-hot vector obtained through WordPiece into a
fixed-dimensional vector. For example, in BERT, each word is converted into a 768-
dimensional vector representation.

(2) Segment embedding vector

The BERT model deals with classification tasks, such as determining whether two
texts are semantically similar. In this case, two sentences of the input pair are concate-
nated and sent to themodel. To distinguish between these two sentences,we introduce
the concept of segment embedding vector in the BERT model, whereby we mark all
words in the first sentence with a segment token “0”, and the words in the second
sentence with “1”. If only one sentence is input, we mark all words with “0”. Addi-
tionally, the segment token needs to be mapped through linear transformation into a
vector that is consistent with the dimension of the token embedding vector, that is,
the segment embedding vector.

(3) Positional embedding vector

The Transformer model (described in Sect. 7.4.2) used in BERT can be considered
as a subtle BOW model. In an NLP task, the sequence order is very important: If
the order information cannot be obtained, the training effect will be greatly reduced.
The use of the “positional embedding vector” was therefore proposed in the BERT
model to encode the position information of each token, allowing Transformer to
distinguish between words in different positions. In the BERT model, the positional
embedding vector is constructed as follows:

{
PE2i (p) = sin(p/10,0002i/dpos)
PE2i+1(p) = cos(p/10,0002i/dpos)

(7.61)



7.4 BERT 127

where

sin is a sine trigonometric function, and
cos is a cosine trigonometric function.

In the preceding formula, the sequence number p of the token is mapped to a
dpos-dimensional position vector, and the value of the ith element of the vector is
PEi(p).

2. Pre-training Task

The BERT model is based on Transformer (see Attention is All You Need [3]),
whose principles we describe in Sect. 7.3. Note that BERT uses only the encoder of
Transformer.

Multiple Transformer layers are stacked in the BERT network architecture. We
use L to represent the number of Transformer submodules, H for the size of the
hidden layer, and A for the number of self-attention layer heads. If the size of
feedforward/filter is set to 4H, the parameters of two BERT models are as follows:

*BERTbase: L = 12, H = 768, A = 12, the total number of parameters = 110 M.
*BERTlarge: L = 24,H = 1024,A= 16, the total number of parameters= 340M.

The key innovation in BERT is to pre-train it with two unsupervised prediction
tasks, namely masked language model and sentence prediction. Figure 7.10 shows
the process of the BERT end-to-end pre-training task.

(1) Masked language model

The deep bidirectional model is more effective than the unidirectional shallow
connection. To train a deep bidirectional representation and overcome the unidirec-
tional limitations of the GPT model, we use a bidirectional encoder of Transformer
and adopt an idea from the cloze task25; namely, some of the tokens input into the
randommaskmodel are used to predict the original vocabulary of themasked position
based on the context.

The masked token is marked with [MASK], and the corresponding vector is input
into the output Softmax. However, because [MASK] is not observed during fine-
tuning, a mismatch between pre-training and fine-tuning tasks will occur. To solve
this problem, we randomly select 15% of the tokens from the sentence (e.g., we
select “clever” in the sentence “he is very clever”) instead of replacing the masked
words completely with [MASK]. This approach has the following effects:

(1) There is an 80% probability that the data generator replaces the word with the
[MASK] tag, for example, “he is very [MASK].”

(2) There is a 10% probability that the data generator replaces the word with a
random word, for example, “he is very tree.”

25 See: Taylor W L, Cloze Procedure: A New Tool for Measuring Readability [J]. Journalism
Bulletin, 1953: 415–433.



128 7 Unsupervised Learning: Word Vector

Fig. 7.10 BERT
pre-training task

Dataset

Sentence A Sentence B

[Mask]

BERT

Mask loss value Classification 
loss value

Next sentence predictionMask word prediction

+

(3) There is a 10% probability that the data generator retains the original word,
that is, “he is very clever.” The purpose is to indicate a preference for the word
actually observed.

Because the encoder of Transformer predicts tokens at random, it needs to main-
tain a distributed context representation of each input token. In terms of its language
understanding ability, the model is relatively robust, with little impact if 1.5% of the
tokens are randomly replaced. For each batch of data, only 15% of the tokens are
predicted; to achieve convergence, more pre-training steps are required. Although
the convergence speed of the masked language model is slightly lower than that of
the unidirectional model, the experimental improvement of the model is much higher
than the increased training cost.

(2) Sentence prediction

A binary sentence prediction task is pre-trained to understand the model relation-
ship of a sentence. Many important downstream tasks, such as automatic question
answering (QA) and natural language inference (NLI), are based on an understanding
of the relationship between two sentences but cannot be directly obtained through
languagemodeling. Specifically, when sentences A and B are selected as pre-training
samples, 50% of B is the next sentence of A, and the other 50% is probably a random
sentence from the corpus. For example:



7.4 BERT 129

Input = [CLS]Jimmy went to the grocery every [MASK][SEP]
He bought a lot of fresh[MASK] and fruit[SEP]
Label = IsNext
Input = [CLS]Jimmy went to the grocery every [MASK][SEP]
There’s a [MASK] of adventure to spice up the diving[SEP]
Label= NotNext

3. Fine-tuning Task

Most NLP tasks can be classified into the following four categories:

(1) Classification tasks. This category includes text classification and sentiment
classification, that is, classification of texts with different lengths.

In these tasks, [CLS]—the first token in the sequence—is output as C ∈ R
H from

the last hidden layer through the BERT network. The prediction value is output
after a fully connected layer is added and subsequently connected to the Softmax
classification layer P = Softmax(CWT).

(2) Sentence relationship judgment tasks. This category includes text entailment,
automatic judgment, and natural language inference, that is, determining
whether a certain relationship exists between two sentences.

In these tasks, the start and end position tokens need to be added. The hidden-layer
sequence of the output part is connected to the predicted start and end positions
that are output by the fully connected layer, and is then connected to the Softmax
classification layer.

(3) Sequence labeling tasks. This category includes named entity recognition,
semantic role labeling, and tokenization, and is characterized by the need for
the model to provide a category for each word in the text based on the context.

In sequence labeling tasks, the input part remains unchanged, and each word in the
output part corresponds to the output of the last hidden layer of the BERT network.

(4) Generative tasks. This category includes machine translation, text summariza-
tion, and automatic poetry composition, and characterizes the need to generate
another paragraph after a text is input.

These tasks are sequence-to-sequence (Seq2Seq) ones, where some modifications
are needed to use the pre-training result of BERT. Different pre-training data can be
selected, and the encoder and decoder can be initialized using BERT.



130 7 Unsupervised Learning: Word Vector

7.4.4 Technical Difficulties

In BERT, a bidirectional language model is obtained by using the masked language
model and sentence prediction as pre-training tasks. Although the BERT model
can be easily extended to other downstream tasks and works well, it has several
disadvantages:

(1) BERT assumes that different [MASK] tags are independent of each other and
ignores the correlation between them.BERT’s training objective is tomaximize
the joint probability distributionp(x|x

′
),where x is the set of tokensmarkedwith

[MASK] and x
′
is the entire sequence. However, in calculating the probability

distribution of words, BERT assumes that the masked tokens are independent
of each other, meaning that any correlation between them is lost.

(2) The distribution of training data in the pre-training phase is inconsistent with
that in the fine-tuning phase. BERT uses the [MASK] tag for the corpus during
the pre-training phase, but does not use it for any corpus in the fine-tuning
phase. This leads to the distribution of training data being inconsistent in the
two phases and subsequently affecting the fine-tuning results.

7.4.5 Application Scenario

BERT is widely used in various tasks such as automatic question answering,
text summarization, reading comprehension, sentiment analysis, and named entity
recognition.

7.4.6 Framework Module

The main programming language of BERT is Python, which supports major
computing frameworks such as TensorFlow, PyTorch, Keras, and Chainer.

7.5 Comparison Between Typical Word Vector Generation
Algorithms

This section lists someof the key features anddisadvantages of the typicalwordvector
generation methods we analyzed in earlier sections, giving you a handy overview of
each method arranged neatly in Table 7.3.



7.5 Comparison Between Typical Word Vector Generation Algorithms 131

Table 7.3 Features and disadvantages of typical word vector generation algorithms

Algorithm Feature Disadvantage

Word2Vec (1) Features are extracted based on a
sliding window

(2) Unsupervised learning without
manual annotation

(3) Online learning is supported

The training is based on a local corpus
rather than a global context relationship

GloVe (1) Word vectors are constructed based
on the global corpus co-occurrence
matrix. GloVe can be regarded as an
efficient matrix factorization
algorithm that optimizes latent
semantic analysis, with AdaGrad
being used to optimize the
minimum square loss

(2) Unsupervised learning, but uses
tagging, where a tag indicates the
number of co-occurrences

(3) Corpus information may be
considered as fixed

(4) Usually regarded as global
Word2Vec with a changed objective
function and weight function

The training is based on a global corpus,
meaning that the resource consumption
is higher than that of Word2Vec

Transformer (1) The self-attention mechanism is
used to increase parallelization,
thereby alleviating slow training in
the RNN

(2) Comprised of an encoding
component, a decoding component,
and a connection between them

(3) Multiple encoders and
corresponding decoders can be used
(six of each is suggested)

(1) Transformer cannot handle some
tasks that the RNN can otherwise
implement easily. For example, it is
not suitable for scenarios where the
length of a character string or a
formula exceeds that observed by
the model in training

(2) Non-Turing complete

BERT (1) Transformer and the bidirectional
language model are used (a real
bidirectional text can be captured
because the decoder—that is, a
complete sentence—is used)

(2) Unlike other language
representation models, BERT
pre-trains deep bidirectional
representations based on joint
adjustments to the left and right
contexts at all layers. With only one
output layer added, pre-trained
BERT representations can be
fine-tuned to create excellent
models for more tasks

(1) Non-Turing complete
(2) [MASK] will not appear in

predictions, and excessive use of it
during training will affect
performance

(3) Only 15% of the tokens are
predicted for each batch of data,
meaning that BERT converges
slower than the left-to-right model



132 7 Unsupervised Learning: Word Vector

7.6 Application: Automatic Question Answering

In the field of NLP, most scenarios involve specific applications of word vectors.
This includes text classification (e.g., people post text on social media platforms),
machine translation (e.g., people want to translate text from one language to another),
and automatic question answering (e.g., people ask questions on an e-commerce
Web site and expect relevant answers). Given that research into automatic question
answering is still relatively new, and because there are similarities between how deep
learning is used to study automatic question answering and how humans comprehend
text, we will focus on automatic question answering in the following sections.

7.6.1 Relevant Concepts of Automatic Question Answering

1.Definition

According toWikipedia,26 automatic question answering is a technology in the fields
of information retrieval and NLP. It is concerned with building systems that automat-
ically answer questions posed by humans in a natural language. From the applica-
tion perspective, automatic question answering is an advanced form of information
service, because it feeds back accurate answers in natural language to meet people’s
different requirements.

2. History

Automatic question answering dates back to 1950,whenEnglishmathematicianAlan
Turing, in his paper Computing Machinery and Intelligence, posed the question of
whether a machine can be considered intelligent. In the paper, he proposed a method
for determining whether a machine can think—it subsequently became known as the
Turing test. Over the next 10 years, the study into this topic progressed slowly.

From 1960 to 1970, a number of automatic question answering systems emerged,
the most famous of which were BASEBALL, Eliza, SHRDLU, GUS, and LUNAR.
BASEBALL (1961) was used to answer questions about the time, place, and scores
of baseball games in the USA. Eliza (1966) was used for psychotherapy, playing the
role of a psychologist. Using pattern and keywordmatching and substitutionmethods
along with heuristic algorithms, it was designed to answer patients’ questions and
engage them in counseling sessions. SHRDLU (1971) allowed users to converse
with the system to move objects in a “block world.” GUS (1977) provided tourist
information through simple dialoguewith users. AndLUNAR (1973) used a database
from which the system obtained answers to users’ questions that were converted into
query statements.

26 See: https://en.wikipedia.org/wiki/Question_answering.

https://en.wikipedia.org/wiki/Question_answering


7.6 Application: Automatic Question Answering 133

Computer scientists made great progress from 1970 to 1990 in their study of
natural languages, using mathematical and statistical methods for the first time. They
used the statistical language model to determine whether a sentence pattern was
reasonable and used SAM—a reading comprehension system developed by Yale
University—as the representative system.

After 1990, research and development shifted toward large-scale document-
based question answering. For example, in December 1993, a Web-based automatic
question answering system known as START went online to answer millions of
English questions. In 1999, the technical review on question answering began in
Text Retrieval Evaluation Conference (TREC).

Currently, there are a number of automatic question answering systems in use,
including START, Watson (IBM), Siri (Apple), Cortana (Microsoft), Duer (Baidu),
and Zhihu (a community-based platform).

7.6.2 Traditional Automatic Question Answering Methods

1. Retrieval Question Answering

The development of question answering is closely related to that of Internet search
engines. Major milestones occurred in 1999 with the QA Track task of the National
Institute of Standards and Technology (NIST) and the formal launch of the retrieval
question answering (Retrieval Base, RB) system. Then in 2011, Watson, a ques-
tion answering system developed by IBM, defeated champion players in the Amer-
ican quiz show Jeopardy!, winning the first place prize of $1 million. At that time,
however, the technologies were mainly retrieval and matching, most question types
were simple, and the inference ability was not strong. The technologies of that era
simply did not break through the limitation of retrieval question answering.

Retrieval question answering mainly includes basic processes such as question
analysis, chapter retrieval, and answer extraction, and it can be based on either pattern
matching and or statistical information extraction depending on the answer extraction
methods used.

For the retrieval question answering based on pattern matching, all types of ques-
tions and answers generally need to be obtained through offline calculation. When
running online, the question answering system first identifies the type of the question
and then extracts a candidate answer for verification. To achieve greater performance,
the system uses NLP technology; however, because this technology is not mature,
the retrieval question answering is regarded as shallow sentence analysis.

For the retrieval question answering based on statistical information extraction,
generally, logical form conversion technology is used to convert questions and
answers, and then answer inference verification is performed using a lexical connec-
tion technology. A typical representation of this technology is proposed by Language
Computer Corporation (LCC) in the USA.



134 7 Unsupervised Learning: Word Vector

2. Community Question Answering

As the Internet becomesmore andmore popular, a growingnumber of Internet-related
services based on user-generated content (UGC) have emerged, and the develop-
ment of community question answering (Community Base, CB) systems has surged.
Community question answering involves the following two key points: (1) There are
many users in the community question answering system, and new users participate
when the system is running online. (2) Participating users provide a large amount
of information directly related to goods or user questions, such as user evaluation,
voting, scoring, and recommendations, and may provide indirectly related informa-
tion such as user area, climate, usage scenario, and precautions. This information
plays a vital role in the modeling and analysis of questions and answers.

At the heart of the community question answering system is the need to match
currently posed questions with ones from the huge number of historical questions
and answers, and then provide answers to the current user.

In this system, it is technically challenging to provide accurate answers to current
questions by using the traditional retrieval technology based on keyword matching
due to the “lexical semantic gap” between the current question and historical ques-
tions. To solve this problem, academic and industrial circles have introduced language
understanding models into the system by learning the similarity between words in
themassive question answering corpora. For example, the words “health,” “running,”
“sleeping,” “eating,” “organic,” “natural,” and “travel,” among others, are related to
the word “healthy.”

3. Knowledge Base Question Answering

A knowledge base is formed from the accumulation of pieces of knowledge, such
as “Huawei headquarters are in Shenzhen” and “The Forbidden City is in Beijing.”
Through the Internet, we are able to obtain a great deal of knowledge, using Web
sites such as Wikipedia. However, much of this knowledge is in unstructured natural
languages, suitable for human reading but not for computer processing. To facilitate
computer processing and understanding, researchers proposed the concept of Triple.
With Triple, we are able to represent the example sentence “Huawei headquarters
are in Shenzhen” in the form of “Entity, Relationship, Entity,” namely “Huawei,
Headquarters, Shenzhen.” If Entity is considered a node, Relationship (including
property, category, and more) can be regarded as an edge. In general, the knowledge
base consists of large numbers of triples, specifically, nodes and edges.

The terms knowledge base (KB) and knowledge graph (KG) are often used inter-
changeably by some researchers and can be considered as belonging to the same
category. These terms generally refer to a process where a question is given (usually
in natural language), it is understood semantically and analyzed by using related tech-
nologies, and an answer is then obtained through querying and inference by using a
knowledge base (or a KG, topic graph, or knowledge base subgraph). In 2013 and
2014, there was rapid development of knowledge base question answering, yet in
2015, with the breakthrough of deep learning in nature processing, it began to shift



7.6 Application: Automatic Question Answering 135

toward neural network technology. The following briefly describes the technologies
involved in knowledge base question answering during 2013 and 2014.

(1) Semantic parsing. This technology is used to convert a natural language into a
logical form (a semantic representation) that can be parsed from the bottom-up
and understood by the knowledge base. It enables querying of the knowledge
base with query statements in order to obtain an answer. Such query state-
ments are similar to SQL but use semantic parsing syntax and methods such
as category compositional grammar (CCG) and dependency-based composi-
tional semantics (DCS). This technology required the use of some manually
written vocabulary and rule sets, making it inconvenient in practical use. To
learn about the semantic analysis methods, you may wish to read some repre-
sentative papers such as Semantic Parsing on Freebase from Question–Answer
Pairs [4] published by Stanford University in 2013. We use one of the graphs
from that paper as an example here. In Fig. 7.11, the leaf node statement (where
was Barack Obama born) is a given question in a natural language. The bold
part of the graph is related to semantic parsing, and the rest is a logical form.
The root node of the semantic parsing tree is the semantic parsing result, and
the answer can be found in the knowledge base by using the query statement.

(2) Information extraction. This technology extracts the question feature, deleting
unimportant information (such as determiners, prepositions, and punctuation),
in order to help find an answer to the given question. The process is as follows:

➀ Simulate human thinking: Identify the topic word in the question, search the
knowledge base for relevant knowledge, locate a candidate answer, and extract
information (i.e., find the graph node based on the topic word). Then, select the
adjacent nodes and edges (usually within one or two hops, and are the candidate
answers) as a knowledge base subgraph (called a topic graph).

Fig. 7.11 Semantic analysis [4]



136 7 Unsupervised Learning: Word Vector

➁ Identify the correct answer from the candidate answers: Extract information
according to rules or templates, obtain the eigenvector of the question (each
dimension corresponds to one question and one candidate answer feature), and
feed it into the classifier for screening or learning to obtain the final answer. This
is regarded as binary classification, that is, to determine whether each candidate
answer is the correct one.

The following papers provide further details about the method: Semantic Parsing
on Freebase from Question–Answer Pairs [4] and Information Extraction over
Structured Data: Question Answering with Freebase [5].

(3) Vector modeling: This method is similar to information extraction. It maps
questions and candidate answers to low-dimensional spaces based on the candi-
date answers in order to obtain their distributed embeddings. Then, it converts
existing questions and answers into training data through information extrac-
tion, performs training, and ultimately achieves high scores (usually in the
form of dot product) for the low-dimensional spatial correlation between the
question and the correct answer. For more details about this method, you may
wish to refer to Question Answering with Subgraph Embeddings.27

7.6.3 Automatic Question Answering Method Based on Deep
Learning

1. Summary of Algorithm Architecture Generality

For brevity in explaining the automatic question answering algorithm based on deep
learning, we use the following conventions:

Q: a given question;
D: a document related to Q; and
A: an answer to Q that can be directly or indirectly found in D.

Mathematical symbols are used to abstract the automatic question answering
algorithm (or system) based on deep learning. The function to be implemented or
solved is as follows:

f (Q, D) = A (7.62)

When faced with an automatic question answering or reading comprehension
scenario, humans carefully read Q first, then read D with Q, and either directly
extract A if A is found in D, or organize a language to obtain A if A is not found in
D. Figure 7.12 compares this approach with that used in deep learning algorithms.

27 See: Bordes A, Chopra S, Weston J. Question Answering with Subgraph Embeddings [EB/OL].
2014 [2019-11-10] https://arxiv.org/pdf/1406.3676.pdf.

https://arxiv.org/pdf/1406.3676.pdf


7.6 Application: Automatic Question Answering 137

Carefully read Q

Read D with Q

Write A

Q

D

A Decoder

Attention

Encoder

Human

Automatic answering 
algorithm based on deep 

learning

Fig. 7.12 Comparison between human and deep learning algorithms in an automatic question
answering or reading comprehension scenario

The design components of the neural network framework can be divided into the
following types:

(1) Encoder: It uses a CNN and its variants, or uses an RNN or its variants.
(2) Decoder: In scenarios where A can be directly obtained from D, an extraction

generationmethod such as the StanfordQuestionAnsweringDataset (SQuAD)
is used. Conversely, in scenarios where A cannot be obtained directly fromD, a
generative method such as Microsoft Machine Reading Comprehension (MS-
MARCO) is used. Before we can design the decoder, we need to understand
the dataset. This is because, given the same dataset (i.e., D), the decoder may
change back and forth in the two designs due to different versions.

(3) Architecture: A two-step or end-to-end design is used.

2. Innovations of Representative Algorithms

Since 2017, researchers have proposed many innovative algorithms in the field of
automatic question answering based on deep learning. There are many exceptional
algorithms available, but due to space constraints, we focus on only two papers
here. Some other papers you may find of interest include Gated Self-Matching [6],
GA-Reader,28 and R3-Net.29

1. Bi-DAF30

(1) Introduction to the paper

28 See: Dhingra B, Liu H, Yang Z, et al. Gated-attention Readers for Text Comprehension [EB/OL].
2016 [2019-11-10] https://arxiv.org/pdf/1606.01549.pdf.
29 See: Wang S, Yu M, Guo X, et al. R 3: Reinforced Ranker-reader for Open-domain Question
Answering [C]. Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
30 See: Seo M, Kembhavi A, Farhadi A, et al. Bidirectional Attention Flow for Machine
Comprehension [EB/OL]. 2016 [2019-11-10] https://arxiv.org/pdf/1611.01603.pdf.

https://arxiv.org/pdf/1606.01549.pdf
https://arxiv.org/pdf/1611.01603.pdf


138 7 Unsupervised Learning: Word Vector

This paper proposes a bidirectional attention flow (Bi-DAF) network,which builds on
the attention mechanism widely used in machine understanding and automatic ques-
tion answering scenarios. Bi-DAF is a multistage hierarchical process that identifies
the context of different granularity levels and uses the bidirectional attention flow
mechanism to obtain query-aware context representations without earlier digests.
This paper shows that Bi-DAF obtained the State-Of-The-Art (SOTA) result in
Stanford Question Answering Dataset and CNN/Daily Mail cloze test.

(2) Network architecture of the model

The paper provides the network architecture of the Bi-DAF method. Here, Q, D,
and A are marked in corresponding positions to facilitate understanding, as shown
in Fig. 7.13.

In Fig. 7.13, xi indicates the words of the ith input context paragraph, qi indicates
the words of the ith question, hi indicates the context vector matrix output from the
ith context embedding step, and ui indicates the question vector matrix output from
the ith context embedding step. Based on the combination of context embedding and
the attention vector, gi is generated and represents the query awareness of the ith
context vector matrix.

The following explains the Bi-DAF layers shown in Fig. 7.13c.

➀ Character embedding layer: It uses a character-level CNN (Char-CNN) and is
represented by a square in Fig. 7.13.

➁ Word embedding layer: It maps the context and words in the question statement
into a semantic space vector. Specifically, it translates the natural language into
a digital one understandable by a machine and uses the GloVe algorithm. This
layer is represented by a rectangle in Fig. 7.13. If we assume that theword vector
dimension is d, we can obtain the context matrix X ∈ R

d×T and the question
matrix Q ∈ R

d×J .
➂ Context embedding layer: It extracts information at a higher level by using a

BiLSTM network. It outputsX andQ to the BiLSTM network and concatenates
the forward and backward outputs to obtain the information vector sequence H
∈R

2d×T of the entire article and the comprehensive vector sequence U ∈R
2d×J

of the entire question.
➃ Attention flow layer: It obtains the answer by combining H and Q in a process

that includes matching and fusion. Matching means that the attention mecha-
nism is used to match H and U bidirectionally, and is where Bi-DAF got its
name. When the attention mechanism is used, a matching matrix S ∈ R

T×J is
defined, where Stj, which is equal to α(H :t ,U :j) ∈ R, indicates the similarity
between the tth vector in H and the jth vector in U. The similarity is calculated
by using a trainable scalar function. h represents a vector in H, u represents a
vector in U, and [h; u; hzu] are concatenated into a six-dimensional vector (z
represents an inner product). The six-dimensional vector can then be multiplied
by a trainable weight vector w to obtain a corresponding s.

The Context2Question attention is calculated as follows: at ∈ R
J is defined as

the importance of J question vectors relative to the tth vector in the context; for



7.6 Application: Automatic Question Answering 139

Softmax
uJ

u2

u1

uJ

u2
u1

So
ftm

ax

h1 h2 hT h1 h2 hT

(b) Question2Context(a) Context2Question

Start End

Output layer

Model layer

Attention 
flow layer

Context 
embedding layer

Character 
embedding layer

Word embedding 
layer LS

TM
 n

et
w

or
k

LS
TM

 n
et

w
or

k

Word 
embedding

Character 
embedding

Question

Question2Context and 
Context2Question attention

MLP
+

Softmax

LSTM network
+

Softmax

A

g1 g2 gT

h1 h2 h3 hT u1 uJ

qJq1x1 x2 x3 xT
Context

D Q

LS
TM

 n
et

w
or

k

(c) Bi-DAF architecture

Fig. 7.13 Bi-DAF architecture

each t,
∑

at j = 1 and at = Softmax(St:), and T different J-dimensional weights
of the question vectors are obtained. The weighted question vector sequence Ũ:t =∑

j at jU: j is finally obtained based on the attention mechanism. Figure 7.13c uses
the architecture shown in Fig. 7.13a.

The Question2Context attention is calculated as follows: b= Softmax(maxcol(S))
∈ R

T is defined as the weight vector of T context vector sequences. Here, we need
to determine only whether the context vector is important to a question vector. If one
of J dimensions is important, we can conclude that the context vector is important.



140 7 Unsupervised Learning: Word Vector

From this, we are able to determine the weighted article vector h̃ = ∑
t bt H:t ∈ R

2d .
Figure 7.13c uses the architecture shown in Fig. 7.13b.

After completing the matching process of the bidirectional attention mechanism,
as just described, we are able to obtain two 2d × T-dimensional vector sequences.

The fusion process synthesizes these two attention vector sequences and the
context information vector sequenceH to obtain the query awareness representation
on the context vector sequence, which is defined as G :t = β

(
H:t , Ũ:t , H̃:t

) ∈ R
dG ,

and the dimension of G is 8d × T.

➄ Model layer: The information in G with a dimension of 8d × T is synthesized
by using a BiLSTM network to generateM with a dimension of 2d × T (where
M contains abundant information). The interaction between the question and
the article is reflected and then input to the LSTM network to obtain context
information for the interaction.

➅ Output layer: It can obtain the required output information by using G and M.

(3) Innovations of the algorithm.

The innovations presented in the paper are as follows:

➀ The encoder fuses Q into D and attends to each word in D, that is, the “Con-
text2Question” module in Fig. 7.13. The dot product of h and u is added during
attention calculation. Furthermore, the paper proposes to useD to attend to each
word in Q, that is, the “Question2Context” module in Fig. 7.13. This is essen-
tially the same as the “Context2Question” module, except that the maximum
attention value is obtained and then the weighted averaging is performed on h
to obtain a single vector. We can therefore consider that the result of fusing Q
into D is used in the input of each time step of the encoder. See the output line
of “Question2Context” in Fig. 7.13b. Finally, the following is obtained:

G :t = β
(
H:t , Ũ:t , H̃:t

) ∈ R
dG (7.63)

➁ The output layer of the encoder performs operation transformation (similar to
feature engineering), concatenates vectors such as h and u, and then multiplies
them by each other. Simple concatenation, as mentioned in the paper, offers
good results. The operation is as follows:

β(h, ũ, h̃) = [
h; ũ; h◦ũ; h◦ h̃

] ∈ R
8d×T(i.e. dG = 8d) (7.64)

➂ The encoder usesQ andD to attend to its outputG through the decoder, in order
to obtainM for each step. It thenusesMLPandSoftmax to predict the probability
distribution P1 of the start position, concatenates the MLP and Softmax outputs
and M, and uses LSTM and Softmax to predict the probability distribution P2

of the end position and obtain the loss function (which is a cross-entropy).

P1 = Softmax
(
WT

(P1)

)
[G; M] (7.65)



7.6 Application: Automatic Question Answering 141

P2 = Softmax
(
WT

(P2)

)
[G; M2] (7.66)

L(θ) = − 1

N

N∑

i

(
log(P1

y1i
) + log(P2

y2i
)
)

(7.67)

2. QA-Net.31

(1) Introduction to the paper.

This paper proposes a new architecture, called QA-Net, for the automatic question
answering algorithm. QA-Net does not require the RNN, differing from the current
end-to-end machine reading and automatic question answering model that achieves
lower training and inference speed due to the continuity of the RNN. With QA-Net,
the encoder requires only the convolution layer, which involves local interaction,
and the self-attention layer, which requires global interaction. While the accuracy
of QA-Net on the SQuAD is the same as that of the RNN, the training speed of the
QA-Net architecture is increased by 3–13 times, and the inference speed is increased
by 4–9 times, allowing more data training models to be “fed” by using QA-Net. This
paper combines the QA-Net model with data generated through reverse translation
based on the machine translation model. On the SQuAD, by using the enhanced data
training model fed by using QA-Net, the F1 score was 84.6 in the test set, which was
higher than the previous best score of 81.8.

(2) Network architecture of the model.

The paper provides the network architecture of the QA-Net method. Here, Q, D,
and A are marked in corresponding positions to facilitate understanding, as shown
in Fig. 7.14.

In Fig. 7.14, the left side is the QA-Net architecture with multiple encoder
modules, and the right side is the basic encoder module unit. All the encoders in
QA-Net are constructed in this way, and only the number of convolution layers in
the module is modified. QA-Net uses layer regularization and residual connection
technology between different layers and encapsulates each sublayer of the encoder
structure after performing positional encoding (such as convolution, self-attention,
and feedforward network) within the residual module. QA-Net also shares context,
questions, and some weights between the output encoders to achieve knowledge
sharing. The following explains the five layers of QA-Net shown in Fig. 7.14.

The input question Q = {q1, q2, …, qm}, the context vector C = {c1, c2, …, cn},
and the output answer span S = {ci, ci+1, …, ci+j} are given. x represents the original
word and its embedding.

31 See: Yu A W, Dohan D, Luong M T, et al. QA-Net: Combining Local Convolution with Global
Self-attention for Reading Comprehension [EB/OL]. 2018 [2019-11-10] https://arxiv.org/pdf/1804.
09541.pdf.

https://arxiv.org/pdf/1804.09541.pdf


142 7 Unsupervised Learning: Word Vector

Start probability

Softmax

Linear 
transformation

Connection

End probability

Softmax

Linear 
transformation

Connection

Stacked model
Encoder module

Stacked model
Encoder module

Stacked model
Encoder module

Context2Question attention layer

Stack embedded 
encoder module

Embedding layer

Stack embedded 
encoder module

Embedding layer

D Q

Positional encoding

Layer normalization

Self-attention layer

Layer normalization

Feedforward 
network layer

Layer normalization

Convolution layer

A

Model

Context Question

(a) (b)

+ Repeat

...

+

+

One encoder 
block

Fig. 7.14 QA-Net architecture

➀ Embedding layer: It connects character embeddings and word embedding
vectors. During training, the word vector remains unchanged, and its dimen-
sion is p1 = 300 through GloVe pre-training. The character vector is obtained
as follows: (1) Each character can be trained in vector dimension p2 = 200. (2)
Each word is truncated or padded to a length of 16. (3) The maximum value of
each line is obtained to achieve a fixed vector representation of each word. (4)
The final output of the embedding layer is [xw; xc] ∈ R

p1+p2 , where xw is the
word embedding and xc is the convolution output of the character embedding.
(5) Two layers of high-speed networks are added behind the output.

➁ Embedding encoder layer: It includes two stack embedded encodermodules and
uses an encoder block that consists of positional encoding, multiple convolution
layers, the self-attention layer, and the feedforward network layer, as shown in
Fig. 7.14b. In the same figure, the depthwise separable convolution structure,
which has goodmemory and generalization capabilities, is used for convolution.



7.6 Application: Automatic Question Answering 143

The size of the convolution kernel is 7, the number of kernels is 128, and the
number of convolution layers in one block is 4. For the self-attention layer, the
multi-head attention mechanism is used, employing 8 heads at each layer. For
a given input x and an operation f , the calculation result f (layernorm(x)) + x is
the output of the residual block.

➂ “Context2Question” attention layer: Like othermodels, this layer first calculates
the similarity between the context and each pair of words in the question. It then
forms amatrixS∈R

n*m and normalizes each line of S to obtain S̃1. The attention
of “Context2Question” is calculated as follows:

A = S̃1 ∗ QT ∈ R
n∗d (7.68)

where

n is the length of the context, and
d is the dimension of the upper layer.

➃ Model encoder layer: It includes three connected stack model encoder modules,
each of which shares parameters with the others and is formed by stacking seven
encoder blocks.

➄ Output layer: It varies according to the desired task. For example, in the SQuAD
task, the paper predicts the probabilities that each position is the start position
and end position of the answer span, which are, respectively, denoted as P1 and
P2.

P1 = Softmax(W1[M0; M1] (7.69)

P2 = Softmax(W2[M0; M2] (7.70)

where

W1 and W2 are trainable variables, and
M0, M1, and M2 correspond to the outputs of the three stack model encoder
modules, from low to high.

Its objective function is the same as those of other models:

L(θ) = − 1

N

N∑

i

[
log(P1

y1i
) + log(P2

y2i
)
]

(7.71)

where y1i and y
2
i are, respectively, the start position and end position of the ith sample.

(3) Innovations of the algorithm

The innovations presented in the paper are as follows:



144 7 Unsupervised Learning: Word Vector

➀ The encoder is implemented by using the CNN and several encoder blocks
with the same structure, as shown in Fig. 7.14b. Each block includes different
layers, among which layer-norm can be regarded as a variant of batch-norm
(batch-norm is normalization of x feature in each batch of data, and layer-
norm is normalization of x feature output). The depthwise separable convolution
structure3233 is used for convolution. The convolution method decomposes a
convolution kernel of H × W × D into two matrices H × W × 1 and 1 × D,
which reduces the rank of matrix and the parameter quantity.

➁ A Context2Question attention layer is added to the decoder, which is similar to
Bi-DAF. The paper mentions that the DCN34 model was referenced, and the dot
product of D (i.e., c) and Q (i.e., q) is added to the attention value. The formula
is as follows:

f (q, c) = W 0[q, c, q � c] (7.72)

➂ The decoder used in QA-Net is similar to that used in Bi-DAF. In addition to the
design of the model network, the paper extends the data and uses the English–
French and French–English corpora to expand the training datasets. However,
if the machine translation model is not sufficiently accurate, errors will be intro-
duced and the expected quality will be reduced, affecting the performance of
the QA-Net model.

7.7 Implementing BERT-Based Automatic Answering
Using MindSpore

The interfaces and processes of MindSpore may constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

In order to implement BERT-based automatic answering, we can split the imple-
mentation process into two parts: dataset preparation and BERT network training.

32 See: Kaiser L, Gomez A N, Chollet F. Depthwise Separable Convolutions for Neural Machine
Translation [EB/OL]. 2017 [2019-11-10] https://arxiv.org/pdf/1706.03059.pdf.
33 See: Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions [C]. Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2017:1251–1258.
34 See: Xiong C, Zhong V, Socher R. Dynamic Coattention Networks for Question Answering
[EB/OL]. 2016 [2019-11-10] https://arxiv.org/pdf/1611.01604.pdf.s

https://mindspore.cn/resource
https://arxiv.org/pdf/1706.03059.pdf
https://arxiv.org/pdf/1611.01604.pdf


7.7 Implementing BERT-Based Automatic Answering Using MindSpore 145

Dataset preparation involves converting the original set of automatic answering text
into the input format required by the BERT network. We start by defining the Bert-
ForQuestionAnswer class to construct the network structure, which consists of two
fully connected independent layers. These layers are added to the BERT pre-training
network to predict the start and end positions of the answer in a paragraph. We
then define the BertForQuestionAnswerLoss class to calculate the loss function and
construct the QANetworkWithLoss class to integrate the network and loss function
into an end-to-end training model.

7.7.1 Preparing the Dataset

Taking the SQuAD 1.0 open dataset as an example, sort the corpus into question–
answer pairs, where the first half of each sentence is a question, and the second half
is a paragraph containing the answer. Use the tokenize() function in the tokenization
package to segment each sentence, where the WordPiece model method is used,
[CLS] and [SEP] are used to start and end each sentence, and [SEP] is inserted in
the middle as the delimiter between the first half and the second half of the sentence.
The word after tokenization is further converted into a unique number by using
the convert_tokens_to_ids() function in the tokenization package. In addition, the
start_position and end_position of the answer are recorded in each paragraph. The
parameter token_type_id indicates whether the word in the corresponding position
belongs to the first or second half of the sentence, and input_mask can be used tomask
unwanted words in the calculation of the Transformer’s attention mechanism. The
processed data is stored in a file using theMindSpore data format,with each data entry
including attributes such as input_ids, input_mask, token_type_id, start_positions,
and end_positions.

Create an NLP dataset using the MindSpore data format API. For details about
this API and how to implement the train_dataset() function, see Chap. 14.

7.7.2 Training the BERT Network

Define the BertForQuestionAnswer class of the network structure. Note that
mindspore.nn.Cell needs to be inherited, as shown in Code 7.1.



146 7 Unsupervised Learning: Word Vector

BertModel and BertConfig are built-in modules of MindSpore and can be directly
called. The construct function in the BertForQuestionAnswer() class is shown in
Code 7.2.

Code 7.1 Defining BertForQuestionAnswer

from.bert_model import BertModel, BertConfig

class BertForQuestionAnswer(nn.Cell):

def __init__(self, config, is_training):

super(BertForQuestionAnswer, self).__init__()

self.is_training = is_training

self.batch_size = config.batch_size

self.seq_length = config.seq_length

self.hidden_size = config.hidden_size

self.weight_init = 
TruncatedNormal(config.initializer_range)

self.output_weights = 
Parameter(_initializer(self.weight_init, [2, 
config.hidden_size]), name= 'output_weight')

self.output_bias = Parameter(_initializer('zero', 2), 
name= 'output_bias')

self.bert = BertModel(config, self.is_training)

self.reshape = P.Reshape()

self.matmul = P.MatMul(transpose_b=True)

self.bias_add = P.BiasAdd()

Code 7.2 Constructing a Network Structure Using the Construct Function

def construct(self, input_ids, input_mask, token_type_id):

sequence_output, _, _ = self.bert(input_ids, 
token_type_id, input_mask)

final_hidden_matrix = self.reshape(sequence_output, 
[self.batch_size*self.seq_length, self.hidden_size])

start_logits = self.matmul(final_hidden_matrix, 
self.output_weights)

start_logits = self.bias_add(start_logits, 
self.output_bias)

end_logits = self.matmul(final_hidden_matrix, 
self.output_weights)

end_logits = self.bias_add(end_logits, self.output_bias)

start_logits = self.reshape(start_logits, 
[self.batch_size, self.seq_length])

end_logits = self.reshape(end_logits, [self.batch_size,
self.seq_length])

return start_logits, end_logits



7.7 Implementing BERT-Based Automatic Answering Using MindSpore 147

The output of the BERT pre-training network is sequence_output, and its dimen-
sion is [batch_size, seq_length, hidden_size]. Here, seq_length represents the length
of the sequence, and hidden_size represents the dimension of the word vector corre-
sponding to each word obtained through the BERT network. After the two fully
connected layers feed information into sequence_output, the prediction outputs of
the answer in the start and end positions are obtained, with the dimension being
[batch_size, seq_length]. Once the network structure and outputs have been obtained,
define the BertForQuestionAnswerLoss class and the loss function, as shown inCode
7.3.

Code 7.3 Defining BertForQuestionAnswerLoss

class BertForQuestionAnswerLoss(nn.Cell):

def __init__(self, config):

super(BertForQuestionAnswerLoss, self).__init__()

self.seq_length = config.seq_length

self.one_hot = P.OneHot()

self.log_softmax = nn.LogSoftmax(axis=-1)

self.reduce_mean = P.ReduceMean()

self.reduce_sum = P.ReduceSum()

def construct(self, start_logits, end_logits, 
start_positions, end_positions):

one_hot_start = self.one_hot(start_positions, 
depth=self.seq_length)

log_probs_start = self.log_softmax(start_logits)

loss_start = -
self.reduce_mean(self.reduce_sum(one_hot_start * 
log_probs_start), -1)

one_hot_end = self.one_hot(end_positions, 
depth=self.seq_length)

log_probs_end = self.log_softmax(end_logits)

loss_end = -self.reduce_mean(self reduce_sum(one_hot_end * 
log_probs_end), -1)

total_loss =(loss_start+loss_end) / 2.0

return total_loss

The start and end positions of ground truth prediction words are start_positions
and end_positions, respectively, which need to be converted into one-hot vectors.
The prediction outputs of the BertForQuestionAnswer network are start_logits and
end_logits, where the two regression tasks are in the start position and the end posi-
tion, and the loss functions are loss_start and loss_end. Once the BertForQuestio-
nAnswerLoss class is defined, construct the QANetworkWithLoss class to integrate
the network and loss function into an end-to-end training model, as shown in Code
7.4.



148 7 Unsupervised Learning: Word Vector

Finally, the function for training the network is shown in Code 7.5.

Code 7.4 Defining the Overall Network Structure and QANetworkWithLoss

class QANetworkWithLoss(nn.Cell):

def __init__(self, config, is_training):

super(QANetworkWithLoss, self).__init__()

self.is_training = is_training

self.bert = BertForQuestionAnswer(config, is_training)

self.loss = BertForQuestionAnswerLoss(config)

self.cast = P.Cast()

def construct(self, input_ids, input_mask, token_type_id,
start_positions, end_positions):

start_logits, end_logits = self.bert(input_ids, 
input_mask, token_type_id)

total_loss = self.loss(start_logits, end_logits, 
start_positions, end_positions)

return self.cast(total_loss, mstype.float32)

Code 7.5 Training the BERT Model for Automatic Answering

from mindspore optim import AdamWeightDecay

from mindspore import Model

from mindspore.application.model_zoo.bert import BertConfig, 
QANetworkWithLoss,

BertTrainOneStepCell

def train_model():

dataset = train_dataset()

config = BertConfig(batch_size=1)

netwithloss = QANetworkWithLoss(config, True)

netwithgrads = BertTrainOneStepCell(netwithloss, 
optimizer=AdamWeightDecay(netwithloss.trainable_params()))

model = 
Model(netwithgrads,optimizer=AdamWeightDecay(netwithloss.tra
inable_params()))

model.train(1, dataset)

References

1. J. Pennington,R. Socher, C.Manning,GloVe: global vectors forword representation, inProceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
(2014), pp. 1532–154



References 149

2. Le, Quoc, Mikolov, et al. Distributed representations of sentences and documents, in Interna-
tional Conference on Machine Learning (2014), pp. 1188–1196

3. A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need. Adv. Neural Inform. Proc.
Syst. 5998–6008 (2017)

4. J. Berant, A. Chou, R. Frostig, et al., Semantic parsing on freebase from question-answer Pairs,
in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
(2013), pp. 1533–1544

5. X. Yao, B. Van Durme, Information extraction over structured data: question answering with
freebase, in Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (2014), pp. 956–966

6. W. Wang, N. Yang, F. Wei, et al., Gated self-matching networks for reading comprehension
and question answering, in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (2017), pp. 189–198



Chapter 8
Unsupervised Learning: Graph Vector

Graph data involves rich and complex potential relationships and plays an impor-
tant role in many real-world applications, being used extensively in areas such as
social networks, recommendation systems, science, and NLP. As AI continues to
gain popularity, a growing number of machine learning tasks need to analyze and
process graph data. One effective method for graph analysis is to map a graph’s
elements to a low-dimensional vector space while retaining the graph’s structure
and property information. This low-dimensional vector is called a graph vector (or
“graph embedding”), which is described below.

8.1 Graph Vector Overview

A graph is a data structure comprising a set of vertices, which are interconnected by
lines called edges, and relationships between the vertices, as shown in Fig. 8.1. The
graph is called a directed graph if each edge has a direction (in this case, the edges
are similarly known as directed edges). Conversely, the graph is called an undirected
graph if the edges have no direction. Two graphs are isomorphic if they have the same
number of vertices and edges and if the second graph can be obtained by permuting
all vertices in the first graph one by one to the names of the vertices in the second
graph. For example, a pentagon with five vertices and a five-pointed star with five
vertices are considered isomorphic. The number of edges associated with the vertex
represents the degree of a vertex. A common storage representation of a graph is the
adjacency matrix, which can be represented by the vertex set V and the edge matrix
E, as shown in Formula (8.1).

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_8

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_8&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_8


152 8 Unsupervised Learning: Graph Vector

Fig. 8.1 Common storage
representation of a graph

1

2 3

5 4

V = (v1, v2, v3, v4, v5)E =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

(8.1)

Graphs are used in all sorts of real-world applications (e.g., in communi-
cation networks, social networks, e-commerce networks, and traffic networks).
Because they contain rich information, comprising potentially billions of vertices and
relationships between the vertices (edges), graph analysis is of particular importance.

However, these graphs are usually high-dimensional ones that contain massive
volumes of information, making it difficult to directly process them. An important
method for analyzing and processing such graphs is the graph embedding method
(GEM), which uses a low dimension, dense vector to represent a graph’s vertex and
reflect its structure information. The following key features [1] are paramount in a
good GEM [1].

1. Neighborhood awareness: The distance between hidden vectors on vertices
reflects the distance between the vertices on the graph.

2. Low dimension: This feature is necessary to facilitate subsequent calculations.
3. Adaptation: Adding a vertex (or edge) should not cause all calculation processes

to be repeated.
4. Continuity: Continuous representations have smooth decision boundaries and

enable refined representations of the graph members.

Depending on the application scenario, the GEM can be divided into vertex
embedding, edge embedding, mixed embedding, and whole graph embedding. In
the first category, vertex embedding, algorithms such as the classical DeepWalk
and Node2Vec, and graph-based neural network ones such as graph convolutional
networks (GCNs) and graph attention networks (GATs), are used.



8.1 Graph Vector Overview 153

The classical GEMs have two disadvantages: First, during the learning embedding
process, parameters are not shared between vertices, and calculation efficiency is low.
Second, because learning is directly performed on a particular structure graph, there
is a lack of generalization ability, and new or dynamic graphs cannot be processed.
Although CNNs are well known for processing Euclidean data, non-Euclidean data
is difficult to process. CNNs and GEMs have promoted the development of the graph
neural network (GNN) model, which captures the dependence of graphs through
message transfer between vertices of graphs.Despite the originalGNNbeing difficult
to train and offering suboptimal results, researchers have made significant improve-
ments in its network architecture, optimization methods, and parallel computing,
enabling it to achieve good learning capabilities. Over the last few years, GNN has
become a popular graph analysis method [2] due to advantages such as excellent
performance and high interpretability. In addition, the algorithms represented by
GCNs and graph attention networks are gaining significant attention.

This chapter explores the vertex embedding algorithm,with each section centering
on the following topics:

1. Section 8.2 focuses on the classical graph embedding method DeepWalk.
2. Section 8.3 examines the classical graph embedding method Large-scale

Information Network Embedding (LINE).
3. Section 8.4 discusses the classical graph embedding method Node2Vec.
4. Sections 8.5 and 8.6 cover the algorithms based on graph neural networks,

including GCN and GAT.
5. Section 8.7 delves into the application of graph neural networks in the

recommendation system.

8.2 DeepWalk Algorithm

The sparsity of graph representation data (such as the adjacency matrix) makes it a
challenging task to design algorithms. We need to eliminate the adverse impacts of
data sparsity during network application (such as network classification, recommen-
dation, and anomaly detection) in order to develop high-quality machine learning
algorithms. Establishing a method to map the complex and high-dimensional sparse
graph data to the low-dimensional dense vector is therefore of the utmost impor-
tance. Because machine learning cannot directly deal with natural languages, we
must convert words into vectors composed of numeric values so that we can subse-
quently establish models for analysis. In the field of NLP, one of the most prominent
algorithms is Word2Vec, which was inspirational in Bryan Perozzi’s proposal of
the DeepWalk algorithm [1] in 2014. DeepWalk, a classical unsupervised learning
algorithm in graph embedding, performs well in the absence of information and is
readily usable by statistical models.



154 8 Unsupervised Learning: Graph Vector

8.2.1 Principles of the DeepWalk Algorithm

TheDeepWalk algorithm learns the low-dimensional vector representation of a vertex
in a graph by truncating the local information of the random walk (which is often
used as a similarity measure in content recommendation and community discovery).
In the field of natural language, we can consider the vertex as a word, and the
sequence of the vertices obtained through the random walk is like a sentence. The
input of the DeepWalk algorithm is a connected graph (either directed or undirected),
and the output is a vector representation of all vertices in the graph. Figure 8.2
provides an example of low-dimensional vector representation of the DeepWalk
learning vertex, where (a) shows that the input is a graph and (b) shows that the
output is a two-dimensional vector representation of each vertex in the input graph.

(a) Input (graph)

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-1.8
-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

(b) Output (vector representation)

Fig. 8.2 Example of low-dimensional vector representation of the DeepWalk learning vertex



8.2 DeepWalk Algorithm 155

The vector dimension is determined to be 2 because the two-dimensional vector is
easy to visualize. In the figure, the vertices shown in the same color are similar to
each other. The more vertices that two vertices have in common, the shorter the
distance between the two-dimensional vectors corresponding to the two vertices.

In order to performmodel learning using the natural languagemodeling algorithm,
datasets are required, which are the corpus of several sentences and the vocabulary of
several words. Conversely, in the DeepWalk algorithm, the corpus is a set of random
walk vertex sequences with limited length, and the vocabulary is the vertex of the
graph.

The DeepWalk algorithm is divided into two parts—the input (graph) and the
output (vector representation)—as shown in the following figure.

1. Generating a vertex sequence through random walk

We define a random walk W vi with vertex vi as its root vertex. For graph G, we
first perform an even, random sampling on a vertex vi, which is the root vertex of
the random walk W vi . We then perform uniform sampling on the neighbors of the
currently sampled vertex until the number of vertices in the random walk reaches
the maximum length t. Note that the lengths of vertex sequences in the random walk
can be different. Random walk not only captures community information, but also
has the following two advantages:

1. Parallel local exploration for the vertex is easy to implement.
2. Global recalculation is not required when minor changes occur locally, thereby

facilitating online learning.

2. Skip-Gram

Skip-Gram is a Word2Vec algorithm in NLP [3] and can learn the random walk
W vi to obtain a vector representation. Given a keyword, Skip-Gram calculates the
probability of maximizing the occurrence of surrounding words; that is, it predicts
the context. This is explained in more detail in Sect. 7.1. Skip-Gram traverses all
possible collocations appearing in the random walk window w. For each collocation,
the occurrence probability of neighbor vertices is maximized by each vertex vi and its
representation vector Φ(vj) ∈ R

d . The label dimension is equal to the number |V| of
vertices (similar to the one-hot vector), and the number of vertices is generally large.
Using Softmax to calculate this probability directly would consume a large amount
of computing resources for learning, so instead we can use the hierarchical Softmax
[4, 5], which approximates the probability to accelerate the training. Hierarchical
Softmax takes the prediction problem and, by assigning vertices to leaf nodes of a
binary tree, converts it into maximizing the probability of a path. If we assume that
the path to the vertex uk is a sequence (b0, b1, …, b�log|V |�) regarding the tree node,
we can obtain the following:

P(uk |�
(
ν j

)
) =

�log|V |�∏
l=1

P(bl |�(
ν j

)
) (8.2)



156 8 Unsupervised Learning: Graph Vector

4v
W =4

uk

3

1

5

1

vj
d

j

Φ

v1

Φ(v1)

v2 v3 v4 v5 v6 v7 v8

(a) Random walk (b) Representation
mapping 

(c) Hierarchical Softmax

Fig. 8.3 Process of the DeepWalk algorithm

where

P(uk |Φ(vj)) is the probability that the vertex uk is the context of the vertex vj;
Φ(vj) is the vector representation of the vertex vj; and
P(bl |Φ(vj)) is the probability that the lth node in the path of the vertex uk is selected
along the binary tree starting from the vertex vj.

For P(uk |Φ(vj)), the calculation of time complexity decreases from O(|V |) to
O(log|V |).

Figure 8.3 and the subsequent description provide details about the process used
in the DeepWalk algorithm.

1. In Fig. 8.3a, a randomwalk sequenceW v4 with v4 as the root vertex is obtained.
2. In Fig. 8.3b, a sample is generated on a sequence W v4 by continuously sliding

thewindow (with a length of 2w+ 1). If we assume that the vertex in thewindow
is [1, 3, 5] and the sample is {(1, 3), (1, 5)}, we can conclude that the center
vertex v1 is mapped to its vector representation Φ(v1).

3. In Fig. 8.3c, Hierarchical Softmax decomposes P(v3|Φ(v1)) and P(v5|Φ(v1))
into probability distribution that corresponds to the path from the root to v3
and v5. It maximizes the two probabilities by updating Φ, which is the vertex
representation matrix that needs to be calculated.

8.2.2 Implementation of the DeepWalk Algorithm

This section builds on the theoretical information provided earlier by outlining the
pseudocode necessary to implement DeepWalk and Skip-Gram.



