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Abstract In recent decades, researchers have effectively worked on seeking optimal
policies under supply chain management for attaining practical and powerful
outcomes. This paper studies supply chain model for imperfect quality items in
which demand depends upon the buyer’s price and marketing cost. The buyer segre-
gates the defective items from supplied lot by seller and sell them at discounted price.
In today’s scenario, learning effect methodology has become a promotional tool in
supply chain management. It impacts profit or loss of the members of the supply
chain. The rapid change in the life cycle of product makes the parameters of the
supply chain models more and more uncertain. Fuzzy analysis becomes a powerful
tool to deal such type of vague or uncertain parameters in computing form. It exam-
ines the better assessment and performance of imprecise parameters. Keeping in
view, some supply chain models for imperfect quality items have been developed by
considering learning effect under fuzzy environment. A non-cooperative Stackelberg
game theoretic approach is used to find the optimal decision variables and optimum
profit of the supply chain members in fuzzy environment. Various numerical results
with sensitivity analysis have been explained to justify the model.

Keywords Learning curve · Fuzzy system · Imperfect quality items ·
Non-cooperative games · Supply chain · Game theory

1 Introduction

Supply chain management is primarily related to the integration of activities and
process between and within the organization. To analyze the interaction between
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the members of the supply chain, the theory of non-cooperative Stackelberg game
is preferred and used to study supply chain connected problems. There have been
many researchers/academicians involve inworking of themathematicalmodel imple-
menting the learning curve. Some researches like Wright (1936), Baloff (1966),
Cunningham (1980), and Argote et al. (1990) have contributed their work in the field
of learning and forgetting curves by discussing themathematical behavior of learning
theory. Salameh et al. (1993) developed production inventory model (limited manu-
factured stock form) to optimize the cost with the outcome of human knowledge by
taking the variable demand rate and learning with respect to time. Jaber and Bonney
(1996) discovered and discussed a comparative study of the theory of learning and
forgetting and also focused analytically different types of models.

Salameh and Jaber (2000) exploredEOQmodel for defective itemswith an inspec-
tion process at the buyer’s end. These items may occur due to any reasons. Further,
Eroglu and Ozdemir (2007) stretched the model of Salameh and Jaber (2000) by
permitting shortages. Jaber andBonney (2003) developedmathematicalmodelwhich
focused on reducing the setup time, eliminating rework and increasing production
capacity with the help of learning curve. Jaber et al. (2008) deliberated the EOQ
model in which they discussed that by using the concept of the learning curve, the
percentage of defective items per batch decreased. Khan et al. (2010) minimized the
production cost andmaximized the production in their EOQmodel for defective items
by letting learning in screening process. Anzanello and Fogliatto (2011) advised the
mathematical forms with their applications of learning curves models. Konstantaras
et al. (2012) established a model to maximize production by allowing shortages for
the imperfect items with an inspection as learning. Jaber et al. (2013) considered
a manufacture stock model with “learning and forgetting” theory in manufacture.
Game theory is a competent tool to balance the coordination among the players
like seller and buyer in supply chain industry. Jayaswal et al. (2019) established an
inventory model for imperfect quality items with permission delay under learning
effect. Mittal et al. (2017) proposed an inventory model for price and demand are
time depended under inflation.

Many times, there is ups and downs in the market. So it becomes necessary and
useful for business to use fuzzy number to get best strategy. Wei and Zhao (2013)
discussed three supply chain models in which expected profit is determined by fuzzy
game theory. Soleimani (2016) analyzed manufacturer–leader Stackelberg game in
which manufacturing cost and demand of customer are precise in nature. Optimum
value of whole sale price and buyer’s price are obtained by game theoretic approach.
Patro et al. (2017) investigated two models crisp as well as fuzzy EOQ models
with imperfect quality items (proportionate discount items) under learning effect
in a finite time horizon. The optimal order lot size is determined to maximize the
total profit where the defective items follow a learning curve and the demand rate
assumed as triangle fuzzy number. Chavoshlou et al. (2019) developed three players
(government, manufacture, and customer) green supply chain optimization model
under fuzzy environment. Optimal strategies are obtained byNash equilibrium game,
and positive effects of fuzzy game model over non-fuzzy game model are discussed.
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Some researchers like Abad and Jaggi (2003) have developed supply chain model
inwhich the seller endorsed credit period to the buyer (payer) by cooperative and non-
cooperative game theoretical structure. Esmaeili et al. (2009) also developed supply
chain models by the game theoretical approach (cooperative and non-cooperative)
in which demand is influenced by both the selling cost and marketing expenditure
cost. Yadav et al. (2020) developed supply chain models for defective items with
learning effect by Stackelberg non-cooperative approach. None of the researchers
have developed such model under fuzzy environment, where demand is sensitive to
selling rate and marketing expenditure charges of the buyer. To obtain their optimal
policies, the fuzzy set theory is adopted to solve these fuzzy models. Meanwhile,
fuzzy analysis is a commanding tool that deals with the information which arises
fromcomputational awareness andperception. Therefore,we consider the correlation
between one buyer and one seller in a fuzzy decision-marking environment, where
the parameters of the models can be forecasted and expressed as the triangular fuzzy
variables.

