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Abstract At high-density crowd gatherings, people naturally escape from the region
where any unexpected event happens. Escape in high-density crowds appears as a
divergence pattern in the scene and timely detecting divergence patterns can save
many human lives. In this paper, we propose to physically capture crowd normal
and divergence motion patterns (or motion shapes) in form of images and train a
shallow convolution neural network (CNN) on motion shape images for divergence
behavior detection. Crowd motion pattern shape is obtained by extracting ridges
of Lagrangian Coherent Structure (LCS) from the Finite-Time Lyapunov Exponent
(FTLE) field and convert ridges into the grey-scale image. We also propose a diver-
gence localization algorithm to pinpoint anomaly location(s). Experimentation is
carried out on synthetic crowd datasets simulating normal and divergence behav-
iors at the high-density crowd. Comparison with state-of-the-art methods shows
our method can obtain better accuracy for both divergence behavior detection and
localization problems.

Keywords Divergence · FTLE · LCS ·Motion estimation · Image shape

1 Introduction

Divergence detection at the high-density crowd is a tough task due to several chal-
lenges involved in high-density crowd videos e.g., few pixels available per head,
extreme occlusion, cluttering and noise, and perspective problems, etc. If crowd
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Fig. 1 Demonstration of crowd divergence at Love parade 2010: a crowd walking under normal
conditions with low density b crowd walking paths N1, N2 under normal conditions c high-density
crowd within the same region d crowd diverging through paths D1 and D2

divergence is not detected earlier at its development stage, it may lead to larger
disasters like a stampede. Figure 1 shows an example of high-density crowd diver-
gence behavior (Love parade 2010 musical festival [1]) where divergence eventually
leads to disastrous stampede. Figure 1a, b demonstrate high-density crowd normal
behavior following paths N1 and N2, whereas in Fig. 1c, d, a critical situation is
shown where the incoming crowd is blocked by a stationary crowd and diverge
through D1, D2 paths. Such divergence situations are common in mass gatherings
where the whole crowd is marching towards a common destination and with an
increase of density, ends up with a half-stationary half-moving crowd segments that
result in divergence behavior.

Previous divergence detection methods [2, 3] learn manual motion features for
every individual in the crowd from optical flow (OPF) including location, direction,
magnitude, etc. An inherent problem with such methods is with an increase of crowd
density, it is almost impossible to capture individual-level motion information and
one must learn global crowd features. Later several methods have been developed to
capture global crowd motion information e.g., optical flow with pathline trajectories
[4–7], pathlines with Lagrangian particle analysis [8], streakflow [9–13], etc. These
methods performedwell in capturing crowd global motion information under normal
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behavior scenes only. Unfortunately, no results are reported in the literature for
abnormal behavior detection at very high-density crowd levels.

In this work, we solve divergence detection in the high-density crowd by directly
capturing crowd global motion in form of images and learn crowd normal and diver-
gent motion shapes through a neural network that predicts crowd behavior for the
unknown scene. We also propose a novel divergence localization algorithm to pin-
point divergence location with the help of a bounding box. Finding a source of
divergence can help to efficiently deploy crowd management staff right at the critical
locations.

2 Related Work

Motion is one of the key ingredients in the crowd scene analysis and the success of the
behavior prediction scheme greatly relies on the efficiency of the motion estimation
(ME) method. Therefore, we provide a comprehensive review of ME techniques and
the corresponding abnormal behavior detectionmethodswith emphasis on their capa-
bilities for ‘high’ density crowded scenarios. OPF is considered to be one of the most
fundamental motion flow model [14–17] that has been widely employed for motion
estimation [18, 19], crowd flow segmentation [20], behavior understanding [21–23]
and tracking in the crowd [24]. However, OPF methods suffer from various prob-
lems like motion discontinuities, lack of spatial and temporal motion representation,
variations in illumination conditions, severe clutter and occlusion, etc.