8.2 DeepWalk Algorithm 157

Algorithm 8.1 Pseudocode for Implementing DeepWalk

Algorithm 8.2 Pseudocode for Implementing Skip-Gram

8.3 LINE Algorithm

DeepWalk performs well on many datasets because it is a graph embedding method
based on random walk. However, the DeepWalk algorithm considers the similarities
between points based on only the explicit connections between such points (e.g.,
points 6 and 7 in Fig. 8.4); it ignores the possibility that similaritiesmay exist between
points that are not connected in the information network. In Fig. 8.4, for example,
there is no direct connection betweenpoints 5 and6.But there are similarities between
them, because they share points 1, 2, 3, and 4.

We can use an analogy here: If two people have many mutual friends, we can
assume that those twopeople probably have commonhobbies andhabits. By carefully



158 8 Unsupervised Learning: Graph Vector

Fig. 8.4 Information
network1 1

2

3

4

5

6

7

8

9

10

designing the loss function and considering the similarities between points 6 and 7
as well as those between points 5 and 6, we can ensure that the vector representation
obtained by the LINE algorithm [6] retains information about both the local and
global network architectures.

The LINE algorithm has strong universality and can be used for both directed and
undirected graphs. Furthermore, it can be used for both weighted and unweighted
graphs. The following sections provide a brief overview of the LINE algorithm and
pseudocode for its implementation.

8.3.1 Principles of the LINE Algorithm

Directly connected points always exhibit similarities between them. If there is a
direct connection between two vertices, the weight wij of the edge connecting the
two vertices represents a first-order similarity, which is a direct similarity between
the pairs of vertices. Conversely, if no direct connection exists between two vertices,
the first-order similarity is 0. Figure 8.4 shows a first-order similarity, between points
6 and 7.

The first-order similarity applies only to undirected graphs. For each undirected
edge (i, j) in an information network, the joint probability between the vertices vi
and vj is defined as follows:

p1(vi , v j ) = 1

1 + exp(−�(vi )T • �(v j ))
(8.3)

where

p1 (vi, vj) is the joint probability between the vertices vi and vj;
Φ (vi) is the low-dimensional vector representation of the vertex vi, andΦ (vi)∈Rd .

1 Source: http://www.www2015.it/documents/proceedings/proceedings/p1067.pdf.

http://www.www2015.it/documents/proceedings/proceedings/p1067.pdf


8.3 LINE Algorithm 159

This formula defines probability distribution p (•, •) in |V | × |V |, where V
denotes the number of vertices. p̂1 = wi j

W is the empirical probability, where W =∑
(i, j)∈E wi j . To preserve the first-order similarity,we can useKullback–Leibler (KL)

divergence to define the following objective function:

DKL
(
p̂1(•, •), p1(•, •)

) =
∑

(i, j)∈E
p̂1(vi , v j )(log p̂1(vi , v j ) − logp1(vi , v j )) (8.4)

where

DKL( p̂1 (•, •), p1(•, •)) is the KL divergence of the empirical joint probability
distribution and the ground truth joint probability distribution;
p̂1 (•, •) is the empirical joint probability distribution between vertices; and
p1 (•, •) is the ground truth joint probability distribution between vertices.

After removing constant terms from Formula (8.4), we can obtain the first-order
similarity objective function:

O1 = −
∑

(i, j)∈E
wi j logp1(vi , v j ) (8.5)

where

O1 is the first-order similarity objective function of the LINE algorithm;
wij is the edge weight between the vertices vi and vj; and
p1(vi, vj) is the ground truth joint probability between the vertices vi and vj.

As mentioned earlier, the first-order similarity represents the similarity between
the points that have direct connections. However, the information network may
containmany other points that have no direct connections. For such cases, the second-
order similarity is defined to cover the similarity between the neighbor network
architectures of the vertices u and v. If we use pu = (

wu,1, wu,2, . . . , wu,|V
)
to

indicate the first-order similarity between the vertex u and all other vertices, we can
conclude that the similarity between pu and pv is the second-order similarity between
the vertices u and v. Similar to the first-order similarity, the second-order similarity
between the vertices u and v is 0 if no vertex is connected to both u and v. Figure 8.4
shows a second-order similarity, between points 5 and 6.

For the second-order similarity, each vertex exists not only as itself but also as
the context of other vertices, meaning that two additional vectors are required: Φ(vi)
and Φ(vi)′. Φ(vi) is the vector representation of the vertex vi when it is regarded as
itself, andΦ(vi)′ is the vector representation of the vertex vi when it is regarded as the
context of other vertices. The second-order similarity can be used for both directed
graphs and undirected graphs. In the information network, one undirected edge can
be regarded as two directed edges, so for any directed edge (i, j), the probability that
the vertex vjbecomes the context of vi is defined as:



160 8 Unsupervised Learning: Graph Vector

p2(v j |vi ) = exp(�(v j )
′ T • �(vi ))∑|V |

k=1 exp(�(vk)
′ T • �(vi ))

(8.6)

where

p2(vj | vi) is the probability that the vertex vj becomes the context of vi;
Φ(vi)′T is the low-dimensional vector representation of vj as the context; and.
|V | is the number of vertices in the information network.

For each vertex vi, Formula (8.6) defines conditional distribution p2(• | vi).
Its empirical distribution p̂2(• |vi ) is defined as p̂2

(
v j |vi

) = wi j

di
, where di =∑

k∈N (i) wik (which is the out-degree of the vertex vi). To preserve the second-order
similarity, we can use KL divergence to define the following objective function:

DKL
(
p̂1(•, •), p1(•, •)

) =
∑

(i, j)∈E
di p̂2(v j |vi )(log p̂2(v j |vi ) − logp2(v j |vi )) (8.7)

where

DKL ( p̂1(• , •), p1(• , •)) is the KL divergence of the empirical joint probability
distribution and the ground truth probability distribution between the vertices used
as contexts;
p̂2 (vj | vi) is the empirical probability that the vertex vj becomes the context of
the vertex vi; and.
di is the out-degree of the vertex.

After removing constant terms fromFormula (8.7),we can obtain the second-order
similarity objective function:

O2 = −
∑

(i, j)∈E
wi j log p2(v j |vi ) (8.8)

To preserve both the first- and second-order similarities, the LINE algorithm
minimizes O1 and O2 and then concatenates the low-dimensional vectors obtained
based on O1 and O2. This makes it possible to obtain the low-dimensional vector
representation Φ(vi) of each vertex vi.

IfO2 is minimized directly, we must calculate the sum of all vertices when calcu-
lating the conditional distribution p2(• | vi), resulting in the time complexity of
minimizing O2 reaching O(|V |2). Here, the objective function that defines negative
sampling becomes:

logσ(�(v j )
′ T • �(vi )) +

K∑
n=1

En∼Pn(v)[logσ(−�(vn)
′ T • �(vi ))] (8.9)



8.3 LINE Algorithm 161

where

σ is the sigmoid function, and σ(x) = 1
1+exp(x) ;

K is the number of negative samples in each data sampling; and
Pn(v) ∝ d3/4

v .

If we replace logp2(vj | vi) with the objective function for negative sampling, the
objective function of the second-order similarity becomes:

O2 = −
∑

(i, j)∈E
wi j

⎧⎨
⎩logσ(�(v j )

′ T • �(vi )) +
K∑

n=1

Evn j Pn (v)[logσ(−�(vn)
′ T • �(vi ))]

⎫⎬
⎭
(8.10)

In addition, when O1 is minimized directly, uik = ∞, where i = 1, 2, …, |V |;
and k = 1, 2, …, d. To avoid uik = ∞, we need to change the objective function by
performing negative sampling:

O1 = −
∑

(i, j)∈E
wi j

⎧⎨
⎩logσ(�(v j )

T • �(vi )) +
K∑

n=1

Evn∼Pn (v)[log σ(−�(vn)T • �(vi ))]
⎫⎬
⎭ (8.11)

Regardless of whetherO1 orO2 is minimized, the objective function includes wij,
which appears in the gradient when we use the gradient descent method for mini-
mization. For different edges, wij may vary significantly, making it difficult to select
an appropriate learning rate. If we select a higher learning rate, gradient explosion
may occur on the edge with a larger wij. Conversely, if we select a lower learning
rate, gradient disappearance may occur on the edge with a smaller wij. To overcome
this conundrum, we therefore need to perform edge sampling for optimization, by
using the Alias method to sample the original weighted edges. The probability of
each sampled edge is proportional to the weight of the edge in the original graph,
and the sampled edge weight is used as a binary edge (the weight is 0 or 1). This
solves the problem of wij differing for different edges.

8.3.2 Implementation of the LINE Algorithm

This section builds on the theoretical information provided earlier by outlining the
pseudocode necessary to implement the LINE algorithm.



162 8 Unsupervised Learning: Graph Vector

Algorithm 8.3 Pseudocode for Implementing the LINE Algorithm

8.4 Node2Vec Algorithm

The DeepWalk and LINE algorithms described in Sects. 8.2 and 8.3, respectively,
depend on the strict concept of network neighborhood and both are insensitive to
the network-specific connection mode. The DeepWalk algorithm samples the vertex
neighborhood by using depth-first search (DFS) random walk, whereas the LINE
algorithm samples vertices by using breadth-first search (BFS). As shown in Fig. 8.5,
the Node2Vec algorithm—a graph embedding method and an extension of the Deep-
Walk algorithm—integrates both DFS and BFS. In Fig. 8.5, the neighborhood for
DFS is composed of vertices sampled in ascending order of distance to the source
vertex u (e.g., s4, s5, and s6), whereas that for BFS is limited to the vertices adjacent
to the source vertex u (e.g., s1, s2, and s3).



8.4 Node2Vec Algorithm 163

Fig. 8.5 DFS and BFS
policies from source vertex
u2

S1 S2
S7

S8

S6

S5
S9S4

S3

u
BFS

DFS

8.4.1 Principles of the Node2Vec Algorithm

The Node2Vec algorithm, proposed by Aditya Grover in 2016 [7], is used to learn
the continuous vector representations of a graph’s vertices. Compared with both the
DeepWalk and LINE algorithms described earlier, Node2Vec can effectively explore
different neighborhoods (homogeneity and structural equivalency) by designing a
biased random walk process for vertices, allowing it to learn more comprehensive
representations of the vertices. The Node2Vec algorithm functions in a similar way
to the DeepWalk algorithm and can be divided into two processes: biased random
walk and learning vector representations.

1. Biased random walk

The biased random walk process is implemented by assigning different sampling
probabilities to different vertices. If we assume that the source vertex is u, the random
walk length is l, the ith vertex is ci, and the start vertex is c0 = u, we can use the
following formula to calculate the sampling probability of the vertex ci:

P(ci = x |ci−1 = v) =
{

πvx
Z , (v, x) ∈ E
0, else

(8.12)

where

π vx is the unnormalized transition probability between the vertex v and the vertex
x; and
Z is a normalization constant.

To implement the biased random walk process, Node2Vec introduces p and q—
two parameters that are used in calculating the transition probability in Formula
(8.12). If we assume that the walk is performed through edge (t, v) to the vertex v, we
can calculate the transition probability of the edge (t, v) on the basis of v, allowing
us to determine the next vertex for the walk. We use the following unnormalized
transition probability:

2 Source: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


164 8 Unsupervised Learning: Graph Vector

Fig. 8.6 Example of random
walk

πvx = αpq(t, x) • wvxαpq(t, x) =

⎧⎪⎨
⎪⎩

1
p dtx = 0

1 dtx = 1
1
q dtx = 2

(8.13)

where dtx is the shortest path distance from the vertex t to the vertex v.
dtx must be one of {0, 1, 2} so that the two parameters p and q can adequately

control the walk process, as shown in Fig. 8.6. The return parameter p controls the
probability of subsequently accessing the vertex in the previous step. If the current
vertex is v, and p is greater than max(q, 1), the probability of accessing the vertex
t in the previous step will decrease. Conversely, the probability will increase if p is
less than min(q, 1). The “in–out” parameter q controls whether the walk process is
more like BFS or DFS. A larger q indicates that the vertex for the random walk is
closer to the vertex t, meaning that the walk process is more like BFS. Conversely,
a smaller q indicates that the vertex is farther away, which is more like DFS.

Each sampling step in biased random walk is based on the transition probability
π vx. We can pre-calculate this probability by using the Alias sampling method [8, 9]
and then use it directly in the sampling process. In this case, the sampling complexity
is O(1), meaning that the walk process of the algorithm is faster.

2. Vector representations of vertices

The biased random walk process enables us to obtain a set of vertex sequences for
random walk. Now we will introduce learning vector representations of vertices.

For a given graph G = (V, E), the mapping function from a vertex to a vector
representation is f : V →R

d, where d is the dimension of a representation vector. For
each vertex u ∈ V, an algorithm is used to learn the vertex vector representation. This
enables us to subsequently optimize the following formula of the objective function:

f ∗ = argmax
f

∑
u∈V

logP(Ns(u)| f (u)) (8.14)



8.4 Node2Vec Algorithm 165

where

f (u) is the vector representation of the vertex u; and
NS(u) is the neighborhood of the vertex u under the neighborhood sampling
strategy S.

However, due to the complexity involved in solving the optimization problem, we
introduce the following two assumptions:

1. Conditional independence assumption:

P(NS(u)| f (u)) =
∏

ni∈NS(u)

P(ni | f (u)) (8.15)

where ni is the vertex in the neighborhood of the vertex u under the neighborhood
sampling strategy S.

2. Feature space symmetry assumption:

P(ni | f (u)) = exp( f (ni ) • f (u))∑
v∈V exp( f (v) • f (u))

(8.16)

Given these two assumptions, we can simplify the objective function in Formula
(8.14) as follows:

∂E

∂u j
= t j − y j = e j f

∗

= argmax
f

∑
u∈V

[−logZu +
∑

ni∈NS(u)

f (ni ) • f (u)]
(8.17)

where Zu is the partition function of each vertex, and Zu = ∑
v∈V exp( f (u)•( f (v)).

By using negative sampling, we are able to minimize the calculation costs of the
partition function. And to optimize Formula (8.17), we can use SGD—similar to
training a neural network—in order to continuously learn the parameters of mapping
f to obtain the vector representation of each vertex.

8.4.2 Implementation of the Node2Vec Algorithm

Similar to the DeepWalk algorithm, the Node2Vec algorithm is mainly used to
generate random walk sequences and learn vector representations. In this section,
we describe how to implement the Node2Vec algorithm through pseudocode.



166 8 Unsupervised Learning: Graph Vector

Algorithm 8.4 Pseudocode for Implementing Node2Vec

8.5 GCN Algorithm

In the field of computer vision, CNNs achieve good results because discrete convo-
lution can effectively extract spatial features. For low-dimensional matrices (such
as images or videos) where pixels are ordered, CNNs calculate weighted summa-
tion of center and adjacent pixels to extract spatial features. But when given high-
dimensional graph data that lacks an ordered structure, CNNs find it difficult to
process the data. In order to solve this problem, Bruna et al. proposed GCNs, which
aggregate the vertex information of irregular graph data.

The approaches that apply convolution to graph domain can be divided into spec-
tral and non-spectral. The GCN is a spectral approach that, by leveraging the spectral
graph theory, implements convolution operations on topologies, and uses the Lapla-
cian matrix to move convolution operations in the spatial domain to the spectral
domain. By representing any vector on a graph as a linear combination of Laplacian
eigenmatrices, the features of the graph can be extracted in the spectral domain.
This results in the GCN being more effective than the non-spectral approach, which
directly extracts the features in the spatial domain. Furthermore, because the GCN
model can extract information about the entire graph in one go, and the parameters of



8.5 GCN Algorithm 167

the filter can be shared at all positions in the graph [10], there is no need to calculate
the parameters of the filter for each vertex. This in turn significantly reduces the
complexity of the model.

Building on the first generation of GCN, Defferranrd et al. proposed to replace the
convolution kernel with the Chebyshev polynomial summation [11]. This method
enables us to obtain a smooth filter in the frequency domain while reducing the
model complexity. Subsequently, numerous approaches for replacing the convolu-
tion kernel with mathematical transformation have emerged. In the model described
in the following section, Kipf and Welling limit the filter to run in the first-order
neighborhood around each vertex, thereby reducing the calculation costs, increasing
the network efficiency, and improving the model accuracy.

8.5.1 Principles of the GCN Algorithm

The formula of the two-layer GCNmodel selected by Kipf andWelling is as follows:

Z = f (X,A) = Softmax
(
ÂReLU

(
ÂXW

(0))
W (1)

)
(8.18)

where Â = D̃
− 1

2 ÃD
− 1

2 , D̃i i = ∑
j Ãi j , and Ã = A + I N ;

A is the adjacency matrix of a graph;
W l represents W (0) and W (1), which are weight parameters; and
X is the vertex eigenmatrix of the graph.

The following explains the origin of Formula (8.18), starting with the formula:

L = IN − D−1/2LD−1/2 (8.19)

We use this formula to define the symmetric normalized Laplacian matrix, where
D is the vertex degree matrix.

The Laplacian matrix is then decomposed to obtain the following:

L = U�UT (8.20)

where

U is the normalized Laplacian eigenvector matrix (i.e., a spectral matrix), and
Λ is the corresponding eigenvalue matrix (a diagonal matrix).



168 8 Unsupervised Learning: Graph Vector

The spectral convolution on the graph may be defined as the product of the signal
x ∈ R and the filter diag(θ ) (θ ∈ R) in the Fourier domain, that is:

qϑ 	 x = Uqϑ UT x (8.21)

where

UTx is the graph Fourier transform of x; and
gθ is the function of the eigenvector L, that is, gθ (�).

Computing the Laplacian eigenmatrix involves substantial overheads if the graph
data is large, so to reduce the calculation complexity, we can use the K-order
truncation of Chebyshev polynomial and thereby approximate gθ (�).

gθ ′(
) ≈
K∑

k=0

θ
′
kTK (�̃) (8.22)

where

�̃ is the eigenvector matrix after scaling is performed based on the maximal
eigenvalue λmax, of L, and 
̃ = 2/λmax • 
 − IN; and
θ ′ is the Chebyshev parameter vector, where θ ′ ∈R

K . The Chebyshev polynomial
is defined by recursion: Tk(x) = 2xTk-1 − Tk-2(x), where T 0(x) = 1 and T 1 (x) =
x.

By replacing gθ with gθ
′
, we can obtain:

gθ ′ 	 x≈zU
K∑

k=0

θ
′
Tk(�̃)UT x

=
K∑

k=0

θ
′
UTk(�̃)UT x (8.23)

Tk(
̃) is a k-order polynomial of �, and U 
̃ kUT = (U 
̃ UT) k = L̃ k , where L̃
= 2

λmax
L– IN . Formula (8.22) can therefore be expressed as follows:

gθ ′ 	 x≈
K∑

k=0

θ
′
Tk(L̃)x (8.24)

With the Chebyshev polynomial approximation, the spectral convolution is no
longer dependent on the entire graph. Instead, it is related to only the k-order vertices
(i.e., the kth-order neighborhood) of the center vertex.



8.5 GCN Algorithm 169

After we perform the Chebyshev polynomial approximation, we can consider
each convolution operation as aggregating the k-order neighbor information for each
center vertex. Even so, the calculation amount remains high after approximation
because the graph structure data is large. In order to reduce the calculation costs, we
can further simplify the calculation by letting k = 1, meaning that the information of
only first-order neighbors is aggregated at any given time. In this case, the spectral
convolution can be approximated as a linear function of L̃. Asmentioned earlier, only
the dependence between the center vertex and the first-order neighbor is established.
In order to solve this problem, a stacked GCN must be used to establish the depen-
dence of k-order neighbors.We are able to obtain the first-order neighbor information
of the second-order graph convolution after superimposing the first-order neighbor of
the second-order graph convolution. This means that the center vertex will obtain the
second-order neighbor information through the first-order neighbor of the second-
order graph convolution, and so on. Furthermore, the Chebyshev polynomial does
not limit the dependence of k-order neighbors when this dependence is established.

We can further simplify the calculation. In the linear model of the GCN, we can
obtain the following first-order linear approximate expression of spectral convolution
by defining λmax ≈ 2:

gθ ′ 	 x≈θ
′
0x + θ

′
1(L − I N )x

= θ
′
0 x − θ

′
1D

− 1
2 AD− 1

2 x (8.25)

Formula (8.25) includes only two parameters: θ
′
0 and θ

′
1. So to establish the

dependence of k-order neighbors, we can use a k-layer filter.
We limit the number of parameters to avoid overfitting and minimize the matrix

multiplication of each layer to reduce the calculation complexity. If we let θ = θ
′
0 =

−θ
′
1, we can express Formula (8.25) as follows:

gθ 	 x ≈ ϑ
(
I N + D− 1

2 AD− 1
2

)
x (8.26)

The eigenvalue range of IN + I N + D− 1
2 AD− 1

2 is [0, 2], meaning that when
the operation is repeated continuously (in very deep networks), gradient explosion
or disappearance may occur. To avoid this problem, the renormalization trick is
introduced:

I N + D− 1
2 AD− 1

2 → D̃
− 1

2 Ã D̃
− 1

2 (8.27)



170 8 Unsupervised Learning: Graph Vector

where Ã=A+ IN , D̃i i =
∑

j ÃWhen the representation of each vertex in a graph
is not a separate scalar but is instead a vector of size C, we can use its variants for
processing:

Z = D̃
− 1

2 Ã D̃
− 1

2 Xϑ (8.28)

where

θ is a parameter matrix, and θ ∈ R
C × F; and

Z is the corresponding convolution result, and Z ∈ R
N×F

In this case, the vertex representation of each vertex is updated to a new F-
dimensional vector that includes the information of the corresponding first-order
neighbor.

We are now able to obtain the layer-by-layer propagation expression of the graph
CNN:

H (l+1) = σ
(
D̃

− 1
2 Ã D̃

− 1
2 H (l)W (l)

)
(8.29)

where the input of the l-layer network isH(l), and H(l) ∈ R
N×F (initial input is H (0) =

X);

N is the number of vertices in the graph, and each vertex is represented by a
d-dimensional eigenvector;
W (l) is the weight parameter that needs to be trained, and W (l) ∈ R

d×d ; and
σ is the activation function.

Through this derivation, we are able to obtain the GCN architecture:

Z = f (X, A) = Softmax
(
ÂReLU

(
ÂXW

(0))
W (1)

)
(8.30)

8.5.2 Implementation of the GCN Algorithm

This section describes how to implement the GCN algorithm through pseudocode.



8.5 GCN Algorithm 171

Algorithm 8.5 Pseudocode for Implementing GCN

8.6 GAT Algorithm

For the spectral approaches represented by the GCN, each calculation relies on the
Laplacian matrix eigenvector and graph structure. This makes it difficult to apply a
GCN model on other graphs once it has been trained on a particular graph structure.
Furthermore, because the GCN model lacks the inductive ability, it has a limited
scope for application.

For the non-spectral approaches, convolution is defined directly on the graph to
operate adjacent vertices in space. However, such approaches are problematic, in that
it is challenging to define an operation that can handle neighbors of different sizes
while also ensuring that CNN parameters can be shared. To address this challenge,
researchers have made a series of improvements [12–15]. For example, in 2017,
Hamilton et al. proposed a classical inductive learning algorithm called GraphSAGE.
In GraphSAGE, sampling is performed based on the neighborhood of a fixed size,
and each vertex is represented by an aggregate of its neighbors. This means that a
vertex not present during the training can still be appropriately represented by its
neighbor vertices if it subsequently appears at a later stage. GraphSAGE has shown
promising results in several large-scale induction benchmark tests.



172 8 Unsupervised Learning: Graph Vector

In practice, however, the impacts of neighbor vertices on the target vertices are
different. The methods referred to earlier do not take into account that fact that
different neighbors are of the same importance. In 2018, Petar et al., taking inspira-
tion from the attention mechanism widely used in deep learning models, proposed
the graph attention network (GAT) [16], a graph data vertex classification model
based on the attention mechanism [16]. The attention mechanism imitates human
intuition, focusing on salient parts helpful for the target task while ignoring other
invalid information. Similarly, theGATpays attention to its neighbors and determines
the weights of the neighbor vertices through the self-attention strategy. Different
neighbor vertices have different impacts on the target vertices, allowing the hidden
representation of each target vertex to be calculated more effectively.

8.6.1 Principles of the GAT Algorithm

This section focuses on the graph attention layer, which is an important component
of the graph attention network. Here we make the following assumptions:

• The input of the current attention layer is a set of vertex features: h = {�h 1, �h 2,
…, �h N}, �h i ε R

F , where N is the number of vertices, and F is the number of
features of each vertex.

• The output of the attention layer is a new set of vertex features: h′ = {�h
′

1 1, �h
′

2,

…, �h
′

N}, �h
′

i ∈ R
F ′.

Becausewe need at least one nonlinear transformation so thatwe can convert input
features into higher-level features, we perform linear transformation on each vertex,
and then use the self-attention mechanism a to calculate the attention correlation
coefficient eij. This coefficient indicates the importance of the feature of vertex j to
vertex i.

ei j = a
(
W �hi ,W �h j

)
(8.31)

where

W is the weight matrix, and W ∈ R
F ′×F; and

a is the self-attention mechanism a: RF ′×R
F ′→R.

We then introduce the attention mechanism into the graph structure through
masked attention: eij is calculated only for vertices of j ∈ Ni, where Ni is a neighbor
vertex of vertex i (and includes vertex i itself). To normalize all neighbor vertices j
of vertex i, making it easier to compare the coefficients of different vertices, we use
the Softmax function:

ai j = Softmax j (ei j ) = exp(ei j )∑
k∈Ni

exp(eik)
(8.32)



8.6 GAT Algorithm 173

αij

so
ftm

ax
j

α

Whi Whj

(a) Calculation of the attention coefficient (b) Aggregation of the multi-head graph attention
layer (K = 3)

α11
h2

α12

h1
α13

α14 α15

α16

h6

h5

h4

h3 h'1
concat/avg

Fig. 8.7 Network architecture of the attention mechanism3

The attention mechanism a may be a single-layer feedforward neural network,
which is determined by �a ∈R

2F′ andLeakyReLUnonlinear activation function (slope
a = 0.2 when the input is negative). Figure 8.7a shows the network architecture of
the attention mechanism.

In order to calculate the attention coefficient, we use the following formula:

ai j = exp(LeakyReLU(�aT [W �hi ||W �h j ]))∑
k∈Ni

exp(LeakyReLU(�aT [W �hi ||W �hk]))
(8.33)

where • T indicates the transpose operation, and || indicates the concatenation
operation.

By performing the preceding calculation, we are able to obtain the normalized
attention coefficient, which we can subsequently use to calculate the output features
of each vertex.

�h
′

i = σ

⎛
⎝∑

j∈Ni

ai jW �h j

⎞
⎠ (8.34)

Similar to the Transformer model proposed by Vaswani et al., extending the self-
attentionmechanism to themulti-head attentionmechanism improves the calculation
stability. The calculationprocess involves performingK calculations separately based

3 Source: https://arxiv.org/pdf/1710.10903.pdf.

https://arxiv.org/pdf/1710.10903.pdf


174 8 Unsupervised Learning: Graph Vector

on the self-attention mechanism, and then concatenating the obtained features to
obtain the final vertex representation:

�h
′

i = ||Kk=1 σ

⎛
⎝∑

j∈Ni

ak
i j
W k �h j

⎞
⎠ (8.35)

where

ak
i j
is the normalized attention coefficient obtained through the Kth calculation

based on the self-attention mechanism; and
Wk is the corresponding input weight matrix for linear transformation.

When the multi-head attention mechanism is used at the last layer of the network,
concatenation is less effective and so is replaced with an averaging operation. After
nonlinear activation, the vertex representation of the multi-head attention layer is
obtained:

�h
′

i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

ak
i j
W k �h j

⎞
⎠ (8.36)

Figure 8.7b illustrates the aggregation process of the multi-head graph attention
layer (K = 3). Different arrow styles in the graph represent separate attention calcu-
lation processes. The representation of a target vertex in the graph attention network
is the weighted sum of its first-order neighbor vertices including the target vertex,
which is a calculation process on a local graph.

The GAT has a number of advantages, such as high efficiency, flexibility, and
portability. To achieve high efficiency, the GAT implements parallel calculation for
the local graph vertex neighbor pair. To realize flexibility, it assigns different weights
to vertices of different degrees. And in terms of portability, themodel can be extended
to unknown graphs, representing the ability of inductive learning. TheGAT considers
the different importance of neighbor vertices to target vertices and has achieved good
results in some practical scenarios.

8.6.2 Implementation of the GAT Algorithm

This section describes how to implement the GAT algorithm through pseudocode.



8.6 GAT Algorithm 175

Algorithm 8.6 Pseudocode for Implementing the GAT Algorithm

8.7 Application: Recommendation System

We are currently in the midst of an information boom driven by the unprecedented
popularity of the Internet and the near-ubiquitous use of mobile terminals. In today’s
fast-paced world, people want information at their fingertips. But given the vast
amounts of information now available, it has become critical to ensure that people
can obtain what they want, when they need it. In order to meet such demands, the
recommendation system is developed.

The existing recommendation systems employ collaborative filtering, indicating
that similar users like the same items and, conversely, the same user likes similar
items. This type of filtering is divided into memory-based methods and model-based
methods.

Memory-based methods can be further divided into user-based and item-based
collaborative filtering. User-based collaborative filtering recommends items to
similar users, whereas item-based collaborative filtering recommends similar items
to users. In order to implement these two methods, we need to define the similarity



176 8 Unsupervised Learning: Graph Vector

between items or users. Although these methods are simple, easy to understand, and
easy to implement, a significant amount of time is required to calculate the similari-
ties between each pair of items or users, and to find similar items or users, especially
when there are a huge number of items or users.

For highly efficient recommendation systems, one of the most successful methods
for implementing collaborative filtering is the model-based matrix factorization. In
this model, a user and an item (a user-item pair) are modeled as implicit vectors in the
same space based on interactions between the user and item. For an unknown user-
item pair, the preferences are calculated based on the vectors of the corresponding
user and item (usually through the vector inner product operation). Two popular
models in the matrix factorization family are SVD and SVD + + . The SVD model,
which is based on the generalmatrix factorization, improves the stability of themodel
training by introducing user bias, item bias, and global bias variables. SVD ++ , as
an extension of SVD, improves the effectiveness by introducing an auxiliary feature:
the interaction history between the user and the item.

8.7.1 Recommendation System in Industry Applications

The recommendation system dates back to as early as the twentieth century, but
it wasn’t until the last decade when the industry began adopting it more widely.
For example, it is estimated that Amazon sells more than 35% of its listed items
through recommendation systems. In addition, by using recommendation systems,
Google generated revenue of $43 billion in Internet advertising in 2014, and in 2015,
Google Play and Apple’s App Store earned $10 billion and $21 billion, respectively.
Huawei—ranked highly in the Fortune Global 500 list—also applies the recom-
mendation system throughout its business operations. The recommendation system
involves an extensive range of content, so extensive in fact that we could write an
entire book dedicated exclusively to this topic. So, given the space limitations in this
book, we will focus on the recommendation system only from the perspective of
industry researchers.

Industry recommendation systems consist of three steps: candidate set generation,
matching prediction, and sorting. The number of items that these systems recommend
maybemillions ormore, butmatching predictions and sorting on such large candidate
sets cannot be performedwithin an acceptable timeframe.As a result, it is necessary to
generate a smaller candidate set (typically ranging fromhundreds to thousands) based
on the current recommendation scenario, the features of the item, and even the user’s
preferences. After the candidate set is generated, the matching prediction model
predicts the current user’s preference for each item in the candidate set. Ultimately,
the sorting step combines the results of the matching prediction model with business
rules to generate the final sorting results.



8.7 Application: Recommendation System 177

An important part of industry recommendation systems is click through rate (CTR)
prediction, which first appeared in online advertisement scenarios and belongs to the
matching prediction step described earlier. In online advertisement scenarios using
the cost per click (CPC)model, revenue is generated for the platform each time a user
clicks on an advertisement. The amount of revenue is specified in a contract between
the advertiser and platform. In most cases, the platform uses CTR× bid sorting rules
for candidate advertisements, where CTR is an estimate of the current user’s CTR
for the advertisement, and bid represents the amount of money the advertiser will
pay to the platform if the user clicks on the advertisement. The sorting rules arrange
candidate advertisements according to the expected benefits; that is, they are sorted
based on the revenue they generate for the platform each time they are displayed.
Such rules are also used for real-time bidding advertisements, and similar rules are
used in game and video sorting scenarios. Game sorting is generally based on CTR×
LTV, where life time value (LTV) is the average fee a user pays for the game. Video
sorting generally uses CTR×WT, where watch time (WT) is the average time a user
spends watching the video. Given its wide scope of application, CTR prediction is
extremely important in the industry recommendation system.

The recommendation system models used by most enterprises have evolved from
the wide model—using logistic regression (LR) or factorization machine (FM)—to
the deep learning model, and then to the reinforcement learning model in addition
to the deep learning model where the graph structure is considered.

To understand the graph neural network-based model, we first need to under-
stand the input data form used in the recommendation system. This input data form
differs significantly from that used in NLP and computer vision. The recommenda-
tion system covers many discrete features, such as gender, city, and day of the week.
Because these features have no numerical meaning, they are typically represented
by one-hot encoding. In this encoding method, all possible values are represented by
a high-dimensional vector with a value of 0–1, where the corresponding bit is 1 and
all other bits are 0. The dimension of the one-hot vector is the number of all possible
values. For example, “Friday” can be represented as [0, 0, 0, 0, 1, 0, 0], the gender
“male” can be represented as [0, 1], and the city “Shanghai” can be represented as
[0, 0, 1, …, 0]. From the preceding information, we can see that the input data of the
recommendation system is usually high-dimensional and sparse.

8.7.2 Graph Neural Network Model in a Recommendation
System

Ultra-large recommendation systems face several challenges due to the high-
dimensional and sparse nature of their input data:

1. Storage: The data is structured and all features are arranged in a certain order,
with many of them duplicated. For example, if there are 10,000 male users, the



178 8 Unsupervised Learning: Graph Vector

system needs to store 10,000 male-represented vectors, such as [0, 1]. As the
number of features, users, and items increases, the amount of duplicated data
becomes larger.

2. Sparsity: For movie-recommending scenarios like MovieLens [17], the data is
usually represented by a “user-item” score matrix. As the number of users and
items increase, the dimensions and sparsity of the score matrix also increase.
This is becausemost users do not scoremost items, and the collaborative filtering
algorithm relies on the score matrix.

3. Scalability: The ability to process ever-increasing volumes of data and the expo-
nential growth of collaborative filtering calculation make it extremely difficult
for recommendation systems to scale easily [18].

The graph data structure makes it possible to address these challenges.

1. For repeated storage of features, male can be represented as a vertex on a graph,
with all male users having an edge from the user’s vertex to the male vertex.
This means that information about only the edge needs to be maintained. For
higher-dimensional features, the effectiveness of graph structure storage is more
pronounced.

2. In response to the sparsity challenge, graph structure storage is vertex-centric,
and only the in-edge and out-edge are maintained.

3. To facilitate scalability, the graph structure makes it easy to add new vertices
and edges, requiring the model to be updated only for the new additions.

PinSage [18], jointly published by Pinterest and Stanford University, is the
industry’s first commercial end-to-end recommendation model based on the graph
neural network. Pinterest, an image-based social networking site, displays images
in the form of a waterfall stream, where new images are automatically loaded at the
bottom of the page without needing users to change the current page. Users can pin
images of interest on the pinboard and can save and share the images, while other
users can follow and forward the images. The main items recommended on Pinterest
are images (called Pins), which may include images of food, clothes, products, etc.
Users group images they like into Boards. Pinterest data can be modeled to construct
a bipartite graph, which includes two types of vertices (Pins and Boards). In the
bipartite graph, shown in Fig. 8.8, there is no connection edge between vertices of

Fig. 8.8 Pinterest bipartite
graph

Pins Boards



8.7 Application: Recommendation System 179

the same type, and the vertex features include images and textual annotations (title
and description).

In the traditional GCN, the entire graph is used for training. However, in industrial
recommendation scenarios such as Pinterest, there are billions of vertices and tens
of billions of edges, making it difficult to perform operations if the entire graph is
used for training. To solve this problem, PinSage took inspiration fromGraphSage to
make improvements to the GCN. GraphSage can be considered as a GCN based on
randomwalk and is an inductive variant of theGCN. It learns the vertex representation
by sampling the neighbor information of the aggregated vertex in order to avoid
operating the entire Laplacian matrix of the graph. This means that GraphSage can
be generalized to an unknown vertex if one exists, and its neighbor information can
be used to learn the representation of the vertex. The key improvements PinSage
made to the GCN are as follows:

1. Local graph convolution is performed by dynamically constructing a new
computational graph through random walk (short random walks) sampling of
vertex neighbors. Because the importance of different neighbors to the target
vertex is different, the neighbor will have an importance score during the
information aggregation.

2. Distributed training is performed based on mini-batch. The CPU is used to
sample vertex neighbors to obtain the features required for defining local convo-
lution. Through tensor calculation and hardware acceleration, the distributed
stochastic gradient descent calculation is performed for each pre-calculated
small graph. The convolution operation can be performed separately, and the
parameters of each convolutional layer are shared.

3. Repeated calculation of vertex neighbors is eliminated by using related
technologies during inference.

The PinSage algorithm uses the local graph convolution to learn the vertex embed-
ding of the web-level graph containing billions of objects, whereby high-quality
vertex embedding facilitates subsequent recommendations. The PinSage algorithm
can be summarized into two parts.

The first part is convolution, which is shown in Algorithm 8.7. The vertex embed-
ding calculation, vertex neighbors, weights of the vertex neighbors, and aggregate
function are used as the input. Through information aggregation, the neighbor embed-
ding (line 1 of the pseudocode) is calculated. Then, the neighbor and vertex embed-
dings are used to update the current vertex embedding (line 2 of the pseudocode).
Finally, the resulting vertex embedding is normalized (line 3 of the pseudocode).



180 8 Unsupervised Learning: Graph Vector

The method for sampling vertex neighbors during information aggregation has two
advantages: (1) the number of neighbors is fixed and the memory used for calcu-
lation is controllable; and (2) different importance of the neighbors to the vertex is
used for information aggregation. Each time the convolution operation (Algorithm
8.7) is used to obtain the new embedding of a vertex, more information about the
local graph structure around the vertex can be obtained by superposing several such
convolutions.

Algorithm 8.7 Convolution.
Input: Embedding zu of the current vertex u, neighbor embedding set {zv|v∈N

(u)}, neighbor weight set α, and aggregate function γ(•)
Output: New embedding zNEWu of the vertex u.
(1) Aggregate neighbor information

nu ← γ
({
ReLU

(
Qhv + q

)|v ∈ N (u)
}
, α

)

(2) Calculate and update the vertex embedding

zNEW
u ← ReLU (W • Concat (zu, nu) + w)

(3) Normalize the vertex embedding

zNEW
u ← zNEW

u /
∥∥ zNEW

u

∥∥
2

The second part of the PinSage algorithm is mini-batch, shown in Algorithm 8.8,
which stacks convolutions into a mini-batch of vertices M to generate the embed-
ding. The mini-batch vertex neighbor sampling process is performed to obtain the
neighbor of each vertex (lines 2–8 of the pseudocode). Then, K convolutions are
used to iteratively generate K representations of the target vertex (lines 9–16 of the
pseudocode). Finally, the vertex embedding is obtained through learning (based on
the previously obtained embedding) by using a fully connected neural network (lines
17–19 of the pseudocode). G1, G2, and g are the parameters of the fully connected
layer.



8.7 Application: Recommendation System 181

Algorithm 8.8 Mini-batch.

PinSage has achieved positive results and encouraged the use of the graph convo-
lution algorithm in commercial recommendation systems. In the future, graph neural
networks can be expanded to solve the learning problems of other large-scale graph
representations and generate greater value in real-world scenarios.

References

1. B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: online learning of social representations, in
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 20, 701–710

2. J. Zhou ,G.Cui, Z. Zhang et al.,GraphNeuralNetworks: AReviewofMethods andApplications
[EB/OL]. (2019–07–10) [2019–10–28]. https://arxiv.org/pdf/1812.08434.pdf

3. T. Mikolov, K. Chen, G. Corrado et al., Efficient Estimation of Word Representations in Vector
Space [EB/OL]. (2013–09–07) [2019–10–28] https://arxiv.org/pdf/1301.3781.pdf%5D

https://arxiv.org/pdf/1812.08434.pdf
https://arxiv.org/pdf/1301.3781.pdf%255D


182 8 Unsupervised Learning: Graph Vector

4. A. Mnih, G.E. Hinton, A scalable hierarchical distributed language model. Adv. Neur. Inf.
Proc. Syst. 1081–1088 (2009)

5. F. Morin, Y. Bengio, Hierarchical probabilistic neural network language model, in Proceedings
of the International Workshop on Artificial Intelligence and Statistics, 5, 246–252

6. J. Tang, M. Qu, M. Wang et al. Line: large-scale information network embedding, in Proceed-
ings of the 24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, vol. 24 (2015), pp. 1067–1077.

7. A. Grover, J. Leskovec, Node2Vec: scalable feature learning for networks, in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
vol. 22 (2016), pp. 855–864

8. J.R. Norris, Markov Chains (Cambridge University Press, Cambridge, 1998)
9. A.J.Walker, New fast method for generating discrete random numbers with arbitrary frequency

distributions. Electron. Lett. 10(8), 127–128 (1974)
10. D.K. Duvenaud, D. Maclaurin, J. Iparraguirre et al., Convolutional networks on graphs for

learning molecular fingerprints. Adv. Neu. Inf. Proc. Syst. 2224–2232 (2015)
11. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in

International Conference on Learning Representations (2017)
12. J. Atwood, D. Towsley, Diffusion-convolutional neural networks. Adv. Neu. Inf. Proc. Syst.

1993–2001 (2016)
13. M. Niepert, M. Ahmed, M. Kutzkov, Learning convolutional neural networks for graphs, in

Proceedings of The 33rd International Conference onMachine Learning, vol. 48 (2016) 2014–
2023

14. F. Monti, D. Boscaini, J. Masci et al., Geometric deep learning on graphs and manifolds using
mixture model CNNs, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, (2017), pp. 5115–5124

15. W. Hamilton, Z. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs. Adv.
Neu. Inf. Proc. Syst. 1024–1034 (2017)

16. F.M. Harper, J.A. Konstan, The movieLens datasets: history and context. Acm Trans. Interact.
Intell. Syst. 5(4), 19 (2016)

17. L. Sharma, A. Gera, A survey of recommendation system: research challenges. Int. J. Eng.
Trends Technol. 4(5), 1989–1992 (2013)

18. R. Ying, R. He, K. Chen et al. Graph convolutional neural networks for web-scale recommender
systems, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (ACM, 2018), pp. 974–983



Chapter 9
Unsupervised Learning: Deep Generative
Model

9.1 Variational Autoencoder

Variational autoencoders (VAEs), proposed by Kingma and Welling in 2013,1 allow
us to design complex generativemodels of data, which can then be trained to generate
fictional images such as celebrity faces and high-resolution digital artworks.

9.1.1 Background

An autoencoder consists of an encoder and a decoder, which are both neural networks
connected to each other. The encoder receives an input and converts it into code
(usually a low-dimensional representation vector), whereas the decoder receives the
code and converts it into an output similar to the original input. Figure 9.1 illustrates
the autoencoder framework, where (a) is the input, and (c) is the output. An autoen-
coder network is usually trained as a whole, whereby the constructed loss function
(called reconstruction loss) is the mean square error or cross-entropy between the
output and the input. In this way, the input is approximated and copied in a controlled
manner, forcing the network to determine which input data needs to be copied first
and ensuring useful features of the input data are learned.

Although an autoencoder network can learn how to generate compact represen-
tation features and reconstruct the input, a problem exists in how the latent space of
the network is interpolated: Only simple interpolation is performed after the input
is converted into a coding vector, leading to discontinuity. For example, after an
autoencoder is trained on an MNIST dataset and visualized in a two-dimensional
latent space, and as shown in Fig. 9.2, we can see that different categories of images
are distributed over different clusters.

1 See: Kingma D P, Welling M. Auto-Encoding Variational Bayes [EB/OL]. 2013 [2019–11–10]
https://arxiv.org/pdf/1312.6114.pdf.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_9

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_9&domain=pdf
https://arxiv.org/pdf/1312.6114.pdf
https://doi.org/10.1007/978-981-16-2233-5_9


184 9 Unsupervised Learning: Deep Generative Model

Encoder

Hat: 0.05

Sunglasses: 0.03

Beard: 0.89

Hair: 0.95

Skin: 0.88

Gender: 0.85

Decoder

(c)(b)(a)

Fig. 9.1 Autoencoder framework

Fig. 9.2 Distribution of the
MNIST dataset in latent
space of a standard
autoencoder

25

20

15

10

5

0

-5

-10

-15

-35 -30 -25 -20 -15 -10 0 55-
0

1

2

3

4

5

6

7

8

9

This is because different categories of images have different code, allowing us
to obtain an image identical to the input through decoding by using the decoder.
However, in scenarios where we want to randomly perform sampling in a latent
space or produce an output different from the input image from a continuous latent
space, the decoder will produce an unexpected output if the space is discontinuous
(such as a gap between different clusters) and sampling is performed in this space.



9.1 Variational Autoencoder 185

The reason for this is simple: The decoder does not know how to handle distribution
in the latent space because the network has never observed a coding vector from a
latent space during training.

To address the problem of discontinuous latent space evident with autoencoders,
a VAE that allows differential and random sampling has emerged.

9.1.2 Development Status

TheVAE describes the observation of latent space in a probabilistic manner, meaning
that a VAE network outputs the probability distribution for each potential property,
rather than outputting code for each potential state property as a standard autoencoder
does. Figure 9.3 shows the VAE’s framework: For an input image, the VAE model
outputs statistical distribution of possible values in latent space. Themodel randomly
samples the eigenvalues in the output to obtain a new vector, which it then provides to
the subsequent decoder model. Through this process, the VAE is able to implement
a continuous and smooth representation of latent space. We expect the decoder to
accurately reconstruct the input from the vector comprising all sampling values in
the latent space distribution after training, so adjacent features in the latent space
should correspond to similar reconstructions.

As of August 1, 2019, a large number of projects implementing the VAE were
available on GitHub. Taking Google Brain’s Magenta Music VAE [1] as an example,
there were 813 Watches, 13,641 Stars, 2714 Forks, 181 Open states, and 396 Closed
issues.

Encoder

Hat:

Sunglasses:

Beard:

Hair:

Skin:

Gender:

Decoder

(c)(b)(a)
-5

-5

-5

-5

-5

-5 0

0

0

0

0

0 5

5

5

5

5

5

Fig. 9.3 Framework of the VAE



186 9 Unsupervised Learning: Deep Generative Model

9.1.3 Technical Principles

As alluded to in Sect. 9.1.2, the difference between a standard autoencoder and aVAE
is that the former outputs the state value in the latent space whereas the latter outputs
the parameter describing the distribution of each dimension in the latent space.

This parameter is represented as z, which the decoder module of the VAE uses to
generate observed data x, as shown in Fig. 9.4.

The VAE network provides us with only the output x, so we need to calculate
p(z|x) in order to deduce the features of z. We can achieve this by using Bayes’
theorem to obtain the following formula.

p(z|x) = p(x |z)p(z)
p(x)

(9.1)

where

p(z|x) is the occurrence probability of z under the condition x;
p(x |z) is the occurrence probability of x under the condition z;
p(z) is the occurrence probability of z; and
p(x) is the occurrence probability x.

Following this, we need to calculate p(x), which is the overall distribution of data
samples. Assume that we can obtain a batch of data outputs {x1, x2, …, xn} through
the VAE network, where the data samples are collectively represented by X. If we
can obtain the overall distribution p(x) of the data samples based on {x1, x2, …, xn},
we can obtain all the possible data (the data other than {x1, x2, …, xn}) through
p(x) sampling. This is an ideal generative model, but it is difficult to implement
because the distribution of local data samples does not match that of the overall data.
Therefore, we can rewrite the probability distribution as

p(x) =
∫

p(x |z)p(z)dz (9.2)

where p(x |z) describes a model for generating x based on z. Because z is a hidden
variable, calculatingFormula (9.2) is extremely difficult.As such,weneed to estimate
the value by using variational inference. With variational inference, we can find a
probability distribution q(z), which is easier to work with. We then ensure that q(z) is
as close as possible to p(z|x) and subsequently use q(z) to replace p(z|x) so that we
can approximate the complex probability distribution. The Kullback–Leibler (KL)
divergence, used to measure the difference between two probability distributions,
also comes into play here and is defined as follows:

Fig. 9.4 Decoder module
z x



9.1 Variational Autoencoder 187

KL(q ‖p ) =
∫

q(t) log
q(t)

p(t)
dt = Eq(logq − logp)

= Eq [logq] − Eq [logp]
(9.3)

where

q(t) is the probability distribution q;
p(t) is the probability distribution p;
log q is the logarithm of q; and
Eq[logq] is an expected logq under the probability distribution q.

KL divergence meets the following condition:

KL(q||p) ≥ 0 and KL(q||p) = 0 ↔ q = p (9.4)

To ensure that q(z) is as close as possible to p(z|x), we can minimize the KL
divergence between the two probability distributions by using the following formula:

min KL(q(z)||p(z|x)) (9.5)

According to the definition of KL divergence and p(z|x) = p(z,x)
p(x) , we can obtain

KL(q(z)||p(z|x)) = E[log q(z)] − E[log p(z, x)] + log p(x) (9.6)

If we assume that the evidence lower bound objective (ELBO) is a lower bound
of p(x) likelihood, then

ELBO(q) = E[log p(z, x)] − E[log q(z)] (9.7)

According to the non-negative property of KL divergence, we can combine
Formulas (9.6) and (9.7) to obtain the following:

log p(x) = KL(q(x)||p(z|x)) + ELBO(q) ≥ ELBO(q) (9.8)

Because p(x) is a constant for a given dataset, minimizing KL(q(x) || p(z|x))
in Formula (9.8) is equivalent to maximizing ELBO(q), which is denoted as L to
emphasize the parameters that need to be optimized. After simple transformation
is performed according to the multiplication formula of probability, maximizing
ELBO(q) can be written as

max L(θ,�; x (i)) = Eq�(z|x)[logpθ (x
(i)|zz)] − KL(q�(z|x (i))||pθ (z)) (9.9)



188 9 Unsupervised Learning: Deep Generative Model

where the first term Eq�(z|x)[logpθ (x
(i)|z)] represents the possibility of reconstruc-

tion, and the second term KL(q�(z|x (i))||pθ (z)) ensures that the learned distribution
q is similar to the real prior distribution p.

By using the optimized Formula (9.9), we can obtain the distribution q (which
is as close as possible to the real prior distribution p) and then use q to infer the
hidden variable z in the latent space. When we know the hidden variable, we can use
it to generate observed data x̃ . For the purpose of intuitionism, the observed data is
constructed into a neural network structure, in which the encoder model learns the
mapping from the real data x to the hidden variable z, and the decoder model learns
the mapping from the hidden variable z to the observed data x̃ , as shown in Fig. 9.5.

Once the network is established, the loss function needs to be constructed. As
mentioned earlier, the loss function punishes any reconstruction error between the
real and observed data, while also encouraging the learned distribution q(x|z) to
approach the real prior distribution p(z). We can use the following loss function:

L(x, x̃) +
∑
j

KL(q j (z|x)||p(z)) (9.10)

where

j is each dimension of the latent space;
L(x, x̃) is the reconstruction error between the real and observed data;

and.
KL(qj(z|x) || p(z)) is the KL divergence of probability distribution qj(z|x) and

probability distribution p(z) under the dimension j.

To gain a better understanding of how the VAE functions, we first need to under-
standhow it is implemented.Asmentioned earlier, the learnedprobability distribution
q(x|z) is subject to the normal distribution, and the latent space outputs two vectors
to describe the mean and variance of the potential state distribution. According to
these two vectors, the decodermodel performs sampling from the pre-defined normal
distribution in order to generate a potential vector and start reconstructing the original
input.

Fig. 9.5 Structure of the
VAE

Map the original 
data x to z

Map the potential 
space representation 
z to x~

x q(z|x) z p(x|z) x



9.1 Variational Autoencoder 189

Fig. 9.6 Network
architecture of the VAE

Decoder

Encoder
Sample ɛ from 

N(0,1)

*

x

z

x

z_means z_log_var

Figure 9.6 shows the network architecture of the VAE, in which two encoder
modules are used—one to calculate the mean, and the other to calculate the variance,
of the samples.

The encoder for calculating the mean of the samples adds Gaussian noise to
the output result, so that the decoder module that decodes the result can acquire
robustness to noise. Furthermore, the encoder uses the additional KL loss (described
earlier) with a mean of 0 and a variance of 1 as a regularization term, ensuring that
the encoder’s mean output approximates 0.

The second encoder, used for calculating the variance of the samples, dynamically
adjusts the noise intensity. If the decoder is not well trained (meaning that the recon-
struction error far exceeds the KL loss), the noise is reduced appropriately (i.e., the
KL loss increases). This is performed in order to make the fitting easier, due to the
reconstruction error beginning to decrease. Conversely, if the decoder is well trained
(meaning that the reconstruction error is less than the KL loss), the noise is increased
(i.e., the KL loss is reduced), making the fitting more difficult as the reconstruction
error starts to increase. In this case, we need to improve the generation capability of
the decoder.

Subsequently, we need to train the VAE model, using backpropagation to calcu-
late the relationship between each parameter in the network and the loss func-
tion. However, we cannot calculate the relationship between each parameter and
the loss function during the backpropagation, because random sampling is needed
in the VAE. To overcome this limitation, the VAE introduces a method called the
reparameterization trick, as shown in the dashed box in Fig. 9.6.