Fuzzy theory basically comprises the process to find out the proper range for
indistinct items in a vague/imprecise environment for smooth coordination between
players of supply chain. In this paper, ordering cost of the buyer and setup cost of
the seller are imprecise in nature. The total optimal profit in fuzzy environment is
defuzzifiedwith the help of the centroidmethod. In this paper, two-level supply chain
models under fuzzy environment with the learning effect have been developed. The
non-cooperative game theoretic approaches have been discussed in which demand
is influenced by the marketing expenditure/promotional cost and selling price of
the player, purchaser. Seller-Stackelberg and Buyer-Stackelberg, two different game
approaches, have been discussed.

In this paper, impact of learning curve (LC) curve is shown on the different
parameters of the supply chain. In this paper, learning curve is assumed to be in the
form of p(n) = a/

(
g + sbn

)
, where a, b and g > 0 are the active parameters, and

p(n) is the percentage defective per batch n, whereas n is the cumulative number of
lots.

2 Notations

Seller’s decision variables

cb Seller’s selling price ($/unit)

Buyer’s decision variables

M Marketing cost (promotional price) ($/unit)
pb Buyer’s selling price ($/unit)
yn Order quantity (in units) in nth batch, where n ≥ 1
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Parameters

Ab Buyer’s ordering cost ($/order)
As Seller’s ordering cost ($/order)
Hb Inventory cost ($/unit/time)
I Percent of inventory’s carrying cost ($/unit)
p(n) Defective percentage of items/products per batch (n) in yn (units)
C Seller’s purchasing cost ($/unit)
cs Cost of defective value items per unit ($year) (cs < cb)
β Marketing expenditure (promotional) elasticity of demand (0 <

β < 1, β + 1 < e)
e Price elasticity of the marketing demand (e > 1)
D Annual demand rate (unit/year) = kp−e

b Mβ

λ Screening rate decided by the buyer in units per unit of time
(D < λ)

sc Cost to screen the product ($/units)
tn Time taken to screen a lot for imperfect items, tn = yn/λ (years)
k Scaling constant for the promoting demand (k > 0)
Ãb Fuzzy ordering cost of the buyer ($/order)
Ãs Fuzzy ordering cost of the seller ($/order)
TPcb(pb, M, yn) Buyer’s profit function
TPcs(cb) Seller’s profit function
TPcb∗(pb, M, yn) Fuzzy buyer’s profit
TPcs∗(cb) Fuzzy seller’s profit
Tn Cycle length/span of the buyer (in years), Tn = yn(1 − p(n))/D
T ∗
n Cycle length/span of the seller (in years), T ∗

n = yn/D
T ∗∗
n Cycle length/span of the Stackelberg models (in years), T ∗∗

n =
Max

(
Tn, T ∗

n

)

2.1 Assumptions

1. Marketing demand is considered as a function of pb and M.
2. Planning horizon is assumed as infinite.
3. No shortages acceptable (the demand is fulfilled).
4. Demand and screening follows at the same time and (D < λ).
5. Holding/inventory cost is not reflected for the seller as a lot-to-lot strategy rule

have been considered.
6. The defective percentage items follow the Wright’s curve (assumed) and the

worth of the good product is assumed to be more than that of the imperfect
quality items.

7. The number of imperfect items present in each batch is assumed by learning
curve p(n) = a

g+sbn , b is the learning rate, where a, b and g > 0 are the
effective parameters, n is the cumulative number of lots or shipment, and p(n)

is the percentage defective per batch n.
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8. The buyer’s ordering cost and seller’s setup cost are imprecise in nature.
9. Defuzzify the total profit function by the triangular method.

