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Abstract

Uncontrolled production of organic waste due to rapid urbanization and growing
population has become a global concern. Biogas is an economical, renewable,
and eco-friendly source of energy produced by using various groups of
microorganisms that work in a synchronized way. Virtually any type of solid
organic wastes is transformable into biogas through anaerobic digestion (AD).
This chapter discusses the importance of biogas and use of microbes for biogas
production. The production processes and parameters influencing the yield are
also discussed briefly. In addition, the challenges are faced by enhancement
techniques and summarized.
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HPH Hydrodynamic pressure homogenization
HRT Hydraulic retention time
MCFC Molten carbonate fuel cell
MECs Microbial electrolysis cells
MFCs Microbial fuel cells
NREAP National Renewable Energy Action Plan
OLR Organic load rate
SOFC Solid oxide fuel cell
SOWs Solid organic wastes
VFAs Volatile free fatty acids
WAS Waste activated sludge

24.1 Introduction

Globally, the demands of energy have been growing gradually. For that reason, there
is a need to enhance the growth of renewable and eco-friendly energy sources. The
most important energy sources are fossil fuels that provide 80% of the total energy.
Although the limited sources of fossil fuel also have some alarming impacts on the
environment, it is necessary to reduce the use of fossil fuel because of global
warming and other harmful pollutants. Around the world, the limited fossil fuel
accessibility and the growing energy demands are the basic reasons that are compel-
ling the governments to pursue the alternatives of renewable energy sources (Hijazi
et al. 2016; Chuanchai 2018). Numerous methods including hydropower, solar heat,
wind power, and anaerobic digestion (AD) can be used to produce renewable
energy. However, bioenergy draws intention as renewable energy due to its viability
and less production of CO2. Generally, biogas consists of carbon dioxide (25–50%),
methane (50–75%), water vapors, and some gases, i.e., N2, H2S, NH3, and CO. The
general equation of biogas production is as following: (Bo et al. 2014; Lee et al.
2017).

CH3COOH ! CO2 þ CH4 ð24:1Þ
Conventionally biogas is produced through anaerobic digestion AD process by

the microbial decomposition of organic matter. The organic matter including (crop
residues, industrial wastes, municipal wastes, and animal manures) decomposed by
microorganisms in anaerobic conditions. The AD process has been catalyzed by a
wide variety of microbes. These microbes convert the macromolecules into smaller
molecules. The first step of the AD process is hydrolysis; various microbial
communities can be used for efficient hydrolysis process. Most of the species belong
to the class of Bacilli and Clostridia. Clostridium species are common for degrada-
tion under anaerobic conditions. An extensive range of microorganisms such as
Thermomonospora, Actinomyces, Ralstonia, Shewanella, Methanobacterium, and
Methanosarcina contribute to the degradation and methane production. Recently
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several species like Clostridia-36%, Bacilli-11%, both with the members of
Mollicutes-3%, Bacteroidia-3%, Actinobacteria-3% and Gammaproteobacteria-3%
are reported as the fermented bacteria in the digesters (Khalid et al. 2011; Wirth et al.
2012). Various Archaeal communities identified as methanogens, i.e.,
Methanobacterium formicicum, Methanosarcina frisius, and Methanosarcina
barkeri. Methanogens are uncultivable microorganisms that increase the production
of methane (Goswami et al. 2016), whereas others are the member of thermophilic
species (e.g., Crenarchaea and Thermoplasma sp.). Archaeal 16s rRNA gene clones
associated with ArcI taxon have been recovered in large amount from a
methanogenic digester to decompose sewage sludge. ArcI is reported as an acetate
consumer that plays an important part in acetoclastic methanogenesis. About 16% of
rRNA archaeal gene clones have been investigated in a mesophilic methanogenic
digester that belongs to Crenarchaeota (the subphylum C2). It also has been
observed that by increasing the hydrogenotrophic species the production of methane
increases (Chouari et al. 2005; Trzcinski and Stuckey 2010).

The process of AD involves four major steps, i.e., hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. The organic matter is converted into renewable
bioenergy by the action of microbes in the presence of enzymes. A large variety of
bacterial groups taking part in the AD processes, such as hydrolytic, fermenting,
acid-oxidizing, and methanogenic archaea bacteria are used to degrade organic
waste (Carballa et al. 2015; Tuesorn et al. 2013). This process is environmentally
friendly, requires less energy, economically attractive, and produces high quality of
biogas. On the other hand, it also has some limitations, such as low biogas produc-
tion, destabilizing, and weak degradation of substrates. Various factors can affect the
AD process like (temperature, pH, volatile fatty acids, C\N ratio, alkalinity, and
substrate characteristics) (Cerrillo et al. 2016). To overcome these problems many
physical and chemical methods have been established. Many techniques are used to
increase hydrolysis efficiency that is a rate-determining step in the AD process.
Currently, several new technologies, e.g., (MECs) and (MFCs) have been introduced
to increase the efficiency of anaerobic digesters. These technologies use electric
current from microorganisms to improve biogas production. The pretreatment of
substrates along with micronutrients also improves gas yield. An improvement of
discharge quality is also needed to avoid the adulteration of groundwater by nutrients
and pathogens (Lee et al. 2017; Weiland 2010).

24.2 Historical Overview

Recently, one of the major environmental problems is the continuous production of
organic material. This organic waste is managed and treated by AD which is a
microbial anaerobic (absence of O2) decomposition process to produce biogas in
digesters (airproof reactor tanks). Biogas is a sustainable supply of renewable energy
from organic waste. AD has attained global attention to lower the combustion of
fossil fuel and to reduce the emission of greenhouse gases (Awe et al. 2017; Hosseini
and Wahid 2014).

24 Application of Microbes in Biogas Production 657



In France, Ad was first documented in 1891. In 1895, biogas was produced in the
United Kingdom from municipal waste and it was used to harvest heat and light
(Gashaw 2014). A comprehensive report in the USA about anaerobic digestion was
published in 1936, by Hatfield and Buswell (Wett and Insam 2010). In the middle of
the twentieth century, sustainable applications of biogas plants appeared. Currently,
AD is a significant treatment of waste (industrial waste, aquatic biomass, sewage
solid waste, and energy crops) and produces methane (García-González et al. 2019;
Raucci et al. 2019). For years, the production of biogas has been applied in
households and farms on a small scale. Since the 1930s, the production of biogas
after viable stabilization requirements of sewage sludge became a standard process
to treat sludge at large to medium scale treatment plans. In Europe particularly, over
the last few years, biogas plant has developed an industrial scale largely by increas-
ing the efficiency of biogas conversion. At the start of the twenty-first century, we
came to know that biogas has the potential to eliminate many issues instantly. Taking
methane in biogas can provide waste disposal management, reduction of GHGs
emissions, and renewable energy production (Chiumenti et al. 2018; Hou and Hou
2019). Biogas is a common renewable energy source in developed countries. On the
other hand in developing countries, this trend has not altered. Globally, the produc-
tion of biogas was reported only 2% as displayed in Fig. 24.1, whereas in the EU, it
was extended to 7% in 2013 as shown in Fig. 24.2 (Agency 2016).

