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Retailer’s Optimal Ordering Policy
Under Supplier Credits When Demand is
Fuzzy and Cloud Fuzzy

Nita H. Shah and Milan B. Patel

Abstract This paper deals with retailer’s optimal ordering inventory model under
fuzzy and cloud fuzzy environment. In this study, crisp model is considered first and
then by assuming demand rate as triangular fuzzy number and cloud triangular fuzzy
number the model is formulated and solved. Extension of Yager’s ranking index is
utilized for defuzzification in cloud fuzzy model. The objective of the present work
is to minimize the total inventory cost and to compare the results obtained by the
existing crisp model. With the help of numerical examples for different cases under
different environments, optimal solutions are compared and analysed by performing
sensitivity analysis. For better visualization of results, graphical representation of
solutions is given.

Keywords Inventory · Fuzzy demand · Cloud fuzzy demand · Deterioration ·
Delay in payments

1 Introduction

Amongmany of the factors affecting the performance of a business firm,management
of inventory system is considered to be one of the most important aspects, as it
directly affects the profit of the firm and the satisfaction of customers. From a small
retailer shopkeeper to large industries always keep on applying new business tactics
in order to attract new customers and to increase sales of their products. Out of these
many business tactics, an idea implemented by many such suppliers is to provide a
cash discount or grace period (i.e. trade credit period) to their customers in order to
pay for the consignment. In such cases, it becomes indispensable for the retailer to
make a balance between the situation of stock-out and the situation of overstocking.
This study aims at modelling such phenomenon under uncertain demand rate and to
provide retailers an optimal ordering policy when supplier offers some trade credit
period.

N. H. Shah (B) · M. B. Patel
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2 N. H. Shah and M. B. Patel

After the pioneeringwork of Harris (1913) of developing economic order quantity
(EOQ) model, many researchers have devoted their efforts towards modelling the
inventory system. Haley and Higgins (1973) introduced a trade credit policy of an
inventory system having constant demand. Goyal (1985) firstly extended an EOQ
model by allowing permissible delay in payments. For more literature in the field of
trade credit policy under the crisp environment, one may refer to the works of Shah
(1993), Aggarwal and Jaggi (1995), Liao et al. (2000), Chang and Teng (2004), Teng
(2009), Shah andCardenas-Barron (2015), Giri and Sharma (2016), andMahata et al.
(2020).

Since the decision-making process involves human thoughts and reasoning, it
always has some imprecision in it. Fuzzy set theory introduced by Zadeh (1965)
is the most powerful tool to express uncertainties. The above-mentioned inventory
research papers were formulated by assuming the parameters to be crisp. However, to
make these models more realistic and applicable, one needs to incorporate the fuzzy
set theory. Park (1987) extended an EOQmodel under fuzzy sense. Since then, many
researchers have contributed significantly in developing inventory modelling under
fuzzy sense. Following are some of the research papers related to this study.

Mahata and Goswami (2007) developed an EOQ model for deteriorating item by
allowing delay in payments in fuzzy sense. The paper also generalizes the previous
publications in this direction. Ouyang et al. (2010) worked on an optimal inventory
policy by considering rate of interest earned, rate of interest charged and deterioration
rate as triangular fuzzy number. Mahata and Mahata (2011) studied an inventory
model for a retailer under two-level trade credit in fuzzy sense. Shah et al. (2012)
established a fuzzy EOQ model by allowing demand rate, ordering cost and selling
price as fuzzy quantities. They have used centre of gravitymethod for defuzzification.
Jaggi et al. (2014) gave an inventorymodel in which they have used trapezoidal fuzzy
numbers to represent uncertainty in some parameters. Bag and Chakraborty (2014)
worked on a fuzzy inventory model with bi-level trade credit policy. Sujatha and
Parvathi (2015) discussed an inventory model for variable deteriorating items with
time-dependent Weibull demand rate by allowing shortages. Majumder et al. (2015)
studied an economic production quantity (EPQ) model under partial trade credit by
incorporating crisp as well as fuzzy demand rate. Das et al. (2015) developed an
integrated inventory model for supplier and retailer with fuzzy credit period. Yadav
et al. (2015) studied retailer’s inventorymodel bydiscussing the effects of the inflation
rate, deterioration rate and delay in payment on total profit of the inventory. Shukla
and Suthar (2016) worked on fuzzy economic ordering policy to minimize total cost
by taking into account the items having uncertain maximum lifetime. Huang et al.
(2019) developed a vendor–buyer ordering policy of perishable items under crisp
and fuzzy environment.

The concept of fuzzy number utilized in the above-mentioned papers dealing with
fuzzy inventory modelling assumes fuzziness to be constant forever which may not
be the case in real scenario. Decision-maker can make better decision over time as he
gains experiences from the previous consignments. Owing to this idea, the concept
of cloud fuzzy number is introduced recently by De and Beg (2016) and applied by
some researchers in order tomake the inventorymodelsmore realistic.De andMahata
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(2016) introduced the concept of cloudy fuzzy number and formulated an inventory
model with backorder. Berman et al. (2017) formulated a backordered inventory
model with inflation under cloudy fuzzy environment. Karmakar et al. (2018) worked
on extension of classical EOQmodel under cloudy fuzzy demand rate.De andMahata
(2019a) studied cloudy fuzzy EOQ model for imperfect quality items. Further, De
and Mahata (2019b) developed EOQ model under fuzzy monsoon demand. Maiti
(2019) utilized the concept of cloudy fuzzy number and studied economic production
lot-size model with fixed set-up cost with cloudy fuzzy demand rate.

The present study is an attempt to extend Chang and Teng (2004) model under
fuzzy and cloud fuzzy demand rate. To study the model under fuzzy environment,
demand rate is assumed to be triangular fuzzy number. For the extension of model
under cloud fuzzy environment, cloud triangular fuzzy number is employed. For
defuzzification in fuzzy environment, the researchers have used Yager’s ranking
index method (1981).

2 Notations and Assumptions

Following notations and assumptions are consideredwhile formulatingmathematical
models.

2.1 Notations

h holding cost (in $/unit/year)

c purchase cost (in $/unit)

s sales price (in $/unit)

A ordering cost (in $/order)

θ rate of deterioration 0 ≤ θ < 1

r rate at which cash discount is given 0 < r < 1

Ic rate at which interest is charged (in %/year)

Ie rate at which interest is earned (in %/year)

M1 1st credit limit for retailer

M2 2nd credit limit for retailer

T cycle length (in year)

R demand rate per year

R fuzzy demand rate per year
˜R cloud fuzzy demand rate per year

Q order quantity

(continued)
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(continued)

h holding cost (in $/unit/year)

Q fuzzy order quantity
˜Q cloud fuzzy order quantity

K total inventory cost (in $/year)

K total fuzzy inventory cost (in $/year)
˜K total cloud fuzzy inventory cost (in $/year)

2.2 Assumptions

(i) Rate of deterioration is considered to be constant. Further, no replenishment
or repair of deteriorated items occurs during planning horizon.

(ii) Retailer has two choices for payment. Either pay at credit limit M1 with
discounted price (1 − r)c with 0 < r < 1 or pay at credit limit M2 without
any discount. (M1 < M2)

(iii) Up to the credit period (i.e. M1 or M2), the amount generated by sales is
deposited in an interest earning account. At the end of this period, retailer
pays the amount generated in the account to supplier. If this amount is not
sufficient to settle payment, the retailer starts paying off the remaining amount
whenever he has money generated by sales.

(iv) Shortages are not permitted.
(v) Demand rate for crisp model is constant.
(vi) For fuzzy and cloud fuzzy model, demand is not precise and characterized

by triangular fuzzy number R = (R1, R2, R3) and cloud triangular fuzzy

number ˜R =
(

R2

(

1 − β

1+t

)

, R2, R2
(

1 + γ

1+t

)

)

, respectively.

(vii) Planning horizon is infinite.

3 Preliminary Concepts

3.1 Triangular Fuzzy Number (TFN)

A triangular fuzzy number (TFN) defined on the set of real numbers R can be
expressed as R = (R1, R2, R3). Its membership function can be defined as

f (R) =

⎧

⎪

⎨

⎪

⎩

x−R1
R2−R1

, R1 ≤ x ≤ R2
x−R3
R2−R3

, R2 ≤ x ≤ R3

0, otherwise

(1)
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3.2 α- Cut of TFN

α- cut of TFN R = (R1, R2, R3) is a crisp set αR = [Lα, Rα], where Lα = R1 −
α(R1 − R2) is known as left α- cut and Rα = R3 − α(R3 − R2) is known as right
α- cut (0 ≤ α ≤ 1).

3.3 Cloud Triangular Fuzzy Number (CTFN)

A triangular fuzzy number is known as cloud triangular fuzzy number (CTFN) if the
set converge to a crisp number as time tends to infinity.

˜R =
(

R2

(

1 − β

1 + t

)

, R2, R2

(

1 + γ

1 + t

))

(2)

where β, γ ∈ (0, 1) and t > 0. From Eq. (2), it can be seen that as t → ∞, ˜R →
{R2}.

Membership function of CTFN can be defined as follows:

g(˜R, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x−R2(1− β

1+t )
β R2
1+t

, R2

(

1 − β

1+t

)

≤ x ≤ R2

R2(1+ γ

1+t )−x
γ R2
1+t

, R2 ≤ x ≤ R2
(

1 + γ

1+t

)

0, otherwise

(3)

3.4 Left and Right α- cut of CTFN

Left and right α- cut of CTFN can be expressed as

Lα,t = R2

(

1 − β

1 + t

)

+ αβ

1 + t
R2 & Rα,t = R2

(

1 + γ

1 + t

)

− αγ

1 + t
R2 (4)

respectively.

3.5 Yager’s Ranking Index Method (1981)

According to Yager’s ranking index method, defuzzification for a TFN can be given
by
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Y RI (R) = 1

2

1
∫

0

(Lα + Rα) dα (5)

where Lα and Rα are left and right α- cut of TFN, respectively. By substituting the
value of Lα and Rα , Eq. (5) reduces to

Y RI (R) = 1

4
(R1 + 2R2 + R3) (6)

3.6 Yager’s Ranking Index Method for CTFN

It is an extension of Yager’s ranking index method for TFN given by De and Mahata
(2017). By this method, defuzzification of CTFN can be given by

Y RI (˜R) = 1

2T

α=1
∫

α=0

t=T
∫

t=0

(Lα,t + Rα,t ) dα dt (7)

Substituting the value of left and right α- cut of CTFN from Eqs. (4) and (7)
reduces to

Y RI (˜R) = R2

(

1 − (β − γ )

4

log(1 + T )

T

)

(8)

4 Mathematical Modelling

As per the model given by Chang and Teng (2004), total inventory cost for different
cases under crisp environment is as follows:

Case A: T ≥ M1

K A(T ) = A

T
+ R[h + cθ(1 − r)]

θ2T

(

θT + θ2T 2

2

)

− h R

θ
− s I eR

2T
M2

1

+ I cR

2sT

[

c(1 − r)

θ

(

θT + θ2T 2

2

)

− s M1

(

1 + I eM1

2

)]2

(9)



Retailer’s Optimal Ordering Policy Under Supplier Credits When … 7

Case B: T < M1

K B(T ) = A

T
+ R[h + cθ(1 − r)]

θ2T

(

θT + θ2T 2

2

)

− h R

θ
− s I eR

(

M1 − T

2

)

(10)

Case C: T ≥ M2

KC(T ) = A

T
+ R(h + cθ)

θ2T

(

θT + θ2T 2

2

)

− h R

θ
− s I eR

2T
M2

2

+ I cR

2sT

[

c

θ

(

θT + θ2T 2

2

)

− s M2

(

1 + I eM2

2

)]2

(11)

Case D: T < M2

K D(T ) = A

T
+ R(h + cθ)

θ2T

(

θT + θ2T 2

2

)

− h R

θ
− s I eR

(

M2 − T

2

)

(12)

Order quantity can be expressed as

Q = R

θ

(

eθT − 1
)

(13)

4.1 Formulation of Fuzzy Mathematical Model

In order to extendChang andTeng (2004)model under fuzzy environment, demand is
assumed to be triangular fuzzy number R = (R1, R2, R3). Fuzzifying the expression
given in Eq. (9), the problem under fuzzy environment for Case A reduces to

Minimize K A(T ) = A

T
+ R[h + cθ(1 − r)]

θ2T

(

θT + θ2T 2

2

)

− h R

θ
− s I eR̄

2T
M2

1

+ I cR

2sT

[

c(1 − r)

θ

(

θT + θ2T 2

2

)

− s M1

(

1 + I eM1

2

)]2

(14)

with respect to Q = R

θ

(

eθT − 1
)

(15)

With the help of Eq. (1), membership function for fuzzy objective function and
fuzzy order quantity can be expressed as follows:

(i) Membership function for total fuzzy inventory cost:
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f1(K ) =

⎧

⎪

⎨

⎪

⎩

K−K1
K2−K1

, K1 ≤ K ≤ K2
K−K3
K2−K3

, K2 ≤ K ≤ K3

0, otherwise

(16)

where Ki for i = 1, 2, 3 can be obtained by replacing R with Ri in fuzzy
inventory cost function.

(ii) Membership function for fuzzy order quantity:

f2(Q) =

⎧

⎪

⎨

⎪

⎩

Q−Q1
Q2−Q1

, Q1 ≤ Q ≤ Q2
Q−Q3
Q2−Q3

, Q2 ≤ Q ≤ Q3

0, otherwise

(17)

where Qi = Ri
θ

(eθT − 1) for i = 1, 2, 3.

Other cases can be formulated under fuzzy environment similarly.
By applying Yager’s ranking index method for TFN (see Sect. 1.3.5), defuzzified

value of total fuzzy inventory cost and fuzzy order quantity for each case is obtained.
Defuzzified value of total fuzzy inventory cost for Case A, Case B, Case C and Case
D is

I (K A) = A

T
+ (R1 + 2R2 + R3)

⎧

⎪

⎨

⎪

⎩

1
4θ2

[

(h + cθ(1 − r))
(

θ + 1
2 θ2T

)]

− h
4θ − s I eM2

1
8T

+ I c
8sT

[

c(1 − r)
(

T + 1
2 θT 2

)

− sM1

(

1 + I eM1
2

)]2

⎫

⎪

⎬

⎪

⎭

(18)

I (K B) = A

T
+ (R1 + 2R2 + R3)

{ 1
4θ2

[

(h + cθ(1 − r))
(

θ + 1
2θ

2T
)] − h

4θ
− s I e

4

(

M1 − T
2

)

}

(19)

I (KC) = A

T
+ (R1 + 2R2 + R3)

{

1
4θ2

[

(h + cθ)
(

θ + 1
2θ

2T
)] − h

4θ − s I eM2
2

8T

+ I c
8sT

[

c
(

T + 1
2θT 2

) − s M2
(

1 + I eM2
2

)]2

}

(20)

I (K D) = A

T
+ (R1 + 2R2 + R3)

{

1

4θ2

[

(h + cθ)

(

θ + 1

2
θ2T

)]

− h

4θ
− s I e

4

(

M2 − T

2

)}

(21)

respectively.
Defuzzified value of fuzzy order quantity can be represented as

I (Q) = 1

4θ
(R1 + 2R2 + R3)

(

eθT − 1
)

(22)
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4.2 Formulation of Cloud Fuzzy Mathematical Model

Fuzzifying the expression given in Eq. (9), the problem under cloud fuzzy
environment is given by

Minimize ˜K A(T ) = A

T
+ ˜R[h + cθ(1 − r)]

θ2T

(

θT + θ2T 2

2

)

− h ˜R

θ
− s I e˜R

2T
M2

1

+ I c˜R

2sT

[

c(1 − r)

θ

(

θT + θ2T 2

2

)

− s M1

(

1 + I eM1

2

)]2

(23)

with respect to ˜Q = ˜R

θ

(

eθT − 1
)

(24)

With the help of Eq. (3), membership function for cloud fuzzy objective function
and cloud fuzzy order quantity can be expressed as follows:

(i) Membership function for total cloud fuzzy inventory cost:

g1(K , T ) =

⎧

⎪

⎨

⎪

⎩

K−K1
K2−K1

, K1 ≤ K ≤ K2
K−K3
K2−K3

, K2 ≤ K ≤ K3

0, otherwise

(25)

where K1, K2, K3 can be obtained by replacing ˜R with

R2

(

1 − β

1+t

)

, R2 & R2
(

1 + γ

1+t

)

,respectively, in Eq. 23.

(ii) Membership function for cloud fuzzy order quantity:

g2(Q, T ) =

⎧

⎪

⎨

⎪

⎩

Q−Q1
Q2−Q1

, Q1 ≤ Q ≤ Q2
Q−Q3
Q2−Q3

, Q2 ≤ Q ≤ Q3

0, otherwise

(26)

where Q1 = 1
θ

R2

(

1 − β

1+T

)

(

eθT − 1
)

, Q2 = R2
θ

(

eθT − 1
)

& Q3 =
1
θ

R2
(

1 + γ

1+T

)(

eθT − 1
)

Defuzzified value of cloud fuzzy total inventory cost and cloud fuzzy order quan-
tity as per extension of Yager’s ranking index method can be derived using the
following equation.

I
(

˜K
) = 1

T

t=T
∫

t=0

1

4
(K1 + 2K2 + K3) dt (27)

where the value of 1
4 (K1 + 2K2 + K3) for different cases is as follows:
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For Case A:

1

4
(K1 + 2K2 + K3) = A

T
+

(

4 − (β − γ )

1 + T

)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
4θ2

[

R2(h + cθ(1 − r))
(

θ + 1
2 θ2T

)]

+ I cR2
8sT

[

c(1 − r)
(

T + 1
2 θT 2

)

− sM1

(

1 + I eM1
2

)]2

− h R2
4θ − s I eR2M2

1
8T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(28)

For Case B:

1

4
(K1 + 2K2 + K3) = A

T
+

(

4 − (β − γ )

1 + T

)

⎧

⎨

⎩

R2
4θ2

[

(h + cθ(1 − r))
(

θ + 1
2 θ2T

)]

− h R2
4θ

− s I eR2
4

(

M1 − T
2

)

⎫

⎬

⎭

(29)

For Case C:

1

4
(K1 + 2K2 + K3) = A

T
+

(

4 − (β − γ )

1 + T

)

⎧

⎪

⎨

⎪

⎩

R2
4θ2

[

(h + cθ)
(

θ + 1
2 θ2T

)]

− h R2
4θ − s I eR2M2

2
8T

+ R2 I c
8sT

[

c
(

T + 1
2 θT 2

)

− sM2

(

1 + I eM2
2

)]2

⎫

⎪

⎬

⎪

⎭

(30)

For Case D:

1

4
(K1 + 2K2 + K3) = A

T
+

(

4 − (β − γ )

T

){ R2
4θ2

[

(h + cθ)
(

θ + 1
2θ

2T
)] − h R2

4θ
− s R2 I e

4

(

M2 − T
2

)

}

(31)

Defuzzified value of cloud fuzzy order quantity by using extension of Yager’s
ranking index method can be expressed by

I
(

˜Q
) = Rc

θ

(

eθT − 1
)

where, Rc = R2

(

1 − (β − γ ) log(1 + T )

4T

)

(32)

5 Numerical Analysis and Proof of Convexity

Along with the proof of convexity in all four cases under fuzzy and cloud fuzzy
environment, this section consists of numerical examples in all four cases in order
to compare the results obtained in Chang and Teng model with the fuzzy and cloud
fuzzy model derived in the present study.

Example 1: (for Case A) Let us consider the value of various parameters for
crisp, fuzzy and cloud fuzzy environment as follows: R = 1000 units/year,
h = $ 3/unit/year, A = $ 10/order, I c = 9%/year, I e = 3%/year, c = $ 20/unit,



Retailer’s Optimal Ordering Policy Under Supplier Credits When … 11

s = $ 30/unit, r = 0.02, θ = 0.03, M1 = 30/365 years. For fuzzy model,
consider R1 = 950, R2 = 1000, R3 = 1040, and for cloud fuzzy model, let
β = 0.20, γ = 0.14.

Example 2: (for Case B) Consider R = 1000 units/year, h = $ 3/unit/year,
A = $ 10/order, I e = 3%/year, c = $ 20/unit, s = $ 30/unit, r = 0.02, θ = 0.03,
M1 = 30/365 years. For fuzzy model, consider R1 = 950,R2 = 1000, R3 = 1040,
and for cloud fuzzy model, let β = 0.95, γ = 0.10.

Example 3: (for Case C) Consider R = 1000 units/year, h = $ 4/unit/year,
A = $ 25/order, I c = 9%/year, I e = 6%/year, c = $ 30/unit, s = $ 45/unit,
r = 0.02, θ = 0.03, M1 = 20/365 years, M2 = 30/365 years. For fuzzy model,
consider R1 = 950, R2 = 1000, R3 = 1040, and for cloud fuzzy model, let β =
0.14, γ = 0.15.

Example 4: (for Case D) Consider R = 1000 units/year, h = $ 6/unit/year,
A = $ 10/order, I e = 6%/year, c = $ 20/unit, s = $ 30/unit, r = 0.02, θ = 0.03,
M2 = 30/365 years. For fuzzy model, consider R1 = 950, R2 = 1000, R3 = 1040,
and for cloud fuzzy model, let β = 0.18γ = 0.14.

Using the method explained in Sects. 1.4.1 and 1.4.2 for fuzzy and cloud fuzzy
model, respectively, the values of decision variables are obtained under different
environments for Example 1, Example 2, Example 3 and Example 4 and results
are shown in Table 1. Also, the comparison between all cases under a different
environment is graphically represented in Fig. 1.

Proof of convexity of total inventory cost function for fuzzy and cloud fuzzymodel
for Case A, Case B, Case C and Case D is shown in Figs. 2, 3, 4, 5, respectively.

Table 1 Optimal solutions for all cases under different environments

Case Environment Cycle time T (in year) Order quantity Q Total cost K (in $)

A (T ≥ M1) Crisp 0.08241 82.51 19,845.49

Fuzzy 0.08247 82.37 19,796.18

Cloud fuzzy 0.19573 195.14 19,751.01

B (T < M1) Crisp 0.0667 66.82 19,825.62

Fuzzy 0.0668 66.73 19,776.43

Cloud fuzzy 0.0820 74.91 15,961.41

C (T ≥ M2) Crisp 0.0940 94.15 30,407.54

Fuzzy 0.0941 94.42 30,332.19

Cloud fuzzy 0.5328 537.17 30,322.53

D (T < M2) Crisp 0.0487 48.83 20,261.93

Fuzzy 0.0488 48.76 20,211.79

Cloud fuzzy 0.0812 80.96 20,129.51
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Fig. 1 Total inventory cost of all cases under different environments

Fig. 2 Convexity of objective function of Case A under fuzzy and cloud fuzzy environment

6 Sensitivity Analysis

To figure out the most critical inventory parameters in fuzzy and cloud fuzzy model,
sensitivity analysis is performed by changing one inventory parameter by −20%, −
10%, 10% and 20% while keeping other parameters unchanged.

Sensitivity analysis for Case A as shown in Figs. 6 and 7 reveals that holding
cost and order cost are highly sensitive parameters under both environments. It can
also be observed from the graphs that increase in selling price also increases the total
inventory cost significantly, while the period of cash discount has negligible effect on
the total inventory cost. Increase of deterioration rate increases the total cost. Further,
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Fig. 3 Convexity of objective function of Case B under fuzzy and cloud fuzzy environment

Fig. 4 Convexity of objective function of Case C under fuzzy and cloud fuzzy environment

increase in interest earned results in to lower inventory cost. Under both fuzzy and
cloud fuzzy environments, increase in interest charged increases the total inventory
cost, which suggests retailer to make the payment as early as possible in order to
minimize the total inventory cost. The sensitivity analysis also concludes that cloud
fuzzy parameters β and γ are highly sensitive to the inventory cost. Further, it can be
clearly concluded from the graph that the behaviour of all the inventory parameters
is same under both the environments.
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Fig. 5 Convexity of objective function of Case D under fuzzy and cloud fuzzy environment

Fig. 6 Sensitivity analysis for Case A under fuzzy environment

Fig. 7 Sensitivity analysis for Case A under cloud fuzzy environment
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7 Conclusion and Future Scope

This paper has extended theChang andTeng (2004)model over fuzzy and cloud fuzzy
environments. Cloud fuzzy is the newly introduced concept in modelling inventory
problems. Demand was characterized by triangular fuzzy number and cloud trian-
gular fuzzy number. Throughout the study, it has been observed that the results
obtained under uncertain environments are much economic than in the crisp model.
The present study proved the superiority of cloud fuzzy model over crisp and fuzzy
model. Yager’s ranking index was used for defuzzification. Choosing the best case
for retailer mainly depends upon three parameters: interest earned, interest charged
and cycle time of the inventory. In order to minimize the total inventory cost, retailer
should carefully select the time of payment by observing the interest earned, interest
charged and cycle time. Numerical example and sensitivity analysis were carried
out, and changes in solutions under different environments were analysed. The study
has the scope of extension by assuming more than one parameter as fuzzy and cloud
fuzzy numbers.
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department.
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An Application of PSO to Study Joint
Policies of an Inventory Model
with Demand Sensitive to Trade Credit
and Selling Price While Deterioration
of Item Being Controlled Using
Preventive Technique

Poonam Mishra, Azharuddin Shaikh, and Isha Talati

Abstract This article contributes a joint inventory model for single deteriorating
item with acceptable delay in payment. Effect of deterioration is considered and it
is controlled by making an appropriate investment in preservation technology. The
retailer gets credit period from the manufacturer with a deal to share portion of profit
during this term and settle the accounts at the end of it. To boost the sales retailer
permits credit period to a fraction of customers. To investigate the scenario mathe-
matical model has been developed representing different cases. The corresponding
problem is a nonlinear constrained optimization problem which is optimized by
deploying Particle Swarm Optimization (PSO) algorithm. The objective is to clev-
erly decide unit selling price with suitable investment for preventive measures, cycle
time and extended credit period; which maximizes the total profit. Lastly, to authen-
ticate the model examples are presented and to examine the inventory parameters
sensitivity analysis is carried out.
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1 Introduction

The concept of paying the cost price of an item at its delivery time has now
been outdated. In business transaction, offer of permissible credit period for stock
purchased acts as a marketing tool for enhancing the sales, because it buys time for
clearing accounts. Generally, in market, when the items are procured the account is
not immediately settled by retailer; retailer gets some time from the supplier. Nowa-
days, permissible delay in payment is a common practice among players of supply
chain. From supplier’s view, offering delay in payment attracts retailer and results
increase in sales with reduced holding cost. For retailer, delay in payment reduces
the opportunity cost of monetary fund to be invested, while retailer can also make
surplus income by investing generated revenue in some interest bearing account
during the permitted term. Hence, both supplier and retailer get benefited by imple-
menting permissible delay period. The first Economic Order Quantity (EOQ) model
permitting fixed delay period after the products are received is given byGoyal (1985).
Afterwards, Aggarwal and Jaggi (1995) proposed inventory model with permissible
delay for deteriorating items. For detailed review of permissible delay (trade credit)
into inventory models refer Chang et al. (2008) and Soni et al. (2010). Sarkar (2012)
discussed an inventory model that allows delay in payments in presence of imperfect
production. For demand dependent on selling price and permissible delay period,
Giri and Maiti (2013) proposed a model in which retailer takes bank loan to clear the
debt. Mishra et al. (2019) determined the best payment option for the retailer along
with finding the optimal cycle time.

It is not just that the supplier can avail the benefit by offering permissible credit
period, even retailer can improve his sales by extending credit period to the end
customers. To demonstrate that retailer also gets benefitted when permissible delay
period availed from the supplier is extended to end customer, Huang (2003) proposed
an EOQ model. In this model, delay period (N) offered to end customer by retailer
was assumed to be less than the credit period (M) received. Later, by easing the
assumptionN <M, Teng andChang (2009) studied anEconomicProductionQuantity
(EPQ) model. This setup is also termed as two-level trade credit. Few articles using
two-level trade credit policy are Min et al. (2010), Kaanodiya and Pachauri (2011),
Shah et al. (2014), Shaikh and Mishra (2018). The mentioned articles emphases to
reveal optimal strategies either from the supplier or retailer point of view.

There are a number of competitors in supply chain network and to survive in such
situation is a difficult task. The motto of every competitor is to enhance the busi-
ness by different means. In a non-integrated supply chain, members have different
motives and this possibly can clash with supply chain’s objective. To enhance the
productivity of supply chain network, members should unite and make decisions
jointly, which can help in fulfilling customers need at lowest inventory cost. The first
integrated model to study inventory policies was given by Goyal (1977). Afterwards,
Abad and Jaggi (2003) combined the concept of permissible delay and integrated
inventory model. Sarmah et al. (2007) gave the idea of sharing profit among the
two members during the credit period. Assuming demand as a downstream credit



An Application of PSO to Study Joint Policies of an Inventory … 21

period function, He and Huang (2013) studied a joint inventory model for items
deteriorating non-instantaneously. In presence of two-level trade credit, Chung and
Cárdenas-Barrón (2013) proposed an easy technique to get optimal solution for an
inventory model with demand dependent on displayed units. In presence of permis-
sible delay, Wu et al. (2014) studied replenishment policies for deteriorating items
with demand reliant on price and stock. Aggarwal and Tyagi (2014) examined credit
and inventory policies with demand related to date terms credit. Shah (2015) formu-
lated an integrated model with an agreement of profit-sharing under two-level trade
credit. Mishra and Shaikh (2017a) established an integrated model utilizing two
warehouses with demand dependent on displayed units and trade credit liable on
order size. Mishra and Shaikh (2017b) also studied ordering and pricing policies in
an integrated environment for stock and price sensitive demand.

Another important concern for inventory items is deterioration, it is unavoidable.
It plays a substantial role in inventorymodelling as utility of item is affected. It occurs
for items such as edibles, milk products, clothing, fashion accessories, and medical
supplies. To overcome the effect of deterioration preventive steps should be taken.
Several researchers have formulatedmodels for controlling deterioration by investing
in preservation technology. The first EOQ model including exponential decay was
given by Ghare (1963). Hariga (1995) studied an EOQ model incorporating short-
ages for deteriorating items and demand varying with time. An EOQ model under
inflationary conditions for deteriorating items with time-varying demand is given by
Jaggi and Mittal (2003). Jaggi and Mittal (2011) also gave an EOQ model in pres-
ence of imperfect quality for deteriorating items. In presence of imperfect quality
and demand dependent on displayed stock, Shah and Shah (2014) developed an
inventory model incorporating the effect of inflation. For preservation of seasonal
products, Sarkar et al. (2017) presented an inventory model with stock-dependent
demand. Mishra et al. (2017) studied an EOQ model with demand dependent on
displayed stock and selling price. An imperfect manufacturing system considering
quadratic demand with inflation was given by Shah et al. (2017). Mishra and Shaikh
(2017c) studied joint decision policies using preservation technology to control dete-
rioration with quadratic demand sensitive to permissible credit period. Shaikh and
Mishra (2019) formulated an inventory model for deteriorating items following price
sensitive quadratic demand with suitable investment in preservation technology in
an inflationary environment.

Generally, optimal solutions for most of the inventory models are obtained by
traditional or gradient-based optimizationmethods.While employing thesemethods,
one frequently faced limitation is that the traditional approach gets stuck to the local
maxima or minima. In addition, these methods are unable to optimize nonlinear
constrained complex problems. To overcome such limitations many evolutionary
algorithms are used these days to solve real-world problems, Genetic Algorithm and
particle swarm optimization (PSO) are two of them. Hence, the use of evolutionary
algorithms would be advantageous as there will be less chances of getting stuck at
local extrema while using them. For an inventory model with two warehouses and
permissible delay, Bhunia and Shaikh (2015) utilized PSO to study optimal poli-
cies for deteriorating units. In an inventory model with items deteriorating in nature
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and demand dependent on marketing strategy and displayed stock, Bhunia et al.
(2018) used Genetic Algorithm and PSO to frame optimal strategies. These search
techniques are also used in optimizing the Multi-objective function. Garai and Garg
(2019) studied multi-objective linear fractional inventory model with possibility and
necessity constraints under intuitionistic fuzzy set environment. Shaikh et al. (2020)
utilized Multi-objective Genetic Algorithm to allocate order in the list of available
suppliers. Mishra et al. (2020) also used Multi-objective Genetic Algorithm to opti-
mize the supply chain network through player selection.Waliv et al. (2020) presented
a nonlinear programming approach to solve the stochastic multi-objective inventory
model using the uncertain information. The use of heuristic search techniques for
obtaining optimal solution has been rarely used by researchers working in the area
of inventory management.

Reviewing the available literature, gap for an integrated inventory model under
the following condition is observed; (i) the retailer’s demand increases with hike in
permissible delay period offered to customer and decreases with hike in unit selling
price, (ii) retailer gets a fix time slot from the manufacturer with a mutual agreement
to share fraction of profit, (iii) items are deteriorating and precautionarymeasures are
taken to control it, (iv) lastly, to determine the optimal value of decision variables the
use of PSO algorithm is rarely done by researchers working in the area of inventory
management. Hence, these are a few gaps as per our observation and proposed model
is an attempt to fill it up.

This chapter is an effort to study the joint policies of manufacturer and retailer by
means of an integrated inventorymodel. The retailer’s demand function is assumed as
an elevating function of permissible delay period offered to customer, while declining
function of unit selling price. Retailer avails fix credit period from the manufacturer
with a mutual agreement to share fraction of profit during this period. Inventory
items are deteriorating in nature and to control the deterioration process, appropriate
amount is to be invested in preservation technology. The aim is to cleverly decide unit
selling price with suitable investment for preventive measures, cycle time and credit
period to be offered; which maximizes the total profit. The succeeding part of this
chapter is arranged in the following manner. The notations used and assumptions
made for proposed model is given in Sect. 2. In Sect. 3, the math modelling is
done which leads to formulation of objective function. Along with this we present
an overview of particle swarm optimization (PSO) algorithm. Then, to authenticate
the model and to test the performance of the PSO algorithm, numerical examples
are presented in Sect. 5. In Sect. 6, sensitivity analysis of inventory parameters is
conducted. Lastly, in Sect. 7 conclusion is presented.