2.2 Some Definitions

Fuzzification

Fuzzification is a functionwhich assigns input of a set to some degree ofmembership.
The degree of membership may lie within the closed interval [0, 1]. If interval value
is 1, then the value completely belongs to the fuzzy set. If its value is 0, then value
does not belong to the given fuzzy set and if value lie between 0 and 1, that signifies
the degree of vagueness or uncertainty that the given value belong in the set. Fuzzy
environment process tries to solve the problems with a rough/imprecise data that
makes it possible to obtain a group of exact conclusions.

Defuzzification: If
∨
A = (a1, a2, a3) is triangular fuzzy number then centroid method

for defuzzification is defined as C

(∨
A

)
= a1+a2+a3

3 .

3 Mathematical Crisp Models

3.1 Buyer’s Model

The objective of the present model is to optimize the buyer’s price, marketing cost,
and the ordered quantitywith the corresponding profit for the retailerwith the learning
effect.

Buyer’s profit = Sales income − purchasing cost − screening cost − marketing
expenditure cost − ordering cost − holding cost

TPb(pb, M, yn) = pb(1 − p(n))yn + cs p(n)yn − cbyn − scyn

− Myn − Ab −
(
Q(1 − p(n))T1

2
+ p(n)Q2

λ

)
Hb

Put Tn = (1−p(n))yn
D , t = yn

λ
, Hb = I cb then buyer’s profit is given by

TPb(pb, M, yn) = pb(1 − p(n))yn + cs p(n)yn − cbyn − Myn − scyn

− Ab −
(
y2n (1 − p(n))2

2D
+ p(n)y2n

λ

)
I cb

We assumed that the demand function is D = kp−e
b Mβ .
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Buyer’s profit per cycle is given by

TPcb(pb, M, yn) =
[
TPb(pb, M, yn)

Tn

]

D

(1 − p(n))yn
[pb(1 − p(n))yn + cs p(n)yn − cbyn

−Myn − scyn − Ab −
(
y2n (1 − p(n))2

2D
+ p(n)y2n

λ

)
I cb

]

= pbD + 1

(1 − p(n))

[
cs p(n)D − cbD − MD − scD − AbD

yn

−
(
yn(1 − p(n))2

2
+ p(n)ynD

λ

)
I cb

]

TPcb(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab

yn

− p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(1)

The buyer’s goal is to find optimal values for order quantity yn , selling price, pb,
marketing expenditure cost, M, such that his profit becomes maximum.

For this, we equate first derivative of Eq. (1) with respect to pb to zero.
∂[TPcb(pb,M,yn)]

∂pb
= 0, yields

pb = e

(e − 1)(1 − p(n))

[
M + cb + sc − cs p(n) + Ab

yn
+ I cb p(n)yn

λ

]
(2)

The buyer’s profit
[
TPcb(pb, M, yn)

]
is pseudoconcave with respect to pb for

constants M and yn (Yadav et al. 2018).
Substituting the value of pb into Eq. (1) and then subsequent equation is

[
TPcb(pb(M), M, yn(M))

] = K

e

[
e

(e − 1)(1 − p(n))

(
M + cb + sc + Ab

yn

+ p(n)yn I cb
λ

− cs p(n)

)]−e+1

Mβ −
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(3)

Taking differentiation of Eq. (3) w.r.t.M, we get

M = β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(4)

The buyer’s profit,
[
TPcb(pb(M), M, yn(M))

]
, is concave with respect to M for

constant yn (Yadav et al. 2018).
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Substituting the value of Eq. (4) into Eq. (2), we get

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(5)

[
TPc(yn)

] = k

(
e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])−e

(
β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β

{(
e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])

+ 1

(1 − p(n))

[
cs p(n) − sc − cb −

(
β

(e − β − 1)

[
cb + sc + Ab

yn

+ I cb p(n)yn
λ

− cs p(n)

])
− Ab

yn
− p(n)yn

λ
I cb− yn

[
(1 − p(n))2

]

2
I cb

]}

(6)

The first-order condition of Eq. (6) w.r.t. yn finds the constraints as follows:

y2n I cb
(
(1 − p(n))2

)
λ + 2Dp(n) = 2Dλ, i.e.

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β−e

(e − β − 1)e−β(1 − p(n))e
(
λAb − y2n p(n)

)
(7)

It is quite difficult to prove the concavity of the above total profit function defined
in Eq. (6) analytically.