Fig. 24.1 Global energy source in 2013 (Atelge et al. 2018)
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The continuous increase in the growth of the biogas sector has been supported by
the above facts since 1990. The sustainable energy investment trend during the era of
2004–2015 in the world is shown in the following Fig. 24.3.

Figure 24.3 illustrates that there is a continual increase during 2004–2008 where
the trend remains relatively constant (Gonzalez-Salazar et al. 2016). The fewer
investments made to be constant after 2011. While the rate of growth from
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Fig. 24.2 EU-28 level energy source in 2013 (Atelge et al. 2018)

Fig. 24.3 Graphical representation of global investment in biogas production (Atelge et al. 2018)
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2004–2015 was 2%, the investment in waste and biomass to energy sector was
6 billion dollars in 2015. In developed countries like Denmark, Germany, and
England, the energy sector has developed well, therefore investment in waste and
biomass to energy lessened in the era of 2011 and 2015 (Solarte-Toro et al. 2018;
Edenhofer et al. 2011). Conversely, in developing countries, the investment
continues to increase progressively owing to their economic conditions (Offermann
et al. 2011). In the EU, to meet the sustainable energy requirements of the National
Renewable Energy Action Plan (NREAP), the sustainable energy sector has to
develop 4% every year till 2020, to meet the anticipations. In Paris Agreement
2015, the target of the EU for 2050 was the reduction of greenhouse gasses emission
to 85–90% from the volume produced in 1990 (Bausch et al. 2017). In the era of
2013–2020, electricity generation from biogas must be enhanced from 46.8 to 63.3
terawatt-hours in the EU to gain their NREAP target. Italy and Germany have
achieved their goals because of their numbers of functional biogas plants, whereas
other countries require economic investments and policies for the operation and
development of more biogas plants (Repele et al. 2017).

Animal waste has been alleviated by AD unless the middle of the 1970s in North
America (Abbasi et al. 2012). The biogas plant number with well-developed AD has
increased in the USA. Recently, the number of AD plants in operation are around
2100, it is still lesser compare to their model potential (Wang et al. 2019). Japan is
also using this technique to manage and treat its waste. At this time, thermophilic AD
is used only in Japan in the world. 200 mL biogas was formed in 2006. Many cities
in Japan like Kobe, Nagaoka, and Kanazawa are producing biogas from sewage
sludge with various capacities, e.g., 800,000, 600,000, and 280,000 m3/year, respec-
tively (Yolin 2015; Gubaidullina and Kargina 2015). In developing countries, AD
has been becoming more suitable and standard technique due to high energy costs
compared to developed nations. At present, India and China have a large number of
operated biogas plants with 4.7 million and 42.6 million correspondingly as shown
in Fig. 24.4 (Tongia and Gross 2018).

Other countries in Asia like Bangladesh, Kenya, Nepal, Cambodia, and Vietnam
have installed progressively more domestic biogas plants (Geng et al. 2016). In
2016, the numbers of small scale biogas plants installed in these nations are in the
range of 360–15,000. In this year Asia has invested more for AD technologies
compared to any other region. African Biogas Partnership Program operated almost
68,000 biogas plants in 2016, in Africa. In developing countries, more than 700,000
plants have been installed in 2015 (Appavou et al. 2017).

24.3 Importance of Biogas

Fossil fuels are the renewable source of energy but their formation process is very
slow and current consumption is rapidly draining the reserves. Biogas is formed
during the process of anaerobic digestion and is a reliable and flammable gas with
short formation time (Hosseini and Wahid 2014). Biogas has versatile applications
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Fig. 24.4 Domestic number of biogas plants established in 2016 by India and China (Atelge et al.
2018)

Fig. 24.5 Utilizations of biogas (Ferreira et al. 2019)
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as shown in Fig. 24.5, e.g., due to controlled combustion its chemical energy can be
transformed into mechanical energy.

Thermal energy can also be generated from biogas when it burns to yield heat
energy in boilers. In stationary engines as well as in automotive it is used as fuel. It is
a promising source of H2 that is loaded into fuel cells (Alves et al. 2013).

Use of Biogas for Sludge Treatment The sludge sanitization process can be
performed with the help of a boiler worked on biogas and a heated concrete tank.
Once a day, the tank might be aided to avoid the necessity of a large gas holder. A
heat exchanger is fitted in the tank to heat the sludge for 30 min at 70 �C. Therefore,
excess thermal heat (up to 70%) can be used for cooking and water heating (Passos
et al. 2020).

Use of Biogas in Fuel Cells The techniques to change H2 into electrical energy and
desirable power levels are near to commercialization. In fuel cells, the direct biogas
use is termed as internal reforming (Ohkubo et al. 2010; Membrez and Bucheli
2004). (SOFC) and (MCFC) are high-temperature fuel cells. They have a greater
ability of internal reforming (use of biogas directly) due to better capacity of thermal
integration and great tolerance of H2 contaminants. In the literature, various studies
indicated that in fuel cells, biogas reforming is used frequently. However, some
studies revealed that biogas can be converted into electricity without a humidifier,
ancillary fuel, external reformer, and metal catalyst (Shiratori et al. 2008). During
internal reforming, CO is also produced which is a poison for fuel cells (Xuan et al.
2009).

Use of Biogas as Biofuels Biogas is a high octane fuel. The components of biogas
can be categorized in the following ways:

• Combustible.
• Non-combustible.

The combustible components include CO2, H2, and CH4 while CO and N2 are
non-combustible components. Various factors such as the source of substrates and
preparation techniques may change the composition of the biogas. Biofuel is a
biomass-based fuel. It has various advantages compared to fossil fuel. Primarily,
biofuel is readily available from biomass. Furthermore, biofuel circulates the carbon
between the fuel and air, as a result, many problems, i.e., energy scarcity and
greenhouse gas emission can be resolved. Thirdly, various kinds of biofuel like
ethanol and biodiesel have physicochemical characteristics for combustion in the
internal combustion engine (Raheem et al. 2015; Brown and Brown 2013). Simi-
larly, bioethanol (a renewable substitute) has been used for gasoline in the system
isolated engine. As compared to natural gas and LPG, biogas has a lower heating
value and lower flame speed. Secondly, the autoignition temperature is also greater
than that of natural gas and LPG. Their chemical and physical properties have a
greater effect on the use of biogas in the spark-ignition engine (Qian et al. 2017)
(Table 24.1).
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24.4 Commonly Used Substrates for Biogas Production

For renewable energy (biogas) biomass is the most commonly used substrate in
AD. Some substrates are shown in Fig. 24.6. The biomass consists of proteins,
carbohydrates, hemicelluloses, celluloses, and fats. However, some co-substrates are
also used to obtain the highest gas yield. These co-substrates are agricultural wastes,
food wastes, harvesting residue, i.e., leaves, and top of sugar beet and household
municipal wastes. The composition and total yield of biogas depend on the type of
feedstock and substrate used in the anaerobic plant to determine the composition and
yield of biogas (Braun 2007; Achinas et al. 2017). Contents of organic matter and
their theoretical yield are listed in the table.