2 Notation and Assumptions

The notations used and assumptions made for proposed model are as follows:
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2.1 Notation

Inventory Parameters for Retailer

Ar Retailer’s ordering cost per order
Cr Retailer’s unit purchase cost
hr Holding cost per annum
θ Constant deterioration rate, 0 ≤ θ < 1
δ Fraction of profit to be shared with manufacturer during the

credit period M ; 0 ≤ δ < 1
Ib Interest rate on the loan taken from bank
Ie Interest earned rate by the retailer
γ Fraction of customer allowed by retailer to avail a trade credit

period N
Ir(t) Retailer inventory level at time t
f (u) = 1 − 1

1+μu Proportion of reduced deterioration of item
πr Retailer total profit per unit time

Inventory Parameters for Manufacturer

Cm Manufacturing cost of item per unit, Cm < Cr

Am Manufacturer setup cost per lot
hm Holding cost per annum
M Credit period retailer gets from the manufacturer
Im Interest rate lost by manufacturer because to offering permissible delay

period
Tm = xT Manufacturer time delay to initiate the production, (0 < x < 1)
Im(t) Manufacturer inventory level at time t
πm Manufacturer total profit per unit time

Decision Variables

T Cycle time
N Credit period offered to end customer by retailer
S Retailer unit selling price, S > Cr

u Investment in preservation technology

For PSO

r1, r2 Random variable which is uniformly lying between [0, 1]
p_size Size of the population
c1(> 0) Cognitive learning rate
c2(> 0) Social learning rate
m-gen Maximum iteration/generation
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x (k)
i Velocity of ith particle at kth iteration/generation
p(k)
i Best previous position of ith particle at kth iteration
p(k)
g Position of best particle among all other particle in the population

χ Constriction factor

Inventory Parameters Relation

N ≤ M

S > Cr > Cm

0 ≤ θ < 1

Functions

D(N , S) Retailer’s demand rate; D(N , S) = α − ηS + βN , where α > 0
represents scale demand, η > 0 signifies price elasticity and β > 0
is trade credit markup rate

P(N , S) Manufacturer production rate proportionate to retailer’s demand
rate, P(N , S) = λ · D(N , S), λ > 1

π(N , S, T, u) Joint total profit of manufacturer and retailer (πm + πr)

The aim of the integrated inventory model is stated as:

Max π(N , S, T, u)

Subject to,

N ≤ M,

N , S, T, u ≥ 0

2.2 Assumptions

1. Inventory system consists of lonemanufacturer, lone retailer dealing with single
item.

2. The retailer’s demand function is assumed as an elevating function of permis-
sible delay period offered to customer, while declining function of unit selling
price. Therefore, demand rate is expressed as D(N , S) = α − ηS+βN . In this
chapter, D(N , S) and D are used interchangeably for notational convenience.

3. Manufacturer’s production rate P(N , S) is more than the retailer’s demand
D(N , S). This indicates manufacturer has adequate production ability to meet
retailer’s demand.
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4. Retailer avails fix credit period (M) from the manufacturer with a mutual
agreement to share fraction of profit during this period.

5. When the cycle time exceeds the delayperiodpermitted bymanufacturer, retailer
is bound to clear the accounts from the spare of his sales revenue. However,
retailer does not have adequate fund to settle the accounts. So, to pay the rest
of purchase cost at the end of the credit period M retailer avails a bank loan at
an interest rate Ib. Later, retailer pays the loan amount to the bank at the end of
the cycle time.

6. During the permitted delay period, manufacturer incurs an interest loss at the
rate of Im. Further, retailer earns interest on generated income at the rate of Ie.

7. Only a fraction of customers is provided credit period (N < M) by the retailer.
8. The quantity of reduced deterioration rate f (u) is presumed to be continuously

increasing and concave function of u (i.e., preservation technology investment),
i.e., f ′(u) > 0 and f ′′(u) < 0. Also f (0) = 0, in this model f (u) and f are
used interchangeably for notational convenience.

9. Shortages are not allowed. Planning horizon is infinite and lead time is zero.

3 Mathematical Model

3.1 Retailer’s Total Profit Per Unit Time

In the proposed model, the following differential equation indicates the status of
retailer’s inventory level Ir(t) at time t :

dIr(t)

dt
+ θ(1 − f )Ir(t) = −(α − ηS + βN ), 0 ≤ t ≤ T (1)

with Ir(0) = Q and Ir(T ) = 0. The solution of (1) using Ir(T ) = 0 is,

Ir(t) = (α − ηS + βN )

θ(1 − f )

[
1 − exp(θ(1 − f )(T − t))

]
(2)

Employing the other condition Ir(0) = Q and (2), optimal order quantity is

Q = (α − ηS + βN )

θ(1 − f )

[
1 − exp(θ(1 − f )(T ))

]
(3)

Further, costs associated with retailer’s total profit are

• Sales revenue generated, SRr = S
[∫ T

0 (α − ηS + βN )dt
]

• Purchase cost, PCr = CrQ
• Ordering cost, OCr = Ar
• Investment in preservation technology, IPT = u
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• Holding cost, HCr = hr
[∫ T

0 Ir(t)dt
]
.

Next, depending on the values of M, N and T , i.e., delay period availed and
offered by the retailer and cycle time T . Either of the three situation may arise (i)
N ≤ M ≤ T , (ii) N ≤ T ≤ M and (iii) T ≤ N ≤ M . Further explanation of each
scenario is as follows:

Case I: N ≤ M ≤ T

According to the contract, during the permitted delay period [0, M] retailer is bound
to share δ% of the profit with the manufacturer. Therefore, the profit shared with
manufacturer is, FP1 = δ(S − Cr)

∫ M
0 (α − ηS + βN )dt and the remaining of the

sales revenue can be utilized to clear the accounts. At the end of the credit period
M , retailer avails a bank loan at an interest rate Ib. When the cycle time ends retailer
pays the loan amount to the bank. Therefore, interest charged by the bank is,

ICBr = Ib

⎡

⎣Cr

T∫

0

(α − ηS + βN )dt − S

M∫

0

(α − ηS + βN )dt + FP1

⎤

⎦(T − M)

(4)

Next, during the cycle time interest earned by the retailer is,

IEr1 = IeS

⎡

⎣
M∫

0

((α − ηS + βN ) · t)dt +
T−M∫

0

((α − ηS + βN ) · t)dt
⎤

⎦ (5)

Also, opportunity cost bared by retailer for offering partial credit period N is,

OLr1 = γ IeS

⎡

⎣
N∫

0

((α − ηS + βN ) · t)dt
⎤

⎦ (6)

Hence, retailer’s profit per unit time is given by,

πr1 = 1

T
(SRr − PCr − OCr − HCr − FP1 − ICBr − OLr1 + IEr1) − IPT (7)

Case II: N ≤ T ≤ M

In this case, the profit shared with manufacturer during permissible delay period is,
FP2 = δ(S − Cr)

∫ T
0 (α − ηS + βN )dt and interest earned during the cycle time by

the retailer is,
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IEr2 = IeS

⎡

⎣
T∫

0

((α − ηS + βN ) · t)dt + Q(M − T )

⎤

⎦ (8)

Also, retailer’s opportunity loss during [0, N ] is,

OLr2 = γ IeS

⎡

⎣
N∫

0

((α − ηS + βN ) · t)dt
⎤

⎦ (9)

Here, the retailer has sufficient fund to settle the accounts, so there is no need of
taking loan from the bank. Therefore, retailer’s profit per unit time is given by,

πr2 = 1

T
(SRr − PCr − OCr − HCr − FP2 − OLr2 + IEr2) − IPT (10)

Case III: T ≤ N ≤ M

Here, the profit shared with manufacturer during permissible delay period is same
as in case II, FP2 = δ(S − Cr)

∫ T
0 (α − ηS + βN )dt and interest earned during the

cycle time by the retailer is,

IEr3 = IeS

⎡

⎣
T∫

0

((α − ηS + βN ) · t)dt + Q(M − T )

⎤

⎦ (11)

Also offering credit period to end customer retailer incurs opportunity loss during
[0, N ] which is given by,

OLr3 = γ IeS

⎡

⎣
T∫

0

((α − ηS + βN ) · t)dt + Q(N − T )

⎤

⎦ (12)

For this scenario, the retailer has adequate fund to settle the accounts, so there
is no need of taking loan from the bank. Therefore, retailer’s profit per unit time is
given by,

πr3 = 1

T
(SRr − PCr − OCr − HCr − FP2 − OLr3 + IEr3) − IPT (13)
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3.2 Manufacturer Total Profit Per Unit Time

In the proposed model, the following differential equation indicates the status of
manufacturer inventory level Im(t) at time t :

dIm(t)

dt
= P(N , S) − D(N , S), Tm ≤ t ≤ T (14)

with Im(T ) = 0. The solution of (14) using this condition is,

Im(t) = (λ − 1)(α − ηS + βN )(t − T ) (15)

The manufacturer total profit per unit time consists of setup cost, holding cost,
opportunity loss sales revenue and production cost.

• Setup cost, OCm = Am

• Holding cost, HCm = hm
[∫ T

Tm
Im(t)dt

]

• Interest loss happened for offering trade credit M to retailer,

OLm = ImCrM

⎡

⎣
T∫

Tm

λ · (α − ηS + βN )dt

⎤

⎦ (16)

Under the contract, δ% of the profit made by the retailer is shared with the manu-
facturer during the permissible delay period. Thus, the portion of profit availed by
manufacturer is given by,

FPm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

FPm1 = δ(S − Cr)
M∫

0
(α − ηS + βN )dt, M ≤ T

FPm2 = δ(S − Cr)
T∫

0
(α − ηS + βN )dt, M > T

(17)

Therefore, total profit of manufacturer per unit time is given by

πm1 = 1

T

⎡

⎢
⎣(Cr − Cm)

T∫

0

(α − ηS + βN )dt − OCm − HCm − OLm + FPm1

⎤

⎥
⎦, M ≤ T (18)

πm2 = 1

T

⎡

⎢
⎣(Cr − Cm)

T∫

0

(α − ηS + βN )dt − OCm − HCm − OLm + FPm2

⎤

⎥
⎦, M > T (19)
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3.3 Joint Profit of Supply Chain

The joint total profit of integrated supply chain is given by sum of retailer and
manufacturer profit, which is a multivariable function of partial trade credit, selling
price, cycle time and preservation technology investment. Hence, depending on the
cycle time and permissible delay period duration, joint total profit per unit time of
supply chain is given by:

π(N , S, T, u) =
⎧
⎨

⎩

π1(N , S, T, u) = πr1 + πm1, N ≤ M ≤ T
π2(N , S, T, u) = πr2 + πm2, N ≤ T ≤ M
π3(N , S, T, u) = πr3 + πm2, T ≤ N ≤ M

(20)

The aim is tomaximize joint total profit of the supply chainwith partial trade credit,
unit selling price, cycle time and preservation technology investment as decision
variables.

4 Solution Procedure

Several researchers have effectively employed heuristic search techniques to opti-
mize their difficult problems in various streams of sciences. Few of the well-known
techniques are simulated annealing, Genetic Algorithm, ant colony optimization and
particle swarm optimization. For this study, we utilize the commonly used particle
swarm optimization method for optimizing the objective function formed.

Based on the individual experience and social interaction of the population,
Particle swarm optimization (PSO) is a heuristic global search technique. This tech-
nique was anticipated by Eberhart and Kennedy (1995a, 1995b). Getting inspiration
from the social behaviour of bird gathering or fish schooling, this technique is gener-
ally used to optimize challenging problems. PSO algorithm initiates with random
set of solutions (also known as particles) flying in the search space. These particles
hunt for the optima in each iteration (also known as generation) by following the
current optimal solutions. In each iteration, position of all the particles is updated by
utilizing two best solutions. One of these best solutions is the personal best position
so far attained by the particle and is denoted by p(k)

i , while the second one is the
present best position so far attained by any of the particle and is denoted by p(k)

g .
In every iteration, the velocity and position of ith (i = 1, 2, …, p_size) particle is

updated by using:

v
(k+1)
i = wv

(k)
i + c1r1

(
p(k)
i − x (k)

i

)
+ c2r2

(
p(k)
g − x (k)

i

)
(21)

and

x (k+1)
i = x (k)

i + v
(k+1)
i (22)
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where k (= 1, 2, …, m-gen) represents the iterations (generations); w is the inertia
weight. The cognitive learning rate c1(> 0) and social learning rate c2(> 0) are the
responsible acceleration constants for varying the particle velocity in the direction
of p(k)

i and p(k)
g respectively.

The updated velocity of ith particle is given by (21) which involves three compo-
nents. The explanation of each of this component is as follow: (i) particles velocity
in previous iteration, (ii) the distance between particle’s current and previous best
position and (iii) the distance between particle’s current and swarm’s best position
(the optimal position of particle in the swarm). The velocity given by (21) is also
restricted by vmax called the maximum velocity of the particle; hence the range of
velocity update is [−vmax, vmax]. Picking too small value for vmax can result to tiny
change in velocity update and particles position at each iteration. As a result, algo-
rithm can take longer time to converge and might face the problem of getting stuck
at local extrema. To get rid of these circumstances, Clerc (1999), Clerc and Kennedy
(2002) proposed a better rule to update velocity by using a constriction factor χ .
Using this factor, the velocity is updated using the following equation,

v
(k+1)
i = χ

[
v

(k)
i + c1r1

(
p(k)
i − x (k)

i

)
+ c2r2

(
p(k)
g − x (k)

i

)]
(23)

Here the constriction factor χ is expressed as

χ = 2
∣∣∣2 − φ − √

φ2 − 4φ
∣∣∣

(24)

where φ = c1 + c2, φ > 4. The constriction factor is a function of c1 and c2.
Generally, values of c1 and c2 is set to 2.05 which results φ as 4.1; hence, the
constriction coefficient value is 0.729. This algorithm is recognized as constriction
coefficient-based PSO.

The search technique of particle swarm optimization is summarized as below:

1. Define the PSO parameters and set bounds for the decision variables.
2. Initialize with a set of particles (solution) from search space with random

positions and velocities.
3. Calculate the fitness value of every particle.
4. For each particle, keep track of the location where particle attains its best fitness

value.
5. Keep track of the location with the global best fitness.
6. Update the velocity and position of each particle.
7. If the termination criterion is fulfilled, go to next step, else go to step 3.
8. Display the location and fitness score of global best particle.
9. End.
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5 Numerical Examples

For PSO parameters we use the subsequent values

p_size = 100, c1 = 2.05, c2 = 2.05 and m-gen = 100.

Example 1: Consider α = 80, β = 0.5, η = 0.7, λ = 1.5, x = 0.1,Cm = $8 per unit,
δ = 10%, Cr = $15 per unit, Ar = $15 per order, hr = $5 per unit per year, Ib =
11% per annum, Ie = 10%per annum, M = 0.6 year, θ = 30%, μ = 15%, hm =
$3 per unit per year, γ = 0.5, Im = 10%per annum and Am = $20 per setup.

Here, the maximum profit is π1 = $604.57 for cycle time is T = 0.8428 years at
unit selling price $41.59, offering credit period N = 0.3008 years to end customers
and investing $10.93 in preservation technology. It represents the scenario N ≤ M ≤
T and Figs. 1, 2, 3, 4, 5 and 6 represents concavity of the profit function.

Example 2: LetM = 0.8 year and values of other inventory parameters as in Example
1. The maximum profit is π2 = $609.97 which comes out for scenario N ≤ T ≤ M
at T = 0.5622 years, S = $41.19, N = 0.2049 years and u = $7.07.

Example 3: Consider β = 1.57, M = 1.2 year and all other parameters same as in
Example 1. The situation T ≤ N ≤ M yields maximum profit as π3 = $623.53
which comesout at T = 1.1168 year, S = $43.56, N = 1.1849 year andu = $13.98.

Figure 7 shows the joint and individual profit for all the three examples, which
represent all the possible cases. Next, to compare the integrated decision making
policy with independent decision making policy we maximize retailer’s total profit
with same values of inventory parameters as in Example 1 (i.e., retailer is the decision
maker). Here the retailer’s total profit turns out to be πr1 = $463.46 for cycle time
T = 0.9574 year at unit selling price $44.94, offering credit period N = 0.2990 year
to end customers and investing $11.18 in preservation technology. It represents the

Fig. 1 Concavity for T and
N. Source Own
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Fig. 2 Concavity for S and
N. Source Own

Fig. 3 Concavity for u and
N. Source Own

scenario N ≤ M ≤ T and for these values the manufacturer’s total profit is $133.16.
Therefore, the joint profit from independent decisionmaking is sumof retailer’s profit
and manufacturer’s profit, which is $596.62. This represents that decision made in
an integrated environment turns out to be more profitable for members of supply
chain compared to independent one. The comparison of integrated and independent
decision for Examples 2 and 3 is also shown in Table 1.
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Fig. 4 Concavity for S and
T. Source Own

Fig. 5 Concavity for u and
T. Source Own

6 Sensitivity Analysis

To study the impact of inventory parameters in decision making, we consider inven-
tory parameter values same as taken in example 1. Next, by changing each parameter
once at a time by−20%,−10%,+10% and+20% optimal solution is obtained. The
solutions obtained are analysed cautiously and based on it managerial insights are
provided as follows.

In Fig. 8, credit period (N) offered to end customer is plotted for variation in
inventory parameters. It is being observed that increase in manufacturer’s holding
cost, setup cost, manufacturing cost, credit period offered to retailer, retailer ordering
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Fig. 6 Concavity for u and
S. Source Own
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cost, preservation rate and interest rate on amount borrowed increases the delayperiod
(N) offered to end customer. Whereas it increases significantly for markup rate for
trade credit andλ. Other inventory parameters showanegative impact on credit period
(N) offered to end customer; among which scale demand, price elasticity, retailer’s
holding cost and fraction of customer offered trade credit are highly sensitive.

In Fig. 9, impact of inventory parameters on cycle time is observed. The major
observations are; increase in markup for trade credit, manufacturer’s holding cost,
interest loss rate, credit period offered to end customer, manufacturing cost, retailer
ordering cost, preservation rate and interest rate on borrowed amount increases the
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Table 1 Comparison of independent and integrated decision

Example Decision Unit
selling
price ($)

Cycle
time
(year)

Permissible
delay period
offered to end
customer
(year)

Preservation
technology
investment
($)

Joint total
profit ($)

1
(N ≤ M ≤ T )

Integrated $41.59 0.8428 0.3008 10.93 604.57

Independent $44.94 0.9574 0.2990 11.18 596.62

2
(N ≤ T ≤ M)

Integrated $41.19 0.5622 0.2049 7.07 609.97

Independent $43.50 0.3506 0.1109 3.24 590.97

3
(T ≤ N ≤ M)

Integrated $43.56 1.1168 1.1849 13.98 623.53

Independent $45.84 0.9084 1.0560 16.08 612.82

Source Own
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Fig. 8 Variation in credit period offered to end customer (N). Source Own

cycle time. Whereas λ and manufacturer setup cost increases cycle time rapidly.
Other inventory parameters show negative impact on cycle time among which price
elasticity, retailer’s unit purchase cost and holding cost are highly sensitive.

In Fig. 10, unit selling price is plotted for variation in inventory parameters.
It is being observed that increase in fraction of profit shared with manufacturer,
manufacturer’s holding cost, preservation rate and fraction of customer offered trade
credit decreases the unit selling price. Whereas it decreases significantly for price
elasticity. Other inventory parameters show a positive impact on unit selling price;
among which scale demand and unit manufacturing cost are highly sensitive.
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In Fig. 11, effect of inventory parameters on preservation technology investment is
observed. It shows that scale demand and deterioration rate has a high positive impact
on preservation technology investment; while preservation technology investment
decreases for increase in price elasticity and retailer holding cost. Effect of other
inventory parameters can be seen in the figure.

In Fig. 12, the effect of change in inventory parameters on joint total profit can be
seen. The major observations made are; scale demand has a high impact on profit,
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while markup for trade credit, λ, x , manufacturer holding cost, preservation rate,
interest rate on borrowed amount and interest earned rate has a positive impact on
profit. Whereas the other parameters show a negative impact on profit among which
price elasticity, unit manufacturing cost, retailer’s unit purchase cost and holding
cost are highly sensitive.

On the basis of change in values of inventory parameters and their impact, the
manufacturer and retailer can wisely interpret the cause that leads to increase and
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decrease in the values of decision variables. Hence, they can cleverly tune up the
values of decision variables which will lead to favorable outcomes.

7 Conclusion

In this study, we optimize the formulated integrated inventory model using PSO
algorithm. While performing the sensitivity analysis, major observations made are;
(1) Increase in scale demand elevates the total profit with hiked up selling rate,
preservation technology investment and reduces cycle time and credit period offered.
(2) Higher deterioration rate leads to more investment in preservation technology
resulting decrease in profit. (3) Retailer’s holding cost is very negatively sensitive
to all decision variable except for selling price, which reduces the profit. For the
numerical examples presented, integrated and independent decisions are studied and
it has been found that an integrated decision is more fruitful for the supply chain. This
model is applicable for variety of items like grains, vegetables, electronic devices,
utility vehicle, etc. In addition, this model can be extended by allowing shortages,
items possessing fixed lifetime, considering trade credit dependent on order size.
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Optimization of the Berth Allocation
Problem to the Vessels Using Priority
Queuing Systems

Venkata S. S. Yadavalli, Olufemi Adetunji, and Rafid Alrikabi

Abstract In this paper, we study the problem of assignment of suitable berths to
the vessels under different scenarios of vessel berthing policies, priorities and vessel
serving or container handling-off. The problem was solved as a queuing system with
non-preemptive priority. The objective was to maximize the utilization of the berth
under different service levels. Different scenarios for berthing process of vessels
and unloading of containers at the container terminal were considered to evaluate
the performance of the system and to obtain the optimal service level parameters.
The model considered a system in which different types of containers were managed
together in an integratedmanner. The steady-state behaviours of the expectedwaiting
time, queue length, server utilization rate and the optimal number of servers neces-
sary to attain given service levels for the different container types were studied
experimentally under different conditions of arrival and service rates.

Keywords Berth allocation problem · Berthing priorities · Non-preemptive
priority · Queuing model

1 Introduction

The berth allocation problem (BAP) is a dominant issue in a seaport container
terminal. It incurs much attention in the maritime industry by many seaports authori-
ties and terminal operators to improve the terminal efficiency and operations planning
or to minimize the waiting time of vessels and maximize the berth utilization. There
are a lot of incoming vessels or containerships arriving at seaport container terminals
at all times, and these vessels need a number of berths along a quay. Each berth can
serve one vessel within a few days depending on variables such as vessel type and
size, container handling volume, the available number of quay cranes in berthing
area, service priority and berth allocation policy.

V. S. S. Yadavalli · O. Adetunji (B) · R. Alrikabi
Department of Industrial and Systems Engineering, University of Pretoria, Pretoria, South Africa
e-mail: olufemi.adetunji@up.ac.za

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
N. H. Shah and M. Mittal (eds.), Soft Computing in Inventory Management, Inventory
Optimization, https://doi.org/10.1007/978-981-16-2156-7_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2156-7_3&domain=pdf
mailto:olufemi.adetunji@up.ac.za
https://doi.org/10.1007/978-981-16-2156-7_3


42 V. S. S. Yadavalli et al.

Usually, the arriving vessels must wait in a queue until the berths are available to
service them. That means, before berthing, the seaport authority assigns a berthing
position and a berthing time to each vessel.Most seaports aim tominimize thewaiting
time of queuing vessels from the time they arrive at the seaport until container-
handling operations (loading/loading) begin. After berthing, the vessels stay within
the boundaries of the assigned berths, and then, the containers (fully loaded and
empty) are unloaded (loaded) from/to the vessels. When the handling process or
service is completed, the vessels emerge from their assigned berths and depart from
the seaport. The deviation between the actual arrival time and the scheduled arrival
time (or the expected arrival time) of the vessels often results in changes to the
planning and organizing of quay side and yard side operations; viz, there are many
scenarios that deal with how to approach vessel arrival times.When they arrive earlier
than the expected a time, they are berthed immediately, or they are kept waiting at
a container terminal for a period of time before berthing. This type of arrival time
is called the static arrival; i.e., there are no arrival times given for the vessels on the
berthing times. A different approach is used when the vessels cannot berth before
the expected arrival time; i.e., the arrival times for berthing are fixed. This type of
arrival time of vessels is called the dynamic arrival.

There are few studies focused on berth allocation problem, and some studies
deal with both berth allocation and quay crane assignment. The following litera-
ture review provides more details on this topic: Kim and Moon (2003) suggested
a simulated annealing algorithm and formulated a mixed integer linear program-
ming model to minimize the total costs (including the cost due to the non-optimal
berthing location of vessels in a container terminal and penalty cost due to delays in
the departures of vessels). According to the experimental results that were obtained
by using a simulated annealing algorithm and LINDO package for the formulated
model, the researchers found that the simulated annealing algorithm obtains solu-
tions that are similar to the optimal solutions found by the mixed integer linear
programming model, and the results of the algorithm were near-optimal solutions,
and the computational time was within the limits of practical usage. Dai et al. (2004)
studied the berth allocation problem and focused on berth allocation planning opti-
mization in a container terminal. Many scenarios and policies were applied to design
a berthing system to allocate berthing space to vessels in real time close to their
preferred locations at the terminal. The researchers used a simulation model to eval-
uate the performance of their proposed approach, and they found that the results
show that the performance varies according to the various policy parameters adopted
by the terminal operator. Furthermore, according to the moderate load scenario, the
proposed approach is able to allocate space to over 90% of vessels upon arrival,
with more than 80% of them being assigned to the preferred berthing location. Imai
et al. (2005) addressed the berth allocation problem in multi-user container terminals
(the busy container ports with heavy container traffic), by establishing a heuristic
algorithm to minimize the total service times for all ships (the time from arrival
to departure and waiting time). The proposed heuristic algorithm is used to solve
the problem in two stages; the first stage identifies a solution given the number of
partitioned berths, and the second stage relocates the ships that may overlap or be
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located sparsely in a scheduling space. They found that the algorithm can improve
the terminal operation and that it yields a feasible solution to the berth allocation
problem (BAP).

Boile et al. (2006) formulated a mixed integer programming model based on a
heuristic algorithm to optimize berth allocation with service priorities in a multi-user
terminal. The formulated model is used to minimize the weighted total service time
(berthing time and handling time) and to find the optimal berth schedule for the
assignment of ships to the berthing areas along a quay. The numerical experiments
show that the heuristic algorithm is useful to obtain a new berth allocation scheme
to deal with the changes in ship arrival times.

Moorthy and Teo (2006) studied the berth allocation problem and analysed the
impact of the berth template design problem on container terminal operations. They
proposed a robust model and used two methods to evaluate the robustness of the
berth template (service-level waiting time and operational cost connectivity). They
compared between the results that were obtained by using two models (robust and
deterministic) and found that the average delays in the deterministic mode is 1.65 h
with a variance of 2.75, whereas the average delay in the robust model is 0.75 h with
a variance of 1.13. Furthermore, 27 vessels in the robust model’s template have an
expected delay of 0 h, as opposed to 13 vessels in the deterministic mode. The results
indicate that the robust model is the better choice to solve the problem, and that it is
able to find new templates with slightly better waiting time performance, and to keep
the number of overlaps between vessels with minimum number during actual opera-
tions in a container terminal. Krcum et al. (2007) developed amulti-objective genetic
algorithm (using Matlab) to deal with berth and quay cranes assignment problems
and tominimize the total costs due to the berthing and quay crane operation (handling
operation). The proposed algorithm is a useful technique for finding near-optimal
solutions for the problems, and it is used to determine the berthing time and position
of each vessel and the number of cranes to be allocated to the vessel. Theofanis
et al. (2007) suggested a genetic algorithm heuristic to optimize the berth allocation
problem (BAP) and formulated a mixed integer linear programming model to mini-
mize the total weighted service time of all vessels. The scholars studied the discrete
BAP and dynamic BAP that deal with calling vessels with various service priori-
ties. The experimental results show that the optimization-based genetic algorithm
(OBGA) heuristic is more efficient than the genetic algorithm heuristic without the
optimization component in terms of the variance and minimum values of objective
function. Imai et al. (2008) proposed a genetic algorithm-based heuristic to address
the simultaneous berth and quay allocation problem. The formulatedmodel is used to
minimize the total service time (waiting and handling times) and to find the efficient
scheduling process of simultaneous berth and crane allocation at a container terminal.
The computational experiments show that the proposed algorithm is applicable to
solving the problem and determining the berth schedule and quay crane schedule at
the same time.

Golias et al. (2009) studied the berth allocation problem and formulated a mixed
integer programming model to optimize the vessel arrival time. The proposed model
is used to minimize the total waiting and delayed departure time for all vessels. They
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compared between the numerical results of a genetic algorithm (GA-based heuristic)
and CPLEX to investigate the performance of the GA heuristic. The scholars found
that their algorithm can be more beneficial for both the carrier and the terminal oper-
ator under the proposed berth scheduling policy. Javanshir et al. (2010) modified a
mixed integer nonlinear programming model to address the continuous berth alloca-
tion problem (CBAP) to achieve the best service time in a container terminal. The
modified model is used to minimize the service times of the ships (the time spent
from arrival to departure including the waiting time). Many numerical experiments
are carried out to find the optimal berthing time and berthing location of each ship,
as well as the expected ship delay. According to the outputs and results, they found
that the modified model provided better analysis of the berth allocation problem in
a more acceptable computational time.

Zeng et al. (2011) studied the disruption management problem of berth alloca-
tion in a container terminal and developed a mixed integer programming model
and a simulation optimization algorithm to optimize the simultaneous berth alloca-
tion (berthing position and berthing order of each vessel) and quay crane scheduling
problems. The objective of the paper is to decrease the influence of unforeseen disrup-
tions to operation system and decrease the additional cost resulting from disruptions.
They applied a simulation optimization approach to assess the influence of disrup-
tions and optimize the new berth schedule coping with disruptions. The numerical
experiments indicate that the algorithm based on local rescheduling and Tabu search
can improve the computation efficiency. Shan (2012) applied a genetic algorithm
(coded in LINGO 11.0) to optimize the dynamic berth allocation with a discrete
layout. The optimization model is used to minimize the total service time (waiting
time and handling time) of all ships with the consideration of ships service priority.
The proposed algorithm is useful for improving the container terminal management,
and it can find a better solution to the problem. Ma et al (2012) focused on berth
allocation planning and proposed an integrated model of combining berth allocation
problems and quay cranes assignments to improve container terminal performances.
The proposed model is used to minimize the total service time (vessel waiting time
andhandling time) andvessel transfer rate. It is based on a two-level genetic algorithm
(TLGA) tomaximize the performance of the terminal in terms of service quality. The
numerical experiments show that the proposed (TLGA) can achieve better solutions
for BAP in serving more important customers and that it is capable of solving the
two problems simultaneously.

Hendriks et al. (2013) formulated a mixed integer quadratic programme (MIQP)
to deal with both the berth allocation problem (BAP) and yard planning problem
(YPP) or yard allocation problem (YAP) simultaneously (case study in PSAAntwerp
Terminal). An alternating BAP-YAP heuristic is used to solve the formulated model,
and the model is used to minimize the overall straddle carrier travel distance between
quay and yard and between yard and hinterland. According to the results that were
obtained by using CPLEX 11 to solve the problems, the researchers found that the
alternating procedure yields significant reductions in the total straddle carrier driving
distance compared with the initial condition. Sheikholeslami et al. (2013) proposed
a simulation model (using ARENA simulation package) to address the problem of
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integrating berth allocation and quay crane assignment. The proposed simulation is
applied on Rajaee Port in Iran, and it is used to evaluate the berth allocation planning
and the problems in this domain. Three different policies of berth allocation (random-
ized allocation, length-based allocation and draft-based allocation) are examined by
simulation model to test the performance of berth allocation plans. Results obtained
from the simulationmodel indicated that the strategies of length-based allocation and
draft-based allocation are dominated by random allocation scenario based on wait
time and average anchorage queue length.Most of the researches and studies focused
on the optimization of berth allocation problem, and they proposed many models to
minimize the total service time for the vessels that arrive at container terminals. The
proposed models are based on waiting time, handling time and delay time.

In this paper, the queuing theory (queuing system with non-preemptive priority)
is used to study the behaviour and characteristics of berth allocation problem, as
well as to understand the assignment of suitable berths to the vessels under different
scenarios of berthing policy or priorities and vessel serving. The outline of this study
is organized as follows: Sect. (2) discusses and describes briefly the problem of
berthing of vessels at container terminals. In Sect. (3), a model is proposed to deal
with the problem and to find the system characteristics of the berthing process of
vessels from the time they arrive until the time they leave theboundaries of the seaport.
In Sect. (4), numerical experiments are presented and the experimental results are
discussed. Finally, in Sect. (5), the study is summarized and concluded.

2 Problem Description

When vessels or containerships arrive at a seaport container terminal, they are
required to be in a queue before berthing. There are usually a set of incoming vessels
that must wait in queue until the berths are available. The quay of a container terminal
consists of many berths, each of which can serve one vessel within a few days (see
Fig. 1). Sometimes, the berth can handle two small vessels or more, and sometimes,
large vessels require two berths along a quay in order to load/unload their containers.
Prior to berthing, the expected time of arrival for each visiting vessel depends on
several factors such as the departure time of the vessel from the previous seaport, the
distance between the origin seaport and the destination seaport, the average oper-
ating speed of vessel, weather conditions and other unforeseen events. There are
some vessels which arrive at the seaport container terminal earlier or later than the
expected time. When the seaport authority assigns a set of berths to a set of vessels,
the terminal operator will then allow the vessels tomoor at the berths according to the
berths scheduling policy and priority. The selection of suitable berths to the vessels
depends on many factors such as the length, the drafts and the size of vessels (capac-
ities), the type of service, type and number of quay cranes, the lengths and the depth
of berths. Most of container terminals aim to moor the vessels in berthing positions
that are as near as possible to the preferable container stacking area in order to facil-
itate container transhipment from/to the vessels and to minimize the handling time.
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Fig. 1 Schematics of vessels berthing inside a container terminal

After berthing, usually, the incoming vessels are stationed at the assigned berths for a
few days for the de-lashing of containers and container handling (loading/unloading)
processes. Sometimes, before berthing at the assigned berths, the vessels wait for a
short term at lay-by berths., There are many operations and activities that are asso-
ciated with the arrival of vessels at the seaport (from the time they arrive until the
time they leave the boundaries of the seaport). Any delay in the sequence of oper-
ations and activities of the vessel berthing process leads to seaport congestion and
disruptions in container terminals. Furthermore, the delays incur an additional expen-
diture, especially if the waiting time of vessels and equipment (Quay Cranes, Yard
Trucks, Yard Cranes) are taken into account. The container terminal cannot avoid
the seaport congestion or the accumulation problem of large numbers of vessels
inside the seaport when the arrival rate of vessels is high. That means the terminal
operator must institute many kinds of berthing priorities to serve all vessels such as
Berthing OnArrival (BOA), Largest Vessel-First (LVF), Smallest Vessel-First (SVF)
and Shortest Service Time First (SSTF). The objective of this research is to apply
queuing theory to optimize the vessel berthing process and to improve performance.