Thus, buyer’s total profit
[
TPcb(yn)

]
defined in Eq. (6) is concave function with

respect to order quantity is shown with the help of the graph (Fig. 1).

Fig. 1 Plot of buyer’s profit
function with respect to
order quantity

Order quantity

Pr
of

it
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3.2 Seller’s Model

Seller’s yield = Sales revenue − purchasing cost − ordering cost

TPs(cb) = cbyn − Cyn − As

Seller’s cycle length, T ∗
n = yn

D .
Seller’s profit per cycle is given by,

TPcs(cb) = D

yn
(cbyn − Cyn − As)

= kp−e
b Mβ

(
cb − C − As

yn

)
(8)

Seller’s plan is to achieve his net profit, by finding the optimal value of selling
price, cb.

Seller’s profit is zero at cb0 = C + As
yn
.

Since the seller always would prefer to have positive profit,
cb0 > C + As

yn
, let

cb = Fcb0 = F

(
C + As

yn

)
for some, F > 1 (9)

i.e., the optimal value for cb obtained through negotiation by seller and buyer.

3.3 The Non-cooperative Stackelberg Game Theory
Approach

The Stackelberg non-cooperative game considers two players. Among them, one
player is recognized as dominant player and takes the advantage of making the
first move/travel and other player acts as follower, making their best probable move
serially using preceding available information.

3.3.1 The Seller-Stackelberg Model

In this model, seller is treated as dominant player. The seller’s objective is to find his
yield on the basis of buyer’s decision variables. The problem is,

Max
(
TPcs(cb)

)
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TPcs(cb) = D

yn
(cbyn − Cyn − As)

= kp−e
b Mβ

(
cb − C − As

yn

)
(10)

Subject to

M = β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(11)

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(12)

Constraints

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β−e

(e − β − 1)e−β(1 − p(n))e
(
λAb − y2n p(n)

)
(13)

Cycle length, T ∗∗
n = max

(
Tn, T ∗

n

)
.

By using Eqs. (11) and (12) and the constraints (13) in Eq. (10), the subsequent
equation can be resolved using software Mathematica 9.0.

3.3.2 The Buyer-Stackelberg Model

Max
[
TPcb(pb, M, yn)

] = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab

yn

− p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(14)

Subject to

At cb0 = F

(
C + As

yn

)
(15)

By using Eq. (15) on Eq. (14), the resultant nonlinear equation can be explained
using software Mathematica 9.0.
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4 Mathematical Fuzzy Model

In this section, different mathematical models such as buyer’s fuzzy model, seller’s
fuzzy model, seller-Stackelberg fuzzy model, and buyer’s Stackelberg fuzzy model
with learning effect under fuzzy environment have been explained.

4.1 Buyer’s Fuzzy Model

The objective of the present model is to optimize the buyer’s price, marketing cost,
and the ordered quantity with the corresponding profit for the retailer with learning
effect under fuzzy environment.

Let us assume that due to uncertainty existing in parameters, the inventory
model is in fuzzy environment. Also, we have assumed that the parameters Ãb =
(Ab1, Ab2, Ab3), Ãs = (As1, As2, As3) are triangular fuzzy numbers, then the entire
profit per unit time in fuzzy environment is in each model.

Buyer’s total profit per cycle in fuzzy environment

TPcb∗(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ãb

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(16)

TPcb1(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab1

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(17)

TPcb2(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab2

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(18)

TPcb3(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab3

yn
− p(n)yn

λ
I cb

]
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−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(19)

Now we defuzzify the entire profit per unit time by centroid method

TPcb∗(pb, M, yn) = TPcb1(pb, M, yn) + TPcb2(pb, M, yn) + TPcb3(pb, M, yn)

3
(20)

Substituting the values from Eqs. (17), (18), and (19) in Eq. (20), we get

TPcb · (pb, M, yn) = 1

3

{
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab1

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)

+ kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab2

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
+ kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab3

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)}

TPcb∗(pb, M, yn) = (Ab1 + Ab2 + Ab3)

3

(
kp−e

b Mβ

(1 − p(n))yn

)

+
[
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[cs p(n) − cb

−sc − M − p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)]
(21)

Now, our objective is to find the optimal values of three decision variables pb,M,
and yn to optimize the profit function TPcb∗(pb, M, yn). The first-order condition of
Eq. (21) w.r.t. pb and M, we have

M = β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(22)

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(23)

The total buyer’s fuzzy profit is pseudoconcave with respect to pb andM (Yadav
et al., 2018).