To overcome problems of OPF ME, researchers employ particle advection
concepts from fluid dynamics into the computer vision domain [8] and obtain long-
term “motion trajectories” under the influence of the OPF field. We et al. [7] employ
chaotic invariants on Lagrangian trajectories to determined either the behavior of
the crowd is normal or not. They also perform localization of anomaly by deter-
mining the source and size of an anomaly. Unfortunately, no results were reported
for the high-density crowd. Similarly, Ali et al. [8] obtain Lagrangian Coherent
Structures (LCS) from particle trajectories by integrating trajectories over a finite
interval of time termed as Finite-Time Lyapunov exponent (FTLE). LCS appears as
ridges and valleys in the FTLE field at the locations where different segments of
the crowd behave differently. Authors perform crowd segmentation and instability
detection in the high-density crowd using LCS in FTLE, however actual anomalies
of the high-density crowd like crowd divergence, escape behavior detection, etc.
are not performed. Similarly, authors in [10, 11] obtain particle trajectories using
high accuracy variational model for crowd flow and perform crowd segmentation
tasks only. Mehran et al. [9] obtain streakflow by spatial integration of streaklines
that are extracted from particle trajectories. For anomaly detection, they decompose
streakflow field into curl-free and divergence-free components using the Helmholtz
decomposition theorem and observe variations in potential and streak functions used
with SVM to detect anomalies like crowd divergence/convergence, escape behavior,
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Fig. 2 High-density crowd motion estimation by state-of-the-art methods

etc. However, results are reported for anomaly detection and segmentation at low-
density crowd and efficacy is still questionable for anomalies at the high-density
crowd. Eduardo et al. [25] obtain long-range motion trajectories by using the farthest
point seeding method called streamline diffusion on streamlines instead of spatial
integration.

Behavior analysis is performed by linking short streamlines using Markov
Random Field (MRF). However, only normal behavior detection and crowd segmen-
tation results are reported. Although particle flow methods discussed above are
better candidates for ME of the high-density crowd, but they are rarely employed
for abnormal behavior detection at high density crowded scenes. Figure 2 provides
a comparison of ME methods for high-density crowd performing Tawaf around
Kabbah. Conventional object tracking basedMEmethods [26, 27] (Fig. 2b, c) works
best at low crowd density but completely fails at high crowd density. TheOPFmethod
from Brox et al. [15] can estimate motion at high density but motion information is
short-term. SFM [28] method can provide better motion estimation in low-density
crowd areas but at high density, the performance of SFMalso degrades. Streakflow [9]
method also performs similarly to the SFM method at a high-density crowd. Unfor-
tunately, all these methods are unable to provide a clean motion-shape for the crowd.
FTLE method [9] (Fig. 2g) produce clear ridges at cowd boundaries and can be best
to describe high-density crowd motion. Therefore, in this work, we utilize the FTLE
method to obtain crowd motion-shape and translate it to a single channel greyscale
image (Fig. 2h) for both normal and abnormal behavior analysis. Our framework for
divergence detection is shown in Fig. 3 (top portion). It consists of two main phases:
Phase 1: low-level FTLE feature extraction and conversion into a grey-scale motion
shape image; Phase 2: behavior classification using a CNN. Motion shape images
are also used for divergence localization process.
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Fig. 3 Framework for divergence behavior detection in high-density crowd

3 Divergence Detection with Motion Shape and Deep
Convolution Neural Network

3.1 Data Preparation

Due to the unavailability of a very high-density crowd dataset with divergence
behavior, we generate synthetic data by simulating crowd in Massmotion software
[29]. We model two crowd scenarios: Stampede at Loveparade 2010 and Tawaf
around Kabbah. Example snapshots of normal and divergence crowd behaviors are
shown in Figs. 4 and 5.

3.2 Global Motion Estimation and Shape Extraction

In this work, high-density crowd motion is computed by the Finite-Time Lyapunov
Estimation (FTLE) method [8, 30]. Lagrangian Coherent Structure (LCS) appears as
ridges in the FTLE field where two crowd segments behave differently. We extract
LCS from FTLE field FTLE using the field-strength adaptive thresholding (FFSAT)
scheme and convert it into a grey-scale image. At every integration step in the FTLE
pipeline, maximum Eulerian distance (dmax) is calculated between LCS absolute
peak value and average FTLEfield strength, and a threshold (ffsat_thr) is set for dmax
(65% in our work). LCS values crossing ffsat_thr are extracted and converted into a
single-channel grey-scale image. FFSAT algorithm ensures only strong magnitude
LCS values from the FTLE field are extracted and noise is filtered out.