As shown in Figs. 9.7 and 9.8, which illustrate forward propagation and back-
propagation in the reparameterization trick, respectively, this method begins with



190 9 Unsupervised Learning: Deep Generative Model

Encoder Encoder

DecoderDecoder

Reparameterization

Deterministic node

Random value node z zq(z|x)

N(0, 1)μμ σ σ ε

z=μ+σ   ε

Fig. 9.7 Forward propagation in the reparameterization trick

Fig. 9.8 Backpropagation in
the reparameterization trick

Decoder

Encoder

Backpropagation z = μ+ εz

μ εσ ~N(0,1)

∂zj/∂δj

∂zj/∂μj

∂αdecoder/∂zj

the random sampling ε of unit Gaussian distribution. The reparameterization trick
then changes the random sampling ε through the potential distribution mean μ and
subsequently scales it based on the potential distribution varianceσ . The reparameter-
ization trick effectively overcomes the limitation mentioned earlier, and as a result,
it optimizes the distribution parameters while maintaining the ability to perform
random sampling on this distribution.

Figure 9.9 shows the distribution of latent space that experiences two-dimensional
visualization after training is performed using the VAE on the MNIST dataset.
Compared with the standard autoencoder in Fig. 9.2, which produces uneven distri-
bution of clusters in latent space (some areas of the latent space do not represent
any data), the VAE can learn to convert input data into a smooth potential feature
that maintains local similarity of adjacent code by clustering. This feature ensures
balanced distribution through the cluster formation properties of the reconstruction
loss and the dense packaging properties of the KL loss, thereby enabling the decoder
to decode different clusters. As such, if a vector is sampled from the same distribu-
tion of the coding vector, the decoder will successfully decode it; the decoder can
understand and decode the cluster as a smooth combination feature, without sudden
gaps, after the vector is inserted.



9.1 Variational Autoencoder 191

Fig. 9.9 Distribution of the
MNIST dataset in latent
space of the VAE

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

9.1.4 Technical Difficulties

TheVAE is a generativemodel that obtains latent space through the encoder, performs
sampling in the latent space, and then generates new data similar to the input data
through the decoder. It can be used to process distinct types of data, such as sequential
or non-sequential data, continuous or discrete data, and tagged or untagged data. A
central part of the VAE is the loss function, which has two purposes: (1) to punish
any reconstruction error between the real and observed data and (2) to encourage
the learned distribution to approach the real prior distribution. In order to strike a
balance between these two purposes while also ensuring the accuracy of the results,
we need to verify the effects by conducting large numbers of experiments. Further-
more, although the VAE explicitly defines probability distribution, it approximates
probability distribution with the lower bound, meaning that it is unable to solve prob-
ability distribution completely. As such, the resulting samples are more ambiguous
than those in the generative adversarial network [2]. Solving this problem is therefore
a topic of interest for researches in the future, as too is the possibility of combining
the VAE with the generative adversarial network.

9.1.5 Application Scenarios

The VAE has been used extensively in fields such as virtual image and video genera-
tion as well as reinforcement learning, achieving good results. For example, we can
construct LSTM “encoder–decoder” pairs to train a VAE for generating synthetic
text, by combining the Magenta Music VAE mentioned in Sect. 9.1.2 with LSTM



192 9 Unsupervised Learning: Deep Generative Model

Fig. 9.10 Generating fictitious faces by using the VAE

networks based on theVAEmodel. In addition to text and sound generation, a “convo-
lutional–deconvolutional encoder–decoder” in place of the standard fully connected
“encoder–decoder” can achieve good results in generating fictitious facial images,
as shown in Fig. 9.10 [3].

9.2 Generative Adversarial Network

The generative adversarial network (GAN)—both a generative model and an unsu-
pervised learning method—was proposed by Goodfellow et al. in 2014 [2]. It is
comprised of two neural networks, one called a generator network and the other
called a discriminator network, that contest with each other in order to achieve
training. The generative adversarial network is used extensively in fields such as



9.2 Generative Adversarial Network 193

computer vision and image processing to generate fictitious images and augment
data and has become a hot topic of research in the field of AI, attracting a growing
number of researchers.

9.2.1 Background

Development of AI can be summarized into two important stages: perception and
cognition. In the perception stage, external signals (such as those involved in image
and speech recognition) are received and discriminated, whereas in the deeper cogni-
tion stage, such signals are discriminated and understood to a certain extent. In
the generative adversarial network, generators can generate new data samples after
understanding the input data, thereby facilitating exploration of AI in the cognition
stage and allowing AI to gain a deeper understanding of data [4].

AlexNet, which was proposed by the Hinton team in 2012, spurred widespread
attention in deep learning and neural networks following its success at the 2012
ImageNet Large Scale Visual Recognition Challenge. Deep learning has since devel-
oped at a rapid pace in fields such as vision, language, and speech recognition, and
thanks to the improvement of computational power, we have been able to partly over-
come the difficulties involved in training a neural network with many parameters.
In terms of training, the neural network can be easily trained and can be optimized
through the general backpropagation. Its structure is both simple and flexible, while
its modeling ability is extremely strong, allowing it to theoretically approach any
kind of function. The DNN and its development lay a crucial foundation on which
the generative adversarial network is built.

We can divide supervised learning into a generative method and a discriminative
method,which are used to obtain their respectivemodels.With the generativemethod,
we can obtain a joint probability distribution P(X, Y ) based on data and obtain the
conditional probability distribution p(Y |X) = P(X,Y )

P(X)
based on Bayes’ theorem. We

then use P(Y|X) as the prediction input of the model in order to obtain the generative
model. With the discriminative method, we obtain the corresponding model by first
obtaining the prediction output, which is the decision function f (X) or the conditional
probability distribution P(Y |X), based on data.

The generative method involves the data distribution hypothesis and parameter
learning. In most cases, we hypothesize the distribution of the data’s explicit and
implicit variables, use training data to fit the distribution parameters, and obtain the
distribution model through training. In order to fit the generative model, we typi-
cally use the maximum likelihood estimation method and the Markov chain method.
Different from the general generative method, in which distribution parameters are
learned and fitted based on the explicit data distribution hypothesis, the genera-
tive adversarial network does not need to directly hypothesize the data distribution.
Instead, it learns the essential characteristics of real data by using an unsupervised
generative model. In this way, it can reflect the distribution characteristics of sample
data and generate new data similar to training samples. Of note is the fact that the



194 9 Unsupervised Learning: Deep Generative Model

generative model typically has fewer parameters than the amount of training data,
meaning that the model can learn to discover the main characteristics of the data and
generate new data similar to the original input.

Due to the development of deep learning, theories on the generative method and
model have become increasingly mature, leading to the introduction of adversarial
learning in the field ofAI. As deep learning continues to gainwidespread recognition,
the generative adversarial network has become central in the development of deep
learning across fields such as vision, language, and speech recognition. The gener-
ative adversarial network is derived from the two-person zero-sum game in game
theory, where the generative model G and the discriminative model D act as the two
players. The generative model G continuously learns the probability distribution of
the real data in the training dataset and attempts to convert the input noise data z
to approximate the real data. Its opponent, the discriminative model D, attempts to
distinguish between the generated data and the real data and is continuously opti-
mized during the training in order to judge the source of input data more accurately.
The ensuing game between the two models ensures that they are trained simultane-
ously, resulting in the generativemodelG generating the datawhile the discriminative
model D identifies the data source.

9.2.2 Development Status

Various derivatives of the generative adversarial network have emerged, making
improvements to the objective function and model structure as well as solving [5]
some issues that affected the original.

The generative model’s objective is to ensure that the distribution pg(x) of the
generated data is as close as possible to the distribution pdata(x) of the real data.
The model’s training is therefore heavily dependent upon minimizing the difference
between the two probability distributions. In order to minimize (pdata || pg), which is
the Jensen–Shannon divergence (JSD), the standard generative adversarial network
uses a discriminative model. Researchers found that, by replacing the distance calcu-
lationmethod or divergence, they were able to enhance the performance of the gener-
ative adversarial network. Such replacements include f-GAN [6] and Least Square
GAN (LSGAN) [7], which are based on thef divergence, and Wasserstein GAN
(WGAN),2 WGAN with Gradient Penalty (WGAN-GP) [8], Fisher GAN [9], and
Maximum Mean Discrepancy GAN (MMDGAN) [10], which are based on integral
probability metric (IPM).

The structure of the generative model and that of the discriminative model is
extremely important because they affect the training stability and final training results
of the generative adversarial network. Some common techniques used to modify

2 See: Arjovsky M, Chintala S, Bottou L. Wasserstein GAN [EB/OL]. 2017 [2019–11–10] https://
arxiv.org/pdf/1701.07875.pdf.

https://arxiv.org/pdf/1701.07875.pdf


9.2 Generative Adversarial Network 195

Random noise z

Real data x

Backpropagation

True

Loss 
function

False

Discriminat
ive model 

D

Generated data 
G(z)

Backpropagation

Generative 
model G

Fig. 9.11 Generative adversarial network

model structures include batch normalization, stacked structure, and multiple gener-
ative and discriminative models. Additionally, deep convolutional GAN (DCGAN),3

a well-known class of CNNs, provides a good reference for other GAN models and
offers a stable training GANmodel. Hierarchical GANs are also common, and exam-
ples of such include StackedGAN [11], which uses multiple GANs and progressive
GAN,4 which uses a single GAN. Also of interest are boundary equilibrium GAN
(BEGAN)5 and margin adaptation GAN (MAGAN) [12].

Training the generative adversarial network dynamically involves some theoret-
ical and practical problems, the most prominent of which is mode collapse. Once
mode collapse occurs, it is difficult to obtain the probability distribution of real data by
using the generative model. In order to solve this problem, researches have proposed
two solutions: unrolledGAN6 based on the objective function andmulti-agent diverse
(MAD) GAN [12] based on the network structure.

9.2.3 Technical Principles

The generative adversarial network, as shown in Fig. 9.11, estimates the generative
model in an adversarial mode and includes two training processes: (1) using the
generative model G to obtain the probability distribution of the real training data
and (2) using the discriminative model D to determine whether the input data is
from the real training sample or from the generative model G. In process (1), the
discrimination error probability of the discriminative modelD is maximized. Before

3 See: Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks [EB/OL]. 2015 [2019–11–10]. https://arxiv.org/pdf/1511.
06434.pdf.
4 See: Karras T, Aila T, Laine S, et al. Progressive Growing of GANs for ImprovedQuality, Stability,
and Variation [EB/OL]. 2017 [2019–11–10]. https://arxiv.org/pdf/1710.10196.pdf.
5 See: Berthelot D, Schumm T, Metz L. BEGAN: Boundary Equilibrium Generative Adversarial
Networks [EB/OL]. 2017 [2019–11–10]. https://arxiv.org/pdf/1703.10717.pdf.
6 See: Metz L, Poole B, Pfau D, et al. Unrolled Generative Adversarial Networks [EB/OL]. 2016
[2019–11–10]. https://arxiv.org/pdf/1611.02163.pdf.

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/pdf/1703.10717.pdf
https://arxiv.org/pdf/1611.02163.pdf


196 9 Unsupervised Learning: Deep Generative Model

the generative model can learn the probability distribution pg of the real data x,
the prior probability distribution pz(z) of the input noise must first be defined, and
the prior probability distribution must be mapped to the data space G(z; θg). Here,
G is a differentiable function composed of an MLP with θg as a parameter. On
the other hand, the discriminative model is defined as D(x; θd). It uses either the
real data (whose label is 1) or the generated data (whose label is 0) as an input,
where the output scalar D(x) represents the probability that data x comes from the
real data. The generative adversarial network trains the discriminative model D to
maximize the output of correct labels and trains the generative model G to minimize
the output of correct labels from the discriminative model D.7 In other words, the
two models obtain the results by optimizing the objective function of the following
“minimax two-player game” problem, which can be considered as summarizing the
entire optimization process of the generative adversarial network.

min
G

maxV
D

(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼px (z)[log(1 − D(G(z)))] (9.11)

where

G is the generative model;
D is the discriminative model;
V (D, G) is the value function of D and G;
x is the sample data;
pdata(x) is the real data distribution;
z is the noise data; and
pz(z) is the noise data distribution.

The objective function may lack the ability to provide a gradient sufficient for the
generative model G to achieve effective learning. During the early stage of training
when the generative model G has yet to converge, the discriminative model D can
distinguish the generated data from the training sample datawith a higher confidence,
resulting in the saturation of log(1-D(G(z))). Consequently, to train the generative
model G to minimize log(1-D(G(z))), we must train it to maximize log(D(G(z))).
Because training is performed for log(D(G(z))), the gradient provided during the
early stage of learning is more sufficient. Algorithm 9.1 shows the training algorithm
used in the generative adversarial network.

Algorithm 9.1 Training of the Generative Adversarial Network

Input: For the GAN mini-batch stochastic gradient descent training, the discrim-
inative model training step k is a hyperparameter (set to 1 here), and the training
iteration number is T.

Output: Parameter updating result θdkT of the adversarial modelD, and parameter
updating result θgT of the generative model G

7 See: Jahanian A, Chai L, Isola P. On the “Steerability” of Generative Adversarial Networks
[EB/OL]. 2019 [2019–11–10] https://arxiv.org/pdf/1907.07171.pdf.

https://arxiv.org/pdf/1907.07171.pdf


9.2 Generative Adversarial Network 197

(1) Let t∈ {1, 2, …, T}
(2) Obtain m noise samples {z(1), z(2), …, z(m)} from the noise prior probability

distribution. pg(z)
(3) Obtain m samples {x(1), x(2), …, x(m)} from the data generation probability

distribution pdata(x).
(4) Let r∈ {1, 2, ..., k}
(5) Update the discriminative model through the stochastic gradient ascent:

θdtr ← θdt (r−1) + ∇θd

1

m

m∑
i=1

[log(D(x (i))) + log(1 − D(G(z(i))))] (9.12)

(6) Obtain m noise samples {z(1), z(2), …, z(m)} from the noise prior probability
distribution pg(z).

(7) Update the generative model through the stochastic gradient descent:

θgt ← θgt−1 − ∇θg
1

m

m∑
i=1

log(1 − D(G(z(i)))) (9.13)

(8) Output: Gradient-updated adversarial model D and generative model G
(9) Maximize the value function V (D, G) for any generative model G during

training of the discriminative model D:

V (G, D) =
∫
x
pdata(x) log(D(x))dx +

∫
z
pz(z) log(1 − D(g(z)))dz

(9.14)

=
∫
x
pdata(x) log(D(x)) + pg(x) log(1 − D(x))dx (9.15)

(10) Maximize the function alog(y) + blog(1-y) for y at a
a+b for any (a, b) ∈ R

2

\{0, 0}.
When the generative model G is fixed, the optimal discriminative model D is

D∗
G(x) = pdata(x)

pdata(x) + pg(x)
(9.16)

(11) The process of training the discriminative model D can be interpreted as
maximizing the likelihood estimation conditional probability function P(Y =
y|x), where Y represents that x is from pdata (when y = 1) or from pg (when y
= 0). The objective function can be transformed into

C(G) = max V (G, D)

= Ex∼pdata [log(D∗
G(x))] + Ex∼pz [log(1 − D∗

G(G(z)))]
= Ex∼pdata [log(D∗

G(x))] + Ex∼pg [log(1 − D∗
G(x))]



198 9 Unsupervised Learning: Deep Generative Model

= Ex∼pdata

[
log

(
pdata(x)

pdata(x) + pg(x)

)]
+ Ex∼pg

[
log

(
pg(x)

pdata(x) + pg(x)

)]

(9.17)

(12) C(G) can be optimized in the form of KL divergence:

C(G) = − log(4) + KL

(
pdata|| pdata + pg

2

)
+ K L

(
pg|| pg + pg

2

)

(9.18)

C(G) can be rewritten to the form of JSD, that is

C(G) = − log(4) + 2JS
(
pdata‖pg

)
(9.19)

The JSD between two distributions is always non-negative, and the minimum
value of 0 is obtained onlywhen pdata = pg. Therefore,when the discriminative
modelD is fixed and the generativemodelG is updated, the objective function
obtains the global minimum value only when pdata = pg.

(13) The result of the preceding process is that the generativemodelG can generate
data G(z). However, the discriminative model D has trouble determining
whether the generated data is real data.

D∗(x) = pdata(x)

pdata(x) + pg(x)
= 1

2
(9.20)

For each round of parameter update during the training of the GAN, the
parameters of the discriminative model D are updated through k gradient
ascents, whereas those of the generative model G are updated through one
gradient descent.

9.2.4 Technical Difficulties

The GAN solves some of the problems associated with the generative model, while
adversarial learning has inspired the development of machine learning. However,
some new problems have been identified in the GAN, whose greatest advantage—the
rule of adversarial learning—is also its biggest challenge. In order to achieve good
training results in adversarial learning, it is necessary to train both the generative
and discriminative models synchronously while also maintaining a balance between
them. However, in real-world applications, this is a difficult objective to achieve,
where theoretically determining whether the model converges or whether a balance
point exists is problematic. Furthermore, because both the generative and discrimi-
native models adopt theMLP neural network model, they inherit the problem of poor
interpretability from the neural networkmodel. Although a trainedGAN can produce



9.2 Generative Adversarial Network 199

a wide variety of samples, it may also produce many slightly different samples due
to the possible mode collapse.

9.2.5 Application Scenarios

The GAN offers strong performance in terms of data generation, finding favor in data
augmentation where it can be directly applied. It can generate data samples—such
as images and videos—that are consistent with real data distribution and can be used
to solve learning problems that arise when labeled data is insufficient. Furthermore,
it can be applied to both semi-supervised and unsupervised learning and can be used
in fields such as language and speech recognition to perform tasks including dialog
and text-to-image generation.

The GAN is used extensively in the image and computer vision fields. Prominent
algorithms include

• Pix2Pix [13], PAN [14], CycleGAN [15], and DiscoGAN [16] in the image
migration field (where an image is converted from domain X to domain Y)

• SRGAN [17] in the image super-resolution field
• SeGAN [18] and perceptual GAN [19] in the object detection field
• GeneGAN8 in the object deformation field
• CoupledGAN in the joint image generation field
• Video GAN [20], Pose-GAN [21], and MoCoGAN [22] in the video generation

field
• Stack GAN [23] in the text-to-image generation field
• AGE-GAN [24] in the field of changing facial properties.

The GAN is also popular in sequential data generation, where SeqGAN,9

RankGAN [25], and VAW-GAN10 are some prevalent examples used for generating
music, generating text, and converting speech, respectively.

In other fields, SSLGAN [26] and Triple-GAN [27] are used for semi-supervised
learning, UPLDA [28] is used for adaptation, and DI2IN [29] and SeGAN [30] are
used for medical image segmentation.

An increasing amount of attention is being paid to the GAN, which, as we can
see, has found use most extensively in the vision, speech recognition, and language
fields.

8 Zhou S, Xiao T, YangY, et al. GeneGAN: Learning Object Transfiguration andAttribute Subspace
From Unpaired Data [EB/OL]. 2017 [2019–11–10] https://arxiv.org/pdf/1705.04932.pdf.
9 See: Yu L, Zhang W, Wang J, et al. SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient [C]. Thirty-First AAAI Conference on Artificial Intelligence, 2017.
10 See: Hsu C C, Hwang H T, Wu Y C, et al. Voice Conversion from Unaligned Corpora Using
Variational Autoencoding Wasserstein Generative Adversarial Networks [EB/OL]. 2017 [2019–
11–10]. https://arxiv.org/pdf/1704.00849.pdf.

https://arxiv.org/pdf/1705.04932.pdf
https://arxiv.org/pdf/1704.00849.pdf


200 9 Unsupervised Learning: Deep Generative Model

9.2.6 Framework Module

Mainstream frameworks such as TensorFlow, PyTorch, and Keras are available on
GitHub and supported by open-source code, covering such programming languages
as Python, C++ , Java, and C.

9.3 Application: Data Augmentation

As its name implies, data augmentation augments data, or adds it, and as the meaning
of augmentation is somewhat related to generation, it can be regarded as a typical
application direction of the DNN generative model. The following sections explain
what data augmentation is with reference to real-world scenarios in the image field.

9.3.1 Definition of Data Augmentation

Data augmentation is also known as data amplification or data expansion. In deep
learning, overfitting may occur if we do not have a sufficient amount of data. This
in turn might result in a small training error, but it would also result in a large test
error. To address such a shortfall in data, we would ideally obtain more labeled data.
However, this is not always possible, so the next best solution is to generate new
data, that is, to manually increase the size of the training set. Data augmentation is
a method of generating new data based on existing (limited) data.

9.3.2 Purpose of Data Augmentation

Data augmentation has two main objectives: One is to expand the data scale based
on existing data, and the other is to increase the variety of data by using old and new
data in order to reduce overfitting of the network model.

9.3.3 Conventional Data Augmentation Methods

Conventional data augmentation methods have matured over the years. This section
describes some of the classic and commonly used ones.

1. Space geometry transformation operations

(1) Flip



9.3 Application: Data Augmentation 201

Flip includes two types: horizontal flip and vertical flip. Figure 9.12a is
the original image, and Fig. 9.12b is the flipped image.

(2) Crop
Crop means that the useful area of an image, or that of interest, is retained
while the remainder is discarded. Figure 9.13 shows the result of random
crop, which is typically used in training.

(3) Rotation/reflection
Rotation/reflection means that the orientation of an image is changed.
Random rotation is usually used in training. Figure 9.14 shows the result
of rotation/reflection.

(4) Zoom
Zoom means that an image is zoomed in or out either in its entirety or on
a certain part.
Zoom includes two types: One is to zoom the entire image to a certain
size, and the other is to zoom a part of the image to the size of the original
image. Figure 9.15 shows the effects of zooming the image shown in
Fig. 9.14a.

2. Pixel color transformation operations

(1) Noise addition
Noise addition means that some noise is randomly superimposed on an
image. During training, salt and pepper noise or Gaussian noise is usually
added. Figure 9.16 shows the effect of randomly adding Gaussian noise
twice on the image shown in Fig. 9.14a.

(2) Coarse dropout
Coarse dropout means that a rectangular or circular region in an image is
randomly selected for implementing information loss transformation. In
the selected region, a blackblock is generated if all the channel information
is lost, whereas a color block is generated if only some of the channel
information is lost. Figure 9.17 shows the effect of coarse dropout based
on the image shown in Fig. 9.14a.

(a) Original image (b) Flip effect

Fig. 9.12 Flip



202 9 Unsupervised Learning: Deep Generative Model

(a) Original image (b) Effect of random crop 1

(c) Effect of random crop 2 (d) Effect of random crop 3

Fig. 9.13 Crop effects

(3) Fuzzy transformation
Fuzzy transformation means that the difference between the pixel values
of the image is reduced to achieve pixel smoothing and image blurring.
Figure 9.18 shows the effect of fuzzy transformation based on the image
shown in Fig. 9.14a.

(4) Contrast transformation
Contrast transformation means that the saturation S and the luminance
component V of each pixel are changed while retaining the original hue
H in the image HSV color space. Figure 9.19 shows the effect of contrast
transformation based on the image shown in Fig. 9.14a.

(5) Random erasure
Random erasure means that a region in an image is randomly selected for
deletion. Each pixel in the deleted region is usually filled with random
noise. Figure 9.20 shows the effect of random erasure based on the image
shown in Fig. 9.14a.

(6) Invert
Invert means that the pixel value m of some or all channels is converted
to 255-m according to a given probability. Figure 9.21 shows the effect
of inversion based on the image shown in Fig. 9.14a.

(7) Sharpen



9.3 Application: Data Augmentation 203

(a) Original image (b) Rotation/reflection effect 1

(c) Rotation/reflection effect 2 (d) Rotation/reflection effect 3

Fig. 9.14 Rotation/reflection effects

(a) Zoom effect 1 (b) Zoom effect 2

Fig. 9.15 Zoom effects

Sharpen means that the contour of an image is compensated to highlight
the edge of an object in the image and the part with the grayscale jump
change. This process aims to improve the contrast between the edge of
the ground object and the surroundings, therebymaking the image clearer.
Figure 9.22 shows the effect of sharpening based on the image shown in
Fig. 9.14a.



204 9 Unsupervised Learning: Deep Generative Model

(a) Effect of adding Gaussian noise 1 (b) Effect of adding Gaussian noise 2

Fig. 9.16 Effects of noise addition

(a) Effect of coarse dropout 1 (b) Effect of coarse dropout 2

Fig. 9.17 Effects of coarse dropout

(a) Effect of fuzzy transformation 1 (b) Effect of fuzzy transformation 2

Fig. 9.18 Effects of fuzzy transformation



9.3 Application: Data Augmentation 205

(a) Effect of contrast transformation 1 (b) Effect of contrast transformation 2

(c) Effect of contrast transformation 3 (d) Effect of contrast transformation 4

Fig. 9.19 Effects of contrast transformation

(8) Emboss
Emboss means that an object in an image is raised on the plane where the
object is located. Figure 9.23 shows the effect of embossing based on the
image shown in Fig. 9.14a.

3. Unsuitable Scenarios
Conventional data augmentation methods preclude the use of certain transfor-
mation operations in some task scenarios, such as number recognition. For
example, the numbers 6 and 9 cannot be distinguished in an image after rota-
tion. For an image that shows a side view of a face, left and right cannot be
distinguished after the flip transformation.

9.3.4 Data Augmentation Methods Based on Deep Learning

In recent years, we have seen the emergence of some exceptional data augmentation
methods based on deep learning. This section focuses on some of the typical methods
and their applications, attempting to classify them roughly for reference purposes.

1. Image Enhancement Based on a Convolutional Network



206 9 Unsupervised Learning: Deep Generative Model

(a) Effect of random erasure 1 (b) Effect of random erasure 2

(c) Effect of random erasure 3 (d) Effect of random erasure 4

Fig. 9.20 Effects of random erasure

(a) Effect of inversion 1 (b) Effect of inversion 2

Fig. 9.21 Effects of inversion

1) Real-time Image Enhancement11

(1) Applicable scenario. Thismethod is typically used to enhance images
in real time on mobile terminals. It can be user-selected for image
adjustment or can be embedded in the image processing pipeline.

11 See: Gharbi M, Chen J W, Barron J T, et al. Deep Bilateral Learning for Real-time Image
Enhancement [J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 118.



9.3 Application: Data Augmentation 207

Fig. 9.22 Effect of
sharpening

Fig. 9.23 Effect of
embossing

(2) Solution. The neural network structure is designed based on the
concept of bilateral grid processing and local affine color transfor-
mation. The model is fed with a pair of input and output images,
and the CNN is trained to predict the coefficients of the local affine
model in the bilateral space. The model learns how to make local,
global, and content-dependent decisions to approximate the desired
image transformation.
In offline model training, a low-resolution image is used as input in
the neural network, and a set of affine transformations is generated
in the bilateral space. These transformations are upsampled in edge-
preserving mode by using new slice nodes and are then applied to
the full-resolution image.

(3) Innovations. This method introduces a new neural network archi-
tecture inspired by bilateral grid processing and local affine color
transformation. It also implements real-time enhancement of 1080P
images within milliseconds. In Figure 9.24, (a) is the original image



208 9 Unsupervised Learning: Deep Generative Model

(a) Original image (b) HDR + hue drawing (c) Processing results

Fig. 9.24 Results of real-time image enhancement

(a) Camera output sensitivity 
ISO 8000

(b) Camera output sensitivity 
ISO 409600

(c) Result obtained based on 
the original data shown in Figure 

9.25 (a)

Fig. 9.25 Effects of low-light image enhancement

with 12 million pixels and a 16-bit linear input hue-mapped to facili-
tate visualization; (b) shows HDR + hue drawing, which takes 400–
600 ms; and (c) shows the processing result of the algorithm, which
takes 61 ms and achieves a peak signal-to-noise ratio of 28.4 dB.

2) Low-light Image Enhancement12

(1) Applicable scenario. This method is typically used to enhance dark,
stationary images in low-light environments but is not suitable for
handling humans or dynamic objects.

(2) Solution. The See-in-the-Dark (SID) dataset, comprised of 5094x2
raw short-exposure images, each with a corresponding long-
exposure reference image, is an open-source dataset used to develop
an end-to-end training pipeline based on a fully convolutional
network.

(3) Innovations. The open-source SID dataset is useful for enhancing
images taken in low-light environments, as canbe seen inFigure 9.25.

3) Image Style Transfer [31]
(1) Applicable scenario. Thismethod is used to convert an existing photo

to a specific style of a reference photo while keeping the photo
realistic.

12 See: Chen C, Chen Q F, Xu J, et al. Learning to See in the Dark [C]. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018: 3291–3300.



9.3 Application: Data Augmentation 209

(a) Style (b) Content (c) Experimental[33]

results in the paper 
released by Gatys et al.

(d) Experimental[34]

results in the paper 
released by Luan et al.

(e) Experimental 
results of the method

Fig. 9.26 Effects of style transfer and content transfer

(2) Solution. The encoder–decoder architecture is used to implement
photo-level style transfer. Two steps are used in this method: The
stylization step transfers the style of the reference photo to the
content photo, and the smoothing step ensures spatially consistent
stylizations.

(3) Innovations. The two-step approach used in this method overcomes
the issues observed in other photorealistic image stylizationmethods
that tend to generate spatially inconsistent stylizations with notice-
able artifacts. Specifically, smooth transformation makes the style
transfer more realistic, and both the style transfer and smooth
transfer steps can be separately implemented. Figure 9.26e shows
the experimental results of the method.

2. Image Enhancement Based on GAN

1) Using Fewer Labels to Generate High-Fidelity Images13

(1) Applicable scenario. This method is used to generate high-fidelity
images when only a small amount of labeled data is available.

(2) Solution. This method involves pre-training and co-training
approaches, both of which are split into unsupervised and semi-
supervised approaches.

• Pre-training—unsupervised: These approaches (proposed by
Gidaris et al. in 201814 and Kolesnikov et al. in 201915) are used
to extract the feature representation from the real training data.
They then perform clustering, using the cluster as an alternate

13 See: Lucic M, Tschannen M, Ritter M, et al. High-Fidelity Image Generation With Fewer Labels
[EB/OL]. 2019 [2019–11–10]. https://arxiv.org/pdf/1903.02271.pdf.
14 See: Gidaris S, Singh P, Komodakis N. Unsupervised Representation Learning by Predicting
Image Rotations [C]. In International Conference on Learning Representations, 2018.
15 See: Kolesnikov A, Zhai X, Beyer L. Revisiting Selfsupervised Visual Representation Learning
[C]. In Computer Vision and Pattern Recognition, 2019.

https://arxiv.org/pdf/1903.02271.pdf


210 9 Unsupervised Learning: Deep Generative Model

identifier for the label, in order to minimize the corresponding
hinge loss function to train the GAN.

• Pre-training—semi-supervised: This approach (proposed by Zhai
et al. in 201916) adapts the unsupervised loss function for use in
semi-supervised scenarios. It assumes that only one subset of the
training set is used. It obtains the feature representation through
training based on unsupervised learning and a linear classifier and
uses the feature representation to train the GAN.

• Co-training—unsupervised: This approach, unlike the unsuper-
vised pre-training approaches, does not extract feature represen-
tations before training the GAN. Instead, it directly deduces the
label in the GAN training process. One approach sets the same
label for both the real and generated samples after removing the
real label and removes the mapping layer from the discrimi-
nator. Another approach maps random labels to real unlabeled
images (this part of the data does not provide valid information to
the discriminator, whereas the sampled labels help the generator
provide additional random information).

• Co-training—semi-supervised: This approach combines both
feature representation extraction and GAN training.

(3) Innovations. The semantic feature extractor used with training data
can be obtained through self-supervised learning,17 and the feature
representation can be used to guide the GAN training process. In
addition, the label of the training set can be deduced from its subset
and used as conditional information for GAN training.

2) Using a Small Amount of Data to Quickly Generate High-resolution
Images18

(1) Applicable scenario. This method is used to quickly generate high-
resolution images when only a small amount of labeled data is
available.

(2) Solution. Measuring the probability that the generated data is more
real than the labeled real value data in the discriminator of the
standard GAN may be feasible.
Figure 9.27 illustrates the theoretical analysis of prior knowledge,
where (a) shows theminimization of the Jensen–Shannon divergence
(JSD) to obtain the optimal solution, (b) shows the use of the standard
GAN to train the generator in order tominimize the loss function, and
(c) shows the ideal process of training the generator to minimize the

16 See: Zhai X, Oliver A, Kolesnikov A, et al. S4L: Selfsupervised Semi-Supervised Learning
[EB/OL]. 2019 [2019–11–10]. https://arxiv.org/pdf/1905.03670.pdf.
17 See: Lucic M, Tschannen M, Ritter M, et al. High-fidelity image generation with fewer labels
[EB/OL]. 2019 [2019–11–10]. https://arxiv.org/pdf/1903.02271.pdf.
18 See: Jolicoeur-Martineau A. The relativistic discriminator: a key element missing from standard
GAN [EB/OL]. 2018 [2019–11–10]. https://arxiv.org/pdf/1807.00734.pdf.

https://arxiv.org/pdf/1905.03670.pdf
https://arxiv.org/pdf/1903.02271.pdf
https://arxiv.org/pdf/1807.00734.pdf


9.3 Application: Data Augmentation 211

(a) Minimum divergence (b) Generation by the generator (C) Ideal training of the 
generator

EndStartStart EndEndStart

Real data
Real data

Real data

False dataFalse dataFalse data
O

ut
pu

t r
es

ul
t D

(x
) o

f t
he

 
di

sc
rim

in
at

or

O
ut

pu
t r

es
ul

t D
(x

) o
f t

he
 

di
sc

rim
in

at
or

O
ut

pu
t r

es
ul

t D
(x

)o
f t

he
 

di
sc

rim
in

at
or

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

Fig. 9.27 Training convergence effects of the generator and the discriminator

loss function (the dashed line indicates that the subsequent iteration
is optional after the balance is reached at the intersection point).
When theminimizationof divergence is analyzed, the loss functionof
the discriminator is set to JSD [2]. The experimental results show that
minimizing the saturation loss of the standard GAN only increases
the output result of the discriminator for the real data—it does not
increase the result of the discriminator for the false data, as shown in
Fig. 9.27b. This means that the dynamic of the standard GAN differs
significantly from the minimization of the JSD. Analysis indicates
that both the real and false data contribute the same to the gradient
of the discriminator loss function in the GAN based on the integral
probability metrics. Conversely, in the standard GAN, the real data
is ignored in the gradient if the discriminator is optimal.
Of note too is the proposal relativistic standard GAN, relativistic
GAN, and relativistic average GAN.

(3) Innovations. In general, the conventional GAN measures the real
probability of the generated data. The proposed relativistic GAN,
on the other hand, measures the probability that the generated data
is more real than the labeled real data. To measure this "relative
authenticity", a new distance is constructed. The experimental data
shows that the relativistic GAN can generate a high-resolution image
(256×256) based on the 2011 labeled samples, but the conventional
GAN cannot do this, as shown in Figure 9.28.

3. Adaptive Image Enhancement Based on Data
As of June 2019, there were two representative articles in this field: AutoAug-
ment: Learning Augmentation Strategies From Data19 by Google Brain and

19 See: Cubuk E D, Zoph B, Mane D, et al. AutoAugment: Learning Augmentation Strategies From
Data [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019:
113–123.



212 9 Unsupervised Learning: Deep Generative Model

(a) Cat images (256×256) through GAN (b) Cat images (256×256) through RaSGAN 
training (5000 iterations) training (indicator FID = 32.11)

Fig. 9.28 Generation effect of the relativistic GAN

Fast AutoAugment20 by Kakao Brain. We focus on the former, as the latter is
derivative work.

(1) Applicable scenario. This method is used to automatically augment data
based on the existing data. Conventional data augmentation requires a pre-
defined strategy for each image, whereas automatic augmentation selects
an appropriate one from a pre-designed automatic augmentation strategy
library for each image.

(2) (2) Solution. Google Brain defines the search for the optimal enhancement
strategy as a discrete search problem,which predominantly consists of two
parts: search algorithm and search space. From a high-level perspective,
the search algorithm (implemented by the controller RNN) samples the
data augmentation strategy S. Here, S indicates the possibility and inten-
sity of the preprocessing operation to be performed on the image in each
batch process. S is then used to train the neural network with a fixed
architecture, and the verification accuracy R is fed back to update the
controller. Because R is not differentiable, the controller is updated based
on the policy gradient. Specifically:
➀ Search space: Each data augmentation strategy includes five

substrategies, each of which includes two image operations (Google
Brain specifies the selection of 16 operations).

➁ Search algorithm: Reinforcement learning is used in the experiment,
which is composed of two parts: RNN-based controller and near-end
strategy optimization algorithm.

(3) Innovations. Google Brain proposes AutoAugment, which searches for
or selects a data augmentation strategy automatically. Additionally, each

20 See: Lim S, Kim I, Kim T, et al. Fast AutoAugment [EB/OL]. 2019 [2019–11–10]. https://arxiv.
org/pdf/1905.00397.pdf.

https://arxiv.org/pdf/1905.00397.pdf


9.3 Application: Data Augmentation 213

Table 9.1 Comparison of top 1 error rate (%) between the baseline and AutoAugment in the
Inception v4 model

Dataset Training scale Category Baseline value AutoAugment

Oxford 102 Flowers [32] 2040 102 6.7 4.6

Caltech-101 [33] 3060 102 19.4 13.1

Oxford-IIIT Pets [34] 3680 37 13.5 11.0

FGVC Aircraft➀ 6667 100 9.1 7.3

Stanford Cars➁ 8144 196 6.4 5.2

➀See: Maji S, Rahtu E, Kannala J, et al. Fine-Grained Visual Classification of Aircraft [EB/OL].
2013 [2019–11–10]. https://arxiv.org/pdf/1306.5151.pdf.
➁See: Krause J, Deng J, Stark M, et al. Collecting a Large-Scale Dataset of Fine-Grained Cars [J].
In Second Workshop on Fine-Grained Visual Categorization, 2013,2:7.

strategy in the search space includes several substrategies, each of which
includes processing functions (such as translation and rotation) and uses
probability and intensity. AutoAugment has delivered promising results
that exceed the baseline. Of note is the state-of-the-art accuracy achieved
with AutoAugment: It realized a lower error rate on the Stanford Cars
dataset (5.2%, compared with 5.9% for the previous best result), as shown
in Table 9.1.

9.4 Implementing GAN-Based Data Augmentation Using
MindSpore

The interfaces and processes of MindSpore may constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

References

1. A.Roberts, J. Engel,D.Eck,Hierarchical variational autoencoders formusic, inNIPSWorkshop
on Machine Learning for Creativity and Design (2017)

2. I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial nets. Adv. Neural Inf.
Process. Syst. 2672–2680 (2014)

3. X. Hou, L. Shen, K. Sun, et al., Deep feature consistent variational autoencoder, in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). (IEEE, 2017), pp. 1133–1141

4. K. Wang, C. Gou, Y. Duan et al., Research progress and prospect of generative adversarial
network GAN. IEEE/CAA J. Automatica Sinica (JAS) 43(3), 321–332 (2017)

5. A. Creswell, T. White, V. Dumoulin et al., Generative adversarial networks: an overview. IEEE
Sig. Process. Mag. 35(1), 53–65 (2017)

https://arxiv.org/pdf/1306.5151.pdf
https://mindspore.cn/resource


214 9 Unsupervised Learning: Deep Generative Model

6. S. Nowozin, B. Cseke, R. Tomioka, f-GAN: training generative neural samplers using vari-
ational divergence minimization, in Advances in Neural Information Processing Systems,
pp. 271–279

7. X. Mao, Q. Li, H. Xie, et al., Least squares generative adversarial networks, in Proceedings of
the IEEE International Conference on Computer Vision (2017), pp. 2794–2802

8. I. Gulrajani, F. Ahmed, M. Arjovsky, et al., Improved training of Wasserstein GANs, in
Advances in Neural Information Processing Systems (2017), pp. 5767–5777

9. Y. Mroueh, T. Sercu, Fisher GAN, in Advances in Neural Information Processing Systems
(2017), pp. 2513–2523

10. C.L. Li, W.C. Chang, Y. Cheng, et al., MMD GAN: towards deeper understanding of moment
matching network, in Advances in Neural Information Processing Systems (2017), pp. 2203–
2213

11. H. Zhang, T. Xu, H. Li, et al., StackGAN: text to photo-realistic image synthesis with stacked
generative adversarial networks, in Proceedings of the IEEE International Conference on
Computer Vision (2017), pp. 5907–5915

12. A. Ghosh, V. Kulharia, V.P. Namboodiri, et al., Multi-agent diverse generative adversarial
networks, in Proceedings of the IEEEConference on Computer Vision and Pattern Recognition
(2018), pp. 8513–8521

13. P. Isola, J.Y. Zhu, T. Zhou, et al., Image-to-image translation with conditional adversarial
networks, in Proceedings of the IEEEConference on Computer Vision and Pattern Recognition
(2017), pp. 1125–1134

14. C. Wang, C. Xu, C. Wang et al., Perceptual adversarial networks for image-to-image
transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2018)

15. J.Y. Zhu, T. Park, P. Isola, et al., Unpaired image-to-image translation using cycle-consistent
adversarial networks, inProceedings of the IEEE international Conference onComputer Vision
(2017), pp. 2223–2232

16. T. Kim, M. Cha, H. Kim, et al., Learning to discover cross-domain relations with genera-
tive adversarial networks, in Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR.org. (2017), pp. 1857–1865

17. C. Ledig, L. Theis, F. Huszár, et al., Photo-realistic single image super-resolution using a
generative adversarial network, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2017), pp. 4681–4690

18. K. Ehsani, R. Mottaghi, A. Farhadi, SeGAN: segmenting and generating the invisible, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 6144–6153s

19. J. Li, X. Liang, Y. Wei, et al., Perceptual generative adversarial networks for small object
detection, in Proceedings of the IEEEConference on Computer Vision and Pattern Recognition
(2017), pp. 1222–1230

20. C. Vondrick, H. Pirsiavash, A. Torralba, Generating videos with scene dynamics, in Advances
In Neural Information Processing Systems (2016), pp. 613–621

21. J. Walker, K. Marino, A. Gupta, et al., The pose knows: video forecasting by generating pose
futures, in Proceedings of the IEEE International Conference on Computer Vision (2017),
pp. 3332–3341

22. S. Tulyakov, M.Y. Liu, X. Yang, et al., MocoGAN: decomposing motion and content for
video generation, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 1526–1535

23. X. Huang, Y. Li, O. Poursaeed, et al., Stacked generative adversarial networks, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 5077–5086

24. G. Antipov, M. Baccouche, J.L. Dugelay, Face aging with conditional generative adversarial
networks, in17th IEEE InternationalConferenceon ImageProcessing (ICIP) (2017), pp. 2089–
2093

25. K. Lin, D. Li, X. He, et al., Adversarial ranking for language generation, in Advances in Neural
Information Processing Systems (2017), pp. 3155–3165



References 215

26. T. Salimans, I. Goodfellow, W. Zaremba, et al., Improved techniques for training GANs, in
Advances in Neural Information Processing Systems (2016), pp. 2234–2242

27. C. Li, K. Xu, J. Zhu, et al., Triple generative adversarial nets, inAdvances in Neural Information
Processing Systems (2017), pp. 4088–4098

28. K. Bousmalis, N. Silberman, D. Dohan, et al., Unsupervised pixel-level domain adaptation
with generative adversarial networks, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017), pp. 3722–3731

29. D. Yang, T. Xiong, D. Xu, et al., Automatic vertebra labelling in large-scale 3D CT using deep
image-to-image network with message passing and sparsity regularization, in International
Conference on Information Processing in Medical Imaging. (Springer, Cham, 2017), pp. 633–
644

30. Y. Xue, T. Xu, H. Zhang et al., SeGAN: Adversarial network with multi-scale L1 loss for
medical image segmentation. Neuroinformatics 16(3–4), 383–392 (2018)

31. Y. Li, M.Y. Liu, X. Li, et al., A closed-form solution to photorealistic Image stylization, in
Proceedings of the European Conference on Computer Vision (ECCV), pp. 453–468 (2018)

32. M.E. Nilsback, A. Zisserman, Automated flower classification over a large number of classes,
in 2008 6th Indian Conference on Computer Vision, Graphics and Image Processing. (IEEE,
2008), pp. 722–729

33. L. Fei-Fei, R. Fergus, P. Perona, Learning generative visualmodels from few training examples:
an incremental bayesian approach tested on 101 object categories, in 2004 Conference on
Computer Vision and Pattern Recognition Workshop. (IEEE, 2004), pp. 178–178

34. Y. Em, F. Gag, Y. Lou, et al., Incorporating intra-class variance to fine-grained visual recogni-
tion, in 2017 IEEE International Conference on Multimedia and Expo (ICME). (IEEE, 2017),
pp. 1452–1457



Chapter 10
Deep Reinforcement Learning

This chapter starts by covering the basic concepts involved in reinforcement learning
and then describes how to solve reinforcement learning tasks by using basic and deep
learning-based solutions. It also provides a brief overview of the typical algorithms
central to the deep learning-based solutions, namely DQN, DDPG, and A3C.

10.1 Basic Concepts of Reinforcement Learning

Deep reinforcement learning, as its name implies, combines the principles used in
deep learning and reinforcement learning, covering a wide range of knowledge and,
in particular, mathematical knowledge such as Markov property, Markov decision
process, Bellman equation, and optimal control. This section therefore focuses on the
basic mathematical concepts involved in reinforcement learning in order to provide
a greater understanding of deep reinforcement learning.

10.1.1 Basic Concepts and Theories

As mentioned earlier, we are better able to understand deep reinforcement learning
once we have a firm grasp of the basic concepts and mathematical theories behind
reinforcement learning. In this section, we focus on the concepts of policy π, action
a, value v, reward r, and the relationships between them.

1. Fundamental theory
We can understand reinforcement learning through the concepts of agents, envi-
ronments, states, rewards, and actions, as shown in Fig. 10.1. The agent interacts
with the environment, performing actions that are rewarded (or punished). In
the figure, the state of the agent at time t is st . According to this state, the agent
performs action at in the environment. The environment moves to a new state

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_10

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_10&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_10


218 10 Deep Reinforcement Learning

Fig. 10.1 Basic architecture
for reinforcement learning Environment

ActionState Reward

Agent

st+1

rt+1

rtst

at

st+1 and gives the reward rt+1 corresponding to the new state after sensing the
new action of the agent. The agent interacts with the environment repeatedly
according to this process, which is central to reinforcement learning.

2. Reward
Reward is a mechanism by which to define the agent’s learning objective. Each
time the agent interacts with the environment, the environment feeds back the
reward signal r to the agent. The reward indicates the quality of action a and
can be regarded as a reward or punishment mechanism to evaluate the success
or failure of the agent’s actions.
The goal of reinforcement learning is not to maximize the current reward but
rather to maximize cumulative reward R, the sum of all rewards, as shown in
Formula (10.1):

R = r1 + r2 + . . . + rn (10.1)

Because the environment is generally either stochastic or unknown, the next
state s may be stochastic. This means that we are unable to determine the
agent’s next-step action nor its reward. As the agent explores further into the
future, the results of the agent’s actions become less certain. In order to account
for this fact, we can replace the cumulative future reward with the cumulative
future discounted reward Gt :

Gt = Rt + γ Rt+1 + . . . + γ n−t Rn, γ ∈ [0, 1] (10.2)

By multiplying the reward with the discount factor γ , this formula ensures that
future rewards have less impact on the cumulative future discounted reward
the further away they are from the current time step t. The cumulative future
discounted reward Gt for the time step t can be represented by using the
cumulative future discounted reward Gt+1 for the time step t + 1:

Gt = Rt + γ
[
Rt+1 + γ (Rt+2 + . . .)

]

= Rt + γGt+1 (10.3)



10.1 Basic Concepts of Reinforcement Learning 219

In conclusion, the ultimate goal of reinforcement learning is to ensure that the
agent selects a policy that maximizes the cumulative future discounted reward
Gt .

3. Policy
Policy, defined as π, refers to the rules that determine how the agent selects
actions according to the state st and reward rt , where the value function v is
the expected cumulative reward E (G). In reinforcement learning, the optimal
policy π* is obtained through trial-and-error learning that utilizes feedback
from the environment and corresponding state adjustments.
In general terms, we can classify policy π as either a deterministic or a
stochastic policy.

(1) Deterministic policy: The action a is selected according to the state s, that is,
a = π (s). The selection process is deterministic, with no probability, and does
not require the agent to make a selection.

(2) Stochastic policy: An action is selected according to the random probability
Psa, as defined by π (a|s) = P[at = a|st= s] (note that �π (a|s) = 1). In state
s, the agent selects the probability of action a according to the probability of
each action π (a|s).

4. Value
The value function is used to evaluate the state st of the agent at time step t,
that is, to evaluate the immediate reward r for a given interaction. It is called
the state value function v(s) when the input of the algorithm is the state s; the
action value function q(s,a) when the input is the state-action pair < s,a > ; and
the value function v when the input is not distinguished.
The state value function v(s) is a prediction of the cumulative future discounted
reward, representing the expected reward that the agent can obtain by performing
the action a in the state s.

v(s) = E[Gt |st = s] (10.4)

The action value function q(s,a) is typically used to evaluate the quality of the
action a selected by the agent in the state s. This function and the state value
function v(s) are similar, but the difference between them is that the former one
considers the effect of performing action a at the current time step t.

q(s, a) = E[Gt |st = s, at = a] (10.5)

Formula (10.5) shows that the result of the action value function q(s,a) is the
mathematical expectation value, that is, the expected cumulative discounted
reward.



220 10 Deep Reinforcement Learning

10.1.2 Markov Decision Process

The Markov decision process (MDP) is a central aspect of deep reinforcement
learning. In this section, we describe not only the MDP itself, but also the
Markov property (MP), in order to lay a solid foundation for understanding deep
reinforcement learning.

1. Markov property
The Markov property indicates that a process is memoryless. Specifically, after
the action at is performed in state st , the state st+1 and reward rt+1 of the next
time step are associated with only the current state st and action at . They are
associated with neither the state of a historical time step nor an earlier time step.
This means that the next state of the system is related to only the current state
and not to the previous or earlier state—in essence, the Markov property has
no aftereffect. However, in real-world applications, the feedback of the time
step t + 1 does not necessarily depend on only the state and action of the
time step t. Consequently, the task that the agent needs to accomplish does not
completely satisfy the Markov property. But, to simplify the process of solving
a reinforcement learning task, it is assumed that the task does indeed satisfy the
Markov property—this is achieved by restricting the state of the environment.

2. Markov decision process
The memoryless characteristic of the Markov property, as mentioned earlier,
simplifies theMarkov decision process considerably. This process is represented
as a four-tuple:

MDP = (S, A, P, R) (10.6)

where S is a set of states called the state space, and S = {s1, s2, …, sn}. Here, si
denotes the state of the agent’s environment at the time step i;

A is a set of actions called the action space, where A = {a1, a2, …, an}. Here, ai
denotes the action performed by the agent at the time step i;

P is the state transition probability. It is the probability that action a in state s
at time t will lead to state s’ at time t+1 and is denoted as p(s’|s,a). If the feedback
signal r of the environment is received, the state transition probability is denoted as
p(s’,r|s,a);

R is the reward function. It is the reward r received by the agent after transitioning
from state s to state s’ upon performing action a, where r = R(s,a).

TheMarkov decision process is central to learning and solving most—if not all—
reinforcement learning tasks. Because the process takes into account both the action
a and state s, the next state in a reinforcement learning task is related to both the
current state s and action a.

By converting reinforcement learning tasks into the Markov decision process,
we can significantly reduce the difficulty and complexity and thereby increase the
efficiency and accuracy, in solving such tasks.



10.1 Basic Concepts of Reinforcement Learning 221

10.1.3 Bellman Equation

Solving a deep reinforcement learning task is, to some extent, equivalent to
optimizing the Bellman equation.

Because the Bellman equation represents the relationship between the current
time t and the next time t + 1 (specifically, the values of their states), we can use it
to represent both the state value function v(s) and the action value function q(s,a).

For both of these functions, the substitution of Formula (10.2) includes two parts:
the immediate reward rt and the discount value γ v(st+1) of a future state. An example
of the state value function v(s) represented by the Bellman equation is as follows:

v(s) = E[Gt |st = s] = E[rt + γ v(st+1)|st = s] (10.7)

We can therefore express the Bellman equation of the state value function v(s) as
follows:

v(s) = Rs + γ
∑

s ′∈S
Pss ′v(s ′) (10.8)

Using Formula (10.8), we can obtain the value function of the current state s
by adding the reward Rs of the current state to the product of the state transition
probability Pss’ and the state value function v(s’) of the next state, where γ is the
future discount factor. We can also use linear algebra to reduce Formula (10.8) as
follows:

v = R + γPv′ (10.9)

10.2 Basic Solution Method

Section 10.1 covered the basic concepts of reinforcement learning that allow us
to abstract reinforcement learning tasks through the Markov decision process and
express such tasks through the Bellman equation. Building on that understanding,
this section describes the solution methods of reinforcement learning.

We can consider the process of solving a reinforcement learning task to be the
same as finding the optimal policy, which we can obtain by first solving the optimal
value function. This means that the solution of the optimal value function and, in
turn, the reinforcement learning task is optimization of the Bellman equation.

For a small-scale Markov decision process, we can solve the value function
directly; but for a large-scale process, we need to optimize the Bellman equation by
using methods such as dynamic programming, Monte Carlo, or temporal difference.