Table 24.1 Shows the
contents of organic matter
and their theoretical yield
(Braun 2007)

Substrates Biogas(Nm3/tTS) CO2 (%) CH4 (%)

Carbohydrates 790–800 50 50

Raw fat 1200–1250 32–33 67–68

Raw protein 700 29–30 70–71

Lignin 0 0 0

Fig. 24.6 A conventional biogas production cycle (Al Seadi 2001)
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Methane production from different feedstocks is very difficult to compare.
Experimental conditions, i.e., temperature, volatile solids, total solids are analyzed
for the maximum performance of particular raw material. Thus it is useful to relate
different feedstocks by their methane yield (B˳) (Owen et al. 1979).

Manures are used as the substrate in AD which is an abundant source of organic
matter. The use of manures as feedstock also reduces the emission of greenhouse
gases. Some biochemical methane potential assays showed that the potential yield of
methane differs among livestock types. Various factors take part in the potential of
methane, e.g., animal growth stage, type of bedding, species, breed, feed, amount,
and any decomposition process (Møller et al. 2004). Farm manures have a high
concentration of NH3 that may be an inhibitory factor in the AD process. The
feedstocks having low nitrogen concentration involve high ammonia concentration
for effective degradation. Beyond this manures usually consist of recalcitrant fiber
that is hard to degrade. The pretreatment of manures gives up to 20% increase in
methane production by reducing the particle size (Sung and Liu 2003; Angelidaki
and Ahring 2000).

Biomass contains straws from rice, wheat, sorghum, and other waste products of
food. It is the most favorable feedstock for the AD process. Their methane yield (B˳)
is high. However, the high amount of recalcitrant material usually needs
pretreatment to completely comprehend the potential yield. The biogas yield is
also affected by the harvesting time (Petersson et al. 2007).

It is the most capricious feedstock because the production of methane is
influenced by the location (source of material), sorting method, and time of collec-
tion. Cultural values, beliefs, the lifestyle of communities impact their recycling
practices and waste disposal approaches (Cho et al. 1995). When the municipal solid
waste is not differentiated by source then the process of pretreatment is mandatory to
remove metals, glass, plastics. The pretreatment process can be done manually or
mechanically, i.e., pressing, screening, and pulping. Sewage sludge is another form
of industrial or municipal waste. It has a high methane yield due to the presence of
high organic matter for AD (Ward et al. 2008).

Food waste has a high content of volatile solids, low total solids, and its
degradation is easy in an anaerobic digester. These substrates during hydrolysis
may accumulate acid in the digester and inhibit methanogenesis consequently. In the
early 1980s, it was revealed that the various carbohydrate comprising wastes
required alkali buffer as well as co-digestion for stable performance (Hills and
Roberts 1982; Knol et al. 1978) (Table 24.2).

24.5 Application of Microbes in Biogas Production

24.5.1 Decomposition

It is an incessant and intricate microbial decomposition of complex organic biomass
into its mineral forms. Decomposition is categorized by various physical and
biological processes like biological fragmentation, respiration, and leaching
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(Hahn-Hägerdal et al. 2007; Busing et al. 2008). These processes work synergisti-
cally as they are very closely related to each other. Many factors affect decomposi-
tion processes such as the concentration of O2/CO2, temperature, humidity quality of
substrate containing components, species, position, and size. Generally, decomposi-
tion has two types: abiotic and biotic. Biotic decomposition is the microbial (fungi,
bacteria, and protozoa) disintegration of the complex substrate into simpler units. On
the other hand, abiotic decomposition uses physical and chemical methods to
breakdown complex organic substrate (Rahman et al. 2013). The microbial decom-
position occurs in either anaerobic or aerobic environment as shown in Fig. 24.7.

Anaerobic Decomposition
It is an anaerobic symbiotic microbial conversion of organic waste to biogas, salts,
nutrients, refractory organic matter and additional cell matter, etc. It is an environ-
mentally friendly technique.

The main components of the raw biogas are 60% CH3, 40%CO2 trace amount of
H2S and water vapors. It is a colorless and odorless gas. When it burns a blue color
flame is made which is similar to the flame of LPG gas. Archaea and bacteria are two
basic kinds of microbes used for the conversion of biogas strictly in an anaerobic
environment (Adekunle and Okolie 2015; Kusch et al. 2012). AD reduces
pathogens, organic wastewater solids, and the odor by producing biogas from
fractions of volatile solids. The product of this process has not only stabilized solids
but also has some nutrients like ammonia-nitrogen. AD is applied in waste manage-
ment including industrial wastewater, agriculture waste, sludge digester, municipal

Table 24.2 Biogas production feedstocks (Krishania et al. 2012)

Feedstocks
Total waste (Kg/day/
head)

Gas yield(m3/
kg)

Requirement of
pretreatment

Poultry 0.75 0.46 No

Pig 1.3 0.39 Yes

Sheep 0.75 0.37 No

Cattle 10–15 0.34 No

Kitchen 0.25 0.30 Yes

Night soil 0.75 0.38 No

Wheat straw 3.5 0.41 Yes

Rice straw 1.2 0.61 Yes

Marine algae 3.3 0.40 No

Water
hyacinth

5 0.40 Yes

Fig. 24.7 Types of microbial
decomposition
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wastewater, septic tank, and waste treatment (Zhou andWen 2019). It is used in both
domestic and industrial fermentation to produce food and drink products. Different
factors influencing biogas conversion may include the nature of substrate, volatile
free fatty acids, carbon-nitrogen ratio, temperature, hydraulic retention time, digester
design, pH and loading rate (Kusch 2008). It can be either a batch process or a
continuous process. The organic waste is added continuously in continuous AD to
the reactor. On the other hand, organic biomass is added in the batch process at the
start of the process to the reactor.

Aerobic Decomposition
It is a decomposition of organic biomass in the presence of oxygen by
microorganisms into SO�

4, CO2, NO
�
3, H2O, etc. It is the most common process

that occurred in the forest to produce stable organic compounds from dropping
animals and trees. It can also take place in bins, piles, pits, stacks, etc. and insuffi-
cient O2 environment. Some compounds cannot decompose well in an aerobic
environment that is the major disadvantage of this process. These unreactive
compounds contain insoluble materials which require chemical oxygen demand up
to 70%. To overcome these problems versatile AD technique is used to treat organic
waste.

24.5.2 The Biochemical Process of Biogas Production

Biogas production through the AD process has significant advantages. It is a
versatile source of energy that reduces the emission of greenhouse gases. Various
types of organic substrates (agricultural remains, animal wastes, municipal solid
wastes, and market wastes) are converted into biogas and digestate (Hijazi et al.
2016; Weiland 2010). The process of anaerobic digestion has been carried out by
various independent progressive and biological reactions in anaerobic conditions
(Parawira 2012). It is an enzyme-driven process during which organic matter is
converted into CH4 and CO2. AD process consists of four main steps which are as
follows and described in Fig. 24.8: (Weiland 2010).

• Hydrolysis.
• Acidogenesis.
• Acetogenesis/Dehydrogenation.
• Methanogenesis.