3 Mathematical Model

This problem is modelled as a queuing system to understand the behaviour and
characteristics of berth allocation problem or the assignment of suitable berths to the
vessels under different scenarios of berthing policy or priorities and of vessel serving.
When the incoming vessels (or containerships) arrive at the container terminal, they
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are assigned to berthing positions at determined schedules. The seaports authorities
and container terminal operators have to decide howmany berths and quay cranes are
assigned to these vessels. Usually, the visiting vessels must wait in a queue until the
berths are available to service them, and sometimes, the vessels must be subjected
to the berth allocation policy or service priority specially, particularly when there
are a lot of incoming vessels or containerships arriving at the seaport’s container
terminals. That means the vessels must spend times in a queue, until the seaport
authority assigns a berthing position and a berthing time to each vessel according to
the berthing priorities. In general, the incoming vessels must be moored and served
within the boundaries of the quay. When the inbound containers arrive at quay side,
they are de-lashed and then served by quay cranes, luffing cranes or portainers; i.e.,
the containers are de-lashed and unloaded from vessel or containership by cranes,
and then, they are moved from quay side to the container yard or stacking area by
trucks, automated guided vehicles (AGVs) or straddle carriers.

The arrival of the inbound containers at seaport has a rate λ and the inter-arrival
time (the average interval between consecutive container arrivals) or average time
between arrivals (containers) can be expressed as 1/λ. When the arrival vessels (that
carry the inbound containers) are subjected to the berth allocation priority, then the
arrival rate under priority class k becomes λk and the average time between arrivals
(containers) under priority class k can be expressed as 1/λk. After berthing, the
containers (fully loaded and empty) are discharged from the vessels, and the service
rate of handling-off process (under priority class k) is performed by quay cranes and
can be expressed as μk, and the mean service time (under priority class k) can be
expressed as 1/μk.

The average utilization (or the utilization factor) of the system is the ratio between
the arrival rate and service rate or the ratio between mean service time 1/μ and mean
inter-arrival time 1/λ, and can be expressed as ρ = λ

μ
or ρ = λ

r∗μ
, where r the

number of servers in the system. The utilization factor under priority class k can be
expressed as ρk = λk

μk
.

ρ =
k=p∑

k=1

ρk, where k = 1, 2 . . . p

λ =
k=p∑

k=1

λk,where k = 1, 2 . . . p

μ =
k=p∑

k=1

μk,where k = 1, 2 . . . p

Actually, in queuing system, there are one or more servers that provide service
to the arriving customers. In our case study, the customers are containers and the
servers are quay cranes. We assume the queuing system in our case as single server
non-preemptive with 2-priorities. In this queuing system, we assume the arrivals
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follow a Poisson probability distribution at an average rate of λ containers per unit
time (hour). Also, we assume the service times are distributed exponentially with
an average rate of λ containers per unit time (hour). We use the state transition
diagram shown in Fig. 2 to formulate the state balance equations for the single server
non-preemptive priority system at a container terminal and derive the steady-state
probabilities by the Markov process method.

Let (N) be maximum number of vessels (or containers) in the system and n the
current number of vessels (or containers) in the system. In our case study N = 2.

P(n) = the probability that there are (n) vessels (or containers) in the system.

(λ1 + λ2)P0,0,0 = μ2P0,1,2 + μ1P1,0,1 (1)

(λ1 + λ2 + μ2)P0,1,2 = λ2P0,0,0 + μ2P0,2,2 (2)

(λ1 + λ2 + μ1)P1,0,1 = λ1P0,0,0 + μ1P2,0,1 + μ2P1,1,2 (3)

μ1P1,1,1 = λ2P1,0,1 (4)

μ2P0,2,2 = λ2P0,1,2 (5)

Fig. 2 State transition
diagram for a 2-priority,
non-preemptive M/M/1/2
queue
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μ2P1,1,2 = λ1P0,1,2 (6)

μ1P2,0,1 = λ1P1,0,1 (7)

P0,0,0 + P1,0,1 + P2,0,1 + P1,1,1 + P0,1,2 + P0,2,2 + P1,1,2 = 1 (8)

To simplify the solution for the above steady-state equations, we suppose P0,2,2 =
Z

P0, 2, 2 = Z (9)

Substituting Eq. (9) into Eq. (5), we get

μ2P0,2,2 = λ2P0,1,2
μ2Z = λ2P0,1,2

P0,1,2 = μ2Z

λ2
(10)

Substituting Eqs. (9) and (10) into Eq. (2), we get

(λ1 + λ2 + μ2)P0,1,2 = λ2P0,0,0 + μ2P0,2,2

(λ1 + λ2 + μ2)
μ2Z

λ2
= λ2P0,0,0 + μ2Z

λ2P0,0,0 = (λ1 + λ2 + μ2)
μ2Z

λ2
− μ2Z

λ2P0,0,0 =
(
λ1μ2 + λ2μ2 + μ22

)
Z

λ2
− μ2Z

P0,0,0 =
(
λ1μ2 + λ2μ2 + μ22

)
Z

λ22
− μ2Z

λ2

P0,0,0 =
(
λ1μ2 + μ22

)
Z

λ22
(11)

Putting Eqs. (10) and (11) into Eq. (1), we get

(λ1 + λ2)P0,0,0 = μ2P0,1,2 + μ1P1,0,1

(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

λ22
= μ2

μ2Z

λ2
+ μ1P1,0,1

μ1P1,0,1 = (λ1 + λ2)

(
λ1μ2 + μ22

)
Z

λ22
− μ2

μ2Z

λ2

μ1P1,0,1 = (λ1 + λ2)
(
λ1μ2 + μ22

)
Z

λ22
− μ22Z

λ2
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P1,0,1 = (λ1 + λ2)
(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2
(12)

From Eq. (7) and Eq. (12), we obtain

μ1P2,0,1 = λ1P1,0,1

μ1P2,0,1 = λ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

)

P2,0,1 =
(

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

)
(13)

Substituting Eq. (10) into Eq. (6), we get

μ2P1,1,2 = λ1P0,1,2

μ2P1,1,2 = λ1
μ2Z

λ2

μ2P1,1,2 = λ1μ2Z

λ2

P1,1,2 = λ1μ2Z

μ2λ2
(14)

Finally, putting Eq. (12) into Eq. (4) a, then we get

μ1P1,1,1 = λ2P1,0,1

μ1P1,1,1 = λ2

(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

)

P1,1,1 = λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

)
(15)

From Eq. (8), we can find the value of z by using the equations of the probability

P0,0,0 + P1,0,1 + P2,0,1 + P1,1,1 + P0,1,2 + P0,2,2 + P1,1,2 = 1

((
λ1μ2 + μ22

)
Z

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

))

+
((

λ2

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)
Z

μ1λ22
− μ22Z

μ1λ2

))
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+
(

μ2Z

λ2

)
+ (Z) +

(
λ1μ2Z

μ2λ2

)
(16)

Z

(((
λ1μ2 + μ22

)

λ22

)

+
(

(λ1 + λ2)
(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
((

λ2

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

μ2

λ2

)
+ (1) +

(
λ1μ2

μ2λ2

))
= 1 (16a)

Z = 1/

(((
λ1μ2 + μ22

)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
((

λ2

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))
(16b)

Z =
(((

λ1μ2 + μ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
((

λ2

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(16c)

Then, the steady-state probabilities are:

P0,2,2 =
(((

λ1μ2 + μ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)



52 V. S. S. Yadavalli et al.

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(17)

P0,1,2 = μ2

λ2
∗

(((
λ1μ2 + μ22

)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(18)

P0,0,0 =
(
λ1λ2 + λ22

)

λ22

∗
(((

λ1λ2 + λ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1λ2 + λ22

)

λ1λ22
− λ22

λ1λ2

)

+
((

λ1

λ1

)(
(λ1 + λ2)

(
λ1λ2 + λ22

)

λ1λ22
− λ22

λ1λ2

))

+
(

λ2

λ1

(
(λ1 + λ2)

(
λ1λ2 + λ22

)

λ1λ22
− λ22

λ1λ2

))
+

(
λ2

λ2

)
+ (1)

+
(

λ1λ2

λ2λ2

))−1

(19)

P1,0,1 =
(

(λ1 + λ2)
(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

∗
(((

λ1μ2 + μ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)
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+
(

λ1μ2

μ2λ2

))−1

(20)

P2,0,1 =
(

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

∗
(((

λ1μ2 + μ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(21)

P1,1,2 = λ1μ2

μ2λ2
∗

(((
λ1μ2 + μ22

)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(22)

P1,1,1 =
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

∗
(((

λ1μ2 + μ22
)

λ22

)
+

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

)

+
((

λ1

μ1

)(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))

+
(

λ2

μ1

(
(λ1 + λ2)

(
λ1μ2 + μ22

)

μ1λ22
− μ22

μ1λ2

))
+

(
μ2

λ2

)
+ (1)

+
(

λ1μ2

μ2λ2

))−1

(23)

We suppose the following notations:
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E(Wk): The average time of container spent waiting in the queue or line under
priority class k.

E(Lq
k): The average number of containers waiting in the queue or line under priority

class k.

E(Sk): The average time of container spent waiting in the system, including service
under priority class k.

E(Lk): The average number of containers in the service system under priority class
k.

Let ρk = λkE(Bk) The utilization factor under priority class k.
Then, according to the PASTA property (Poisson Arrivals See Time Averages),

canwefindE(Lq
k).First,wefind the characteristic of queuing system for the container

of class 1. The container of class 1 must wait for the containers of its own class that
arrived before and also for the container (if any) in handling-off process (in service).

E(W1) = E(Lq
1)∗E(B1) +

k=p∑

k=1

ρk E(Rk) (24)

ρ =
k=p∑

k=1

ρk, where k = 1, 2 . . . p (25)

E(R) =
k=p∑

k=1

ρk

ρ
E(Rk), where k = 1, 2 . . . p (26)

Substituting Eqs. (25) and (26) into Eq. (24), we get

E(W1) = E
(
Lq
1

) ∗ E(B1) + ρE(R) (27)

The term ρ E(R) represents the expected remaining amount of work currently
present at the server (quay crane), i.e. handling-off process.

From Little’s formula down below and utilization factor under priority class
kE(B1), we can find E(W1)

E
(
Lq
1

) = λ1E(W1) (28)

E(W1) = λ1E(W1) ∗ ρ1

λ1
+ ρE(R) (27a)

E(W1) = E(W1) ∗ ρ1 + ρE(R) (27b)

E(W1) − ρ1E(W1) = ρE(R) (27c)
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E(W1)(1 − ρ1) = ρE(R) (27d)

E(W1) = ρE(R)

1 − ρ1
(29)

From Eq. (28), we can find the average number of containers class 1 waiting in
the queue or in line, E(Lq

1).

E
(
Lq
1

) = λ1 ∗ ρE(R)

1 − ρ1
(30)

The average time container class 1 spent waiting in the system, including service
E(S1), can be expressed as:

E(S1) = E(W1) + E(B1) (31)

E(S1) = ρE(R)

1 − ρ1
+ ρ1

λ1
(31a)

The average number of containers class 1 in the service system E(L1) can be
expressed as:

E(L1) = E
(
Lq
1

) + ρ1 (32)

E(L1) = λ1 ∗ ρE(R)

1 − ρ1
+ ρ1 (32a)

We can also find the characteristic of queuing system for the container of class
2. While the container from this class waits in the queue, it must also wait for the
containers for higher priority that arrive late.

E(Wk) =
r=k∑

r=1

E
(
Lq
r

) ∗ E(Br ) + ρE(R) + E(Wk)

r=k−1∑

r=1

ρr (33)

E(Wk) − E(Wk)

r=k−1∑

r=1

ρr =
r=k∑

r=1

E
(
Lq
r

) ∗ E(Br ) + ρE(R) (33a)

E(Wk)

(
1 −

r=k−1∑

r=1

ρr

)
=

r=k∑

r=1

E
(
Lq
r

) ∗ E(Br ) + ρE(R) (33b)

From Little’s formula, we can find (Wk).

E
(
Lq
k

) = λk E(Wk)
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E(Wk)

(
1 −

r=k∑

r=1

ρr

)
=

r=k−1∑

r=1

E
(
Lq
r

) ∗ E(Br ) + ρE(R) (33c)

By replacing k with k−1 from Eq. (33b).

E(Wk)

(
1 −

r=k∑

r=1

ρr

)
=

r=k−1∑

r=1

E
(
Lq
r

) ∗ E(Br ) + ρE(R) = E(Wk−1)

(
1 −

r=k−2∑

r=1

ρr

)

(33d)

From the expression (Wk), we easily drive recursively

E(Wk) = ρE(R)/

(
1 −

r=k∑

r=1

ρr

)(
1 −

r=k−1∑

r=1

ρr

)
, wherek = 1, 2, . . . p (34)

From Little’s formula, we can find the average number of containers class 2 (k=
2) waiting in the queue or line E(Lq

k).

E
(
Lq
k

) = λk ∗
(

ρE(R)/

(
1 −

r=k∑

r=1

ρr

)(
1 −

r=k−1∑

r=1

ρr

))
(35)

The average timeof container class 2 spentwaiting in the system, including service
E(Sk) can be expressed as k = 2

E(Sk) = E(Wk) + E(Bk) (36)

E(S2) = ρE(R)/

(
1 −

r=k∑

r=1

ρr

)(
1 −

r=k−1∑

r=1

ρr

)
+ ρk

λk
(36a)

The average number of containers class 2(k= 2) in the service system E(Lk) can
be expressed as

E(Lk) = E
(
Lq
k

) + ρk (37)

E(Lk) = λk ∗
(

ρE(R)/

(
1 −

r=k∑

r=1

ρr

)(
1 −

r=k−1∑

r=1

ρr

))
+ ρk (37a)
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3.1 Assumptions

The following assumptions are made for the model:

1. We consider that each berth along the quay can serve one vessel within a
specific time, and there is no overlap in the assigned berths for the vessels.
That means the berth cannot handle two small vessels (or more), and the large
vessel cannot occupy two berths (or more) along a quay.

2. The length of the berth must be longer than the length of the vessel and the
clearance (or the space) between two vessels along a quay must be approxi-
mately equal to the width of the biggest vessel; it also must include 15 m for
both sides of vessel (the front and the rear of the vessel) to avoid the overlap of
vessels in terms of the orientation of the vessels locationswithin the boundaries
of berths.

3. The depth of the berth must be greater than the draft (draught) of the vessel,
and the clearance between the keel of the vessel and the channel bottom must
be within the guaranteed depth. The depth of berth depends on many factors
like: draft of vessel, water level in the channel, sinkage due to vessel speed,
unevenness of keel due to loading conditions, wave levels, tidal levels and
dredge level.

4. We consider that in the ideal condition, there are enough equipment (cranes,
trucks, vehicles, etc.) to perform all tasks, functions and operations at a
container terminal. That means there is no delay or waiting in the perfor-
mance of those tasks or functions in terms of lack in the number of equipment
inside a container terminal.

5. When the handling process or service is completed, the vessels leave (depart)
the berths and the seaport immediately.

6. The speed of handling-off/on containers from/to the vessel, depends on number
of quay cranes, the transshipment rate of quay cranes, the simultaneous
operations between quay cranes and yard trucks or automated guided vehi-
cles (AGVs), etc., we assume the service rate of handling-off process for
vessels with high priority is the same as that of vessels with low priority,
i.e. μ = μkh = μkl.

7. When the vessel with high priority arrives at the container terminal, it can
move ahead of all the low priority vessels waiting in the queue, but low priority
vessels in service are not interrupted by high priority vessels; i.e., a vessel in
service is allowed to complete its service normally even if a vessel of higher
priority enters the queue while its service is going on.

8. When the vessels arrive at the seaport earlier than the expected time of arrival,
the terminal operator will decide the vessels which will continue the berthing
process if there are available berths, and this does not have an effect on the
overall berthing strategy.

9. We assume all the vessels moor in berthing positions or locations near the
preferable container stacking area.
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10. We assume the layout of berths in a container terminal is discrete. That means
the quay is divided into a finite set of berths, and each vessel or containership
in this layout can occupy a suitable berth within a specific time. Service time
for the service centres (de-lashing process, quay cranes and yard trucks) is
constant, i.e. static. The arrival of vessels is dynamic, and the vessels cannot
berth before the expected arrival time. That means fixed arrival times are given
for the vessels berthing times, for all vessels to be scheduled for berthing that
have not yet arrived and the arrival times are known in advance.

4 Experimental Results and Discussion

Thirty-two different scenarios for berthing process of vessels and unloading
containers at container terminal are considered in order to find the optimal service
level and to achieve maximum efficiency of service stations. These scenarios vary
from each other in terms of quantities of incoming containers, number of quay cranes
(handling-off) that are used to perform the operations, berthing policy and priorities
as well as vessel serving.

Tables 1a, b and 2 show the analysis and the probabilities of the single server non-
preemptive priority queuing system at a container terminal. Table 3 shows the average
waiting times of containers in the queue and in the system (container terminal), as
well as the average number of containers waiting in the queue and in the system.
Generally, the experimental results show that increment in the number of arrival of
containers according to each priority (high or low) leads to increase in the average
waiting times of containers in the queue and in the system, respectively, as well as
increase the average number of containers waiting in the queue and in the system
(when the service centres have the same values of service rate). In the scenarios no.
(1) to no. (8), we find the increment in the number of arrival containers class 2 (when
the number of arrival containers class 1 remains the same in all scenarios) leads to
increase in E(W2), E(Lq

2), E(L2) and E(S2), respectively, as shown in Fig. 3. In the
scenarios no. (9) to no. (16), we also find that increment in the number of arrival of
containers class 1 (when the number of arrival containers class 2 is the same in all
scenarios) leads to increase in E(W1), E(Lq

1), E(L1) and E(S1)more than the values
that are in the in scenarios no. (1) to no. (8), as shown in Fig. 4. Also, the values of
E(W2), E(Lq

2), E(L2) and E(S2) in scenarios no. (9) to no. (16) are less than the
values in scenarios no. (1) to no. (8). The difference is due to the increment in the
values of ρ1 and ρ2.

In scenarios no. (19) to no. (24), we find when we increase the service rate of
the service centres (quay cranes) for container class 1, μ1, with increment in the
number of arrival containers of class 1, λ1, (while keeping the values of λ2 and μ2

unchanged); this leads to reduction in the values of all E(W1), E(Lq
1), E(L1) and

E(S1) as shown in Fig. 5. In the same manner, for scenarios no. (25) to no. (32), an
increment in the service rate of service centres (quay cranes) for container class 2,μ2,
with an increment in the number of arrival of containers class 2, λ2, (while keeping
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Table 1a Analysis of the single server non-preemptive priority queuing system at a container
terminal

Scenario λ1 λ2 μ1 μ2 ρ1 = λ1/μ1 ρ2 = λ2/μ2 1/λ1 1/λ2 1/μ1

1 0.4 0.42 1.2 1.2 0.3333 0.3500 2.5000 2.3810 0.8333

2 0.4 0.43 1.2 1.2 0.3333 0.3583 2.5000 2.3256 0.8333

3 0.4 0.44 1.2 1.2 0.3333 0.3667 2.5000 2.2727 0.8333

4 0.4 0.45 1.2 1.2 0.3333 0.3750 2.5000 2.2222 0.8333

5 0.4 0.46 1.2 1.2 0.3333 0.3833 2.5000 2.1739 0.8333

6 0.4 0.47 1.2 1.2 0.3333 0.3917 2.5000 2.1277 0.8333

7 0.4 0.48 1.2 1.2 0.3333 0.4000 2.5000 2.0833 0.8333

8 0.4 0.49 1.2 1.2 0.3333 0.4083 2.5000 2.0408 0.8333

9 0.42 0.4 1.2 1.2 0.3500 0.3333 2.3810 2.5000 0.8333

10 0.43 0.4 1.2 1.2 0.3583 0.3333 2.3256 2.5000 0.8333

11 0.44 0.4 1.2 1.2 0.3667 0.3333 2.2727 2.5000 0.8333

12 0.45 0.4 1.2 1.2 0.3750 0.3333 2.2222 2.5000 0.8333

13 0.46 0.4 1.2 1.2 0.3833 0.3333 2.1739 2.5000 0.8333

14 0.47 0.4 1.2 1.2 0.3917 0.3333 2.1277 2.5000 0.8333

15 0.48 0.4 1.2 1.2 0.4000 0.3333 2.0833 2.5000 0.8333

16 0.49 0.4 1.2 1.2 0.4083 0.3333 2.0408 2.5000 0.8333

17 0.72 0.7 1.6 1.5 0.4500 0.4667 1.3889 1.4286 0.6250

18 0.73 0.7 1.65 1.5 0.4424 0.4667 1.3699 1.4286 0.6061

19 0.74 0.7 1.7 1.5 0.4353 0.4667 1.3514 1.4286 0.5882

20 0.75 0.7 1.75 1.5 0.4286 0.4667 1.3333 1.4286 0.5714

21 0.76 0.7 1.8 1.5 0.4222 0.4667 1.3158 1.4286 0.5556

22 0.77 0.7 1.85 1.5 0.4162 0.4667 1.2987 1.4286 0.5405

23 0.78 0.7 1.9 1.5 0.4105 0.4667 1.2821 1.4286 0.5263

24 0.79 0.7 1.95 1.5 0.4051 0.4667 1.2658 1.4286 0.5128

25 0.7 0.72 1.5 1.6 0.4667 0.4500 1.4286 1.3889 0.6667

26 0.7 0.73 1.5 1.65 0.4667 0.4424 1.4286 1.3699 0.6667

27 0.7 0.74 1.5 1.7 0.4667 0.4353 1.4286 1.3514 0.6667

28 0.7 0.75 1.5 1.75 0.4667 0.4286 1.4286 1.3333 0.6667

29 0.7 0.76 1.5 1.8 0.4667 0.4222 1.4286 1.3158 0.6667

30 0.7 0.77 1.5 1.85 0.4667 0.4162 1.4286 1.2987 0.6667

31 0.7 0.78 1.5 1.9 0.4667 0.4105 1.4286 1.2821 0.6667

32 0.7 0.79 1.5 1.95 0.4667 0.4051 1.4286 1.2658 0.6667
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Table 1b Analysis of the single server non-preemptive priority queuing system at a container
terminal

Scenario 1/μ2 ρ1/ρ2 ρ2/ρ1 λ =
λ1 +
λ2

μ =
μ1 +
μ2

ρ =
λ/μ

ρ1/ρ ρ2/ρ Value
of Z

1 0.8333 0.9524 1.0500 0.82 2.4 0.3417 0.9756 1.0244 0.0427

2 0.8333 0.9302 1.0750 0.83 2.4 0.3458 0.9639 1.0361 0.0444

3 0.8333 0.9091 1.1000 0.84 2.4 0.3500 0.9524 1.0476 0.0460

4 0.8333 0.8889 1.1250 0.85 2.4 0.3542 0.9412 1.0588 0.0477

5 0.8333 0.8696 1.1500 0.86 2.4 0.3583 0.9302 1.0698 0.0494

6 0.8333 0.8511 1.1750 0.87 2.4 0.3625 0.9195 1.0805 0.0511

7 0.8333 0.8333 1.2000 0.88 2.4 0.3667 0.9091 1.0909 0.0528

8 0.8333 0.8163 1.2250 0.89 2.4 0.3708 0.8989 1.1011 0.0546

9 0.8333 1.0500 0.9524 0.82 2.4 0.3417 1.0244 0.9756 0.0383

10 0.8333 1.0750 0.9302 0.83 2.4 0.3458 1.0361 0.9639 0.0377

11 0.8333 1.1000 0.9091 0.84 2.4 0.3500 1.0476 0.9524 0.0371

12 0.8333 1.1250 0.8889 0.85 2.4 0.3542 1.0588 0.9412 0.0366

13 0.8333 1.1500 0.8696 0.86 2.4 0.3583 1.0698 0.9302 0.0360

14 0.8333 1.1750 0.8511 0.87 2.4 0.3625 1.0805 0.9195 0.0355

15 0.8333 1.2000 0.8333 0.88 2.4 0.3667 1.0909 0.9091 0.0349

16 0.8333 1.2250 0.8163 0.89 2.4 0.3708 1.1011 0.8989 0.0344

17 0.6667 0.9643 1.0370 1.42 3.1 0.4581 0.9824 1.0188 0.0539

18 0.6667 0.9481 1.0548 1.43 3.15 0.4540 0.9746 1.0280 0.0543

19 0.6667 0.9328 1.0721 1.44 3.2 0.4500 0.9673 1.0370 0.0547

20 0.6667 0.9184 1.0889 1.45 3.25 0.4462 0.9606 1.0460 0.0550

21 0.6667 0.9048 1.1053 1.46 3.3 0.4424 0.9543 1.0548 0.0553

22 0.6667 0.8919 1.1212 1.47 3.35 0.4388 0.9485 1.0635 0.0556

23 0.6667 0.8797 1.1368 1.48 3.4 0.4353 0.9431 1.0721 0.0559

24 0.6667 0.8681 1.1519 1.49 3.45 0.4319 0.9380 1.0805 0.0561

25 0.6250 1.0370 0.9643 1.42 3.1 0.4581 1.0188 0.9824 0.0506

26 0.6061 1.0548 0.9481 1.43 3.15 0.4540 1.0280 0.9746 0.0495

27 0.5882 1.0721 0.9328 1.44 3.2 0.4500 1.0370 0.9673 0.0485

28 0.5714 1.0889 0.9184 1.45 3.25 0.4462 1.0460 0.9606 0.0476

29 0.5556 1.1053 0.9048 1.46 3.3 0.4424 1.0548 0.9543 0.0467

30 0.5405 1.1212 0.8919 1.47 3.35 0.4388 1.0635 0.9485 0.0458

31 0.5263 1.1368 0.8797 1.48 3.4 0.4353 1.0721 0.9431 0.0450

32 0.5128 1.1519 0.8681 1.49 3.45 0.4319 1.0805 0.9380 0.0442
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the values of λ1 andμ1 unchanged) leads to reduction in the values ofE(W2), E(Lq
2),

E(L2) and E(S2) as shown in Fig. 6. That means when the values of ρ1 and ρ2 for
the scenarios no. (19) to no. (32) increase, we see all the values of E(Wk), E(Lq

k),
E(Lk) and E(Sk) decrease accordingly.

5 Conclusions

This paper investigates the problem of assignment the suitable berth to the incoming
vessel under different scenarios of berthing policy and priorities in order to discharge
the vessels. Usually, within a container terminal, the seaport authority assigns a set of
berths to a set of incoming vessels, the terminal operator will then allow the vessels
to moor at the berths according to the berths scheduling policy and priority.

Our objective of this research is to apply queuing theory to optimize the service
level of vessels berthing process and to improve the performance.We consider thirty-
two different scenarios for berthing process of vessels and unloading of containers
at container terminal to find the optimal service level and to achieve maximum
efficiency of service stations. We found the change in the values of ρ1 and ρ2 will
lead to change the values of E(Wk), E(Lq

k), E(Lk) and E(Sk) for all scenarios. Also,
the increment in the values of λk and μk will lead sometimes to decrease the values
of E(Wk), E(Lq

k), E(Lk) and E(Sk) for some scenarios.
In future work, we will study the queuing system with multiple server non-

preemptive priority or with blocking.
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Table. 2 Probabilities of the single server non-preemptive priority queuing system at a container
terminal

Scenario P 000 P 101 P 201 P 111 P 012 P 022 P 112 �P (N)

1 0.46506 0.19571 0.06524 0.06850 0.12208 0.04273 0.04069 1

2 0.46081 0.19489 0.06496 0.06983 0.12384 0.04438 0.04128 1

3 0.45662 0.19406 0.06469 0.07116 0.12557 0.04604 0.04186 1

4 0.45247 0.19324 0.06441 0.07247 0.12726 0.04772 0.04242 1

5 0.44837 0.19243 0.06414 0.07376 0.12891 0.04941 0.04297 1

6 0.44432 0.19161 0.06387 0.07505 0.13052 0.05112 0.04351 1

7 0.44031 0.19080 0.06360 0.07632 0.13209 0.05284 0.04403 1

8 0.43635 0.18999 0.06333 0.07758 0.13363 0.05457 0.04454 1

9 0.46506 0.20296 0.07104 0.06765 0.11483 0.03828 0.04019 1

10 0.46081 0.20565 0.07369 0.06855 0.11308 0.03769 0.04052 1

11 0.45662 0.20826 0.07636 0.06942 0.11137 0.03712 0.04084 1

12 0.45247 0.21081 0.07905 0.07027 0.10969 0.03656 0.04113 1

13 0.44837 0.21329 0.08176 0.07110 0.10804 0.03601 0.04142 1

14 0.44432 0.21571 0.08449 0.07190 0.10642 0.03547 0.04168 1

15 0.44031 0.21806 0.08722 0.07269 0.10484 0.03495 0.04193 1

16 0.43635 0.22035 0.08998 0.07345 0.10328 0.03443 0.04217 1

17 0.36616 0.21673 0.09753 0.09482 0.11546 0.05388 0.05542 1

18 0.37061 0.21544 0.09531 0.09140 0.11634 0.05429 0.05662 1

19 0.37485 0.21416 0.09322 0.08818 0.11714 0.05466 0.05779 1

20 0.37888 0.21290 0.09124 0.08516 0.11787 0.05501 0.05894 1

21 0.38274 0.21165 0.08936 0.08231 0.11855 0.05532 0.06006 1

22 0.38642 0.21043 0.08759 0.07962 0.11916 0.05561 0.06117 1

23 0.38995 0.20923 0.08589 0.07709 0.11972 0.05587 0.06225 1

24 0.39332 0.20805 0.08429 0.07469 0.12023 0.05611 0.06332 1

25 0.35923 0.22012 0.10272 0.10566 0.11246 0.05061 0.04920 1

26 0.36042 0.22044 0.10287 0.10728 0.11196 0.04953 0.04750 1

27 0.36151 0.22072 0.10300 0.10889 0.11146 0.04852 0.04590 1

28 0.36252 0.22096 0.10312 0.11048 0.11097 0.04756 0.04439 1

29 0.36345 0.22117 0.10321 0.11206 0.11049 0.04665 0.04297 1

30 0.36431 0.22135 0.10330 0.11363 0.11001 0.04579 0.04162 1

31 0.36511 0.22150 0.10337 0.11518 0.10953 0.04497 0.04035 1

32 0.36584 0.22162 0.10342 0.11672 0.10906 0.04418 0.03915 1
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Table 3 Performance measures of the single server non-preemptive priority queuing system at a
container terminal

Scenario E (W1) E (Lq1) E (S1) E (L1) E (W2) E (Lq2) E (S2) E (L2)

1 1.0250 0.4100 1.8583 0.7433 1.5769 0.6623 2.4103 1.0123

2 1.0375 0.4150 1.8708 0.7483 1.6169 0.6953 2.4502 1.0536

3 1.0500 0.4200 1.8833 0.7533 1.6579 0.7295 2.4912 1.0961

4 1.0625 0.4250 1.8958 0.7583 1.7000 0.7650 2.5333 1.1400

5 1.0750 0.4300 1.9083 0.7633 1.7432 0.8019 2.5766 1.1852

6 1.0875 0.4350 1.9208 0.7683 1.7877 0.8402 2.6210 1.2319

7 1.1000 0.4400 1.9333 0.7733 1.8333 0.8800 2.6667 1.2800

8 1.1125 0.4450 1.9458 0.7783 1.8803 0.9213 2.7136 1.3297

9 1.0513 0.4415 1.8846 0.7915 1.5769 0.6308 2.4103 0.9641

10 1.0779 0.4635 1.9113 0.8218 1.6169 0.6468 2.4502 0.9801

11 1.1053 0.4863 1.9386 0.8530 1.6579 0.6632 2.4912 0.9965

12 1.1333 0.5100 1.9667 0.8850 1.7000 0.6800 2.5333 1.0133

13 1.1622 0.5346 1.9955 0.9179 1.7432 0.6973 2.5766 1.0306

14 1.1918 0.5601 2.0251 0.9518 1.7877 0.7151 2.6210 1.0484

15 1.2222 0.5867 2.0556 0.9867 1.8333 0.7333 2.6667 1.0667

16 1.2535 0.6142 2.0869 1.0226 1.8803 0.7521 2.7136 1.0854

17 1.6667 1.2000 2.2917 1.6500 3.1250 2.1875 3.7917 2.6542

18 1.6304 1.1902 2.2365 1.6326 3.0571 2.1399 3.7237 2.6066

19 1.5972 1.1819 2.1855 1.6172 2.9948 2.0964 3.6615 2.5630

20 1.5667 1.1750 2.1381 1.6036 2.9375 2.0563 3.6042 2.5229

21 1.5385 1.1692 2.0940 1.5915 2.8846 2.0192 3.5513 2.4859

22 1.5123 1.1645 2.0529 1.5807 2.8356 1.9850 3.5023 2.4516

23 1.4881 1.1607 2.0144 1.5712 2.7902 1.9531 3.4568 2.4198

24 1.4655 1.1578 1.9783 1.5629 2.7478 1.9235 3.4145 2.3902

25 1.7188 1.2031 2.3854 1.6698 3.1250 2.2500 3.7500 2.7000

26 1.7045 1.1932 2.3712 1.6598 3.0571 2.2317 3.6631 2.6741

27 1.6912 1.1838 2.3578 1.6505 2.9948 2.2161 3.5830 2.6514

28 1.6786 1.1750 2.3452 1.6417 2.9375 2.2031 3.5089 2.6317

29 1.6667 1.1667 2.3333 1.6333 2.8846 2.1923 3.4402 2.6145

30 1.6554 1.1588 2.3221 1.6255 2.8356 2.1834 3.3762 2.5997

31 1.6447 1.1513 2.3114 1.6180 2.7902 2.1763 3.3165 2.5869

32 1.6346 1.1442 2.3013 1.6109 2.7478 2.1708 3.2607 2.5759
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Fuzzy Inventory Model for Deteriorating
Items in a Supply Chain System
with Time Dependent Demand Rate

Srabani Shee and Tripti Chakrabarti

Abstract An inventory model for a single deteriorating item under fuzzy envi-
ronment has been presented in this paper. Here demand rate is considered to be
constant for some time period, post which the same is a linear function of time.
This situation is common during the time of a new product launch in the market.
As the product becomes popular, its demand increases with time although it remains
constant during the initial days. Cycle time is considered to be constant in most of the
models. However, practically it has been observed that it is difficult to pro-actively
predict the cycle time. Because of this problem, cycle time has been considered as
uncertain and has been further described as Symmetric Triangular Fuzzy number. The
Signed Distance method has been used for defuzzification of the total cost function.
For illustration of the process for finding the total optimal cost and the cycle time,
numerical examples have been considered. The effects of changing parameter values
on the optimal solution of the system have been demonstrated through Sensitivity
Analysis.