222 10 Deep Reinforcement Learning

These methods enable us to solve the Bellman equation according to the Markov
decision process, allowing us to obtain the reinforcement learning model.

10.2.1 Dynamic Programming Method

The dynamic programming method splits a complex problem into several subprob-
lems that can be solved individually. “Dynamic” means that the problem includes a
series of states and can change gradually over time, whereas “programming” means
that each subproblem can be optimized.

With this method, we use the value function of all subsequent states (denoted as
s’) of the current state s to calculate the value function and calculate the subsequent
state value function according to p(s’|s,a) of theMDP in the environment model. The
formula for calculating the value function is as follows:

v(s) ←
∑

π(a|s)
∑

p(s ′|s, a)[r(s ′|s, a) + γ v(s ′)] (10.10)

1. Policy evaluation
Given a known environment model, we can use policy evaluation to estimate
the expected cumulative reward of a policy and accurately measure the policy.
Policy evaluation enables us to evaluate the policy π by calculating the state
value function vπ (s) corresponding to this policy. In other words, given a policy
π, we can calculate the expected state value v(s) of each state s under the policy
and subsequently evaluate the policy according to the obtained values.

2. Policy improvement
Policy improvement allows us to act on the results we obtain through policy
evaluation, namely to find a better policy. After we calculate the state value
v(s) of the current policy by using policy evaluation, we then use the policy
improvement algorithm to further solve the calculated state value v(s) in order
to find a better policy.

3. Policy iteration
Policy iteration encompasses both policy evaluation and policy improvement.
In order to describe the policy iteration process, let us take policy π0 as an
example. We first use policy evaluation to obtain the state value function vπ0 (s)
of the policy and then use policy improvement to obtain a better policy π1. For
this new policy, we again use policy evaluation to obtain the corresponding state
value function vπ0 (s), and then, through policy improvement, we again obtain
a better policy π2. By performing these steps repeatedly, the policy iteration
algorithm nears the optimal state value v(s), enabling us to eventually obtain
the optimal policy π* and its corresponding state value function vπ∗ (s).

4. Value iteration



10.2 Basic Solution Method 223

The value iteration algorithm, in essence, is a more efficient version of the policy
iteration algorithm we just described. With this efficiency-optimized algorithm, all
states s are updated in each iteration according to the following formula:

vk+1(s) = max
a

∑

s ′, r

p(s ′, r |s, a)[r + γ vk(s
′)] (10.11)

where p(s’, r | s, a) is the probability that the environment transitions to the state
s’ and the reward r is obtained when the action a is performed in the state s.

The objective of value iteration is to maximize the probability of the state value.
After k + 1 rounds of iterations are performed, the maximum state value v(s) can be
assigned to vk+1(s) through the value iteration until the algorithm ends. We can then
obtain the optimal policy based on the state value v.

By using Formula (10.11), we are able to obtain the local optimal state value after
iteration of all states and subsequently obtain the local optimal policy based on the
local optimal state value. This iterative process continues until the local optimal state
value converges to the global optimal state value.

10.2.2 Monte Carlo Method

The Monte Carlo method is suitable for model-free tasks because it needs only to
collect the experience episode from the environment rather than requiring complete
knowledge of the environment. With this method, we use the calculated data of the
experience episode in order to obtain the optimal policy. Specifically, the Monte
Carlo method estimates the state value function based on the experience episode
mean, which refers to the cumulative discount return value G at the state s in a
single experience episode. Its value function is calculated according to the following
formula:

v(st ) ← v(st ) + a[Gt−v(st )] (10.12)

The Monte Carlo method is notable for the following four characteristics:

(1) It can learn the experience episode directly from the environment, that is, the
sampling process.

(2) It does not need to know the state transition probability P of the MDP in
advance, making this method suitable for model-free tasks.

(3) It uses a complete experience episode for learning and is an offline learning
method.

(4) It uses a simpler process to solvemodel-free reinforcement learning tasks based
on the assumption that the expected state value is equal to the average reward
of multiple rounds of sampling.



224 10 Deep Reinforcement Learning

10.2.3 Temporal Difference Method

The temporal difference method is mainly based on the difference data of time series
and includes an on-policy, represented by the Sarsa algorithm, and an off-policy,
represented by the Q-Learning algorithm.

1. Sarsa algorithm
The Sarsa algorithm is used to estimate the action value function q(s,a). Specif-
ically, it estimates the action value function qπ (s,a) for all possible actions in
any state s in policy π. The expression for this function is as follows:

q(st , at ) ← q(st , at ) + a[rt+1 + γ q(st+1, at+1)︸ ︷︷ ︸
Target

−q(st , at )

︸ ︷︷ ︸
Error

] (10.13)

where θ = rt+1 + γ q(st+1, at+1) is the temporal difference target, and.

θ-q(st , at) is the temporal difference error.
The name Sarsa is derived from the five variables needed for each update of the

action value function: current state s, current action a, environment feedback reward
r, state s’ of the next time step, and action a’ of the next time step. The algorithm
flow is as follows:

Algorithm 10.1 Sarsa algorithm
Input: Random state s

Output: Action value function q(s,a) 

(1) Initialization:

(2) Set q(s,a) to any value for any state s

(3) Repeat the experience episode 

(4) Initialize the state s 

(5) Perform the action a in state s according to the action value q

(6) Repeat the time step t in the experience episode 

(7) Perform the action a in state s according to the action value q

(8) Update the action value function: q(s,a)  q(s,a) +α [r + γq (s', a') – q(s,a)]

(9) Record the new state and the new action: s s', a a'

(10) Proceed until the state s ends

(11) Output the action value function q(s,a).

The Sarsa algorithm starts by initializing the action value function qwith a random
value and then samples the experience episodes iteratively. In collecting an experience
episode, the agent first selects and performs the action a in state s according to the
greedy policy. It then learns the environment and updates the action value function
q(s,a) until the algorithm ends.



10.2 Basic Solution Method 225

2. Q-Learning algorithm

In updating the action value function q(s,a), the Q-Learning algorithm adopts a
policy that differs from one used for selecting an action. The action value function
q(s,a) is updated as follows:

q(st , at ) ← q(st , at ) + a[rt+1 + γ maxq
a

(st+1, at )
︸ ︷︷ ︸

Target

−q(st , at )

︸ ︷︷ ︸
Error

] (10.14)

When the Q-Learning algorithm updates the Q value, the temporal difference
target is themaximumvaluemaxq

a
(st+1, at of the action value function,which is inde-

pendent of the policy used in the current selected action. This approach is different
from the Sarsa algorithm and means that the action value Q is usually optimal.

In many aspects, the Q-Learning algorithm is similar to Sarsa. However, once
the Q-Learning algorithm enters the cycle of repeating the experience episode and
initializes the state s, it directly enters the iteration phase of the experience episode
and then selects the action a’ in the state s’ according to the greedy policy. The
algorithm flow is shown in Algorithm 10.2.

Algorithm 10.2 Q-Learning algorithm
Input: Random state s

Output: Action value function q(s,a) 

(1) Initialization:

(2) Set q(s,a) to any value for any state s

(3) Repeat the experience episode 

(4) Initialize the state s

(5) Repeat the time step t in the experience episode 

(6) Perform the action a in state s according to the action value q

(7) Perform action a to obtain the reward and the state s' of the next time step 

(8) Update the action value function: 

(9) Record the new state: s s'
(10) Proceed until the time step Ts ends

(11) Output the action value function q(s,a).

Although the dynamic programming method can adequately represent the
Bellman equation, most reinforcement learning tasks in real-world applications are
model-free tasks, that is, only limited environmental knowledge is provided. The
Monte Carlo method based on sampling can solve the problem of reinforcement
learning tasks to some extent, and both the Monte Carlo and temporal difference
methods are similar in that they estimate the current value function based on the
sampled data. The difference between them lies in how they calculate the current



226 10 Deep Reinforcement Learning

value function: The former performs calculation only after the sampling is completed,
whereas the latter uses the boosting algorithm in the dynamic programming method
for calculation.

10.3 Deep Reinforcement Learning Algorithm

In order to improve the performance of reinforcement learning agents in practical
tasks, we need to employ all of the advantages deep learning offers, especially its
strong representation ability. Asmentioned earlier, deep reinforcement learning is the
combination of both deep learning and reinforcement learning, and this combination
lends itself to ensuring the agent has strong perception and decision-making abilities.

10.3.1 DQN Algorithm

The deep Q-Learning network (DQN) algorithm, proposed by Minh et al. at Google
DeepMind in 2013, was the first deep reinforcement learning algorithm to achieve
human-level performance playing a number of classic Atari 2600 games. For some
games, theDQNalgorithmeven exceededhumanperformance. Figure 10.2 compares
the effects of the DQN algorithm, which spawned a surge in research into deep
reinforcement learning.

The DQN algorithm introduces three key technologies: objective function, target
network, and experience replay. Through these technologies, the DQN algorithm can
implicitly learn the optimal policy based on the action value function.

1. Objective function
The DQN algorithm introduces a DNN, which is used to approximate the action
value function q(s,a) in high-dimensional and continuous state. However, before
using this approximation, we need to define the optimization objective of the
network (that is, the objective function of optimization, also called the loss
function). We also need to update the weight parameter of the model by using
other parameter learning methods.
In order to obtain an objective function that the DNN model can learn, the
DQN algorithm uses the Q-Learning algorithm to construct the loss function
that the network model can optimize. Using formula (10.14) as the basis, the
loss function of the DQN algorithm is as follows:



10.3 Deep Reinforcement Learning Algorithm 227

Video Pinball
Boxing

Breakout
Star Gunner

Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game

Krull
Assault

Road Runner
Kangaroo

James Bond
Tennis

Pong
Space Invaders

Beam Rider
Tutankham

Kung-Fu Master
Freeway

Time Pilot
Enduro

Fishing Derby
Up and Down

Ice Hockey
Q*Bert

H.E.R.O.
Asterix

Battle Zone
Wizard of Wor

Chopper Command
Centipede

Bank Heist
River Raid

Zaxxon
Amidar

Alien
Venture

Seaquest
Double Dunk

Bowling
Ms.Pacman

Asteroids
Frostbite
Gravitar

Private Eye
Montezuma’ s Revenge

DQN

Best Linear Learner

Better than or equal to 
human performance

Worse than human 
performance

Percentage of game scores (%)

G
am

e

4500006 00015004003002000 001

0
2
5

6
7
13
14

17

25
32
42
43

54
57

57

62
64

67
67

69

76
78
79
92
93

97

100
102
102
112
119
121
132
143
145

224
232

246
277

278
294

400
419
449
508
598

1327
1707

2539

Fig. 10.2 Comparison of the effects of the DQN algorithm [1]

L(θ) = E
[
(TargetQ−q(s, a, θ))2

]
(10.15)

where θ is the weight parameter of the DNN model; and
target Q is the target action value, where



228 10 Deep Reinforcement Learning

Target Q = r + γ maxq
a′

(s ′, a′, θ) (10.16)

Because the loss function in the DQN algorithm is determined based on the
Q-Learning algorithm update, the effect of Formula (10.14) is the same as that
of Formula (10.15); specifically, both formulas approximate the target value
based on the current prediction value.
After obtaining the loss function of the DQN algorithm, we can solve the weight
parameter θ of the DNN model’s function L(θ ) by using the gradient descent
algorithm in deep learning.

2. Target network
As we can see from Formula (10.15), the prediction value and target value use
the same parameter model in the Q-Learning algorithm. This means that the
prediction value increases with the target value, increasing the probability of
model oscillation and divergence.
In order to solve this problem, the DQN algorithm uses the historical network
parameter θ− to evaluate the value of the next time step of an experience sample.
It updates the historical network parameter θ− only in the offlinemulti-step time
interval to provide a stable training target for the network to be evaluated and
allows sufficient training time to mitigate any estimation errors.
Furthermore, the DQN algorithm uses two CNNs for learning: a prediction
network and a target network.

(1) Prediction network q(s, a, θ i): used to evaluate the value function of the
current state-action pair.

(2) Target network q(s, a,θ−
i ): used to generate the target action value (target

Q). The algorithm updates parameter θ belonging to the prediction
network according to the loss function in Formula (10.15). Then, after N
rounds of iterations, the algorithm copies this parameter to the parameter
θ− in the target network

By introducing the target network, the DQN algorithm ensures that the target
value remains unchanged for a certain period of time. It also reduces the corre-
lation between the prediction and target values to a certain extent and reduces
the possibility of oscillation and divergence occurring in the loss value during
training, thereby improving algorithm stability.

3. Experience replay
In deep learning tasks, each input sample data is independent of other samples,
meaning that there is no direct relationship between them. For example, images
A and B used as input in an image classification model are not directly related.
Conversely, in reinforcement learning tasks, the samples are often strongly
correlated and non-static. If we were to use correlated data directly to train
the DNN, the loss value would fluctuate continuously during training, making
it difficult to achieve model convergence.



10.3 Deep Reinforcement Learning Algorithm 229

To solve this problem, the DQN algorithm introduces the experience replay
mechanism. This mechanism allows experience sample data—obtained through
interaction between the agent and environment at each time step—to be stored in
an experience pool. Subsequently,when network training needs to be performed,
a mini-batch of data is selected from the experience pool for retraining. Such
a mechanism offers a number of advantages: (1) facilitates the backing up of
reward data; (2) helps remove the correlation and dependence between samples,
because mini-batches of random samples can be obtained; (3) reduces the
deviation of value function estimation after function approximation; (4) solves
the problems of data correlation and non-static distribution; and (5) facilitates
network model convergence.
Due to the use of this mechanism, the DQN algorithm stores a large amount
of historical experience sample data, using the following quintuple format for
storage:

(
s, a, r, s ′, T

)
(10.17)

This quintuple indicates that the agent performs action a in state s, enters the
new state s’, and obtains the corresponding reward r. Here, T is a Boolean value
that indicates whether the new state s’ is the end state.
After performing any time step in the environment, the agent stores the obtained
experience data in the experience pool. Subsequently, the agent randomly selects
a mini-batch of experience sample data from this pool after performingN steps.
Based on the experience sample data, the DQN Formula (10.15) is executed to
update the Q function.
The experience replay mechanism, despite its simplicity, effectively removes
the correlation and dependence between samples. In so doing, it allows theDNN
to obtain an accurate value function in reinforcement learning tasks.

4. Algorithm flow
The DQN algorithm uses a deep CNN with the weight parameter θ as the
network model of the action value function and simulates the action value
function qπ (s, a) by using the CNN model q(s, a, θ ), that is,

q(s, a, θ) ≈ qπ (s, a) (10.18)

This means that we can define the object function, based on the mean square
error, as the loss function of the deep CNN.

Li (θi ) = E[(r + γ max q
a′

(s ′, a′, θ i ) − max q
a

(s, a, θ i )
2] (10.19)

where a’ is the action value of the next time step, and
s’ is the state value of the next time step.
From Formula (10.19), we can see that the Q-Learning algorithm mainly uses
the updated Q value as the target value for training. Conversely, in the DQN



230 10 Deep Reinforcement Learning

algorithm, the target Q value is predicted by the target network, and the current
Q value is predicted by the prediction network. Subsequently, the mean square
error algorithm is used to calculate the temporal difference error in the Q-
Learning algorithm.
Using Formula (10.19) as the basis, we calculate the gradient of the deep CNN
model parameter θ as follows:

∇θ i Li (θ i ) = E[(r + γmaxq
a′

(s ′, a′, θ i ) − maxq
a

(s, a, θ i ))∇θi (s, a, θ i )]
(10.20)

To optimize the objective function, we implement the CNN model by using the
mini-batch stochastic gradient descent algorithm. The CNN then calculates ∇θ i

(s, a, θ i) in order to obtain the optimal action value (Q value).
The application scope of the DQN algorithm is limited, as it can deal with
only discrete-control reinforcement learning tasks. In order to overcome these
limitations, a number of DQN algorithm variants, such as Double DQN and
Dueling DQN, have been proposed.
The specific flow of DQN algorithm version 2015 is described below.

Two CNNs are used: The prediction network q(s, a, θ i) is used to evaluate the
current action function, and the target network q(s, a,θ−

i ) is used to calculate the target
value. The DQN algorithm updates the parameters of the target network according
to the loss function and after C rounds of iterations assigns the relevant parameters
of the prediction network to the target network.

Algorithm 10.3 DQN algorithm version 2015



10.3 Deep Reinforcement Learning Algorithm 231

Input: Prediction network and target network 

Output: Target network 

(1) Initialize the experience pool , which stores a maximum of N experience samples 

(2) Initialize the prediction network with the weight parameter 

(3) Initialize the target network with the weight parameter =

(4) Repeat the experience episodes 1 to M times 

(5) Initialize the state s1, and calculate the input sequence 1 = (s1) 

Repeat the time steps from 1 to T in the experience episode 

(6) Select the random action at based on the probability ε

Select the action at based on the probability 1-ε according to 

(7) Perform action at to obtain the reward rt and the state image frame xt+1

(8) Let st+1 = st, xt+1, and calculate the input sequence for the next time step: 

(1.21)

(9) Store the experience samples ( t, at, rt, t+1) in the experience pool 

(10) Obtain a mini-batch of random sample data ( t, at, rt, t+1) from the experience 

pool 

(11) Set yi: 

(1.22)

(12) Update the network parameter θ in the loss function (yi - q ( j, aj, ))2 by using 

the gradient descent algorithm 

(13) Re-assign q = q every C steps. 

10.3.2 DDPG Algorithm

The deep deterministic policy gradient (DDPG) [2] algorithm, proposed by Lillicrap
et al. in 2015, widens the application scope of the DQN algorithm, allowing it to be
used for reinforcement learning tasks with continuous action spaces rather than only
those tasks with discrete actions. To better understand the DDPG algorithm, we must
first explore its constituent parts.

1. Policy gradient algorithm [3]
The policy gradient (PG) algorithm explicitly expresses the optimal policy of
each time step by using the policy gradient probability distribution function
π θ (st | θπ). To obtain the optimal action value a∗

t of the current time step,



232 10 Deep Reinforcement Learning

the agent samples the action at each time step t according to the probability
distribution.

a∗
t ∼ πθ (st |θπ ) (10.23)

The optimal action is generated through a random process, meaning that the
policy distribution function πθ (st | θπ) learned by the policy gradient algorithm
is a stochastic policy.

2. Deterministic policy gradient algorithm [4]
One of the major weaknesses in the policy gradient algorithm is its inefficiency
in terms of policy evaluation. Once the algorithm learns the stochastic policy,
the agent can obtain a specific action value only after sampling actions at each
time step according to the optimal policy probability distribution function. This
consumes a great deal of computing resources, because the agent performs
sampling in high-dimensional action space at each time step.
To address this inefficiency, David Silver—in 2014—explored the possibility
of using the deterministic policy gradient (DPG) algorithm to quickly and effi-
ciently solve reinforcement learning tasks with continuous actions. For the
action of each time step t, the action value is determined by the function μ.

a∗
t ∼ μθ (st |θμ) (10.24)

where μ is the optimal action policy, which is a stochastic policy obtained
without sampling.

3. Deep deterministic policy gradient algorithm
In 2016, Lillicrap et al. pointed out that theDDPGalgorithm fuses theDNNwith
the DPG algorithm and uses the actor-critic algorithm as the basic architecture
of the algorithm. The DDPG algorithmmakes the following improvements over
the DPG algorithm:

(1) Uses the DNN as a function approximation
The DNN is used as an approximation of the policy function μ(s; θμ)
and of the action value function q(s, a; θq). To train the parameters in
these two neural network models, the stochastic gradient descent algo-
rithm is used. With the accuracy, efficiency, and convergence of nonlinear
approximation policy functions, deep reinforcement learning can deal
with deterministic policy problems.

(2) Introduces an experience replay mechanism
When actors interact with the environment, the resulting state tran-
sition sample data is chronologically correlated. With the experience
replay mechanism of the DQN algorithm, the correlation and dependence
between samples are removed. Furthermore, the deviation of value func-
tion estimation is reduced after the approximation of function. This effec-
tively solves the problem of independently identically distribution (i. i. d)
and allows the algorithm to converge more easily.



10.3 Deep Reinforcement Learning Algorithm 233

(3) Uses a dual-network architecture

For both the policy function and value function, the dual-DNNarchitecture is used,
which includes the policy target network μ’(s;θμ′

), policy online network μ(s; θμ),
value online network q(s; θq), and value target network q’(s;θq ′

). Such an architecture
speeds up the algorithm’s convergence and achieves a stable learning process.

10.3.3 A3C Algorithm

Based on the idea of asynchronous reinforcement learning, Minh et al. proposed
a lightweight deep reinforcement learning framework called asynchronous advan-
tage actor-critic (A3C) [5]. This framework uses the asynchronous gradient descent
algorithm to optimize the deep network model and employs several reinforcement
learning algorithms in order to perform fast, CPU-based policy learning during deep
reinforcement learning. The A3C algorithm is a combination of the advantage actor-
critic algorithm and the asynchronous algorithm, both of which are described as
follows.

1. Advantage actor-critic algorithm
The actor-critic algorithm combines the advantages of two algorithms: value-
based reinforcement learning, which is used as a critic, and policy-based rein-
forcement learning, which is used as an actor. When the critic network is
updated, the concept of advantage function is introduced to evaluate the output
action of the network model. In so doing, deviation in the evaluation of the
policy gradient is reduced.
The A3C algorithm combines the advantage function and the actor-critic algo-
rithm and uses two network models: one to approximate the value function
v(s), used to judge the quality of a state; the other to approximate the policy
function π (s), used to estimate the probability of a set of output actions.

(1) Value-based learning—critic
In reinforcement learning based on value function approximation, the DNN
can be used as the approximation function of the value function, where w is
the weight parameter of the network model.

q(s, a) ≈ q(s, a;w) (10.25)

The loss function of the DQN algorithm is as follows:

L(wi ) = E[(TargetQ−q(s, a;wi ))
2] (10.26)

where target Q is the target action value:

Target Q = r + γmaxQ
a′

(s ′, a′;w−
i ) (10.27)



234 10 Deep Reinforcement Learning

The loss function in Formula (10.25) is based on the single-step Q-Learning
algorithm. This means that only the state of the next time step is considered
during calculation of the target action value, having an adverse effect directly
or indirectly. Specifically, it only directly affects the value of the state-action
pair that produces the reward r and can only indirectly affect other state-action
pairs based on the action value function. The result of this is a decrease in the
algorithm’s learning rate.
In order to quickly propagate the reward, we can use the multi-step Q-Learning
algorithm, where “multi-step” refers to the states of the subsequent n steps.

Target Q = rt + γ rt+1 + ... + γ n−1rt+n−1 + γ nmaxQ
a

(st+n, a)

The main advantages of this approach are that the previous n state-action pairs
can be directly affected by the reward r, the historical experience can be better
simulated, and the learning efficiency of the algorithm can be significantly
improved.

(2) Policy-based learning—actor
In policy-based reinforcement learning, the DNN is used as the approximation
function of the policy function, where θ is the weight parameter of the policy
network model.

π(s, a) ≈ π(a|s; θ) (10.29)

The A3C algorithm uses policy iteration to update the weight parameter θ in
the network. Because the goal of the policy function is to maximize the reward,
we can calculate the expected reward by using the gradient ascent algorithm.
The formula for updating the policy gradient is as follows:

∇θE[rt ] = ∇θ logπ(at |st ; θ)rt (10.30)

where π (at | st ; θ ) is the probability of selecting action at in state st ; and
∇θ logπ (at | st; θ )rt means that the logarithm of the probability is multiplied
by the reward rt of the action, and the weight parameter θ is updated by using
the gradient ascent algorithm.
Formula (10.28) indicates that an action with a higher reward expectation is
more likely to be selected. However, assuming that each action has a positive
reward, the probability of outputting each action will increase continuously
with the gradient ascent algorithm, leading to a significant reduction in the
learning rate while increasing the gradient variance. In order to reduce the
gradient variance, we can standardize Formula (10.30) as follows:

∇θ logπ(at |st ; θ)(rt−bt (st )) (10.31)



10.3 Deep Reinforcement Learning Algorithm 235

where bt(st) is a baseline function, which is set to the estimated reward rt . The
gradient is calculated to update the parameter θ. When the total reward exceeds
the baseline, the probability of the action increases; conversely, the probability
decreases when the reward falls below the baseline. In both cases, the gradient
variance will be reduced.
The estimated variance can be reduced and kept unbiased by deducting the
baseline function bt(st) from the reward rt in order to learn the policy function.

(3) Advantage function.

The advantage function is modified based on the loss function of the actor-critic
algorithm, allowing it to estimate the action value more accurately according to the
reward.

During a policy gradient update, the agent learnswhich actions are good andwhich
ones are bad based on the discounted reward rt used in the update rule. Subsequently,
the network is updated to determine the quality of the action. The function is the
advantage function A(st , at):

A(st , at ) = q(st , at )−v(st ) (10.32)

Referring back to Formula (10.31), we can regard the discounted reward rt as
an estimate of the action value function q(st , at) and regard the baseline function
bt(st) as an estimate of the state value function (st). This means that we can replace
rt−bt(st) with an action advantage function, as follows:

rt ≈ qπ (st , at ) (10.33)

bt (st ) ≈ vπ(st ) (10.34)

From Formula (10.32), we can use q(st , at)−v(st) to evaluate the value of the
current action value function relative to the mean value. This is because the state
value function v(st) is the expected action probability of all the action value functions
in the state of the time step t, and the action value function q(st , at) is the value
corresponding to a single action.

Although the A3C algorithm does not directly determine the action value Q, it
uses the discounted cumulative reward R as the estimate of the action value Q. As a
result, we are able to obtain the advantage function, as follows:

A(st , at ) = R(st , at )−v(st ) (10.35)

2. Asynchronous algorithm

The DQN algorithm uses an agent, represented by a single DNN, to interact
with the environment, whereas the A3C algorithm uses multiple agents to interact
with the environment and thereby achieve greater learning efficiency. As shown in



236 10 Deep Reinforcement Learning

Global network

Policy Value

Network 
model

Input state

Input state

Network 
model

ValuePolicy PolicyPolicy Value Value

Network 
model

Network 
model

Input state Input state

Worker 2Worker 1 Worker n

Environment nEnvironment 2Environment 1

Fig. 10.3 A3C asynchronous architecture

Fig. 10.3, the main components of the A3C asynchronous architecture are environ-
ments, workers, and a global network, where each worker functions as an agent
to interact with an independent environment and uses its own DNN model. In this
architecture, different workers simultaneously interact with the environment, and
executed policies and learned experiences differ among the workers. As a result, this
multi-agent asynchronous approach offers faster and more effective operation along
with greater diversity than a single worker approach.

The flow of the A3C algorithm is asynchronous, as shown in Fig. 10.4. From the
figure, we can see that each worker replicates the global network as a parameter of
its own DNN model (1). Then, each agent uses multiple CPU threads to allocate
tasks, and different workers use the greedy policy with different parameters in order
to ensure that they obtain different experiences (2). Next, each worker calculates its
own value and policy loss (3). Based on the calculation results, each worker then
calculates the gradient by using the loss function (4). Finally, eachworker updates the
parameters of the global network, that is, each thread updates the learned parameters
to the global network (5). This flow is repeated until the ideal network parameters
are learned.



10.4 Latest Applications 237

5. The worker updates 
parameters of the global 

network

1. The worker copies 
the global network

2. The worker interacts 
with the environment

3. The worker 
calculates the value 
and the policy loss

4. The worker calculates 
the gradient based on the 

loss function

Fig. 10.4 Flow of the asynchronous algorithm

10.4 Latest Applications

10.4.1 Recommendation System

In recent years, Internet companies such as Facebook, Alibaba, JD.com [6], and
Tencent have begun to explore how they can use and implement deep reinforcement
learning in their recommendation systems. For example, Zheng et al. [7] used deep
reinforcement learning to address the recommendation variability problem in the
news field, and Chen et al. [8] from Alibaba used model-based deep learning in
recommendation systems, the latter of which we discuss below.

Those who implement recommendation systems typically do so using a loss func-
tion to evaluate amodel that canminimize the difference between themodel’s predic-
tion result and the user’s immediate response. In other words, the typical recommen-
dation system model does not explicitly consider users’ long-term interests, which
may vary over time depending on what they see. Furthermore, such changes may
have a significant influence on the behavior of the recommenders.

Chen pointed out that, in the recommendation system, solving high sample
complexity of a model-free task is performed more reliably by using model-based
deep reinforcement learning. As shown in Fig. 10.5, the recommendation system
framework uses a unified minimax framework to learn a user behavior model and
related reward functions and subsequently uses this model to learn the policy of deep
reinforcement learning.

Specifically, this framework uses the generative adversarial learning network to
simulate the dynamic behavior of users and learn its reward function. User behavior
and rewards can be evaluated using theminimax algorithm. As a result, we are able to
obtain a more accurate user model, as well as a method for learning a reward function
that is consistent with the user model. Such a reward function can also strengthen
the learning task compared with an artificially designed one. Furthermore, this user
model enables researchers to execute model-based reinforcement learning tasks for
new users, thereby achieving better recommendation results.



238 10 Deep Reinforcement Learning

Fig. 10.5 Interaction between a user and a recommendation system

To obtain a combined recommendation policy, researchers developed a cascading
DQN algorithm that not only identifies the optimal subset of objects from many
potential candidates, by using the cascading design of the action function, but also
significantly reduces the computational difficulty because the time complexity of
the cascading function is linearly related to the number of candidates. Figure 10.6
compares such effects of the DQN algorithm.

In terms of held-out likelihood and click prediction, experimental results show
that the GAN model is a better fit for user behavior. Based on the user model and
the reward learned, researchers found that evaluating the recommendation policy
provides users with better long-term cumulative rewards. Furthermore, in the case of
model mismatch, the model-based policy can quickly adapt to the dynamic changes
of user interests.

10.4.2 Gambling Game

In 2018, Wu et al. [9] from Tencent released the Honor of Kings AI based on rein-
forcement learning for group gaming. The algorithm used five independent Honor
of Kings agents, pitted against five human players, to play 250 games, 48% of which
the algorithm won.

StarCraft is another game that also uses reinforcement learning. Because it
involves a large observation space, huge action space, partial observations, simul-
taneous multi-player moves, and long-term local decision-making, researchers have
found this game to be of significant interest. For example, Sun et al. [10] in Tencent



10.4 Latest Applications 239

(a) Position weights

(b) LSTM parameterization model architecture

Weight 
matrix

concat

f t-m
* f t-1

* ht-1

f t
i

r t
i

wm1 wmn

w11 w1n

LSTM

LSTM

LSTM

f t-m
*

f t-m+1
*

f t-1
* ht-1=st f t

i

ht-m+1

ht-m

r t
i

(c) Cascading Q network

Argmax Argmax Argmax

a*
1 a*

2 a*
k

Q1(s, a1; θ1) Q2(s,a1,a2;θ2)* Qk(s,a2:k-1,ak;θk)*

a1 a2 ak s

Fig. 10.6 Comparison of the effects of the DQN algorithm

AI Lab developed an AI agent capable of defeating the built-in AI agents in the full
game of StarCraft II, including the cheating agents at levels 8, 9, and 10, by using
reinforcement deep learning. Of note is that the built-in AI at level 10 is estimated to
be equivalent to the top 30–50% of human players according to the Battle.net League



240 10 Deep Reinforcement Learning

ranking system.DeepMindhas also exploredStarCraft, using themeta-reinforcement
learning (Meta-RL) [11] algorithm to play the game and achieving excellent results.

Against this backdrop, we can see that deep reinforcement learning has become
increasingly popular in gaming over the past few years. Taking AlphaGo Zero as an
example, we proceed to describe the use of deep reinforcement learning in the board
game Go.

AlphaGo [12], the predecessor to AlphaGo Zero, learns how to play by observing
human play. AlphaGo Zero [13] skips this step. Instead, it learns by playing itself,
starting from scratch. The AlphaGo Zero algorithm begins with a DNN that, except
for the game rules, lacks any understanding of how to play Go. It proceeds to learn
the game by combining the DNN with the search algorithm to play against itself,
during which the DNN continuously adjusts and upgrades its parameters in order to
predict the probability of each move as well as the final winner.

Asmentioned already,AlphaGoZero has no background knowledge ofGo, except
the rules. It uses only one neural network, differing from AlphaGo, which includes
two DNNs: One, called the policy network, evaluates the possibility of the next move
based on numerous human games, and the other, called the value network, evaluates
the current situation.

AlphaGo Zero uses the Monte Carlo tree search algorithm to generate games that
it uses as training data for the DNN. A 19 × 19 Go board is used as the input in
the DNN, while the output is based on the probability of the next move and the win
rate (the difference between the two is the loss). Through ongoing execution of the
Monte Carlo tree search algorithm, the probability of the move and the win rate will
eventually stabilize, and the accuracy will increase as training continues. Next, we
will describe the AlphaGo Zero algorithm.

1. Reinforcement learning process

Figure 10.7 shows the self-play process of the algorithm for the time steps s1 to
sT. In each state st , the last network f θ is used to execute the Monte Carlo tree search
algorithm once in order to obtain the corresponding action aθ . The action is selected
according to the search probability calculated by using the Monte Carlo tree search

s1
α1–π1

s2
α2–π2 αt–πt

s3 sT

π2π1 π3 z

Fig. 10.7 Self-play process of AlphaGo Zero



10.4 Latest Applications 241

s1

p1

s2

v1

s3

fθ

π2π1 π3

z

fθfθ

p2 v2 p3 v3

Fig. 10.8 Neural network training process of AlphaGo Zero

algorithm, that is, at to π t . After reaching the end state sT , the algorithm determines
the winner z and the reward according to the rules of the game.

Figure 10.8 shows the neural network training process of AlphaGo Zero. The
network uses the original Go board state st as the input and outputs two channels
of data through multiple convolution operations. One of these channels is vector pt ,
which indicates the probability distribution of the moves in the Go game; the other
channel is scalar vt , which represents the win rate of the player in the current game
st . The error between the predicted winner vt and the actual winner z is calculated
based on the similarity between the maximization policy vector pt and the search
probability π t . The neural network model parameter θ is updated automatically, and
the new parameters will be applied to the next round of self-play.

2. Monte Carlo tree search process

As alreadymentioned, AlphaGo Zero uses theMonte Carlo tree search algorithm.
Figure 10.9 shows the algorithm process, which is subsequently described.

(1) For each branch selected through simulation, the largest Q + U is selected,
whereQ is the action value, andU is the upper confidence limit.U depends on
the priority probability p stored on the branch and the number of access times
N to the branch of the search tree.

(2) The leaf node is extended, the neural network (p, v)= f θ is used to evaluate the
state s, and the value of vector p is stored on the extended edge corresponding
to the state s.

(3) The action value Q is updated based on the value v and reflects the mean value
of the subtrees of all actions.



242 10 Deep Reinforcement Learning

(1) Selection (2) Extension and evaluation

Repeat
(3) Backtracking (4) Moving

Q+UQ+U

Q+UQ+U

v

v v

p p

p p

p p
(p, v)=fθ

q q

v v
q q

vv

αθ

π

Fig. 10.9 Monte Carlo tree search process of AlphaGo Zero

(4) Once the search is completed, the search probability π is returned. The number
of remaining searches is directly proportional to N1/τ , where N is the number
of access times to each branch, and τ is the control parameter.

10.5 Implementing DQN-Based Game Using MindSpore

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

References

1. V. Mnih, K. Kavukcuoglu, D. Silver et al., Playing atari with deep reinforcement learning,
(2013). [2019–11–10] https://arxiv.org/pdf/1312.5602.pdf

2. T.P.Lillicrap, J.J. Hunt, A. Pritzel et al., Continuous control with deep reinforcement learning,
(2015). [2019–11–10] https://arxiv.org/pdf/1509.02971.pdf

3. R.S. Sutton, D.A. McAllester, S.P.Singh et al., Policy gradient methods for reinforcement
learning with function approximation. in Advances in Neural Information Processing Systems
(2000), pp. 1057–1063

4. D. Silver, G. Lever, N. Heess et al., Deterministic policy gradient algorithms,
(2014). [2019–11–10] http://xueshu.baidu.com/usercenter/paper/show?paperid=43a8642b8
1092513eb6bad1f3f5231e2&site=xueshu_se

5. V. Mnih, A.P. Badia, M. Mirza et al., Asynchronous methods for deep reinforcement learning.
in International Conference on Machine Learning (2016), pp. 1928–1937

https://mindspore.cn/resource
https://arxiv.org/pdf/1312.5602.pdf
https://arxiv.org/pdf/1509.02971.pdf
http://xueshu.baidu.com/usercenter/paper/show%3Fpaperid%3D43a8642b81092513eb6bad1f3f5231e2%26site%3Dxueshu_se


References 243

6. X. Zhao, L. Zhang, Z. Ding et al., Deep reinforcement learning for list-wise recommendations,
(2017). [2019–11–10] https://arxiv.org/pdf/1801.00209.pdf

7. G. Zheng, F. Zhang, Z. Zheng et al., DRN: a deep reinforcement learning framework for news
recommendation. in Proceedings of the 2018WorldWideWeb Conference. International World
Wide Web Conferences Steering Committee, (2018), pp. 167–176

8. X. Chen, S. Li, H. Li et al., Generative adversarial user model for reinforcement learning
based recommendation system. in International Conference on Machine Learning (2019),
pp. 1052–1061

9. B. Wu, Q. Fu, J. Liang et al., Hierarchical macro strategy model for MOBA game AI, (2018)
[2019–11–10] https://arxiv.org/pdf/1812.07887.pdf

10. P. Sun, X. Sun, L. Han et al., TStarBots: defeating the cheating level builtin AI in starCraft II
in the full game, (2018). [2019–11–10] https://arxiv.org/pdf/1809.07193.pdf

11. J.X. Wang, Z. Kurth-Nelson, D. Kumaran et al., Prefrontal cortex as a meta-reinforcement
learning system. Nat. Neurosci. 21(6), 860 (2018)

12. D. Silver, A. Huang, C.J. Maddison et al., Mastering the game of go with deep neural networks
and tree search. Nature 529(7587), 484 (2016)

13. D. Silver, J. Schrittwieser, K. Simonyan et al., Mastering the game of go without human
knowledge. Nature 550(7676), 354 (2017)

https://arxiv.org/pdf/1801.00209.pdf
https://arxiv.org/pdf/1812.07887.pdf
https://arxiv.org/pdf/1809.07193.pdf


Chapter 11
Automated Machine Learning

Over the past few decades, machine learning has been the subject of extensive
research and application. In fields such as speech recognition [1], image recogni-
tion, and machine translation [2, 3], for example, deep learning has witnessed signif-
icant achievements. Yet despite this, the application of machine learning in real-
world scenarios remains a challenging feat. Conventional machine learning [4–6]
relies heavily on human expertise to preprocess data, extract effective features, and
select suitable algorithms and hyperparameters for model training. And although
deep learning does not require manual extraction of features, it too relies on
human expertise. Specifically, experts need to account for different hardware devices
(GPU, TPU, and NPU) and different performance constraints (latency and memory)
when designing neural network architectures. In order to reduce the dependence
on expertise and avoid manual deviation, automated machine learning (AutoML)
emerges.

11.1 AutoML Framework

AutoML automates the end-to-end process of applying machine learning to real-
world scenarios, automatingdata annotation, data preprocessing, feature engineering,
model selection, and hyperparameter tuning, as shown in Fig. 11.1. Significant differ-
ences exist between conventionalmachine learning and deep learning in terms of data
preprocessing, feature engineering, and model selection. For example, conventional
machine learning needs to preprocess original data into a standardized structure
through data cleaning, integration, and transformation. Conversely, deep learning
does not require data preprocessing (but still needs data annotation), because it uses
homogeneous unstructured data, such as images and audio. In conventional machine
learning, feature engineering includes extraction, cleaning, selection, and dimen-
sion reduction, and model selection selects optimal models from numerous algo-
rithms or generates enhanced hybrid models by using an ensemble learning method.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_11

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_11&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_11


246 11 Automated Machine Learning

Automated machine learning

Data Features Model Hyperparameters

Conventional automated machine learning

Automated data
preprocessing

Automated 
feature

engineering
Automated 

model selection

Automated 
hyperparameter

tuning

Automated network structure searchAutomated 
data annotation

Automated deep learning

Fig. 11.1 Basic framework for automated machine learning

Feature engineering and model selection are independent of each other in conven-
tional machine learning, whereas they are combined in deep learning, where they
mainly depend on the structural design of the neural network, including the use of
operators and spatial arrangement.

AutoML also employs NAS and automated hyperparameter tuning. The NAS
algorithm automates the design of neural network architectures that meet specific
requirement through reinforcement learning [7–9], evolution of algorithms [10, 11],
and gradient methods [12–14]. Used extensively in fields such as computer vision
(including image classification, object detection [15], semantic segmentation [16,
17], and image super resolution [18]), NLP [19], and graph neural networks [20],
this algorithm can determine the neural network architecture. However, the resulting
architecture requires many hyperparameters to be set in advance, including the
learning rate, weight decay, and number of training cycles. As research has shown,
the settings of these hyperparameters directly affect the accuracy of the model as
well as the training and inference speed. In order to automate the search and tuning
of hyperparameters in a given scenario, we can use the grid search, random search,
or Bayesian optimization algorithm.

The commercial application ofAutoMLhas been successful, with companies such
as Google, Microsoft, Oneclick, Baidu, 4Paradigm, and WISUTECH launching a
range of AutoML products. For example, Google’s use of AutoML in its cloud
platform enables users with limited expertise to train high-quality deep learning



11.1 AutoML Framework 247

Dataset AutoML Using REST API to 
generate prediction

Training Deployment Service

Fig. 11.2 Operating principle of Google AutoML1

Search space Search policy

Architecture A

Performance 
prediction of A

Performance 
evaluation

A

A

Fig. 11.3 Basic flow of the NAS algorithm

models, as shown in Fig. 11.2. As mentioned earlier, the NAS algorithm and auto-
mated hyperparameter tuning are key technologies in AutoML. This section focuses
on these two technologies.

11.1.1 NAS Algorithm

TheNASalgorithmconsists of three components, namely search space, search policy,
and performance evaluation, as shown in Fig. 11.3. The search space defines the
types of neural networks that the algorithm can design and optimize; the search
policy defines how to generate the optimal network structure in the search space;
performance evaluation analyzes performance metrics, such as the precision and
latency of the identified neural network architecture, based on training and validation
datasets.

Through an ongoing process of optimizing the search policy based on results of
performance evaluation, we are able to obtain an optimal network structure. Yet our
pursuit of optimal performance is limited by computing resources and time costs.
In recent years, researchers have focused on optimizing the NAS algorithm in order
to minimize resource consumption while ensuring performance. Such optimizations
include narrowing the search space for specific tasks based on prior knowledge.
In addition, we can employ weight sharing to avoid the need for standard training

1 Reference website: https://cloud.google.com/automl/.

https://cloud.google.com/automl/


248 11 Automated Machine Learning

and validation processes, thereby reducing the time costs of performance evalua-
tion. In the remainder of this section, we describe each of the three NAS algorithm
components in turn.

1. Search space

The search space not only defines the types of neural networks that the NAS
algorithmcan design and optimize, asmentioned earlier, but also restricts the network
architecture and affects the result of the algorithm. In most cases, the search space
is based on either an entire network or a cell.

In the search space based on an entire network, the common types of architecture
are chain and multi-branch networks. A chain network is the simplest of the two,
where the output of one layer is used as the input of the subsequent layer, as shown in
Fig. 11.4a. Before establishing a chain network, we first need to define the network
size (that is, the number of layers) and then define the operations at each layer,
for example, 3 × 3 convolution or 3 × 3 pooling. For a simple chain network, the
search space is small and easy to examine, but this compromises the algorithm’s
ability to search freely. In order to address this problem, the NAS algorithm adds the

(a) Chain structure (b) Multi-branch structure with skip 
connections

Input

Output

Ln-1

Ln

L0

L1

Input

Output

L0

L2

L1

L3

L5

L7

L4

L6

L8 L9

L10

Fig. 11.4 Neural network architectures with different connection types2

2 Source: https://arxiv.org/pdf/1808.05377.pdf.

https://arxiv.org/pdf/1808.05377.pdf


11.1 AutoML Framework 249

multi-branch network architecture to the search space. This architecture, as shown
in Fig. 11.4b, involves skip connections, making it more complex. Similar to a chain
network, a multi-branch network uses the output of one layer as the input of the
subsequent layer, but it also allows one layer to establish a skip connection with a
previous layer and use its output as the input. Furthermore, each layer in the search
space can accept more than one input. To define the search space, it is first necessary
to add parameters such as anchor points (which are used to indicate skip connections)
defining how the network is connected. While the multi-branch network increases
the search space of the algorithm, it also inevitably increases the search complexity.

In the cell-based search space (seeFig. 11.5), the algorithmdetermines the network
architecture by stacking cells (normal and reduction cells, which generally include
operations such as convolution and pooling) according to a predefined structure.
In a normal cell, the input dimension remains unchanged, whereas in a reduction
cell, this is reduced for output. The cell-based search space improves the network’s
ability to migrate to different tasks and datasets in addition to reducing the search
space and the search complexity. For example, Zoph et al. successfully migrated the

(a) Two different cell structures: normal
cell (top) and reduction cell (bottom) 

(b) Neural network architecture
constructed by stacking cells sequentially 

Input

Output

Output

Input

Input

Output

Fig. 11.5 Cell-based search space3

3 Source: https://arxiv.org/pdf/1808.05377.pdf.

https://arxiv.org/pdf/1808.05377.pdf


250 11 Automated Machine Learning

cell structure used on CIFAR-10 to ImageNet and achieved results that surpassed
the previous best at that time on the ImageNet dataset. The cell-based search method
is also used in other fields such as object detection [15] and semantic segmentation
[17]. Ghiasi et al. [15], for example, generated the object detection network based
on the cell structure used in the feature pyramid network (FPN), and Liu et al. [17]
generated the semantically segmented network by searching for the cell structure of
atrous spatial pyramid pooling (ASPP).

2. Search policy

Since both network-wide and cell-based search spaces are large, it is impractical
to traverse the entire search space. Even in the same search space, the results from
different search policies, which also affect the algorithm result, may vary due to
limited computing resources. In order to address these concerns, we need to update
the search framework and quickly find the globally optimal solution, rather than a
locally optimal one. The key to this hinges on us using the feedback information
effectively.

Zoph et al. [7] took a novel approach by using reinforcement learning on CIFAR-
10 and PTB datasets. The NAS has subsequently become an area of focused research
in machine learning after achieving competitive results, driving the use of rein-
forcement learning, evolutionary learning, and gradient-based approaches in neural
network search.Yet despite this, theNASalgorithmproposedbyZophet al. consumes
a great deal of computing resources, something that the industry is keen to address
in addition to improving the accuracy of network models.

In reinforcement learning, an agent performs continuous sampling in the opera-
tion space to sequentially generate network architecture parameters. The algorithm
determines the network architecture after sampling is complete, and the validation set
returns the accuracy of the current network architecture to the agent as a bonus value,
thereby updating agent parameters in order to improve the selection of operations
during sampling. Zoph et al. achieved this by using an RNN as an agent to control
the generation of network architectures, so that we can simplify the explanation. Let
us take the generation of a neural network including only the convolution layer as
an example. An RNN agent sequentially generates the convolution hyperparameters
for each layer, including the number of convolution kernels, the height and width
of each convolution kernel, and the longitudinal and horizontal strides, as shown in
Fig. 11.6.

Specifically, the network generation process of the RNN is defined as a continuous
action a1:T , and the reward value J(θ c) of the algorithm is defined as follows:

J (θc) = EP(a1: T ; θc)[R] (11.1)

where θ c is an RNN parameter;
P is the probability that the RNN selects the current network architecture after T
steps; and
R is the accuracy of the current network architecture in the validation set.



11.1 AutoML Framework 251

Number of 
convolution 

kernels

Height of 
convolution 

kernel

Width of 
convolution 

kernel

Longitudinal 
stride

Horizontal 
stride

Number of 
convolution 

kernels

Height of 
convolution 

kernel

Layer N-1 Layer N Layer N+1

Fig. 11.6 Network sequence generated by the RNN agent4

BecauseR is indifferentiable, the policy gradient∇θc J (θc) is used in the algorithm
to update θ c:

θc′ = θc + η∇ J (θc) (11.2)

∇θc J (θc) =
T∑

t=1

EP(a 1: T ; θc)

[∇θc log P
(
at |a(t−1):1; θc

)
R
]

(11.3)

where η is the learning rate.
In different reinforcement learning NAS algorithms, the definition and optimiza-

tion methods of search policies are different. For example, Zoph et al. used the policy
gradient to updateRNNparameters,whereasBaker et al. used theQ-Learningmethod
to control the generation of the network architecture.

In the approach used by Zoph et al., the network architecture is searched from
scratch. To address this, Cai et al. proposed the concept of network morphism, in
which the algorithm uses the existing network architecture as the starting point to
obtain the new architecture through morphism. Because network morphism reuses
existing parameters, it can reduce the training time significantly. To define the agent,
the network morphism algorithm uses reinforcement learning. Specifically, the oper-
ation space of the agent is defined as follows: changing the depth and width of the
network and using the accuracy of the network architecture in the validation set
as the reward value to update the agent’s parameters. The main advantages of the
network morphism algorithm are its enhanced usage of the high-quality artificially
designed network and its reduced consumption of computing resources compared
with the from-scratch search approach. But although the algorithm proposed by Cai
et al. offers a number of benefits, it is limited to supporting only hierarchical network
morphism. Klein et al. took this a step further by proposing an algorithm that adds
multiple branches in order to modify the network topology, resulting in improved
algorithm freedom and expanded search space.

4 Source: https://arxiv.org/pdf/1611.01578.pdf.

https://arxiv.org/pdf/1611.01578.pdf


252 11 Automated Machine Learning

Unlike the algorithms used in reinforcement learning, those in evolutionary
learning regard the generation of the network architecture as a process in which
the initial architecture gradually evolves with the algorithm. The initial architecture
can be randomly generated, or to meet specific performance requirements, it can
be manually designed. In evolutionary learning, the population corresponds to the
network architecture pool. Sampling enables us to obtain parent architectures, but
different evolutionary algorithms differ in parent architecture sampling and archi-
tecture pool maintenance; for example, Real et al. used the competition method to
perform sampling in the architecture pool, whereas Gao et al. used Pareto optimality
sampling. By using high-quality parent architectures, we are able to obtain mutated
child architectures, to which we can assign the reproduction permission and add
them to the architecture pool. In order to ensure that the number of architecture
pools remains unchanged in the algorithm, we need to remove one architecture from
the pool after generating each child architecture. The architecture we elect to remove
can be either the one with the worst performance of the two sampled parent architec-
tures or the one not updated for the longest period. Removing the former ensures that
the best evolutionary algorithm is kept, while removing the latter ensures diversity
of the architecture pool in order to prevent the pool containing mostly descendants of
the same architecture. Research shows that both reinforcement learning and evolu-
tionary learningperformslightly better than a randomalgorithm, but that evolutionary
learning offers faster search times and can find smaller networks.

Optimization of the NAS based on reinforcement learning and evolutionary
learning is always performed in a discrete space following an approximate accuracy-
based direction rather than a specific direction. For example, instead of using the
gradient-free algorithm, Luo et al. found the gradient descent direction based on the
continuity of architecture representations. In this approach, the neural architecture
optimization (NAO) algorithm includes three parts: an encoder, a predictor, and a
decoder. The encodermaps neural network architectures into a continuous space. The
predictor, which is defined as a common regression network, takes as training labels
the representations obtained by the encoder and the accuracy of the network architec-
ture in the corresponding dataset in order to predict the accuracy of representations
in the continuous spaces. The decoder maps the representations in the continuous
spaces back into the normal network architecture. After the encoding–prediction–
decoding architecture is trained, the algorithm can find a better architecture along
the gradient direction of the predictor.

The NAO uses the representations in the continuous spaces to find the direction
of gradient descent, thereby improving the search efficiency. However, to train the
predictor requires a great deal of computing resources, because the NAO must first
obtain the data labels of the architecture accuracy. Unlike the NAO, the differen-
tiable architecture search (DARTS) proposed by Liu et al. finds the gradient descent
direction by loosening the continuity of the cell-based search space. In the DARTS
algorithm, the cell-based search space is defined as a directed acyclic graph (DAG).
The operation set in the entire search space is defined as O, where a convex combi-
nation of operations is used in the entireO rather than single operations at each layer.



11.1 AutoML Framework 253

A weight is set for each operation as a network architecture parameter. The input of
any intermediate node j is defined as the sum of the outputs of all its previous nodes
i.

x ( j) =
∑

i< j

o(i, j)
(
x (i)

)
(11.4)

where o(i,j) is the operation between the ith node and the jth node.
The DARTS algorithm aims to optimize the operation weight α and the network

parameter w, that is:

min
a

Lval
(
w∗(α),α

)
(11.5)

s.t.w∗(α) = argminwLtrain(w,α) (11.6)

where Lval is the loss function in the validation set, and
Ltrain is the loss function in the training set.

The validation set is used to optimize the network architecture parameter α,
whereas the training set is used to optimize the general network parameter w. Because
it is difficult to implement two-level optimization, the algorithm uses approximate
optimization. After the training, the operation with the highest weight α between
every two nodes is used as an operation in the final cell:

O(i, j) = argmax
o∈O

α
(i, j)
O (11.7)

Both NAO and DARTS consider only the model accuracy and ignore other objec-
tives such as the latency and model size. However, such objectives are important
considerations when designing a neural network suitable for use on mobile phones
and other devices with limited resources. An example of a high-quality network
designed manually for devices such as mobile phones isMobilenet, a multi-objective
algorithm that delivers high accuracy and considers the model inference latency.
Mobilenet V2, together with the super-core search space, forms the basis on which
single path—an efficient search algorithm—is constructed. This search algorithm,
implemented in the MindSpore framework, is described below.