Hydrolysis
Hydrolysis is a process that transforms the complex organic macromolecules (lipids,
polysaccharides, proteins) into smaller ones with the help of microbes secreted from
different enzymes (Cirne et al. 2007). The different degradation steps involve
diverse groups of microscopic organisms, which work in a closely related way.
Hydrolyzing microorganisms are initially attacking polymers and converting them
into long-chain fatty acids, monosaccharides, and amino acids. However, many
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hydrolytic enzymes that are secreted by microorganisms, e.g., cellobiose, cellulose,
amylase, protease, xylanase, and lipase are taking part in hydrolysis (Weiland 2010;
Bagi et al. 2007). Various bacterial groups are also included in the hydrolysis of
polysaccharides, most of them are strictly anaerobic, i.e., Clostridium, Bacteroides,
and Acetivibrio. The resulted products of hydrolysis are further decomposed by other
microorganisms (Heeg et al. 2014).

Lipids !lipase Fatty acidþ Glycerol ð24:2Þ

Polysaccharides !cellobiase cellulose, amylase, xylanase
Monosaccharide ð24:3Þ

Protein !protease
Amino acids ð24:4Þ

Acidogenesis
In acidogenesis, the final products of hydrolysis, i.e., fatty acids, sugars, and amino
acids are further decomposed by fermenting organisms. Some facultative and vari-
ous hydrolyzing microorganisms (i.e., Paenibacillus, Ruminococcus, Streptococci)
are taking part in fermentation (Ziganshin et al. 2013; Zheng et al. 2014). However,
microorganisms, e.g., Acetobacterium, Enterobacterium, and Eubacterium along
with the hydrolyzing microbes are also included to carry out the fermentation.

Fig. 24.8 Schematic diagram
of the biochemical process of
biogas production
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These fermented bacteria (acidogens) convert the hydrolyzing products into numer-
ous organic acids (i.e., butyric acid, acetic acid, propionic acid, succinic acid, lactic
acids), alcohols, NH3, CO2, and H2. The resulting compound depends on the type of
microorganism’s present, the kind of substrate used, and on environmental
conditions (Schnurer and Jarvis 2010).

Acetogenesis
In acetogenesis, the fermented products are further oxidized into methanogenic
substrates. The obligate acetogenic hydrogen-producing bacteria convert the high
VFAs, amino acids, and alcohol into acetate and hydrogen. Syntrophus, Clostridium,
Syntrophomonas, and Syntrobacter are the microorganisms that carried out
acetogenesis as shown in Fig. 24.9 (Bagi et al. 2007; McInerney et al. 2008).

Methanogenesis
In the biochemical process, the very last step of AD is methanogenesis in which
fermentation of various organic compounds synthesized methane gas. The process of

Fig. 24.9 Shows an overall
view of bacteria involved in
the AD (Goswami et al. 2016)
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methanogenesis has been compelled by six different pathways, in which three are the
major pathways, i.e., methylotrophic pathway, hydrogenotrophic pathway, and
acetoclastic pathway. Every pathway is differentiated by other pathways by the
source of energy and nature of the substrate used for methane. These substrates are
formic acid, carbon dioxide, methylamine, dimethyl sulfate, and methanol. The
common pathway of methanogenesis is the reduction of CO2 into CH4. However,
according to methanogenic cofactors other five pathways may be assembled into two
(Slonczewski and Foster 2013; Garcia et al. 2000). The three basic pathways are
described in Fig. 24.10.

Methylotrophic pathway: In this pathway, methane is produced by the decar-
boxylation of methylamine/methyl sulfides/alcohols.

Hydrogenotrophic pathway: In this pathway, methane is produced by the
reduction of CO2.

Acetoclastic pathway: In this pathway, methane is produced by the decarboxyl-
ation of acetate. This pathway has been reported as the major pathway to produce
methane in anaerobic conditions. It has been stated that during the AD process of
domestic sewage about 70% of the total CH4 is produced through this process. The

Fig. 24.10 shows the complex process of methanogenesis including three pathways (Goswami
et al. 2016)
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process of methanogenesis is very complex, it requires various substrates and
cofactors to take place (Goswami et al. 2016; Lettinga 1995).

24.5.3 Parameters Influencing Microbial Growth and Biogas Yield

There are two main parameters such as operational and AD parameters to enhance
biogas yield. These parameters are described in Fig. 24.11.

Anaerobic Digestion Parameters
1. Temperature.

Temperature is a fundamental factor significantly influencing different functions
such as hydrolysis rate, biogas conversion, sludge quality, enzyme and its related
coenzyme activities in the AD process. In that process, various anaerobic
microorganisms work well at different temperature ranges (Yan et al. 2015). Three
thermal stages are described in Fig. 24.12.

Enzymes may not show their optimal catalytic activity at very low temperatures,
whereas sensitive enzymes may become denature at very high temperatures, as a
result, lead to process failure. From literature, we come to know that ammonia
accumulation, endergonic metabolic reactions, and biogas yield accelerated at the
thermophilic thermal range compared to the mesophilic thermal range (Sikora et al.
2019; Keating 2015). It was also noted that thermophilic thermal conditions could
not be promising for exergonic metabolic reactions and specific substrates like
co-digestion of sugar beet pulp with sewage waste (Montañés et al. 2015). The

Fig. 24.11 Important parameters in AD

670 U. Ammara et al.



thermophilic condition also causes adverse environmental effects. During the diges-
tion, process temperature must be kept constant because temperature fluctuations
affect biogas yield negatively. Thermophilic bacteria are more sensitive than
mesophilic bacteria.

2. C/N ratio.

This ratio plays a significant role in anaerobic digestion (Mathew et al. 2015). For
the growth of anaerobic microorganism in a stable environment, optimum ratio of
C/N is required. Commonly, a range of 20–30 C/N ratio is suitable for the AD
process (Meegoda et al. 2018). Wang et al. executed anaerobic co-digestion of three
substrates (wheat straw, dairy and chicken manure) at a low concentration of free
ammonia and ammonium ion and stable pH; as a result, he found that the maximum
yield of methane produces at 27.2 C/N ratios (Wang et al. 2012). Zeshan et al. were
also found that digestion accomplished well at a C/N ratio of 27 than 32 (Karthikeyan
and Visvanathan 2012). Whereas according to modern study, AD performed well at
15–20 C/N ratios. For co-digestion, Zhong et al. found that the most favorable C/N
ratio was 20 (Zhong et al. 2013). Anaerobic co-digestion for cattle manure and food
waste was done by Zhang et al. at C/N ratios 15.8 (Zhang et al. 2013a). The optimum
C/N ratios depend on inoculum and feedstock for the anaerobic digestion process.
For a long-term AD operation, suitable C/N ratios are enforced.