Keywords Supply chain management · Constant and time dependent demand
rate · Deterioration · Symmetric triangular fuzzy number · Signed distance method

1 Introduction

The most important and difficult role that inventory plays in supply chain is that of
facilitating the balancing of demand and supply. To effectively manage the forward
and reverse flows in the supply chain, firms have to deal with upstream supplier
exchanges and downstream customer demands. Uncertainty is another key issue
to deal with in order to define effective Supply Chain inventory policies. Demand,
supply (e.g., lead time), various relevant cost, backorder costs, deterioration rate, etc.
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are usually uncertain. To solve these types of practical problems,we use the Fuzzy Set
Theory. Bellman and Zadeh (1970) first studied fuzzy set theory to solve decision
making problem. Then, Dubois and Prade (1978) introduced some operations on
fuzzy number. Thereafter, Park (1987) developed fuzzy set theoretical interpretation
of EOQ. Several researchers like Wu and Yao (2003), Wang et al. (2007), Hu et al.
(2010), Jaggi et al. (2013), Yao and Chiang (2003), Wang et al. (2007), Kao and Hsu
(2002), Dutta et al. (2005), Roy and Samanta (2009) have developed different types
of inventory model under Fuzzy environment. In this area, a lot of research papers
have been published by several researchers, viz. Bera et al. (2013), He et al. (2013),
Dutta and Kumar (2015), Mishra et al. (2015), etc. Priyan and Manivannan (2017)
developed an optimal inventory modeling of supply chain system involving quality
inspection errors in fuzzy situation.

Lin et al. (2000) and Mishra et al. (2015) developed an economic order quantity
model that focused on time varying demand and deteriorating items. After that,
Ghosh and Chaudhuri (2004) proposed an inventory model withWeibull distribution
rate of deterioration, time quadratic demand and shortages. A lot of research papers
have been published by several researchers, viz. Wang and Chen (2001), Pal et al.
(2006), Bera et al. (2013), He et al. (2013), Dutta and Kumar (2015), etc.

This paper has presented a Fuzzy supply chain inventory model in which the
demand rate is constant for some time and then it increases or decreases according
to the popularity of the product. This type of situation occurs when a new product is
launched in themarket.When the product becomes popular the demandof the product
increases with time. It is also assumed that the cycle time is taken as Symmetric
Triangular Fuzzy number. In addition, expressions for order quantity, cycle time and
the total average cost (for both the models) are obtained. The convexity of the total
cost function is established to ensure the existence of a unique optimal solution. The
problem is solved by using LINGO 17.0 software.

2 Assumptions and Notations

The proposed model is developed under the following notations and assumptions:

Notations

1. I (t) is the inventory level at time t(≥ 0).

2. Demand R(t) =
{
a, for 0 ≤ t ≤ μ

a + b(t − μ), forμ ≤ t ≤ T
.

3. θ is the rate of deterioration.
4. q is the number of items received at the beginning of the period.
5. C is the deterioration cost per unit.
6. C1 is the inventory holding cost per unit per-unit-time.
7. C2 is the setup cost per cycle.
8. μ is the time point at which deterioration starts and also demand increases with

time.
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9. T is the cycle length.
10. T̃ is the fuzzy cycle length.
11. K (t) is the total inventory cost of the system per unit time.
12. ˜K (t) is the fuzzy total inventory cost of the system.

Assumptions

1. The deterioration cost, holding cost and ordering cost remain constant over time.
2. There is no deterioration for the period [0, μ]. The deterioration rate is constant,

say θ , for the period [μ, T ], which is practically very small.
3. A single item is considered over a prescribed period of T units of time.
4. The cycle time is uncertain and we assume it as symmetric triangular fuzzy

number.
5. The replenishment is instantaneous.
6. Lead time is zero.
7. There is no replacement or repair of deteriorated items.
8. Shortage is not allowed.

3 Mathematical Model

The inventory cycle starts at time t = 0 with the inventory level q. During the time
interval [0, μ], the inventory level decreases due to the constant demand a units per
unit time. After time t = μ, the inventory level gradually decreases mainly to meet
demands and partly for deterioration and falls to zero at time t = T . The cycle then
repeats itself after time T .

This model is represented by the following diagram:

Now, the total demand for the time period [0, μ], is = aμ.
Therefore, the inventory level is decreased by the factor aμ and (q − aμ)

inventory is left for the time period [μ, T ].
The holding cost for the period [0, μ] is
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= C1(Area of trapezium ABCD)

= C1 · 1
2
[q + (q − aμ)]μ

= C1μ
[
(q − aμ) + aμ

2

]

Then, the differential equation governing the instantaneous state of I (t) during
the time interval μ ≤ t ≤ t1 is,

dI (t)

dt
= −θ I (t) − [a + b(t − μ)], 0 ≤ t ≤ t1 (1)

where t1 = (T − μ), the origin has been shifted just for the sake of mathematical
simplicity.

With the boundary conditions, t = 0, I (t) = (q − aμ) and t = t1, I (t) = 0.
Solving the differential equation we get,

eθ t I (t) − (q − aμ) = −
t∫

0

[a + b(t − μ)]eθ tdt

At t = t1, I (t) = 0

∴ (q − aμ) =
t1∫

0

[a + b(t − μ)]eθ tdt (2)

We know that eθ t = ∑∞
n=0

(θ t)n

n! . Using this exponential expansion in Eq. (2) and
then integrating term bay term we have,

(q − aμ) = (a − bμ)

∞∑
n=0

θn

n!
tn+1
1

n + 1
+ b

∞∑
n=0

θn

n!
tn+2
1

n + 2
(3)

Now, the holding cost for the time period (0, t1) is

= C1
1

2
(q − aμ)t1

Total amount of inventory that has deteriorated during this cycle is

= (q − aμ) −
t1∫

0

[a + b(t − μ)]eθ tdt
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= (q − aμ) − (a − bμ)t1 − 1

2
bt21 (4)

Therefore, the total inventory cost per unit time is,

K (T ) = inventory carrying cost + deterioration cost + set up cost

= 1

T

[
C1μ(q − aμ) + C1

aμ2

2
+ 1

2
C1(q − aμ)t1

+C

{
(q − aμ) − (a − bμ)t1 − 1

2
bt21

}
+ C2

]

= 1

T

[
(q − aμ)

{
C1μ + 1

2
C1t1 + C

}
+ C1

aμ2

2
− C(a − bμ)t1 − C

2
bt21 + C2

]

= 1

T

[
(C1μ + C)

{
(a − bμ)

∞∑
n=0

θn

n!
(T − μ)n+1

n + 1
+ b

∞∑
n=0

θn

n!
(T − μ)n+2

n + 2

}

+ C1

2

{
(a − bμ)

∞∑
n=0

θn

n!
(T − μ)n+2

n + 1
+ b

∞∑
n=0

θn

n!
(T − μ)n+3

n + 2

}

+C1
aμ2

2
− C(a − bμ)(T − μ) − C

2
b(T − μ)2 + C2

]

Since θ is very small, the terms involving θn with n(> 1) can be neglected. Hence,
retaining the terms in the summation for n = 0 and n = 1 only, we have,

K (T ) = 1

T

[
P

{
A(T − μ) + Aθ

2
(T − μ)2 + b

2
(T − μ)2 + bθ

3
(T − μ)3

}

+ C1
2

{
A(T − μ)2 + Aθ

2
(T − μ)3 + b

2
(T − μ)3 + bθ

3
(T − μ)4

}

+C1
aμ2

2
− CAT + CAμ − C

2
b(T − μ)2 + C2

]

= C1bθ

6
T 3 +

(
− 2

3
μC1bθ + Pbθ

3
+ C1Aθ

4
+ C1b

4

)
T 2

+
(
C1bθμ2 − Pbθμ − 3C1Aθμ

4
− 3C1bμ

4
+ PAθ

2
+ Pb

2
+ C1A

2
− Cb

2

)
T

+
(

− 2

3
C1bθμ3 + Pbθμ2 + 3

4
C1Aθμ2 + 3

4
C1bμ

2 − PAθμ − Pbμ

−C1Aμ + Cbμ + PA − CA) +
(
C1bθμ4

6
− Pbθμ3

3
− C1Aθμ3

4
− C1bμ

3

4

+ PAθμ2

2
+ Pbμ2

2
+ C1Aμ2

2
− Cbμ2

2
− PAμ + CAμ + C1

aμ2

2
+ C2

)
1

T

= U1T
3 + V1T

2 + W1T + X1 + Y1
1

T
(5)

where, P = (C1μ + C) and A = (a − bμ)

U1 = C1bθ
6

V1 = (− 2
3μC1bθ + Pbθ

3 + C1Aθ
4 + C1b

4

)
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W1 =
(
C1bθμ2 − Pbθμ − 3C1Aθμ

4 − 3C1bμ
4 + PAθ

2 + Pb
2 + C1A

2 − Cb
2

)

X1 =
(

−2

3
C1bθμ3 + Pbθμ2 + 3

4
C1Aθμ2 + 3

4
C1bμ

2 − PAθμ − Pbμ

−C1Aμ + Cbμ + PA − CA)

Y1 =
(
C1bθμ4

6
− Pbθμ3

3
− C1Aθμ3

4
− C1bμ3

4
+ PAθμ2

2
+ Pbμ2

2
+ C1Aμ2

2

−Cbμ2

2
− PAμ + CAμ + C1

aμ2

2
+ C2

)

Now, let us describe the cycle time T as triangular fuzzy number T̃ =
(T − �, T, T + �).

So, from Eq. (5) the total Fuzzy cost function is

˜K (T ) = U1T̃
3 + V1T̃

2 + W1T̃ + X1 + Y1
1

T̃
(6)

From the definition of the signed distance method, we have,

d
(
Ã, 0

)
= 1

2

1∫
0

[AL(α) + AU(α)]dα

where, Ã = (a, b, c), AL(α) = a + (b − a)α, AU(α) = c − (c − b)α.
Now, TL(α) = (T − �) + �α, TU(α) = (T + �) − �α.
Therefore,

d
(
T̃ , 0

)
= 1

2

1∫
0

[TL(α) + TU(α)]dα

= 1

2

1∫
0

[(T − �) + �α + (T + �) − �α]dα

= 1

2

1∫
0

2T dα = T (7)

And

d

(
1

T̃
, 0

)
= 1

2

1∫
0

[(
1

T̃

)
L

(α) +
(
1

T̃

)
U

(α)

]
dα
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= 1

2

1∫
0

[
1

T + � − �α
+ 1

T − � + �α

]
dα

= 1

2�
ln

(
T + �

T − �

)
(8)

From (6), (7) and (8) we have

˜K (T ) = U1T
3 + V1T

2 + W1T + X1 + 1

2�
Y1 ln

(
T + �

T − �

)
(9)

To minimize K (T ) the necessary condition is

dK (T )

dT
= 0

By simplifying dK (T )

dT = 0 we get a bi-quadratic equation in T , which is,

3U1T
4 + 2V1T

3 + W1T
2 − Y1 = 0 (10)

We can solve Eq. (5) by Newton–Raphson’s method for a positive T (T ∗ say).
If d2K (T )

dT 2 > 0 for T = T ∗, then T ∗ will be an optimal solution.
Hence, K (T ) is strictly convex.
Substituting the value of T = T ∗ in (5), the optimum average cost K (T ∗) can

also be determined.

4 Numerical Example

To illustrate the results obtained for the suggested model, a numerical example with
the following parameter values is considered.

a = 20 units, b = 0.2, μ = 0.4 days, θ = 0.02,

C = Rs. 18 per unit,

C1 = Rs. 0.50 per unit per day, C2 = Rs. 80.

We obtain for crisp model optimum total cost is K (T ∗) = 50.4065 per day.
And cycle time is T ∗ = 2.975 days.

For fuzzy model total cost ˜K (T ∗) = 53.5294 and cycle time T̃ ∗ = 3.016.
The convexity of the total cost function is shown in Fig. 1.
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Fig. 1 Convexity of cost function w. r. t. T

5 Sensitivity Analysis

Sensitivities of the parameters are shown in Tables 1, 2, 3, 4 and 5 and graphically
illustrated in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

Table 1 Sensitivity on μ

Change value Crisp model Fuzzy model

K (T ∗) T ∗
˜K (T ∗) T̃ ∗

μ 0.1 52.5818 2.954 53.5589 2.995

0.2 51.8308 2.960 53.5247 3.001

0.3 51.1057 2.967 53.5148 3.008

0.4 50.4065 2.975 53.5294 3.016

0.5 49.7332 2.985 53.5684 3.025

0.6 49.0858 2.996 53.6318 3.036

0.7 48.4643 3.009 53.7195 3.049

Table 2 Sensitivity on C2

Change value Crisp model Fuzzy model

K (T ∗) T ∗
˜K (T ∗) T̃ ∗

C2 60 43.2216 2.591 46.3794 2.637

70 46.9379 2.790 50.0764 2.834

80 50.4065 2.975 53.5294 3.016

90 53.6722 3.148 56.7822 3.187

100 56.7680 3.312 59.8670 3.348
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Table 3 Sensitivity on C1

Change value Crisp model Fuzzy model

K (T ∗) T ∗
˜K (T ∗) T̃ ∗

C1 0.10 36.0927 4.069 39.0516 4.098

0.30 43.8291 3.393 46.8647 3.428

0.50 50.4065 2.975 53.5294 3.016

0.70 56.2313 2.684 59.4507 2.729

0.90 61.5158 2.465 64.8401 2.514

Table 4 Sensitivity on C

Change value Crisp model Fuzzy model

K (T ∗) T ∗
˜K (T ∗) T̃ ∗

C 14 48.5454 3.112 50.0011 3.151

16 49.4898 3.041 52.2789 3.081

18 50.4065 2.975 53.5294 3.016

20 51.2974 2.614 54.7544 2.955

22 52.1641 2.855 55.9556 2.898

Table 5 Sensitivity on θ

Change value Crisp model Fuzzy model

K (T ∗) T ∗
˜K (T ∗) T̃ ∗

θ 0.01 45.8050 3.349 47.4191 3.385

0.015 48.1976 3.154 50.5652 3.183

0.02 50.4065 2.975 53.5294 3.016

0.025 52.4629 2.832 56.3430 2.875

0.03 54.3902 2.709 59.0291 2.753

Fig. 2 Impact of μ on
K (T ∗): crisp model (from
Table: 1)
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Fig. 3 Impact of μ on
˜K (T ∗): fuzzy model (from
Table: 1)
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Fig. 4 Impact of C2 on K (T ∗): crisp model (from Table: 2)

Fig. 5 Impact of C2 on
˜K (T ∗): fuzzy model (from
Table: 2)
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Fig. 6 Impact of C1 on
K (T ∗): crisp model (from
Table: 3)
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Fig. 7 Impact of C1 on
˜K (T ∗): fuzzy model (from
Table: 3)
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Fig. 8 Impact of C on
K (T ∗): crisp model (from
Table: 4)
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Fig. 9 Impact of C on
˜K (T ∗): fuzzy model (from
Table: 4)
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Fig. 10 Impact of θ on
K (T ∗): crisp model (from
Table: 5)
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Fig. 11 Impact of θ on
˜K (T ∗): fuzzy model (from
Table: 5)
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Observations

It is observed from the tables that:

(i) In crisp model, if the parameter μ is increased (or decreased), the value
of optimum cycle time increases (or decreases) while the optimal total
cost decreases (or increases). Further, in fuzzy model, if the parameter μ
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is increased (or decreased) the value of optimum cycle time increases (or
decreases) while the optimal cost increases.

(ii) The increases (or decrease) in setup cost C2 increases (or decreases) the total
inventory cost for both the models.

(iii) The total cost (for both the models) increases (or decreases) as the holding
cost C1 per unit time increases (or decreases).

(iv) With the increase (or decrease) of the rate of deterioration θ , the total inventory
cost (for the two models) also increase (or decrease).

(v) As the deterioration cost C per unit increase (or decrease), the total costs for
the two models also increase (or decrease).

6 Conclusion

In the present chapter, we have dealt with a fuzzy inventory model where we have
introduced the cycle time T as a Triangular Symmetric Fuzzy number. It is assumed
the demand rate is constant for some time and then as a linear function of time.
In our real life, we generally find that the cycle time is uncertain. So keeping this
situation in mind we have tried to compare crisp model with the fuzzy model and
have observed that the cycle time and the total cost obtained by fuzzymodel is greater
than those obtained by crisp model. The sensitivity analysis shows that the total cost
of both the model increases as the cost associated with the model increases. In future,
researchers can do more work about several types of demand, variable cost, etc.
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Credit Financing in a Two-Warehouse
Inventory Model with Fuzzy
Deterioration and Weibull Demand

Aastha, Sarla Pareek, and Vinti Dhaka

Abstract In the inventory system, usually demand and deterioration rate consider
as in deterministic form. But, in the practical situation, these rates are uncertain in
nature. In this case, demand increases as the number of customer increases. Further-
more, there is some limitation with the storage space. So, for keeping the inventory,
retailer has to need extra space or rent warehouse (RW) with unlimited capacity.
RW has better preserving facilities for keeping products for long time without any
deterioration. So, RW has higher holding cost as compared with OW holding cost. In
this paper, demand considered as aWeibull and deterioration in fuzzy sense; here, the
supplier give some time period to pay the amount to the customer which is known as
one level permissible delay in payments. The main objective is to find the optimum
solution by using triangular fuzzy number. Numerical example provides the optimal
solution of crisp and fuzzy model and sensitivity analysis also carried on different
parameters.

1 Introduction

The inventory models maintain inventory level. In the last few years, researchers
attracted toward inventory systems. It is well known that the first model of inventory
was developed by Harris (1913). Harris introduced EOQ model in which demand is
assumed to be known and constant. After that, lots of research works have been done
in this field. Many works have been done by extending the Harris (1913) model.
There are considered lots of assumption in this model to come close to real-life
situation.

In the basic EOQ model, rate of demand was assumed to be constant. But in
reality, demand can not be deterministic, it should vary with time. Sometimes, it
depends upon situation. So, there is always some uncertainty in demand. Silver and
Moon (1969) were the first researchers to modify the EOQ formula for the case of
varying demand.
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Usually, it is assumed that lifetime of an item is infinite when it is in storage.
Goyal (1985)‘s inventory model assumed that the lifetime of the product is infinite
within the storage time. In reality, the effect of deterioration cannot be ignored in
inventory models. Deterioration is outlined as decay, alternate, harm, spoilage, or
obsolescence in the effect of decreasing usefulness from its usual rationale. It is
assumed that items are start deteriorating as soon as they arrive in the warehouse.
Generally, it is assumed as known and constant. But, it cannot be predefined. There
must be an uncertainty in rate of deterioration of the products. Hence, it is preferably
taken as in fuzzy.

Nowadays, the seller wants to attract the buyer to purchase products in large
quantities; for this, seller always uses new techniques. Credit financing is the most
common technique used by seller to attract buyer. In this, the seller offers some time
period to buyer to pay the amount of the purchase. But if the customer do not pay
the amount in this time, then the customer have to pay the interest on that amount.
The credit financing policy seems to be a beneficial option for buyer with limited
payment at one time. Possibly, Haley and Higgins (1973) were the first researchers
in proposing credit policy in inventory models.

Furthermore, everyonewants to increase their customers. The availability of prod-
ucts in the system is common factor to attract customers. But due to limited storage
capacity in own warehouse, the seller has require large space for store the inven-
tory. To deal such type of situations, seller uses OW and RW. Also, deterioration of
items in both the warehouse is not same as RW has better preserving facility to keep
products from deterioration for some time.

In this paper, deterioration is taken as fuzzy value which is solved by triangular
fuzzy number and defuzzify by gradedmean integrationmethod.Demand follows the
pattern of Weibull distribution. This model is solved in two-warehouse environment
and investigated under credit period policy.

2 Literature Study

A replenishment policy for items had been developed byWee (1997) where demand
depends upon price. Chen et al. (2003) established an inventory model having
demanddepends upon time anddeterioration in the formofWeibull.After that,Ghosh
et al. (2006) developed an inventory model by taking demand as in Weibull form.
Also, he considered shortages in his model. By taking demand depends upon stock,
a model was developed by Shah et al. (2011) with advance payment policy. Later on,
Shah et al. Shah et al. (2012b) developed an integrated inventorymodel with advance
payment policy and quadratic demand. Bhunia et al. (2018) developed a model for
deteriorating items where demand was taken as variable. A two-warehouse inventory
model was developed by Chandra (2020) in which stock-dependent demand was
taken under credit financing policy.
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Furthermore, the deterioration in items had been extremely considered by Nah-
mias (1982), Raafat (1991), Bakker et al. (2012), Pareek and Dhaka (2015) in
inventory models. After these models, deterioration of items depend upon time with
partial backlogging in exponential had been considered by Dye et al. (2007). An
inventory model had been developed by Sarkar and Sarkar (2013a) on consider-
ing deterioration of items varies with time and demand depends upon stock. Also,
deterioration as a fuzzy number was considered by few researchers. A model was
established by De et al. (2003) by assuming demand and deterioration both in fuzzy
sense. Roy et al. (2007) presented a model with fuzzy deterioration over a random
planning horizon in two storage facility. Fuzzy EOQmodel was developed by Halim
et al. (2008). In this model, fuzzy deterioration was considered with stochastic
demand. Mishra and Mishra (2011) proposed a model where deterioration of items
was taken as in fuzzy sense and credit policy was also considered in this model.
After that, an inventory model was developed in which deterioration rate can be
controlled using some techniques. In this model, stock and price-dependent demand
was considered. This model was developed by Mishra et al. (2017). Also, not all
the items deteriorated instantaneously when they stored in warehouse. This is non-
instantaneous deterioration situation. So, based on this phenomena, somemodelswas
developed. A model was developed by Shaikh et al. (2017) based on this phenom-
ena with demand depends upon stock and price. Again, a model was generated on
non-instantaneous deteriorating items under two-warehouse environment by Shaikh
et al. (2019). Impact of deterioration showed in an integrated inventory model by
Lin et al. (2019) where credit policy was also considered.

Nowadays, the effect of trade credit also attracts researcher. An EOQ model first
developed by Goyal (1985) under credit financing policy and then this model had
been extendedwith a constant deterioration rate by Shah (1993), Aggarwal and Jaggi
(1995), and Hwang and Shinn (1997). After that, a probabilistic inventorymodel had
been described by Shah and Shah (1998) where advance payment policy was con-
sidered. A model for deterioration in items with credit financing developed by yang
(2004) under two-warehouse environment. Mahata and Goswami (2006) had been
described a fuzzy EPQ model under advance payment policy. Also, they considered
that items start deterioration when they arrive in inventory. Liang and Zhou (2011)
presented a inventory model with permissible delay in payments and deterioration
of items under two-warehouse environment. Shah et al. (2012a) described a fuzzy
EOQ model with trade credit. Liao et al. (2012), Guchhait et al. (2013) generated
inventory models in two-warehouse environment under advance payment policy by
assuming that the rate of deterioration of items is same for both the warehouse. Bhu-
nia et al. (2014) proposed a model for deteriorating items under credit financing.
This model was generated in two-warehouse environment and backlogging. There
was a model developed by Maihami et al. (2017). In this model, researcher showed
the trade credit effect on inventory model. Also, demand and deterioration were con-
sidered as probabilistic in nature. A model was developed under credit financing
policy when demand depends upon stock by Dhaka et al. (2019).
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However, storing of items are an essential crisis in inventory models, the basic
inventory models are commonly proposed with limited space in single warehouse,
but due to high demand of items, the retailer may buy more items that can be stored
in own warehouse (OW). But due to limited space in own warehouse, another ware-
house such as RW with unlimited capacity is also required to store the goods. To
know more in this field, see the models of Sarma (1987), Goswami and Chaud-
huri (1992), Pakkala and Archary (1992), Benkherouf (1997), Bhunia and Matti
(1998), Yang (2004), Yang (2006), Lee (2006), Banerjee and Agrawal (2008),
Jaggi et al. (2013), Sett et al. (2016), Sarkar and Sharmila (2017). Jaggi et al.
(2014) described a model in two-warehouse environment by considering deteriora-
tion in items. Also, they assumed backlogging and credit financing in this model.
Shabani et al. (2016) developed an inventory model under advance payment policy
in two storage environment. Here, both demand and deterioration rate considered in
fuzzy sense. A model was developed with demand as ramp type and deterioration in
Weibull distribution under two storage environment by Chakraborty et al. (2018).
A sustainable inventory model was developed for two storage system by Mashud
et al. (2020). In this model, demand was based on price whereas deterioration was
taken as non instantaneous. Also, another model was developed for two warehouses
with non-instantaneous concept by Khan et al. (2020) but this model was developed
under credit policy by considering shortages (Table 1).

In this model, demand follows Weibull distribution where deterioration is used in
fuzzy sense. The fuzzy solution used in the model is more simplified which provides
more generalized results.

3 Prelimineries

Before start the fuzzy model, here is the description of fuzzy number.
A graded mean integration method based on the integral value of graded mean

h-level of the generaliZed fuzzy number was developed by Chen and Hsieh (1999)
for defuzzifying fuzzy numbers.

A fuzzy number Ã = (a, b, c) where a < b < c and defined on R is called a
triangular fuzzy number if its membership function is:

μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − a

b − a
, a ≤ x ≤ b

c − x

c − b
, b ≤ x ≤ c

0, otherwise

When a = b = c, we have fuzzy point (c, c, c) = c̃.
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Table 1 Literature review of inventory models under two-warehouse environment from 2011 to
2020

Author Deterioration Demand Trade credit

Mishra and Mishra (2011) Fuzzy Linear Yes

Liang and Zhou (2011) Constant Constant Yes

Tripathy and Pradhan (2011) Variable Constant Yes

Liao et al. (2012) Constant Constant Yes

Sarkar (2012) Time varying Constant Yes

Sett et al. (2012) Time varying Quadratic No

Guchhait et al. (2013) Constant Variable Yes

Sarker and Sarkar (2013a) Time varying Stock dependent No

Sarkar and Sarkar (2013b) Stochastic Constant No

Ghoreishi et al. (2014) Non-instantaneous Price and time
dependent

Yes

Jaggi et al. (2014) Constant Price dependent Yes

Pareek and Dhaka (2015) Constant Constant No

Sarkar et al. (2015) Time varying Constant Yes

Shabani et al. (2016) Fuzzy Fuzzy Yes

Bhunia et al. (2016) Constant Constant Yes

Sarkar et al. (2017) Time varying Constant No

Tiwari et al. (2017) Non instantaneous Stock dependent No

Jaggi et al. (2019) Constant Stochastic Yes

Tiwari et al. (2019) Non instantaneous Constant Yes

Khan et al. (2020) Non instantaneous Constant Yes

This paper Fuzzy Weibull Yes

The family of all triangular fuzzy numbers on R is denoted as

FN = {(a, b, c)|a < b < c∀a, b, c ∈ R}

The α-cut of Ã = (a, b, c) ∈ FN , 0 ≤ α ≤ 1 is

A(α) = [AL(α), AR(α)]

where, AL(α) = a + (b − a)α and AR(α) = c − (c − b)α are the left and right end-
points of A(α).
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If A = (a, b, c) is a triangular fuzzy number then the graded mean integration
representation of Ã is defined as:

P(Ã) =
∫ WA

0 h

(
L−1(h) + R−1(h)

2

)

dh

∫ WA

0 hdh

with 0 < h ≤ WA and 0 < WA ≤ 1

P(A) = 1

2

[∫ 1
0 h {a + h(b − a) + c − h(c − a)} dh

∫ 1
0 hdh

]

P(Ã) = a + 4b + c

6

4 Assumptions and Notation

The following assumptions and notation have been carried out in the paper.

4.1 Assumptions

The inventory model is based on the following assumptions:

• There is limited capacity W in OW and unlimited capacity in RW. The items of
RW are consumed first and than from OW for the profitable reasons.

• The seller can accumulate revenue and earn interest from the very beginning that
his/her customer pays for the amount of purchasing cost to the seller until the end
of the credit period offered by the supplier.

• There is an infinite replenishment rate and the lead time is zero.
• θ1 is the deterioration rate in OWand θ2 is in RW. θ1 �= θ2. The rate of deterioration
in RW is smaller than the rate of deterioration in OW as the RW has better storing
facilities than OW.

• The inventory system considered a single item.
• Demand D(t) = αβtβ−1 is assumed to be a function of time i.e. where α and β

are positive constants and α ≥ 0, 0 ≤ β ≤ 1
• There is no shortages in the model.
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4.2 Notation

The following notation are used in the model:

• T is time period of each cycle (unit of time).
• tw is time where level of inventory reaches to W (unit of time).
• W is stored units in OW (units).
• A is ordering cost ($/order).
• M is trade credit period of retailer offered by the supplier (unit of time).
• P is sales price per unit ($/unit).
• Ie is interest earn (/$/unit/unit of time).
• c is purchasing price (rupee/unit).
• ho is holding cost in OW ($/unit/unit of time).
• Ip is interest charges by the supplier (/$/unit/unit of time).
• hr is holding cost in RW ($/unit/unit of time).
• Ir(t) is the inventory level at time t ∈ [0, tw] in RW (units).
• Io(t) is the inventory level at time t ∈ [0, T ] in OW.(units)
• D = αβtβ−1 is total demand 0 < α << 1, β > 1 (unit/unit of time).
• θ1 is rate of deterioration in OW 0 ≤ θ1 ≤ 1.
• θ̃1 is the fuzzy deterioration rate in OW 0 ≤ θ̃1 ≤ 1.
• θ2 is deterioration rate in RW 0 ≤ θ2 ≤ 1.
• θ̃2 is the fuzzy deterioration rate in RW 0 ≤ θ̃2 ≤ 1.
• TC1 is the total inventory cost per unit time ($).
• ˜TC1 is the total fuzzy inventory cost per unit time ($).

5 Mathematical Model

Let Io(t) be the level of inventory in OW at [0, T ] and Ir(t) be the level of inventory
in RW at [0, tw] with initial OW kept W units and rest stored in RW. The inventory
of OW is used only after use of the stock kept in RW. The stock kept in RW exhausts
due to demand and deterioration during the interval [0, tw]. In OW, the inventory
W gradually decreases due to deterioration only during [0, tw] and due to demand
and deterioration during [tw, T ]. At the time T, both RW and OW becomes empty
(Fig. 1).

5.1 Crisp Model

The level of inventory in RW and OW at time t ∈ [0, tw] has these differential equa-
tions:

dIr

dt
= −αβtβ−1 − θ2Ir(t), 0 ≤ t ≤ tw (1)
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Fig. 1 Time-inventory status

with the boundary conditions Ir(tw) = 0 and

dIo(t)

dt
= −θ1Io(t), 0 ≤ t ≤ tw (2)

with the initial conditions Io(0) = W ,
during the interval [tw, T ], the level of inventory in OW, has this differential

equation:
dIo(t)

dt
= −αβtβ−1 − θ1Io(t), tw ≤ t ≤ T (3)

The solution from Eqs. (1) to (3 is:

Ir(t) = α[tβwe
θ2 twβ

β+1 − tβe
θ2 tβ
β+1 ]e−θ2t, 0 ≤ t ≤ tw (4)

Io(t) = W e−θ1t, 0 ≤ t ≤ tw (5)

Io(t) = α[T βe
θ1Tβ

β+1 − tβe
θ1 tβ
β+1 ]e−θ1t, tw ≤ t ≤ T (6)

Using the continuity of Io(t) at time t = tw

Io(tw) = W e−θ1tw

Io(tw) = α

⎡

⎢
⎣T βe

θ1Tβ

β + 1 − tβwe

θ1twβ

β + 1

⎤

⎥
⎦ e−θ1tw
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which implies that

T =

⎡

⎢
⎢
⎣

W

α
+ tβwe

θ1 twβ

β+1

αβ

β + 1

⎤

⎥
⎥
⎦

β(β+1)

(7)

Annual ordering cost is

Cr = A

T
(8)

Annual holding cost of RW is

Ch1 = hr

tw∫

0

Ir(t)dt

Ch1 = hrα

T

[
tβw
θ2

(
e

θ2 twβ

β+1 − e
−θ2 tw
β+1

)
+

(
(β + 2)tβ+1

w − θ2tβ+2
w

(β + 1)(β + 2)

)]

(9)

Annual holding cost of OW is

Ch2 = ho

T∫

0

Io(t)dt

Ch2 = hoW

Tθ1
(1 − e−θ1tw ) + hoαT β−1e

θ1Tβ

β+1

θ1
(e−θ1tw − e−θ1T )

+ hoα
((T β − Ttβ+1

w )(β + 2) − θ1(T β+1 − tβ+2
w ))

(β + 1)(β + 2)

(10)

Annual cost of deterioration in RW and OW is

Cθ = θ2

tw∫

0

Ir(t)dt + θ1

T∫

0

Io(t)dt

Cθ = αθ2tβw

[
e

θ2 twβ

β+1

θ2
(1 − e−θ2tw ) − tw(β + 2) − θ2tw

(β + 1)(β + 2)

]

+ (1 − e−θ1tw − e−θ1T )+

αT βe
θ1Tβ

β+1 e−θ1tw − (T β+1 − tβ+1
w )(β + 2) − θ1(T β+2 − tβ+1

w )

(β + 1)(β + 2)
(11)
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Now there are three cases arises:
Case 1: M ≤ tw ≤ T
Case 2: tw < M ≤ T
Case 3: M > T

5.1.1 Case 1: M ≤ tw ≤ T

In this case, buyer has to pay an interest charges. Also at the same time he earns
interest on the income till M:

Ce1 = pIe

T

M∫

0

αβtβdt

Ce1 = pIeαβM β+1

T (β + 1)
(12)

Further, Interest payable is:

Cp1 = cIp

T

⎡

⎣

tw∫

M

Ir(t)dt +
tw∫

M

Io(t) +
T∫

tw

Io(t)

⎤

⎦

Cp1 = cIp

T

⎡

⎣
αtβwe

θ2β

β+1

2
(e−θ2M − e−θ2tw ) + (β + 2)(M β+1 − Tβ+1) + θ1(Tβ+2 − tβ+2

w )

(β + 1)(β + 2)

⎤

⎦

+ cIp

T

⎡

⎣
W (e−θ1M − e−θ1tw )

θ1
+ θ2(t

β+2
w − M β+2)

(β + 1)(β + 2)
+ αTβe

θ1Tβ

β+1

θ1
(e−θ1tw − e−θ1T )

⎤

⎦

(13)
Now, the total cost is:

TC1(T , tw) = Cr + Ch1 + Ch2 + Cθ + Cp1 − Ce1 (14)

5.1.2 Case 2: tw < M ≤ T

Interest will be paid:

Cp2 = cIp

T

M∫

T

Io(t)dt
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Cp2 = cIpα

⎡

⎢
⎣

Tβ−1e
θ1Tβ
β+1

θ1
(e−θ1M − e−θ1T ) − (β + 2)(Tβ − TM β+1) − θ1(T

β+1 + TM β+2)

(β + 1)(β + 2)

⎤

⎥
⎦

(15)
The interest will be earn as follows:

Ce2 = pIe

T

M∫

0

αβtβdt

Ce2 = pIeαβM β+1

T (β + 1)
(16)

Now, the total cost is:

TC2(T , tw) = Cr + Ch1 + Ch2 + Cθ + Cp2 − Ce2 (17)

5.1.3 Case 3: M > T

In this case, the buyer gets a larger credit period M which is after T. Then, the buyer
earns interest, no need to pay interest charges:

Ce3 = pIe

T∫

0

t∫

0

αβtβ−1dudt

Ce3 = pIeαβ

(
T β + 1

β + 1

)

(18)

Now, the total cost is:

TC3(T , tw) = Cr + Ch1 + Ch2 + Cθ − Ce3 (19)

6 Fuzzy Model

In reality, it is not easy to define all the parameter accurately as there is always an
uncertainty in the environment. So, in this model θ̃1, θ̃2 assumes to be in fuzzy sense.