The single-path algorithm uses the same search space as Mobilenet V2, where the
space is a cell-based chain structure with a fixed number of layers. Mobile inverted
bottleneck convolution (MBconv) is used as the internal structure of a cell. In the
search space, shown in Fig. 11.7, the search is performed on only the convolution
kernel size k × k (3 × 3/5 × 5) and the expansion rate e (3/6) for controlling the
number of convolution kernels (that is, MBconv-k × k-e).

In order to obtain a large feature map in the cell operation, we first use a 5 × 5
convolutionkernelwith an expansion rate of 6.Wecan then capture the desired feature
map according to the size and expansion rate of the convolution kernel selected in the



254 11 Automated Machine Learning

Image 
input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Output

C
on

vN
et

m
ac

ro
str

uc
tu

re
M

BC
on

v
m

ic
ro

st
ru

ct
ur

e

H
yp

er
ke

rn
el

 
se

ar
ch

ab
le

 u
sin

g 
th

e 
si

ng
le

-p
at

h 
al

go
rit

hm

Searchable 
depthwise 

convolution

Hyperkernel

MBConv-k×k-e MBConv-k×k-e MBConv-k×k-e MBConv-k×k-e

Conv 1×1Conv 1×1

w5×5,6 w5×5,3 w3×3,6 w3×3,3 skip-op

Fig. 11.7 Search space of the single-path algorithm5

search process. This process uses only a single path and cancels an operation branch
in addition to significantly reducing the number of feature maps and the amount of
consumed memory.

In the single-path search process, the network architecture is determined by
comparing the L2 norm (Euclidean norm) of the weight value and the threshold.
Note that the threshold is also defined as a parameter of the neural network and
updated through gradient descent. Single path, as mentioned earlier, is an end-side
multi-objective algorithm that considers not only the model accuracy but also the
model inference latency. We can therefore determine its loss function as follows:

Loss = min
w

CE(w|tk, te) + λ • log(R(w|tk, te)) (11.8)

where CE (w | tk , te) is cross-entropy, and
R (w | tk , te) is the model inference latency.

This loss function can directly update the network parameter w and the threshold
parameter t through gradient descent. Of particular importance is the fact that
the single-path algorithm simultaneously updates both the network parameters and
network architecture parameters with the data in the training set, differing from
DARTS and other algorithms that use the training set to train the network param-
eters and use the validation set to train the network architecture parameters. The
approach taken in the single-path algorithm facilitates training to some extent while
also ensuring the effectiveness of the algorithm, but we should still consider whether
network overfitting might occur.

3. Performance evaluation

5 Source: https://arxiv.org/pdf/1907.00959.pdf.

https://arxiv.org/pdf/1907.00959.pdf


11.1 AutoML Framework 255

Performance evaluation aims to increase the generalization ability of the neural
network architecture found by the NAS. Typically, we would train and validate the
network structure on the training and validation sets, respectively. However, this
approach requires the NAS algorithm to generate more network structures in the
search process, consuming a large amount of computing resources if we need to
train each network structure from scratch. In order to address this issue and accelerate
performance evaluation, the industry has proposed a number of different methods,
such as low fidelity estimation, learning curve extrapolation, weight inheritance, and
weight sharing.

Low fidelity estimation is the most direct way to speed up performance evaluation
because it extracts only some subsets of data during the training process, reducing
image resolution and the number of convolution channels and cells in addition to
accelerating evaluation. Theoretically, this method is effective as long as the rela-
tive ranking between the NAS-generated network structures remains unchanged.
However, the latest research calls this into question by showing that the relative
ranking of the network structures obtained using low fidelity estimation does not
produce accurate results.

Using the learning curve extrapolation method, we obtain the performance curve
in a similar way to machine learning in order to promptly terminate unsatisfactory
use cases. For example, Domhan et al. accelerated the evaluation process by basing
trend predictions on the performance of the initial training. Similarly, Liu et al. were
able to predict a large network model by training a surrogate model based on the
existing network structure.

Weight inheritance andweight sharing reuse existingweights in order to accelerate
performance evaluation. In weight inheritance, the weights of other networks (e.g.,
a parent model) are inherited. Conversely, the weights of the common edges can
be shared in weight sharing, because the sub-networks generated by the one-shot
algorithm can be considered as subgraphs in the hypergraph, as shown in Fig. 11.8. A
typical example ofweight inheritance is the networkmorphismmodel, which reduces
the training time (GPU/day) bymodifying the network structurewithout changing the
function. There are many examples of weight sharing, including the reinforcement
learning-based efficient neural architecture search (ENAS) algorithm proposed by
Pham et al. and theDARTS algorithm proposed by Liu et al. Althoughweight sharing
accelerates the evaluation significantly, it cannot ensure that the relative ranking
of performance evaluation obtained by different sub-networks reflects the actual
situation accurately. Furthermore, it restricts the subgraph search space to the range
of the hypergraph, limiting the solution space of the network structure. Because the
original weight sharing method saves the hypergraph in GPU memory, it supports
only cell-based search and cannot directly search large datasets. To address these
issues, the ProxylessNAS algorithm binarizes the network weights and activates the
candidate operator on only one path during training.

In Fig. 11.8, 0 represents the input of the neural network; 1, 2, and 3 are different
hidden layers; and 4 is the output layer.

Significant developments have been made in the NAS algorithm, which has been
used extensively in fields such as image classification, object detection, semantic



256 11 Automated Machine Learning

Conv3×3
Conv5×5
MaxPool

0 0

1
22

1

3

4

3

4

Fig. 11.8 One-shot method6

segmentation, and image super resolution. However, published results are often diffi-
cult to reproduce, because they depend on data augmentation and hyperparameter
settings as well as the network structure, all of which determine the performance
of the neural network model. To improve network performance on the CIFAR-10
dataset, for example, researchers often usemethods such as pre-learning rate policies,
CutOut data enhancement, MixUp, and Shake-Shake regularization. Using hyper-
parameter tuning and data augmentation for optimizing the NAS algorithm may
therefore become an area of focused research in the future.

11.1.2 Hyperparameter Tuning

In deep learning, tuning hyperparameter settings appropriately can deliver substan-
tial results in model optimization, and this has therefore become a subject of much
research. Model training usually involves two types of parameters: weights (param-
eters) of the model itself and hyperparameters (such as the learning rate, weight
decay, and number of training rounds) that determine the training process. In the
DNN, each node has a weight, which represents the impact of the node on the final
prediction result. Because we need to obtain the weights by using training data, the
parameters will change dynamically during the training process. On the other hand,
hyperparameters are configuration variables that we need to set before the training
process starts, many of which remain static during training.

Hyperparameter tuning generally involves the following operations: (1) define a
possible range of values for all hyperparameters; (2) define a method to sample a set

6 Source: https://arxiv.org/pdf/1808.05377.pdf.

https://arxiv.org/pdf/1808.05377.pdf


11.1 AutoML Framework 257

of hyperparameter values within a specified range of values; (3) define evaluation
criteria and evaluate the results of the current model through cross-validation; and
(4) tune the hyperparameters based on the current results. We repeat these operations
until we find a better set of parameters for handling the current training tasks. Hutter
et al. described hyperparameter tuning as follows: Given a machine learning model A
with N parameters, after it is defined that the N th hyperparameter is from space ΛN ,
the entire hyperparameter space isΛ=Λ1 ×Λ2 ×…×ΛN .A set of hyperparameters
λ* ∈ Λ is found on the given dataset D so that:

λ∗ = argmin
λ∈�

E(Dtrain, Dvalid)∼D V (L,Aλ, Dtrain, Dvalid) (11.9)

where L is the loss function for model training;
Aλ is a set of parameters λ of given algorithm A;
Dtrain is the training data i for cross-validation;
Dvalid is the validation data i for cross-validation; and
V (L,Aλ, Dtrain, Dvalid) is to measure the loss function of model A that is
based on the training set Dtrain in the validation set Dvalid under hyperparameter
configuration λ.

Hyperparameters play a crucial role in model training because of their significant
impact on model performance. For example, the learning rate determines the speed
at which weights are updated: set it too high, and the optimal value may be missed;
set it too low, and local optimumwill occur. Many other hyperparameters in addition
to the learning rate determine the model training process. Consequently, we face
the following problems when trying to obtain a set of hyperparameters that enable
optimal performance:

(1) The hyperparameter space is a complex high-dimensional space in which
multiple hyperparameters affect each other and multiple types may exist.

(2) Because of the many evaluation tests, we need to perform on the training
operations in hyperparameter tuning, it is essential that we track and analyze
them.

(3) For deep learning, the costs per evaluation process are high.
(4) It is often difficult to obtain gradient information such as certain enumerated

or discrete hyperparameters.

Tuning hyperparameters manually is often a difficult and cumbersome process,
especially when facedwith the preceding problems. A number of automatic hyperpa-
rameter tuning methods and tools have therefore been proposed, not only to reduce
the labor costs, but also to produce better results than manual tuning and further
improve the performance, allowing us to compare and reproduce different hyper-
parameter tuning methods more fairly. Given the large number of automatic hyper-
parameter tuning methods, Hutter et al. divided them into model-independent and
model-dependent black-box optimization methods. Similarly, we divide them into
trial-independent and trial-dependent methods, due to some methods (such as grid
search and random search) validating different sets of configurations independently.



258 11 Automated Machine Learning

Specifically, such methods do not explicitly use other validation results for each vali-
dation, whereas most of the other methods (such as Bayesian optimization) explicitly
use the existing validation results for the next validation.

1. Trial-independent methods

Grid search and random search are typical trial-independent methods. Grid
search is an all-factor test design that defines a limited set of test values for each
hyperparameter and validates each parameter combination. It has the following
features:

(1) The number of hyperparameters has a significant impact on efficiency, and the
number of validations increases exponentially with the number of parameters,
resulting in a dimension disaster.

(2) Increasing the number of search points for each hyperparameter significantly
increases the number of validations. For example, let us assume that there are
n hyperparameters: If each hyperparameter has two values, the total number
of configurations is 2n; however, if each hyperparameter has three values, this
increases to 3n. Grid search is therefore suitable only for a small number of
configurations.

(3) Validations do not affect each other and can be performed concurrently.

Another trial-independent method is random search. Random search presets the
number of searches and then samples the hyperparameter combinations randomly
for validation. The main advantage of random search over grid search is that it can
validate more parameter points for each hyperparameter. For example, let us assume
that N hyperparameters are given for C times of validation: Grid search validates

only C
1
N points for each hyperparameter, whereas random search can validate C

different points for each hyperparameter. This advantage is of particular significance
when we need to handle certain hyperparameters that are especially important to the
model. Figure 11.9 illustrates this point.

Random search is often used as a baseline search method because it offers the
following features:

(1) The algorithm does not make any assumptions about the model. As long as
sufficient resources are available, random search can reach any approximation
of the optimal solution. Thismethod can be combinedwith othermore complex
searchmethods (such as themethods proposed byAhmed7 andHutter) in order
to expand the exploration space and improve the search effect and can also be
used in the initial search process.

(2) It often takes longer than model-based search algorithms. In a scenario where
the hyperparameter space includes N independent Boolean parameters and
the value of each parameter corresponds to one good and one poor param-
eter, random search requires 2N−1 validations to find the optimal solution.
Conversely, by optimizing a single hyperparameter each time, only N + 1
validations are required to find the optimal solution.

7 See: https://www.cs.ubc.ca/~schmidtm/Documents/2016_NIPSw_FOBO.pdf.

https://www.cs.ubc.ca/~schmidtm/Documents/2016_NIPSw_FOBO.pdf


11.1 AutoML Framework 259

Grid search Random search

Important 
parameter

Important 
parameter

U
ni

m
po

rta
nt

 
pa

ra
m

et
er

U
ni

m
po

rta
nt

 
pa

ra
m

et
er

Fig. 11.9 Parameter search comparison between grid search and random search

(3) Parallel validation is possible without relying on other configurations.

2. Trial-dependent methods

By establishing the relationship between hyperparameter configurations and
performance, trial-dependent methods approximate the optimal solution of hyper-
parameter configuration with prior knowledge and sampling points. These methods
generally have the following features:

(1) Prior knowledge about the configuration space needs to be artificially formed
in order to guide the optimization process. Generally, there is a surrogatemodel
for this purpose.

(2) Multiple configurations need to be collected for validation. To reduce the
number of validations, the next trial configuration is inferred from prior
knowledge. The optimization process is sequential—typically sequential
model-based optimization (SMBO).

Bayesian optimization, a model-related method, is one of the best methods for
global optimization of the “black-box” function. In particular, hyperparameter opti-
mization (HPO) in deep learning offers exceptional results and has been used in
tasks such as image classification, speech recognition, and NLP. Bayesian optimiza-
tion is especially suitable for continuous variables with fewer than 20 dimensions
and is feasible for objective functions that require long-term validation. To facilitate
a better understanding of Bayesian optimization, let us first briefly introduce the
Gaussian process, which is a common model in Bayesian optimization. You may
wish to explore the articles written by Brochu [21] and Shahriari [22] for a more
in-depth understanding.

For a sequence number set T and a variable set x = (xt)t∈T on a general probability
space, x is called a Gaussian process. It is assumed that for any t1, t2, …, tn ∈ T,
vectors (x(t1), x(t2), …, x(tn)) are subject to normal distribution, which is uniquely



260 11 Automated Machine Learning

determined by a mean function t → E[x(t)] and a covariance function K(x(t), x(s)):
= cov[x(t), x(s)], where the covariance matrix is typically called a kernel. Because
the sequence number set T is defined as a real number set R, it is conceivable that x
is a variable set defined for each point on the timeline, and (x(t1), x(t2), …, x(tn)) is
subject to normal distribution for each point, that is, x is a Gaussian random process.

Bayesian optimization is an iterative algorithm that consists of a surrogate model
and an acquisition function. The surrogate model describes the distribution of the
objective function under different parameters (such as hyperparameters in deep
learning), and the acquisition function determines the next parameter point to be
validated under the current surrogate model. In most cases, the surrogate model
selects the Gaussian process, and we apply Bayesian optimization by treating the
hyperparameter configuration (denoted by λ) as a sequence number set T. If we
assume that f (λ) is the objective function and define f = (f (λ))λ∈T as a Gaussian
process, we can transform the optimization of the objective function (e.g., the test
accuracy of the model on the test set) into the sampling and fitting of the Gaussian
process—the optimal solution of λ is a prediction result of the fitting. As alluded
to earlier, the Gaussian process is uniquely determined by the mean function m (λ)
and the covariance function k(λ, λ’). In most cases, we can assume that the mean
function is a constant function, so the effectiveness of the Gaussian process depends
only on the covariance function. A typical covariance function is Matérn covariance,
in which the Matérn 5/2 Kernel is commonly used. Note that the covariance depends
only on the distance between two points. If no noise is present in the observed value,
the predictions of the mean value μ(•) and the covariance σ 2(•) are as follows:

μ(λ) = kT
∗ K −1y, σ 2(λ) = k(λ, λ) − kT

∗ K −1k∗ (11.10)

where k∗ is the covariance vector between λ and all observed values;
K is the covariance matrix of all observed values; and
y is the predicted target value under the λ configuration.

Because the search space is relatively closed in most cases, it is generally safe
to set the prior mean of the Gaussian process to 0 in the mean formula. However,
the prediction of a new point is highly dependent on a kernel, meaning that the prior
mean being 0 is almost impossible.

In such a framework, the sampling process is particularly important. If the objec-
tive function is unsuitable for the Gaussian process due to insufficient collected
points, the fitted Gaussian process cannot predict an optimal solution. Currently,
many acquisition functions are available, one of which is expected improvement
(EI):

E[I (λ)] = E[max( fmin−y, 0)] (11.11)

where I (•) is an indicative function;
f min is the best observed value at present; and
y is the predicted target value under the λ configuration.



11.1 AutoML Framework 261

When y is subject to normal distribution under hyperparameter configuration λ,
the function can be calculated in closed form:

E[I (λ)] = ( fmin − μ(λ))N

(
fmin − μ(λ)

σ

)
+ σφ

(
fmin − μ(λ)

σ

)
(11.12)

where N(•) is the density function for the standard normal distribution;
Φ (•) is the standard normal distribution function;
μ is the predicted mean value of target values under λ configuration; and
σ is the predicted standard deviation of the target values under λ configuration.

Both f min and y have the samemeanings as those in Formula (11.11). Figure 11.10
shows the Bayesian optimization process, where the objective is to use the Gaussian
process tominimize the value indicated by the dashed line (the objective function). In
the figure, the black solid line represents the predicted value of themodel, the interval
marked with ➀ represents uncertainty, and the curve marked with ➁ represents the
values of the acquisition function. Based on the observation points, the algorithm

Observed value Maximum value 
of the acquisition 

function

Objective function
Newly observed 

value

Acquisition function

Posterior mean
Posterior 

uncertainty interval

(a)

(b)

(c)

Fig. 11.10 Bayesian optimization process



262 11 Automated Machine Learning

obtains the next sampling point by maximizing the value of the acquisition function,
as shown in Fig. 11.10a. The value of the acquisition function corresponding to the
observation point is smaller than the value predicted at the point corresponding to the
maximumvalue of the acquisition function,which is on the left side of the observation
point. In this case, the uncertainty is high, and the predicted value may be better than
that obtained at the observation point. As shown in Fig. 11.10b, after the Gaussian
process update is complete, the predicted value on the right side of the observation
point is the smallest, the value of the acquisition function is the largest, and the
sampling is performed on the right side. Subsequently, the uncertainty predicted in
Fig. 11.10c is very low, and re-validation is performed once according to the value
of the acquisition function.

One disadvantage of the standard Gaussian process is that the calculation amount
increases by O(n3) with the number of data points. Fitting in the Gaussian process
is therefore limited if we have a large number of acquisition data points. The sparse
Gaussian process enables quick fitting, effectively resolving this disadvantage by
using only some inducing points to construct the covariance matrix; however, this
approach may lead to inaccurate estimation of uncertainty. Another disadvantage is
that it cannot process high-dimensional data points effectively. We can mitigate this
disadvantage by preprocessing the high-dimensional hyperparameter configuration.
One way to do so is to use random embedding and separate the hyperparameter
configuration space in order to use the Gaussian process.

Using the Gaussian process as the surrogate model is not the only way we can
perform Bayesian optimization—a number of other methods are also available. For
example, we can use a neural network to preprocess the input and then process the
output as a basis function through Bayesian linear regression. Another alternative to
Bayesian optimization is the random forest, which typically delivers better perfor-
mance than the Gaussian process in large datasets, categorical configuration spaces,
and conditional configuration spaces; however, the Gaussian process delivers better
performance in smaller numerical hyperparameter configuration spaces.

The population-basedmethod is another trial-dependent optimizationmethod, but
it is model-independent. In hyperparameter tuning, a population is a set of hyper-
parameter configurations. Each time the population is updated, the hyperparam-
eter configuration is partially mutated, and the configurations are combined—the
update lasts until a specified condition is met. Population-based methods, as the
name suggests, keep a population and update it iteratively to obtain new populations.
Note that a general iterative updatemethod includes partialmutation and combination
of population members. Examples of such methods include the genetic algorithm,
evolutionary algorithm, evolutionary policy, and particle swarm optimization algo-
rithm. These methods, which are typically easy to understand, can handle different
data types and allow for simple parallelized validation.

We would be amiss not to mention the covariance matrix adaptation evolution
strategy (CMA-ES), which is the most widely known method in population-based
optimization. It samples hyperparameter configurations from a multivariate Gaus-
sian distribution and updates the mean value and the covariance of the hyperparam-
eter configurations based on the validation results of the members in each iteration.



11.1 AutoML Framework 263

Parameter value Parameter value
(a) The learning rate is set too high, and the 

model misses the optimal point
(b) The learning rate is set too low, and the 

model falls into the local optimum

Lo
ss

Lo
ss

Fig. 11.11 Inappropriate learning rates

CMA-ES is one of the most effective black-box optimization methods and delivers
exceptional performance in the black-box optimization benchmark test.8

3. Tricks in hyperparameter tuning

Neural network training includes many hyperparameters, such as the learning
rate, momentum, weight decay rate, batch size, and number of training steps. Many
methods exist for automatic hyperparameter tuning, andnumerous tricks are available
for selecting the hyperparameters. Here, we introduce two tricks: setting the learning
rate and early stopping. Smith [23] and Goodfellow [24] go into greater detail in
their respective articles explaining the hyperparameter selection method.

The methods most commonly used for training a neural network are stochastic
gradient descent and its variants (such as Adam and RMSProp). These optimization
methods require the input of learning rate, which has a significant impact on neural
network training. For example, if the learning rate is set too low, the network will
converge too slowly, delaying the removal of the local optimal solution—especially
when local optimumoccurs. Conversely, if the learning rate is set to high, the learning
processwill be unstable. The loss functionwill fluctuate significantly, and the optimal
point may be missed or the convergence may fail. Figure 11.11 shows the effects of
setting inappropriate learning rates.

In most cases, we determine the learning rate manually based on experience,
often achieving good results. However, because this approach usually requires many
trials, it is cumbersome and consumes many resources. To determine the learning
rate more effectively, Leslie N. Smith [25] proposed a method of cyclical learning
rates (CLRs).

In the CLR method, we set a boundary between the minimum and maximum
learning rates. In addition, we set the step size, which is the number of steps that
describe the change in the learning rate (i.e., the number of training iterations or
epochs). Each cycle lasts for two steps, as shown in Fig. 11.12. The learning rate
increases linearly from the minimum value to the maximum value in the first step

8 See: http://numbbo.github.io/workshops/index.html.

http://numbbo.github.io/workshops/index.html


264 11 Automated Machine Learning

Fig. 11.12 CLR method Maximum learning rate

Step size Minimum learning rate

and decreases linearly from the maximum value to the minimum value in the second
step. Other methods for determining the learning rate change were experimented
with, but because the results were equivalent, the simplest linear change method is
recommended.

In order to test an available learning rate interval, Leslie N. Smith obtained the
maximum andminimum learning rates by setting the number of learning iterations or
steps, setting a low learning rate at the beginning of the training, and then increasing
the learning rate step by step (linearly or exponentially) in each iteration. This change
in the learning rate provides us with valuable information from which we can deter-
mine the learning rate. When the learning rate is low, the network will begin to
converge, but as it increases beyond a certain range, the value of the network loss
function will increase, and the validation accuracy will decrease. According to this
concept, we determine the maximum learning rate as either the newly observed
validation loss or the point where the accuracy begins to decrease. Conversely, to
determine the minimum learning rate, we can use the following methods:

(1) Use the rule of thumb that the optimal minimum learning rate is 1/3 or 1/4 of
the maximum learning rate.

(2) Set the minimum learning rate as 1/10, 1/20, or a smaller proportion of the
maximum learning rate.

(3) Experiment by running hundreds of iterationswith a set of initial learning rates,
and then, select the highest learning rate that reflects the convergence trend.

(4) Use the minimum learning rate allowed by the training framework for interval
testing, and then, select a point where the increase in precision begins to slow
down. As shown in Fig. 11.13, the learning rate increases slowly at about
0.001, so we would select 0.001 as the minimum learning rate. Conversely, as
described earlier, we could select 0.006 as the maximum learning rate.

Another of the tricks available in hyperparameter tuning is early stopping,which is
used to promptly stop tests on evidently inappropriate hyperparameter configurations.
It is also used extensively to prevent overfitting in neural network training.

A simple way to prevent overfitting is to observe errors that occur when the neural
network uses the training and validation sets. If errors start to increase using the
validation set while errors decrease using the training set, we may need to terminate
the model training. In hyperparameter tuning, the early stopping method relies on
performance curves, two of which we describe briefly: the model performance curve
stopping rule and the median stopping rule. You can see Google Vizier for details.



11.1 AutoML Framework 265

Fig. 11.13 Interval test of
learning rates in CIFAR-10

Learning rate

A
cc

ur
ac

y

0.6

0.5

0.4

0.3

0.2

0.1
0 0.005 0.010 0.015 0.020

The model performance curve stopping rule performs regression on the model
performance curve, which is the test error or precision of the model on the validation
set. This stopping rule uses the performance measurements already obtained by the
model as the basis for predicting the next measurement. Using the validation set as
an example, this stopping rule predicts the error value of the 11th epoch based on the
error values of the first through tenth epochs. If the predicted value has a sufficiently
low probability of exceeding the optimal observed value, model training ends. Vizier
is based on the nonparametric Bayesian regression method. To keep this description
brief, we do not describe the parametric Bayesian regression method here.

The median stopping rule is a model-independent early stopping rule. For brevity,
let us assume that each epoch is a stage for determining early stopping and that
the target measured value at step s in epoch i is xi

s . This stopping rule determines
whether the mean value x̂ i

1:s of the target values of steps 1–s in the current epoch i is
significantly lower than median (x1

1:s ,x
2
1:s , …, xi - 1

1:s ) of the mean value of the target
values in the completed epochs for the same period. Here, xi

1:s represents the mean
value of the target values at the current stage. Because this rule does not rely on the
parameterization model, it is applicable to a wider range of performance curves.

11.2 Existing AutoML Systems

AutoML systems come in many flavors and can be implemented using closed-source
methods, such as Google Vizier and oneclick.ai, and open-source methods, such as
AutoWeka, Auto-Sklearn, HyperOpt, and Microsoft NNI. This section focuses on
systems used for conventional machine learning (such as AutoWeka) and those used
for deep learning (Microsoft NNI).



266 11 Automated Machine Learning

11.2.1 AutoWeka, Auto-Sklearn, and HyperOpt

Conventional machine learning includes processes such as data acquisition/cleaning,
feature extraction, model selection, hyperparameter tuning, and model deployment.
Of these, model selection and hyperparameter tuning pose the biggest obstacles for
non-experts using machine learning and require data scientists to perform a great
deal of repeated tests in various scenarios. Overcoming these obstacles is therefore
vitally important.

In the artificial modeling process, we typically select one or more algorithms
according to target and dataset characteristics and then adjust the related parameters
to meet our requirements. Note that different algorithms involve different hyperpa-
rameter dimensions. In AutoML,model selection and hyperparameter tuning are two
interdependent optimization problems, which we can solve as a joint optimization
problem in order to obtain an optimal combination of models and hyperparameters.
Given the algorithm set A = {A(1), A(2), …, A(k)} and associated hyperparameter
space Λ(1), Λ(2), …, Λ(k), we can express this joint optimization problem as follows:

A∗
λ∗ ∈ argmin

A( j)∈A,λ∈�( j)

1

k

k∑

i=1

L
(

A( j),D(i)
train,D(i)

valid

)
(11.13)

where A( j)
λ is a parameter set λ of the given algorithm A;

D(i)
train is the training data i for cross-validation;

D(i)
valid is the validation data i for cross-validation;

L(A( j)
λ ,D(i)

train,D(i)
valid) is the loss function value, on the validation data i, that is

obtained after a set of hyperparameters in a given algorithm are trained based on
the training data i; and.
A∗

λ∗ is a set of algorithms and hyperparameters in a hyperparameter space that
minimize the loss function.

The joint optimization problem is modeled as simple joint hierarchical hyperpa-
rameter optimization on the parameter spaceΛ = Λ(1) ∪…∪ Λ(k) ∪ {λr}. Here, λr is
a new root hyperparameter used to select an algorithm among A(1), A(2), …, A(k), and
each hyperparameter subspace Λ(i) is generated when the corresponding algorithm
A(i) is selected by the root hyperparameter λr . The objective of optimization is to
minimize the loss value of K-fold cross-validation when the training is performed
on the training set DTrain by using the model and the hyperparameter and when the
validation is performed on the validation set Dvalid.

SMBO is a Bayesian optimization method that effectively solves the joint hier-
archical optimization problem in Formula (11.13). It not only deals with discrete
and continuous hyperparameters simultaneously, but also fully explores the hierar-
chical structure on which the hyperparameter space depends. The SMBO algorithm
is implemented as follows: Model ML is constructed to capture the dependency of



11.2 Existing AutoML Systems 267

the loss function L on the hyperparameter setting λ; modelML determines a candi-
date parameter λ; the loss c of parameter λ on the dataset is evaluated; and model
ML is updated by using the new data point (λ, c).

This can be illustrated in the following pseudocode:

(1) Initialize model ML data point H ← ∅.
(2) While the optimization time is below the upper limit.
(3) λ ← Obtain candidate parameters from model ML.
(4) Calculate the loss c = L(A( j)

λ ,D(i)
train,D(i)

valid).
(5) H←H ∪ {(λ, c)}
(6) Update model ML by using the data point H.
(7) End the search.
(8) Return the parameter λ that minimizes c.

SMBO defines an obtaining function according to model ML in order to obtain
hyperparameter λ for the next step. It evaluates the benefits of hyperparameter λ and
then determines which hyperparameter λ maximizes the obtaining function in the
search space Λ each time. An improvement of hyperparameters based on a given
loss value cmin is defined as follows:

Icmin(λ) = max{cmin − c(λ), 0} (11.14)

where λis a set of hyperparameters;
c(λ) is the loss of the given hyperparameter λ;
cmin is the baseline loss value; and
Icmin (λ) is the improvement or gain of the given hyperparameter λ compared with
the baseline loss value.

After factoring modelML into the preceding formula, we can calculate the EI of
the obtaining function by using the following expression:

EML
[
Icmin(λ)

] =
cmin∫

−∞
max{cmin − c(λ), 0} • ρML(c|λ)dc (11.15)

where ρML(c|λ) is the probability distribution of the loss function for a given
hyperparameter; and
EML [Icmin(λ)] is the expected improvement in the loss of the given hyperparam-
eter.

In different algorithms, the dependency of the loss function c on the hyperparam-
eter λ is modeled (ρ(c|λ)) in different ways. For example, the sequential model-based
algorithm configuration (SMAC) algorithmuses theGaussian approximation process
and random forest model and assigns default values to hierarchical dependent param-
eters not activated in λ during model training and prediction. By using the random
forest model, SMAC obtains the mean μλ and variance δ2λ of the predicted distribu-
tion parameters for a group of loss functions c and models ρML(c|λ) as Gaussian



268 11 Automated Machine Learning

distributionN (μλ,δ2λ). Furthermore, it uses the loss of the optimal parameters, up to
the current iteration, as cmin, and factors the model into Formula (11.15) in order to
obtain the closed expression of the obtaining function:

EML [Icmin(λ)] = σλ • [μ • φ(μ) + ϕ(μ)] (11.16)

where μ is the normalized value of the loss improvement of the given hyperpa-
rameter, and μ = cmin−μλ

δλ
;

ϕ is the probability density function of standard normal distribution; and
φ is the cumulative distribution function of standard normal distribution.

By using the optimal parameter for each iteration and evaluating the parameter
performance with a high level of certainty, SMAC is resistant to noise caused by
function evaluation. It has found extensive use in AutoML tools such as AutoWeka,
Auto-Sklearn, and NNI.

AutoWeka, developed by Chris Thornton et al. [26, 27] in 2013, is based
on the open-source Weka, which was developed by the University of Waikato
in New Zealand. AutoWeka supports various data mining algorithms and tools,
including data preprocessing, clustering, classification, regression, visual interaction,
and feature selection. Using the feature selection and machine learning algorithm
provided byWeka as the search space, AutoWeka uses the SMAC algorithm to auto-
matically select learning algorithms and set parameters according to user-provided
data.

Auto-Sklearn, developed byMatthias Feurer et al. [28] in 2015 at theUniversity of
Freiburg inGermany, supports the ensemblemodel based on Sklearn and implements
partial machine learning automation. Sklearn is an open-source machine learning
library for Python and supports conventional algorithms such as classification, regres-
sion, clustering, dimension reduction, model selection, and data preprocessing for
data mining and analysis. In addition to using SMAC to perform model and hyper-
parameter search, Auto-Sklearn uses meta-learning to accelerate the convergence of
SMAC by setting the historical optimization result as the initial value and uses the
ensemble model to increase the generalization ability.

HyperOpt, developed by James Bergstra et al. [10] in 2013, is an open-source
Python library for machine learning model selection and hyperparameter tuning. It
provides an optimization interface for users to customize objective functions, search
spaces, storage of search process results, and search algorithms. In terms of the search
space,HyperOpt supports conditional variableswith specified distribution rather than
supporting only a simple vector space and can be combined with a machine learning
library (such as Sklearn) to perform a model search. It supports trials to accelerate
the search process, using search algorithms such as random search and tree of Parzen
estimators (TPE). TPE is an SMBO algorithm and differs from SMAC, which uses
a simple piecewise function to predict the distribution of loss functions.



11.2 Existing AutoML Systems 269

AutoWeka, Auto-Sklearn, and HyperOpt—some common selection and hyper-
parameter tuning tools—have different implementation languages and search algo-
rithms, access different machine learning algorithms, and use Bayesian optimiza-
tion to automate conventional machine learning algorithms. However, because they
support only a small hyperparameter space and model space for searches, these tools
are unsuitable for deep learning with large-scale hyperparameter or model structure
searches.

11.2.2 Microsoft NNI

Microsoft’s neural network intelligence (NNI) is an open-source AutoML tool that
abstracts the hyperparameter or model structure search process into three layers:
front-end interaction, search algorithm, and underlying training platform. Each layer
is scalable and flexible and supports multiple options and implementations. The NNI
framework is shown in Fig. 11.14.

At layer 1, front-end interaction is performed through either the command line
interface or the Web user interface (WebUI) to define items such as the test, search
space, and trial. The following describes the test, search space, configuration, and
trial used in the NNI framework:

Test: a task for finding the best hyperparameter or neural network structure of a
model and consists of two parts: trial and the AutoML algorithm.
Search space: a feasible area for model tuning, such as the value range of each
hyperparameter.
Configuration: a sample in the search space, that is, a set of specific values of
adjustable hyperparameters.
Trial: a single attempt to apply a set of hyperparameters or a specific network
structure, which the trial code must support in order to run successfully.

At layer 2, the NNI kernel implements the search algorithm through two modules
(a tuner and an assessor) to complete one test search process. In the two modules,

Trial code

Command line Management

VisualizationWebUI

Tuner Assessor

NNI kernel

Trial 
submission

Acquisition 
and evaluation

Training 
platform

NNI SDK

Fig. 11.14 NNI framework



270 11 Automated Machine Learning

the NNI supports user-defined algorithms and many built-in ones for different test
scenarios. These two modules are defined as follows.

Tuner: an AutoML algorithm that generates a set of new parameters for the next
trial, based on which a new trial can be run. The tuner can search both hyperpa-
rameters and deep learning model structures and includes the built-in algorithms
described in Table 11.1.
Assessor: analyzes the immediate trial results, such as the periodic accuracy
evaluation on test datasets and then determines whether to stop the trial early.

At layer 3, the training platform implements each trial, which depends on the
parameters of the test, using a variety of mechanisms. It can be a local machine, a
remote server, or a large training platform such as OpenAI or Kubernetes.

During tests run by NNI, the interaction between the involved modules is as
follows:

(1) The user defines a search space and a trial and calls the trial interface.
(2) The tuner obtains the search space generation parameters defined at the front

end.
(3) The generation parameters are transmitted to the training platform to execute

trials.
(4) The trial results are transmitted to the assessor, which then evaluates the results

and determines whether to end the trial.

If the trial is permitted to continue, the evaluation results are returned to the tuner,
and steps (2) to (4) are repeated.

The front-end interface makes it easy to complete a hyperparameter tuning or
model structure search trial, requiring only four simple steps:

(1) Define a search space, including parameter names, sampling policies, and
related parameters, in a JSON file.

(2) Update the model code. Specifically, define the code to be executed for a trial
(several code lines need to be added based on the original training code).
The NNI software package needs to be included in the trial code, and the
parameter acquisition interface is then called to obtain the parameters required
for each execution from the tuner. Next, the result reporting interface is called
to feed back the periodic evaluation results to the assessor, after which the result
reporting interface is called to feed back the performance evaluation results of
the model to the tuner.

(3) Define a test by using an execution parameter file that specifies the parameters
related to modules such as the search space, tuner, assessor, trial, and training
platform.

(4) Start the test, and then, invoke the NNI test create command to specify the
test execution parameter file path in order to run the test.

Figure 11.15 illustrates the first three steps.



11.2 Existing AutoML Systems 271

Table 11.1 Built-in algorithms for the tuner

Algorithm Description Recommended scenario

TPE A sequence model-based
optimization method, in which the
Gaussian process is used to model
the distribution of hyperparameters
in different model performance
segments, and a new
hyperparameter value is selected
according to the updated
distribution in historical trials.

A black-box optimization algorithm,
which is applicable to various
scenarios
When the computing resources are
limited, only a few trials show better
performance
It has proven to be better than
random search.

Random search A simple and effective method, in
which hyperparameters are
randomly generated

Used as a baseline when the prior
hyperparameter distribution is
unknown;
Computing resources are sufficient.
Trials can be completed quickly

Anneal A simple variant of random search,
which samples from a prior
solution, searches its neighborhood,
and gradually converges to obtain
an optimal solution

Computing resources are sufficient.
Trials can be completed quickly.
Search space variables can be
sampled from prior distribution.

Naïve evolution Genetic algorithm, in which a
certain number of initial populations
are set, and new hyperparameters
are generated through mutation.
Natural screening is then performed
to select high-quality models, which
are used as parent models for
further mutation.

Computing resources are sufficient.
Trials can be completed quickly.
An assessor can be used for early
stopping.
Weight migration is supported.

SMAC A sequence model-based
optimization method, in which the
Gaussian random process is used to
simulate the relationship between
hyperparameters and model
performance, and the random forest
model is used to predict the next
hyperparameter.

A black-box optimization algorithm,
which is applicable to various
scenarios
Computing resources are limited,
and hyperparameters are discrete.

Batch tuner It enables users to directly list the
required trial parameter groups, run
the trial, and end the trial.

Determined by the parameter list

Grid search It performs exhaustive search on the
search space and determines the
sampling values based on the
specified sampling distribution.

Small search space

(continued)



272 11 Automated Machine Learning

Table 11.1 (continued)

Algorithm Description Recommended scenario

Hyperband An exploration-only algorithm that
explores as many parameters as
possible given the available
resources, it uses limited resources
during a trial to find potential
parameters for the next trial.

The obtained intermediate results
sufficiently reflect the final
performance.
Computing resources are limited,
but the search space is large.

Network morphism It automatically searches the
structure of the deep learning
model. Each sub-network inherits
the parameters of its parent
network, and network morphism is
performed in terms of the depth,
width, and residual structure. The
sub-network performance is
evaluated using historical trial data
in order to select the most
promising structure for test.

A deep network structure needs to
be designed.

Metis tuner It predicts the best parameters of the
next trial according to the current
results and determines the
performance loss caused by
parameter tuning. The trial is run
only if the predicted parameters can
achieve sufficient optimization.

A black-box optimization algorithm,
which is applicable to various
scenarios
Providing guidance for continuous
trials

BOHB Based on the Hyperband algorithm,
it overcomes the inability of
Hyperband to use historical trial
data for randomly generating the
parameter combination and uses the
Bayesian optimization algorithm to
generate new parameters for the
trial. This algorithm can converge to
obtain a better set of parameters
than Hyperband.

The obtained intermediate results
can sufficiently reflect the final
performance.
Computing resources are limited,
but the search space is large.

GP tuner The Gaussian process (GP) tuner is
a Bayesian optimization method
based on sequential model-based
optimization. The Gaussian process
model is used to model the
relationship between
hyperparameters and model
performance, fit historical trial data,
and provide new parameters.

Resources are limited, but the
objective function is difficult to
model and optimize.
Only a few trials are required.



11.2 Existing AutoML Systems 273

Step 1. Define a search space Step 2. Update model code Step 3. Define a test

Fig. 11.15 User test procedure

NNI provides a greater number of functions and supports more scenarios than
other AutoML services and tools due to the high-quality design of its framework. It
has the following features:

Easy to use: The front-end interface provides both the command line and WebUI
to meet the expectations of different users, allowing them to quickly create a test
based on the original training code.
Scalability: The training platform interface is abstracted to support different
computing resources, including local machines, remote servers, and large training
platforms such as OpenAI and Kubernetes. Distributed scheduling is supported,
and resources can be planned according to availability.
Flexibility: Users can customize hyperparameter search algorithms, model struc-
ture search algorithms, and early stopping algorithms or use and freely combine
the built-in module algorithms. In addition to the supported training platforms,
users can add extensions to access more training platforms, such as virtual
machines and Kubernetes cloud services, and even access external environments
for applications and model parameter adjustment.
High efficiency: The hyperparameter and model structure search methods used
at the system and algorithm layers offer greater efficiency. For example, an early
feedback mechanism is used to accelerate parameter adjustment.

11.3 Meta-learning

Meta-learning, also called “learning to learn”, systematically observes how different
machine learning methods work on a wide range of learning tasks in order to



274 11 Automated Machine Learning

learn from the experiential knowledge (or metadata) and subsequently learn new
tasks more quickly. This not only accelerates and improves the design of machine
learningmethods and neural network structures, but also replaces manually designed
algorithms with a data-driven method, making it easier to learn new tasks.

In the meta-learning process, metadata or meta-knowledge describing previous
learning tasks and models needs to be collected. This includes

• Algorithm configuration, such as hyperparameter settings, algorithm flow, and
network architecture,

• Model evaluation, such as accuracy rate and training time,
• Model parameters, such as neural network weights,
• Measurable task properties, such as meta-features (including sample categories

and missing values).

The collected tasks are then learned to extract and transfer knowledge in order to
guide the search for an optimal model in a new task.

Prior experience is useless if the new and previous tasks differ significantly;
however, if the tasks are similar, we can use more metadata, thereby enhancing
the knowledge transfer effects.

There has been a number of meta-learning algorithms proposed [29–31] in the
fields of conventional machine learning and deep learning—this section focuses only
on those recently proposed in thefield of deep learning, such as the learning optimizer,
learning parameter initialization, learning loss function, and learning metric.

It is worth noting here that the learning neural network structure is also a common
meta-learning method. For details, see the related sections above.

11.3.1 Learning Optimizer

The selection of an optimizer is essential to deep learning—selecting a good one
can significantly accelerate model training. The effects of different optimizers on
different models vary according to the scenarios in which the optimizers are used.
Researchers in the field of deep learning often invest a great deal of time and energy
in manually selecting and adjusting optimizers. However, a better way is to use the
deep learning model to learn an optimizer [32–34]. Andrychowicz [33], Ravi [34]
et al. used the LSTM trained onmultiple previous tasks as the optimizer of new tasks.
In this approach, the loss of the meta-learner (optimizer) is defined as the sum of the
loss of the learner (the model, that is, the optimized object) and is optimized by using
the gradient descent method. In each step, the meta-learner updates weights based on
previously learned model weights and current gradients in order to minimize model
errors. The training and using process of the LSTM-basedmeta-learner [34] is shown
in Fig. 11.16.

A model can be generated in one complete LSTM process, and each unit in the
LSTM-Optimizer (meta-learner) corresponds to one training iteration (learner).



11.3 Meta-learning 275

(Xi, Yi) is a batch of data in a training set.

Learner

Meta learner: Outputs parameters of the learner

Repeat T steps; T=1, …, D

Repeat D steps; d=1, …, D

θ0 θ1
Mθ1Mθ0

Δ( 1, c1)

Δ( 2, c2)

Δ( T, cT)

θ1 θT-1

Mθ2 MθT-1 MθT
θ2 θT-1 θT

(X1, Y1) (X2, Y2) (X3, Y3) (XT, YT) (X, Y)
D (d)

test

L(MθT(X),Y)

Fig. 11.16 Training and using process of the LSTM-based meta-learner9

(1) Use the LSTM-Optimizer to train different recommendation models on
different datasets.

(2) Evaluate models, and update the meta-learner based on the evaluation results.
(3) Repeat (1) and (2) until the model generated using the LSTM-Optimizer meets

requirements.
(4) Use the LSTM-Optimizer during inference to quickly generate a recommen-

dation model based on new user data.

11.3.2 Learning Parameter Initialization

Goodweight initialization can accelerate model training and even improve themodel
convergence accuracy. In a training set with a large number of similar tasks, the
general model initialization parameter W init is used as the basis from which to
quickly train a deep learning model for new tasks by using only a few training
samples. Learned weight initialization allows us to train a new model much faster
than if we were to use random parameter initialization. The methods of parameter
initialization based on meta-learning include Meta-SGD [30], MAML [31], and the
methods proposed by Nichol et al. [35] The following describes the Model-Agnostic
Meta-Learning (MAML) algorithm.

Algorithm 11.1 Pseudocode for parameter initialization in MAML
Input: Task distribution p(T ), learning rates α and β, error definition L, and model f

Output: Model initialization parameter θ

9 Source: https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html.

https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html


276 11 Automated Machine Learning

Before training can commence, certain preparations are necessary: We need to
randomly select N categories in the training set, where each category includes K
training samples (support set) and K’ validation samples (query set) to form a task. A
task can be analogous to a sample in the training process of an ordinary deep learning
model. Then, we repeatedly extract several tasks from the training set to form a task
set. In MAML, an iterative process includes two parameter updates, and α and β are
learning rates.

Once the preparations are complete, we can start the training process:

(1) Initialize the model parameter θ .
(2) Extract a batch of tasks from the task set.
(3) For each task in this batch, calculate the error on its support set; obtain the

expected parameter on the current task by performing one gradient descent
based on the learning rate α; validate the error based on this expected parameter
with the query set to obtain the error on the query set; and calculate the sum of
errors of all tasks in this batch on the query set, using the sum as the meta-loss.

(4) Derive the original parameter θ of the model based on the meta-loss, and
optimize the parameters of the model.

(5) Repeat the preceding steps on all batches until the initialization parameters of
the model are obtained.

11.3.3 Learning Loss Function

The loss function is a model evaluation index used to estimate the difference between
the predicted and real values of a model, and this difference subsequently guides
the model update through backpropagation. Depending on the scenario and model,
researchers in the field of deep learning typically use different loss functions, such
as the log loss, mean square loss, cosine proximity, and triplet loss. Different loss
functions can change the direction in which the model is updated, so defining a
suitable loss function is extremely important to the training process. A better loss
function can dramatically accelerate the learning process—a good solution to this



11.3 Meta-learning 277

Actor 1 Actor 2 Actor i

Task/
environment 

i

Task/
environment 

2

Task/
environment 

1

Policy-gradient 
training Meta-critic

Q(s,a,z) z

(s, a, r)t-1,

(s, a, r)t-K

(s, a)

MVN TAENs, ra

Fig. 11.17 Meta-critic network framework10

is to construct the loss function by learning the previous task experience. Sung [36]
proposed to migrate the meta-critic network framework from reinforcement learning
to supervised learning in order to obtain the loss function, as shown in Fig. 11.17.

In reinforcement learning, an actor network is constructed for each training task,
and a meta-critic network is trained with multiple tasks at the same time. The meta-
critic network includes a meta-value network and a task-actor encoder, which uses
an RNN structure. During training, a triplet set (that is, state, action, and reward) is
input, and a task representation z is output. Subsequently, the representation z, state,
and action are input into the meta-value network. The θ of the actor network and φ

andω of themeta-critic network are obtained through training based on the following
formula. The training method is similar to that of actor-critic [37] in reinforcement
learning, as shown below.

θ(i) ← argmax Qφ

θ
(i)

(
s(i)

t , a(i)
t , z(i)

t

)
, i ∈ {1, 2, ..., M} (11.17)

φ,ω ← argmin
φ,ω

m∑

i=1

(
Qφ

(
s(i)

t , a(i)
t , z(i)

t

)
− r (i)

t − γ Qφ

(
s(i)

t+1, a(i)
t+1, z(i)

t+1

))
2

(11.18)

where θ, φ, and ω correspond to the parameters of the actor network, meta-value
network, and task-actor encoder, respectively;
s, a, z, and r correspond to the state, action, representation of an encoded task,
and reward, respectively;
Q is the output of meta-critic;
i and t denote the ith task and tth step, respectively; and
γ denotes the decay.

10 Source: https://arxiv.org/pdf/1707.09835.pdf.

https://arxiv.org/pdf/1707.09835.pdf


278 11 Automated Machine Learning

When a new task occurs, a new actor network is created, whereas the meta-critic
network remains unchanged. The actor-critic method is used for training, and the
actor network of the current task can be learned quickly.

We can obtain a loss function by applying themeta-critic framework to supervised
learning, in which the actor network corresponds to the model to be learned, its
input is feature x (corresponding to the state), and its output is the predicted target
value ŷ (corresponding to the action). The negative value -l of the loss function (ŷ,
y) corresponds to the reward r. Supervised learning is equivalent to a step in the
reinforcement learning process and does not include a subsequent step. This means
that we can train the network according to the following formulas:

θ(i) ← argmax Qφ

θ(i)

(
x (i), ŷ(i), z(i)

)
, i ∈ {1, 2, ..., M} (11.19)

φ,ω ← argmin
φ,ω

M∑

i=1

(
Qφ

(
x (i), ŷ(i), z(i)

) − r (i)
t

)2
(11.20)

where x is the input feature, and.
ŷ is the predicted value that is output by the model.

By maximizing -r (that is, the negative value of the loss function) estimated by
meta-critic, the model (actor network) is trained, and the meta-critic network learns
the real loss of each task. Meta-critic includes information about multiple tasks—for
each new task, it can generate a loss, that is, −r.

11.3.4 Learning Metric

Learning metric can be used in fields such as NLP and CV, for example, to measure
the similarity between samples [38–40] for classification tasks.

The Siamese network [38–40] learns a similarity metric from the data and
compares this metric with a sample from a known category in order to determine the
category of a sample fromanunknowncategory. TheSiamese neural network consists
of two identical networks, which share the same weight. Corresponding eigenvectors
are obtained by using two inputs through embedding, allowing the distance metric
(e.g., a Euclidean distance) similarity between the vectors to be calculated. During
training, for samples of the same category in the training set, the distance between
the vectors is minimized. Conversely, the distance between the vectors is maximized
for samples of different categories in the training set.

Koch [38] proposed to perform one-shot image classification by using the Siamese
neural network, as shown in Fig. 11.18. That is, a model is obtained through training,
one to-be-classified image and one image in the training set are input, and the prob-
ability that the two images are of the same category is output. The image is then



11.3 Meta-learning 279

Input 1

Input 2

Feature 2

Feature 1

Distance

Probability that 
input 1 and input 
2 are of the same 
category

CNN

Fig. 11.18 Image classification using the convolutional Siamese network11

compared with all images in the training set to find the most likely image—the
category of this most likely image is the category of the to-be-classified image.