Substituting the values of pb and M in Eq. (21), we get

[
TPcb∗(yn)

] = k

(
e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
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+ I cb p(n)yn
λ

− cs p(n)

])−e(
β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β{(
e

(e − β − 1)(1 − p(n))
[cb + sc

+ (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

])
+ 1

(1 − p(n))
[cs p(n) − sc

−cb −
(

β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

])

− (Ab1 + Ab2 + Ab3)

3yn
− p(n)yn

λ
I cb − yn

[
(1 − p(n))2

]

2
I cb

]}

(24)

The first-order condition of Eq. (24) w.r.t. yn, we find the constraints as follows:

y2n I cb
(
(1 − p(n))2

)
λ + 2Dp(n) = 2Dλ, i.e.

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β−e

(e − β − 1)e−β

(1 − p(n))e
(

λ

3
(Ab1 + Ab2 + Ab3) − y2n p(n)

)

Thus, total fuzzy profit
[
TPcb∗(yn)

]
defined in Eq. (24) is concave function with

respect to order quantity which is shown analytically with the help of the graph
(Fig. 2).

Fig. 2 Plot of fuzzy buyer’s
profit function with respect
to order quantity
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4.2 Seller’s Fuzzy Model

The objective of the present model is to optimize the seller’s price with the
corresponding profit for the seller with learning effect under fuzzy environment.

Seller’s total profit per cycle in fuzzy environment is given by

TPcs∗(cb) = kp−e
b Mβ

(
cb − C − Ãs

yn

)
(25)

TPcs1(cb) = kp−e
b Mβ

(
cb − C − As1

yn

)
(26)

TPcs2(cb) = kp−e
b Mβ

(
cb − C − As2

yn

)
(27)

TPcs3(cb) = kp−e
b Mβ

(
cb − C − As3

yn

)
(28)

Now we defuzzify the entire profit per unit time by centroid method

TPcs∗(cb) = TPcs1(cb) + TPcs2(cb) + TPcs3(cb)

3
(29)

Substituting the values from Eqs. (26), (27), and (28) in Eq. (25), we get

TPcs∗ (cb) =
⎧
⎨

⎩

kp−e
b Mβ

(
cb − C − As1

yn

)
+ kp−e

b Mβ
(
cb − C − As2

yn

)
+ kp−e

b Mβ
(
cb − C − As3

yn

)

3

⎫
⎬

⎭

= kp−e
b Mβ

3yn
(As1 + As2 + As3) + kp−e

b Mβ (cb − C) (30)

4.3 Seller’s Stackelberg Fuzzy Model

Seller is the dominant player. The seller’s main aim is to find his profit on the basis
of given buyer’s decision variables. The problem is,

Max TPcs∗(cb) = kp−e
b Mβ

3yn
(As1 + As2 + As3) + kp−e

b Mβ(cb − C) (31)

Subject to

M = β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(32)
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pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(33)

Constraints

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β−e

(e − β − 1)e−β

(1 − p(n))e
(

λ
(Ab1 + Ab2 + Ab3)

3
− y2n p(n)

)
(34)

4.4 The Buyer’s Stackelberg Fuzzy Model

The buyer is the dominant player. The buyer’s main aim is to find his profit on the
basis of given seller’s decision variables. The problem is,

Max TPcb∗(pb, M, yn) = (Ab1 + Ab2 + Ab3)

3

(
kp−e

b Mβ

(1 − p(n))yn

)

+
[
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)]
(35)

Subject to

At cb0 = F

(
C + (As1 + As2 + As3)

3yn

)
(36)

5 Numerical Examples

Example 1

The seller-Stackelberg game model is shown in the given example which shows
the effect of learning on the decision variables. Input parameters are taken from
two papers Esmaeili et al. (2009) and Jaber et al. (2008), C = $1.5 units, Ab =
$38, As = $40, k = 36,080, F = 1.8, λ = 175,200 unit/year, cs = $3.5, β =
Le, e = 1.7, L = 0.088, Sc = $0.035, I = 0.38, F = 1.8, a = 40, b =
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1.8, n = 5, g = 999, s = 2.99, p(n) = 0.0019. Equation (13) gives the results,
yn = 138 units and cb = $4.291. Equations (11) and (12) produce the results,
pb = $14.227 and M = $1.252. The seller’s profit, TPcs = $1023.08 and the buyer’s
profit, TPcb = $3309.80.