Let θ̃1 = (θ11, θ12, θ13) and θ̃2 = (θ21, θ22, θ23) are consider in the form of trian-
gular fuzzy numbers.
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6.1 Case 1: M ≤ tw ≤ T

Total cost per unit time in fuzzy sense

˜TC1(T , tw) = A

T
+ hrα

T

[
tβw
θ̃2

(

e
θ̃2 twβ

β+1 − e
−θ̃2 tw
β+1

)

+
(

(β + 2)tβ+1
w − θ̃2tβ+2

w

(β + 1)(β + 2)

)]

+ A1 + αθ̃2tβw

⎡

⎣
e

θ̃2 twβ

β+1

θ̃2
(1 − e−θ̃2tw) −

(
tw(β + 2) − θ̃2tw
(β + 1)(β + 2)

)
⎤

⎦

+ W (1 − e−θ̃1tw ) + αT βe
θ̃1Tβ

β+1 e−θ̃1tw − e−θ̃1T

− (T β+1 − tβ+1
w )(β + 2) − θ̃1(T β+2 − tβ+1

w )

(β + 1)(β + 2)
+ pIeαβM β+1

T (β + 1)
+ A2

˜TC1(T , tw) = A

T
+ hrα

T

⎡

⎢
⎢
⎢
⎣

tβw
(θ̃21, θ̃22, θ̃23)

(

e
(θ̃21,θ̃22,θ̃23)twβ

β+1 − e
−(θ̃21,θ̃22,θ̃23)tw

β+1

)

+ (β + 2)tβ+1
w − (θ̃21, θ̃22, θ̃23)t

β+2
w

(β + 1)(β + 2)

⎤

⎥
⎥
⎥
⎦

+ hoA3 + αTβe
(θ̃11,θ̃12,θ̃13)Tβ

β+1

[
e−(θ̃11,θ̃12,θ̃13)tw − e−(θ̃11,θ̃12,θ̃13)T

]

+ W (1 − e−(θ̃11,θ̃12,θ̃13)tw ) + α(θ̃21, θ̃12, θ̃13)t
β
w

×

⎡

⎢
⎢
⎢
⎢
⎣

e
(θ̃21,θ̃12,θ̃13)twβ

β+1

(θ̃21, θ̃22, θ̃23)
(1 − e−(θ̃21, θ̃22, θ̃23)tw)

− tw(β + 2) − (θ̃21, θ̃12, θ̃13)tw
(β + 1)(β + 2)

⎤

⎥
⎥
⎥
⎥
⎦

− Tβ+1(β + 2) − (θ̃11, θ̃12, θ̃13)Tβ+2 − tβ+1
w (β + 2) + (θ̃11, θ̃12, θ̃13)t

β+1
w

(β + 1)(β + 2)

+ pIeαβM β+1

T (β + 1)
+ cIp

T
A4

Using graded mean integration method for defuzzification of TC1

˜TC1(T , tw) = ( ˜TCa + 4 ˜TCb + ˜TCc)

6

For the values of A1, A2, A3, ˜TCa, ˜TCb, ˜TCc see the appendix.
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6.2 Case 2: tw < M ≤ T

Total cost per unit time in fuzzy sense

˜TC2(T , tw) = A

T
+ hrα

T

[
tβw
θ̃2

(

e
θ̃2 twβ

β+1 − e
−θ̃2 tw
β+1

)

+
(

(β + 2)tβ+1
w − θ̃2tβ+2

w

(β + 1)(β + 2)

)]

+ hoαT β−1e
θ̃1Tβ

β+1

θ̃1
(e−θ̃1tw − e−θ̃1T ) + hoW

T θ̃1
(1 − e−θ̃1tw ) + pIeαβM β+1

T (β + 1)

+ αθ2tβw

[
e

θ2 twβ

β+1

θ̃2
(1 − e−θ̃2tw)

]

× hoα
(T β(β + 2) − θ̃1T β+1 − T (tβ+1

w (β + 2) − θ̃1tβ+2
w ))

(β + 1)(β + 2)

− αθ2tβw

[
tw(β + 2) − θ̃2tw
(β + 1)(β + 2)

]

+ W (1 − e−θ̃1tw ) + αT βe
θ̃1Tβ

β+1 e−θ̃1tw

− e−θ̃1T − T β+1(β + 2) − θ̃1T β+2 − tβ+1
w (β + 2) + θ̃1tβ+1

w

(β + 1)(β + 2)

+ cIpα

⎡

⎢
⎢
⎢
⎣

T β−1e
θ̃1Tβ

β+1

θ̃1
(e−θ̃1M − e−θ̃1T )

−
(

(β + 2)T β − θ̃1T β+1 − T (β + 2)M β+1 + θ̃1M β+2

(β + 1)(β + 2)

)

⎤

⎥
⎥
⎥
⎦

Using graded mean integration method for defuzzification of TC2

˜TC2(T , tw) = ( ˜TCa + 4 ˜TCb + ˜TCc)

6

In case 2, we do the same process as in case 1.
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6.3 Case 3: M > T

Total cost unit time in fuzzy sense

˜TC3(T , tw) = A

T
+ hrα

T

[
tβw
θ̃2

(

e
θ̃2 twβ

β+1 − e
−θ̃2 tw
β+1

)

+
(

(β + 2)tβ+1
w − θ̃2tβ+2

w

(β + 1)(β + 2)

)]

+ hoW

T θ̃1
(1 − e−θ̃1tw ) + hoαT β−1e

θ̃1Tβ

β+1

θ̃1
(e−θ̃1tw − e−θ̃1T )

+ hoα
((T β − Ttβ+1

w )(β + 2) − θ̃1(T β+1 − Ttβ+2
w ))

(β + 1)(β + 2)

+ αθ̃2tβw

⎡

⎣
e

θ̃2 twβ

β+1

θ̃2
(1 − e−θ̃2tw) − tw(β + 2) − θ̃2tw

(β + 1)(β + 2)

⎤

⎦

+ αT βe
θ̃1Tβ

β+1 e−θ̃1tw − e−θ̃1T + W (1 − e−θ̃1tw )

− T β+1(β + 2) − θ̃1T β+2 − tβ+1
w (β + 2) + θ̃1tβ+1

w

(β + 1)(β + 2)

− pIeαβ

(
T β + 1

β + 1

)

Using graded mean integration method for defuzzification of TC3

˜TC3(T , tw) = ( ˜TCa + 4 ˜TCb + ˜TCc)

6

In case 3, we do the same process as in case 1. To find the optimal cost, the given

conditions should be satisfied.
∂(TC)

∂(T )
= 0 and

∂(TC)

∂(tw)
= 0

Further, for total cost ˜TC(T , tw) to be convex,

(
∂2(TC)

∂(t2w)

) (
∂2(TC)

∂(T 2)

)

−
(

∂2(TC)

∂(tw)∂(T )

)2

> 0 must be satisfied.

7 Numerical Examples

An example is taken for this model to validate the results:
For crisp model A = 200 $/order, α = 0.5 units/year, β = 4 units/year, e = 2.5, c =
10 $/unit, Ip = 0.15/$/unit/year, hr = 1 $/unit/year, p = 12 $/unit, ho = 0.5 units/year,
W = 50 units, θ1 = 0.9, Ie = 0.12/$/unit/year, θ2 = 0.02, M = 25

365 year and for fuzzy
model A = 200 $/order, α = 0.5 units/year, β = 4 units/year, e = 2.5, c = 10 $/unit,
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ho = 0.5 $/unit/year, Ie = 0.12/$/unit/year, hr = 1 $/unit/year, p = 12 $/unit, Ip =
0.15/$/unit/year, W = 50 units, θ1 = 0.9, θ2 = 0.02, M = 25

365 year. Here parameteric
values are opted from Shabani et al. (2016)

7.1 Crisp Model Versus Fuzzy Model

Crisp Fuzzy
tw T Z Case tw T Z Case

1.673 2.117 338.284 1 1.127 1.862 305.785 1
1.076 2.570 613.389 2 1.755 1.765 364.719 2
0.767 1.755 280.719 3 0.621 1.816 228.560 3

As, we see that from the numerical example, the fuzzy solution gives maximum
optimal value in comparison to the crisp solution.

8 Sensitivity Analysis

Here is the study of the effects of changes in parameter β, θ1, θ2 and M in all the
cases. Rest of the parameters are same as in example.

From Table 2, the value of total cost (Z) is increasing with the increment in the
value of (T , tw). But, from Table 3, the value of total cost is decreasing having the
decreasing effect on the value of (T , tw), except the first value of β. So, fuzzy model
is more optimal with respect to crisp model (Figs. 2, 3,4, 5, 6 and 7).

Table 2 Sensitivity analysis for case 1 in crisp manner

Parameter Value tw T Z

β 4 1.235 2.269 291.256

6 1.673 2.117 338.284

8 1.117 1.580 381.877

θ1 0.5 1.140 2.5781 204.011

0.7 2.134 3.027 246.222

0.9 1.235 2.269 291.256

θ2 0.02 1.235 2.269 291.256

0.05 1.243 2.275 291.414

0.08 1.253 2.280 291.582

M 15/365 1.233 2.269 292.068

25/365 1.235 2.2699 291.256

35/365 1.237 2.270 290.461
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Table 3 Sensitivity analysis for case 1 in fuzzy manner

Parameter Value tw T Z

β 4 2.022 3.011 375.521

6 1.127 1.862 305.785

8 1.090 1.6184 341.220

θ1 0.5 0.671 2.695 135.035

0.7 1.126 2.557 203.791

0.9 2.022 3.011 375.521

θ2 0.02 2.022 3.011 375.521

0.05 2.074 2.981 247.089

0.08 2.010 2.934 248.766

M 15/365 2.137 3.029 245.970

25/365 2.022 3.011 375.521

35/365 2.139 3.029 244.513

Fig. 2 Graphical
representation case 1 profit
in crisp and fuzzy with
respect to θ1 parameter

Fig. 3 Graphical
representation case 1 profit
in crisp and fuzzy with
respect to β parameter
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Fig. 4 Graphical
representation case 2 profit
in crisp and fuzzy with
respect to θ1 parameter

Fig. 5 Graphical
representation case 2 profit
in crisp and fuzzy with
respect to β parameter

Fig. 6 Graphical
representation case 3 profit
in crisp and fuzzy with
respect to θ1 parameter

Fig. 7 Graphical
representation case 3 profit
in crisp and fuzzy with
respect to β parameter
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Table 4 Sensitivity analysis for case 2 in crisp manner

Parameter Value tw T Z

β 5 2.112 2.331 395.765

6 1.076 2.570 613.389

7 1.745 1.750 362.435

θ1 0.3 1.612 1.858 312.541

0.5 2.112 2.331 395.765

0.7 2.384 2.957 810.135

θ2 0.02 2.112 2.331 395.765

0.03 2.112 2.322 395.175

0.04 2.112 2.314 394.721

M 15/365 2.111 2.331 396.721

25/365 2.112 2.331 395.765

35/365 2.113 2.332 394.818

Table 5 Sensitivity analysis for case 2 in fuzzy manner

Parameter Value tw T Z

β 5 1.062 2.592 659.995

6 1.755 1.765 364.719

7 2.134 2.379 409.801

θ1 0.3 1.656 1.895 308.022

0.5 1.062 2.592 659.995

0.7 2.395 3.046 918.355

θ2 0.02 1.062 2.592 659.995

0.03 2.134 2.370 409.050

0.04 2.134 2.314 408.458

M 15/365 2.133 2.379 410.813

25/365 1.062 2.592 659.995

35/365 2.135 2.379 408.799

In Table 4, with the increment in the value of (T , tw), the value of total cost (Z) is
going to increasing. But, in Table 5, the value of total cost having decreasing effect
on the value of (T , tw), except the first value of β. So, fuzzy model is more optimal
with respect to crisp model.

From Table 6, the value of total cost (Z) is increasing with the increasing value of
(T , tw). But, from table 7, the total cost is decreasing with the value of (T , tw), except
the first value of β. So, fuzzy model is more optimal with respect to crisp model.
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Table 6 Sensitivity analysis for case 3 in crisp manner

Parameter Value tw T Z

β 4 0.784 2.207 231.729

6 0.767 1.755 280.719

8 0.775 1.545 313.876

θ1 0.5 0.145 2.512 110.272

0.7 0.604 2.344 180.131

0.9 0.784 2.207 231.729

θ2 0.02 0.784 2.207 231.729

0.05 0.785 2.207 231.744

0.08 0.785 2.208 231.760

M 15/365 0.784 2.207 231.729

25/365 0.7847 2.207 231.729

35/365 0.784 2.207 231.729

Table 7 Sensitivity analysis for case 3 in fuzzy manner

Parameter Value tw T Z

β 4 0.361 2.324 268.822

6 0.621 1.816 228.560

8 0.651 1.584 261.616

θ1 0.5 0.145 2.512 110.272

0.7 0.173 2.480 113.681

0.9 0.361 2.324 268.822

θ2 0.02 0.361 2.324 268.822

0.05 0.606 2.328 181.091

0.08 0.606 2.328 181.095

M 15/365 0.606 2.328 181.087

25/365 0.361 2.324 268.822

35/365 0.606 2.328 181.087

9 Conclusion

In this paper, we have proposed the effect of fuzzy deterioration as well as Weibull
demand under credit financing in two-warehouse environment. The study associ-
ated with some types of inventory such as seasonal food items inventory, newly
launch fashion items, etc. The model is motivated by the fact that there is always an
uncertainty in demand and the deterioration rate such as for physical goods. So, it
is worthwhile to take the deterioration rate in fuzzy number as well as demand in
Weibull distribution. The rate of deterioration is represented by triangular fuzzy num-
ber. Nowadays, the credit financing policy has become a advertisement tool to attract



102 Aastha et al.

customers. Customer has to purchase items in a very large quantity without imme-
diately payment. In trade credit policy, seller offers some credit period to pay. But
beyond this time, buyer has to pay an interest. Here, graded mean integration method
is used for defuzzification to calculate the total cycle time as well as total cost of the
model. From the numerical study and sensitivity analysis with respect to different
key parameters, it is observed that fuzzy model is more optimal than crisp model.

10 Managerial Insights

Here, fuzzy model is more optimal with respect to crisp model. The above results
show the significance of the model. This model can be extended in several forms.
It can be more realistic if this model can be extended with types of demand such
as advertisement-dependent demand, ramp type demand or two level and three level
trade credit policy or if onemay assumevariable lead time also, one can take nonlinear
holding cost. Further, this model can be extended under carbon emission constraints
with international supply chain.

Appendix

A1 = ho

⎡

⎢
⎢
⎢
⎢
⎣

W

T θ̃1
(1 − e−θ̃1tw ) + αT β−1e

θ̃1Tβ

β+1

θ̃1
(e−θ̃1tw − e−θ̃1T )

+ α

(
(T β − Ttβ+1

w )(β + 2) − θ̃1(T β+1 + Ttβ+2
w )

)

(β + 1)(β + 2)

⎤

⎥
⎥
⎥
⎥
⎦

A2 = cIp

T

⎡

⎢
⎢
⎢
⎣

(β + 2)(tβ+1
w − M β+1) − θ̃2(t

β+2
w − M β+2)

(β + 1)(β + 2)

+ W (e−θ̃1M − e−θ̃1tw )

θ̃1
+ αT βe

θ̃1Tβ

β+1

θ̃1
(e−θ̃1tw − e−θ̃1T )

⎤

⎥
⎥
⎥
⎦

− cIp

T

⎡

⎣
αtβwe

θ̃2β

β+1

θ̃2
(e−θ̃2M − e−θ̃2tw )

⎤

⎦

A3 = W

T (θ̃11, θ̃12, θ̃13)
(1 − e−(θ̃11,θ̃12,θ̃13)tw)

+ αT β−1e
(θ̃11 ,θ̃12 ,θ̃13)

Tββ+1

(θ̃11, θ̃12, θ̃13)

(
e−(θ̃11,θ̃12,θ̃13)tw − e−(θ̃11,θ̃12,θ̃13)T

)

+ α
((T β − Ttβ+1

w )(β + 2) − (θ̃11, θ̃12, θ̃13)(T β+1 − Ttβ+2
w ))

(β + 1)(β + 2)
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A4 =

⎡

⎢
⎢
⎢
⎣

αtβwe
(θ̃21 ,θ̃22 ,θ̃23)β

β+1

(θ̃21, θ̃22, θ̃23)
(e−(θ̃21,θ̃22,θ̃23)M − e−(θ̃21,θ̃22,θ̃23)tw )

− (β + 2)(tβ+1
w − M β+1) − (θ̃21, θ̃22, θ̃23)(t

β+2
w − M β+2)

(β + 1)(β + 2)

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

W (e−(θ̃11,θ̃12,θ̃13)M − e−(θ̃11,θ̃12,θ̃13)tw )

(θ̃11, θ̃12, θ̃13)

+ αT βe
(θ̃11,θ̃12 ,θ̃13)Tβ

β+1

(θ̃11, θ̃12, θ̃13)

(
e−(θ̃11,θ̃12,θ̃13)tw − e−(θ̃11,θ̃12,θ̃13)T

)

⎤

⎥
⎥
⎥
⎥
⎦

−
[

(β + 2)T β+1 − (θ̃11, θ̃12, θ̃13)T β+2 − (β + 2)tβ+1
w + (θ̃11, θ̃12, θ̃13)t

β+2
w

(β + 1)(β + 2)

]

∗˜TCa(T , tw) = A

T
+ hrα

T

⎡

⎢
⎢
⎢
⎢
⎣

tβw
θ̃21

(

e
θ̃21 twβ

β+1 − e
−θ̃21 tw

β+1

)

+
(

(β + 2)tβ+1
w − θ̃21tβ+2

w

(β + 1)(β + 2)

)

⎤

⎥
⎥
⎥
⎥
⎦

+ hoW

T θ̃11
(1 − e−θ̃11tw ) + hoαT β−1e

θ̃11Tβ

β+1

θ̃11
(e−θ̃11tw − e−θ̃11T )

+ hoα
(T β(β + 2) − θ̃11T β+1 − T (tβ+1

w (β + 2) − θ̃11tβ+2
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(β + 1)(β + 2)

+ αθ̃21tβw

⎡

⎣
e

θ̃21 twβ

β+1

θ̃21
(1 − e−θ̃21tw) − tw(β + 2) − θ̃21tw

(β + 1)(β + 2)

⎤

⎦

+ W (1 − e−θ̃11tw ) + αT βe
θ̃11Tβ

β+1 e−θ̃11tw − e−θ̃11T

− T β+1(β + 2) − θ̃11T β+2 − tβ+1
w (β + 2) + θ̃11tβ+1

w

(β + 1)(β + 2)

+ pIeαβM β+1

T (β + 1)
+ cIp

T

⎡

⎣
αtβwe

θ̃21β

β+1

θ̃21
(e−θ̃21M − e−θ̃21tw )

⎤

⎦

− cIp

T

⎡

⎢
⎢
⎢
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(β + 2)(tβ+1
w − M β+1) − θ̃21(t

β+2
w − M β+2)

(β + 1)(β + 2)

+ W (e−θ̃11M − e−θ̃11,tw )
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+ αT βe

θ̃11Tβ

β+1

θ̃11
(e−θ̃11tw − e−θ̃11T )

⎤

⎥
⎥
⎥
⎦

− cIp

T

[
(β + 2)T β+1 − θ̃11T β+2 − (β + 2)tβ+1

w + θ̃11tβ+2
w

(β + 1)(β + 2)
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∗˜TCb(T , tw) = A

T
+ hrα

T

⎡

⎢
⎢
⎢
⎢
⎣

tβw
θ̃22

(

e
θ̃22 twβ

β+1 − e
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β+1
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(e−θ̃12tw − e−θ̃12T )

+ hoα
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⎤
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w
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T

⎡
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⎢
⎢
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β+2
w − M β+2)

(β + 1)(β + 2)

+ W (e−θ̃12M − e−θ̃12tw )
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⎤

⎥
⎥
⎥
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T

[
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∗˜TCc(T , tw) = A

T
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T
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(
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Two-Warehouse Inventory of Sugar
Industry Model for Deteriorating Items
with Inflation Using Differential
Evolution

Ajay Singh Yadav, Navin Ahlawat, Anupam Swami, and Mohammed Abid

Abstract In this article, the warehouse of the sugar industry system was created for
the growing commodity demand and demand with an increase in dual warehouses
using different variables. Warelo its warehouse (OW) has a capacity of W units; the
warehouse (RW) has unlimited capacity. At this point, we think the sugar industry
is holding higher RW records than at EW using different evolution. Sugar compa-
nies are allowed to quit, and the sugar industry will get worse in the near future,
fluctuating when they make various changes. There is also an effect of an increase
in the various costs associated with the marketing of sugar systems using different
variables. Numerical symbols are also used to study the behavior of the model using
different variables. Reduction costs are used to obtain a statement of total costs in
other areas using a different evolution method.

Keywords Inventory · Partially backlogged · Deteriorating items · Inflation ·
Two-warehouse · Differential evolution

1 Introduction

Most analysts have increased EOQ performance to a minimum. Some researchers
have discussed the plans of the sugar industry and which system to favor. The biggest
disadvantage of the system over time is that it shows a change in price demands per
minute. This is not surprising in stocks and markets. In recent years, more and more
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models have been developed and are looking for change faster than ever before. For
seasonal products such as clothing and spirits, there is a need for these products in
the early stages and at the end of the season. Now the demand for these products
changes rather than decreasing rapidly. These questions are believed to be relevant.
These conditions can be demonstrated by rising prices. An important factor in the
history of the sugar industry is how to fix the negatives that arise during times of
scarcity or scarcity.Withmost of thesemodels developed, researchers speculated that
the deficit could be delayed or even disappear altogether. The first, called the last or
the last, represents the world and the uncontrolled world. In the second case, also
known as the lost market, we assume that the incomparable demand is completely
lost. On top of that, if a shortage arises, some buyers want to wait for an order where
others are buying from other retailers. In most cases, customers notice a delay in
shipping and may have to wait a long time to process their first order. For example,
in the case of high-end products and technology products with a shorter lifespan, the
customer’s need to wait reduces the waiting time. Therefore, the longer wait time
for an additional extension will determine whether the fish is received backwards
or not. In most cases, it is useful in times of shortness, long wait, little adjusting
backwards. That is, in the case of a reasonable business environment, the surplus
percentage will change depending on the waiting period for the next take. Many
researchers have adapted the sugar industry policy to use it to “delay time.” DE uses
two different unrelated systems to control the transition, which makes it unique to
other algorithms. As in GA, special people were created. Three other people are
selected for each. The vector velocity is generated by increasing the difference in
weight (differential velocity) between the two components. Redesign or restructuring
is one of the major tasks of AG, but it works in partnership with DE. If everyone is
treated in this way, health status is assessed. If the value of a new person is better
than the value of the old, replace the old with the new. This process is repeated until
a large number of generations have changed.

2 Related Works

Demand was believed to be a fluctuating function of time and that the backlog
of unmet demand was a decreasing function of waiting time. Yadav and Swami
(Yadav& Swami, 2018a, 2019a; Yadav et al., 2020f) “Amodel with a partial backlog
in production inventory and lot size with time-varying operating costs and female
decline.” “Integrated supply chain model for material spoilage with linear demand
basedon inventory in an inaccurate and inflationary environment.” “Aflexible volume
two-stage model with fluctuating demand and inflationary holding costs.” Yadav
et al. (Yadav & Swami, 2018b; Yadav et al., 2016, 2017a, 2019, 2020h, 2020j)
“Supply chain inventory model for two warehouses with soft IT optimization.”
“Multi-objective optimization for the stock model of electronic components and
the degradation of double-bearing elements using a genetic algorithm.” “An infla-
tion inventory model for spoilage under two storage systems.” “Chemical industry
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supply chain for warehouses with distribution centers using the Artificial Bee Colony
algorithm.” “Management of the supply chain for electronic components of industrial
electronics development for warehouses and their environmental impact using the
particle swarm optimization algorithm.” “Cost method for reliability considerations
for the LOFO inventory model with warehouse for chemical industry.” Pandey et al.
(Yadav et al., 2020b) “Ananalysis of the inventory optimization of themarble industry
based on genetic algorithms and particle swarm optimization.” Malik et al. (Yadav
et al., 2020c) “Security mechanism implemented in gateway service providers.”
Yadav et al. (2020h, 2020i, 2020k, 2020l) “proposed the supply chain management
of the National Blood Bank Center for the application of blockchain using a genetic
algorithm.” “Provided drug industry supply chain management for blockchain appli-
cations using artificial neural networks.” “Suggested the redwine industry tomanage
the supply chain of distribution centers using neural networks.” “A supply chain
management for the rosé wine industry for storage using a genetic algorithm.” “Pro-
viding supply chain management for the white wine industry for warehouses using
neural networks.” Chauhan and Yadav (Yadav et al., 2017b, 2020m) “proposed a
stock model for commodity spoilage where demand depends on two stocks and
stocks using a genetic algorithm.” “Provide a car inventory system for inflation
based on demand and inventory with a two-way distribution center using a genetic
algorithm.” Yadav et al. (Yadav & Swami, 2019b; Yadav et al., 2017c, 2020a, 2020d,
2020e, 2020g) “A method for calculating the reliability of the LIFO stock model
with bearings in the chemical industry.” “Ensuring the management of the supply
chain of electronic components for the development of the electronics industry in
warehouses and the impact on the environment using the particle swarm optimization
algorithm.” “FIFO in Electrical Component Industry Green Supply Chain Inventory
Model with Distribution Centers Using Particle Swarm Optimization.” “LIFO in
Automotive Components Industry Green Supply Chain Inventory Model with Bear-
ings using Differential Evolution.” “FIFO & LIFO in the Industry Green Supply
Chain Inventory Model for Hazardous Substance Components with Storage using
SimulatedAnnealing.” “Health inventory control systems for bloodbank storagewith
reliability applications using a genetic algorithm.” Sana (2015, 2020) “Price compe-
tition between green and non-green products in the context of a socially responsible
retail and consumer services business magazine.” “An EOQ model for stochastic
demand for limited storage capacity.” Moghdani et al. (2020) “Fuzzy model for
economic production quantity with multiple items and multiple deliveries.” Haseli
et al. (2020) “Basic criterion for the multi-criteria decision-making method and
its applications.” Ameri et al. (2019) “Self-assessment of parallel network systems
with intuitionistic fuzzy data: a case study.” Birjandi et al. (2019) “Assessment and
selection of the contractor when submitting a tender with incomplete information
according to the MCGDMmethod.” Gholami et al. (2018) “ABC analysis of clients
using axiomatic design and incomplete estimated meaning.” Jamali et al. (2018)
“Hybrid Improved Cuckoo SearchAlgorithm andGenetic Algorithm to SolveMarko
Modulated Demand.”
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3 Assumptions and Notations

In developing the mathematical model of the inventory of the sugar industry system,
the following assumptions are made:

1. “The Demand rate D(t) at time t is deterministic and taken as a ramp type
function of time”

D(t) =
(
A1 − 1

CF

)
e
−
(

λ1−1
CF

)
{t−(t−T1)H(t−T1)}

,

(
A1 − 1

CF

)
> 0,

(
λ1 − 1

CF

)
> 0

where H(t − T1) =
{
0, t < T1
1, t ≥ T1

.

2. “Backlogging rate is exp −
(

δ1−1
CF

(t)
)
when inventory of Sugar industry is in

shortage.

The backlogging parameter
(

δ1−1
CF

)
is a positive constant”.

3. “The variable rate of deterioration in both warehouse is taken as
(

θ1−1
CF

)
(t) =(

θ1−1
CF

)
t

where 0 <
(

θ1−1
CF

)
<< 1 and only applied to on hand inventory of Sugar

industry”.

“In addition, the following notations are used throughout this paper”[
Fifo
I
ow

(t)

]
= “The inventory level of Sugar industry in OW at any time t.”[

Fifo
I
rw

(t)

]
= “The inventory level of Sugar industry in RW at any time t.”(

R1−1
CF

)
= “Inflation rate.”

Q = “The ordering quantity per cycle.”
T = “Planning horizon.”
F1 = “The holding cost of Sugar industry per unit per unit time in OW.”
F2 = “The holding cost of Sugar industry per unit per unit time in RW,” where

F1 < F2.
Fd = “The deterioration cost of Sugar industry per unit.”
F3 = “The shortage cost of Sugar industry per unit per unit time.”
F4 = “The opportunity cost of Sugar industry due to lost sales.”
F1 = “The replenishment cost of Sugar industry per order.”
CF = “The FIFO cost of Sugar industry per unit.”



Two-Warehouse Inventory of Sugar Industry Model … 115

4 Formulation and Solution of the Model

“The inventory of the levels of the sugar industry inEV is determined by the following
differential equations”:

d

[
Fifo
I
ow

(t)

]

dt
= −

(
θ1 − 1

CF

)
(t)

[
Fifo
I (t)

]
, 0 ≤ t < T1 (1)

d

[
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ow

(t)

]

dt
+
(
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CF

)
(t)

[
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I (t)
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= −

(
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CF
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e
−
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CF

)
T1

, T1 ≤ t ≤ T2 (2)

And

d
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dt
= −
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e
−
(

λ1−1
CF

)
T1e
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t
, T2 ≤ t ≤ Tn (3)

“With the boundary conditions,”

[
Fifo
I
ow

(0)

]
= W and

[
Fifo
I (T2)

]
= 0 (4)

“The solutions of Eqs. (1), (2), and (3) are given by”
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, 0 ≤ t < T1 (5)
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(
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(
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) e
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e
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−e
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⎭, T2 ≤ t ≤ Tn (7)

“The inventory of Sugar industry level at RW is governed by the following
differential equations”:
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“With the boundary condition

[
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= 0, the solution of Eq. (8) is”
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“Due to continuity of

[
Fifo
I
ow

(t)

]
at point t = T1, it follows from Eqs. (5) and (6),

one has”
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“The total average cost consists of following elements”:

(i) “Ordering cost per cycle” = F1 (11)

(ii) “Holding cost per cycle (CHO) in OW”

CHO = F1
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CHO = F1
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(iii) “Holding cost per cycle (CHR)” in RW
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(iv) “Cost of deteriorated units per cycle” (CD)
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(v) “Shortage cost per cycle” (Cs)
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(vi) “Opportunity cost due to lost sales per cycle” (C0)
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“Therefore, the total average cost per unit time of ourmodel is obtained as follows”

TC(T2,Tn) = 1

Tn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ordering cost+
Holding cost inOW+
Holding cost in RW +
Deterioration cost+
Shortage cost+
Opportunity cost

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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5 Evolutionary Algorithms

This is a population-based algorithm and consider a population size of M.
The population matrix can be shown as

ϒc
m,i = [

ϒc
m,1, ϒ

c
m,2, ϒ

c
m,3, . . . ϒ

c
m,L

]

where c is the generation and m = 1, 2, 3 …M.

(1) Initial Population

“Initial population is generated randomly between upper lower and upper bound”

ϒm,i = ϒu
m,i + rand( ) ∗ (ϒv

m,i − ϒu
m,i

)

“Where ϒu
m is the lower bound of the variable ϒi”.

“Where ϒv
m is the lower bound of the variable ϒi”.

(2) Mutation

“From each parameter vector, select three other vectors ϒc
r1m , ϒc

r2m and ϒc
r3m

randomly”.
“Add the weighted difference of two of the vectors to the third”

ηc+1
m = ϒc

r1m + G
[
ϒc

r2m − ϒc
r3m

]

m = 1, 2, 3 . . . M

“ηc+1
m is called donor vector.”

“G generally taken between 0 and 1”.

(3) Recombination

“A trial vector uc+1
m,i is developed from the target vector ϒc

m,i and the donor vector”
ηc+1
m,i

uc+1
m,i =

{
ηc+1
m,i if rand( ) ≤ Cp or i = Irand i = 1, 2, 3 . . . L and

ϒc
m,i if rand( ) ≤ Cp or i = Irand m = 1, 2, 3 . . . M

}

“Cp is the recombination probability.”
“I rand is an integer random number between (1, L).”

(4) Selection

“The target vector ϒc
m,i is compared with the trial vector uc+1

m,i , and the one with the
lowest function value is selected for the next generation”
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ϒc+1
m =

{
uc+1
m,i if f

(
uc+1
m,i

)
< f

(
ϒc

m,i

)
ϒ

g
m otherwise

}

m = 1, 2, 3 . . . M

6 Numerical Illustration

“To illustrate themodel numerically, the following parameter values are considered.”

A1 = 590 units, F1 = Rs. 109 per order, R1 = 0.05 unit, λ1 = 0.29 unit, θ0 =
0.0029 unit,T1 = 0.2 year, δ0 = 0.1 unit, Tn = 1 year, F1 = Rs. 3.9 per unit per year,
F2 = Rs. 10.9 per unit, F3 = Rs. 12.9 per unit per year, F4 = Rs. 4.9 per unit,
TC(T2,Tn) = Rs. 158.115354 per year.

7 Sensitivity Analysis

See Tables 1 and 2.