11.4 Implementing AutoML Using MindSpore

The interfaces and processes of MindSpore may constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

References

1. G. Hinton, L. Deng, D. Yu et al., Deep neural networks for acoustic modeling in speech
recognition. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

2. I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in
Advances in Neural Information Processing Systems (2014), pp. 3104–3112

3. D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align
and Translate. (2016-05-19) [2019-10-26] https://arxiv.org/pdf/1409.0473.pdf

4. D.W. Hosmer, S. Lemeshow, Applied Logistic Regression (Wiley, New York, 2000)

11 See: https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html.

https://mindspore.cn/resource
https://arxiv.org/pdf/1409.0473.pdf
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html


280 11 Automated Machine Learning

5. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
6. J. Ye, J.H. Chow, J. Chen, et al., Stochastic gradient boosted distributed decision trees.Proceed-

ings of the 18th ACM Conference on Information and Knowledge Management (ACM, 2009),
pp. 2061–2064

7. B.Zoph,Q.V.Le,Neural Architecture Search with Reinforcement Learning. (2017-2-15) [2019-
10-26] https://arxiv.org/pdf/1611.01578.pdf

8. B. Zoph, V. Vasudevan, J. Shlens, et al., Learning transferable architectures for scalable
image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 8697–8710

9. H. Pham, M. Guan, B. Zoph, et al., Efficient neural architecture search via parameter sharing,
in International Conference on Machine Learning (2018), pp. 4092–4101

10. E. Real, S. Moore, A. Selle, et al., Large-scale evolution of image classifiers, in Proceedings of
the 34th International Conference on Machine Learning, vol. 70 (JMLR.org, 2017), 2902–2911

11. E. Real, A. Aggarwal, Y. Huang, et al., Aging evolution for image classifier architecture search,
in AAAI Conference on Artificial Intelligence (2019)

12. H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable Architecture Search. (2019-04-23) [2019-
10-26] https://arxiv.org/pdf/1806.09055.pdf

13. S. Xie, H. Zheng, C. Liu, et al., SNAS: Stochastic Neural Architecture Search. (2019-01-12)
[2019-10-26] https://arxiv.org/pdf/1812.09926.pdf

14. H. Cai, L. Zhu, S. Han, Proxyless NAS: Direct Neural Architecture Search on Target Task and
Hardware. (2019-02-23) [2019-10-26] https://arxiv.org/pdf/1812.00332.pdf

15. G. Ghiasi, T.Y. Lin, Q.V. Le, NAS-FPN: learning scalable feature pyramid architecture for
object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2019), pp. 7036–7045

16. L.C. Chen, M. Collins, Y. Zhu, et al., Searching for efficient multi-scale architectures for dense
image prediction, in Advances in Neural Information Processing Systems (2018), pp. 8699–
8710

17. C. Liu, L.C. Chen, F. Schroff, et al., Auto-Deep Lab: hierarchical neural architecture search
for semantic image segmentation, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 82–92

18. X. Chu, B. Zhang, H. Ma, et al., Fast, Accurate and Lightweight Super-resolution with Neural
Architecture Search. (2019-01-24) [2019-10-26] https://arxiv.org/pdf/1901.07261.pdf

19. D. So, Q. Le, C. Liang, The evolved transformer, in International Conference on Machine
Learning (2019), pp. 5877–5886

20. Y. Gao, H. Yang, P. Zhang, et al., Graph NAS: Graph Neural Architecture Search with
Reinforcement Learning. (2019-08-20) [2019-10-26] https://arxiv.org/pdf/1904.09981.pdf

21. E. Brochu, V.M. Cora, N. De Freitas, A Tutorial on Bayesian Optimization of Expensive
Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement
Learning. (2010-12-12) [2019-10-26] https://arxiv.org/pdf/1012.2599.pdf

22. B. Shahriari, K. Swersky, Z.Wang et al., Taking the human out of the loop: a review of bayesian
optimization. Proc. IEEE 104(1), 148–175 (2015)

23. L.N. Smith, A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning
Rate, Batch Size, Momentum, and Weight Decay. (2018-04-24) [2019-10-26] https://arxiv.org/
pdf/1803.09820.pdf

24. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)
25. L.N. Smith, Cyclical learning rates for training neural networks, in 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV) (IEEE, 2017), pp. 464–472
26. J.S. Bergstra, R. Bardenet, Y. Bengio, et al., Algorithms for hyper-parameter optimization, in

Advances in Neural Information Processing Systems (2011), pp. 2546–2554
27. J. Bergstra, D. Yamins, D.D. Cox, HyperOpt: a python library for optimizing the hyperparam-

eters of machine learning algorithms, in Proceedings of the 12th Python in Science Conference
(2013), pp. 13–20

28. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res.
13(2), 281–305 (2012)

https://arxiv.org/pdf/1611.01578.pdf
https://arxiv.org/pdf/1806.09055.pdf
https://arxiv.org/pdf/1812.09926.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1901.07261.pdf
https://arxiv.org/pdf/1904.09981.pdf
https://arxiv.org/pdf/1012.2599.pdf
https://arxiv.org/pdf/1803.09820.pdf


References 281

29. K. Hsu, S. Levine, C. Finn, Unsupervised Learning via Meta-Learning. (2019-03-21) [2019-
10-26] https://arxiv.org/pdf/1810.02334.pdf

30. Z. Li, F. Zhou, F. Chen, et al., Meta-SGD: Learning to Learn Quickly for Few-Shot Learning.
(2017-09-28) [2019-10-26] https://arxiv.org/pdf/1707.09835.pdf

31. C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep
networks, in Proceedings of the 34th International Conference on Machine Learning, vol
70 (JMLR.org, 2017), pp. 1126–1135

32. I. Bello, B. Zoph, V. Vasudevan, et al., Neural optimizer search with reinforcement learning, in
Proceedings of the 34th International Conference on Machine Learning, vol. 70 (JMLR.org,
2017), pp. 459–468

33. M. Andrychowicz,M. Denil, S. Gomez, et al., Learning to learn by gradient descent by gradient
descent, in Advances in Neural Information Processing Systems (2016), pp. 3981–3989

34. S. Ravi, H. Larochelle, Optimization as a model for few-shot learning, in International
Conference on Learning Representations (ICLR) (2017)

35. A. Nichol, J. Achiam, J. Schulman, On First-Order Meta-Learning Algorithms. (2018-10-22)
[2019-10-26] https://arxiv.org/pdf/1803.02999.pdf

36. F. Sung, L. Zhang, T. Xiang, et al., Learning To Learn: Meta-Critic Networks for Sample
Efficient Learning. (2017-06-29) [2019-10-26] https://arxiv.org/pdf/1706.09529.pdf

37. A.G. Barto, R.S. Sutton, C.W. Anderson, Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Trans. Syst. Man Cybern. 5, 834–846 (1983)

38. G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot image recognition,
in ICML Deep Learning Workshop (2015), pp. 2

39. F. Sung, Y. Yang, L. Zhang, et al., Learning to compare: relation network for few-shot learning,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 1199–1208

40. O.Vinyals,C.Blundell, T.Lillicrap, et al.,Matchingnetworks for one shot learning, inAdvances
in Neural Information Processing Systems (2016), pp. 3630–3638

41. S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at
Scale. (2018-07-04) [2019-10-26] https://arxiv.org/pdf/1807.01774.pdf

42. J. Vanschoren, Meta-Learning: A Survey. (2018-10-08) [2019-10-26] https://arxiv.org/pdf/
1810.03548.pdf

43. J. Bromley, I. Guyon, Y. Lecun, et al., Signature verification using a “Siamese” time delay
neural network, in Advances in Neural Information Processing Systems (1994), pp. 737–744

https://arxiv.org/pdf/1810.02334.pdf
https://arxiv.org/pdf/1707.09835.pdf
https://arxiv.org/pdf/1803.02999.pdf
https://arxiv.org/pdf/1706.09529.pdf
https://arxiv.org/pdf/1807.01774.pdf
https://arxiv.org/pdf/1810.03548.pdf


Chapter 12
Device–Cloud Collaboration

We are currently witnessing a rapid increase in the popularity of mobile and wear-
able devices. In order to use deep learning technologies more extensively in mobile
device scenarios, the industry has proposed lightweight models and deep learning
frameworks that are more suitable for mobile devices. In such scenarios, however,
the application of deep learning is challenging because it relies heavily on big data.
On one hand, the amount of device data is typically small and the distribution of
such data differs among different devices, making it infeasible to implement pure
on-device learning. On the other hand, as regulators and users pay more attention to
data privacy, privacy laws typically prohibit the direct collection of personal data,
making it difficult to use device data. To overcome these problems, the industry has
extensively explored and applied different stages of collaboration, namely on-device
inference, transfer learning, and federated learning. This chapter covers these three
stages and analyzes the device–cloud collaboration framework that streamlines the
entire device–cloud process.

12.1 On-Device Inference

AI is implemented on mobile devices through the cloud, which opens up AI capabil-
ities—for tasks such as image classification and translation—by way of application
programming interfaces (APIs). This approach, however, involves uploading user
data, long latencies, unavailability after network disconnection, and inadequate user
experience. In order to address these problems, TensorFlow Lite,1 Paddle-Lite,2

MNN,3 PyTorch Mobile,4 and MindSpore on-device inference frameworks have

1 https://www.tensorflow.org/lite.
2 https://github.com/PaddlePaddle/Paddle-Lite.
3 https://github.com/alibaba/MNN.
4 https://pytorch.org/mobile/home.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_12

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_12&domain=pdf
https://www.tensorflow.org/lite
https://github.com/PaddlePaddle/Paddle-Lite
https://github.com/alibaba/MNN
https://pytorch.org/mobile/home
https://doi.org/10.1007/978-981-16-2233-5_12


284 12 Device–Cloud Collaboration

emerged. These frameworks optimize and convert a cloud model into an on-device
inference model and provide the capabilities to load the model and infer the local
data.

On-device inference requires lightweight, or compressed, models due to the
limited computing power and energy of devices. Table 12.1 lists the common
techniques used to achieve lightweight models for on-device inference.

Efficient structure design can be performed manually or combined with the
AutoML technology (before model training) for automation. Model pruning is
usually done either during or after model training. Knowledge distillation, a model
training method, is usually performed in conjunction with the preceding two tech-
niques but does not make the model lightweight. These three techniques aim to
produce a lighter model structure, reducing the latency or size of the model without
sacrificing accuracy. Network structure fusion is usually carried out during model
compilation and computing graph optimization. It involves the inference model or
graph rather than model training. Model quantization, comprised of weight quanti-
zation, quantization aware training, and quantization without training, differs from
gradient quantization, which is used in distributed training scenarios. Together with
network structure fusion, model quantization is usually performed when the cloud
model is converted into an on-device model.

After models are converted to lightweight model files, the on-device inference
framework loads and execute them, performing hardware-accelerated processing
based on the device’s hardware specifications. For example, the framework may
invoke an NPU, graphical processing unit (GPU), ARMNEON,5 or other hardware-
based methods to accelerate operator execution. It may also use static memory
management, memory pool, and shared memory in order to reduce the time required
for memory application, copy, and release.

12.2 Device–Cloud Transfer Learning

Due to the inherent differences between real device data and a dataset used in cloud
pre-trainingmodels, on-device training is needed to utilize the real device data neces-
sary for achieving an accurate, personalized experience. Training a model from
scratch is impractical because devices are limited in terms of computing power,
energy, and data volume; consequently, transfer learning technology is used to
simplify on-device learning. The industry has yet to reach consensus on a consis-
tent definition of transfer learning, so this section focuses on the general concept
of transfer learning, covering incremental training, online learning, and weighted
transfer learning. We discuss only cloud-to-device transfer learning in device–cloud
collaboration scenarios—this is referred to as device–cloud transfer learning.

As shown in Fig. 12.1, a typical device–cloud transfer learning process is as
follows:

5 https://developer.arm.com/architectures/instruction-sets/simd-isas/neon.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon


12.2 Device–Cloud Transfer Learning 285

Table 12.1 Common techniques for achieving lightweight models

Technique Description Example

Efficient structure design Improves the neural network
convolution mode (e.g., separable
convolution) and designs models
to be more refined and efficient in
order to minimize computation
and parameters

MobileNet series, ShuffleNet
series, and SequeezeNet

Model pruning Deletes parameters that have a
slight impact on accuracy. It learns
connections through normal
training (which does not need to
be performed from scratch) and
prunes those that fall below the
threshold. It then retrains the
weights of the remaining sparse
connections

One-shot pruning, iterative
pruning, unstructured pruning,
and structured pruning

Knowledge distillation Trains a compact model to distill
knowledge from large models.
The effect of this technique
depends on the usage scenario and
network structure. Training needs
to be performed from scratch and
can be used only for classification
tasks with the Softmax loss
function

“Student–Teacher” paradigm

Network structure fusion Performs vertical operator or
horizontal structure fusion on the
network

Fusion of convolution, batch
normalization, and activation
function: horizontal fusion of the
inception network

Weight quantization Quantizes only model weights and
reduces the number of bits
occupied by each weight to
downsize original models. It
restores Float32 during
computation

Value truncation, and
clustering-based quantization

Quantization aware
training

Quantizes both model weights and
activations, and simulates
quantization effects during
training to ensure that the resultant
models can be directly used.
Training from scratch and
pre-training are both supported

TensorFlow Lite and TensorRT

Quantization without
retraining

Quantizes both model weights and
activations asymmetrically, and
uses a calibration set (e.g., 100
images) to learn the distribution of
activations

TensorFlow Lite and outlier
channel splitting (OCS)



286 12 Device–Cloud Collaboration

Pre-trained 
model

On-device fine-tuning

(a) Transfer learning

On-device training

(b) Federated learning

Global model

Fig. 12.1 Device–cloud transfer learning and federated learning

Fig. 12.2 Federated learning defined by Yang et al. [1]

(1) The cloud selects a pre-trained model or trains a new model based on the task
on the device.

(2) The cloud delivers the model to the device.
(3) The device optimizes the model based on local data.
(4) The device uses the optimized model for inference.

Transfer training is typically achieved by either training the entire network of the
model with device data or training only the last several layers of the model. The latter
method is used mainly in image-type tasks, which typically use CNNs. In general,
the first several layers (called shallow layers) of the CNN learn rudimentary details
and simple features common to different images, for example, horizontal stripes,
oblique stripes, corners, and colors. The last several layers (called deep layers) learn
advanced and abstract features, which differ for different tasks and include faces,
animals, cars, and more. By training only the last several layers, we can accelerate
the training process significantly, but this approach depends on the level of accuracy
we hope to achieve. For language models such as those used in translation tasks, the
complexity of the transfer strategies is higher because the languages themselves are
more complex and have different semantic structures.

Incremental training and incremental learning sound like similar concepts—and
are frequently used interchangeably—but they differ from each other. In incremental



12.2 Device–Cloud Transfer Learning 287

training, the device uses a small amount of data to incrementally train a model pre-
trained on the cloud. The datasets used to pre-train this model must be similar to
those on the device; specifically, the cloud- and device-based datasets must be of the
same categories. However, samples of certain categories on devices are richer than
those on the cloud. The main benefit of incremental training is that it can improve
overfitting of the device data in the pre-trained model.

Learning can be performed in either online or offline mode. Incremental learning,
which is an online learning method, relies on the ongoing generation of data. As
the distribution of data changes, new data is used to continuously train the model.
Central to this is the ability of the model to remember what it learned from previous
data; that is, it avoids catastrophic forgetting (also called catastrophic interference).
The opposite of online learning is, naturally, offline learning, which is favored for
most model training tasks. It requires all data to be available during training and
ensures the uniform distribution of data by shuffling the data samples. In cases
where data is generated over time and the distribution of data changes gradually,
the online learning method—rather than the offline one—is used. Online, continual,
and life-long learning share many similarities in terms of concepts and methods,
but given the limited space in this book we do not describe them in detail here.
As alluded to earlier, catastrophic forgetting is the tendency to forget previously
learned information after learning new information. In device–cloud collaboration,
which relies on additional training of the model by using device data, catastrophic
forgetting may occur if the device data is unbalanced or only a small volume is
available—the trained model may identify only the sample categories that appear
on the device, but lose the capabilities learned from the cloud. To overcome this
problem, three types of methods are available:

(1) Regularization methods, such as elastic weight consolidation (EWC) and
synaptic intelligence (SI);

(2) Methods based on dynamic architecture, such as neurogenesis deep learning
(NDL) and dynamically expanding network (DEN);

(3) Complementary learning systems and memory replay, such as deep genera-
tive replay (DGR), learning without forgetting (LwF), and gradient episodic
memory (GEM).

A simple yet effective memory replay method involves downloading small
datasets (memory) from the cloud for joint training with the device data (replay).

Weighted transfer learning is extremely popular today in academia and industry
circles. Many of the prominent models currently in use, such as ResNet50,
MobileNetV2, BERT, YOLOV3, and SSDLite-MobileNetV2, have released pre-
trained model files. Developers and researchers can search model libraries to obtain
a pre-trained model that meets their requirements, and then adapt it to their task by
modifying the model’s output layer or last several layers. Subsequently, they can
then further train the modified model by using local data. In essence, adapting pre-
trained models for specific use cases is typical in transfer learning. Cloud-to-device
transfer learning offers a number of tangible benefits, especially its high effective-
ness in device–cloud collaboration. However, although it is theoretically possible to



288 12 Device–Cloud Collaboration

modify any layer of a pre-trained model in transfer learning, only the last several
layers of the model are usually modified in practice. For example, when modifying
the fully connected (FC) layer in a classification model, we can adjust the number
of categories.

After a pre-trained model is modified, partial or dynamic training can be
performed. Typically, we do not change the weight parameters of the unmodified
layer (the frozen layer), and train only the weight parameters of the modified layer,
or train the last several layers in addition to themodified layer. Alternatively,we could
adopt a stage-by-stage approach for learning: train the modified layer first, then fine-
tune the entire network, and repeat these two steps until themodel converges.Wemust
also consider how to minimize computation while also accelerating model training.
We can achieve this by using the following technique: First, split the frozen layer and
modified layer of the model into two submodels, which we will refer to as model A
and model B. Model A is inferred based on local data, and the inferred feature map
is saved as a dataset for training model B. Model B is then trained based on the saved
feature map until model B converges. After training is completed, models A and B
are concatenated to produce a complete model. By using this technique, we avoid
repeated computation of model A because its weight does not need to be trained,
which in turn accelerates the training process.

In conclusion, device–cloud transfer learning offers two key advantages over the
direct use of device data in model training: It not only avoids model overfitting
when only a small amount of device data is available (fine-tuning usually requires a
small learning rate), but also minimizes the time and resources needed for on-device
training.

12.3 Device–Cloud Federated Learning

Device–cloud joint learningmethods and frameworks enable us to fully utilize device
data and on-device training capabilities by combining the power of multiple devices,
while also ensuring privacy on the devices. Back in 2006, Google proposed a feder-
ated learning framework and conducted extensive research into gradient aggregation,
gradient compression, privacyprotection, anddevice availability. Subsequently,Yang
et al. proposed horizontal federated learning, vertical federated learning, federated
transfer learning, and federated reinforcement learning, aswell as their corresponding
frameworks, and defined federated learning as being comprised of the first three
methods in a general sense, as shown in Fig. 12.2. This section focuses on horizontal
federated learning, specifically, device–cloud federated learning.

Device–cloud federated learning aims to combine multiple users (devices) with
a common training model while ensuring privacy. Those looking to implement this
method typically raise the following questions:

(1) How can we combine multi-device data and training capabilities?



12.3 Device–Cloud Federated Learning 289

• Federated averaging, described later, is typically used to combine multiple
devices. To increase the computation/communication ratio, methods such as
gradient compression are used (which is also described later).

(2) How can we ensure device privacy?
• Differential privacy, homomorphic encryption, security aggregation, and other

mechanisms are used to ensure device privacy.
(3) How can we ensure the personalization of each device model while combining

multiple devices for joint model training?
• Technologies such as federated meta-learning and federated incremental

training are used for personalized on-device models.
(4) How can we prevent uncontrollable factors (such as malicious user attacks)

caused by learning process decentralization?
• Technologies such as meta-learning, consensus algorithms, and malicious

sample detection are used to address malicious attacks and uncontrollable
factors.

12.3.1 Federated Averaging

Google proposed the federated averaging method to increase the computa-
tion/communication ratio, which rises with the number of epochs trained on devices.
It shows a reduction in required communication rounds by 10–100x as compared
to synchronized stochastic gradient descent. In each round of federated training,
devices performmulti-epoch training, and the cloud subsequently aggregatesweights
of multiple devices and obtains a weighted average. Algorithm 12.1 shows the basic
flow of the federated averaging algorithm.

Algorithm 12.1 Federated averaging

Input: Number of devices (K), device index (k), mini-batch data on devices (B),
number of epochs on devices (E), learning rate on devices (a), and loss function
(1)
Output: Weight W
Cloud operations:

(1) Initialize weight W0

(2) In each round of t = 1, 2, …, perform (3) to (5):
(3) St = Randomly selected K devices
(4) Trigger on-device training for each device k∈St in parallel according to the

following Formula:

W k
t+1 = ClientUpdate(k,W t )

(5) Aggregate device weights according to the following Formula:



290 12 Device–Cloud Collaboration

W t+1 =
K∑

k=1

nk
n
W k

t+1

On-device training ClientUpdate (k,W):

(1) B = mini-batches divided from device data
(2) In each generation e = 1, 2, …, E, execute (3):
(3) Compute gradients and update weights for each mini-batch data b ∈ B

according to the following Formula:

W = W − a ∇l (W ,b)

(4) Return W to the cloud

12.3.2 Gradient Compression

Another technology used to improve the communication efficiency is gradient
compression. This technology compresses downloaded or uploaded gradient data
to not only reduce communication costs, but also reduce energy and band-
width consumption of mobile devices. The common methods that adopt gradient
compression are as follows:

(1) Gradient quantization. Typical examples of gradient quantization include Tern-
Grad, SignSGD, and QSGD. These methods quantize each element in the
gradient tensor or simultaneously utilize the sparsity brought by quantization.
Table 12.2 lists the communication costs of these methods, the basic principles
of which are as follows:

➀ TernGrad: quantizes each element into one of {–1, 0, 1}. For example, g =
[0.1,–0.8, 0.5, 0, 0.05] can be quantized to Q(g) = [0,–1,1,0,0]. The approx-
imate value of the quantized gradient is unbiased and can ensure conver-
gence of the training process. The communication costs of TernGrad reach
O(d log3), that is, the compression ratio is 32/log3. However, for gradient
compression in federated learning, TernGrad is not a competitive choice, as
gradient compression methods such as SignSGD and QSGD offer superior
compression.

Table 12.2 Several gradient compression algorithms

Algorithm

SGD TernGrad SignSGD QSGD

Communication costs 32d dlog3 d
√
d logd



12.3 Device–Cloud Federated Learning 291

20 1 2.4 3 4

Fig. 12.3 Schematic diagram of QSGD (P indicates the probability that a gradient element is
quantized into Q, and Q indicates the quantization result)

➁ SignSGD: takes only the sign of each element. For example, g= [0.1,–0.8,0.5,–
0.1,0.05] can be quantized into Q(g) = [1,–1,1,–1,1] by using SignSGD. The
communication costs of SignSGD reach O(d), that is, the compression ratio
is 32. In terms of compression, SignSGD is outperformed by QSGD. Further-
more, because SignSGD selects only the sign of each gradient element, the
convergence accuracy of the model is reduced.

➂ QSGD: quantizes each element by randomized rounding to a discrete set of
values. For example, 4-bit quantization has 16 (24) discrete values. As shown
in Fig. 12.3, [0, 4] is evenly divided into four intervals, and then each element
is quantized to the endpoint of the interval. For example, 2.4 is quantized
to 2 or 3 at a certain probability. Because many gradient elements may be
quantized to zero values, the gradient tensors are sparse. QSGD utilizes this
sparsity to further compress the gradient by using the nonzero elements and
indexes of the nonzero elements. The communication costs of QSGD reach
O(

√
d logd), the gradient compression ratio is 32/

√
d log d, and the upper

bound of the gradient variance is approximated as
√
d . Although it is almost

always necessary to strike a balance between the communication efficiency
and gradient accuracy, the communication costs can be reduced by transmitting
lower-accuracy gradients. However, if QSGD quantization uses fewer than 4
bits, the convergence accuracy is significantly decreased. Usually, 4-bit or 8-bit
QSGDis used, delivering communication costs ofO(4d) orO(8d), respectively.

In the table, d denotes the dimension of the gradient vector, and SGD algorithms
do not use a compression algorithm.

(2) Gradient sparsity.With the sparsity brought by quantization or a random subset
taken from a gradient through downsampling, devices only need to upload the
nonzero elements of the sparse tensor as well as the index or random seed for
downsampling.

(3) Structured updates. Google proposed a structured gradient compression
method that limits the structure of the gradient tensor—instead of conducting
quantization or sparsity on the computed gradient—in order to train and update
a smaller structure. In this method, the following two concepts are of particular
note:

➀ Low rank: As shown in Formula (12.1), weightW is decomposed into low-rank
matrices. Tensor A remains unchanged, whereas tensor B is trained. During
each iteration, devices upload only the update of B, and then normal weight W



292 12 Device–Cloud Collaboration

is restored on the cloud through computation with A.

W
(
d∗
1d2

) = A(d∗
1k)

∗B(k∗d2), k < d1 (12.1)

where

W Weight tensor
d1 Size of the first dimension of the weight
d2: Size of the second dimension of the weight
A Low-rank matrix
B Low-rank matrix

: .

➁ Random mask: A random seed is used to generate a specific sparsity pattern,
which is used to initialize and update weights, before each round of training
begins. During each round, devices upload only the nonzero elements and
random seeds of the sparsity tensor.

Figure 12.4 shows the position of gradient compression in the federated learning
system, which is deployed on a distributed system covering devices and the cloud.
Gradient compression device (2) is deployedon the devices,whereas gradient restora-
tion device (4) is deployed on the cloud. After each round of training begins,
the device generates the gradient—several such rounds may occur. The gradient
compression device compresses the gradient and uploads it to the cloud through the
communication module, after which the normal gradient data is obtained through the
gradient restoration device on the cloud. The gradient aggregation module performs
gradient aggregation and then delivers the newmodel to the device for the next round

Device 1 Device
i (1) On-device training 

module

(2) Gradient quantization 
module

(3) Device-cloud 
communication

(4) Gradient restoration 
module

(5) Cloud gradient 
aggregation moduleCloud

Device c

Fig. 12.4 Federated learning system using gradient compression



12.3 Device–Cloud Federated Learning 293

of training. The weights delivered from the cloud-to-the device can be compressed in
the sameway as the gradient uploaded in the federated learning scenario. For the same
model, the gradient tensors andweight tensors are identical in terms of number, shape,
dimension, compression method, and restoration method. It is worth mentioning that
compressing the deliveredweights will affect the convergence accuracy of themodel.

12.4 Device–Cloud Collaboration Framework

AI involves a multitude of devices and service scenarios, with its focus gradually
shifting toward a balance of performance and costs rather than outright accuracy.
Different models differ in size, memory occupancy, and latency, while different
devices vary significantly in storage space, memory size, and chip performance.
Given all of these differences, there is anurgent need to optimize the long and complex
process involved in developing models for different devices, covering the design,
training, and deployment. Existing open-source frameworks are currently unsuitable,
and so a device–cloud collaboration framework—one oriented to device service
scenarios—is required to not only streamline the entire cloud-to-device process,
spanning model generation, optimization, training, deployment, and application, but
also improve R&D efficiency and iteration speed.

The main objectives of the device–cloud collaboration framework are as follows:

(1) Rapid deployment in multiple scenarios. The framework constructs a diver-
sified model library by using NAS technology so that models can be quickly
adapted to different types of hardware on multiple devices. In this way, we can
search the library for a model that satisfies the performance constraints of a
given application and use the model directly without additional training.

(2) Full-stack performance optimization. The framework enables users to opti-
mize the precision, size, and latency of models in order to achieve ultimate
performance through methods such as NAS, model compression (pruning,
distillation, and quantization), and compilation optimization (operator fusion,
constant folding, and hardware acceleration).

(3) High flexibility and ease of use. The framework supports a combination
of multiple strategies, including model generation, model compression, and
compilation optimization, and not only streamlines the entire device–cloud
process, but also centrallymanages the strategies and configurations throughout
the process, delivering tangible benefits in terms of improved ease of use.

(4) Various learning patterns. The framework supports advanced learning patterns
that require on-device training capabilities, including transfer learning and
federated learning, as well as basic patterns such as on-device inference.
(Support for different learning patterns is being added gradually.)

This section focuses on the theoretical aspects and logical architecture involved
in building the device–cloud cooperation framework, rather than covering the cloud
platform, device–cloud communication, or device software development kit (SDK).



294 12 Device–Cloud Collaboration

Cloud
Device

Automatic model 
generation

Model 
compression

Compilation &
optimization

On-device 
inference

Transfer 
learning

Federated 
learning

Fig. 12.5 Modules in the device–cloud collaboration framework

As shown in Fig. 12.5, the device–cloud collaboration framework includes cloud-
based automatic model generation and model compression modules, and device-
based compilation and optimization and learning modules. On the cloud side, the
automatic model generation module is used to construct a model library, while the
model compression module is used to prune and quantize models in the library.
On the device side, the compilation and optimization module is used to compile and
optimize the computational graph and accelerate the operator execution. The learning
module, also on the device side, includes three learning patterns (listed in ascending
order of complexity): on-device interference, device–cloud transfer learning, and
device–cloud federated learning. These patterns differ in terms of implementation
difficulty and correspond to the three stages of device–cloud collaboration.

Automatic model generation is critical to the entire device–cloud collaboration
framework. By establishing an offline model library, we can directly select models
from it to use in various application scenarios, but we need the ability to retrieve
optimal models that satisfy application-specific constraints without performing addi-
tional training. This means that it is necessary to generate different models with
different sizes, latency, and accuracy by combining multiple tasks (classification
and object detection), multiple datasets (open source and private), multiple archi-
tectures (MobileNetV2, one-stage detection model, and two-stage detection model),
and multiple network configurations (input shape, number of channels, depth, and
kernel size). In general, we can generate only one model based on only one set
of constraints at a time by using automatic machine learning or NAS technology.
To enrich the model library, we must therefore perform multiple processes based
on different combinations, but this usually requires a great deal of time spent in
performing search and training processes each time. Such models include ENAS,
mobile neural architecture search (MNAS),AmoebaNet (based on evolutionary algo-
rithms), differentiable architecture search (DARTS), neural architecture optimiza-
tion (NAO), progressive neural architecture search (PNAS), and efficient multi-scale
architectures.

Another method we can use for generating a model library quickly is by training a
supernet, which consists of trained subnets with different channel numbers, depths,



12.4 Device–Cloud Collaboration Framework 295

and kernel sizes. Each subnet extracted from the supernet is pre-trained and can
be directly used for inference. In the online state, we can search the subnet for a
model that satisfies our specific constraint requirements and then use the model
directly without additional training. For instance, Han Cai et al. used this approach
to fully train each subnet of the supernet. The implementation process, using image
classification as an example, is as follows:

(1) Determine the basic network structure. Here we use MobileNetV2. There are
5 stages, with each stage containing a maximum of 4 blocks to give us a poten-
tial total of 20 blocks. Each block is implemented by using depthwise sepa-
rable convolutions (including two pointwise convolutions and one depthwise
convolution).

(2) Define the search space. The value range of the image size is [128, 224], and
the sampling interval is 4. The value range of the depth (i.e., the number of
blocks) in each stage is [4, 3, 2], that of the width is [6, 5, 4] (representing the
channel expansion ratio of the depthwise convolution), and that of the kernel
size is [7, 5, 3].

(3) Build a supernet. Use the maximum value of each dimension in the search
space. Specifically, in each stage, the depth is 4, the kernel size of the depthwise
convolution of each block is 7, and the channel expansion ratio is 6.

(4) Train the supernet. To eliminate interference among subnets during the training
process, which must cover the entire network, it is necessary to adopt an effec-
tive supernet training strategy, such as progressive shrinkage training. Select
one dimension and fix the others, gradually decrease the value of the selected
dimension, and use the knowledge distillation method for training until the
value ranges of all dimensions are traversed. In this way, we are able to generate
the supernet parameter file.

(5) Sample subnets. Obtain the subnet structure and parameters from the supernet
according to the values of the different dimensions. Sequentially select corre-
sponding blocks based on the depth of each stage, for example, the first two
blocks of the stage are represented by a depth value of 2. Then, select corre-
sponding channels based on the width of each block, and select the weight
parameters of the corresponding part based on the kernel size. After selecting
all the necessary items, generate and output the subnet model file and the
corresponding weight file according to the network structure.

The generated model determines the task type, input shape, accuracy, size, and
output format, but does not determine the latency on different device models. As
such, we need to build latency models for different device models so that the latency
can be used directly. Specifically, we need to deliver all operators in the NAS space
(those that may be used by all models in the library) to all target device models.
Then we need to calculate the latency of each device through repeated inference, and
subsequently build the latency model of each device model (we can use the latency
model to calculate the latency of each model in the library). The search space of
operators should factor in the operator type (such as convolution, full connection,



296 12 Device–Cloud Collaboration

Fig. 12.6 Flow of the device–cloud collaboration framework

batch normalization, or Softmax) and parameters (kernel size, stride, input dimen-
sion, and output dimension) and should be determined based on the desired search
algorithm.

In addition to model generation and latency modeling, another critical task is
creating index tables for the model library, where the combination of each task type
and a dataset corresponds to an index table. Each entry in a table records indicators
such as model, input shape, accuracy, size, output format, and latency for different
device models. The latency indicator will be expanded as the number of supported
device models continues to increase.

Figure 12.6 shows the procedural flow of the device–cloud collaboration frame-
work. The dashed boxes indicate items that can be completed in advance offline,
whereas boxes with a dark gray background indicate two situations: a scenario and
model are both available; and a scenario is available, but a model is not. The boxes
with a light gray background represent three learning patterns: on-device inference,
transfer learning, and federated learning. After generating or customizing a model,
we can use it in the three on-device learning patterns. For on-device inference, the
model is usually compressed (e.g., pruned, distilled, and quantized), and compiled
and optimized (e.g., operator fusion, graph optimization, and hardware acceleration).
For both transfer and federated learning, the model can be pruned, distilled (transfer
learning only), graph optimized, and hardware-accelerated. Federated learning also
involves gradient aggregation and gradient compression.

The following uses an object detection application as an example to describe the
process of using the device–cloud collaboration framework. Assuming that only a
scenario but no model is available, the process is as follows:

(1) Set the scenario: Set the task type (such as object detection), and provide a
private dataset (this is optional, but enables us to produce a model better suited
to the scenario). If no private dataset is available for the scenario, select an
open-source dataset (such as COCO 2017).

(2) Build a model library: This step is usually performed offline before application
development. To generate private model libraries using private datasets for
automatic model generation, we first need to set the scenarios, datasets, and
base models and then perform training using the automatic model generation



12.4 Device–Cloud Collaboration Framework 297

module. If the latency model does not cover the target device model, we need
to provide the target device model and perform latencymodeling for it by using
the latency modeling module.

(3) Set a search policy: The model index table is determined based on the task
type (object detection) and training dataset (COCO 2017), but we still need
to determine the search policy. We are more likely to obtain a model with
lower latency and smaller size if we set the search priority as follows (listed in
descending order of priority): model latency > model size > model accuracy.

(4) Obtain device model information: To determine the latency of each model in
the library, we need to automatically obtain information about the target device
model by using the device SDK. If the target device model is not included in
the list of modeled devices, the latency modeling process is started, ensuring
that all operators in the NAS space are delivered to the target device model.
Furthermore, the latency of each device model is calculated through repeated
inference, and then the latencymodel of the target device model is built. Subse-
quently, we can use the latency model to calculate the latency of each model
in the model library.

(5) Retrieve the model: Based on our search criteria, device model information,
and search policy, we can adaptively retrieve the optimal model from themodel
library.

(6) Perform model compression and compilation and optimization: Compress
(prune and distill) the retrieved model to make it as lightweight as possible,
without compromising accuracy, and then perform operator fusion, constant
folding, and quantization when converting it for on-device inference.

(7) Perform on-device learning: For the three learning patterns, the on-device
framework performs hardware acceleration based on the device’s current hard-
ware configurations. For example, we can accelerate operator execution by
using methods such as the NPU, GPU, and ARM NEON.

As we have discussed in this section, MindSpore’s device–cloud collaboration
framework is unique among its competitors in terms of the benefits it brings to users
and the speed and accuracy at which it delivers these benefits.

Reference

1. Q. Yang, Y. Liu, T. Chen et al., Federated machine learning: concept and applications. ACM
Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019)



Chapter 13
Deep Learning Visualization

13.1 Overview

In recent years, deep learning has developed at a rapid pace, gaining a great deal
of popularity. Although deep learning models excel in handling classical problems,
these models are often complex, with a nonlinear internal structure, making it diffi-
cult for us to understand the decision process or explain why certain models excel
on specific problems. Consequently, locating errors that occur in the models, and
performing the subsequent code debugging, is a difficult process. Developers and
model users alike therefore urgently need a method to help them explain, debug, and
optimize deep learning models.

A powerful tool for addressing such needs is visualization. Visualization tech-
nologies for deep learning are becoming increasingly mature, due in part to the
focused development of explainable artificial intelligence (XAI). This section starts
by introducing the process of a deep learning task, as shown in Fig. 13.1, and then
describes different visualization methods from four aspects: data analysis, model
building, training, and evaluation. The section concludes by describing the problems
that developers can solve by using these methods.

13.1.1 Data Analysis

As shown in Fig. 13.1, the data engineering stage is comprised of three steps: data
acquisition, data analysis, and data processing. If we detect a problem at any step, we
can return to the previous step to rectify the problem. By performing data analysis
during the data engineering stage, we are able to gain a preliminary understanding
of the collected data in order to optimize the data processing method. Visualization
of data analysis is therefore a vital tool that enables us to gain insights into datasets.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_13

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_13&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_13


300 13 Deep Learning Visualization

Problem 
definition

Data 
acquisition Data analysis Data 

processing

Data engineering

Model 
building Training Evaluation Deployment

Model 
development

Fig. 13.1 Process of a deep learning task

This section describes the application of visualization in data analysis from three
aspects: statistical analysis, dimension reduction, and dataset diagnosis.

1. Statistical analysis

Statistical analysis provides us with a basic understanding of datasets by summa-
rizing their statistical features, such as the global distribution of data, the mean
value of a statistical feature, a standard deviation, and a confidence interval. Typical
visualization methods used in statistical analysis employ charts such as box plot,
histogram, and violin plot. In Fig. 13.2, (a) shows the main characteristics of the box
plot, (e) shows the sampling size and confidence interval, and (f) through (i) show
the distribution of the data.

2. Dimension reduction

As mentioned earlier, statistical analysis gives us insights into the basic features of
datasets. However, this may involve analyzing hundreds or even thousands of charts,
adding to the already high workload. To reduce the potential workload, we can use
dimension reduction before analyzing high-dimensional data. Some typical examples
of the methods used for dimension reduction include principal components analysis
(PCA), t–distributed stochastic neighbor embedding (t-SNE), and linear discriminant
analysis (LDA). Through dimension reduction, we can visualize the distribution of
high-dimensional data in two- or three-dimensional space,making it easier to identify
clusters, outliers, and data points that would otherwise be difficult to distinguish by
classifiers.

Figure 13.3 shows an MNIST dataset that has been reduced to two-dimensional
space. At the boundary of each cluster, several sample points of different clusters
exist—such sample pointsmay increase the difficulty in classification. By identifying
these sample points in advance, we can preprocess the datasets to ensure that they
do not compromise the model’s performance.



13.1 Overview 301

Maximum value

Third quartile

Mean value

First quartile

Minimum value

(a) Simplified 
box plot

Visual modification Sampling size and 
confidence interval

Density addition Inclination

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 13.2 Statistical analysis charts1

3. Dataset diagnosis

Dataset diagnosis allows us to detect problems in a dataset through visualization. For
example, we can perform dataset diagnosis to identify missing or abnormal values of
a feature from a histogram, or to identify data imbalance in multiclass classification
fromabar chart. InFig. 13.4,which shows adataset for news classification,we can see
that the numbers of samples in different categories are imbalanced. For categories that
include a large number of samples, the classifiermay produce effective results; but for
those with fewer samples, the effectiveness may be compromised. Compounding this
is the inability of the classification accuracy index to adequately reflect the classifier’s
ability. To illustrate this point, let us assume that there are three categories of samples
in a dataset: A, B, and C. Category A includes 80 samples, B includes 10 samples,
and C includes a further 10 samples. Given these samples, the classifier classifies all
those in category A correctly, but classifies those in categories B and C incorrectly.
This produces an overall classification accuracy of 80%, but because the accuracy is
0% for categories B and C, the classifier is unsuitable. From this, we can see that the

1 Source: https://arxiv.org/pdf/1807.06228.pdf.

https://arxiv.org/pdf/1807.06228.pdf


302 13 Deep Learning Visualization

Fig. 13.3 t-SNE for MNIST datasets2

impact of data imbalance in deep learning classification tasks is not something that
we can ignore. Again, visualization can help us detect such problems in advance—it
also helps us to lower requirements on computing resources.

In addition to addressing sample imbalance, visualization facilitates our selection
of a suitable data processing method. For example, by analyzing the correlation
between different features and between features and categories based on heat maps,
we can select or construct category-specific features in order to improve the training
effect of deep learning models.

2 Source: https://www.cse.ust.hk/~huamin/explainable_AI_yao.pdf.

https://www.cse.ust.hk/~huamin/explainable_AI_yao.pdf


13.1 Overview 303

Finance Sports Entertain Household-
ment

Real 
estate

Education Fashion Politics Gaming Science 
and 

technologyLabels

C
ou

nt

400, 000

350, 000

300, 000

250, 000

200, 000

150, 000

100, 000

50, 000

0

Fig. 13.4 Samples of different categories in datasets used for news classification

13.1.2 Model Building

After data preprocessing, the next step in a deep learning project is to build a model.
Deep learning models are typically more complex and involve more layers than
traditional machine learning models such as the SVM and logistic regression. Table
13.1 shows the complexity of two popular network structures in computer vision and
NLP.

When working with deep learning models, we need to understand their structure
clearly and intuitively, detect problems quickly, and communicate effectively. We
can use visualization to achieve these goals.

In general, a deep learning model consists of its structure and its parameters. The
following describes how we can use visualization to address problems that might
occur during model building.

Table 13.1 Complexity of popular network structures

Network Number of network layers Application field Model feature

ResNet-50 50 Computer vision A large number of layers

BERT 12 (small)
24 (large)

NLP The computational unit is a
transformer that consists of
multiple layers



304 13 Deep Learning Visualization

Fig. 13.5 Hand-drawn network structure3

1. Model structure visualization

When building a model, we generally rely on an intuitive visual representation of its
structure to help us understand the model, detect problems, and explain the model
functionality. The most direct way to visually represent a model structure is to draw
it by hand.

Figure 13.5 shows an example of a hand-drawn structure.We can see that the input
dataset is CIFAR-10. Layer l indicates the first layer of neurons, Conv indicates the
convolution kernel, and MaxPool (max-pooling) indicates the maximum pooling
layer. The activation function of the rectified linear unit is ReLU, and the number
of channels of the convolution kernel is 128 (as indicated by 128 filter). Further-
more, Fully Connected indicates the fully connected layer, and Softmax indicates
the normalized exponential activation function in multiclass classification.

Although a hand drawing provides a convenient representation of a model’s struc-
ture, it reveals only subjective ideas rather than verifying the structure in terms of
code workability. This approach also makes it impossible to present the microcosmic
information of the model, such as the specific operation and data size, which are crit-
ical during troubleshooting. The following explains how to solve such problems with
a particular focus on using visualization.

Many of the deep learning frameworks in use today typically have a complex
structure and numerous layers. So, in order for computers to understand and run deep
learning models, they translate the user-written code into a computational graph and
then rely on the kernel of the framework to perform computation.

The computational graph, as its name implies, contains all the information neces-
sary for the computer to compute the model. It specifies the flow of input data and
a series of operations to be performed on the data, similar to the continuous flow
of water in an agricultural drainage network. Figure 13.6 shows an example of a
computational graph, where the tensor represents the format of the data flow.

Computational graphs are either static or dynamic. A static computational graph
does not change after the training procedure starts, whereas a dynamic one can be
adjusted by the training framework as needed during the training process. Thismeans

3 Source: https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf.

https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf


13.1 Overview 305

Tensor 1

Data 
input

Tensor 2

Tensor 3

Operation 
A

Operation 
B

Operation 
C

Tensor Al

Tensor A2

Tensor A3

Operation 
D

Data 
output

Fig. 13.6 Example of the computational graph

Table 13.2 Mainstream image visualization methods

Visualization method Operation node Data information
(tensor size, etc.)

Name field Product cases

Visible hierarchical
computational graph

✓ ✓ ✓ TensorBoard (by
Google)

Visible tiled
computational graph

✓ – – VisualDL (by
Baidu), Open Neural
Network Exchange
(ONNX)

that we can visualize the model structure by using the computational graph translated
from user-written code.

In a visualized graph, a node represents an operation such as scalar addition or
matrix multiplication, and an edge represents the direction of the data. Table 13.2
lists the two visualization types commonly found in today’smainstream visualization
methods.

2. Computational unit visualization

Computational graph-based visualization of a deep learning model, as described
earlier, involves many specific tensor computations and operations. Based on this,
eachnode in the graph structure canbe represented as a computational unit, also called
a neuron, mimicking the trigger mechanism of neurons in the human brain. Specif-
ically, each neuron is triggered to propagate the information forward once a certain
threshold is reached after performing a series of computations and processing. In
computational unit visualization, the main visualized components are the activations
value and the gradient of the loss function.

Visualization of activations can help us understand how input data is converted
and processed in the neural network. The activations are computed by using an
activation function such as sigmoid, ReLU, or Tanh. For example, Fig. 13.7 shows
three different layers of a neural network model. In the figure, each point represents
the dimension-reduced activations vector of a data sample at these layers. As the
input data samples flow through the network, the activations vectors belonging to



306 13 Deep Learning Visualization

Fig. 13.7 Activation unit visualization4

different classes of data samples gradually form clusters. Consequently, the model
can classify the original datasets more effectively in the inference process.

By visualizing activations, we are also better able to understand and explain the
model. Figure 13.8 shows an example of an image classification model.

In this example, a CNNmodel is used to classify objects in the image. Because the
image contains multiple objects (such as sunglasses and bow tie), the classification
results contain multiple labels. Here, we analyze the label “sunglasses”. It is easy for
us, as humans, to determine that the object on the man’s face is a pair of sunglasses.
But how does the model arrive at the same conclusion? To explain this, we first need

Fig. 13.8 Visualization of activation units helping explain the model5

4 Source: https://arxiv.org/pdf/1801.06889.
5 Source: https://distill.pub/2018/building-blocks/.

https://arxiv.org/pdf/1801.06889
https://distill.pub/2018/building-blocks/


13.1 Overview 307

Fig. 13.9 Influence between neuron groups during model classification6

to divide the neurons at the intermediate layer of the model into different neuron
groups [1]. In this way, we can describe the decision-making process using the
pattern (in this case, the “glasses” pattern) learned by different neuron groups, where
we represent the pattern through an image by using the feature visualization method
[2]. In Fig. 13.8, the lower six images (the feature visualizations) correspond to six
neuron groups, and each image corresponds to one pattern. Note that the second of
the six images contains the “glasses” pattern. When we hover over the second of
the six images, we can see that the activation value of the neuron group containing
the “glasses” pattern is the highest among the six neuron groups, meaning that this
neuron group has learned the “glasses” pattern in the sunglasses region of the original
image.

Figure 13.9 shows the influence between neuron groups at different layers when
the model recognizes that the input image contains the label “sunglasses”. Note that
the thickness of the connecting lines represents the influence level. We can see from
this figure that the neuron group with the “glasses” pattern has the greatest influence
on the classification results.

For the computational unit, we can also visualize the gradient of the loss function.
Themost common trainingmethod of the deep learningmodel is the backpropagation
of errors. This method adjusts the network parameters by using gradient descent to
propagate the gradient of the loss function from back to front, layer by layer, in the

6 Source: https://distill.pub/2018/building-blocks/.

https://distill.pub/2018/building-blocks/


308 13 Deep Learning Visualization

Fig. 13.10 RNN gradient visualization7

neural network. The propagation direction of the gradient is the exact opposite to
that of the activations value. This means that we can use gradient visualization to
help us better understand the features of the model structure.

Figure 13.10 is an example of predicting code in the C programming language
by using an RNN. The first line of code is real code in the training sample, whereas
the second line is the code predicted by the model. We can see in the figure that a
prediction error occurs at the position where the real code is “-” and the predicted
code is “u”—the parts marked in boxes under the code lines correspond to the error
gradient propagation. Through gradient visualization, we can see the influence of
previous characters on subsequent prediction results.

3. Model parameter visualization

In deep learning, all layers of the neural network model are formed by neurons,
which are connected at different layers by different weights (parameters) and func-
tion as edges to propagate information. The model training process mainly involves
the adjustment of these weights by using the error backpropagation algorithm. Visu-
alization of these weights is extremely useful in this case, as shown in Fig. 13.11,
because it helps us to not only understand themodel structure and explain the training
results, but also promptly detect any anomalies that occur during the training.

Figure 13.11 shows a fully connected feed forward neural network. The thickness
of the connection edges shown in the figure represents the absolute values of the
node weights (parameters) for connecting different layers after the training process
is completed—the thicker the line, the larger the absolute value. From this, we can see
which neurons at a previous layer have noticeable influence on a particular neuron
node. We can also observe the change of parameter distribution during training, for
layers with many neuron nodes, based on the distribution graph.

7 Source: https://vadl2017.github.io/paper/vadl_0107-paper.pdf.

https://vadl2017.github.io/paper/vadl_0107-paper.pdf


13.1 Overview 309

Fig. 13.11 Model parameter
visualization

First layer

Second layer

Third layer

Comparedwith a normal feedforward neural network, the neuron layer in theCNN
has a unique feature: The weights (parameters) corresponding to the convolution
kernel are shared. With the convolution mechanism, different convolution kernels in
the network can extract different features from the training data. This means that, by
visualizing the weights of the convolution kernel, we can observe which features are
extracted during and after the training, as shown in Fig. 13.12.

Figure 13.12 shows an example of image classification by using the CNN. At
each convolution layer, each 3× 3 grid on the left with a gray background represents
a specific convolution kernel. With the deconvolution method, each grid shows the
features extracted by the convolution kernel from each of the nine images whose
value of the convolution kernel activation unit is maximized in the validation set.
Corresponding original images are displayed on the right. From the figure, we can
see a significant difference between the image features extracted by the convolution
kernels at different layers. The features extracted at a deeper layer are more complex,
while the differences between those extracted by the same kernel from different
images are less noticeable. This helps us to better understand the roles that different
convolution kernels play in the model inference process.



310 13 Deep Learning Visualization

First layer

Second layer

Third layer

Fig. 13.12 Visualization of the weights of the CNN convolution kernel8

13.1.3 Training

Visualization is also crucial tomodel training. In this case, by visualizing the variation
curve of parameters at the intermediate layer of the model, we are able to detect
abnormal model performance. For example, we can visualize indexes such as the
model loss or accuracy in order tomonitor themodel training processmore effectively
in real time. In Fig. 13.13, which shows how the loss curves change during the model
training process, we can see that the loss of both the training and validation sets
decrease rapidly and converge as the training iteration continues, indicating that the
model is normal during the training process. Conversely, a loss curve that changes
significantly or rises sharply at a given point indicates that the training process is
unstable or abnormal. In this case, we may elect to terminate the training process
immediately in order to avoid wasting resources unnecessarily.

8 Source: https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


13.1 Overview 311

Fig. 13.13 Error changes in
the training set and
validation set

Training set

Validation set

Number of iterations
Lo

ss

0.7

0.6

0.5

0.4

0.3

0.2

0          1          2          3          4          5          6           7

13.1.4 Evaluation

After training the model, we need to evaluate it. By evaluating a trained model, we
can:

1. Determine whether it meets our criteria;
2. Select the best model if we trained more than one; and
3. Gain a deeper understanding of how the model works as well as its decision-

making process. For example, when handling a BERT-based text classification
task, we can utilize case analysis and visualization to help us intuitively detect
words that play a decisive role in the classification result at the text level.

This section describes the role of visualization in model evaluation from two
aspects: model evaluation and comparison, and case analysis.

1. Model evaluation and comparison

Model evaluation is based on common model indexes such as accuracy, preci-
sion, recall, and F1 score. But because a single index is unable to comprehen-
sively measure the model’s effectiveness, we need to analyze numerous indexes
and compare different models using the visualization method before we can select
the best model. As an example, assume that we have a multiclass classification task
related to handwriting identification. We first obtain two machine learning models
(deep learning models are similar) through training: random forest (RF) and SVM.
The accuracy of both models is 0.87. How can we determine which one is better?
To answer this conundrum, we can use the visualization method. Through a set of
histograms and line charts, this method shows how the prediction scores of the two
models are distributed for different categories of samples, as shown in Fig. 13.14.

In Fig. 13.14, each histogram represents a category. We can see that the SVM
prediction scores are concentrated at 0.9–1.0, whereas the RF prediction scores are
distributed within 0.3–0.8. From this, we can determine that SVM classifies samples
in each categorymore effectively,meaning that the SVMmodel is the optimal choice.



312 13 Deep Learning Visualization

Pr
ed

ic
tio

n 
sc

or
e

Pr
ed

ic
tio

n 
sc

or
e

Samples

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(a)

(b)

C0            C1             C2            C3              C4              C5             C6            C7            C8             C9

C0             C1             C2            C3             C4             C5              C6            C7             C8             C9

Fig. 13.14 Distribution of the prediction scores of RF (a) and SVM (b) for samples of different
categories9

At a star-studded event in Beijing, film makers revealed that they had completed filming of the thriller comedy "Scary Market",
co-starring Athena Chu, Feier Li, and Tat-Ming Cheung. The producer expected the film to hit cinemas during this year's Halloween.

Fig. 13.15 Attention to different words in news classification

2. Case analysis

Taking a text classification task based on the BERT10 model as an example,
this section describes how visualization helps us to gain greater insight into the
working mechanism and decision-making process of the model while evaluating its
effectiveness.

We can consider BERT as a language model based on extensive text training,
and one that relies mainly on the self-attention mechanism to perform computation.
In order to train the model for a specific NLP task (e.g., text classification), we can
optimize themodel based onBERT through transfer learning. In addition, by utilizing
BERT’s self-attention mechanism, we can visualize attention in order to understand
the decisions made by the model. Figure 13.15 shows the distribution of attention
when BERT classifies a news message as “entertainment”. Highlighted words are
those that have attracted the model’s attention, where the deeper the highlight, the
greater the attention. Because the message contains the names of some celebrities
and words such as “thriller comedy”, the model classifies the news message as
“entertainment”. Case analysis in combination with the visualization method can

9 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539404.
10 See: Devlin J, ChangMW, LeeK, et al. Bert: Pre-training of Deep Bidirectional Transformers for
Language Understanding [EB/OL]. (2018–10-11) [2019-10-26] http://arxiv.org/pdf/1810.04805.
pdf.

https://ieeexplore.ieee.org/stamp/stamp.jsp%3Ftp%3D%26arnumber%3D7539404
http://arxiv.org/pdf/1810.04805.pdf


13.1 Overview 313

help us intuitively understand the basis of model decision making. Furthermore, in
order to quickly identify the cause of a misclassified news message, we can check
through case analysis to ascertain whether the model focuses on words that are not
related to real labels.

13.2 MindSpore Visualization

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

Over the past decade, machine learning has developed rapidly in terms of research
and application, giving rise to increasingly complex network structures. But as the
complexity increases, programmers find it more and more difficult to explain how
the involved models work. This hinders the ability of programmers to evaluate model
effectiveness, as they need to understand what real-time effects parameter changes
have on models and training. The more complex the networks become, the harder it
is to perform log-based debugging in terms of both time and cost.

MindSpore visualization is developed to address these issues, offering bothmodel
and training visualization. By visualizing images, scalars, and graph structures, it
provides the necessary insights for programmers to understand models, structures,
and training, enabling them to evaluate models quickly and efficiently based on
detailed visualization results. In this section, we describe some of the key concepts
involved in MindSpore visualization, including OPS Summary, and explain how to
use visualization effectively.

13.2.1 Visualization Process

TheMindSpore visualization tool is part of theMindSpore training framework, sowe
first need to install the framework via pip—Python’s package-management system:

$ pip install mindspore

https://mindspore.cn/resource


314 13 Deep Learning Visualization

Once MindSpore is installed, and the visualization tool is installed automatically.
We can then use the logs generated by MindSpore after model training (Code 13.2
in Sect. 13.2.3 provides an example of generating such a log).