Example 2

The buyer-Stackelberg game model is shown in the given example which shows the
effect of learning on the decision variables. We consider the values of all parameters
are same as defined in Example 1 except cs = 2.5. Equation (14) gives the results,
pb = $9.280, M = $0.817, and yn = 413 units. Equation (15) generates the results,
cb = $2.874. Seller’s profit, TPcs = $1013.11 and buyer’s profit, TPcb = $4103.86.

Fuzzy Numerical Example 3

Effect of learning on the decision variables in fuzzy seller-Stackelberg game model
is shown in the given example. Input parameters are taken from two papers Esmaeili
et al. (2009) and Jaber et al. (2008), C = $1.5 units, Ãb = (35, 40, 45), Ãs =
(45, 50, 55), k = 36,080, F = 1.8, λ = 175,200 unit/year, cs = $3.5, β = Le, e =
1.7, L = 0.088, Sc = $0.035, I = 0.38, F = 1.8, a = 40, b = 1.8, n =
5, g = 999, s = 2.99, p(n) = 0.0019. Equation (34) gives the results, yn = 141
units and cb = $4.320. Equations (32) and (33) produce the results, pb = $14.345
and M = $1.263. Fuzzy seller’s profit, TPcs∗ = $999.50 and fuzzy buyer’s profit,
TPcb∗ = $3291.34.

Fuzzy Numerical Example 4

Effect of learning on the decision variables in fuzzy buyer-Stackelberg game model
is shown in the given example. We consider the values of all parameters are same as
defined in Example 1 except cs = 2.5. Equation (35) gives the results, pb = $9.357,
M = $0.824, and yn = 446 units and Eq. (36) generates the results, cb = $2.902.
Fuzzy seller’s profit, TPcs∗ = $= $1009.72 and fuzzy buyer’s profit, TPcb∗ = $4063.70.

Results indicate that the high seller’s selling price results the more gain in the
profit to the seller in seller Stackelberg model. Result shows that seller got higher
profit when he is leader and less when he is follower, whereas results also show that
higher profit gained by the purchaser shows that he is better off in the second model.
In both the cases, buyer got more profit as compared to the player seller due to the
learning effect.

In case of fuzzy environment, result shows that buyer is more benefited when
he is leader but seller got more in case of follower. When we compare crisp model
example with fuzzy example, we conclude that both the players obtain less profit in
fuzzy as compared to crisp model example.
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6 Sensitivity Analysis

In this section, sensitivity analysis is carry out on the basis of key factors/parameters
to estimate the strength of the model. This part shows the effect of learning rate on
the different decision variables and profit of the players.

6.1 Effect of Learning on the Player’s Profit

Seller-Stackelberg

See Table 1.

Buyer-Stackelberg

See Table 2.

Table 1 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
with learning rate

b = 1.8

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Buyer
profit
[
TPcb

]

Seller
profit
[
TPcs

]

1 0.0397 153 4.064 13.545 1.147 3382.30 1010.13

2 0.0381 152 4.074 13.576 1.152 3378.80 1010.66

3 0.0291 149 4.127 13.740 1.177 3360.79 1013.53

4 0.0107 142 4.237 14.069 1.228 3325.97 1019.83

5 0.0019 138 4.291 14.227 1.252 3309.80 1023.08

Table 2 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
with learning rate

b = 1.8

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Buyer
profit
[
TPcb

]

Seller
profit
[
TPcs

]

1 0.0397 427 2.868 9.3134 0.789 4072.04 999.648

2 0.0381 426 2.869 9.3118 0.790 4073.49 1000.24

3 0.0291 423 2.870 9.303 0.797 4081.05 1003.59

4 0.0107 416 2.873 9.287 0.810 4096.44 1010.08

5 0.0019 413 2.874 9.280 0.817 4103.86 1013.11
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Seller Stackelberg model Buyer Stackelberg model:
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Fig. 3 Effect of shipments on buyer’s profit

Effect of no. of shipments and learning rate on buyer’s profit in both Stackelberg
models (Fig. 3).

6.2 Fuzzy Seller-Stackelberg

See Table 3.

Fuzzy Buyer-Stackelberg

See Table 4.

Fuzzy Seller-Stackelberg

See Table 5.

Fuzzy Buyer-Stackelberg

See Table 6.