8 Conclusion

This study contains some useful bodybuilding information that can be combinedwith
the knowledge of the sugar industry. Reducing the producer’s time and the shortage
in the sugar market in real life are natural. This mode helps to detect shortages in the
sugar industry. In many cases, customers have been frustrated with the delivery time
and may have to wait a long time to make their first choice when using the advanced
program. In general, the waiting period for the next oil is the most important factor
in deciding whether to accept a fish stove. Consumer willingness to wait late during
the waiting period reduces the waiting time when using a different evolution cover.
Thus, in this chapter, the sugar industry list has been abandoned and reorganized,
but the previous percentage is seen as reducing the amount of time spent waiting for
some recovery using the existing evolution system. This measure is considered to
be a major factor in reducing the amount of time required for each control and is
also stable. Since most manufacturers agree that inflation has no effect on the sugar
industry plans, the consequences of the increase in other types of sugar products
using different products are not considered. Thus, from a financial point of view, the
sugar industry is sowing in equity and will be added to other resources in accordance
with the company’s budget. Therefore, it is important to look at the pricing patterns
on the product properties of sugar companies using a variety of different brands.
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Table 1 Sensitivity analysis in relation to all rates

A1 T1 T2 Tn TC(T2,Tn)

558 7.49688 74.8980 84.6898 640,800

608 7.58756 75.5790 85.0507 647,858

758 7.55006 79.7847 86.5888 658,940

458 7.44778 78.0978 87.4559 674,865

F1 T1 T2 Tn TC(T2,Tn)

8.55 7.46488 69.4764 88.6867 647,476

8.60 7.45465 66.6486 79.4780 648,950

8.75 7.48868 59.8867 74.7748 667,695

8.45 7.48785 76.4487 87.6679 678,776

F1 T1 T2 Tn TC(T2,Tn)

8.55 7.46488 69.4764 88.6867 647,476

8.60 7.45465 66.6486 79.4780 648,950

8.75 7.48868 59.8867 74.7748 667,695

8.45 7.48785 76.4487 87.6679 678,776

θ0 T1 T2 Tn TC(T2,Tn)

688 7.47468 56.6869 44.6606 677,576

668 7.47459 56.6604 44.6787 677,566

858 7.47477 56.5964 44.7056 677,778

96 7.47486 56.7678 44.6778 677,678

λ1 T1 T2 Tn TC(T2,Tn)

678 7.47605 57.0777 67.6067 678,686

708 7.47785 57.7866 67.0670 678,844

778 7.47967 57.9477 68.8675 640,867

668 7.47764 56.7848 65.0649 676,875

θ0 T1 T2 Tn TC(T2,Tn)

688 7.47468 56.6869 44.6606 677,576

668 7.47459 56.6604 44.6787 677,566

858 7.47477 56.5964 44.7056 677,778

96 7.47486 56.7678 44.6778 677,678

CF T1 T2 Tn TC(T2,Tn)

8.778 7.56077 78.6887 98.7087 658,770

8.978 7.56968 84.4808 99.7488 666,740

6.488 7.77079 98.8567 686.8780 786,688

8.448 7.47687 67.8097 77.0706 664,866

F1 T1 T2 Tn TC(T2,Tn)

(continued)
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Table 1 (continued)

A1 T1 T2 Tn TC(T2,Tn)

8658 7.59686 57.9587 55.6058 640,688

8808 7.70547 55.8478 56.0768 646,667

6658 7.08070 58.7766 58.6698 649,574

8758 7.75049 58.7789 57.8999 674,868

F2 T1 T2 Tn TC(T2,Tn)

68 7.46764 69.6488 88.9680 647,077

78 7.45096 66.9546 79.9066 648,606

98 7.48078 60.4577 75.6674 668,955

58 7.48546 76.6848 86.9845 678,789

F3 T1 T2 Tn TC(T2,Tn)

86.8 7.77876 74.7006 46.7956 646,706

90.8 7.68886 75.8804 48.4778 646,798

886.8 7.06749 79.9776 54.0750 659,476

67.8 7.5958 78.0809 48.9746 676,788

F4 T1 T2 Tn TC(T2,Tn)

0.0848 7.48566 78.0670 46.8878 677,746

0.0858 7.49444 69.5888 40.6887 670,488

0.0898 7.58704 66.6776 76.0787 666,777

0.0888 7.46888 74.6988 46.7690 646,686

Table 2 Sensitivity analyses with differential evolution rate

Function Algorithm Best Worst Mean Standard deviation

A1 DE 0.80608 84.0900 64.6098 040,800

F1 DE 0.86488 89.4664 60.6806 043,436

λ1 DE 0.86466 80.6060 64.0498 046,604

θ0 DE 0.86468 60.6809 84.0600 036,860

CF DE 0.86608 63.0333 83.6066 038,080

F1 DE 0.80063 68.6083 80.6003 030,630

F2 DE 0.80608 84.0900 64.6098 040,800

F3 DE 0.86488 89.4664 60.6806 043,436

F4 DE 0.86466 80.6060 64.0498 046,604

Therefore, this idea is accepted in this mode. Comparison of the model showed that
the time to keep up with the sugar industry products increases with the increase
in fish stocks in the early stages, while the sugar industry declines with increasing
losses and inflation. The assets of the first sugar industry are reduced by inflation and
inflation rate, while the volume of the sugar industry is increased by the increase in
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evolution lag parliament. The rate of change continues to increase with the increase
in the number of human casualties and decreases with the increase in the degree of
variability. The required mode can proceed in different ways. For example, we can
extend this decision-making process to different marketing products. We can also
extend the mod by using other specific settings such as cash flow, sugar savings, and
others can also change the time using a different evolution strategy.
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A Stackelberg Game Approach in Supply
Chain for Imperfect Quality Items
with Learning Effect in Fuzzy
Environment

Rita Yadav, Mandeep Mittal, Navneet Kumar Lamba,
and Mahesh Kumar Jayaswal

Abstract In recent decades, researchers have effectively worked on seeking optimal
policies under supply chain management for attaining practical and powerful
outcomes. This paper studies supply chain model for imperfect quality items in
which demand depends upon the buyer’s price and marketing cost. The buyer segre-
gates the defective items from supplied lot by seller and sell them at discounted price.
In today’s scenario, learning effect methodology has become a promotional tool in
supply chain management. It impacts profit or loss of the members of the supply
chain. The rapid change in the life cycle of product makes the parameters of the
supply chain models more and more uncertain. Fuzzy analysis becomes a powerful
tool to deal such type of vague or uncertain parameters in computing form. It exam-
ines the better assessment and performance of imprecise parameters. Keeping in
view, some supply chain models for imperfect quality items have been developed by
considering learning effect under fuzzy environment. A non-cooperative Stackelberg
game theoretic approach is used to find the optimal decision variables and optimum
profit of the supply chain members in fuzzy environment. Various numerical results
with sensitivity analysis have been explained to justify the model.

Keywords Learning curve · Fuzzy system · Imperfect quality items ·
Non-cooperative games · Supply chain · Game theory

1 Introduction

Supply chain management is primarily related to the integration of activities and
process between and within the organization. To analyze the interaction between
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the members of the supply chain, the theory of non-cooperative Stackelberg game
is preferred and used to study supply chain connected problems. There have been
many researchers/academicians involve inworking of themathematicalmodel imple-
menting the learning curve. Some researches like Wright (1936), Baloff (1966),
Cunningham (1980), and Argote et al. (1990) have contributed their work in the field
of learning and forgetting curves by discussing themathematical behavior of learning
theory. Salameh et al. (1993) developed production inventory model (limited manu-
factured stock form) to optimize the cost with the outcome of human knowledge by
taking the variable demand rate and learning with respect to time. Jaber and Bonney
(1996) discovered and discussed a comparative study of the theory of learning and
forgetting and also focused analytically different types of models.

Salameh and Jaber (2000) exploredEOQmodel for defective itemswith an inspec-
tion process at the buyer’s end. These items may occur due to any reasons. Further,
Eroglu and Ozdemir (2007) stretched the model of Salameh and Jaber (2000) by
permitting shortages. Jaber andBonney (2003) developedmathematicalmodelwhich
focused on reducing the setup time, eliminating rework and increasing production
capacity with the help of learning curve. Jaber et al. (2008) deliberated the EOQ
model in which they discussed that by using the concept of the learning curve, the
percentage of defective items per batch decreased. Khan et al. (2010) minimized the
production cost andmaximized the production in their EOQmodel for defective items
by letting learning in screening process. Anzanello and Fogliatto (2011) advised the
mathematical forms with their applications of learning curves models. Konstantaras
et al. (2012) established a model to maximize production by allowing shortages for
the imperfect items with an inspection as learning. Jaber et al. (2013) considered
a manufacture stock model with “learning and forgetting” theory in manufacture.
Game theory is a competent tool to balance the coordination among the players
like seller and buyer in supply chain industry. Jayaswal et al. (2019) established an
inventory model for imperfect quality items with permission delay under learning
effect. Mittal et al. (2017) proposed an inventory model for price and demand are
time depended under inflation.

Many times, there is ups and downs in the market. So it becomes necessary and
useful for business to use fuzzy number to get best strategy. Wei and Zhao (2013)
discussed three supply chain models in which expected profit is determined by fuzzy
game theory. Soleimani (2016) analyzed manufacturer–leader Stackelberg game in
which manufacturing cost and demand of customer are precise in nature. Optimum
value of whole sale price and buyer’s price are obtained by game theoretic approach.
Patro et al. (2017) investigated two models crisp as well as fuzzy EOQ models
with imperfect quality items (proportionate discount items) under learning effect
in a finite time horizon. The optimal order lot size is determined to maximize the
total profit where the defective items follow a learning curve and the demand rate
assumed as triangle fuzzy number. Chavoshlou et al. (2019) developed three players
(government, manufacture, and customer) green supply chain optimization model
under fuzzy environment. Optimal strategies are obtained byNash equilibrium game,
and positive effects of fuzzy game model over non-fuzzy game model are discussed.
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Some researchers like Abad and Jaggi (2003) have developed supply chain model
inwhich the seller endorsed credit period to the buyer (payer) by cooperative and non-
cooperative game theoretical structure. Esmaeili et al. (2009) also developed supply
chain models by the game theoretical approach (cooperative and non-cooperative)
in which demand is influenced by both the selling cost and marketing expenditure
cost. Yadav et al. (2020) developed supply chain models for defective items with
learning effect by Stackelberg non-cooperative approach. None of the researchers
have developed such model under fuzzy environment, where demand is sensitive to
selling rate and marketing expenditure charges of the buyer. To obtain their optimal
policies, the fuzzy set theory is adopted to solve these fuzzy models. Meanwhile,
fuzzy analysis is a commanding tool that deals with the information which arises
fromcomputational awareness andperception. Therefore,we consider the correlation
between one buyer and one seller in a fuzzy decision-marking environment, where
the parameters of the models can be forecasted and expressed as the triangular fuzzy
variables.

Fuzzy theory basically comprises the process to find out the proper range for
indistinct items in a vague/imprecise environment for smooth coordination between
players of supply chain. In this paper, ordering cost of the buyer and setup cost of
the seller are imprecise in nature. The total optimal profit in fuzzy environment is
defuzzifiedwith the help of the centroidmethod. In this paper, two-level supply chain
models under fuzzy environment with the learning effect have been developed. The
non-cooperative game theoretic approaches have been discussed in which demand
is influenced by the marketing expenditure/promotional cost and selling price of
the player, purchaser. Seller-Stackelberg and Buyer-Stackelberg, two different game
approaches, have been discussed.

In this paper, impact of learning curve (LC) curve is shown on the different
parameters of the supply chain. In this paper, learning curve is assumed to be in the
form of p(n) = a/

(
g + sbn

)
, where a, b and g > 0 are the active parameters, and

p(n) is the percentage defective per batch n, whereas n is the cumulative number of
lots.

2 Notations

Seller’s decision variables

cb Seller’s selling price ($/unit)

Buyer’s decision variables

M Marketing cost (promotional price) ($/unit)
pb Buyer’s selling price ($/unit)
yn Order quantity (in units) in nth batch, where n ≥ 1
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Parameters

Ab Buyer’s ordering cost ($/order)
As Seller’s ordering cost ($/order)
Hb Inventory cost ($/unit/time)
I Percent of inventory’s carrying cost ($/unit)
p(n) Defective percentage of items/products per batch (n) in yn (units)
C Seller’s purchasing cost ($/unit)
cs Cost of defective value items per unit ($year) (cs < cb)
β Marketing expenditure (promotional) elasticity of demand (0 <

β < 1, β + 1 < e)
e Price elasticity of the marketing demand (e > 1)
D Annual demand rate (unit/year) = kp−e

b Mβ

λ Screening rate decided by the buyer in units per unit of time
(D < λ)

sc Cost to screen the product ($/units)
tn Time taken to screen a lot for imperfect items, tn = yn/λ (years)
k Scaling constant for the promoting demand (k > 0)
Ãb Fuzzy ordering cost of the buyer ($/order)
Ãs Fuzzy ordering cost of the seller ($/order)
TPcb(pb, M, yn) Buyer’s profit function
TPcs(cb) Seller’s profit function
TPcb∗(pb, M, yn) Fuzzy buyer’s profit
TPcs∗(cb) Fuzzy seller’s profit
Tn Cycle length/span of the buyer (in years), Tn = yn(1 − p(n))/D
T ∗
n Cycle length/span of the seller (in years), T ∗

n = yn/D
T ∗∗
n Cycle length/span of the Stackelberg models (in years), T ∗∗

n =
Max

(
Tn, T ∗

n

)

2.1 Assumptions

1. Marketing demand is considered as a function of pb and M.
2. Planning horizon is assumed as infinite.
3. No shortages acceptable (the demand is fulfilled).
4. Demand and screening follows at the same time and (D < λ).
5. Holding/inventory cost is not reflected for the seller as a lot-to-lot strategy rule

have been considered.
6. The defective percentage items follow the Wright’s curve (assumed) and the

worth of the good product is assumed to be more than that of the imperfect
quality items.

7. The number of imperfect items present in each batch is assumed by learning
curve p(n) = a

g+sbn , b is the learning rate, where a, b and g > 0 are the
effective parameters, n is the cumulative number of lots or shipment, and p(n)

is the percentage defective per batch n.
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8. The buyer’s ordering cost and seller’s setup cost are imprecise in nature.
9. Defuzzify the total profit function by the triangular method.

2.2 Some Definitions

Fuzzification

Fuzzification is a functionwhich assigns input of a set to some degree ofmembership.
The degree of membership may lie within the closed interval [0, 1]. If interval value
is 1, then the value completely belongs to the fuzzy set. If its value is 0, then value
does not belong to the given fuzzy set and if value lie between 0 and 1, that signifies
the degree of vagueness or uncertainty that the given value belong in the set. Fuzzy
environment process tries to solve the problems with a rough/imprecise data that
makes it possible to obtain a group of exact conclusions.

Defuzzification: If
∨
A = (a1, a2, a3) is triangular fuzzy number then centroid method

for defuzzification is defined as C

(∨
A

)
= a1+a2+a3

3 .

3 Mathematical Crisp Models

3.1 Buyer’s Model

The objective of the present model is to optimize the buyer’s price, marketing cost,
and the ordered quantitywith the corresponding profit for the retailerwith the learning
effect.

Buyer’s profit = Sales income − purchasing cost − screening cost − marketing
expenditure cost − ordering cost − holding cost

TPb(pb, M, yn) = pb(1 − p(n))yn + cs p(n)yn − cbyn − scyn

− Myn − Ab −
(
Q(1 − p(n))T1

2
+ p(n)Q2

λ

)
Hb

Put Tn = (1−p(n))yn
D , t = yn

λ
, Hb = I cb then buyer’s profit is given by

TPb(pb, M, yn) = pb(1 − p(n))yn + cs p(n)yn − cbyn − Myn − scyn

− Ab −
(
y2n (1 − p(n))2

2D
+ p(n)y2n

λ

)
I cb

We assumed that the demand function is D = kp−e
b Mβ .
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Buyer’s profit per cycle is given by

TPcb(pb, M, yn) =
[
TPb(pb, M, yn)

Tn

]

D

(1 − p(n))yn
[pb(1 − p(n))yn + cs p(n)yn − cbyn

−Myn − scyn − Ab −
(
y2n (1 − p(n))2

2D
+ p(n)y2n

λ

)
I cb

]

= pbD + 1

(1 − p(n))

[
cs p(n)D − cbD − MD − scD − AbD

yn

−
(
yn(1 − p(n))2

2
+ p(n)ynD

λ

)
I cb

]

TPcb(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab

yn

− p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(1)

The buyer’s goal is to find optimal values for order quantity yn , selling price, pb,
marketing expenditure cost, M, such that his profit becomes maximum.

For this, we equate first derivative of Eq. (1) with respect to pb to zero.
∂[TPcb(pb,M,yn)]

∂pb
= 0, yields

pb = e

(e − 1)(1 − p(n))

[
M + cb + sc − cs p(n) + Ab

yn
+ I cb p(n)yn

λ

]
(2)

The buyer’s profit
[
TPcb(pb, M, yn)

]
is pseudoconcave with respect to pb for

constants M and yn (Yadav et al. 2018).
Substituting the value of pb into Eq. (1) and then subsequent equation is

[
TPcb(pb(M), M, yn(M))

] = K

e

[
e

(e − 1)(1 − p(n))

(
M + cb + sc + Ab

yn

+ p(n)yn I cb
λ

− cs p(n)

)]−e+1

Mβ −
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(3)

Taking differentiation of Eq. (3) w.r.t.M, we get

M = β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(4)

The buyer’s profit,
[
TPcb(pb(M), M, yn(M))

]
, is concave with respect to M for

constant yn (Yadav et al. 2018).
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Substituting the value of Eq. (4) into Eq. (2), we get

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(5)

[
TPc(yn)

] = k

(
e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])−e

(
β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β

{(
e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])

+ 1

(1 − p(n))

[
cs p(n) − sc − cb −

(
β

(e − β − 1)

[
cb + sc + Ab

yn

+ I cb p(n)yn
λ

− cs p(n)

])
− Ab

yn
− p(n)yn

λ
I cb− yn

[
(1 − p(n))2

]

2
I cb

]}

(6)

The first-order condition of Eq. (6) w.r.t. yn finds the constraints as follows:

y2n I cb
(
(1 − p(n))2

)
λ + 2Dp(n) = 2Dλ, i.e.

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β−e

(e − β − 1)e−β(1 − p(n))e
(
λAb − y2n p(n)

)
(7)

It is quite difficult to prove the concavity of the above total profit function defined
in Eq. (6) analytically.

Thus, buyer’s total profit
[
TPcb(yn)

]
defined in Eq. (6) is concave function with

respect to order quantity is shown with the help of the graph (Fig. 1).

Fig. 1 Plot of buyer’s profit
function with respect to
order quantity

Order quantity

Pr
of

it
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3.2 Seller’s Model

Seller’s yield = Sales revenue − purchasing cost − ordering cost

TPs(cb) = cbyn − Cyn − As

Seller’s cycle length, T ∗
n = yn

D .
Seller’s profit per cycle is given by,

TPcs(cb) = D

yn
(cbyn − Cyn − As)

= kp−e
b Mβ

(
cb − C − As

yn

)
(8)

Seller’s plan is to achieve his net profit, by finding the optimal value of selling
price, cb.

Seller’s profit is zero at cb0 = C + As
yn
.

Since the seller always would prefer to have positive profit,
cb0 > C + As

yn
, let

cb = Fcb0 = F

(
C + As

yn

)
for some, F > 1 (9)

i.e., the optimal value for cb obtained through negotiation by seller and buyer.

3.3 The Non-cooperative Stackelberg Game Theory
Approach

The Stackelberg non-cooperative game considers two players. Among them, one
player is recognized as dominant player and takes the advantage of making the
first move/travel and other player acts as follower, making their best probable move
serially using preceding available information.

3.3.1 The Seller-Stackelberg Model

In this model, seller is treated as dominant player. The seller’s objective is to find his
yield on the basis of buyer’s decision variables. The problem is,

Max
(
TPcs(cb)

)
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TPcs(cb) = D

yn
(cbyn − Cyn − As)

= kp−e
b Mβ

(
cb − C − As

yn

)
(10)

Subject to

M = β

(e − β − 1)

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(11)

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

]
(12)

Constraints

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + Ab

yn
+ I cb p(n)yn

λ
− cs p(n)

])β−e

(e − β − 1)e−β(1 − p(n))e
(
λAb − y2n p(n)

)
(13)

Cycle length, T ∗∗
n = max

(
Tn, T ∗

n

)
.

By using Eqs. (11) and (12) and the constraints (13) in Eq. (10), the subsequent
equation can be resolved using software Mathematica 9.0.

3.3.2 The Buyer-Stackelberg Model

Max
[
TPcb(pb, M, yn)

] = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab

yn

− p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(14)

Subject to

At cb0 = F

(
C + As

yn

)
(15)

By using Eq. (15) on Eq. (14), the resultant nonlinear equation can be explained
using software Mathematica 9.0.
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4 Mathematical Fuzzy Model

In this section, different mathematical models such as buyer’s fuzzy model, seller’s
fuzzy model, seller-Stackelberg fuzzy model, and buyer’s Stackelberg fuzzy model
with learning effect under fuzzy environment have been explained.

4.1 Buyer’s Fuzzy Model

The objective of the present model is to optimize the buyer’s price, marketing cost,
and the ordered quantity with the corresponding profit for the retailer with learning
effect under fuzzy environment.

Let us assume that due to uncertainty existing in parameters, the inventory
model is in fuzzy environment. Also, we have assumed that the parameters Ãb =
(Ab1, Ab2, Ab3), Ãs = (As1, As2, As3) are triangular fuzzy numbers, then the entire
profit per unit time in fuzzy environment is in each model.

Buyer’s total profit per cycle in fuzzy environment

TPcb∗(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ãb

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(16)

TPcb1(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab1

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(17)

TPcb2(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab2

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(18)

TPcb3(pb, M, yn) = kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab3

yn
− p(n)yn

λ
I cb

]
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−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
(19)

Now we defuzzify the entire profit per unit time by centroid method

TPcb∗(pb, M, yn) = TPcb1(pb, M, yn) + TPcb2(pb, M, yn) + TPcb3(pb, M, yn)

3
(20)

Substituting the values from Eqs. (17), (18), and (19) in Eq. (20), we get

TPcb · (pb, M, yn) = 1

3

{
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab1

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)

+ kp−e+1
b Mβ + kp−e

b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − Ab2

yn
− p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)
+ kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[
cs p(n) − cb − sc − M − Ab3

yn
− p(n)yn

λ
I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)}

TPcb∗(pb, M, yn) = (Ab1 + Ab2 + Ab3)

3

(
kp−e

b Mβ

(1 − p(n))yn

)

+
[
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))
[cs p(n) − cb

−sc − M − p(n)yn
λ

I cb

]
−

(
yn(1 − p(n))2

2(1 − p(n))
I cb

)]
(21)

Now, our objective is to find the optimal values of three decision variables pb,M,
and yn to optimize the profit function TPcb∗(pb, M, yn). The first-order condition of
Eq. (21) w.r.t. pb and M, we have

M = β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(22)

pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(23)

The total buyer’s fuzzy profit is pseudoconcave with respect to pb andM (Yadav
et al., 2018).

Substituting the values of pb and M in Eq. (21), we get

[
TPcb∗(yn)

] = k

(
e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
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+ I cb p(n)yn
λ

− cs p(n)

])−e(
β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β{(
e

(e − β − 1)(1 − p(n))
[cb + sc

+ (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

])
+ 1

(1 − p(n))
[cs p(n) − sc

−cb −
(

β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

])

− (Ab1 + Ab2 + Ab3)

3yn
− p(n)yn

λ
I cb − yn

[
(1 − p(n))2

]

2
I cb

]}

(24)

The first-order condition of Eq. (24) w.r.t. yn, we find the constraints as follows:

y2n I cb
(
(1 − p(n))2

)
λ + 2Dp(n) = 2Dλ, i.e.

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β−e

(e − β − 1)e−β

(1 − p(n))e
(

λ

3
(Ab1 + Ab2 + Ab3) − y2n p(n)

)

Thus, total fuzzy profit
[
TPcb∗(yn)

]
defined in Eq. (24) is concave function with

respect to order quantity which is shown analytically with the help of the graph
(Fig. 2).

Fig. 2 Plot of fuzzy buyer’s
profit function with respect
to order quantity
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4.2 Seller’s Fuzzy Model

The objective of the present model is to optimize the seller’s price with the
corresponding profit for the seller with learning effect under fuzzy environment.

Seller’s total profit per cycle in fuzzy environment is given by

TPcs∗(cb) = kp−e
b Mβ

(
cb − C − Ãs

yn

)
(25)

TPcs1(cb) = kp−e
b Mβ

(
cb − C − As1

yn

)
(26)

TPcs2(cb) = kp−e
b Mβ

(
cb − C − As2

yn

)
(27)

TPcs3(cb) = kp−e
b Mβ

(
cb − C − As3

yn

)
(28)

Now we defuzzify the entire profit per unit time by centroid method

TPcs∗(cb) = TPcs1(cb) + TPcs2(cb) + TPcs3(cb)

3
(29)

Substituting the values from Eqs. (26), (27), and (28) in Eq. (25), we get

TPcs∗ (cb) =
⎧
⎨

⎩

kp−e
b Mβ

(
cb − C − As1

yn

)
+ kp−e

b Mβ
(
cb − C − As2

yn

)
+ kp−e

b Mβ
(
cb − C − As3

yn

)

3

⎫
⎬

⎭

= kp−e
b Mβ

3yn
(As1 + As2 + As3) + kp−e

b Mβ (cb − C) (30)

4.3 Seller’s Stackelberg Fuzzy Model

Seller is the dominant player. The seller’s main aim is to find his profit on the basis
of given buyer’s decision variables. The problem is,

Max TPcs∗(cb) = kp−e
b Mβ

3yn
(As1 + As2 + As3) + kp−e

b Mβ(cb − C) (31)

Subject to

M = β

(e − β − 1)

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(32)
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pb = e

(e − β − 1)(1 − p(n))

[
cb + sc + (Ab1 + Ab2 + Ab3)

3yn
+ I cb p(n)yn

λ
− cs p(n)

]
(33)

Constraints

y2n I cb
(
(1 − p(n))2

)
λ = 2ke−eββ

([
cb + sc + (Ab1 + Ab2 + Ab3)

3yn

+ I cb p(n)yn
λ

− cs p(n)

])β−e

(e − β − 1)e−β

(1 − p(n))e
(

λ
(Ab1 + Ab2 + Ab3)

3
− y2n p(n)

)
(34)

4.4 The Buyer’s Stackelberg Fuzzy Model

The buyer is the dominant player. The buyer’s main aim is to find his profit on the
basis of given seller’s decision variables. The problem is,

Max TPcb∗(pb, M, yn) = (Ab1 + Ab2 + Ab3)

3

(
kp−e

b Mβ

(1 − p(n))yn

)

+
[
kp−e+1

b Mβ + kp−e
b Mβ

(1 − p(n))

[
cs p(n) − cb − sc − M − p(n)yn

λ
I cb

]

−
(
yn(1 − p(n))2

2(1 − p(n))
I cb

)]
(35)

Subject to

At cb0 = F

(
C + (As1 + As2 + As3)

3yn

)
(36)

5 Numerical Examples

Example 1

The seller-Stackelberg game model is shown in the given example which shows
the effect of learning on the decision variables. Input parameters are taken from
two papers Esmaeili et al. (2009) and Jaber et al. (2008), C = $1.5 units, Ab =
$38, As = $40, k = 36,080, F = 1.8, λ = 175,200 unit/year, cs = $3.5, β =
Le, e = 1.7, L = 0.088, Sc = $0.035, I = 0.38, F = 1.8, a = 40, b =
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1.8, n = 5, g = 999, s = 2.99, p(n) = 0.0019. Equation (13) gives the results,
yn = 138 units and cb = $4.291. Equations (11) and (12) produce the results,
pb = $14.227 and M = $1.252. The seller’s profit, TPcs = $1023.08 and the buyer’s
profit, TPcb = $3309.80.

Example 2

The buyer-Stackelberg game model is shown in the given example which shows the
effect of learning on the decision variables. We consider the values of all parameters
are same as defined in Example 1 except cs = 2.5. Equation (14) gives the results,
pb = $9.280, M = $0.817, and yn = 413 units. Equation (15) generates the results,
cb = $2.874. Seller’s profit, TPcs = $1013.11 and buyer’s profit, TPcb = $4103.86.

Fuzzy Numerical Example 3

Effect of learning on the decision variables in fuzzy seller-Stackelberg game model
is shown in the given example. Input parameters are taken from two papers Esmaeili
et al. (2009) and Jaber et al. (2008), C = $1.5 units, Ãb = (35, 40, 45), Ãs =
(45, 50, 55), k = 36,080, F = 1.8, λ = 175,200 unit/year, cs = $3.5, β = Le, e =
1.7, L = 0.088, Sc = $0.035, I = 0.38, F = 1.8, a = 40, b = 1.8, n =
5, g = 999, s = 2.99, p(n) = 0.0019. Equation (34) gives the results, yn = 141
units and cb = $4.320. Equations (32) and (33) produce the results, pb = $14.345
and M = $1.263. Fuzzy seller’s profit, TPcs∗ = $999.50 and fuzzy buyer’s profit,
TPcb∗ = $3291.34.

Fuzzy Numerical Example 4

Effect of learning on the decision variables in fuzzy buyer-Stackelberg game model
is shown in the given example. We consider the values of all parameters are same as
defined in Example 1 except cs = 2.5. Equation (35) gives the results, pb = $9.357,
M = $0.824, and yn = 446 units and Eq. (36) generates the results, cb = $2.902.
Fuzzy seller’s profit, TPcs∗ = $= $1009.72 and fuzzy buyer’s profit, TPcb∗ = $4063.70.

Results indicate that the high seller’s selling price results the more gain in the
profit to the seller in seller Stackelberg model. Result shows that seller got higher
profit when he is leader and less when he is follower, whereas results also show that
higher profit gained by the purchaser shows that he is better off in the second model.
In both the cases, buyer got more profit as compared to the player seller due to the
learning effect.

In case of fuzzy environment, result shows that buyer is more benefited when
he is leader but seller got more in case of follower. When we compare crisp model
example with fuzzy example, we conclude that both the players obtain less profit in
fuzzy as compared to crisp model example.
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6 Sensitivity Analysis

In this section, sensitivity analysis is carry out on the basis of key factors/parameters
to estimate the strength of the model. This part shows the effect of learning rate on
the different decision variables and profit of the players.

6.1 Effect of Learning on the Player’s Profit

Seller-Stackelberg

See Table 1.

Buyer-Stackelberg

See Table 2.

Table 1 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
with learning rate

b = 1.8

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Buyer
profit
[
TPcb

]

Seller
profit
[
TPcs

]

1 0.0397 153 4.064 13.545 1.147 3382.30 1010.13

2 0.0381 152 4.074 13.576 1.152 3378.80 1010.66

3 0.0291 149 4.127 13.740 1.177 3360.79 1013.53

4 0.0107 142 4.237 14.069 1.228 3325.97 1019.83

5 0.0019 138 4.291 14.227 1.252 3309.80 1023.08

Table 2 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
with learning rate

b = 1.8

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Buyer
profit
[
TPcb

]

Seller
profit
[
TPcs

]

1 0.0397 427 2.868 9.3134 0.789 4072.04 999.648

2 0.0381 426 2.869 9.3118 0.790 4073.49 1000.24

3 0.0291 423 2.870 9.303 0.797 4081.05 1003.59

4 0.0107 416 2.873 9.287 0.810 4096.44 1010.08

5 0.0019 413 2.874 9.280 0.817 4103.86 1013.11
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Seller Stackelberg model Buyer Stackelberg model:
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Fig. 3 Effect of shipments on buyer’s profit

Effect of no. of shipments and learning rate on buyer’s profit in both Stackelberg
models (Fig. 3).

6.2 Fuzzy Seller-Stackelberg

See Table 3.

Fuzzy Buyer-Stackelberg

See Table 4.

Fuzzy Seller-Stackelberg

See Table 5.

Fuzzy Buyer-Stackelberg

See Table 6.

Table 3 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 40, As = 50, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 155 4.092 13.690 1.1599 3359.38 982.49

2 0.0381 154 4.102 13.701 1.1629 3359.26 982.98

3 0.0291 151 4.156 13.862 1.187 3341.51 985.66

4 0.0107 144 4.266 14.189 1.238 3307.24 991.54

5 0.0019 141 4.320 14.345 1.263 3291.34 999.50
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Table 4 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 40, As = 50, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the
buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 461 2.895 9.392 0.796 4032.22 995.93

2 0.0381 460 2.896 9.389 0.797 4033.65 996.61

3 0.0291 457 2.897 9.381 0.804 4041.14 999.90

4 0.0107 450 2.900 9.365 0.817 4056.36 1006.41

5 0.0019 446 2.902 9.357 0.824 4063.70 1009.72

Table 5 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 50, As = 60, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 173 4.092 13.768 1.166 3335.32 960.14

2 0.0381 172 4.102 13.801 1.171 3331.97 960.60

3 0.0291 168 4.156 13.965 1.196 3314.41 963.13

4 0.0107 160 4.265 14.295 1.247 3280.54 968.70

5 0.0019 156 4.319 14.455 1.273 4264.76 971.59

Table 6 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 50, As = 60, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 504 2.914 9.493 0.804 3982.57 985.96

2 0.0381 503 2.915 9.491 0.806 3983.98 986.62

3 0.0291 500 2.916 9.483 0.812 3991.38 989.74

4 0.0107 492 2.920 9.466 0.826 4006.41 996.46

5 0.0019 488 2.921 9.458 0.833 4013.67 999.69
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Table 7 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 60, As = 70, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 188 4.093 13.868 1.175 3310.39 939.63

2 0.0381 187 4.103 13.900 1.179 3307.05 940.07

3 0.0291 182 4.156 14.068 1.205 3289.78 942.46

4 0.0107 174 4.265 14.368 1.254 3260.09 947.75

5 0.0019 170 4.318 14.553 1.281 3240.75 950.49

Table 8 Effect of learning rate on the parameter pb, M, Q,Cb,
[
TPcs

]
and

[
TPcb

]
in fuzzy

environment (Ab = 60, As = 70, learning rate b = 1.8)

No. of
shipment
n

Defective
percent in
per lot
p(n)

Order
quantity
y(n)

Selling
price of
the seller
Cb

Selling
price of
the buyer
pb

Marketing
expenditure
M

Fuzzy
buyer
profit
[
TPcb

]

Fuzzy
seller
profit
[
TPcs

]

1 0.0397 543 2.932 9.587 0.812 3937.22 976.85

2 0.0381 542 2.932 9.585 0.816 3938.61 977.61

3 0.0291 538 2.934 9.577 0.820 3945.92 980.74

4 0.0107 529 2.938 9.559 0.834 3960.78 987.73

5 0.0019 525 2.940 9.552 0.841 3967.95 990.81

Fuzzy Seller-Stackelberg

See Table 7.

Fuzzy Buyer-Stackelberg

See Table 8.

7 Observations

Following are the observations

(a) Results indicate from example 1 and example 2 that both the players are better
off when they are leader and they got less profit when they are follower.