3.3 Deep Network for Divergence Detection

AdeepCNNnetworkdeveloped for normal anddivergence classes in thehigh-density
crowd is shown in Fig. 6.
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a. Normal behavior b. Diverging crowd 

c. K13 view d. K5 view e. K12 view

Fig. 4 Synthetic crowd data for Love parade 2010 disaster: a, b are camera-top views; c, d, e- same
crowd with perspective views

a. Normal behavior b. Diverging behavior

Fig. 5 Synthetic crowd data for Kabbah Tawaf—Normal behavior and divergent crowd

The greyscale image is first rescaled to 50 × 50 pixels at the input layer. A
convolution layer is used (24 filters) with ReLU activation. The purpose of using a
large number of convolution filters is to ensure all important receptive fields of CNN
are excited about a given motion-shape. ReLU is adopted as the activation function
because of its good performance for CNNs [31] and Max pooling is used for each
2 × 2 region. Finally, two fully connected layers are used and the softmax layer is
used for the classification of normal or divergent behavior.
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Fig. 6 Deep CNN for divergence behavior detection

3.4 Divergence Localization Algorithm

We propose a novel divergence localization algorithm that analyzes changes in
motion shape blob to search for the region of divergence. It was noticed that motion-
shape also exhibit undesired local variations (Fig. 7 top row) that could lead to false
divergence region detection. These changes are occurred due to the to-and-fromotion
experienced by the crowd at high densities crowd [32]. As these oscillatory motions
propagate and reach the crowd boundary, the shape does not remain consistent in
every frame. Whereas the initial occurrence of divergence also appears as a small
shape change and progressively increases in size (as shown in Fig. 7 bottom row). To
cater to undesired local shape changes, a blob processing pipeline is implemented
shown in Fig. 8.

Fig. 7 Top row: Undesired motion-shape variations due to crowd oscillatory motion; Bottom row:
Real shape change due to divergence
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Fig. 8 Baseline blob extraction pipeline for normal and divergence behaviors

Baseline blob extraction pipeline extracts a baseline blob from the normal and
divergence motion shapes and input to divergence localization algorithm is shown in
Table 1. The divergence localization algorithm indicates divergence location(s) with
the bounding box.

4 Experimentation Results

We evaluate proposed methods of crowd divergence behavior detection and diver-
gence localization using crowd datasets of Love parade andKabbah (data preparation
details in Sect. 83.1). A detailed qualitative and quantitative analysis is provided for
both methods on two selected scenarios. We also compare our methods with OPF
from Brox et al. [15] by converting the OPF field in binary images.

4.1 Divergence Behavior Detection

For divergence behavior detection at two scenarios, the crowd is simulated to diverge
from 25 different locations in each scenario and 1000 motion-shape images are
captured (total images for 25 divergence locations= 25× 1000= 25,000 divergence
images for each scenario). One thousand images for each divergence location are
generated to train CNN with minor local motion changes contributed by crowd
oscillatory motion. Similarly, 2500 images are generated for normal crowd behavior.
The dataset for each scenario is split into two parts: randomly 20 divergence locations
data (20× 1000= 20,000 images) are used for training/validation purposes, whereas
the remaining random 5 divergence locations data (completely unseen to CNN) is
used for prediction. Figure 9 provides a confusion matrix of divergence behavior
detection for both scenarios and performance is compared with the OPF method.

For both the Love parade and Kabbah scenario, our method can achieve 100%
accuracy. However, in both scenarios, OPF was able to detect approx. 50% of diver-
gence behaviors only. Motion-shapes obtained through the OPF method are not
as smooth and consistent as produced by our method; hence OPF performance
degradation is evident.
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Table 1 Algorithm for divergence localization with bounding box

Algorithm: Divergence localization using the bounding  box 

Init N: Total video frames, M: Total divergence frames to analyze=50, s_n:No. of frames for spa-
tial averaging =5, t_n: No. of frames for temporal averaging = 5, st_thr: FTLE field spatio-
temporal threshold = 0.5, blb_cnt: number of small blobs to process = 5, i_t: transition frame 
index 

Step 1 Search normal to divergence-starting Transition frame (global features analysis) 
 FOR frames i=1:N

             -Obtain FTLE motion-shape images for two frames i(previous) and i+1(current),  
-Run blob processing pipeline (fig. 8) on previous and current frames FTLE im-

ages  and obtain large single blobs for both frames 
            -Subtract the current large blob from the previous large  blob to obtain several 

smaller blobs 
            -Sort blb_cnt small blobs according to the area in descending order 
            -Blob shape analysis for ROI
              FOR blob_num=1: blb_cnt 

Compare blob shape with shape-list [square, rectangle, triangle, pentagon, 
hexagon,  semi-circle or nearly circular] 

                IF blob shape matches with any of shape-list 
                                      Transition frame ‘i_t’ with the first ROI, Exit this loop and go to 

step 2 
                ELSE 
                   Select next blob in area sorted list 

            END 
          -Increment frame number i  
END 

Step 2 Bounding box search for divergence location (global features analysis) 
 FOR frames j=i_t:i_t+M 