To start the MindSpore visualization service, we need to run a command on the
device that contains the parameters of the directory in which the log is located.
Optional parameters can be specified in the command, some of which are as follows:

• datalog: The path to the log required for the model and training visualization
module.

• dataset: The path to the dataset required by the dataset visualization module.
• port: Specifies the port, which is 8040 by default.
• host: Specifies the host, which is local host by default.
• help: Displays help information.

After we run this command, the device will display some startup information,
including a web address if the server starts successfully. We can access this address
to view the visualization information of the modules corresponding to the imported
parameters:

[2019-08-29 22:46:28 +0000] [85479] [INFO] Listening at: 
http//0.0.0.0:8040

MindSpore visualization is comprised of four modules, based on the type of
content: dataset visualization, model and training visualization, result analysis
visualization, and task management visualization.

From Fig. 13.16, which shows the model and training visualization workflow
involved in MindSpore visualization, we can see that the content to be visualized
depends on the output of MindSpore. Consequently, any data that changes during
training needs to be recorded so that we can visualize the training process.

In order to achieve this, we must first use the OPS Summary operator to receive
user-specified data during training. OPS Summary is the generic name given to
operators such as ScalarSummary and ImageSummary customized by MindSpore
for the model and training visualization module. We then need to train the user-
defined computational graph to use the SummaryRecord class so that it outputs data
contained in the specifiedOPS Summary operator to the log file containing Summary
(described in Sect. 13.2.4). The Summary class refers to the summary data.

OPS Summary operator

Computational graph

Summary record
Output

Log file
Model and training 

visualization in 
MindSpore visualization

Fig. 13.16 Model and training visualization workflow for MindSpore visualization



13.2 MindSpore Visualization 315

Upon startup, theMindSpore visualization service displays summary information
of models, training logs, and datasets on the first page, from which we can select
individual tasks to view specific modules.

13.2.2 Dataset Visualization

In general, training tasks require three types of raw data: text data, in tasks such
as news classification and abstract generation; image data, in tasks such as image
classification and object detection; and table data, such as table entries stored in a
database, requiring classification or regression prediction. We need to convert this
raw data into machine-understandable values before using it as training data, which
we obtain by using the word vector method. Prior to this, however, it is beneficial
to check what type of data is available, what the characteristics of the data are, and
whether the data is balanced.

1. Data overview

The data overview page, as the name suggests, provides an overview of the data
involved in classification tasks. It includes a statistical breakdown and histogram
of the data, showing the percentage of data per category, as shown in Fig. 13.17.
Clicking View for a desired entry displays a corresponding page according to the
format of the original data.

Fig. 13.17 Data overview page for data visualization



316 13 Deep Learning Visualization

Fig. 13.18 Text data page for dataset visualization

2. Text data

MindSpore provides a number of visualization schemes for specific tasks. Using text
classification tasks as an example, MindSpore provides two visualization methods:
word cloud analysis and word frequency analysis, as shown in Fig. 13.18. Word
cloud has become a popular method in recent years for displaying the frequency
distribution of words appearing in text, where the frequency of a word is related
to its frequency in training data. We can view the frequency of specific words in
the word frequency analysis area, which shows the word frequency using histograms
displayed in descending order of frequency.MindSpore displays word cloud analysis
and word frequency analysis based on the category labels of the training datasets to
avoid overloading us with too much information on one page, but we can easily
switch to other datasets as required.

With the information obtained through text classification visualization, we can
broadly infer the word to be focused on when a text classification task model is used
to predict the category.

3. Image data

In terms of image data, MindSpore visualization provides an image preview func-
tion for image classification tasks, as shown in Fig. 13.19. Selecting a number of
images at random based on different categories, which we can select according to
our requirements, can help us obtain a better understanding of the training data.



13.2 MindSpore Visualization 317

Fig. 13.19 Image classification page for dataset visualization

4. Table data

The table data page, as shown in Fig. 13.20, provides key information about table
data. We can view attribute information, including a box chart that displays the
associated data distribution, as well as statistics of missing and abnormal values, by
expanding the collapsible element for each numeric attribute. In addition, we can

Fig. 13.20 Table data page for dataset visualization



318 13 Deep Learning Visualization

customize the range of normal values and can compare the data distribution of a
given attribute between different categories in cases of multi-classification.

13.2.3 Model and Training Visualization

Before we can evaluate and adjust a model based on certain indicators, we often
need to wait a long time for model training to finish. By visualizing the model and
training,MindSpore provides uswith greater insights into how changes of parameters
and indexes affect the model and training, enabling us to make necessary model
adjustments quickly. With MindSpore, we can also select customized visualization
models and analyze their trends in order to make informed decisions for model
optimization.

1. Scalar

The OPS.ScalarSummary() operation enables us to view the trends of a specific
scalar, such as loss value and accuracy rate of each iteration, throughout the entire
training process. The ScalarSummary operator involves two parameters, as shown
in Code 13.1.

Code 13.1 ScalarSummary Operator in MindSpore.

from mindspore.ops import operations as OPS

scalar_summary = OPS. ScalarSummary (string_in, scalar) 

In the ScalarSummary operator, the two parameters are defined as follows:
string_in: The name of the scalar displayed in MindSpore visualization, which is

of the string type.
scalar: Data that contains the scalar, which is of the tensor type.
Code 13.2 shows an example of writing test scalar data to a log by using the

ScalarSummary operator and SummaryRecord module.

Code 13.2 WritingTest ScalarData to aLogwith the ScalarSummaryOperator
and SummaryRecord Module



13.2 MindSpore Visualization 319

import random

import numpy as np

from mindspore.trace.Summary.summary_record import SummaryRecord

from mindspore.common.tensor import Tensor

from mindspore.common.api import compile_graph, exec_pip,

import mindspore.nn as nn

from mindspore.ops import operations as OPS

class SummaryDemo(nn.Cell):

def __init__(self,):

super(SummaryDemo, self).__init__()

self.summary = OPS.ScalarSummary()

self.add = OPS.TensorAdd()

def construct (self, x, y):

self.summary ("x1", x)

z = self.add (x, y)

self.summary ("z1", z)

self.summary ("y1", y)

return z

def test_scalar_summary_with_ge():

#Step 0: Create SummaryRecord.

test_writer = SummaryRecord(SUMMARY_DIR)

#Step 1: Create a network for writing scalars.

x = Tensor(np.array ([1.1]).astype(np.float32))

y = Tensor(np.array ([1.2]).astype(np.float32))

net = SummaryDemo()

net.set_train()

graph, pip = compile_graph (net, x, y, save_graphs=True)

pip.init_data_graph(graph, net.parameters_dict())

#Step 2: Create a test training event.

steps = 100

for i in range (1, steps):

#Generate test data.

x = Tensor (np.array([1.1 + random.uniform (1, 
10)]).astype(np.float32))

y = Tensor (np.array(1.2 + random.uniform (1, 
10))).astype(np.float32))

output = exec_pip(pip, x, y)

test_writer.record(i)

#Step 3: Close SummaryRecord.

test_writer.close()

Code 13.2 draws the changes of scalars (×1, y1, and z1 in this example) in the
training process by using operations such as ScalarSummary and SummaryRecord,



320 13 Deep Learning Visualization

which are used to receive the test data and write it to the log file, respectively.
MindSpore visualization reads the log file and displays the results on the web page,
and interprets the ScalarSummary operator based on the results.

After MindSpore visualization is started, the Scalar page shows the effect shown
in Fig. 13.21 according to the log output generated from Code 13.2, that is, the
accuracy written above. MindSpore visualization enables us to view information at
any given point on the displayed line graph, including training steps, timestamps,
and smoothed values, via an intuitive interface through which we can obtain relevant
information. As shown in Fig. 13.22, the control panel on the Scalar page provides
numerous options to fine-tune how the information is presented.

2. Image

The OPS.ImageSummary() operation enables us to view several images on the
MindSpore visualization page. For training tasks that involve images, MindSpore
visualizes the intermediate results to help us perform model evaluation.

In MindSpore, the ImageSummary operator involves two parameters, as shown
in Code 13.3.

Fig. 13.21 Scalar page for model and training visualization

Fig. 13.22 Control panel for the Scalar page



13.2 MindSpore Visualization 321

Code 13.3 ImageSummary Operator in MindSpore.

from mindspore.ops import operations as OPS

image_summary = OPS.ImageSummary(string_in, image)

In the ImageSummary operator, the two parameters are defined as follows:
string_in: The name of the image displayed in MindSpore visualization, which is

of the string type.
image: Image data, which is of the tensor type.
After the tensor containing the image data is imported to the OPS.ImageSummary

operator, the SummaryRecord module is used to write this image data to the log file.
MindSpore visualization reads the log file and displays the results on the web page.
However, we first need to define the image information we want to record in the
network. Code 13.4 shows an example of defining ImageSummary in the network.

Code 13.4 Code for Defining ImageSummary in the Network.

class ResNet(Cell):

def __init__(self, block, layer_num, num_classes=100):

super(ResNet, self).__init__()

self.summary = OPS.ImageSummary()

#Define the network structure.

self.conv1 = conv7x7(3, 64, stride=2, padding=3)

… 

def construct(self, x):

self.summary("x_image", x)

#Define the computation process.

x = self.conv1(x)

… 

return x

We need to define SummaryRecord prior to training so that we can subsequently
use it as a callback function during training in order to save images in the log file.



322 13 Deep Learning Visualization

Fig. 13.23 Image page for model and training visualization

Figure 13.23 shows an example of how the sample code is visualized. For each
image on the Image page, we can drag the progress bar to view the visualization
results of the model and training at different times.

3. Computational graph

The computational graph visualization module is used to display the network struc-
ture of themodel.We can click a node to view detailed information about it, including
its name, attribute, and input/output. Storing the computational graph to the log file
does not depend on the OPS Summary operator; instead, we only need to import
the defined network when instantiating SummaryRecord. Code 13.5 provides an
example of this.

Code 13.5 Using SummaryRecord to Store Information of a Computational
Graph into a Log.



13.2 MindSpore Visualization 323

import os

from mindspore.data import augmentations as augs

import mindspore.nn as nn

from mindspore import Model

from mindspore.trace.summary.summary_record import SummaryRecord

from mindspore.nn.optim import Momentum

CUR_DIR = os.getcwd()

SUMMARY_DIR = CUR_DIR + "/ test_temp_summary_event_file/"

class NET(nn.Cell):

def __init__(self):

super(NET, self).__init__()

self.conv = nn.Conv2d(3, 64, 3, has_bias=False, 
weight_init= 'normal', pad_mode='valid')

self.bn = nn.BatchNorm2d(64)

self.relu = nn.ReLU()

self.flatten = nn.Flatten()

self.fc = nn.Dense(64*222*222, 3) #padding=0

def construct(self, x):

x = self.conv(x)

x = self.bn(x)

x = self.relu(x)

x = self.flatten(x)

out = self.fc(x)

return out

def get_dataset():

data_dir = os.Path.Dirname(

os.path.realpath(_file_)) + "/../test_data/imagenet_file"

augmentations = augs.Compose(

[augs.RandomCropResized(224),

augs.RandomHorizontalFlip(),

Augs.ToTensor()])

dataset = dt.ImageFolder(data_dir, transform=augmentations)

one_hot_len = len(dataset.class_to_idx)

def one_hot_fuc(sample):

lst = [0] * one_hot_len

data, label = sample

lst[label] = 1

data_label = np.array(lst, np.float32)

return data, data_label

dataset = dataset.map(one_hot_fuc)

dataset = dataset.shuffle(buffer_size=3)

dataset = dataset.batch(batch_size=2, drop_last=False)



324 13 Deep Learning Visualization

dataset = dataset.to_tensor()

return dataset

def test_graph_summary():

dataset = get_dataset()

#Step 0: Create SummaryRecord.

net = NET()

test_writer = SummaryRecord(SUMMARY_DIR, network=net)

#Step 1: Create a model.

loss = nn.SoftmaxCrossEntropyWithLogits()

optim = Momentum(learning_rate=0.1 momentum=0.9, 
weights=net.trainable_params())

model = Model(net, loss_fn=loss, optimizer=optim, 
metrics=None)

model train(2, dataset)

#Step 2: Store the computational graph.

test_writer.record(0)

#Step 3: Close SummaryRecord.

test_writer.close()

Code 13.5 first defines a network structure and then uses the get_dataset() function
to read the dataset into memory, following which it uses the test_graph_summary()
function to output the log file. The procedure is as follows:

Step 0: Instantiate a SummaryRecord object for outputting a log file, and import
the path of the specified output log and the network structure objects of the
computational graph.
Step 1: Import the optimizer object and network structure objects into the model,
and call the training function for compilation.
Step 2:Call the record function in theSummaryRecord object to output the compu-
tational graph to the log file. To simplify this example, real training is not required
and no training steps are included, so the imported parameter is 0.
Step 3: Close the SummaryRecord object.

The MindSpore visualization backend then reads and runs the log file to display
the computational graph visualization page showing the network structure, where all
nodes are collapsed by default, as shown in Fig. 13.24.

In Fig. 13.24, Parameter represents the parameter node and contains the network
parameters in the computational graph; Default represents the default model struc-
ture node; and the solid arrows connecting the nodes indicate the flow direction of the
tensor data (the associated numbers indicate the pieces of tensor data). In addition:

1. : A rectangular namespace node represents Namescope, which we can
expand by double-clicking it to view the subnodes.

2. : An elliptical operation node represents a specific operator node, which
is an atomic node and cannot be expanded.



13.2 MindSpore Visualization 325

Fig. 13.24 Computational graph for model and training visualization

3. : An octagonal aggregation node indicates that some nodes of the same
type and at the same layer are displayed as one node, which we can expand by
double-clicking it to view specific nodes and their connection relationships.

4. A virtual node indicated by a dashed box is a simplified mapping of a
node, which we click on to jump to the actual node.

5. A solid arrow indicates a data flow direction edge.
6. A dashed arrow, shown only when the model is large, indicates a control-

dependent edge.

Taking the ResNet as an example, after we expand the namespace node by double-
clicking it, themain display area shows part of the structurewe selected in the compu-
tational graph. Expanding the namespace node also reveals its subnodes, where the
connection lines between the nodes indicate the directions of data flows and control
edges. In addition, the secondary display area (omitted here) shows a higher-level
overview of the full computational graph, displaying the location of our selected part
of the graph, details of the selected node, and explanations of the legends used.

13.2.4 Format of Summary Data

Summary data contains two embedded classes: Image and Value. Code 13.6 defines
Summary in the summary.proto file.



326 13 Deep Learning Visualization

Code 13.6 Excerpt of the summary.proto File.

message Summary {

//Data

message Image {

//Image dimension information

int32 height = 1;

int32 width = 2;

//Color space

//1 - grayscale

//2 - grayscale + alpha

//3 - RGB

//4 - RGBA

//5 - DIGITAL_YUV

//6 - BGRA

required int32 colorspace = 3;

//Encoded image data

required bytes encoded_image_string = 4;

} 

//Numerical information

message Value {

//Data tag for managing data

required string tag = 1;

//Values corresponding to the tag

oneof value {

float scalar_value = 3;

Image image = 4;

TensorProto tensor = 8;

} 

} 

//Set of numerical information contained in summary data

repeated Value value = 1;

} 

Event data records basic information about an event, including the timestamp,
global steps, and other defined information. This means that for an event instance,
we can select event information from only the following fields: file version number,
encoded data flow graph, and Summary data. Code 13.7 defines Event selected in
the summary.proto file.



13.2 MindSpore Visualization 327

Code 13.7 Definition of Event in the summary.proto File.

message Event {

//Event timestamp

double wall_time = 1;

//Number of global steps

int64 step = 2;

oneof what {

//Event file version number

string file_version = 3;

//Encoded data flow graph

bytes graph_def = 4;

//Summary data

Summary summary = 5

//Generated logs

} 

} 

When the timestamp and global steps are provided, Summary can be converted
into event data.

References

1. C. Olah, A. Mordvintsev, L. Schubert, Feature visualization. Distill, 2(11), e7 (2017)
2. D. Cashman, G. Patterson, A. Mosca et al., RNNbow: visualizing learning via backpropagation

gradients in RNNs. IEEE Comput Graph Appl 38(6), 39–50 (2018)



Chapter 14
Data Preparation for Deep Learning

14.1 Overview of Data Format

A data format describes how to organize and save data in files, and can be in the form
of numbers, characters, or binary numbers. Storage in a character format typically
offers a high level of transparency but consumes more storage space, whereas that
in a binary format—a compressed format—offers a low level of transparency but
consumes less storage space.While text files can be opened and displayed in readable
form using common programs such as Notepad, binary files need to be decoded using
specific tools or libraries before they can be displayed in a readable form.

Common data storage formats include TXT, XLS, DOC, PPT, CSV, XML, JSON,
JPEG, BMP, and many others.

(1) TXT mainly stores text information. Such files can be opened and displayed
in a readable manner using programs such as Notepad and Notepad + + .

(2) XLS, DOC, and PPT: formats supported by the Microsoft Office suite. XLS is
ideal for processing tables, charts, and data; DOC is suitable if typesetting of
text is required; PPT is suitable for product description and charts.

(3) BMP: a standard format used by Windows to store bitmap digital images.
Although the image depth is adjustable, BMP files are not compressed and
therefore have a relatively large size.

(4) JPEG: a lossy compression scheme used to compress images. Due to lossy
compression, some repeated or unimportant data may be lost, potentially
damaging the image data.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5_14

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2233-5_14&domain=pdf
https://doi.org/10.1007/978-981-16-2233-5_14


330 14 Data Preparation for Deep Learning

0000: FF D8 FF E0 00 10 4A 46 49 46 00 01 01 01 00 60
0010: 00 60 00 00 FF DB 00 43 00 08 06 06 07 06 05 08
0020: 07 07 07 09 09 08 0A 0C 14 0D 0C 0B 0B 0C 19 12
0030: 13 0F 14 1D 1A 1F 1E 1D 1A 1C 1C 20 24 2E 27 20
0040: 22 2C 23 1C 1C 28 37 29 2C 30 31 34 34 34 1F 27
0050: 39 30 38 32 3C 2E 33 34 32 FF DB 00 43 01 09 09

...
0220: 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6
0230: A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4
0240: C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E2
0250: E3 E4  E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8 F9
0260: FA FF DA 00 0C 03 01 00 02 11 03 11 00 3F 00 E2
0270: E8 A2 8A F9 93 F7 10 A2 8A 28 00 A2 8A 28 00 A2
0280: 8A 28 03 FF D9

Fig. 14.1 JPEG image in binary mode

A JPEG image predominantly contains the following data segments: [file
header][APP0 segment][DQT segment]…[SOF0 segment][DHT segment]…[SOS
segment][image compression data][file trailer].

If we were to draw a 32 × 24 red square and save it as a JPEG file, its binary
representation would be as shown in Fig. 14.1.

14.2 Data Format in Deep Learning

In the field of AI, an extensive range of data is used for training. For example, text,
image, audio, and video data can be used as original input, which is then either
manually or semiautomatically annotated as training data. Once this input and the
annotation information are uploaded to a training platform, the platform uses the
annotation information during the training process in order to generate a model.

14.2.1 Original Input

Original input is fed into the training framework and mainly includes text, image,
audio, and video data. Each piece of original input has a particular set of features;
for example, an image contains attribute information such as type, length, width, and
size. This information is referred to as metadata, which the training framework uses



14.2 Data Format in Deep Learning 331

in order to better understand the pieces of original input. The following provides
some examples of the different types of original input.

(1) Text: In text classification, labels are used to classify the text, and then the
text and label categories are trained to generate a model for text classification
detection.

(2) Image: The most common application is object recognition, in which each
training image is labeled as a category. Two lists in a one-to-one mapping—
one of the images and one of the categories—are obtained and subsequently
used for image classification training.

(3) Audio: Through training, speech is converted into text, which can then be
used as input in an AI application to complete semantic understanding and
instructive operations.

(4) Video: Video data can be labeled efficiently to facilitate operations such as
classification and search.

14.2.2 Annotation Information

Annotation information is associated with the type of training the user performs
based on the original input. For example, PASCAL VOC, custom CT format, and
COCO are different annotation formats. After annotation is performed, annotation
files are generated in a variety of formats, some of which are described in this section.

1. PASCAL VOC format
Mandatory fields are described as follows:

• folder indicates the directory where the data source resides.
• filename indicates the name of the annotated file.
• size indicates pixel information of an image.
• width indicates the width of an image.
• height indicates the height of an image.
• depth indicates the number of channels in an image.
• segmented indicates whether segmentation is performed.
• object indicates object detection information. If multiple objects are annotated,

there will be multiple object fields.
• name indicates the category of content.
• pose indicates the shooting angle of content.
• truncated indicates whether content is truncated (0 means no).
• occluded indicates whether content is occluded (0 means no).
• difficult indicates whether it is difficult to identify the target (0 means no).
• bndbox indicates the type of an annotation box. Values are shown in Table 14.1.



332 14 Data Preparation for Deep Learning

Table 14.1 Description of bndbox values

Type Shape Annotation information Remarks

point Point Coordinates of the point
<x > 100 < x>
< y > 100 <y>

–

line Line Coordinates of points
< x> 100 < x1 >
<y1 > 100 <y1>
<x2> 200 < x2>
<y2 > 200 <y2>

–

bndbox Rectangular box Coordinates of the lower left
point and the upper right point
<xmin> 100 < xmin>
<ymin > 100 <ymin>
<xmax> 200 < xmax>
<ymax> 200 < ymax>

–

polygon Polygon Coordinates of points
< x1> 100 < x1 >
<y1 > 100 <y1>
<x2> 200 < x2>
< y2> 100 <y2>
<x3> 250 < x3 >
<y3> 150 <y3>
<x4> 200 < x4>
<y4 > 200 <y4>
< x5> 100 <x5>
<y5 > 200 <y5>
<x6> 50 < x6>
<y6 > 150 <y6>

–

circle Circle Center coordinates and radius
<cx > 100 <cx>
<cy > 100 < cy>
<r > 50 <r>

–

rotated_box Rotated rectangle – Reserved, not supported
currently

cubic_bezier Cubic Bezier curve – Reserved, not supported
currently



14.2 Data Format in Deep Learning 333

An example of PASCAL VOC annotation information is shown in Code 14.1.

Code 14.1 Example of PASCAL VOC annotation information

2. Custom CT format

Custom CT format is a new data annotation format that includes definitions such
as template specification used,whether the data is an array,whether a field is required,
andfield type.As the name suggests, it can be tailored to generate a customannotation
format, based on which it can generate an annotation template, making subsequent
annotation easier to perform. The custom CT format is shown in Code 14.2.



334 14 Data Preparation for Deep Learning

Code 14.2 Custom CT format



14.2 Data Format in Deep Learning 335

An example of custom CT format annotation information is shown in Code 14.3.

Code 14.3 Example of custom CT format annotation information



336 14 Data Preparation for Deep Learning

14.3 Common Data Formats for Deep Learning

Some of the most common data formats used in deep learning include TFRecord,
LMDB, and REC. The TFRecord format corresponds to TensorFlow, LMDB
corresponds to Caffe, and REC corresponds to MXNet.

In order to explain why we need deep learning data formats, let us take images
and annotation information as an example. Conventionally, training data is stored
either locally or on the cloud, and is provided to the training platform in the form
of a file list. This approach has a number of drawbacks: It requires many inefficient
I/O or network operations, consumes local storage space or network bandwidth,
prolongs the training process, and compromises the training efficiency. MindSpore
takes a different approach in order to address such issues. TheMindSpore data format
organizes the image list and annotation information into one ormore large files, either
locally or on the cloud, reducing the time needed for the training platform to read
numerous files and improving training efficiency.



14.3 Common Data Formats for Deep Learning 337

S3/OBS/Object cloud storage

Image list +
annotation list

Data reading
Training 
platform

Image list +
annotation list
Local storage

Image list

S3/OBS/Object cloud storage

Self-developed 
data format
(large files)

Create

Image list +
annotation list

Create

Efficient data 
reading

Training 
platform

Self-developed data 
format

(large files)
Local storage

MindSpore data format (large files)

Fig. 14.2 Differences between the conventional approach of reading an image list and the approach
MindSpore uses

Read time Training computation time

MindSpore data format (large files)Image list

Training computation time

Fig. 14.3 Time consumption comparison between the conventional approach of reading an image
list and the approach MindSpore uses

Figure 14.2 shows the differences between the conventional approach of reading
an image list and the approach MindSpore uses.

Figure 14.3 shows a time consumption comparison between the two approaches.

14.3.1 TFRecord Format

TFRecord is a binary storage format in TensorFlow and generates data based on
Protobuf. Only the Protobuf format needs to be defined (i.e., what data needs to be
written and their types), following which a TensorFlow interface can be invoked to
convert the original input and label information to the TFRecord format. TFRecord
stores data in a row-based storagemode, enabling efficient reads aswell as facilitating
transfers and duplication. Of particular note is that it does not require a separate
label file. With TFRecord, we can define data types such as bytes_list, float_list, and
int64_list, and store both image data and labels in TFRecord files. TFRecord makes
it convenient to provide data for TensorFlow, read data from files, and preload data,
allowing data to be quickly loaded during training.

The storage format of TFRecord data is shown in Fig. 14.4.
A TFRecord file contains the tf.train.Example protocol buffer. After data is added

in the tf.train.Example protocol buffer, the protocol buffer is serialized into a string
and written to the TFRecord file through tf.Python_io.TFRecordWriter. An example
of a TFRecord write operation is shown in Code 14.4.



338 14 Data Preparation for Deep Learning

TFRecord

Sample N

Sample 1

Sample i

Feature 1-key: value

Feature 2-key: value

Feature 2-key: value

Feature 1-key: value

Feature 1-key: value

Feature 2-key: value

Fig. 14.4 TFRecord data storage format

Code 14.4 Example of a TFRecord write operation

The tf.parse_single_example parser of tf.TFRecordReader can be used to read
data from the TFRecord file. The operation can parse the example protocol buffer to
a tensor. An example of a TFRecord read operation is shown in Code 14.5.



14.3 Common Data Formats for Deep Learning 339

Code 14.5 Example of a TFRecord read operation

14.3.2 LMDB Storage

Lightning Memory-Mapped Database (LMDB) is a transactional database used in
Caffe and based on key-value pairs. Because it uses a memory mapping file, it offers
extremely high I/O performance, which is beneficial as numerous read and write
operations are performed when Caffe is used. In LMDB, the Datum data structure is
used to store original images and annotated labels. Specifically, Datum includes:

(1) Channels indicates channels in an image. A color image has three channels,
whereas a grayscale image has only one.

(2) Height indicates the height of the image (i.e., data).
(3) Width indicates the width of the image (i.e., data).
(4) Data indicates the image data (pixel values).
(5) Label indicates the image label.

LMDB is well suited for image dataset scenarios. It saves decoded RGB values
of an image, meaning that the saved dataset is larger than the image list.

As mentioned earlier, LMDB uses a memory mapping file, whereby all read
operations are to map a to-be-accessed file to virtual memory in a read-only manner
through Mmap. Write operations are performed through system calls, mainly to use
file system consistency to avoid synchronization on the address being accessed.

LMDB uses a B+ tree structure for storage. Both indexes and values are read from
the B+ tree page. The B+ tree operation mode is provided to the outside: A cursor
can be used for performing operations such as create, retrieve, update, and delete
(CRUD). The basic architecture of LMDB is shown in Fig. 14.5.



340 14 Data Preparation for Deep Learning

User interfaces put, commit, and get

Transaction MVCC COW

LockTable B+tree

Mmap (Memory-Mapped)

Fig. 14.5 Basic architecture of LMDB

(1) User interfaces put, commit, and get: Interfaces through which users operate
LMDB. These interfaces, respectively, correspond to the write, commit, and
get operations, allowing users to write data to and obtain data from LMDB.

(2) Transaction: LMDB provides transaction operations to ensure the atomicity,
consistency, isolation, and durability (ACID) attributes of data, mainly for data
consistency purposes.

(3) MVCC: Multi-version concurrency control (MVCC) addresses issues with
write operation time-outs due to multiple long read operations caused by read–
write lock. LMDB adds a limit to MVCC, that is, only one write thread is
allowed to exist, thereby avoiding read–write conflicts.

(4) COW:Copy-on-write (COW) is an optimization strategy, whereby if more than
one caller requests the same resource at the same time (such as data stored in
memory or on a disk), the callerswill jointly acquire the samepointer that points
to the same resource. The system generates a dedicated copy of the resource for
a caller only when the caller attempts to modify the resource content, while the
resource that other callers see remains unchanged—this process is transparent
to all other callers. The main advantage of this approach is that no copies will
be generated if the caller does not modify the resource, meaning that multiple
callers can share the same resource when they perform only read operations.

(5) LockTable: It is used for read operations in a transaction.
(6) B+ tree: LMDB uses a B + tree structure for storage, and both indexes and

values are read from the B+ tree page. The B+ tree operationmode is provided
to the outside: The pointer can be used to perform CRUD operations.

(7) Mmap: Memory mapping maps physical memory to process address space so
that applications can directly use I/O address space. When files are mapped to
memory space, applications do not need to perform I/O operations on them.
Consequently, no buffer needs to be requested or allocated for the files to be
processed, and all file buffering operations are directly managed by the system.
Because operations such as uploading the files to memory, writing data from
the memory to a file, and releasing memory blocks are omitted, this operation



14.3 Common Data Formats for Deep Learning 341

mode plays an extremely important role in scenarios where large numbers of
files need to be processed.

An example of an LMDB write operation is shown in Code 14.6.

Code 14.6 Example of an LMDB write operation



342 14 Data Preparation for Deep Learning

An example of an LMDB read operation is shown in Code 14.7.

Code 14.7 Example of an LMDB read operation

14.3.3 REC Format

REC is the data format used in MXNet. To generate a file in this format, we need to
use the /mxnet/tools/im2rec.py tool to process database images. After we generate a
list file, we can then generate a REC file based on this list file.

An example of generating a list is shown in Code 14.8.



14.3 Common Data Formats for Deep Learning 343

Code 14.8 Example of generating a list

An example of generating the REC format is shown in Code 14.9.

Code 14.9 Example of generating the REC format



344 14 Data Preparation for Deep Learning

14.3.4 MindSpore Data Format

For back-end training, typical data formats such as TFRecord, LMDB, and REC
(partial) lack important information and functions, such as schema definition (anno-
tation), statistical information, and retrieval function. Consequently, we are unable
to obtain a clear understanding of how data in these formats is defined, how many
pieces of data there are, or how labels are distributed, even though such information
exists in the dataset management. TheMindSpore data format was defined to address
these issues and includes schema definition along with statistical, retrieval, raw data,
metadata, and annotation information. By enabling us to use and understand the data
more effectively when using the local interface and visualization tools, this format
ultimately helps us to enhance the overall training effect.

1. Features of the MindSpore data format
(1) The MindSpore data format is provided as a library and includes a Python

interface. This format delivers improved read performance through the library-
provided read interface and allows us to easily add schemas, statistics, custom
statistical items, index fields, and written data through Python when generating
data. Furthermore, index fields speed up the retrieval of specific data, and we
can visualize a wealth of statistical information.

User

Image list

Annotation
Generation

Conversion tool

MindSpore 
data format

VisualizationMindspore

.Date

TFRecord

LMDB

Fig. 14.6 Conversion to the MindSpore data format



14.3 Common Data Formats for Deep Learning 345

Fig. 14.7 Structure of the
MindSpore data format Schema

Statistics

Index

(RawData)
Raw data + Metadata information + Annotation information

(2) Tools for converting other framework formats (TFRecord, LMDB, and REC)
to the MindSpore data format are provided. Figure 14.6 shows the conversion
to the MindSpore data format.

2. Structure of the MindSpore data format

The MindSpore data format consists of four parts that form one or more files
on physical storage: Schema, Statistics, Index, and RawData. The structure of this
format is shown in Fig. 14.7.

(1) Schema: Annotation information differs between platforms because they use
different tools that employ different annotation formats. Although we could
save the annotation information in binary mode, doing so would prevent us
from extracting annotation information efficiently because its meaning would
be obscured.We therefore need to definemetadata (i.e., schema) to describe the
format of the annotation information, enabling us to obtain such information
more easily. For example, the schema may define multiple pieces of metadata
for a raw image, including its length, width, size, and type, each of which needs
to be stored in separate field. Code 14.10 shows an example of a schema.

Code 14.10 Schema example

(2) Statistics describes the distribution and status of data in the MindSpore data
format, enabling us to understand the data and determine whether it meets our
requirements. Figure 14.8 provides an example of the statistics supported in
the MindSpore data format, including the total number of samples, number
of samples annotated in the past seven days (daily), month (weekly), and half
year (monthly), and hierarchical statistics categorized by entity, attribute, and
subattribute.



346 14 Data Preparation for Deep Learning

Operation Release Statistics

Start time End time Query

Number of samples annotated 
(daily): 2
Number of samples annotated 
(weekly): 2
Number of samples annotated 
(monthly): 2

Total number of 
samples: 2

Attribute dimension: 0

Count by template: 2

Element balance: 2

Lighting condition: 2

Correct focus: 2

Presence of noise: 2

Overall score: 2

Bright color and high saturation: 2

YAAT_Image aesthetics scoring and
annotation template: 2

2019-05-21:2

2019-05-20:2

2019-05:2

Fig. 14.8 Statistics in the MindSpore data format

Operation Release Statistics Retrieval

Filter criteria

Serial number Filter parameter

Entity name

Sample name

Result

Serial number Sample name

Equal

Not equal

Comparison Parameter value

Portrait

Connector

And

And

Query

Operation

View

View

View

Image_0008.jpg

Image_00012.jpg

Image_00021.jpg

1

2

3

image_00024

1

2

Fig. 14.9 Information retrieval



14.3 Common Data Formats for Deep Learning 347

Fig. 14.10 Image data and
annotation information

 {
"name": "001.jpg",
"data": "0xFF0xFF0xFF0xFF0xFF0xFF...",
"width": 1,
"height": 2,
"size": 100,
"label": 76

}

(3) Index provides index fields that enable us to easily retrieve data (or a subset of
data) for subsequent processing. Figure 14.9 provides an example showing
a list of samples that are related to “portrait” and whose names are not
“Image_00024".

(4) RawData combines raw data, metadata information, and annotation informa-
tion, and must correspond to schema definitions. Figure 14.10 provides an
example of image data and annotation information.

14.3.5 MindSpore Dataset

To enhance data reading in the MindSpore computing framework, MindSpore
datasets (such as MindDataset, TFRecordDataset, and GeneratorDataset) utilize a
new data engine that constructs a pipeline operation for MindSpore input data. This
data engine can be customized to satisfy specific requirements in order to provide
high-performance data read service.

1. Basic concepts

The following describes some of the key concepts involved in the data engine for
data storage.

(1) Data buffer: data storage unit. After data is read from a file, it is stored in a pre-
created data buffer. Because the data engine supports different storage formats,
it contains different types of data buffers—typically TFBuffer (TFRecord
Buffer) is used.

(2) Data batch: batch size during data output. Data batches are built by data buffers.
(3) Data view: description of specific data, including metadata information. It is

used to read real data.
(4) Sliding window: stride from one data buffer to the next.

The relationship between these conceptual items is shown in Fig. 14.11.
In terms of data read, one of the key concepts is as follows:
StorageClient: a module that interacts with a data storage layer. Similar to a data

buffer, different types of storage clients (such as TFClient, i.e., TFRecord Client)
can be created based on different storage formats.



348 14 Data Preparation for Deep Learning

Data view

Data buffer 0 
(0, 1, 2)

Data buffer 1 
(3, 4, 5)

Data buffer 2 
(6, 7, 8)

Data buffer 3 
(9, 10, 11)

Sliding window 0 Sliding window 1

Data batch 1 
(0, 1, 2)

Data batch 0 
(0, 1, 2)

Data view

Fig. 14.11 Data storage mode of the data engine

2. Logical architecture

The data engine includes the following modules:

(1) Parallel access module
This module performs multi-threaded reads in the dataset catalog and concur-
rently parses data.

(2) Cache module
This module improves data read performance during training by caching the
training data. The two-layer architecture of the cache module is shown in
Fig. 14.12.
Given that the available memory resources are limited, data cached to memory
is automatically migrated to the disk cache after a defined threshold is reached
according to certain policies. Policies also define when the data cached to disk
will be returned to the memory cache.

(3) Shuffle module
This module disorders the training data and includes two types of shuffling:
shuffling between data buffers and shuffling inside a data buffer.

(4) Iterator module
This module constructs data batches, provides external APIs, and implements
other functions.

Figure 14.13 shows an overview of the data engine’s logical architecture.

Fig. 14.12 Cache module of
the data engine Memory cache

Disk cache



14.3 Common Data Formats for Deep Learning 349

Data buffer

Data view

Data buffer 0
(0, 1, 2)

Data buffer 1
(3, 4, 5)

Data buffer 2
(6, 7, 8)

Data buffer 3
(9, 10, 11)

Sliding window 0 Sliding window 1Data buffer n

Execution 
object 0

Execution 
object 1

Execution 
object n

Data buffer 2
(6, 7, 8)

Data buffer 3
(9, 10, 11)

Data iterator

Get next

Data buffer 3
(9, 10, 11)

Data buffer 2
(6, 7, 8)

Data buffer 1
(3, 4, 5)

Data buffer 0
(0, 1, 2)

Data iterator

Execution 
object 0

Execution 
object 1

Execution 
object n

Buffer queue

Fig. 14.13 Logical architecture of the data engine

load shuffle map batch repeat

Fig. 14.4 Recommended data operation sequence

Python layer

Built-in 
py_ transform operator

User-defined operator

load shuffle map batch repeat

C++ layer

Built-in
c_transform operator

Fig. 14.15 Operation and data pipeline



350 14 Data Preparation for Deep Learning

The data iterator distributes subtasks to multiple subtask execution objects, which
read data buffers from the data cache and put them into a buffer queue. Data in the
buffer queue is read by the GetNext interface to the user layer.

14.4 Training Data Preparation Using the MindSpore Data
Format

The interfaces and processes ofMindSporemay constantly change due to iterative
development. For all runnable code, see the code in corresponding chapters at https://
mindspore.cn/resource. You can scan the QR code on the right to access relevant
resources.

This section focuses on how we can generate, read, and retrieve data in the
MindSpore data format and provides numerous code examples to facilitate the
descriptions.

14.4.1 Generation of Data in the MindSpore Data Format

The Python APIs enable us to easily implement multiple operations, including:
creating a schema, creating statistics, creating index information, and writing raw
data (picture, annotation, etc.) into the MindSpore data format.

(1) Creating a write object
(1) Purpose

To create a MindSpore format write object.
(2) API

(3) Parameter description (Table 14.2).

(4) Return value

None.

https://mindspore.cn/resource


14.4 Training Data Preparation Using the MindSpore Data Format 351

Table 14.2 Description of parameters for creating a schema

Parameter Mandatory Description

file_name Yes Path of the file in the MindSpore data format

shard_num Yes Number of generated shards

Example

(2) Adding a schema

(1) Purpose
To define a schema.

(2) API

(3) Parameter description (Table 14.3).

(4) Return value

Schema id.

Example

(3) Adding an index field

(1) Purpose
To add a custom index field.

(2) API

(3) Parameter description (Table 14.4).

Table 14.3 Description of parameters for defining a schema

Parameter Mandatory Description

content Yes Schema defined in the Dict format

desc No String, indicating the name of the schema/dataset



352 14 Data Preparation for Deep Learning

Table 14.4 Description of
parameters for adding an
index field

Parameter Mandatory Description

index_fields Yes Index field list

(4) Return value

SUCCESS/FAILED.

Example

(4) Writing user data

(1) Purpose
To write user data to a disk.

(2) API

(3) Parameter description (Table 14.5).
(4) Return value

SUCCESS/FAILED.

Example

(5) Closing a local file

(1) Purpose
To close a local file.

(2) API

(3) Parameter description
SUCCESS/FAILED.

(4) Return value

Table 14.5 Description of parameters for writing user data

Parameter Mandatory Description

raw_data Yes User data list, where each element is in the Dict format

parallel_writer No Boolean, indicating whether to parallelize data writes



14.4 Training Data Preparation Using the MindSpore Data Format 353

None.

Example

Code 14.11 provides a complete example of the code used to generate data in the
MindSpore data format.

Code 14.11 Example of Generating Data in the MindSpore Data Format

14.4.2 Statistics and Retrieval of Data in the MindSpore Data
Format

The MindSpore data format supports data retrieval and statistics based on the index
fields we define.

(1) Enabling the indexing operation

(1) Purpose
To enable the indexing of data in the MindSpore data format.

(2) API

(3) Parameter description (Table 14.6).



354 14 Data Preparation for Deep Learning

Table 14.6 Description of parameters for enabling the indexing operation

Parameter Mandatory Description

file_name Yes Path of a local file in the MindSpore data format

num_consumer No The number of concurrent read threads (4 by default)

(4) Return value

None.

Example

(2) Getting an index field

(1) Purpose
To get an index field list.

(2) API

(3) Parameter description
None.

(4) Return value

fields_list.

Example

(3) Setting an index field

(1) Purpose
To set a to-be-retrieved field.

(2) API

(3) Parameter description (Table 14.7).

(4) Return value

Table 14.7 Description of
parameters for setting a
to-be-retrieved field

Parameter Mandatory Description

set_category_field Yes Name of the to-be-retrieved
field



14.4 Training Data Preparation Using the MindSpore Data Format 355

True/False.

Example

(4) Reading statistics of the current index field

(1) Purpose
To read the statistics of the current index field.

(2) API

(3) Parameter description
None.

(4) Return value

fields_info (String mode, which can be converted to Dict).

Example

(5) Getting data based on statistical ID and schema fields

(1) Purpose
To get data based on statistical ID and schema fields.

(2) API

(3) Parameter description (Table 14.8).
(4) Return value

list.

Example

Table 14.8 Description of parameters for getting data based on statistical ID and schema fields

Parameter Mandatory Description

category_id Yes The field ID is obtained based on the statistical results

page Yes Specifies a page ID

num_row Yes Size per page



356 14 Data Preparation for Deep Learning

(6) Closing an index file

(1) Purpose
To close an index file.

(2) API

(3) Parameter description
None.

(4) Return value

True/False.

Example

Code 14.12 provides a complete example of the code used to obtain statistics and
retrieve data in the MindSpore data format.

Code 14.12 Example of Obtaining Statistics and Retrieving Data in the
MindSpore Data Format



14.4 Training Data Preparation Using the MindSpore Data Format 357

14.4.3 Reading MindSpore Training Data

MindSpore provides data loading methods such as MindDataset, TFRecordDataset,
ImageFolderDatasetV2, and GeneratorDataset; operations such as repeat, shuffle,
and map; and image processing operations such as decode, resize, and rescale.

1. MindDataset

(1) Purpose
To create a dataset based on a directory in the MindSpore data format.

(2) API

2. TFRecordDataset

(1) Purpose
To create a dataset based on the dataset directory of a TFRecord file.

(2) API

3. ImageFolderDatasetV2

(1) Purpose
To create a dataset based on the dataset directory of a raw image.

(2) API

4. GeneratorDataset

(1) Purpose
To create custom datasets. We can define a Python dataset parsing function and
then create a variety of datasets using the following API.

(2) API

5. *Dataset function description

A wide selection of data processing operations is available to us after we load the
training data to the dataset. Such operations include shuffle, map, batch, and repeat.
Although we can use each one separately, we typically combine them depending
on our particular requirements, performing them in the following recommended
sequence:

(1) * repeat

(1) Purpose
To copy a dataset.

(2) API



358 14 Data Preparation for Deep Learning

Example

(2) batch

(1) Purpose
To set the batch size of output data.

(2) API

Example

Before using the API, it is good practice to either preprocess the data or process
it using per_batch_map, especially when the image data is read. Alternatively, we
can rely on the dataset itself to ensure that the data has the same shape size. This is
necessary because an error will be generated if the batch of data does not have the
same shape size.

(3) shuffle

(1) Purpose
To set data shuffling.

(2) API

Example

(4) Map

(1) Purpose
To perform the operation described in sub section 5 in Sect. 14.4.3.

(2) API



14.4 Training Data Preparation Using the MindSpore Data Format 359

Example

(5) create_dict_iterator

(1) Purpose
To create an iterator, return a data object of the dictionary type, and obtain the
data corresponding to a keyword.

(2) API

Example

6. Operation notes

Themindspore.dataset.transformsmodule inMindSpore provides a variety of data
conversion operations and covers usage scenarios in multiple fields. For example,
“vision” provides data augmentation operations commonly used in the field of
computer vision and includes two submodules: c_transforms, implemented based
on C++ , and py_transforms, implemented based on Python. Furthermore, we can
also customize data processing operators in Python. As shown in the figure below,
both the built-in operator and the user-defined data transformation operator need to
be executed by using the map function of the dataset.

Some of the most common operations are as follows:

(1) Decode

(1) Purpose
To decode an image.

(2) API



360 14 Data Preparation for Deep Learning

Example

(2) Resize

(1) Purpose
To resize an image.

(2) API

Example

(3) Rescale

(1) Purpose
To rescale the pixel value of an image.

(2) API

Example

(4) CenterCrop

(1) Purpose
To perform central cropping on an image.

(2) API

Example

(5) RandomCrop



14.4 Training Data Preparation Using the MindSpore Data Format 361

(1) Purpose
To perform random cropping on an image.

(2) API

Example

(6) RandomHorizontalFlip

(1) Purpose
To perform horizontal flipping on an image (random).

(2) API

Example

(7) RandomVerticalFlip

(1) Purpose
To perform vertical flipping on an image (random).

(2) API

Example

(8) HWC2CHW

(1) Purpose
To replace a channel of an image.

(2) API



362 14 Data Preparation for Deep Learning

Example

(9) One-Hot

(1) Purpose
To generate a label list and convert data to a one-hot representation.

(2) API

Example



MindSpore: An All-Scenario Deep Learning
Computing Framework

Abstract
MindSpore is a new deep learning computing framework designed to accomplish
three goals: easy development, efficient execution, and adaptability to all scenarios.
To ease development, MindSpore implements automatic differentiation (AD) using
source code transformation (SCT) to express complex compositions with a control
flow. The SCT-based AD mechanism transforms functions into intermediate repre-
sentations (IRs) that construct a computational graph, which can then be parsed and
executed on different devices. To improve performance and efficiency in device,
edge, and cloud scenarios, a number of software and hardware co-optimization
techniques are applied on the computational graph before execution. MindSpore
supports dynamic graphs, making it easier to inspect running modes. In addition,
mode switching between dynamic and static graphs is extremely simple thanks to
the SCT-based AD mechanism. To efficiently train large models on large datasets,
MindSpore flexibly supports data parallelism, model parallelism, and hybrid paral-
lelism training by using a high-level manually configured strategy. Furthermore,
MindSpore provides the auto-parallel capability, which searches in a comprehensive
strategy space to find a fast parallelism strategy (in terms of training time).

In this paper, we describe the MindSpore architecture and several major features
that set MindSpore apart from other state-of-the-art training frameworks. We also
demonstrate the compelling performance that MindSpore achieves on Huawei
Ascend series chips.

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5

363

https://doi.org/10.1007/978-981-16-2233-5


364 MindSpore: An All-Scenario Deep Learning Computing Framework

Introduction

Over the past few decades, deep learning research and applications have mush-
roomed, achieving major success in fields such as image recognition [1], speech
recognition and speech synthesis [2], gaming [3], and language modeling and anal-
ysis [4]. The increasing development of deep learning frameworks [5–9] facilitates
using large amounts of computational resources for training neural network models
on large datasets.

At present, there are two types of mainstream deep learning frameworks. One
constructs a static graph that defines all operations and network structures before
execution and is represented byTensorFlow [5]. This framework offers higher perfor-
mance during training but does so at the cost of ease of use. The other framework
performs immediate execution of dynamic graph computations and is represented
by PyTorch [6]. By comparison, dynamic graphs offer greater flexibility and easier
debugging but do so at the cost of lower performance. Although the frameworks
offer certain advantages, neither of them simultaneously offers easy development
and efficient execution.

In this paper, we introduce MindSpore—a new deep learning framework devel-
oped to accomplish three goals: easy development, efficient execution, and adapt-
ability to all scenarios. MindSpore consists of several major components, namely
MindExpression, MindCompiler, MindRE, MindData, and MindArmour. Table A.1
summarizes the technical contributions that each component makes in helping
MindSpore accomplish its intended goals.

1. MindExpression provides a Pythonic programming paradigm for end users,
whileMindCompiler provides just-in-time (JIT) compilation optimization capa-
bilities based on intermediate expressions. These components have following
distinct features:

• AD: The SCT-based AD mechanism is used, which transforms a piece of
Python code into dataflow graph during the training or inference stage. This
makes it easy for users to construct complex neural network models by using
native control logics in Python.

• Auto-parallel: Parallelizing DNN training across distributed devices is
common practice today due to models and datasets becoming bigger and
bigger. However, current frameworks (such as TensorFlow [5], Caffe [10],
andMXNet [7]) employ a simple and often suboptimal strategy to parallelize
training. In contrast, MindSpore parallelizes training tasks in a transparent
and efficient manner. Specifically, in terms of transparency, users can submit
one version of Python code to train on multiple devices, with only one line of
configuration change. And in terms of efficiency, the parallelizing strategy
is selected with the minimum cost, which reduces both computation and
communication overheads.



MindSpore: An All-Scenario Deep Learning Computing Framework 365

Ta
bl
e
A
.1

C
on
tr
ib
ut
io
ns

of
di
ff
er
en
tc
om

po
ne
nt
s
to

go
al
s

G
oa
l

C
om

po
ne
nt

M
in
dE

xp
re
ss
io
n
an
d
M
in
dC

om
pi
le
r

M
in
dR

E
M
in
dD

at
a

SC
T-
ba
se
d

A
D

D
yn
am

ic
gr
ap
h

A
ut
o-
Pa
ra
lle

l
G
ra
ph

m
an
ag
er

R
un

tim
e

sy
st
em

T
ra
in
in
g

da
sh
bo
ar
d

Pr
ofi

le
r

A
ut
o-
au
gm

en
t

A
ut
o
da
ta

ac
ce
le
ra
tio

n

E
as
y

de
ve
lo
pm

en
t

E
ffi
ci
en
t

ex
ec
ut
io
n

A
da
pt
ab
ili
ty

to
al
ls
ce
na
ri
os

m
ea
ns

m
aj
or

co
nt
ri
bu
tio

ns
;

m
ea
ns

m
in
or

co
nt
ri
bu
tio

ns



366 MindSpore: An All-Scenario Deep Learning Computing Framework

• Dynamic graph: MindSpore supports dynamic graphs without introducing
additional AD mechanisms (such as the operator overloading AD mecha-
nism). This results in significantly greater compatibility between dynamic
and static graphs.

2. MindData is responsible for data processing and providing tools to help devel-
opers debug and optimize theirmodels. For data processing,MindData has high-
performance pipelines through automatic data acceleration and offers various
types of auto-augment policies, eliminating the need for users to find the correct
data augmentation strategy. By integrating multiple types of data on one page,
the training dashboard makes it easy for users to view the training process.
In addition, the profiler makes execution more transparent in that it collects
statistics on execution time and memory usage, enabling focused performance
optimization.

3. MindArmour is responsible for providing tools to help developers defend against
attacks and ensure privacy protection in machine learning. MindArmour can
generate adversarial examples, evaluate model performance in specific adver-
sarial settings, and develop models that are more robust. It also supports a
wide array of privacy-preserving capabilities, such as differential privacy [11],
confidential AI computing [12], and trustworthy collaborative learning [13, 14].

4. MindRE is responsible for AI network execution. To implement this, MindRE
extracts and adapts to the operation interfaces in different underlying hard-
ware and supports runtime systems in various device and cloud hardware
environments.

The rest of this paper is arranged as follows:Chap. 2 provides anoverviewofMind-
Spore, describing its architecture and programming paradigm. Chapter 3 presents the
core components of MindSpore—MindExpression and MindCompiler—by illus-
trating the design details of AD, auto-parallel, and dynamic graphs. In Chaps. 4
and 5, we describe MindData and MindArmour, respectively. Chapter 6 discusses
the device–cloud collaborative architecture that MindSpore supports. Chapter 7 uses
ResNet-50 as benchmark to evaluate the auto-parallel feature and the performance of
training and inference on MindSpore. Finally, we conclude our work and highlight
some future research directions in Chap. 8.

MindSpore Overview

MindSpore Architecture

Figure A.1 shows the architecture of MindSpore.
MindExpression provides Python interfaces for defining the user-level application

programming interfaces (APIs) that are used to build and train neural networks.
Because MindSpore uses the SCT-based AD mechanism, users can program in a



MindSpore: An All-Scenario Deep Learning Computing Framework 367

Fig. A.1 MindSpore architecture

Pythonic way. This means that users can build complex models with control flow
using typical Python statements such as if, else, and while.

MindCompiler is the core of high-performance execution and AD, which is built
on the SCT-based mechanism. If PyNative mode is selected, operators are delivered
for execution one by one. If a network model is run in graph mode, MindCompiler
uses a “pipeline” to generate a computational graph from the Python code. Specif-
ically, MindCompiler parses the Python code to generate an abstract syntax tree
(AST), which is then transformed into A-normal form (ANF) graph [15]. Because
the ANF is graphical rather than syntactic, it is much easier to manipulate algo-
rithmically [16]. The pipeline can automatically generate backward computation
nodes and add them to the ANF graph if the neural network needs to be trained
and applies a number of optimizations (such as memory reuse, operator fusion, and
constant elimination) after constructing the complete graph. If a user wants to train
themodel in distributed environments, the pipeline applies the optimization provided
by auto-parallel (see Sect. 3.2). Virtual machines (VMs) in the backend manage the
computational graphs by using sessions and call the backend to run the graph and
control the lifecycle of graphs.