(b) Numerical example shows that seller profit and buyer profit obtained in seller-
Stackelberg model and buyer-Stackelberg model are more as compared to
obtained in fuzzy Stackelberg model.
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(c) Figure 3 concludes that as number of shipments increases with a given learning
rate at b = 1.8, buyer profit decreases in seller-Stackelberg model, whereas,
Fig. 3 illustrates that buyer profit and seller profit increase as number of
shipments increases with same learning rate in buyer-Stackelberg model.

(d) Data fromTable 3 designate that seller-Stackelbergmodel under fuzzy environ-
ment as shipment increases in numbers, the buyer’s profit decreases whereas
seller’s profit increases. Thismeans that seller get benefitted in case of headship
position.

(e) Data from Table 4 indicate that in buyer-Stackelberg model under fuzzy envi-
ronment as shipment increases in numbers, the buyer’s profit and seller’s profit
increases. This means both the players get benefitted in fuzzy environment.

8 Conclusions

Two-level supply chain models have been established for imperfect quality items
under fuzzy environment with learning effect environment The effect of learning
and fuzziness is shown on the players’ optimal policies. Buyer’s price, marketing
expenditure cost, and order quantity and corresponding profit of players of supply
chain are optimized. The learning impact on the calculation of gains or losses of
the supply chain has been shown in the sensitivity analysis and numerical example.
Results show that due to learning effect, buyer’s gain is more than the seller in both
the model. Both the players get benefitted in case of leadership position. It is shown
from the result that seller’s profit and buyer’s profit obtained in mathematical crisp
model is more that obtained in fuzzy model. A future extension to present model can
be assume a stochastic learning curve instead of deterministic. This model can be
extended by considering the idea of shortages and trade credit period.
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Abstract This paper addresses the cost minimization problem of an integrated
production-inventory model which has optimized by analytical method and evo-
lutionary algorithm. We have formulated our model for items that deteriorate with
respect to time and follow Weibull distribution. For controlling deterioration rate,
we have used preservation technology. Further, we assumed that ordering cost is lot
size dependent. Classical optimization methods demonstrate a number of difficulties
when faced with complex problems. Moreover, most of the classical optimization
methods do not have the global perspective and often get converged to a locally
optimum solution. Genetic algorithm (GA) is an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selection and genetics. In this model, we
optimized our model by gradient-based analytical method and GA in integrated as
well as independent scenario. Numerical example is carried out. Sensitivity of dif-
ferent inventory parameters is carried out. The results of the proposed model help
researchers to think about optimizing their complex problems using different evolu-
tionary search algorithm.
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1 Introduction

For survival and growth of business, proper coordination and communication among
supply chain players place an important role in this competitive atmosphere. Firstly,
Goyal (1976) formulated an integrated model for single supplier and single cus-
tomers. Banerjee (1986) made an appropriate price adjustment and obtained joint
order so that it is beneficial to both parties. Chung and CÃardenas-BarrÃşn (2013)
generated model for deteriorating items for stock dependent demand with two-level
trade credits. Chung et al. (2014) extended previous model for exponentially dete-
riorating items. Shah (2015) derived model with two-level trade credits for items
deteriorate constantly. Further, Shah et al. (2015) extended this model by taking
price sensitive and time-dependent demand.

Most of the inventory researchers have used constant rate demand. But in the
real world, demand is not always constant. It may vary with time. Donaldson (1977)
obtained the fundamental result in EOQ model with time-varying linear demand
over a known and finite time horizon. Dave and Patel (1981) extended model for
deteriorating items. Further, Wee andWang (1999) considered time varying demand
and developed a variable production policy. Mishra and Singh (2011) had taken
into account time-dependent holding cost and formulated an inventory model under
shortages. Mishra (2013) extended model for time-varying deterioration.

Deterioration is the process in which the items loses its utility and become useless.
In classical EOQ model, researcher considered inventory depletes due to demand
only. But in the real world, inventory is not only reduce due to demand but also
reduced due to deterioration. In earlier literature, Ghare and Schrader (1963) devel-
opedmodel for items those deteriorates exponential. Firstly, Philip andCovert (1973)
formulatedmodel for time-dependent deteriorating itemswhich followWeibill distri-
bution. Further, Philip (1974) generalized this model. Manna and Chaudhuri (2001)
derived inventory model under shortages for time-dependent deteriorating items.
Bakker et al. (2012) gave up to date review of inventory models for deteriorating
items. To reduce deterioration rate, different researcher used preservation technol-
ogy. Mishra (2013) used preservation technology for time-dependent deteriorating
items that follow Weibull Distribution. Chang (2013) used preservation technology
for non-instantaneous deteriorating items. Singh and Rathore (2015) extended that
model under shortages. Mishra and Talati (2018) derived integrated inventory model
and used preservation technology under quantity discount scenario. Mahapatra et al.
(2019) formulated inventory model for deteriorating items under fuzzy environment.

In last decades, to optimize the inventory models, researchers used different
heuristic search algorithms like ant colony, swarm intelligence and genetic algo-
rithm. Genetic algorithm describes a set of techniques inspired by natural selection
like inheritance, mutation, selection and crossover. This technique requires fitness
function and genetic representation of solution domain. In each generation, it uses
fitness function to select global optimum. This process terminates when the satisfac-
tory fitness level has been reached. Goldberg (1989) used GA for optimization. Then,
different researchers like Murata et al. (1996), Goren et al. (2008), Radhakrishnan
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et al. (2009, 2010), Narmadha et al. (2010), Woarawichai et al. (2012), Mishra and
Talati (2015), Talati and Mishra (2019), Alejo-Reyes et al. (2021) used heuristic
search algorithm for optimized their models.

2 Notations and Assumptions

2.1 Notations

2.1.1 Inventory Parameters for Manufacturer

D(t) Time-dependent demand
P Production rate
a Fix fraction of demand
γ Salvage cost/unit ($)
hm Holding cost/unit/annum
Am Set-up costs ($)
TCm Total cost for manufacturer
T The length of cycle time (Decision variable)
b1 Deteriorating cost/unit ($)
Qm Inventory level for manufacturer
ξ1 Preservation technology cost for manufacturer that

reduce deterioration rate in order to preserve the product ξ1 > 0
θ(t) Deterioration rate at t, where θ(t) = αβtβ

m Reduce deteriorating rate
τP Resultant deterioration rate τP = θ(t) − m

2.1.2 Inventory Parameters for Retailer

Qr Retailer’s order
C0Q

η
r Ordering Cost/cycle (0 < η < 1)

C0 Fixed ordering cost, η (Decision variable)
ξ2 Preservation technology cost for manufacturer that reduce

deterioration rate in order to preserve the product ξ2 > 0
γ Salvage value associated with deteriorated items
TCr Total cost for retailer
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2.2 Assumptions

1. In present model, we have considered two-echelon supply chain model (single
manufacturer and single retailer) for single item.

2. Demand is time dependent D(t) = a + bt; a, b > 0.
3. Replenishment rate is infinite.
4. Lead time is zero.
5. Shortages are not allowed.
6. Constant production rate is considered. P > D(t).
7. Ordering cost is lot size dependent.
8. The inventory deteriorate with respect to time and follow Weibull distribution

θ(t) = αβtβ

where α is shape parameter 0 < α < 1, and β is scale parameter β ≥ 1.
9. Preservation technologies are used for reducing the deterioration rate.
10. The salvage value γ, 0 ≤ γ ≤ 1 is associated to deteriorated units.

3 Model Formulation

3.1 Manufacturer’s Total Cost

Here, we considered production dominates demand. Due to preservation technology,
the rate of change of inventory during period [0,T ] is shown in Fig. 1.

Thus, the on-hand inventory for manufacturer is generated by the following dif-
ferential equation

dQm

dt
+ τPQm = P − D(t); 0 ≤ t ≤ T (1)

Solving Eq. (1) using boundary condition Qm(0) = 0 and Qm(T ) = Qm

Fig. 1 Inventory level for
manufacturer. Source own
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Qm(t) =
(

(P − a)t

(
1 + αtβ

β + 1

)
− (Pm + b − ma)t2

(
1

2
+ αtβ

β + 2

)

−mbt3
(
1

3
+ αtβ

β + 3

))
(1 − αtβ + mt − mαtβ+1)

So total quantity by manufacturer per cycle is Qm(T ) = Qm.
Basic Costs
1. Set-up cost

SCm = Am (2)

2. Inventory holding cost per unit is given by

HCm = hm

T∫
0

Qm(t)dt (3)

3. Now number of deteriorating units during cycle time T

DE1(T ) = Qm − aT − (bT 2)

2
(4)

4. Deteriorating cost is given by

DCm = b1DE1(T ) (5)

5. Salvage value is given by
SVm = γDE1(T ) (6)

6. Preservation cost is given by
PCm = ξ1 (7)

Thus, the total cost of manufacturer is

TCm(T ) = SCm + HCm + DCm − SVm + PCm (8)

3.2 Retailer’s Total Cost

Retailer’s on-hand inventory depletes with time-dependent demand and deterioration
under preservation technology. The rate of change of inventory level due to preserva-
tion technology is shown in Fig. 2. So the governing differential equation describes
the inventory level at instantaneous time t which is given by
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Fig. 2 Inventory level for
retailer. Source own

dQr

dt
+ τPQr = −D(t); 0 ≤ t ≤ T (9)

Solving Eq. (9) using boundary condition Qr(T ) = 0 and Qm(0) = Qr, we get

Qr(t) =
[
a(T − t) + b

2
(T 2 − t2) + αa

β + 1
(T β+2 − tβ+2) − ma

2
(T 2 − t2)

−mb

3
(T 3 − t3) − αa

β + 2
(T β+2 − tβ+2) − mαb

β + 3
(T β+3 − tβ+3)

]

[1 − αtβ + mt − mαtβ+1] (10)

∴ Total quantity purchase by retailer per cycle is

Qr = Qr(0) =
[
a(T ) + b

2
(T 2) + αa

β + 1
(T β+2) − ma

2
(T 2) − mb

3
(T 3)

− αa

β + 2
(T β+2) − mαb

β + 3
(T β+3)

]
(11)

Basic costs associated with retailer total cost are

1. Ordering cost is lot size dependent

OCr = C0Q
η
r (12)

2. Holding cost per unit is given by

HCr = hr

T∫
0

Qr(t)dt (13)

3. Total number of deteriorating units during cycle time T
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DE2(T ) = Qr − aT − (bT 2)

2
(14)

4. The deteriorating cost per time unit is

DCr = b1DE2(T ) (15)

5. Salvage value per time unit is

SVr = γDE2(T ) (16)

6. Preservation cost is given by
PCr = ξ2 (17)

The total cost for retailer is by

TCr = OCr + HCr + DCr + PCr − SVr (18)

3.3 Joint Total Cost

Total cost for the inventory system is

TC = TCm + TCr (19)

4 Computational Algorithm

4.1 Analytical Approach

• Set all parameters value in the mathematical model except decision variables.
• Find optimum T using TCm.
• Used optimal T and Qm to find total cost for manufacturer.
• Optimized T and η simultaneously from TCr.
• Used optimal T, η and Qr and obtain total cost for retailer.
• Find optimal T and η from system total cost.
• Used optimal T, η and optimal quantity and calculate total system cost.
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4.2 Genetic Algorithm Approach

• Set all parameters value in the fitness function except decision variables.
• Start G.A. with an initial population of 20 chromosomes.
• On the basis of their fitness score rank the chromosomes.
• Chromosomes with good fitness score will enter in mating pool.
• Perform stochastic uniform crossover for reproduction. We have considered
crossover fraction is 0.8 and each generation is 2-Elites.

• On the basis of their fitness value, rank all members and select members for new
generation.

• Perform step (iii) and step (iv) till absolute difference between two successive
members is 10−5.

5 Numerical Example and Sensitivity Analysis

5.1 Numerical Example

Consider one integrated production-inventory systemwith P = 500, a = 400, m =
0.5, b = 2, α = 0.5, β = 2, hm = 0.2, ξ1 = 500$, ξ2 = 500$, hr = 0.2, C0 =
2000, Am = 2000.
We have optimized this using analytical method by MAPLE18; we get some com-
putational results those are shown in Table 1.

Here, in independent decision, the convexity of the function is given below
For manufacturer

d2TCm

dT 2
|(T=T ∗) = 2808.527238 ≥ 0

Table 1 Computational results obtained by analytical approach

Optimal Independent scenario Integrated scenario

Cycle time (year) 0.02501172258 0.02501546196

η 0.08506027179 0.03756340374

Lot size 25 25

Total cost Independent scenario Integrated scenario

Manufacturer ($) 1972.520628 1499.249742

Retailer ($) 2499.997751 2400.999625

System ($) 4471.518379 3900.24567

Source own
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Table 2 Computational results obtained by using genetic algorithm

Independent scenario Integrated scenario

Iterations 51 and 190 84

Optimal Independent scenario Integrated scenario

Cycle time (year) 0.02 0.02

η 0.05 0.05

Lot size 32 34

Total cost Independent scenario Integrated scenario

Manufacturer ($) 1963.6 1452.21

Retailer ($) 2288.41 1241.23

System ($) 3952.01 2893.44

Source own

For retailer
∣∣∣∣∣
∂2TCr
∂η2

∂2TCr
∂η∂T

∂2TCr
∂η∂T

∂2TCr
∂T 2

∣∣∣∣∣ = 5.545177044479552 × 102 > 0

and
∂2TCr

∂T 2
= 8.256 × 102 ≥ 0

For integrated

∣∣∣∣∣
∂2TCr
∂η2

∂2TCr
∂η∂T

∂2TCr
∂η∂T

∂2TCr
∂T 2

∣∣∣∣∣ = 5.26352 × 102 > 0

and
∂2TCr

∂T 2
= 0.8039621 × 103 ≥ 0

Above example is also optimized by genetic algorithm usingMATLAB16a. Com-
putational results obtain by genetic algorithm are shown in Table 2. For independent
decision, genetic algorithm took 51 for manufacturer, 190 for retailer and 84 for
integrated system. Best fitness plot of manufacturer, retailer and the system is shown
in Figs. 3, 4 and 5, respectively.

The sensitivity analysis for the above example is carried out to check the behaviour
of inventory and supply chain parameters related to total cost in joint decision by
varying inventory parameters as −20, −10, 10 and 20%. The computational results
is shown in Table 3.

The results obtained in Table 3 can be summarized as follows:

• As inventory parameters a, b, α, hm increase, integrated total cost decreases.
• As inventory parameters m, β, hr increase, integrated total cost increases.
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Table 3 Sensitivity analysis for inventory and supply chain parameters

Parameters Change Generations Integrated total cost

−20% 80 2893.4422220173033

−10% 80 2893.440313935822

a 0 51 2893.4402274468635

10% 75 2893.44014557451607

20% 51 2893.4400680390536

−20% 108 2893.3983955247295

−10% 149 2893.4191946532046

m 0 51 2893.4401874468635

10% 51 2893.4623950272157

20% 89 2893.4846156768504

−20% 86 2893.449783693166

−10% 76 2893.4425591065487

b 0 51 2893.4401874468635

10% 138 2893.439330496022

20% 135 2893.4398683311897

−20% 120 2893.4448207696682

−10% 51 2893.442330496022

α 0 51 2893.4401874468635

10% 58 2893.44006788676355

20% 167 2893.44002539623709

−20% 75 2893.4341786444675

−10% 74 2893.4388061031786

β 0 51 2893.4401874468635

10% 90 2893.440616458528

20% 79 2893.4407451316824

−20% 117 2893.4431508922

−10% 51 2893.4407278538433

hm 0 51 2893.4401874468635

10% 72 2893.44002016096947

20% 74 2893.4402023774837

−20% 51 2893.4401554573037

−10% 114 2893.44016537294647

hr 0 51 2893.4401874468635

10% 112 2893.4402036655782

20% 51 2893.4402194364234

Source own
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Fig. 3 Best fitness solution for manufacturer total cost. Source own

Fig. 4 Best fitness solution for retailer total cost. Source own

6 Conclusion

Supply chain management has required models and processes which can find a solu-
tion in a fast and efficient way. For comparison purposes, we have found a solution
for the same numerical example using gradient-based analytical method and genetic
algorithm. Complexity is explained mathematically for analytical techniques and
graphically for genetic algorithms. It is shown that the decision taken in an inte-
grated scenario reduces the cost compared to the decision in an isolated scenario
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Fig. 5 Best fitness solution for system. Source own

in both techniques. Results clearly show that in our model, evolutionary algorithm
provides global minimum while the analytical method fails. Future research may be
extended into more realistic situations like shortages, random demand and inflation.
Additionally, genetic algorithms can be modified to find solutions in a very efficient
manner.
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Sustainable Inventory Model
with Carbon Emission Dependent
Demand Under Different Carbon
Emission Policies
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Abstract Sustainability issues, such as GHG discharges and harmful waste are
admissible concerns in the world. Consumer consciousness towards the environment
is an effective motivator for the firms to adopt various alternatives, e.g., swap gears,
redesigning kits and transportation modes, and using environmentally friendly prod-
ucts to reduce carbon emissions. Moreover, the growing GHG emissions, influence
the demand of eco-friendly products significantly, hence emission-sensitive demand
is considered. The major sources of carbon emissions are transportation and inven-
tory holding. Thus, the present research aims to contribute to the existing literature
by developing a sustainable model with environmental sensitive demand under two
different carbon policies—“Carbon tax and Cap-and-trade mechanism”. The objec-
tive of the article is to optimize the order quantity by minimizing the annual cost and
carbon emissions. Further, a comparative analysis of “carbon tax and cap-and-trade
mechanism” has been established. Numerical examples and sensitivity analysis are
performed to elucidate the model. Findings recommend that the “carbon cap-and-
trade mechanism” is favorable for the decision-maker and also helps to mitigate the
carbon discharges.

Keywords Carbon emission · Carbon emission dependent demand ·
Environmental regulations · Carbon tax · Cap-and-trade · Transportation
MSC 90B05 · 13P25 · 90B06

1 Introduction

Global warming caused by GHG emissions is becoming a worldwide concern at
present. The worsening environment not only affected society badly but also has an
intensive impact on environmental sustainability.
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Developing an inventory system to relieve the environment fromGHGemissions is
an important concern in the present day. Generally, demand for the product is consid-
ered constant or a demand varies in terms of different parameters such as price, time,
etc. but currently, the sustainability notion is quite matured. The eco-friendly prod-
ucts positively encourage the demand, further, due to growing GHG emissions, the
demand is significantly affected by the carbon discharges, hence emission-sensitive
demand is much more practical nowadays. Chen et al. (2013) studied a carbon-
controlled EOQ model along with the constant demand. Hovelaque and Bironneau
(2015) discussed an EOQmodel with carbon reliant demand. Juxia (2016) proposed
a price and emission-reliant supply chain model. Li (2016) explored the price and
emission-sensitive model for the integrated scenario. Pang et al. (2018) studied the
model which is reliant on carbon trading and customer receptiveness. Rani et al.
(2019) discussed a model for a deteriorating item that is reliant on emissions. Tang
et al. (2020) discussed a sustainable integrated model for transportation management
under carbon policies.

Transportation is a significant source of GHG emissions. Transhipments of prod-
ucts may arise many environmental issues; e.g., air emissions, fuel consumption
and depletion of natural resources, etc. To protect public health, efficient transporta-
tion arrangement has been taken into consideration to reduce transportation cost
and environmental damages. Sarkar et al. (2016) studied the significance of flexible
and static transhipment costs to mitigate emissions. Salehi et al. (2017) explored
the green transportation scheduling with the trade-off amongst the transhipment
and carbon discharges. Darma Wangsa and Wee (2018) proposed a collaborative
study with stochastic demand. Mosca et al. (2019) reviewed the literature of inte-
grated transportation inventorymodels and highlighted the research gapswith current
and emerging industry practices. Hota et al. (2020) discussed the impact of flexible
transportation on the supply chain.

As per global concern, sustainability has been fascinating the society to miti-
gate the ecological footprint. Government and non-governmental organizations have
been introducing some policies, rules, and regulations to mitigate the impact of
carbon discharges e.g., the development of renewable sources, encouraging the use
of natural fuels, and eco-friendly objects. Two popular policies are “carbon taxes
and carbon cap-and-trade” mechanism among the other carbon policies. Metcalf
(2009) discussed the different market strategies to regulate carbon emanations. He
et al. (2015) defined “Under the cap-and-trade mechanism, firms initially obtain a
pre-determined amount of carbon allowances (carbon quotas) from the government
agencies and the total carbon emissions generated at a certain period should be lower
than the carbon quotas. Firms could buy/sell carbon allowances in the carbon trading
market when they have lack/surplus allowances where allowance price is determined
by the trading market”. Singh and Weninger (2017) studied transaction charges and
feature irreversibility under carbon trading mechanism. Wang et al. (2018) explored
the firm’s strategies to lessen the discharges under the cap-and-trade mechanism.
Mishra et al. (2020a) discussed a waste control model for a sustainable supply chain.

Initially, the USA has executed a tax policy on carbon, Ghosh et al. (2018) defined
“carbon tax” as a toll that imposes on carbon discharges; it is a form of carbon
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pricing. The returns made by the tax would then be applied to a payroll tax rebate
of revenues to taxpayers. Datta (2017) addressed the impact of the carbon tax on
a sustainable model. Ma et al. (2018) proposed the optimal pricing strategies on a
model with tax. Halat and Hafezalkotob (2019) studied different carbon strategies
for the multi-echelon model. Khanna and Yadav (2020) discussed the comparison
amongst the carbon policies with price-sensitive demand on an inventory system.
Mishra et al. (2020b) discussed a scenario to regulate the carbon discharges under
different carbon policies. Yadav andKhanna (2021) proposed a sustainable inventory
model for perishable products with expiration date under carbon tax policy. A carbon
tax can reduce emissions very efficiently and effectively.

Research gap and our contribution

The notion of this study is to fulfill the gap by formulating a model that considers the
impact of carbon emissions on inventory policy by taking environmentally sensitive
demand under two different carbon policies. Due to the growing GHG emissions, the
effect of carbon emissions on the demand is increasing significantly, hence firms have
more focused and responsive towards the environmentally-friendly products which
strongly influence their customers. Therefore, carbon emission-dependent demand
is much more appropriate in this current scenario. Also, transportation cost is taken
into consideration in terms of fixed and variable transportation cost. Further, while
managing inventory systems it is accepted that carbon-emissions are caused due to
transshipment and inventory holding. Thus, two diverse carbon policies i.e., “carbon-
tax and cap-and-trademechanism” has been implemented to support the environment
in order to lessen the carbon discharges. The objective of the study is to minimize
the annual cost by improving the optimal order quantity. The present research is
organized in the given manner: Sect. 2 gives the notation and assumptions: Sect. 3
presents themathematical model: Sect. 4 gives the solution procedure: numerical and
sensitivity analysis has been illustrated by Sects. 5 and 6. Finally, Sect. 7 summarizes
the conclusion and future directions.

2 Assumptions and Notations

Assumptions

1. The carbon emission dependent demand,D(Q) = α − β(CE(Q)). Here α > 0
and 0 < β < 1 is scale and shape parameter, and both are positive known
constants.

2. Infinite time horizon with zero lead-time.
3. Emissions of carbon are caused due to transportation and inventory holding.
4. Transportation cost:

AT = A0 + A1(Q)

where A0 is a fixed cost and A1 is a variable cost.
5. One type of transportation mode is used.
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Notations

The notations that are used while modeling are listed in Table 1.

3 Mathematical Model

Due to the growing environmental concerns, environmental regulations have become
more stringent by the governments, which motivates the firms to pay more attention
towards sustainability. As consumer’s awareness of the environment increases the
demand for environmental friendly products has been raised significantly. Thus,
the environmental sensitive demand has been taken into consideration to support
sustainability positively. The motive of the article is to lessen the carbon emanations
by implementing a “Carbon tax and Cap-and-trade mechanism”. The vital elements
of carbon emanations are transportation and inventory holding. Thus, the purpose of
the models is to minimize the total cost so as to get the optimal order quantity.

Table 1 Notations Symbol Description

Decision variable

Q Order quantity in a cycle (units)

Parameters

D(Q) Carbon emission dependent demand
(units/time)

K Cost of ordering ($/order)

C Purchase cost ($/unit)

h Inventory carrying cost ($/unit)

A0 Fixed transportation cost ($)

A1 Variable transportation cost ($)

AT Transportation cost ($)

AC Carbon emission due to transportation
(kg/unit)

hC Carbon emission due to inventory
holding (kg/unit)

z Emissions quota of carbon per unit time
(kg)

CP Quota price of carbon ($/kg)

w Tax charged on carbon ($/kg)

TC1 Total cost per unit time with a
“cap-and-trade” ($/time)

TC2 Total cost per unit time with “carbon
emissions tax” ($/time)
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Fig. 1 Graphical
representation of the
inventory scenario

Time

Inventory

Q 

Using the given assumptions; The proposed scenario is depicted in Fig. 1. The
cycle begins at time zero with inventoryQ and reduces continuously due to demand.
Finally, the inventory exhausts with time.

The carbon emission dependent demand D(Q), is:

D(Q) = α − β(CE(Q)) (1)

The carbon emission in transportation and inventory holding is as follows:

CE = Ac

(
D

Q

)
+ hc

(
Q

2

)
(2)

After using “Eq. (2)” in “Eq. (1)”

D(Q) =
(
Q ∗ ((2 ∗ α) − (β ∗ hC ∗ Q))

2(Q + (β ∗ AC))

)
(3)

Ordering cost:

Within a certain time period, the retailer orders the new products with an ordering
cost is:

OC = K (4)

Holding cost:

Proper storage of products is required to control their spoilage/deterioration. Thus
the retailer incurs the inventory holding cost for themaintenance of products in stock.
It is calculated for the proposed model as:

HC =
(
h ∗

(
Q

2

))
(5)
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Purchase cost:

The cost of the material depends on the order quantity purchased during the cycle
and the per-unit cost of the material. The purchase cost is:

PC = C × Q (6)

Transportation Cost:

The retailer incurs a transportation cost due to the delivery of goods.As both the quan-
tity of the container and the distance is flexible so fixed and the variable transportation
cost is taken. Thus, the cost is:

AT = A0 + A1(Q) (7)

Due to the transportation and inventory holding carbon emissions are produced
in the environment. A “carbon tax and carbon cap-and-trade” is levied on carbon
emission in a form of carbon pricing so as to keep a check and control the carbon
emanations.

Thus, “carbon emission cost under emission tax policy and the cap-and-trade
mechanism” is given as:

Carbon emission cost in transportation and inventory holding under carbon tax
is:

Taxc = w(CE) = w

(
Ac

(
D

Q

)
+ hc

(
Q

2

))
(8)

Carbon emission cost in transportation and inventory holding under cap-and-trade
mechanism is:

Capc = Cp(CE − z) = CP

((
Ac

(
D

Q

)
+ hc

(
Q

2

))
− z

)
(9)

Case 1. Cap-and-trade

“Total cost per unit time due to cap-and-trade is”:
“Total cost = ordering cost + holding cost + purchase cost + transportation cost

+ cap-and-trade cost”

TC1(Q) =
(((

Q

2

)
∗ (

h + (
Cp ∗ hc

))) − (
Cp ∗ z

)

+
((

(Q ∗ A1) + (Q ∗ C) + K + A0 + (
Cp ∗ Ac

)) ∗ ((2 ∗ α) − (β ∗ hc ∗ Q))

2(Q + (β ∗ Ac))

))
(10)
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Case 2. Carbon tax

“Total cost per unit time due to the carbon tax is”:
“Total cost = ordering cost + holding cost + purchase cost + transportation cost

+ carbon tax cost”

TC2(Q) =
(((

Q

2

)
∗ (h + (w ∗ hc))

)

+
(

((Q ∗ A1) + (Q ∗ C) + K + A0 + (w ∗ Ac)) ∗ ((2 ∗ α) − (β ∗ hc ∗ Q))

2(Q + (β ∗ Ac))

))
(11)

4 Solution Procedure

The optimality of “the order quantity (Q)” is given below:

Case 1. Carbon cap-and-trade:

Now, the necessary condition for the optimality of the total cost function is:

∂TC1(Q)

∂Q
= 0

∂TC1(Q)

∂Q
= 2α(A1 + C) − βhc

2(Q + βAc)
+ βhcQ − 2α

(
A1Q + CQ + CpAc + A0 + K

)
2(Q + βAc)

2

+ Cphc + h

2
(12)

The optimal value of Q∗

Q∗ = ±

√√√√√√√√√√

(−2αβCpAchc − 2αβhAc
)
A1 + (

β2CpAch
2
c

)
+

((
2αC2

p − 2αβCCp + β2h
)
Ac

+ (2αA0 + 2αK )Cp
)
hc + (

2αhCp − 2αβCh
)
Ac

+ 2αhA0 + 2αhK

+βCpAchc + βhAc

(Cphc + h)
(13)

The sufficiency condition for the optimality of the total cost is:

∂2TC1(Q)

∂Q2
≥ 0
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∂2TC1(Q)

∂Q2
= 2α

(
A1Q + CQ + Cp Ac + A0 + k

) − βhcQ

(Q + βAc)
3 − 2α(A1 + C) − βhc

(Q + βAc)
2

(14)

Case 2: Carbon tax:
Now, the necessary condition for the optimality of the total cost function is:

∂TC2(Q)

∂Q
= 0

∂TC2(Q)

∂Q
= 2α(A1 + C) − βhc

2(Q + βAc)
− 2α(A1Q + CQ + wAc + A0 + K ) − βhcQ

2(Q + βAc)2

+ whc + h

2
(15)

The optimal value of Q∗ is

Q∗ = ±

√√√√√√√√
(−2αβwAchc − 2αβhAc)A1 +

(
β2wAch

2
c

)

+
(
−2αAcw

2 + (−2αβCAc + 2αA0 + 2αK )w + β2hAc
)
hc

+ (2αhwhc − 2αβCh)Ac + 2αhA0 + 2αhK

+ βwAchc + βhAc

(
Cphc + h

)
(16)

The sufficiency condition for the total cost is:

∂2TC2(Q)

∂Q2
≥ 0

∂2TC2(Q)

∂Q2
= 2βhc − 4α(A1 + C)

2(Q + βAc)
2 + 2α(QA1 + CQ + Acw + A0 + K ) − βhcQ

(Q + βAc)
3

(17)

Further, Fig. 2 establishes the optimality of theCap-and-trade case by the graphical
method with the help of Mathematica.

5 Numerical Examples

Example 1: Carbon cap-and-trade case:
For numerical illustration, the data values have been taken as:
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Fig. 2 Graphical
representation of the
convexity

Order quantity ( )Q
To

ta
l 

co
st

(
1)

Parameters Parameters

K = $20/order

C = $12/unit

h = $2/unit

A0 = 25
(
$
)

A1 = 1
(
$
)

Ac = 0.5(kg/unit)

α = 100
β = 0.6
hc = 0.2(kg/unit)

CP = 2
(
$/kg

)
z = 5(kg)

The optimal results are:

Total cost TC1 = $1371.456 Order quantity Q = 99.827units

Example 2: Carbon tax case: For numerical illustration, the data values have been
taken as:

Parameters Parameters

K = $20/order

C = $12/unit

h = $2/unit

A0 = 25
(
$
)

A1 = 1
(
$
)

α = 100
β = 0.6
hc = 0.2(kg/unit)
Ac = 0.5(kg/unit)

w = 3
(
$/kg

)

The optimal results are:

Total cost TC2 = $1391.428 Order quantity Q = 99.219 units

From the above results, one can easily see that the total cost is lower in the “carbon
cap-and-trade” case than that of the “carbon tax” case. Hence “carbon cap-and-trade
mechanism” is favorable to implement for the decision-maker.
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6 Sensitivity Analysis

In this section, sensitivity analysis for on key model parameters (α, β, A0, A1, h,
CP, z) for the carbon “cap-and-trade” case has been performed, based on which the
change in the values of decision variable and total cost is analyzed. The results are
recorded in Table 2.

Observations and discussion:
The following insights have been discussed based on Table 2:

• With an increase in demand parameter, (α) one can boost the demand, and hence
the order size increases which leads to high cost.

• When the emission-sensitive parameter (β) of demand rises the total cost and
order quantity decreases as the parameter has an adverse effect on demand.

• When the fixed (A0) and variable (A1) transportation cost increases the order
quantity also increases which results in a higher cost.

• A higher holding cost (h) indicates improved storage conditions, which will
eventually lead to higher costs.

• An increase in carbonprice (Cp) contributes to increasing the total cost component.
• An increase in carbon quota (z) has an adverse effect on the total cost.
• An increase in parameters (α), (A0), (A1) increases the carbon emission whereas

the increase in (β), (h), (CP) will decrease the carbon emissions.

7 Conclusion

Carbon emission is an inevitable topic in today’s world, due to the growing
GHG emissions, the influence of carbon discharges on the demand is increasing
significantly. With health and environment-conscious consumers, the demand for
environmentally-friendly products is rising rapidly. In this paper, a cost-minimization
model with carbon emission-dependent demand with transportation cost under two
different carbon policies is developed. Further to support green inventory reduction
of carbon emissions in various processes viz. transportation and inventory holding. In
addition, a comparative analysis of “carbon tax and cap-and-trade” is implemented to
mitigate carbon emissions. Numerical and sensitivity analysis are executed for struc-
turing the model features. Some important observations are made from numerical
and sensitivity analysis. The key findings of the paper are concluded as:

• For higher holding costs, it is preferable to order small lots in order to manage
the inventory effectively.

• Transportation cost has an adverse effect on carbon discharges but the total cost
increases.

• The carbon discharge declines with an increase in the carbon price.
• “Carbon tax policy and Cap-and-trade mechanism” is an effective tool for green

inventory systems and a cleaner environment.



Sustainable Inventory Model with Carbon Emission … 173

Table 2 Sensitivity analysis of the key parameters

Parameters Q CE TC

α 80 89.259 9.342 1102.578

90 94.69 9.912 1237.14

100 99.828 10.452 1371.456

110 104.714 10.965 1505.56

120 109.383 11.455 1639.482

β 0.4 159.312 16.204 1396.782

0.5 119.218 12.305 1384.71

0.6 99.828 10.452 1371.456

0.7 87.918 9.334 1356.347

0.8 159.312 16.204 1337.78

A0 23 97.42 10.223 1369.553

24 98.631 10.338 1370.511

25 99.828 10.452 1371.456

26 101.01 10.564 1372.389

27 102.178 10.675 1373.31

A1 0.5 96.605 10.146 1324.544

0.75 98.174 10.295 1348.011

1 99.827 10.452 1371.456

1.5 103.422 10.794 1418.27

1.75 105.382 10.981 1441.636

h 1 − − −
1.5 157.082 15.995 1340.933

2 99.828 10.452 1371.456

2.5 78.976 8.498 1393.503

3 67.352 7.444 1411.679

CP 1 113.727 11.781 1365.386

1.5 106.061 11.046 1368.586

2 99.828 10.452 1371.456

2.5 94.632 9.96 1374.055

3 90.216 9.544 1376.428

z 3 99.828 10.452 1375.456

4 99.828 10.452 1373.456

5 99.828 10.452 1371.456

6 99.828 10.452 1369.456

7 99.828 10.452 1367.456
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• Comparative analysis suggests that the “Cap-and-trade mechanism is better than
the Carbon tax policy”.