- Obtain FTLE motion-shape images for two frames j(previous) and j+1(current) 
- Run blob processing pipeline (fig. 8) on previous and current frames FTLE im-

ages  and obtain large single blobs for both frames  
- Subtract current large blob from previous large  blob to obtain several smaller 

blobs 
- Sort blb_cnt small blobs according to the area in descending order 
- Blob shape analysis for ROI

FOR blob_num=1: blb_cnt 
                         IF blob shape matches with any of shape-list 

Mark this blob as possible ROI and update ROI_list 
                        ELSE 
                               Select next blob in area sorted list 
              END 

- Jump to step 3 to obtain divergence location bounding box coordinates for all 
ROI of the current frame 

- Increment j 
END 

(continued)
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Table 1 (continued)

Step 3 FTLE field search for refined divergence location bounding box (local features anal-
ysis) 

 FOR  ROI=1:length(ROI_list) 
- Spatial Averaging: For each ROI boundary pixel, perform 8-connected spatial 

averaging of FTLE field (for all frames from j-s_n to j+s_n frames) 
- Temporal averaging: For each ROI boundary pixel in j-t_n to j+t_n frames, 

perform temporal averaging. 
- FOR all ROI boundary spatio-temporal averaged values 
                IF spatio-temporal averaging value >= st_thr,  
                      keep pixel as valid  
                ELSE  
                     discard pixel 
     END 
- Obtain bounding box coordinates of current ROI by calculating maximum and 

minimum (x,y) coordinates from selected valid pixels list in above step 
END 
Return bounding box coordinates for all ROIs in ROI_list 

Fig. 9 Confusion matrices for divergence behavior detection: Love parade scenario a Proposed
method b OPF method; Kabbah scenario c Proposed method d OPF method

4.2 Divergence Localization

The performance of the divergence localization algorithm is evaluated by calculating
the Intersection overUnion (IoU) area of the predicted bounding box and ground truth
bounding box for each divergence region. Ground truth bounding boxes are obtained
by hand labeling divergence regions of each abnormal frame. IoU is calculated using
Eq. (1).
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IoU = Area of overlap

Area of union
(1)

Generally, an IoU score greater than 0.5 (50% overlap) is considered a good
prediction by any bounding box (b. box) detection algorithm [33]. In this work,
the IoU score is calculated for N post i_t frames. IoU score of six selective frames
(out of N = 50 post i_t frames) for the Love parade scenario is shown in Fig. 10.
The green color b.box represents ground truth and the red color b.box represents
prediction by our algorithm. The Final IoU score is obtained by averaging N frames
IoU scores. The average IoU score of our algorithm for the Love parade scenario
is 0.501 (50% overlap). We also perform divergence region detection using OPF
motion images. The average IoU score with the OPF method is found to be 0.15
(15% overlap) which proves our method performs well than OPF for divergence

i_t+1 i_t+5

   i_t+10 i_t+15

   i_t+20 i_t+25

Fig. 10 Divergence region localization with our proposed method. IoU scores shown for six post
i_t frames
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region localization. Similarly, the average IoU score for the Kabbah scene with our
algorithm is 0.63 (63% overlap) and 0.18 (18% overlap) for the OPF method.

5 Conclusion

In this work, we propose a deep CNN-based divergence behavior detection frame-
work that extracts high-density crowd motion shapes in form of images to train deep
CNN. Experimentation results show that the proposed method can achieve close
to 100% accuracy for divergence detection in challenging Loveparade and Kabbah
crowding scenarios. Similarly, a novel divergence region detection algorithm effi-
ciently detects divergence regions with IoU of more than 50%. However, we notice
there are few limitations of our proposed methodology of converting crowd motion
into images using the FTLE method. Motion shape analysis is inefficient in the situ-
ations when a crowded segment in high density gets stationary due to any reason.
Since there is no more movement at the stationary crowd segment, FTLE is unable
to predict crowd motion shape at static crowd portions and results in incomplete or
broken motion-shapes. Therefore, for our framework to work efficiently, the crowd
needs to keepmoving (for consistent motion-shape) that is always not true. Secondly,
in the FTLE method, LCS ridges appear only at crowd boundaries, if any anomaly
takes place at interior portions of the crowd (far from crowd boundaries towards
the center), FTLE is unable to provide any information there. Therefore, in future
work, we shall improve our method by incorporating spatial and temporal crowd
density variations to capture static crowd behavior. And predict crowd behavior in
all segments of the crowd, either crowd is stationary or in motion.
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