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Abstract This paper addresses the cost minimization problem of an integrated
production-inventory model which has optimized by analytical method and evo-
lutionary algorithm. We have formulated our model for items that deteriorate with
respect to time and follow Weibull distribution. For controlling deterioration rate,
we have used preservation technology. Further, we assumed that ordering cost is lot
size dependent. Classical optimization methods demonstrate a number of difficulties
when faced with complex problems. Moreover, most of the classical optimization
methods do not have the global perspective and often get converged to a locally
optimum solution. Genetic algorithm (GA) is an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selection and genetics. In this model, we
optimized our model by gradient-based analytical method and GA in integrated as
well as independent scenario. Numerical example is carried out. Sensitivity of dif-
ferent inventory parameters is carried out. The results of the proposed model help
researchers to think about optimizing their complex problems using different evolu-
tionary search algorithm.
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1 Introduction

For survival and growth of business, proper coordination and communication among
supply chain players place an important role in this competitive atmosphere. Firstly,
Goyal (1976) formulated an integrated model for single supplier and single cus-
tomers. Banerjee (1986) made an appropriate price adjustment and obtained joint
order so that it is beneficial to both parties. Chung and CÃardenas-BarrÃşn (2013)
generated model for deteriorating items for stock dependent demand with two-level
trade credits. Chung et al. (2014) extended previous model for exponentially dete-
riorating items. Shah (2015) derived model with two-level trade credits for items
deteriorate constantly. Further, Shah et al. (2015) extended this model by taking
price sensitive and time-dependent demand.

Most of the inventory researchers have used constant rate demand. But in the
real world, demand is not always constant. It may vary with time. Donaldson (1977)
obtained the fundamental result in EOQ model with time-varying linear demand
over a known and finite time horizon. Dave and Patel (1981) extended model for
deteriorating items. Further, Wee andWang (1999) considered time varying demand
and developed a variable production policy. Mishra and Singh (2011) had taken
into account time-dependent holding cost and formulated an inventory model under
shortages. Mishra (2013) extended model for time-varying deterioration.

Deterioration is the process in which the items loses its utility and become useless.
In classical EOQ model, researcher considered inventory depletes due to demand
only. But in the real world, inventory is not only reduce due to demand but also
reduced due to deterioration. In earlier literature, Ghare and Schrader (1963) devel-
opedmodel for items those deteriorates exponential. Firstly, Philip andCovert (1973)
formulatedmodel for time-dependent deteriorating itemswhich followWeibill distri-
bution. Further, Philip (1974) generalized this model. Manna and Chaudhuri (2001)
derived inventory model under shortages for time-dependent deteriorating items.
Bakker et al. (2012) gave up to date review of inventory models for deteriorating
items. To reduce deterioration rate, different researcher used preservation technol-
ogy. Mishra (2013) used preservation technology for time-dependent deteriorating
items that follow Weibull Distribution. Chang (2013) used preservation technology
for non-instantaneous deteriorating items. Singh and Rathore (2015) extended that
model under shortages. Mishra and Talati (2018) derived integrated inventory model
and used preservation technology under quantity discount scenario. Mahapatra et al.
(2019) formulated inventory model for deteriorating items under fuzzy environment.

In last decades, to optimize the inventory models, researchers used different
heuristic search algorithms like ant colony, swarm intelligence and genetic algo-
rithm. Genetic algorithm describes a set of techniques inspired by natural selection
like inheritance, mutation, selection and crossover. This technique requires fitness
function and genetic representation of solution domain. In each generation, it uses
fitness function to select global optimum. This process terminates when the satisfac-
tory fitness level has been reached. Goldberg (1989) used GA for optimization. Then,
different researchers like Murata et al. (1996), Goren et al. (2008), Radhakrishnan
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et al. (2009, 2010), Narmadha et al. (2010), Woarawichai et al. (2012), Mishra and
Talati (2015), Talati and Mishra (2019), Alejo-Reyes et al. (2021) used heuristic
search algorithm for optimized their models.

2 Notations and Assumptions

2.1 Notations

2.1.1 Inventory Parameters for Manufacturer

D(t) Time-dependent demand
P Production rate
a Fix fraction of demand
γ Salvage cost/unit ($)
hm Holding cost/unit/annum
Am Set-up costs ($)
TCm Total cost for manufacturer
T The length of cycle time (Decision variable)
b1 Deteriorating cost/unit ($)
Qm Inventory level for manufacturer
ξ1 Preservation technology cost for manufacturer that

reduce deterioration rate in order to preserve the product ξ1 > 0
θ(t) Deterioration rate at t, where θ(t) = αβtβ

m Reduce deteriorating rate
τP Resultant deterioration rate τP = θ(t) − m

2.1.2 Inventory Parameters for Retailer

Qr Retailer’s order
C0Q

η
r Ordering Cost/cycle (0 < η < 1)

C0 Fixed ordering cost, η (Decision variable)
ξ2 Preservation technology cost for manufacturer that reduce

deterioration rate in order to preserve the product ξ2 > 0
γ Salvage value associated with deteriorated items
TCr Total cost for retailer
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2.2 Assumptions

1. In present model, we have considered two-echelon supply chain model (single
manufacturer and single retailer) for single item.