3. pH

In the AD process, pH is an indispensable parameter to regulate and stabilize the
activities of methanogenic and acidogenic bacteria because their activities are greatly
affected by pH changes. Usually, an optimum pH between 6 and 8 is reported for
higher biogas yield (Deepanraj et al. 2014; Zhao et al. 2008). Acidogenesis and
hydrolysis take place at pH 6.5 and 5.5, respectively. The amount of volatile fatty
acids (VFAs) and CO2 formed during the digestion process affects significantly the
pH of matter present in a digester. Typically to ensure fermentation in AD, then the
concentration of CH3COOH and volatile free fatty acid should be <2000 mg/I. In
1998, Mattiasson and Jain reported that the efficiency of methane yield was

Fig. 24.12 Important thermal stages in AD
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enhanced >75% at above pH 5. In the co-digestion of two substrates such as dairy
manure and cheese whey, when pH was uncontrolled, a two-phase anaerobic
digester worked as a single-phase reactor, whereas in the methanogenic phase,
when whey pH was controlled, then the digester functioned as a two-phase two-stage
reactor (Bertin et al. 2013; Venetsaneas et al. 2009). From previous reports, we come
to know that the pH of anaerobic reactor affects VFAs in a great manner, at low pH
butyric acid and acetic acids are dominant VFAs however at pH 8 main VFAs are
propionic acid and acetic acid (Horiuchi et al. 1999). Similarly, with the help of
optimum pH, we should control acidogenic bacteria and their number (Horiuchi
et al. 2002).

4. Ammonia.

Ammonia and ammonium ions are obtained by degrading nitrogen-rich organic
waste and protein (Yenigün and Demirel 2013; Whelan et al. 2010). Ammonia is a
crucial nutrient for bacterial growth but in higher concentrations, it can be very toxic
to bacteria (Walker et al. 2011). A recent study revealed that during anaerobic
digestion ammonia could increase buffer capacity by neutralizing VFAs (Scherer
et al. 2009). Zhang et al. have reported reaction equations between VFAs and
ammonia as follows:

CxHyCOOH Ð CxHyCOO
‐ þ Hþ ð24:5Þ

NH3:H2O Ð NHþ
4 þ OH‐ ð24:6Þ

CxHyCOOHþ NH3 � H2O ! CxHyCOO
‐ þ NHþ

4 þ H2O ð24:7Þ
In the above equations, CxHyCOOH symbolizes VFAs. With the increase of

organic load rate (OLR), the amount of VFAs increases which inhibits the AD
process therefore to avoid this inhibition NH3 could react with VFAs and allow
enough fatty acids for biogas production. Ammonia is directly proportional to both
pH and temperature. It means that free ammonia concentration rises with increasing
temperature and pH values such as at 35 �C and pH 7 the amount of free ammonia
formed is <1%. Conversely, free ammonia at pH 8 and the same temperature
increase to 10% (Fernandes et al. 2012). Bacteria grow at low ammonia concentra-
tion, whereas its higher concentration can inhibit bacterial growth. To regulate AD
functions various techniques are used to remove excess ammonia such as microwave
(Lin et al. 2009a, b), ion exchange (Wirthensohn et al. 2009), electrochemical
conversion (Lei and Maekawa 2007), ammonia stripping (Böhm et al. 2011),
membrane contractor (Lauterböck et al. 2012) and biological nitrogen elimination
processes (Hsia et al. 2008), etc. We can calculate concentration free ammonia from
the following formula.
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NH3½ � ¼ T � NH3½ �
1þ Hþ

Ka

� � ð24:8Þ

Here, Ka is the dissociation parameter, while [NH3] and [T-NH3] represent free
ammonia and total ammonia, respectively.

5. Volatile Fatty Acid.

Valeric acid, acetic acid, butyric acid, and propionic acid are the basic VFAs
intermediates that identify the stability of the AD process (Buyukkamaci and Filibeli
2004; Pham et al. 2012). Among these acids, propionic acid and acetic acids are
essential for biogas production (Zhang et al. 2013b). During acidogenesis these
intermediates are formed with a chain of carbon up to 6 atoms. Mainly, methanogens
and acetogenic bacteria converted VFAs finally into CO2 and CH4. However,
volatile fatty acids are directly proportional to organic load. High organic loading
can increase VFAs concentration inside the reactor as a result of pH value drops
which inhibit the AD process (Zhang et al. 2013a; Palacio-Barco et al. 2010).

6. Macro- and Micronutrients.

Trace elements such as nickel (Ni), cobalt (Co), molybdenum (Mo), iron (Fe),
tungsten (W), selenium (Se) and macronutrient carbon (C), phosphorus (P), sulfur
(S), and nitrogen (N) are important equally for the survival and growth of microor-
ganism in anaerobic digestion (Agler et al. 2008). These nutrients not only maintain
the activities of enzymes but also help in their synthesis (Moestedt et al. 2013;
Facchin et al. 2013). The optimum ratio of microelements S: P: N: C for AD is 1: 5:
15: 600.

Operational Parameters
1. Organic Load Rate.

It is defined as the amount of organic waste fed continuously to anaerobic reactor per
day per unit working volume as shown in the equation below:

BR ¼ m� c
VR

ð24:9Þ

where BR, VR, c, and m are the organic load (Kg/d*m3), digester volume (m3),
organic matter concentration (%), and mass of substrate fed per time unit (Kg/d),
respectively.

In diverse AD operations, the OLR differs because of variances in feedstock
properties, operating temperature, and hydraulic retention time (Divya et al. 2015a).
An optimal amount of OLR is required because too high organic load could
accumulate VFAs in AD reactors that inhibit bacterial growth resulting in process
failure; on the other hand, too low organic load could lead to the malnutrition of
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fermenting microbes consequently reducing the efficiency of the AD process.
Generally, to some extent, OLR is directly proportional to the biogas yield. Various
factors influence significantly OLR like operational cost and conditions as well as
the type of SOWs fed (Meegoda et al. 2018).

2. Hydraulic Retention Time.

Hydraulic retention time (HRT) is defined as the time (days/hours) required for
the complete degradation of SOWs. It is expressed in the following equation:

HRT ¼ VR

V
ð24:10Þ

In this equation, V and VR are substrate volume fed per unit time (m3/day) and
digester volume (m3) correspondingly. It is inversely proportional to the organic load
as shown in the above equation. It is a very important parameter influencing
microbial growth in anaerobic reactor; therefore, it should be optimized (Mao
et al. 2017). In the presence of very low HTR, volatile fatty acids could accumulate
that lead to process failure by inhibiting bacteria while a very high HRT could result
in insufficient feedstock usage. It depends upon the specific fed feedstock in the
digester (Dareioti and Kornaros 2015). For SOWs treatment a 15-30 days HRT is
required for AD operation (Mao et al. 2017).

24.6 Current Trends in Biogas Production

The general process of anaerobic digestion to produce biogas still requires intensive
research. However, the information about the process has been increasing through-
out recent years. The recently achieved methodological and technological
advancements in that facet area, i.e., biogas upgrading (Angelidaki et al. 2018),
use of new substrates (Vergara-Fernández et al. 2008), ammonia toxicity
(Westerholm et al. 2009), process monitoring tools, i.e., VFAs sensors (Boe et al.
2007) and membrane reactors (Vyrides and Stuckey 2009). Reduction in the cost and
time required for sequencing techniques played an important role in comprehending
the complex microbial AD process. Nowadays various omics tools are used to
decode the anaerobic digestion black box (Kougias and Angelidaki 2018).