368 MindSpore: An All-Scenario Deep Learning Computing Framework

In terms of data processing, MindData completes data pipelines (including data
loading, argumentation, and transfer) during training. It also provides easy-to-use
APIs and supports an extensive array of data processing capabilities, covering all
scenarios such as computer vision (CV), natural language processing (NLP), and
graph neural networks (GNNs). In this process, improving the data processing capa-
bilities to match the computing power of AI chips is key to ensuring the ultimate
performance of AI chips. MindInsight, which is withinMindData, has four modules:
training dashboard, lineage, profiler, and debugger. The profiler makes execution
more transparent in that it collects statistics on execution time and memory usage.
The debugger is a debugging tool that allows users to view the internal structures of
graphs and inputs/outputs of nodes in graph executionmode during training.MindIn-
sight analyzes the summary files generated during the training process and enables
developers to easily visualize the training process and compare different trails on the
graphical user interface (GUI).

MindArmour helps users develop models that are more robust and protect user
privacy in training/inference data. MindArmour’s adversarial attack defense has
three main modules: attack, defense, and evaluation. The attack module generates
adversarial examples in both black-box and white-box attack scenarios. The defense
module uses the adversarial examples it receives from the attack module to improve
the robustness of models during training. The evaluation module provides multiple
evaluation metrics, enabling developers to easily evaluate and visualize the robust-
ness of their models. To achieve privacy-preserving machine learning, MindArmour
implements a series of differential privacy-aware optimizers that automatically add
noise to the generated gradients during training.

Programming Paradigm

MindSpore provides a Pythonic programming paradigm for users and supports the
use of native Python control grammar and advanced APIs such as tuple, list, and
lambda thanks to SCT-based AD. In order to maintain simplicity, MindSpore intro-
duces as few interfaces and concepts as possible. For example, userswhowant to train
a simple neural network on a single-node platform need to know only the following
five components:

• Tensor: A tensor is a multi-dimensional matrix that contains elements of a single
data type. Different from other training frameworks, MindSpore does not have
a scalar variable concept. To compute a tensor’s gradient, the requires_grad
attribute of that tensor should be set to True. NumPy can then be used to initialize
the tensor or transform the value of the tensor into a NumPy object.



MindSpore: An All-Scenario Deep Learning Computing Framework 369

• Dataset: A dataset is a separate asynchronous pipeline that prepares tensors to
feed into the rest of the network with no delay in training.

• Operator: Anoperator is a basic computation unit of a neural network. In addition
to supporting most of the commonly used neural network operators (such as
convolution, batch-norm, and activation) and math operators (such as add and
multiply), MindSpore also supports custom operators. It allows users to add new
operators for specific hardware platforms or combine multiple existing operators
into new ones.

• Cell: A cell is a collection of tensors and operators. It is the base class for all neural
network cells. A cell can contain other cells, which are nested in a tree structure.
Users express the computation logics of the neural network by defining a construct
function in a cell. This function then performs the defined computations each time
it is called.

• Model: A model is a high-level API in MindSpore. It encapsulates some low-
level APIs to make the inference and training as simple as possible for users. This
component can be omitted if users are familiar with the low-level APIs and want
to implement fine-grained control on the computation process.

From the user’s perspective, writing a program using MindSpore revolves around
building a cell that corresponds to a neural network. The first step of this process is to
input tensors, which should be either constant or parametric. Different operators are
then used to further build the cell. The last step involves encapsulating the cell into a
model to train the neural network; alternatively, the input data can be passed directly
to the cell for inference. In Code 1, we provide an example of a MindSpore program
written in Python. This example shows the process of defining a LeNet [17] neural
network and training it. The first six lines in the Code import the necessary libraries
of MindSpore. Lines 7–25 define the LeNet-5 cell corresponding to the LeNet neural
network. The _init_ function instantiates all the operators required by LeNet, and
the construct function defines LeNet’s computation logic. Lines 26 and 27 read data
fromMNIST datasets and generate an iterator ds, which is used as the training input.
Line 28 instantiates the LeNet-5 class as a network. The SoftmaxCrossEntropyWith-
Logits function is used to compute loss (line 29), and momentum is used to optimize
parameters (lines 30 and 31). Loss and optimizer are used to create a model. Finally,
we call the train function of the model by using epoch to control the number of
epochs and evaluate the model.



370 MindSpore: An All-Scenario Deep Learning Computing Framework

Code 1 A MindSpore Implementation of LeNet-5.

1  import mindspore.nn as nn
2  from mindspore.ops import operations as P
3  from mindspore.network.optim import Momentum
4 from mindspore.train import Model
5  from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
6  import mindspore.dataset as de
7  class LeNet5(nn.Cell):
8   def __init__(self):
9    super(LeNet5, self).__init__()
10    self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
11    self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
12 self.fc1 = nn.Dense(16 * 5 * 5, 120)
13    self.fc2 = nn.Dense(120, 84)
14    self.fc3 = nn.Dense(84, 10)
15    self.relu = nn.ReLU()
16    self.max_pool2d = nn.MaxPool2d(kernel_size=2)
17    self.flatten = P.Flatten()
18   def construct(self, x):
19   x = self.max_pool2d(self.relu(self.conv1(x)))
20    x = self.max_pool2d(self.relu(self.conv2(x)))
21    x = self.flatten(x)
22    x = self.relu(self.fc1(x))
23    x = self.relu(self.fc2(x))
24    x = self.fc3(x)
25    return x
26  ds = de.MnistDataset(dataset_dir="./MNIST_Data")
27  ds = ds.batch(batch_size=64)
28  network = LeNet5()
29  loss = SoftmaxCrossEntropyWithLogits()
30  optimizer = nn.Momentum(network.trainable_params(), 
31  learning_rate=0.1, momentum=0.9)
32  model = Model(network, loss, optimizer)
33  model.train(epoch=10, train_dataset=ds)

MindExpression and MindCompiler

SCT-Based AD

Three AD techniques are currently used in mainstream deep learning frameworks:

• Conversion based on static computational graph: This technique converts the
network into a static dataflow graph at compile time and then converts the chain
rule into a dataflow graph in order to implement AD.



MindSpore: An All-Scenario Deep Learning Computing Framework 371

Fig. A.2 SCT-based AD

• Conversion based on dynamic computational graph: This technique records the
operation trajectory of the network during forward execution with overloaded
operators and then applies the chain rule to the dynamically generated dataflow
graph in order to implement AD.

• Conversion based on source code: This technique is an evolution of the functional
programming framework. It performs AD transformation on the intermediate
expression (the expression form of the program during the compilation process)
using JIT compilation, supporting complex control flow scenarios, higher-order
functions, and closures. SCT-based AD is illustrated in Fig. A.2.

TensorFlow initially adopted static computational graphs, whereas PyTorch used
dynamic computational graphs. Although static graphs can utilize static compila-
tion technology to optimize network performance, building or debugging a network
is a complicated task. Conversely, while dynamic graphs make operations more
convenient, they make it difficult to achieve extreme performance optimization.

MindSpore employs a newmechanism: SCT-basedAD. Thismechanism supports
AD of the control flow, making it easy to build models like PyTorch. In addi-
tion, MindSpore can perform static compilation optimization on neural networks
to achieve high performance.

The implementation of AD in MindSpore can be understood as the symbolic
differentiation of a program itself. Because MindSpore’s IRs are functional inter-
mediate expressions, they correspond intuitively with composite functions in basic
algebra. The derivation formulas of the composite functions are composed of arbi-
trary basic functions. Each primitive operation in the IRs corresponds to a basic
function in basic algebra, and such basic functions can be used to build flow control
with greater complexity.

Auto-parallel

With the advancements of deep learning, training datasets and DNN models are
growing larger to support higher accuracy and a wider range of application scenarios.
In NLP, for example, the datasets range from 200MB to 541 TB, while the number of
parameters ranges from 340 million in BERT [18] and 800 million in Transformer-xl
[19] to 1.5 billion in GTP-2 [19] and over 8 billion in the latest NVIDIA Megatron-
LM [20]. In order to train large models on large datasets, deep learning frameworks
must therefore support not only data parallelism and model parallelism, but also
hybrid parallelism.

Most of today’s mainstream frameworks (e.g., TensorFlow [5], Caffe [10], and
MXNet [7]) require DNN models to be manually partitioned in order to implement



372 MindSpore: An All-Scenario Deep Learning Computing Framework

model parallelism. However, manual partitioning is a complex task that relies on
expert experience. Implementing hybrid parallelism (data and model parallelism at
the same time) adds significant complexity. Recent research works [21–25] have
proposed solutions to simplify hybrid parallelism, but they have several limitations.
First, they fix the strategy of partitioning tensor dimensions in the entire model.
This may result in a suboptimal partitioning strategy because different strategies
might be better suited to different parts of the model. Second, [22, 24] cannot apply
to many DNNs used for language modeling and person re-identification, as these
DNNs tend to be nonlinear networks. Third [21] expresses the partitioning strategy
search problem as a mixed integer program and uses an existing solver to find the
solution. However, this approach is extremely slow when dealing with large models.
Third [21, 24, 25] aim solely to optimize communication or memory cost; however,
this approach might not reduce the training time.

MindSpore is designed to allow parallel transition during model training. To this
end, tensor redistribution (TR) is introduced into parallel strategy search, enabling
the layout of an output tensor among devices to be transformed before being fed into
the subsequent operator. This is shown in the red rectangle in Fig. A.3. However,
two main challenges exist when TR is considered for parallel strategy search in a
complex and large model. First, because TR introduces communication operators
(e.g., AllGather) into the dataflow graph, automatically differentiating them from
normal operators is required. As such, it is necessary to obtain the backward operator
for each corresponding forward operator and use it to update trainable parameters.
Current frameworks require experts to manually add SEND and RECV primitives
to transmit gradients in the backward phase—this is a challenging task for model
developers, especially when the model is complex. Second, because TR significantly
expands the strategy space, efficiently finding a suitable strategy for a complex and
large model is challenging. In terms of functionality and efficiency, the algorithm
should quickly find a strategy for the model that has a nonlinear structure. In terms of
performance, the strategy returned by the algorithm should produce a short end-to-
end training time. This requires special attention to be paid to running cost modeling,
potentially involving a great deal of manual effort.

MindSpore introduces novel solutions to address the preceding two challenges.
For the first challenge, MindSpore defines the corresponding backward operator
(which is also a communication operator) or a combination of several operators
to enable AD of communication operators. For instance, the backward operator of
AllGather is ReduceScatter, and the backward operator of SEND is RECV followed
by ADD. Defining these backward operators is helpful because doing so enables
the Auto-diff procedure to differentiate the entire forward graph in one go without
skipping any operator. This is why AD is the subsequent step of auto-parallel. For the
second challenge, we build a cost model to select a suitable strategy, paying attention
to both computation and communication overheads. We propose two techniques to
quickly find such a strategy for complex and large graphs: an algorithm that supports
multiple graph operations to transform the original graph into a linear one and a
strategy sparsification mechanism that effectively shrinks the search space while
guaranteeing good precision of the returned solution. For instance, the time required



MindSpore: An All-Scenario Deep Learning Computing Framework 373

Fig. A.3 Data parallelism transformed into model parallelism

to search for strategies of ResNet-50 in parallel on eight devices is within 1 s, and
the returned solution leads to a shorter training time. For a large model containing
more than 128 K classes, the returned solution reduces the training time by about
55% compared with the raw data parallelization strategy.

Code 2 Parallelism transition in semi-auto-parallel configuration.

1  class Submodel(nn.Cell):
2  def _init_(self, shape):
3  self.bn = BatchNorm(set_strategy={[4, 1]})
4  self.matmul = MatMul(set_strategy={[1, 1], [1, 4]})
5  self.W = Parameter(Tensor(shape), require_grad=True)
6  def construct(self, X):
7   Y = self.bn(X)
8   Z = self.matmul(y, self.W)
9   return Z

MindSpore supports user-specified high-level strategy configuration—referred to
as semi-auto-parallel—making it sufficiently flexible. In Code 2 and Fig. A.3, we
provide an example of transforming data parallelism into model parallelism. This
submodel, constructed using a BatchNorm operator followed by a MatMul operator,
is widely used in classification tasks such as ResNet and ReID. In the BatchNorm
operator, X is split into four parts by rows to implement efficient data parallelism.
In the MatMul operator, the weightW (a learnable parameter) is split into four parts
to implement model parallelism, which is more efficient due to the large number of
parameters.Because the output layout ofBatchNorm is different from the input layout
of MatMul, MindSpore inserts a TR (AllGather and ConCat in this example), which
is transparent from users.MindSpore also automatically schedules which device runs
which slice of the model, eliminating the need for users to consider such scheduling.
However, different model structures have different numbers of parameters in each
operator, as shown in Fig. A.4, and they prefer different partitioning strategies. In
Fig. A.4 (3), configuring the first operator as model parallelism and the subsequent
operators as data parallelism offers better performance and leads to the insertion of
a TR.



374 MindSpore: An All-Scenario Deep Learning Computing Framework

Fig. A.4 Three widely used substructures. Each box represents a layer (operator), whose height
indicates the relative number of learnable parameters at that layer

When a newmodel is being trained, set_strategy is configuredmany times, leading
to greater manual effort. In that case, if auto-parallel is configured, the proposed
algorithm will find the efficient one, meaning that the set_strategy does not need to
be specified. For instance, when the number of classifications is greater than 130 K
in ResNet, the algorithm returns a strategy that enables one iteration of training to be
completed within 50 ms. In contrast, the raw data parallelism enables one iteration of
training to be completed in more than 111 ms. For detailed evaluations, see Sect. 8.1.

Dynamic Graph

In most cases, static graph offers better runtime performance because the compiler
knows its global information. However, dynamic graph offers greater ease of use,
enabling users to construct and modify models more easily. In order to support both
static and dynamic graphs at the same time,most state-of-the-art training frameworks
need to maintain two kinds of AD mechanisms: tape-based AD and graph-based
AD. This requires developers tomaintain bothmechanisms, increasing theworkload.
Furthermore, from a user’s perspective, switching between static and dynamicmodes
is complex.

MindSpore supports static and dynamic graphs based on a unified SCT-based AD
mechanism, delivering both high efficiency and ease of use. In MindSpore, we call
dynamic graph “Pynative mode” because the code is run with the Python interpreter
in this mode. As shown in Code 3, only one line of code is needed to switch between
static graph mode and Pynative mode. In addition, MindSpore supports a staging
mechanism (shown in line 4) to accelerate the Pynative mode’s runtime efficiency.
Adding thems_function decorator in front of a function (fc_relu) leads to the function
being compiled and run in static graph mode.



MindSpore: An All-Scenario Deep Learning Computing Framework 375

Code 3 A MindSpore implementation of LeNet-5

1  from mindspore import context
2  import numpy as np
3  class LeNet5(nn.Cell):
4   @ms_function
5   def fc_relu(self, x):
6   x = self.relu(self.fc2(x))
7    x = self.fc3(x)
8   def construct(self, x):
9   x = self.max_pool2d(self.relu(self.conv1(x)))
10    x = self.max_pool2d(self.relu(self.conv2(x)))
11    x = self.flatten(x)
12    x = self.relu(self.fc1(x))
13    x = fc_relu(x)
14    return x
15  data=np.ones((batch_size,3,224,224),np.float32)*0.01
16  net = LeNet5()
17  # switch to Pynative mode
18  context.set_context(mode=context.PYNATIVE_MODE)
19  pynative_out = net(data)
20  # switch back to static graph mode
21  context.set_context(mode=context.GRAPH_MODE)
22  graph_out = net(data)

Figure A.5 shows the design of static graph and dynamic graph. In dynamic
graph mode, the framework traverses all operators called for the model, generates
a computational graph for each operator, and delivers the graphs to the backend for
forward propagation. After the forward propagation is completed, the framework

Fig. A.5 Design of static graph and dynamic graph



376 MindSpore: An All-Scenario Deep Learning Computing Framework

generates both forward and backward propagation graphs for the model and issues
these graphs to the backend.BecauseMindSpore uses theSCT-basedADmechanism,
all code written by users to inspect their models (e.g., pdb and print) can be omitted
when generating backward propagation graphs.

Second-Order Optimization

Deep learning has shown excellent performance in many applications, including
image recognition, object detection, and NLP. Driven by the rapid development of
deep learning, optimizers—an important part of deep learning—have also attracted
extensive research.

Common optimization algorithms are classified as first-order and second-
order optimization algorithms. Among first-order optimization algorithms, clas-
sical gradient descent (GD) is the most widely used in machine learning. Common
first-order optimization algorithms (such as SGD) update parameters according to
θ = θ − η∇θ ,whereθ is the parameter to be updated, η is the learning rate, and ∇θ

is the gradient of the loss function compared to the parameter.
By introducing strategies like momentum and adaptive learning rate decay, GD

brings many variants, such as Momentum, Nesterov, AdaGrad, RMSprop, Adadelta,
and Adam. Because these improved optimization algorithms can adaptively update
the step size by using historical information about stochastic gradients, they are
easier to tune and use. And given that the loss function of neural networks is highly
non-convex and surface curvature is unbalanced, engaging more information (such
as the second-order matrix) in parameter update helps speed up convergence.

In this regard, second-order optimization algorithms leverage the second-order
derivative of the objective function to correct curvature and accelerate first-order
descent. Faster convergence enables these algorithms to better approximate to the
optimal value and yield a geometric descent path that is more consistent with the
optimal real-world descent path. Compared with first-order optimization algorithms,
second-order optimization algorithms first multiply ∇θ and a matrix G−1, giving an
update rule of θ = θ −ηG−1∇θ , where G is the second-order matrix. The definition
of G is not consistent across different second-order optimization algorithms. For
example, it is the Hessian matrix and Fisher matrix in Newton’s method and natural
gradient method, respectively.

The Hessian matrix is a block matrix consisting of all the second-order partial
derivative of a multivariable real-valued function. The Hessian matrix can be
expressed as Hi j = ∂2 f

∂θi ∂θ j
, where f is the loss function, and θ is the param-

eter to be updated. The Fisher matrix is a covariance matrix derived from the
maximum likelihood function. The Fisher matrix can be expressed as F =
E(x,y)∼p(x,y|θ)[ ∂logp(y|x,θ)

∂θ

∂logp(y|x,θ)T

∂θ
], where θ is the parameter to be updated. The

joint distribution of themodel is p(x, y|θ) = p(y|x, θ)q(x), whereq(x) is the sample



MindSpore: An All-Scenario Deep Learning Computing Framework 377

distribution of x and is irrelevant to θ , and logp(y|x, θ) is the loss function, which
is a log-likelihood function.

Although second-order optimization algorithms feature faster convergence,
computing the inverse of the second-order matrix involves a time complexity of
(n3). When the parametric meteorology of the model is nθ , the size of the corre-
sponding second-order matrix is nθ × nθ . In deep learning models, nθ often runs
into the millions, making it extremely complex—if not impossible—to compute the
inverse of the second-order matrix. Therein lies the crux of the matter: how to reduce
the computational complexity of second-order matrix inversion.

To address this issue and improve second-order algorithms based on the natural
gradient method, MindSpore provides a novel Trace-based Hardware-driven layer-
ORiented Natural Gradient Descent Computation algorithm, called THOR. The
following discusses the three major improvements.

Matrix Update Frequency

Experiments indicate that the Frobenius norm (or “F norm” for short) of the Fisher
matrix changes acutely in the early stage and gradually becomes stable in the later
stage. Therefore, it is assumed that {Fk}nk=1 is a Markov process and can converge to
a steady-state distribution π, where Fk represents the Fisher matrix during the kth
iteration. Gradually increasing the update interval of the Fisher matrix is sufficient
to shorten the training time without compromising the convergence speed.

Update by Layer

Fisher matrices are decoupled layer by layer, and experiments are performed on each
layer. The results of the experiments indicate that some layers of the Fisher matrices
reach the steady state faster than others do. This inspired us to finely adjust the update
frequency of each layer. Specifically, the Fishermatrix at a layer is updated onlywhen
the trace change of the second-order matrix is less than the threshold. Otherwise, the
Fisher matrix during the previous iteration is directly used. The update formula is

�k = |∣∣tr(Fk
i + λI

)∣
∣ − ∣

∣tr
(

Fk−1
i + λI

)∣
∣|

∣
∣tr

(

Fk
i + λI

)∣
∣

⎧

⎨

⎩

UpdateFk
i if �k ∈ (w1,+∞)

Do not update Fk
i but use Fk−1

i of the previous iteration if �k ∈ [w2, w1]
Stop updating Fk

i and always use Fk−1
i i f �k ∈ [0, w2]



378 MindSpore: An All-Scenario Deep Learning Computing Framework

Hardware-Aware Matrix Splitting

THOR assumes that Fisher matrices are decoupled layer by layer and that the input
and output blocks at each network layer are independent of each other. Assuming that
the input and output of each network layer are divided into n blocks (n is the balance
point between matrix information loss and hardware performance), the n blocks are
independent. Based on this assumption, THOR further splits second-order matrices
to improve computational efficiency.

First, we determine the matrix splitting dimensions based on the highest-
dimension layer. Taking the ResNet-50 as an example in Ascend 910, the range
of matrix splitting dimensions is [1, 16, 32, 64, 128, 256, 512, 1024, 2048]. Then,
we compute the matrix loss and performance data of each dimension to obtain the
following figure. We can see that the intersection point is 106, which is closest to
128. As such, we determine that the matrix splitting dimension is 128 (Fig. A.6).

Fig. A.6 Obtaining the matrix splitting dimension



MindSpore: An All-Scenario Deep Learning Computing Framework 379

Code 4 Training networks with THOR in MindSpore

1  from mindspore.train.train_thor import ConvertModelUtils
2  from mindspore.nn.optim import THOR
3  elif cfg.optimizer == "Thor": #Create a THOR optimizer.
4    from src.utils import get_bert_thor_lr, get_bert_thor_damping
5    lr = get_bert_thor_lr()
6    damping = get_bert_thor_damping()
7    optimizer = THOR(network, lr, damping, cfg.Thor.momentum,
8                     cfg.Thor.weight_decay, cfg.Thor.loss_scale, cfg.batch_size,
9                     decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower())
10 context.set_context(max_call_depth=10000)

11  model = Model(net_with_grads)
12  model = ConvertModelUtils().convert_to_thor_model(model, network=net_with_grads, optimizer=optimizer, 
frequency=cfg.Thor.frequency) #Save the second-order information required by THOR.
13  model.train(new_repeat_count, ds, callbacks=callback,
14            dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)

MindData

Data Processing

The data engine MindData is a separate asynchronous pipeline that prepares tensors
to feed into the model. Data is organized as a series of rows with different columns.
All columns are identified with a name and can be accessed independently. The
pipeline always starts with a source dataset operator, which reads data from disks
and includes flags to select shuffling and sharding strategies. In order to access the
data in the pipeline, an iterator (Python access) or device queue (direct send to
accelerator device) is used.

Data processing is intrinsically pipelined and parallelized. The pipelines run
asynchronously by default, but they allow users to insert sync points into graphs
to support real-time feedback loops for pipeline operators. Default parameters are
configured in order to obtain good performance without required manual tuning.
In the future, pipelines will be dynamically adjusted to fully utilize all available
resources, including hardware accelerators for image processing or availablememory
for caching.

To enable quick migration for users, data processing supports existing Python
user code. Existing Python dataset classes can be passed as an argument to Genera-
torDataset, and samplers are supported natively in all random access source datasets.
Furthermore, custom Python data transforms can be called from a dataset or map
operator, and newworkloads can be initially run onMindSpore with minimal porting
effort.



380 MindSpore: An All-Scenario Deep Learning Computing Framework

Workloads are emerging with new requirements for datasets to support greater
flexibility. Data processing supports parameter adjustment (such as batch size) using
a user-defined function or schedule. It also supports user-defined custom transforms
on an entire batch to support batch-level image size or multi-row operations such as
image mix-up. To ensure that augmentations are more diverse, the augmentation of
each sample can be randomly chosen from sets of transforms. Transforms candidates
can be selected via external search (i.e., fast auto-augment); however, recent research
on randomAugment and uniformAugment shows that selecting a wide variety of
reasonable transforms will produce comparable results to those obtained without the
additional search time for many datasets (i.e., all supported transforms minus those
that create unrecognizable images most of the time). In addition, feedback from
loss or other metrics collected during training can be passed back into the dataset
to perform dynamic adjustments in data processing as demonstrated in adversarial
auto-augment.

MindRecord

MindRecord is a dataset format, which stores the users’ training data according
to different types and pages, establishes a lightweight and efficient index. It also
provides a set of interfaces to conveniently convert the training data into the
MindRecord format and uses MindDataset to read this data into a dataset. Impor-
tant metadata (e.g., dataset size or data layout) can quickly be read from the dataset
to improve performance or simplify user access. In addition to supporting efficient
sequential I/O of small blocks of data, MindRecord also supports efficient random
row-access and push-down filtering as per use-case requirements. As new use cases
emerge, further optimized functions will be pushed down into this dataset.

MindInsight

MindInsight has four modules: training dashboard, lineage, profiler, and debugger.
These modules help developers identify deviations during model training, determine
the impact of factors such as hyperparameters and data enhancement, and profile and
debug the model. MindInsight enables developers to better observe and understand
the training process, leading to greater model optimization efficiency and developer
experience. Figure A.7 shows the MindInsight architecture.

MindInsight uses the summary file generated during model training as the input.
After file parsing, information extraction, data caching, and chart drawing, MindIn-
sight converts binary training information into charts that are easy to understand and
displays them on web pages.



MindSpore: An All-Scenario Deep Learning Computing Framework 381

Fig. A.7 MindInsight
architecture

Training Dashboard

MindInsight enables users to visualize the training process via training dash-
board, which includes modules such as the training scalar information, parameter
distribution graph, computational graph, data graph, and data sampling.

MindInsight’s training dashboard implements an innovative way to present the
training process. By integrating multiple types of data on one page, the training
dashboard provides users with an overview of training all on one page. Figure A.8
shows an example of the training dashboard.

Lineage

MindInsight supports lineage visualization, which integrates the lineage informa-
tion of multiple training runs into tables and charts, enabling users to easily select
the optimal data processing pipeline and hyperparameter settings. Lineage visual-
ization includes model and data lineage visualization. Model lineage records key
parameter information about model training, such as the loss function, optimizer,
number of epochs, and accuracy. Furthermore, MindInsight displays parameters that
are trained multiple times, helping users select the optimal hyperparameter. In the
future,MindInsightwill support aided hyperparameter recommendation to help users
optimize hyperparameters quickly. Figure A.9 shows an example of model lineage
visualization.



382 MindSpore: An All-Scenario Deep Learning Computing Framework

Fig. A.8 MindInsight training dashboard

Fig. A.9 MindInsight model lineage



MindSpore: An All-Scenario Deep Learning Computing Framework 383

Fig. A.10 MindInsight data lineage

Data lineage visualization records the data processing pipeline used in eachmodel
training. MindInsight displays the data processing mode that is trained multiple
times, helping users select the optimal data processing pipeline. Figure A.10 shows
an example of data lineage visualization.

Profiler

In order to meet requirements for optimizing the neural network performance, we
have designed and implemented the profiler, which makes execution more trans-
parent in that it collects statistics such as time and memory usage of each operator.
MindInsight then sorts and analyzes the profiling data and displays the results from
multiple dimensions and layers, providing valuable information for optimizing neural
network performance. The profiler provides the following features:

(1) Step Trace

This feature splits neural network execution into multiple stages, including data
reading, forward and backward computation, and AllReduce. This facilitates
identifying which stage is causing a performance bottleneck.

(2) Operator Performance

This feature aggregates and sorts statistics on operator execution time. This enables
users to easily identify which operators are consuming the most time.



384 MindSpore: An All-Scenario Deep Learning Computing Framework

(3) Timeline

Timeline displays the execution status of streams and tasks on the device. This helps
users analyze the execution in a more fine-grained manner.

(4) MindData Profiling

MindData Profiling helps to locate and analyze slowdowns in the input pipeline. This
enables users to determine whether they need to increase the thread number of the
slow data operators in order to improve performance.

Debugger

During training of neural networks, numerical errors such as infinity often occur.
Users want to analyze such errors, which prevent training from converging. However,
locating these errors is difficult because the graph execution mode performs compu-
tations in a black-box manner. The debugger is a debugging tool that allows users to
view the internal structures of graphs and inputs/outputs of nodes in graph execution
mode during training. For example, it allows users to view the value of a tensor, set
a conditional breakpoint for a group of nodes, and map the node and tensor outputs
in a static graph to Python code.

MindArmour

Adversarial Attack Defense

Adversarial attack [26, 27] has become an increasingly prevalent threat to the security
of machine learning models. An attacker can compromise machine learning models
by adding small perturbations that are not easily perceived by humans to the orig-
inal sample [28, 29]. To defend against adversarial attacks, MindArmour has three
mainmodules: attack (adversarial example generation), defense (adversarial example
detection and adversarial training), and evaluation (model robustness evaluation and
visualization).

Taking a model and data as input, the attack module provides easy-to-use APIs to
generate corresponding adversarial examples in both black-box andwhite-box attack
scenarios. These examples are then fed into the defensemodule to improve the gener-
alization of the machine learning model during training. The defense module also
implementsmultiple detection algorithms,which candistinguish between adversarial
examples and benign ones based on either malicious content or attacking behaviors.
The evaluation module provides multiple evaluation metrics, enabling developers to
easily evaluate and visualize the robustness of their models.



MindSpore: An All-Scenario Deep Learning Computing Framework 385

Fig. A.11 Device–cloud collaborative architecture of MindSpore

Privacy-Preserving AI

Privacy preserving is an important topic in AI applications. MindArmour considers
several privacy-preserving aspects and provides corresponding features. In order to
provide differential privacy guarantee to a trained model, which might leak sensitive
information about the training dataset [30, 31], MindArmour implements a series of
differential privacy optimizers that automatically add noise to the gradients generated
during backpropagation. Specifically, the optimizers adaptively add noise according
to the training process, achieving tighter differential privacy budget, faster training,
and better utility. Users can use these differential privacy optimizers in the same way
as they would use normal ones.

Device–Cloud Collaborative Architecture

MindSpore aims to build an AI framework that covers all scenarios from the device
side to the cloud side.MindSpore supports “device–cloud” collaboration capabilities,
which include model optimization, on-device inference and training, and device–
cloud collaborative learning, as illustrated in Fig. A.11.

(1) Model generation and optimization toolkit

Mobile and edge devices often have limited resources, such as limited power and
memory resources. To help users deploymodels within these constraints, MindSpore
supports a collection of optimization techniques (shown on the left side of Fig. A.11).
Model adaptive generation based on neural architecture search (NAS) [32] supports
latency estimation of different hardware and different searching strategies. Once the
user specifies constraints related to the device, latency, and accuracy, a MindSpore
model can be generated adaptively. Quantization strategies reduce themodel size and
inference latency by reducing the precision of the models. As such, it is necessary for



386 MindSpore: An All-Scenario Deep Learning Computing Framework

the inference engine to support these reduced precision types. MindSpore supports
both post-training quantization and quantization-aware training.

(2) On-device training and cloud–device collaborative learning

Although deep learning models trained on large datasets can be generic to some
extent, they do not apply to the user’s own data or personalized tasks in some
scenarios. MindSpore aims to provide the on-device training solution, which will
allow users to train their own personalized models or fine-tune existing ones on their
devices without facing data privacy, bandwidth limitation, and Internet connection
issues. Various on-device training strategies will be provided, including training from
scratch, transfer learning, and incremental learning. In addition, leveraging on-device
training capabilities, MindSpore supports “cloud–device” collaborative learning to
share different data by sendingmodel updates/gradients to the cloud side, as shown in
Fig. A.11. With collaborative learning strategies, models can learn a greater volume
of general knowledge.

(3) Deployment on mobile and edge devices

MindSpore provides a lightweight computation engine for executing models effi-
ciently on devices. Typically, model conversion is necessary before pre-trained
models can be deployed to the user side, potentially leading to unexplainable perfor-
mance and accuracy loss. In MindSpore, the on-device inference schema is compat-
ible with on-cloud training, eliminating the need for such conversion and avoiding
the potential performance deterioration. Furthermore, MindSpore has a variety of
built-in automatic optimizations for devices, such as graph/operator fusion, sophis-
ticated memory management, and hardware acceleration, as shown on the right side
of Fig. A.11.

MindSpore Serving

Introduction

MindSpore Serving is a lightweight high-performance inference module designed to
helpMindSpore users efficiently deploy their online inference services in production
environments. After training a model on MindSpore, users can export the model and
then create an inference service for it using MindSpore Serving.

Functions

MindSpore Serving provides the following functions:



MindSpore: An All-Scenario Deep Learning Computing Framework 387

• Loading model files to generate an inference engine and provide the inference
function.

• Predicting the message exchanges between a request and its result. (The gRPC
and RESTful requests are supported.)

• Predicting interface invocation and returning the prediction results.
• Managing the lifecycle of models.
• Managing the lifecycle of services.
• Managing multiple models and versions.

The following describes the functions of the key components in the MindSpore
Serving architecture:

• gRPC Server: handles gRPC requests in synchronous or asynchronous mode.
• HTTP Server: handles HTTP requests in synchronous or asynchronous mode.
• gRPC Services: serves as the basic execution unit for services (such as predic-

tion and model version query) provided by MindSpore Serving. The services’
interfaces can be defined using gRPC.

• Predict Process: handles inference requests in the cache queue and worker thread
pool. The number of worker threads is the same as the number of cards. Each
worker thread corresponds to an inference session, which can be managed by
Predict Container (isolated at the process level) or directlymanaged byMindSpore
Serving (isolated at the thread level).

• Version Controller: loads MindSpore models and manages versions. Version
policies are configurable.

• Model Monitor: detects MindSpore models through periodic polling.



388 MindSpore: An All-Scenario Deep Learning Computing Framework

Evaluation

In this section, we evaluate the performance of MindSpore on auto-parallel. We also
run experiments on Huawei Ascend chip clusters and compare the performance with
mainstream frameworks. The results obtained from the experiments show that our
system has the following features: (i) high throughput and (ii) stable speedup as the
clusters increase. Furthermore, we provide inference performance on several models
and achieve higher performance than that of mainstream frameworks.

Auto-parallel

We conduct experiments on anAscend cluster comprised of eight devices.We use the
standard ResNet-50, which is trained under raw data parallelism and auto-parallel.
Figure A.12 shows the comparison between raw data parallelism and auto-parallel,
in which the number of classes ranges from 1K to about 1024K.When the number of
classes is fewer than 32 K, we observe that the two modes produce nearly identical
iteration times. This is because the proposed algorithm finds the data parallelism
strategy. When the number of classes exceeds 64 K, the auto-parallel mode offers
significantly increased performance compared with the data parallelism mode. This
is because the strategy returned by the proposed algorithm in such cases is hybrid

Fig. A.12 Performance comparison of training ResNet-50 using naive data parallelism and auto-
parallel



MindSpore: An All-Scenario Deep Learning Computing Framework 389

parallelism. Specifically, operators in the head of the model are in data parallelism,
while the MatMul operator is in model parallelism. This minimizes communica-
tion overheads because model parallelism avoids the huge AllReduce incurred by
synchronizing learnable parameters in the MatMul operator. When the number of
classes exceeds 256 K, the data parallelism mode fails to run because an “out of
memory” (OOM) event occurs, whereas the auto-parallel mode achieves successful
training of ResNet-50 with only a minor increase in the iteration time.

Benchmark

Training Performance

We focus on ResNet-50 and BERT-large models and configure MindSpore across a
cluster of company H chip A. For these experiments, we compare the performance
of training ResNet-50 and BERT-large on MindSpore and TensorFlow (TensorFlow
usesNVIDIADGX-2, integrating 16NVIDIAV10032GGPUs) andvary the number
of workers using different clusters. As shown in Figs. A.13 and A.14, MindSpore
achieves much higher throughput than TensorFlow even as the number of workers
increases.

As shown in Fig. A.15, MindSpore with chip A can achieve over 93% speedups
on training both ResNet-50v1.5 and BERT-large, while TensorFlow with GPUs can
achieve only 79% speedups on training ResNet-50 and 86% speedups on training
BERT-large.

Fig. A.13 Comparison of training throughput on ResNet-50v1.5 usingMindSpore and TensorFlow



390 MindSpore: An All-Scenario Deep Learning Computing Framework

Fig. A.14 Comparison of training throughput on BERT-large using MindSpore and TensorFlow

Fig. A.15 Comparison of training speedups on ResNet-50v1.5 and BERT-large with 16 workers
using MindSpore and TensorFlow

Inference Performance

We also run experiments for mobile inference using different lightweight models
on Huawei Mate 30 smartphones. The results of these experiments are provided



MindSpore: An All-Scenario Deep Learning Computing Framework 391

Table A.2 Comparison of
inference performance on
Huawei Mate 30 smartphones
using MindSpore and
TensorFlow lite

Model Threads MindSpore (ms) TensorFlow lite
(ms)

Inception v4 1 657.921 787.012

2 345.307 431.289

4 231.397 312.81

MobileNet v1
1.0
224 frozen

1 33.028 37.471

2 17.156 20.4

4 11.761 13.871

MobileNet v1
1.0
224 quant frozen

1 17.216 56.246

2 9.614 39.333

4 6.508 31.902

NASNet-Mobile 1 59.885 70.212

2 39.121 47.017

4 32.559 33.539

SqueezeNet 1 40.308 53.488

2 21.776 30.313

4 16.049 21.298

in Table A.2. We execute the experiments on the CPU and compare the inference
latency with TensorFlow. The results demonstrate that MindSpore has significantly
lower inference time than TensorFlow does.

Conclusion and Future Work

In this paper, we introduce MindSpore—our new deep learning framework—
and highlight its key components (MindExpression, MindCompiler, MindData,
and MindArmour) and features (auto-parallel, AD, and device–cloud collaborative
training). These components and features enable MindSpore to accomplish its three
goals: easy deployment, efficient execution, and adaptability to all scenarios. Further-
more, MindSpore offers visualization and defense tools to make the training process
visible and robust to various adversarial attacks. Huawei released the first version of
MindSpore on March 28, 2020. Currently, MindSpore has been successfully paired
with chip A series processors and applied in company H’s products, ranging from
smart phones to clouds. In the future, we hope to improve several aspects of theMind-
Spore system. For MindExpression, we want to consider topology-aware scheduling
in order to meet different communication requirements in a multi-node cluster. For
MindData, we will focus on providing tools that offer greater flexibility for AI engi-
neers to process and argument different types of data. And for MindArmour, we will
develop our defense against various adversarial attacks in the CV and NLP domains.



References

1. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks, inAdvances inNeural InformationProcessing Systems (2012), pp. 1097–1105

2. G.Hinton, L.Deng,D.Yu,G.Dahl,A.Mohamed,N. Jaitly,A. Senior,V.Vanhoucke, P.Nguyen,
B. Kingsbury et al., Deep neural networks for acoustic modeling in speech recognition. IEEE
Sig. Proc. magaz. 29 (2012)

3. M. Volodymyr, K. Koray, S. David, A.R. Andrei, V. Joel, Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533 (2015)

4. Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic languagemodel. J.Mach.
Lear. Res. 3(Feb), 1137–1155 (2003)

5. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J.
Dean, M. Devin, et al., TensorFlow: large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016)

6. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.
Antiga, A. Lerer, Automatic differentiation in PyTorch (2017)

7. T. Chen, M. Li, Y. Li, M. Lin, N.Wang, M.Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, MXNet:
a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015)

8. G. Neubig, C. Dyer, Y. Goldberg, A.Matthews,W. Ammar, A. Anastasopoulos,M. Ballesteros,
D. Chiang, D. Clothiaux, T. Cohn et al., Dynet: the dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980 (2017)

9. S. Tokui, K. Oono, S. Hido, J. Clayton, Chainer: a next-generation open source framework for
deep learning, in Proceedings of Workshop on Machine Learning Systems (LearningSys) in
the Twenty-Ninth Annual Conference on Neural Information Processing Systems (NIPS), vol.
5 (2015), pp. 1–6

10. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell,
Caffe: convolutional architecture for fast feature embedding, in Proceedings of the 22nd ACM
International Conference on Multimedia (ACM, 2014), pp. 675–678

11. C. Dwork, J. Lei, Differential privacy and robust statistics, in Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing, pp. 371– 380 (2009)

12. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, J. Wernsing, Cryptonets:
applying neural networks to encrypted data with high throughput and accuracy, in International
Conference on Machine Learning (2016), pp. 201–210

13. L. Melis, C. Song, E. De Cristofaro, V. Shmatikov, Exploiting unintended feature leakage in
collaborative learning, in 2019 IEEE Symposium on Security and Privacy (SP). (IEEE, 2019),
pp. 691–706

14. L. Zhao, Q. Wang, Q. Zou, Y. Zhang, Y. Chen, Privacy-preserving collaborative deep learning
with unreliable participants. IEEE Trans. Inf. Forensics Secur. 15, 1486–1500 (2019)

© Tsinghua University Press 2021
L. Chen, Deep Learning and Practice with MindSpore, Cognitive Intelligence
and Robotics, https://doi.org/10.1007/978-981-16-2233-5

393

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1701.03980
https://doi.org/10.1007/978-981-16-2233-5


394 References

15. C. Flanagan, A. Sabry, B.F. Duba, M. Felleisen, The essence of compiling with continuations,
in Proceedings of the ACM SIGPLAN 1993 conference on Programming Language Design and
Implementation (1993), pp. 237–247

16. B. van Merrienboer, O. Breuleux, A. Bergeron, P. Lamblin, Automatic differentiation in ml:
Where we are and where we should be going, in Advances in Neural Information Processing
Systems (2018), pp. 8757–8767

17. Y. LeCun et al., LeNet-5, convolutional neural networks. http://yann.lecun.com/exdb/lenet,
20(5) (2015)

18. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

19. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models are
unsupervised multitask learners. OpenAI Blog 1(8) (2019)

20. M. Shoeybi,M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro,Megatron-LM: training
multi-billion parameter language models using GPU model parallelism. arXiv preprint arXiv:
1909.08053 (2019)

21. N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P. Hawkins, H. Lee,M.
Hong, C. Young, R. Sepassi, B. Hechtman,Meshtensorflow: deep learning for supercomputers,
in Advances in Neural Information Processing Systems (NeurIPS), (Curran Associates, Inc.,
2018), pp. 10414–10423

22. Z. Jia, S. Lin, C.R. Qi, A. Aiken, Exploring hidden dimensions in accelerating convolutional
neural networks, in Proceedings of the 35th International Conference on Machine Learning
(ICML) (PMLR, 2018), pp. 2274–2283

23. Z. Jia, M. Zaharia, A. Aiken, Beyond data and model parallelism for deep neural networks, in
Proceedings of the 2nd Conference on Machine Learning and Systems (MLSys) (ACM, 2019)

24. M. Wang, C. Huang, J. Li, Supporting very large models using automatic dataflow graph
partitioning, in Proceedings of the Fourteenth EuroSys Conference (EuroSys). (ACM, 2019)

25. L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, Y. Chen, Hypar: towards hybrid parallelism for
deep learning accelerator array, in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). (IEEE, 2019), pp. 56–68

26. I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572 (2014)

27. N. Akhtar, A.Mian, Threat of adversarial attacks on deep learning in computer vision: a survey.
IEEE Access 6, 14410–14430 (2018)

28. A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533 (2016)

29. N. Carlini D. Wagner, Towards evaluating the robustness of neural networks, in 2017 IEEE
Symposium on Security and Privacy (SP) (IEEE, 2017), pp. 39–57

30. M.Fredrikson, S. Jha,T.Ristenpart,Model inversion attacks that exploit confidence information
and basic countermeasures, inProceedings of the 22nd ACMSIGSACConference on Computer
and Communications Security, (2015), pp. 1322–1333

31. R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference attacks against machine
learning models, in 2017 IEEE Symposium on Security and Privacy (SP), (IEEE, 2017), pp. 3–
18

32. T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: a survey. arXiv preprint arXiv:
1808.05377 (2018)

http://yann.lecun.com/exdb/lenet
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1808.05377

	Foreword by Zhijun Xu
	MindSpore Empowers All-Round AI

	Foreword by Wenfei Fan
	Preface
	About This Book
	Contents
	1 Introduction
	1.1 The History of AI
	1.2 What is Deep Learning?
	1.3 Practical Applications of Deep Learning
	1.3.1 ASR
	1.3.2 Image Recognition
	1.3.3 Natural Language Processing
	1.3.4 Other Fields

	1.4 Structure of the Book
	1.5 Introduction to MindSpore
	1.5.1 Simple Programming
	1.5.2 Device–Cloud Collaboration
	1.5.3 Easy Debugging
	1.5.4 Exceptional Performance
	1.5.5 Open-Source Components


	2 Deep Learning Basics
	2.1 Regression Algorithms
	2.2 Gradient Descent
	2.3 Classification Algorithms
	2.4 Overfitting and Underfitting

	3 DNN
	3.1 Feedforward Network
	3.2 Backpropagation
	3.3 Generalization Ability
	3.4 Implementing Simple Neural Networks Using MindSpore
	3.4.1 Parameters at Each Layer
	3.4.2 Implementation Process


	4 Training of DNNs
	4.1 Main Challenges to Deep Learning Systems
	4.1.1 Large Dataset Requirement
	4.1.2 Hardware Requirement
	4.1.3 Overfitting
	4.1.4 Hyperparameter Optimization
	4.1.5 Non-transparency
	4.1.6 Low Flexibility

	4.2 Regularization
	4.2.1 L2 Norm Regularization
	4.2.2 L1 Norm Regularization

	4.3 Dropout
	4.4 Adaptive Learning Rate
	4.4.1 AdaGrad
	4.4.2 RMSProp
	4.4.3 Adam

	4.5 Batch Normalization
	4.6 Implementing DNNs Using MindSpore
	4.6.1 Parameters at Each Layer
	4.6.2 Implementation Process


	5 Convolutional Neural Network
	5.1 Convolution
	5.2 Pooling
	5.3 Residual Network
	5.4 Application: Image Classification
	5.5 Implementing Image Classification Based on the DNN Using MindSpore
	5.5.1 Loading the MindSpore Module
	5.5.2 Defining the ResNet Network Structure
	5.5.3 Setting Hyperparameters
	5.5.4 Importing a Dataset
	5.5.5 Training a Model


	6 RNN
	6.1 Overview
	6.2 Deep RNN
	6.3 Challenges of Long-term Dependency
	6.4 LSTM Network and GRU
	6.4.1 LSTM
	6.4.2 GRU

	6.5 Application: Text Prediction
	6.6 Implementing Text Prediction Based on LSTM Using MindSpore
	6.6.1 Loading the MindSpore Module
	6.6.2 Preparing Data
	6.6.3 Defining the Network
	6.6.4 Parameter Description
	6.6.5 Training a Model

	Reference

	7 Unsupervised Learning: Word Vector
	7.1 Word2Vec
	7.1.1 Background
	7.1.2 Development Status
	7.1.3 Technical Principles
	7.1.4 Technical Difficulties
	7.1.5 Application Scenario
	7.1.6 Framework Module

	7.2 GloVe
	7.2.1 Background
	7.2.2 Development Status
	7.2.3 Technical Principles
	7.2.4 Technical Difficulties
	7.2.5 Application Scenario
	7.2.6 Framework Module

	7.3 Transformer
	7.3.1 Background
	7.3.2 Development Status
	7.3.3 Technical Principles
	7.3.4 Technical Difficulties
	7.3.5 Application Scenario
	7.3.6 Framework Module

	7.4 BERT
	7.4.1 Background
	7.4.2 Development Status
	7.4.3 Technical Principles
	7.4.4 Technical Difficulties
	7.4.5 Application Scenario
	7.4.6 Framework Module

	7.5 Comparison Between Typical Word Vector Generation Algorithms
	7.6 Application: Automatic Question Answering
	7.6.1 Relevant Concepts of Automatic Question Answering
	7.6.2 Traditional Automatic Question Answering Methods
	7.6.3 Automatic Question Answering Method Based on Deep Learning

	7.7 Implementing BERT-Based Automatic Answering Using MindSpore
	7.7.1 Preparing the Dataset
	7.7.2 Training the BERT Network

	References

	8 Unsupervised Learning: Graph Vector
	8.1 Graph Vector Overview
	8.2 DeepWalk Algorithm
	8.2.1 Principles of the DeepWalk Algorithm
	8.2.2 Implementation of the DeepWalk Algorithm

	8.3 LINE Algorithm
	8.3.1 Principles of the LINE Algorithm
	8.3.2 Implementation of the LINE Algorithm

	8.4 Node2Vec Algorithm
	8.4.1 Principles of the Node2Vec Algorithm
	8.4.2 Implementation of the Node2Vec Algorithm

	8.5 GCN Algorithm
	8.5.1 Principles of the GCN Algorithm
	8.5.2 Implementation of the GCN Algorithm

	8.6 GAT Algorithm
	8.6.1 Principles of the GAT Algorithm
	8.6.2 Implementation of the GAT Algorithm

	8.7 Application: Recommendation System
	8.7.1 Recommendation System in Industry Applications
	8.7.2 Graph Neural Network Model in a Recommendation System

	References

	9 Unsupervised Learning: Deep Generative Model
	9.1 Variational Autoencoder
	9.1.1 Background
	9.1.2 Development Status
	9.1.3 Technical Principles
	9.1.4 Technical Difficulties
	9.1.5 Application Scenarios

	9.2 Generative Adversarial Network
	9.2.1 Background
	9.2.2 Development Status
	9.2.3 Technical Principles
	9.2.4 Technical Difficulties
	9.2.5 Application Scenarios
	9.2.6 Framework Module

	9.3 Application: Data Augmentation
	9.3.1 Definition of Data Augmentation
	9.3.2 Purpose of Data Augmentation
	9.3.3 Conventional Data Augmentation Methods
	9.3.4 Data Augmentation Methods Based on Deep Learning

	9.4 Implementing GAN-Based Data Augmentation Using MindSpore
	References

	10 Deep Reinforcement Learning
	10.1 Basic Concepts of Reinforcement Learning
	10.1.1 Basic Concepts and Theories
	10.1.2 Markov Decision Process
	10.1.3 Bellman Equation

	10.2 Basic Solution Method
	10.2.1 Dynamic Programming Method
	10.2.2 Monte Carlo Method
	10.2.3 Temporal Difference Method

	10.3 Deep Reinforcement Learning Algorithm
	10.3.1 DQN Algorithm
	10.3.2 DDPG Algorithm
	10.3.3 A3C Algorithm

	10.4 Latest Applications
	10.4.1 Recommendation System
	10.4.2 Gambling Game

	10.5 Implementing DQN-Based Game Using MindSpore
	References

	11 Automated Machine Learning
	11.1 AutoML Framework
	11.1.1 NAS Algorithm
	11.1.2 Hyperparameter Tuning

	11.2 Existing AutoML Systems
	11.2.1 AutoWeka, Auto-Sklearn, and HyperOpt
	11.2.2 Microsoft NNI

	11.3 Meta-learning
	11.3.1 Learning Optimizer
	11.3.2 Learning Parameter Initialization
	11.3.3 Learning Loss Function
	11.3.4 Learning Metric

	11.4 Implementing AutoML Using MindSpore
	References

	12 Device–Cloud Collaboration
	12.1 On-Device Inference
	12.2 Device–Cloud Transfer Learning
	12.3 Device–Cloud Federated Learning
	12.3.1 Federated Averaging
	12.3.2 Gradient Compression

	12.4 Device–Cloud Collaboration Framework
	Reference

	13 Deep Learning Visualization
	13.1 Overview
	13.1.1 Data Analysis
	13.1.2 Model Building
	13.1.3 Training
	13.1.4 Evaluation

	13.2 MindSpore Visualization
	13.2.1 Visualization Process
	13.2.2 Dataset Visualization
	13.2.3 Model and Training Visualization
	13.2.4 Format of Summary Data

	References

	14 Data Preparation for Deep Learning
	14.1 Overview of Data Format
	14.2 Data Format in Deep Learning
	14.2.1 Original Input
	14.2.2 Annotation Information

	14.3 Common Data Formats for Deep Learning
	14.3.1 TFRecord Format
	14.3.2 LMDB Storage
	14.3.3 REC Format
	14.3.4 MindSpore Data Format
	14.3.5 MindSpore Dataset

	14.4 Training Data Preparation Using the MindSpore Data Format
	14.4.1 Generation of Data in the MindSpore Data Format
	14.4.2 Statistics and Retrieval of Data in the MindSpore Data Format
	14.4.3 Reading MindSpore Training Data


	 MindSpore: An All-Scenario Deep Learning Computing Framework
	Introduction
	MindSpore Overview
	MindSpore Architecture
	Programming Paradigm
	MindExpression and MindCompiler
	SCT-Based AD
	Auto-parallel
	Dynamic Graph
	Second-Order Optimization
	Matrix Update Frequency
	Update by Layer
	Hardware-Aware Matrix Splitting
	MindData
	Data Processing
	MindRecord
	MindInsight
	Training Dashboard
	Lineage
	Profiler
	Debugger
	MindArmour
	Adversarial Attack Defense
	Privacy-Preserving AI
	Device–Cloud Collaborative Architecture
	MindSpore Serving
	Introduction
	Functions
	Evaluation
	Auto-parallel
	Benchmark
	Training Performance
	Inference Performance
	Conclusion and Future Work
	References