2. Demand is time dependent D(t) = a + bt; a, b > 0.
3. Replenishment rate is infinite.
4. Lead time is zero.
5. Shortages are not allowed.
6. Constant production rate is considered. P > D(t).
7. Ordering cost is lot size dependent.
8. The inventory deteriorate with respect to time and follow Weibull distribution

θ(t) = αβtβ

where α is shape parameter 0 < α < 1, and β is scale parameter β ≥ 1.
9. Preservation technologies are used for reducing the deterioration rate.
10. The salvage value γ, 0 ≤ γ ≤ 1 is associated to deteriorated units.

3 Model Formulation

3.1 Manufacturer’s Total Cost

Here, we considered production dominates demand. Due to preservation technology,
the rate of change of inventory during period [0,T ] is shown in Fig. 1.

Thus, the on-hand inventory for manufacturer is generated by the following dif-
ferential equation

dQm

dt
+ τPQm = P − D(t); 0 ≤ t ≤ T (1)

Solving Eq. (1) using boundary condition Qm(0) = 0 and Qm(T ) = Qm

Fig. 1 Inventory level for
manufacturer. Source own
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Qm(t) =
(

(P − a)t

(
1 + αtβ

β + 1

)
− (Pm + b − ma)t2

(
1

2
+ αtβ

β + 2

)

−mbt3
(
1

3
+ αtβ

β + 3

))
(1 − αtβ + mt − mαtβ+1)

So total quantity by manufacturer per cycle is Qm(T ) = Qm.
Basic Costs
1. Set-up cost

SCm = Am (2)

2. Inventory holding cost per unit is given by

HCm = hm

T∫
0

Qm(t)dt (3)

3. Now number of deteriorating units during cycle time T

DE1(T ) = Qm − aT − (bT 2)

2
(4)

4. Deteriorating cost is given by

DCm = b1DE1(T ) (5)

5. Salvage value is given by
SVm = γDE1(T ) (6)

6. Preservation cost is given by
PCm = ξ1 (7)

Thus, the total cost of manufacturer is

TCm(T ) = SCm + HCm + DCm − SVm + PCm (8)

3.2 Retailer’s Total Cost

Retailer’s on-hand inventory depletes with time-dependent demand and deterioration
under preservation technology. The rate of change of inventory level due to preserva-
tion technology is shown in Fig. 2. So the governing differential equation describes
the inventory level at instantaneous time t which is given by
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Fig. 2 Inventory level for
retailer. Source own

dQr

dt
+ τPQr = −D(t); 0 ≤ t ≤ T (9)

Solving Eq. (9) using boundary condition Qr(T ) = 0 and Qm(0) = Qr, we get

Qr(t) =
[
a(T − t) + b

2
(T 2 − t2) + αa

β + 1
(T β+2 − tβ+2) − ma

2
(T 2 − t2)

−mb

3
(T 3 − t3) − αa

β + 2
(T β+2 − tβ+2) − mαb

β + 3
(T β+3 − tβ+3)

]

[1 − αtβ + mt − mαtβ+1] (10)

∴ Total quantity purchase by retailer per cycle is

Qr = Qr(0) =
[
a(T ) + b

2
(T 2) + αa

β + 1
(T β+2) − ma

2
(T 2) − mb

3
(T 3)

− αa

β + 2
(T β+2) − mαb

β + 3
(T β+3)

]
(11)

Basic costs associated with retailer total cost are

1. Ordering cost is lot size dependent

OCr = C0Q
η
r (12)

2. Holding cost per unit is given by

HCr = hr

T∫
0

Qr(t)dt (13)

3. Total number of deteriorating units during cycle time T
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DE2(T ) = Qr − aT − (bT 2)

2
(14)

4. The deteriorating cost per time unit is

DCr = b1DE2(T ) (15)

5. Salvage value per time unit is

SVr = γDE2(T ) (16)

6. Preservation cost is given by
PCr = ξ2 (17)

The total cost for retailer is by

TCr = OCr + HCr + DCr + PCr − SVr (18)

3.3 Joint Total Cost

Total cost for the inventory system is

TC = TCm + TCr (19)

4 Computational Algorithm

4.1 Analytical Approach

• Set all parameters value in the mathematical model except decision variables.
• Find optimum T using TCm.
• Used optimal T and Qm to find total cost for manufacturer.
• Optimized T and η simultaneously from TCr.
• Used optimal T, η and Qr and obtain total cost for retailer.
• Find optimal T and η from system total cost.
• Used optimal T, η and optimal quantity and calculate total system cost.
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4.2 Genetic Algorithm Approach

• Set all parameters value in the fitness function except decision variables.
• Start G.A. with an initial population of 20 chromosomes.
• On the basis of their fitness score rank the chromosomes.
• Chromosomes with good fitness score will enter in mating pool.
• Perform stochastic uniform crossover for reproduction. We have considered
crossover fraction is 0.8 and each generation is 2-Elites.

• On the basis of their fitness value, rank all members and select members for new
generation.

• Perform step (iii) and step (iv) till absolute difference between two successive
members is 10−5.