Table 3 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 40, As = 50, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 155 4.092 13.690 1.1599 3359.38 982.49

2 0.0381 154 4.102 13.701 1.1629 3359.26 982.98

3 0.0291 151 4.156 13.862 1.187 3341.51 985.66

4 0.0107 144 4.266 14.189 1.238 3307.24 991.54

5 0.0019 141 4.320 14.345 1.263 3291.34 999.50
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Table 4 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 40, As = 50, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 461 2.895 9.392 0.796 4032.22 995.93

2 0.0381 460 2.896 9.389 0.797 4033.65 996.61

3 0.0291 457 2.897 9.381 0.804 4041.14 999.90

4 0.0107 450 2.900 9.365 0.817 4056.36 1006.41

5 0.0019 446 2.902 9.357 0.824 4063.70 1009.72

Table 5 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 50, As = 60, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 173 4.092 13.768 1.166 3335.32 960.14

2 0.0381 172 4.102 13.801 1.171 3331.97 960.60

3 0.0291 168 4.156 13.965 1.196 3314.41 963.13

4 0.0107 160 4.265 14.295 1.247 3280.54 968.70

5 0.0019 156 4.319 14.455 1.273 4264.76 971.59

Table 6 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 50, As = 60, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 504 2.914 9.493 0.804 3982.57 985.96

2 0.0381 503 2.915 9.491 0.806 3983.98 986.62

3 0.0291 500 2.916 9.483 0.812 3991.38 989.74

4 0.0107 492 2.920 9.466 0.826 4006.41 996.46

5 0.0019 488 2.921 9.458 0.833 4013.67 999.69
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Table 7 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 60, As = 70, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 188 4.093 13.868 1.175 3310.39 939.63

2 0.0381 187 4.103 13.900 1.179 3307.05 940.07

3 0.0291 182 4.156 14.068 1.205 3289.78 942.46

4 0.0107 174 4.265 14.368 1.254 3260.09 947.75

5 0.0019 170 4.318 14.553 1.281 3240.75 950.49

Table 8 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 60, As = 70, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 543 2.932 9.587 0.812 3937.22 976.85

2 0.0381 542 2.932 9.585 0.816 3938.61 977.61

3 0.0291 538 2.934 9.577 0.820 3945.92 980.74

4 0.0107 529 2.938 9.559 0.834 3960.78 987.73

5 0.0019 525 2.940 9.552 0.841 3967.95 990.81

Fuzzy Seller-Stackelberg

See Table 7.

Fuzzy Buyer-Stackelberg

See Table 8.

7 Observations

Following are the observations

(a) Results indicate from example 1 and example 2 that both the players are better
off when they are leader and they got less profit when they are follower.

(b) Numerical example shows that seller profit and buyer profit obtained in seller-
Stackelberg model and buyer-Stackelberg model are more as compared to
obtained in fuzzy Stackelberg model.
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(c) Figure 3 concludes that as number of shipments increases with a given learning
rate at b = 1.8, buyer profit decreases in seller-Stackelberg model, whereas,
Fig. 3 illustrates that buyer profit and seller profit increase as number of
shipments increases with same learning rate in buyer-Stackelberg model.

(d) Data fromTable 3 designate that seller-Stackelbergmodel under fuzzy environ-
ment as shipment increases in numbers, the buyer’s profit decreases whereas
seller’s profit increases. Thismeans that seller get benefitted in case of headship
position.

(e) Data from Table 4 indicate that in buyer-Stackelberg model under fuzzy envi-
ronment as shipment increases in numbers, the buyer’s profit and seller’s profit
increases. This means both the players get benefitted in fuzzy environment.

8 Conclusions

Two-level supply chain models have been established for imperfect quality items
under fuzzy environment with learning effect environment The effect of learning
and fuzziness is shown on the players’ optimal policies. Buyer’s price, marketing
expenditure cost, and order quantity and corresponding profit of players of supply
chain are optimized. The learning impact on the calculation of gains or losses of
the supply chain has been shown in the sensitivity analysis and numerical example.
Results show that due to learning effect, buyer’s gain is more than the seller in both
the model. Both the players get benefitted in case of leadership position. It is shown
from the result that seller’s profit and buyer’s profit obtained in mathematical crisp
model is more that obtained in fuzzy model. A future extension to present model can
be assume a stochastic learning curve instead of deterministic. This model can be
extended by considering the idea of shortages and trade credit period.
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