Use of Pretreatment Techniques To make the AD system economically viable
national systems have been supported to use an array of various substrates. However,
several studies examined that biogas synthesis is directly affected by various
interacted waste streams. So the researchers try to improve the arrangement of
different waste streams for the optimal production of biogas also called
co-digestion. Advance studies illustrated that the co-digestion of crops, lignocellu-
losic and sewage sludge wastes give the better quality as well as quantity of biogas.
Despite these, the different pretreatment technologies help to improve the biogas
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yield, speed of the AD process and also provide a wide variety of substrates
(Mahanty et al. 2014; Igoni et al. 2008).

Modifications in Biogas Digesters Biogas digesters are the air-tight bioreactors
that are used to produce the biogas by the AD process. In the past, the basic model of
digesters faced many problems and failures including high cost and unsteady gas
pressure. Recently a new digester named puxin digester has been developed by
China to contain all the qualities to improve biogas production. By the changing
trends, the small household digesters holding the 5000 m3 capacity have been
designed to produce biogas for vehicular fuel (Bharathiraja et al. 2018; Rajendran
et al. 2012). On large scales to preclude system failures the biogas plants have been
modified to work in a programmed manner. These modifications (i.e., heating
accouterments, mechanical agitators, performance monitoring systems, and temper-
ature regulators) in response help to lessen the system failures (Ward et al. 2008).

Biogas Upgradation The conventionally used upgradation methods are pressure
swing adsorption, pressure water scrubbing, amine adsorption, and biological
methods. Even though, the latest cryogenic upgradation technology is becoming
popular day by day. It is designed for the purification and bottling of biogas. In this
technology boiling or sublimation points of different gases are used at very low
temperature and high pressure. It is a very demanding technology because it yields
99% methane (Petersson and Wellinger 2009; Allegue et al. 2012).

High Pressurized and Multiple Stage AD To increase the efficiency of the AD
process various research projects are designed to estimate different formations, i.e.,
single and multi-stage reactors. According to modern studies, the physical partition
of the AD in two phases, i.e., acidogenesis or hydrolysis and methanogenesis or
acetogenesis in separate reactors helps to elevate the organic matter decomposition
into methane. The configuration of multiple bioreactors plays an important role to
increase efficiency and process stability (Yu et al. 2017). Blonskaja et al. studied that
the use of a two-stage scheme gives high growth of methanogens which respond in
high gas production (Blonskaja et al. 2003). Similarly, Kim et al. referred that by
using the four stages anaerobic digestion system the digestion activity enhanced
rather than the single-stage Scheme (Kim et al. 2011). Furthermore, Nasr et al.
suggested that the two-stage technology enriched the efficiency and performance of
the process (Nasr et al. 2012). A recent technique is developed which works at high
pressure (100 bars) and it gives the methane content about 95%. Previous studies
also showed that working at high pressure (up to 90 bars) affect the microbial
processes and provide enriched methane. However further analysis is required to
find the microbial pressure-dependent techniques (Lindeboom et al. 2011).
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24.7 Challenges, Approaches, and Enhancement Techniques

24.7.1 A Gap between Biotech and Commercialization Research

Lignocellulosic biomass, i.e., forestry residues, municipal wastes, and crop wastes
are the high potential and sustainable feedstocks for the production of biofuels
worldwide. The production of biogas from lignocellulose requires further research
efforts for developments. It is due to the technical problems and lack of understand-
ing of reactor operations involved in the process. The complications of the AD
process and the threat to the technologies’ strength are the notable problems
(Himmel et al. 2007; Weber et al. 2010). To identify the research-biotech gaps, it
is important to evaluate the impacts on economical, technical, and ecological
barriers. For example, to reduce the cost, it is compulsory to determine the critical
stages (e.g., use of enzymes or the investment on multi-stage AD systems) which
affect the economy impressively. Once these standards are analyzed, they will help
to indicate the costs, benefits, and research issues for improvement (Lynd et al.
2005). The finding of economically sustainable pretreatment processes has been
identified as the major hurdle for the commercialization of biofuels (Philbrook et al.
2013). The amount and type of biocatalyst and microorganisms used for degradation
affect the process stability and conversion rate but their cost is very high. So recent
research initiatives have pay attention to the improvement of biocatalysts or
microorganisms with better characteristics, low production cost, and wider
applications. Recent studies also suggested the combination of high pressure and
multi-stage technologies. These technologies will improve process efficiency
(Blanch 2012; Banerjee et al. 2010). The research gap and scheme for the
bio-industry are displayed in Fig. 24.13.

24.7.2 Biogas Future in a Green/Circular Economy

One of the renewable energy sources is biogas, and it does not generate CO2.
However, CO2 is absorbed from the atmosphere during the biochemical process in
AD and it is released with energy. When the CO2 and minor constituents are taking
away, then 100% methane is obtained. This is a zero-carbon source that is compati-
ble with any ancillary natural gas that makes it a perfect fuel (Bharathiraja et al.
2018). Biogas has many industrial, household applications and gradually is finding
as a vehicular fuel. Many efforts have been made to enhance the methane content
through the optimization of techniques (i.e., pretreatment and multi-stage AD
system). Various new technologies are used to improve biogas production but the
challenges are still present. These challenges are (1) hydrolysis as the rate-limiting
step, (2) lignocellulosic biomass particle size, lignin content, and crystallinity of
cellulose. The enzyme pretreatment method helps to increase the lignocellulosic
digestibility. In recent times, the biogas generates from SOWs may satisfy nearly
20% of the total natural gas. Extensive research is in progress to diversify the
technological advancements and low-cost energy sources. Although to complement
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the existing and developing technology, there is a sustainable management scheme
for the future (Christy et al. 2014).

24.7.3 Pretreatment Techniques to Enhance Biogas Production

The treatment of solid organic wastes (SOWs) mainly agriculture waste and yard
waste is very essential to expose cellulose and hemicellulose for bacterial attacks and
enzymatic hydrolysis (Hu et al. 2015; Ravindran and Jaiswal 2016). Pretreatment
has been classified into three main types as shown in Fig. 24.14.

Chemical Pretreatment
Chemical pretreatment of SOWs uses ionic liquids, alkalies, oxidizing agents and
strong acids, etc. The reactions involved in this pretreatment are electrochemical,
hydrolysis and oxidation reactions, etc. Some chemical pretreatment methods are
shown in Table 24.3. It received more attention compared to physical pretreatment
owing to its sound performance in enhancing methane yield. It increases organic
waste’s surface area and lowers the cellulose crystallinity and degree of polymeriza-
tion. Despite a larger enhancement in biogas synthesis, but only alkali hydrolysis has
found its practical application in the industry particularly for SOWs containing low

Fig. 24.13 Research gap and scheme for bio-industry (Bharathiraja et al. 2018)
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lignin content (Shah et al. 2015). Whereas the main disadvantages of NaOH
pretreatment are Na+ ions that not only inhibit methane formation but also cause
detrimental environmental impacts like soil salinization as well as water pollution
(Zheng et al. 2014).

Modern research is trying to find eco-friendly chemicals for the maximum biogas
yield.

Physical Pretreatment
The physical treatment technique does not use microorganisms or chemicals. It is
used for the anaerobic conversion of SOWs to biogas as shown in Table 24.4.