5 Numerical Example and Sensitivity Analysis

5.1 Numerical Example

Consider one integrated production-inventory systemwith P = 500, a = 400, m =
0.5, b = 2, α = 0.5, β = 2, hm = 0.2, ξ1 = 500$, ξ2 = 500$, hr = 0.2, C0 =
2000, Am = 2000.
We have optimized this using analytical method by MAPLE18; we get some com-
putational results those are shown in Table 1.

Here, in independent decision, the convexity of the function is given below
For manufacturer

d2TCm

dT 2
|(T=T ∗) = 2808.527238 ≥ 0

Table 1 Computational results obtained by analytical approach

Optimal Independent scenario Integrated scenario

Cycle time (year) 0.02501172258 0.02501546196

η 0.08506027179 0.03756340374

Lot size 25 25

Total cost Independent scenario Integrated scenario

Manufacturer ($) 1972.520628 1499.249742

Retailer ($) 2499.997751 2400.999625

System ($) 4471.518379 3900.24567

Source own
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Table 2 Computational results obtained by using genetic algorithm

Independent scenario Integrated scenario

Iterations 51 and 190 84

Optimal Independent scenario Integrated scenario

Cycle time (year) 0.02 0.02

η 0.05 0.05

Lot size 32 34

Total cost Independent scenario Integrated scenario

Manufacturer ($) 1963.6 1452.21

Retailer ($) 2288.41 1241.23

System ($) 3952.01 2893.44

Source own

For retailer
∣∣∣∣∣
∂2TCr
∂η2

∂2TCr
∂η∂T

∂2TCr
∂η∂T

∂2TCr
∂T 2

∣∣∣∣∣ = 5.545177044479552 × 102 > 0

and
∂2TCr

∂T 2
= 8.256 × 102 ≥ 0

For integrated

∣∣∣∣∣
∂2TCr
∂η2

∂2TCr
∂η∂T

∂2TCr
∂η∂T

∂2TCr
∂T 2

∣∣∣∣∣ = 5.26352 × 102 > 0

and
∂2TCr

∂T 2
= 0.8039621 × 103 ≥ 0

Above example is also optimized by genetic algorithm usingMATLAB16a. Com-
putational results obtain by genetic algorithm are shown in Table 2. For independent
decision, genetic algorithm took 51 for manufacturer, 190 for retailer and 84 for
integrated system. Best fitness plot of manufacturer, retailer and the system is shown
in Figs. 3, 4 and 5, respectively.

The sensitivity analysis for the above example is carried out to check the behaviour
of inventory and supply chain parameters related to total cost in joint decision by
varying inventory parameters as −20, −10, 10 and 20%. The computational results
is shown in Table 3.

The results obtained in Table 3 can be summarized as follows:

• As inventory parameters a, b, α, hm increase, integrated total cost decreases.
• As inventory parameters m, β, hr increase, integrated total cost increases.
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Table 3 Sensitivity analysis for inventory and supply chain parameters

Parameters Change Generations Integrated total cost

−20% 80 2893.4422220173033

−10% 80 2893.440313935822

a 0 51 2893.4402274468635

10% 75 2893.44014557451607

20% 51 2893.4400680390536

−20% 108 2893.3983955247295

−10% 149 2893.4191946532046

m 0 51 2893.4401874468635

10% 51 2893.4623950272157

20% 89 2893.4846156768504

−20% 86 2893.449783693166

−10% 76 2893.4425591065487

b 0 51 2893.4401874468635

10% 138 2893.439330496022

20% 135 2893.4398683311897

−20% 120 2893.4448207696682

−10% 51 2893.442330496022

α 0 51 2893.4401874468635

10% 58 2893.44006788676355

20% 167 2893.44002539623709

−20% 75 2893.4341786444675

−10% 74 2893.4388061031786

β 0 51 2893.4401874468635

10% 90 2893.440616458528

20% 79 2893.4407451316824

−20% 117 2893.4431508922

−10% 51 2893.4407278538433

hm 0 51 2893.4401874468635

10% 72 2893.44002016096947

20% 74 2893.4402023774837

−20% 51 2893.4401554573037

−10% 114 2893.44016537294647

hr 0 51 2893.4401874468635

10% 112 2893.4402036655782

20% 51 2893.4402194364234

Source own
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Fig. 3 Best fitness solution for manufacturer total cost. Source own

Fig. 4 Best fitness solution for retailer total cost. Source own

6 Conclusion

Supply chain management has required models and processes which can find a solu-
tion in a fast and efficient way. For comparison purposes, we have found a solution
for the same numerical example using gradient-based analytical method and genetic
algorithm. Complexity is explained mathematically for analytical techniques and
graphically for genetic algorithms. It is shown that the decision taken in an inte-
grated scenario reduces the cost compared to the decision in an isolated scenario
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Fig. 5 Best fitness solution for system. Source own

in both techniques. Results clearly show that in our model, evolutionary algorithm
provides global minimum while the analytical method fails. Future research may be
extended into more realistic situations like shortages, random demand and inflation.
Additionally, genetic algorithms can be modified to find solutions in a very efficient
manner.
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