Table 24.4 shows that the highest yield of biogas is produced as a result of
hydrodynamic pressure homogenization (HPH) treatment of SOWs. The HPH is an
environmentally friendly technique that produces a high quantity of CH3 without
any chemical in a very short time at room temperature. The lignocellulosic networks
of biomass are destroyed in this technique due to sudden expansion (Yusaf and
Al-Juboori 2014; Fang et al. 2015). It is also used in pharmaceutical and food
industries for cell distraction and food emulsification consequently (Zhang et al.
2013c). Another physical method such as milling or comminution not only
decreased the degree of polymerization and crystallinity of cellulose but also
increased the surface area of feedstock by decreasing its particle size. The ultrasonic
process uses high-frequency waves to obliterate the complex polymerization net-
work in SOWs that facilitate enzymatic degradation efficiency (Ormaechea et al.
2017). Microwave is an irradiation technique that generates intense heating by
applying an electromagnetic field to water comprising substances.

The steam explosion method consumes efficiently wheat straw as a substrate to
increase the yield of biogas production. It is a commercial-scale process, but it yields
a smaller amount of methane than HPH. It is a favorable choice for more industrial
installation due to its number of benefits, for example, low energy input, commer-
cially available tools, and low pollution tendency (Bauer et al. 2010; Forgács et al.
2012).

Fig. 24.14 Classification of pretreatment
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Table 24.3 Some chemical pretreatment approaches for SOWs

Reaction type Conditions Chemicals Substrates

CH3%
yield
(enhanced) References

Ionic liquid
treatment

1-15 h,
50–55%
W/W
NMNO,
120–
130 �C

(NMNO)
N-methyl-
morpholine-
N-oxide

Birchwood, oil
palm bunch,
rice straw,
Ssoftwood
spruce, etc.

47–1200% Goshadrou
et al.
(2013)

Oxidation 3 h, pH 7–
9, H2O2/
COD:
0.05–0.25,
20 � 2 �C

H2O2 Olive mill
waste

> 1000 �C
(77%
COD
reduction)

Siciliano
et al.
(2016),
Travaini
et al.
(2016)

15-
120 min,
100–
200 �C,
200 rpm,
6-12 bar

O2 (air) Distilleries
effluents

280%
(biogas)

Travaini
et al.
(2016)

1 h, gas
flow rate
12 L/min,
0.6–1% O3

O3 Wheat straw 45% Padoley
et al.
(2012)

Acid hydrolysis 60 min,
50% (V/V)
an organic
solvent,
190 �C

CH3COOH Forest residue 500% (Monlau
et al.
(2013))

1–5%
(W/W),
170 �C

H2SO4 Sunflower oil 48% Kabir et al.
(2015)

Electrochemical
treatment

2 h, 0.5 M,
110 �C,

Na2CO3 Rice straw 125% Dehghani
et al.
(2015)

40 min,
2 cm
electrode

Hypochlorite Waste
activated
sludge (WAS)

63.40% Iskander
et al.
(2016)

Alkali
hydrolysis

10-
240 min,
0.2–1%
(W/W),
50–121 �C

Sodium
hydroxide

Sugarcane
bagasse, wheat
straw, YW

30–78% or
250%

Bolado-
Rodríguez
et al.
(2016)

2.0% ca
(OH)2 and
0.5%
KOH,

Ca(OH)2 or
KOH

Corn Stover 77% Li et al.
(2015a)

10 bar, 0–
30.8%

NH4OH Wheat straw 56%
(biogas)

Li et al.
(2015b)

(continued)
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The major drawback of hydrothermal waste pretreatment is the high temperature
required to heat liquid water present in the waste substrate. Globally, it is an effective
advantageous technique compared to both chemical and biological pretreatments.

Biological Pretreatment
Generally, biological pretreatment uses fungal species or biological agents to pro-
duce biodegradable enzymes that help in SOWs degradation (Yıldırım et al. 2017).
The main advantages of this technique are described in the following:

Table 24.3 (continued)

Reaction type Conditions Chemicals Substrates

CH3%
yield
(enhanced) References

(W/V),6-
48 h, 20–
80 �C
72 h, 8–
10%
(W/W),
25 �C

Calcium
hydroxide

Rice straw 34.3–
36.7%
(biogas)

Gu et al.
(2015)

Table 24.4 Physical treatment of Solid Organic Wastes to produce biogas

Substrate Conditions Methods

CH3%
yield
(enhanced) References

Wheat straw 60 minutes,
140 �C

Steam
explosion

4–30% Bauer et al.
(2010)

Wheat straw 6–33 mm
particle length

Milling or
comminution

11–13% Dumas
et al.
(2015)

Wheat straw and waste
activated sludge

96 KJ/kg sludge
specific energy

Microwave 20–28% Jackowiak
et al.
(2011)

Organic residues and waste
activated sludge

96–3380 KJ/kg
total waste
specific energy

Ultrasonic 27–71% Cesaro
et al.
(2014)

Yard waste and wheat
straw (aqueous suspension
containing 5% wt.)

170 �C,
20 minutes

Expansion 41% Kuttner
et al.
(2015)

Wheat straw 2300–2700 rpm
rotor speed

Hydrodynamic
cavitation

144% Patil et al.
(2016)

Yard waste 10 MPa High-pressure
homogenization

250% Jin et al.
(2015)

Yard waste
Sewage sludge

0.5–15 h
70–121 �C

Thermal
treatment

20–88% Ruffino
et al.
(2015)
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1. Minimum input energy due to its low operational cost.
2. Environmental friendly.
3. No expensive consumption of chemical.

The objective of this method is to remove lignin with fewer carbohydrates that
can be obtained from the SOWs (Zhang et al. 2014). Some common types of this
method such as fungal, sludge, bacterial, and enzymatic pretreatment are shown in
Table 24.5. Among these types, bacterial and fungal pretreatment improves both
biodegradable efficiency and biogas conversion of corn straw (Zhong et al. 2011).
This has not been applied effectively on a large scale due to the slow microbial
growth rate and enzymatic reaction rate (Shah et al. 2015). Enzymatic treatment
improves only 13–19% biogas yield.

More suitable SOWs substrates for chemical, physical and the combination of
both of these techniques are agriculture and yard waste. However, simple physical
process such as milling, animal manure, and food waste are preferred to reduce their
particle size. The physical process breaks down capably large granules of WAS into
smaller particles.

Table 24.5 Different categories of biological pretreatment for SOWs

Category of
biological
pretreatment Substrates

Active
constituent Conditions

Biogas %
yield
(enhanced) References

Fungi Tall
wheatgrass;
Miscanthus

Ceriporiopsis
ubvermispora
and
Flammulina
velutipes

4 weeks and
28 �C

120% Lalak et al.
(2016)

The liquid
fraction of
digestate
pretreatment

Corn Stover Mixed
microorganisms

3 days,
17.6% of TS
content,
20 � 1 �C

70% Wei et al.
(2015)

Bacteria Corn straw
and organic
sludge

Thermophilic
aerobic bacteria

pH 5.0–8,5,
20 �C, or 60–
70 �C 0.01%
(W/W) dose
of microbial
agent for
15 days

30–150% Zhong et al.
(2011)

Enzymatic
pretreatment

Spent hops
and sugar
beet pulp

Xylanase,
endoglucanase
and pectinase

24 h, 0.03–
0.75FUP/g
enzymatic
dose, 50 �C

13–19% Ziemiński
and
Kowalska-
Wentel
(2015);
Passos et al.
(2016);
Kiran et al.
(2015)
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24.7.4 Genetic Engineering

Recently, genetic engineering plays an important role to improve biogas yield by
either integrating particular DNA fragments or manipulating specific genes into
desirable species (Lim et al. 2018; Han et al. 2017). A yeast strain was genetically
engineered in 2010 to generate its own enzymes for cellulose digestion. Nowadays,
205 Eubacterial and 21 Archaeal genomes have been sequenced. Almost 80% of
genomes of Archaebacteria are methanogens that were insulated from sludge as well
as from other anaerobic environments. In the same way, many acidogenic bacterial
genomes are sequenced too. The genome of Methanobacterium
thermoautotrophicum H (thermophilic bacteria) is fully sequenced which was
segregated from municipal solid waste (Zhu et al. 2017; Kougias et al. 2017).

24.7.5 Bioaugmentation

As it is discussed earlier the AD process requires microorganisms for each step. The
disturbance in microorganism balance may cause bioreactor instability and lead to
inhibition of methane production (Christy et al. 2014). This disturbance is due to
various inhibitory factors, e.g., high level of sulfate, ammonia, phosphate, and metal
ions. Some other parameters, i.e., pH variation, temperature, and resistance of
feedstock also became the reason to decrease AD efficiency (Mao et al. 2015;
Divya et al. 2015b). So to overcome these limitations, bioaugmentation as an
alternate strategy might be used. Bioaugmentation is the addition of efficient
stress-resistant microscopic species into a community of bacteriological to improve
the efficacy of methane production (Lebeau et al. 2008). Some of the
bioaugmentation examples are as follows:

Upgrading of Hydrolysis, Acetogenesis, and Acidogenesis In AD the very first
phase is hydrolysis in which the feedstock is converted into simpler compounds.
Cellulose, lignin, and hemicellulose containing substrates are among the most
commonly used substrates. Though the major drawback of feedstock is the hydroly-
sis resistance to produce desirable products for fermentation. Different pretreatment
techniques are used to improve hydrolysis but they have their limitations, i.e., partial
hydrolysis and high cost (Carlsson et al. 2012). To overcome these problems various
microorganisms are added that enhance the hydrolysis process due to their greater
ability to break molecules (Mshandete et al. 2005). Coll and Weiss used a
hemicellulolytic microbes group on the sludge obtained from the maize silage
digesting plant. The outcomes displayed a 53% increase in methane production as
compare to non-bioaugmented culture (Weiß et al. 2010). Similarly, Zhang and Coll
suggested a pretreatment method for cassava residue. To achieve these thermophilic
microorganisms enriched with cellulose and hemicellulose were used for the
pretreatment of cassava residues. The outcomes showed a 97% growth in methane
production (Zhong et al. 2011).
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Role of H2 in the AD The hydrogen produced in acetogenesis is used for the
reduction of CO2. Generally, methanogenesis does not carry out at a low H2 level. So
the high level of H2 leads to enhancing methane production (Pap et al. 2015).
Through bioaugmentation, the thermophilic Caldiecellulosiruptor saccharolyticus
is used to convert hemicelluloses, cellulose, and pectin to acetate, H2, and CO2

(Bagi et al. 2007). In 2010 it is evaluated that the C. saccharolyticus species uses
cellulose to produce H2 (Herbel et al. 2010). Similarly, the bioaugmentation
Acetobacteroides hydrogenigenes on corn straw and biogas slurry give a high
yield of acetate and H2. The outcomes showed a 23% increase in methane production
(Zhang et al. 2015). It is evident from literature that the concentration of H2 smaller
than 10-4 is thermodynamically unfavorable for methane production. On the other
hand, the high concentration of H2 (>10-8) acts as an inhibitory factor to
hydrogenotroph. So it is very important to maintain a suitable concentration of H2

to produce CH4 (Kovacs et al. 2004).

Overcoming Ammonium Inhibition The obtainability of nitrogen is persistent
with the cell growth which is obtained from nitrogenous matter. In aqueous solution,
the inorganic nitrogen is present in the form of NH3 and NH4+. It is showed that the
high concentration of ammonia inhibited the AD process because nitrogen is dif-
fused into cells, causing potassium deficiency and proton imbalance (Chen et al.
2008). High temperature and high pH values produce free NH3 in a higher concen-
tration that increases toxicity. To overcome the toxicity of ammonia various methods
have been studied, i.e., addition of NH3 binding ions, high C/N ratios and low
temperature of digester that reduces NH3 toxicity (Nielsen and Angelidaki 2008).
Fotidis and Coll suggested the bioaugmentation with an archaea species, i.e.,
hydrogenotroph Methanoculleus bourgensis can tolerate high ammonia levels
(Fotidis et al. 2014).

Overcoming Low Temperature To enhance the AD process temperature is
another significant parameter. Generally, by increasing the temperature the meta-
bolic rate also increases which leads to high methane production. For example, when
the mesophilic microorganisms are revealed to low temperature, the overall yield of
biogas decreased (Appels et al. 2008). However, at low temperatures when the AD
process is operating, the bioaugmentation with psychrophilic species increases the
methane production. Consequently, the decrease of methane production due to low
temperature can be overcome by using microorganisms that work more effectively at
low temperatures (Akila and Chandra 2010).

Overcoming O2 Produced Toxicity The O2 present in the reactor leads to the
amassing of H2 by decreasing methanogens as a result methane production
decreases. Under these conditions, exogenous methanogens accumulation helps to
restore methane yield. Schauer-Gimenez and Coll used a group of H2 amassing
methanogens for bioaugmentation of the bioreactor. The outcomes showed a 60%
increase in methane production (Schauer-Gimenez et al. 2010).
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24.8 Conclusion

The energy crisis has been increasing day by day and the resources of renewable
energy would be enough to meet the 50% global energy needs by 2050. So, biogas
production attains a strategic location in the global market. The stability and
performance of AD to produce biogas are primarily dependent on various groups
of microscopic organisms and in turn, their functions and networks are influenced by
operational parameters as well as properties of substrates. The anaerobic waste
treatment process is an efficient technique to lessen the mass of the organic waste.
Microbes play a very important role in the biochemical process of biogas production.
In this era, it is necessary to implement the better acceptance technologies such as
biotechnological advancements and investigations are needed to discover the effec-
tive feedstocks, effectiveness, and competency of the microbes and substrates for
pretreatment. In recent times, the obtainability of efficient and genetically modified
microbes, preparation of enzymes that are substrate-specific, microbial growth
understanding, and cost reduction would be a challenge for scientists. However,
the multi-stage digester designs, biological pretreatment techniques, genetic engi-
neering, and bioaugmentation are the outstanding options used for the sustainable
development of AD performance in biogas generation.
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