The developed model can be explored in numerous ways, a valuable contribu-
tion would be made by executing deterioration, vendor–buyer coordination, multiple
shipments. Time and storage cost-dependent demand would be another dimension
that can be explored.
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Impact of Two Different Trade Credits
Options on a Supply Chain with Joint
and Independent Decision Under
Trapezoidal Demand

Urmila Chaudhari, Nita H. Shah, and Mrudul Y. Jani

Abstract The traditional economic order quantity model adopts that the retailer
should settle down all accounts at the time of receiving an order. In fact, allowing
customers to delay payment for goods that are already delivered is a very common
business practice. The supplier often offers trade credit as a promotion strategy to
increase sales and decrease the on-hand inventory level. In this paper, the supply
chain deals with a single supplier and a single retailer. Here, the supplier sets two
trade credit options for the retailer. If the retailer settles down all the payments at
the first trade credit then the supplier offers a discount on purchasing price to the
retailer. But, if the retailer settles down all the payments at the time of the second
credit period then the retailer will not be entitled to the discount. In this paper, the
model considers price sensitive trapezoidal demand and a product with constant
deterioration rate. The classical optimization is used to optimize the total profit of
the supply chain with respect to selling price and cycle time and also analyzed the
best scenario for the supply chain. The model is supported by numerical examples.
Sensitivity analysis is done to deduce managerial insights.

Keywords Two different trade credit · Discount in purchasing price · Constant
deterioration · Trapezoidal demand

1 Introduction

To boost the demand for the product, the player gives permissible delay in payment
that is called trade credit. Trade credit concerns the business-to-business credit limit
and has been a necessary way for trades to obtain short-term development. Buyer
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can sell the product before paying the purchase cost of the product and can free up
cash flow for other business purposes. Nowadays trade credit is the most popular tool
to increase the profit of the individual. Chen et al. (2014) investigated EPQ models
with up-stream full trade credit and down-stream partial trade credit for deteriorating
items. Wu et al. (2016) formulated an inventory model under down-stream partial
trade credit to credit-risk customers by discounted cash flowanalysis for deteriorating
items with maximum lifetime. Rameswari and Uthayakumar (2017) developed a
model of two-level trade credit with price-dependent demand. Motlagh et al. (2018)
established a concept of coordination of challenging duopolistic retailers’ credit limit
and controlling the manufacturer’s promotional efforts. Sobhani et al. (2019) worked
on a vendor–buyer inventory model which explained the working environment of the
players. Tiwari et al. (2018) discussed an inventory model for joint pricing and time-
dependent deteriorating items with partial backlogging under two-level partial trade
credits in the supply chain. Yu (2018) gave the concept of shortage back ordering,
trade credit, and decreasing Rental Conditions under the two-warehouse system.

The act or method of flattering reduced or mediocre in quality, operative, or condi-
tion is called deterioration. Raafat (1991) studied a literature survey on a deteriorating
inventory model. Aggarwal and Jaggi (1995) introduced a deteriorating items model
for optimal ordering policy under trade credit. Goyal and Nebebe (2000) developed
a model of a single manufacturer and a single retailer system for a deteriorating item
with shipment policies. Goyal and Giri (2001) established amodel of the recent trend
in the modeling of deteriorating stocks. Rau et al. (2003) derived an inventory model
of deteriorating items for the multi-layered supply chain. Sarkar (2012) investigated
an EOQ model with trade credit and time-varying deterioration rate. Bakker et al.
(2012) examined the inventory system with a deterioration since 2001. Sarkar and
Sarkar (2013) determined a manufacturing quantity model with probabilistic deteri-
oration. Cai et al. (2013) discussed a dynamic tracking control to find optimal pricing
policy for perishable items. Moussawi-Haidar et al. (2014) worked on the effect of
deterioration with imperfect quality items. Sarkar et al. (2015) extended an inven-
tory model with variable deterioration for fixed lifetime items and permissible delay
in payment. Rabbani et al. (2015) investigated coordinated renewal and marketing
strategies for non-instantaneous stock perishable item’s problem. Chang et al. (2015)
studied optimal estimating and ordering strategies for non-instantaneously deterio-
rating items under trade credit. Shah et al. (2016a, 2016b) derived supply chain inven-
tory model of the perishable item under trade credit and price-dependent demand.
Shah and Jani (2016) derived model of quadratic demand with the variable dete-
rioration of the product. Developed an integrated production-inventory model for
perishable items with the reflection of the optimal production rate and deterioration
during delivery. Sarkar and Saren (2017) studied ordering and transfer policy and
variable deterioration for a warehouse model. Tai (2019) established a random dete-
riorating item model under joint inspection. Considered the different decision in a
model like pricing, replenishment, and preservation technology investment for non-
instantaneous deteriorating items. Observed the impact of the two-stage deterioration
of the product under capacity utilization and trade credit.



Impact of Two Different Trade Credits Options on a Supply Chain … 179

A pricing approach is a vital component of a profitable business. Pricing element
directly impacts on player’s profit. If the player chooses pricing strategy then it helps
the player to achieve a sale, promotion of brand or product, the best profit from the
markets, etc. Commonly, a player must set pricing strategy after observing a market.
A pricing idea is framed taking into deliberation aspects of cost, competition and
revenue objectives. Because of the importance of the pricing strategy, this article
focuses on discount in purchasing cost. At the earliest, Drezner and Wesolowsky
(1989) gave an idea on pricing strategy with multi-buyer. Wee and Yu (1997) consid-
ered a temporary price discount in deteriorating inventory model. After that, evalu-
ated an inventorymodel on pricing, partial back ordering and quantity discount under
deterioration. some interesting articles on discount pricing decisions areViswanathan
and Wang (2003), Yang (2004), Qin et al. (2007), Bykadorov et al. (2009), Chang
(2013), Taleizadeh and Pentico (2014), Chua (2016), Venegas and Ventura (2017).
Luo et al. (2014) and Shao et al. (2017) evaluated a model on pricing policy for an
electrical vehicle. Recently, Nie and Du (2016) estimated dual-fairness coordinating
system with the discount contract. Wang et al. (2018) examined lost-sales inven-
tory systems with unit discount under procurement strategies. Khouja et al. (2019)
analyzed the effect of return and price modification strategies on a retailer’s Perfor-
mance. Niu et al. (2019) deliberated the joint price and quality decisions considering
Chinese customers.

In a traditional study of inventory management, most of the researchers consider
constant demand. However, demand rarely remains fixed for an infinite planning
horizon. Shah et al. (2011) studied a coordinated decision policy when demand
is quadratic with two-level trade credit, observed in seasonal items. Sarkar and
Mahapatra (2017) considered fuzzy inventory model with fuzzy demand. Feng et al.
(2017) evaluated pricing and lot-sizing policies when demand depends on selling
price, displayed the stock, and expiration date. Cheng et al. (2011) offered trapezoidal
demand where demand increases linearly with time up to a certain limit and then
after becomes constant during a certain period and decreases exponentially in the last
phase, observed in fashion goods and electronics items. Shah et al. (2017) formulated
the retailer’s optimal policy for price-credit sensitive trapezoidal demand. Shah et al.
(2019) examined the effect of manufacturer’s innovation and retailer’s promotion on
trapezoidal demand. Recently, Yang (2020) studied retailer’s ordering policy where
demand is depending of expiration date.

Authors Promotion strategy Deterioration Demand Decision
policy

Ho et al. (2008) Cash discount and
trade credit

NA The downward
sloping function of
the selling price

Joint and
individual

Sarkar and Saren
(2017)

NA Probabilistic Time-price
dependent

Individual

Feng et al. (2017) NA Maximum fixed
lifetime

The exponential
function of the
price

Individual

(continued)
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(continued)

Authors Promotion strategy Deterioration Demand Decision
policy

Rameswari and
Uthayakumar
(2017)

Two-level trade
credit

Constant Displayed stock
and selling price
dependent

Individual

Shah et al. (2017) Two-level trade
credit

NA Price sensitive
trapezoidal

Individual

Yu (2018) Trade credit Constant Constant Individual

Proposed model Discount in
purchase cost and
trade credit

Constant Price sensitive
trapezoidal

Joint and
individual

From the study of existing research literature, one can observe that most of the
researchers consider trade credit as the only promotional strategy to boost the busi-
ness. However, they ignore the fact that every buyer’s local objectives and require-
ments are different andmay frequently conflict. Therefore, this model represents two
different types of promotional strategies. In the first case, if the retailer is ready to
pay at the end of first trade credit then he can enjoy the benefits of discount cash
flow. On the other hand, if the retailer opts second credit period then he will not get
the benefit of a discount on the purchase cost. Moreover, deterioration is the natural
procedure which will reduce the quality of the product with time. So, the proposed
model considers the deterioration rate. In addition, the demand rate of the product is
price sensitive trapezoidal which is suitable for electronics and fashion industries.

The remaining of the article is structured as follow. Section 2 contains the notation
and the assumptions that are used to progress model. Section 3 of the paper deals
with the construction of the mathematical model of the anticipated inventory control
problem. Section 4 explores the centralized and decentralized strategies. Section 5
validates the resulting two-layered supply chain inventory model with numerical
examples. Section 6 provides a sensitivity analysis of the inventory parameters and
also provides some managerial perceptions. Section 7 concludes the outcomes and
provides a vision for future research in the field.

1.1 Notation

To develop an inventory model we need some notation and assumptions

D(p, t) The demand for the product

a Total scale demand of the product, a > 0

b1 The linear rate of change of demand for the product, 0 < b1 ≤ 1

b2 The exponential rate of change of demand for the product, 0 < b2 ≤ 10

(continued)
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(continued)

p The selling price of the item ($/unit)

η The mark-up for selling price

θ Constant deterioration rate (in %), 0 < θ ≤ 1

Q Initial inventory level (per lot)

T Cycle time (in years)

Ar Ordering cost for the retailer ($/lot)

h Holding cost rate ($/unit/year)

Ps The purchasing cost of the product ($/unit)

α Supplier offers a discount on the purchasing cost (in %)

Ier Rate of interest earned for the retailer (%/unit time)

Mi Trade credit offer to the retailer by the supplier (in a year) (i = 1, 2)

Icr Rate of interest charged for the retailer (%/unit time)

Ics Rate of interest charged for the supplier (%/unit time)

Fcs The flexibility cash rate of the supplier (/unit time/year)

Av Ordering cost for the vendor ($/lot)

C The purchasing cost of the item for the vendor ($/unit)

πr(p, T ) Total profit of the retailer (in $)

πs(p, T ) Total profit of the supplier (in $)

πJ(p, T ) Total profit of the supply chain in the joint decision (in $)

πI(p, T ) Total profit of the supply chain in the independent decision (in $)

1.2 Assumptions

1. The supply chain includes a single supplier, a single retailer, and a single constant
deteriorating item.

2. The demand rate for the item is a function of selling price and time. The demand
D(p, t) is considered to be a trapezoidal type whose functional form is

D(p, t) =
⎧
⎨

⎩

f (t)p−η, 0 ≤ t ≤ t1
D0 p−η, t1 ≤ t ≤ t2
g(t)p−η, t ≥ t2

(Shah et al., 2019)

where f (t) by the linear function of t between time interval 0 to t1 and t1 is
the time point when the increasing demand function f (t) changes to constant
demand D0. g(t) is the exponentially decreasing function of t between time
interval 0 to t2 and t2 is the time point from where constant demand D0 starts
decreasing exponentially. Therefore, the demand function is
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t1 t2

T

Time

Demand

Fig. 1 Time- and price-dependent trapezoidal demand (Shah et al., 2019)

D(p, t) =
⎧
⎨

⎩

D1(p, t), 0 ≤ t ≤ t1
D2(p, t), t1 ≤ t ≤ t2
D3(p, t), t ≥ t2

.

where D1(p, t) = a(1 + b1t)p−η, D2(p, t) = a(1 + b1t1)p−η, D3(p, t) =
a(1 + b1t1)e−b2(t−t2).

3. The units in the inventory system of each player are subjected to deteriorate at
a constant rate. The deteriorated units are not repaired or replaced during the
cycle time (Fig. 1).

4. To haste up cash arrival and reduce the threat of cash flow shortage, the supplier
offers a α% discount in purchasing price if retailer settles down the account
within trade credit M1. If the retailer pays all the payments after M1 means
up to M2 then the retailer is not entitled to discount in purchasing cost. Where
M2 > M1 ≥ 0.

5. During the period [M1, M2], a cash flexibility rate, Fcs, is used to quantize the
advantage of early cash income for the supplier (Ho et al., 2008).

6. During the credit period, the supplier suffers an interest (opportunity) loss
with an annual rate Ics while the retailer earns interest at an annual rate Ier by
depositing his sales revenue in an interest-bearing account (Shah et al., 2016a,
2016b).

7. The planning horizon is infinite which will facilitate long time agreement.
8. Lead time is zero or negligible.
9. Shortages are not allowed.

2 Mathematical Model

This model basically depends on the effect of trade credit on the player’s profit.
The model considers the supply chain of supplier and retailer with the constant
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deteriorating item under the effect of two different trade credits. If the retailer pays
payment up to first trade credit M1, then retailer entitled for discount in purchasing
cost. But if the retailer settled down all the payments up to second trade credit M2

then the retailer has to pay whole purchasing cost.

2.1 Supplier’s Model

Supplier’s role is only of the bought-out type of business. So, there is no need to
hold the product. Hence, in this model holding cost is not considered. Supplier
purchasing cost per unit is PCs = CQ

T . Supplier’s sales revenue depends on the
retailer’s purchasing cost. For each unit of product, the retailer pays payment up to
Mi . So, the sales revenue of the supplier is SRsi = Q(Ps(1−kiα))

T . Where i = 1, 2,
k1 = 1, k2 = 0.

As the supplier receives payment before or after the total diminution of inventory,
the model has the following two possible scenarios, (1S) T ≤ Mi and (2S) T ≥ Mi ,
where i = 1, 2. For these two cases, the interest earned and opportunity cost are
derived accordingly.

Scenario 1S: T ≤ Mi (where i = 1, 2)

In this scenario, the supplier’s opportunity loss due to offering credit limit to a retailer
with the rate of Ic2 is

OppCs1i = IcsPs(1 − kiα)

T

⎡

⎢
⎣

t1∫

0

D1(p, t)dt +
t2∫

t1

D2(p, t)dt +
T∫

t2

D3(p, t)dt + Q(Mi − T )

⎤

⎥
⎦.

However, if the retailer pays at the time M1, during M2 − M1 the supplier can use
the revenue to evading a cash flow crunch or generate profits. With a cash flexibility
rate fcs, the interest earned during [M1, M2] is IEs1i = fcsPs(1−kiα)

T Q(M2 − M1).
Hence the total profit of the supplier per unit time is

πs1i (p, T ) = SRsi1 − PCs − OppCs1i + IEs1i

Scenario 2S: Mi ≤ T (where i = 1, 2)

In this scenario, the supplier gets payment before the cycle time and due to trapezoidal
demand three cases arise as follows

(2S.1) Mi ≤ t1 ≤ t2 ≤ T (2S.2) t1 ≤ Mi ≤ t2 ≤ T (2S.3) t1 ≤ t2 ≤ Mi ≤ T .

Case 2S.1: Mi ≤ t1 ≤ t2 ≤ T
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In this scenario, the supplier’s opportunity loss due to offering credit limit to a retailer

with the rate of Ic2 is OppCs2i1 = IcsPs(1−kiα)

T

[∫ Mi

0 D1(p, t)dt
]
. The retailer pays all

the payment up toM1 and after that supplier can invest thatmoney in other businesses.
With a cash flexibility rate fcs, interest earned during [Mi , T ] is

IEs2i1 = fcsPs(1 − kiα)

T

⎡

⎣

t1∫

Mi

t D1(p, t)dt +
t2∫

t1

t D2(p, t)dt +
T∫

t2

t D3(p, t)dt

⎤

⎦.

Then the total profit of the supplier per unit time is πs2i1(p, T ) = SRsi1 − PCs −
OppCs2i1 + IEs2i1.

Case 2S.2: t1 ≤ Mi ≤ t2 ≤ T

In this scenario, the supplier’s opportunity loss due to offering credit limit to a retailer

with the rate of Ic2 is OppCs2i2 = IcsPs(1−kiα)

T

[∫ t1
0 D1(p, t)dt + ∫ Mi

t1
D2(p, t)dt

]
. The

retailer pays all the payment up to M1 and after that supplier can invest that money
in other businesses.

With a cash flexibility rate fcs, interest earned during [Mi , T ]

IEs2i2 = fcsPs(1 − kiα)

T

⎡

⎣

t2∫

Mi

t D2(p, t)dt +
T∫

t2

t D3(p, t)dt

⎤

⎦.

Then the total profit of the supplier per unit time is πs2i2(p, T ) = SRsi1 − PCs −
OppCs2i2 + IEs2i2.

Case 2S.3: t1 ≤ t2 ≤ Mi ≤ T

In this scenario, the supplier’s opportunity loss due to offering credit limit to a retailer
with the rate of Ic2 is

OppCs2i3 = IcsPs(1 − kiα)

T

⎡

⎢
⎣

t1∫

0

D1(p, t)dt +
t2∫

t1

D2(p, t)dt +
Mi∫

t2

D3(p, t)dt +
T∫

Mi

D3(p, t)dt

⎤

⎥
⎦.

The retailer pays all the payment up to M1 and then after the supplier can earn
money to invest in other business with a cash flexibility rate fcs. Hence, an interest
earned by the supplier during [Mi , T ] is

IEs2i3 = fcsPs(1 − kiα)

T

⎡

⎣

T∫

Mi

t D3(p, t)dt

⎤

⎦.
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Thus, the total profit of the supplier per unit time is πs2i3(p, T ) = SRsi1 − PCs −
OppCs2i3 + IEs2i3.

The whole scenario of a supplier’s total profit is summarized as follows:
The total profit earned by the supplier per unit time is πs(p, T ) =

{
πs1i (p, T ), Mi ≥ T
πs2i (p, T ), Mi ≤ T

.

Where πs2i (p, T ) =
⎧
⎨

⎩

πs2i1(p, T ), Mi ≤ t1 ≤ t2 ≤ T
πs2i2(p, T ), t1 ≤ Mi ≤ t2 ≤ T
πs2i3(p, T ), t1 ≤ t2 ≤ Mi ≤ T

.

2.2 Retailer’s Model

In this section, retailer’s total profit is evaluated where the retailer’s inventory
level at any time t during replenishment time depletes due to constant deteriora-
tion of the product and trapezoidal demand in which, the demand growths linearly
during [0, t1], becomes constant between [t1, t2], thereafter diminutions exponen-
tially during [t2, T ]. The rate of change of inventory level of the retailer during the
entire cycle T is given by

dIr(t)
dt + θ Ir(t) =

⎧
⎨

⎩

−D1(p, t), 0 ≤ t ≤ t1
−D2(p, t), t1 ≤ t ≤ t2
−D3(p, t), t2 ≤ t ≤ T

with boundary condition Ir(T ) = 0.

Hence, the inventory level of the retailer is

I1(t) = −ap−η(1 + b1t)

θ
+ b1ap

−η

θ2

(
1 − eθ(t1−t)

)

+ a(1 + b1t1)e
θ(t1−t)

⎛

⎜
⎜
⎜
⎝

− 1

θ

(
1 − eθ(t2−t1)

)
+ p−η

θ
(

− p−ηeθ(t2−t1)

−b2 + θ
+ p−ηeb2(t2−T )+θ(T−t)

−b2 + θ

)

⎞

⎟
⎟
⎟
⎠

, 0 ≤ t ≤ t1

I2(t) = a(1 + b1t1)

(

− p−η

θ
+ eθ(t2−t) p−η

−b2 + θ

(
−1 + e(−b2+θ)T

)
+ eθ(t2−t)

θ

)

, t1 ≤ t ≤ t2 and

I3(t) = a(1 + b1t1)p−η

−b2 + θ

(−e(t2−t)b2 + e(t2−T )b2e(T−t)θ
)
, t ≥ t2.

Initially, inventory at the retailer is Q = I1(0) = − ap−η

θ
+ b1ap−η

θ2

(
1 − eθ t1

) +

a(1 + b1t1)eθ t1

⎛

⎜
⎜
⎝

−1

θ

(
1 − eθ(t2−t1)

) + p−η

θ
(

− p−ηeθ(t2−t1)

−b2 + θ
+ p−ηeb2(t2−T )+θT

−b2 + θ

)

⎞

⎟
⎟
⎠.

At the end of the cycle time, the retailer can earn sales revenue as follows:
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SRr = p

T

⎡

⎣

t1∫

0

D1(p, t)dt +
t2∫

t1

D2(p, t)dt +
T∫

t2

D3(p, t)dt

⎤

⎦

The relevant inventory costs can be calculated by considering the following
components.

2.2.1 Ordering Cost

The ordering cost contains set-up cost, transportation cost, the labor cost, etc., and
hence, total ordering cost per lot attained by the retailer is OCr = Ar

T (Shah et al.,
2019).

2.2.2 Purchasing Cost

In this model, the supplier offers two types of trade credits M1 and M2 to the retailer.
If the retailer pays all the payment up to M1 then supplier gives some discount in
purchasing cost Ps to the retailer and If the retailer pays all the payment up to M2

then the supplier is not entitled to give a discount on purchasing cost Ps. Hence the
purchasing cost per unit is governed by the ‘PCr’ PCr = Q(Ps(1−kiα))

T (Ho et al., 2008),
where k1 = 1 and k2 = 0.

2.2.3 Inventory Holding Cost

As there are no shortages, the total inventory holding cost per unit
per-unit-time for perfect quality products can be defined as HCr =
h
T

[∫ t1
0 I1(t)dt + ∫ t2

t1
I2(t)dt + ∫ T

t2
I3(t)dt

]
.

As the retailer pays payment before or after the total diminution of inventory, the
model has the following two possible scenarios, (i) T ≤ Mi and (ii) T ≥ Mi , where
i = 1, 2. For these two cases, the interest earned and the interest charged is derived
accordingly (Fig. 2).

Scenario 1R: T ≤ Mi (where i = 1, 2)

In this scenario basically, it is assumed that if the retailer pays all the payments after
cycle time then T ≤ Mi case occurs. In addition, M1 ≤ M2.

In this case, the retailer’s payment time ends after the cycle time means inventory
depleted completely, so no need to pay the interest charged for the inventory to the
supplier, i.e., ICr1i = 0. Instantaneously, the retailer uses the sales revenue to earn
the interest rate during trade credit at the rate of ‘Ier’. Hence interest earned by the
retailer during trade credit per unit time is
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Cumulated quantity to earn
interest

M iT0
Time

Q

Inventory Level

Fig. 2 Inventory level variation and loss of interest in scenario 1 (Ho et al., 2008)

IEr1i = Ier p

T

⎡

⎣

t1∫

0

D1(p, t)t dt +
t2∫

t1

D2(p, t)t dt +
T∫

t2

D3(p, t)t dt + Q(Mi − T )

⎤

⎦,

(where i = 1, 2).

Hence, the total profit achieved by the retailer per unit time is

πr1i (p, T ) = SRr − OCr − HCr − PCr + IEr1i − ICr1i , where i = 1, 2

Scenario 2R: T ≥ Mi (where i = 1, 2)

In this scenario, three cases arise due to trapezoidal demand as follows (2.1) Mi ≤
t1 ≤ t2 ≤ T (2.2) t1 ≤ Mi ≤ t2 ≤ T (2.3) t1 ≤ t2 ≤ Mi ≤ T (Fig. 3).

Case 2R.1: Mi ≤ t1 ≤ t2 ≤ T

This case indicates that the retailer pays a payment on or before cycle time when
inventory is depleted completely. Subsequently, in the time span when the demand
of the product increases linearly, the retailer does not pay the supplier until the end
of the credit period, the retailer uses the sales revenue to earn the interest rate during
trade credit at the rate of ‘Ier’. Hence interest earned by the retailer during trade credit
per unit time is
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Cumulated quantity

to earn interest

M i T0
Time

Q

Inventory Level

Fig. 3 Inventory level variation and loss of interest in scenario 2 (Ho et al., 2008)

IEr2i1 = Ier p

T

⎡

⎣

Mi∫

0

D1(p, t)t dt

⎤

⎦, where i = 1, 2.

Moreover, after the trade credit Mi with some inventory on hand the retailer pays
an interest charged at a rate of ‘Icr’. Therefore, the interest charged for the retailer
per unit time is

ICr2i1 = IcrPs(1 − kiα)

T

⎡

⎣

t1∫

Mi

I1(t)dt +
t2∫

t1

I2(t)dt +
T∫

t2

I3(t)dt

⎤

⎦.

Thus, the total profit achieved by the retailer per unit time is

πr2i1(p, T ) = SRr − OCr − HCr − PCr + IEr2i1 − ICr2i1

Case 2R.2: t1 ≤ Mi ≤ t2 ≤ T

This case indicates that the retailer can earn interest up to trade credit when the
demand for the product is constant. Hence interest earned by the retailer during trade
credit per unit time is



Impact of Two Different Trade Credits Options on a Supply Chain … 189

IEr2i2 = Ier p

T

⎡

⎣

u1∫

0

D1(p, t)t dt +
Mi∫

u1

D2(p, t)t dt

⎤

⎦.

Moreover, after the trade credit Mi with some inventory on hand the retailer pays
an opportunity cost at a rate of ‘Icr’. Therefore, the interest charged for the retailer
per unit time is

ICr2i2 = IcrPs(1 − kiα)

T

⎡

⎣

t2∫

Mi

I2(t)dt +
T∫

t2

I3(t)dt

⎤

⎦.

Therefore, total profit achieved by retailer per unit time is

πr2i2(p, T ) = SRr − OCr − HCr − PCr + IEr22 − ICr22.

Case 2R.3: t1 ≤ t2 ≤ Mi ≤ T

This case indicates that retailer can earn interest up to trade credit when demand
decreases exponentially. Hence interest earned by the retailer during trade credit per
unit time is

IEr2i3 = Ie1 p

T

⎡

⎣

t1∫

0

D1(p, t)t dt +
t2∫

t1

D2(p, t)t dt +
Mi∫

t2

D3(p, t)t dt

⎤

⎦.

Moreover, after the trade credit Mi with some inventory on hand the retailer pays
an interest charged at a rate of ‘Icr’. Therefore, the interest charged for the retailer
per unit time is

ICr2i3 = Ic1 Ps(1 − kiα)

T

⎡

⎣

T∫

Mi

I3(t)dt

⎤

⎦.

Hence, total profit achieved by retailer per unit time is

πr2i3(p, T ) = SRr − OCr − HCr − PCr + IEr2i3 − ICr2i3.

The whole scenario of the retailer’s profit is summarized as follows:
The total profit earned by the retailer per unit time is

πr(p, T ) =
{

πr1i (p, T ), T ≤ Mi

πr2i (p, T ), Mi ≤ T
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where πr2i (p, T ) =
⎧
⎨

⎩

πr2i1, Mi ≤ t1 ≤ t2 ≤ T
πr2i2, t1 ≤ Mi ≤ t2 ≤ T
πr2i3, t1 ≤ t2 ≤ Mi ≤ T

.

3 Joint and Independent Decision

3.1 Joint Decision

Decisions made in the centralized decision-making structure are optimized from the
whole supply chain standpoint where both players’ aim is to maximize the whole
supply chain profit.

πJ(p, T ) = πs(p, T ) + πr(p, T )

3.2 Independent Decision

In the decentralized option, each member of the supply chain attempts to optimize
their own profit. Retailer optimizes his profit function and determines the optimal
values of his decision variables, based on which the supplier optimizes his decision
variables and optimizes his profit. Retailer’s problem can be formulated as follows.

Objective function

Max πr(p, T ) = SRr − OCr − HCr − PCr + IEr jk − ICr jk

where j = 1, 2 and k = 1, 2, 3.
Thus, the retailer’s decision variables can be optimized after which using the

decision variables of a retailer, the supplier can optimize his total profit.

4 Numerical Examples

Example 5.1 (Joint and Independent Decision for Scenario 1 (T ≤ Mi ): for case
1.1 (T ≤ M1))

The scale demand for the product is a = 10,000 units, the linear rate of change of
demand for the product is b1 = 11%, the exponential rate of change of demand for
the product is b2 = 9%, a time point when the increasing demand function changes
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to constant demand is t1 = 18.25 ≈ 18 days, the time point from where constant
demand starts to decrease exponentially is t2 = 29.2 ≈ 29 days, purchasing cost
for the retailer is Ps = $4.5 per unit, the rate of interest earned by the retailer is
Ier = 18%, the rate of interest charged for the retailer is Icr = 16%, flexibility cost
rate is Fcs = 17%, Ordering cost per order incurred by the supplier is As = $1000
per lot, ordering cost per order incurred by the retailer is Ar = $300 per lot, the
rate of interest charged by the supplier is Ics = 9%, holding cost for the retailer is
h = $0.08/unit/unit time, k1 = 1, k2 = 0, discount on the purchasing cost which
is offered by the supplier to the retailer is α = 2%, first credit period offered by
supplier to the retailer is M1 = 0.92 ≈ 336 days, second credit period offered by
supplier to the retailer is M2 = 0.95 ≈ 347 days, purchasing cost for the supplier is
C = $2 per unit, price mark-up is η = 1.2, constant deterioration rate is θ = 10%.

With discount

Using Maple 13, the optimal values of the decision variables are obtained for the
joint decision policy, i.e., cycle time T = 0.9 ≈ 328 days, selling price of the
product p = $13.53 per unit, Q = 692 units and the optimal solution for the joint
decision is πr(p, T ) = $2277.05, πs(p, T ) = $1694.22, πJ(p, T ) = $3971.27.
Also, the optimal values of the decision variables are obtained for the independent
decision policy, i.e., cycle time T = 0.99 ≈ 361 days, selling price of the product
p = $21.57 per unit, Q = 520 units and the optimal solution for the independent
decision is πr(p, T ) = $2192.35, πs(p, T ) = $1218.16, πI(p, T ) = $3410.51.

Example 5.2 (Joint and Independent Decision for Scenario 1 (T ≤ Mi ): for case
1.2 (T ≤ M2))

Without a discount

Taking same data as given in Example 5.1 exceptM1 = 0.93 ≈ 339 days, the optimal
value of decision variable for joint decision policy is, cycle time T = 0.85 ≈ 310
days, selling price of the product p = $14.53 per unit, Q = 642 units and the optimal
solution for the joint decision is πr(p, T ) = $2311.50, πs(p, T ) = $1687.21,
πJ(p, T ) = $3998.71. Also, the optimal values of the decision variables are derived
in the independent decision policy is, cycle time T = 0.925 ≈ 337 days, p = $24.48
per unit, Q = 490 units and the optimal solution for the independent decision policy
is πr(p, T ) = $2360.54, πs(p, T ) = $1218.71, πI(p, T ) = $3599.26.

Example 5.3 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.1 (M1 ≤ t1 ≤ t2 ≤ T ))

With discount

Taking same data as given in Example 5.1 except M1 = 0.01 ≈ 4 days and M2 =
0.03 ≈ 11 days, the optimal value of decision variable for joint decision policy is,
cycle time T = 3.54 years, selling price of the product p = $14.99 per unit, Q =
1710 units and the optimal solution for the joint decision is πr(p, T ) = $1690.65,
πs(p, T ) = $1584.81,πJ(p, T ) = $3275.46.Also, the optimal values of the decision
variables are obtained in the independent decision is, cycle time T = 4.44 years, p =
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$43.52 per unit, Q = 798 units and the optimal solution for the independent decision
policy is πr(p, T ) = $2365.24, πs(p, T ) = $572.52, πI(p, T ) = $2937.77.

Example 5.4 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.2 (M2 ≤ t1 ≤ t2 ≤ T ))

Without a discount

Taking same data as given in Example 5.1 except M1 = 0.01 ≈ 4 days and M2 =
0.03 ≈ 11 days, the optimal value of decision variable for joint decision is, cycle time
T = 3.56 years, selling price of the product p = $14.94 per unit, Q = 1724 units
and the optimal solution for the joint decision is πr(p, T ) = $1625.87, πs(p, T ) =
$1643.41, πJ(p, T ) = $3269.28. Also, we obtain the optimal values of the decision
variables in the independent decision is, cycle time T = 4.50 years, p = $44.53
per unit, Q = 790 units and the optimal solution for the independent decision is
πr(p, T ) = $2339.15, πs(p, T ) = $579.15, πI(p, T ) = $2918.30.

Example 5.5 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.3 (t1 ≤ M1 ≤ t2 ≤ T ))

With discount

Taking same data as given in Example 5.1 except M1 = 0.07 ≈ 25 days and
M2 = 0.075 ≈ 28 days, the optimal value of decision variable for joint decision
policy is, cycle time T = 2.60 years, selling price of the product p = $13.79 per
unit, Q = 1437 units and the optimal solution for the joint decision is πr(p, T ) =
$2049.13, πs(p, T ) = $1688.40, πJ(p, T ) = $3737.54. Also, the optimal values
of the decision variables are obtained in the independent decision is, cycle time
T = 3.38 years, p = $38.90 per unit, Q = 731 units and the optimal solution
for the independent decision policy is πr(p, T ) = $2732.97, πs(p, T ) = $649.18,
πI(p, T ) = $3382.15.

Example 5.6 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.4 (t1 ≤ M2 ≤ t2 ≤ T ))

Without a discount

Taking same data as given in Example 5.1 except M1 = 0.07 ≈ 25 days and
M2 = 0.075 ≈ 28 days, the optimal value of decision variable for joint decision
policy is, cycle time T = 3.55 years, selling price of the product p = $14.73 per
unit, Q = 1743 units and the optimal solution for the joint decision is πr(p, T ) =
$1618.77, πs(p, T ) = $1664.50, πJ(p, T ) = $3283.27. Also, we obtain the optimal
values of the decision variables in the independent decision is, cycle time T =
4.49 years, p = $44.23 per unit, Q = 793 units and the optimal solution for
the independent decision policy is πr(p, T ) = $2345.23, πs(p, T ) = $582.24,
πI(p, T ) = $2927.47.

Example 5.7 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.5 (t1 ≤ t2 ≤ M1 ≤ T ))
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With discount

Taking same data as given in Example 5.1 except M1 = 0.12 ≈ 44 days and
M2 = 0.20 ≈ 73 days, the optimal value of decision variables for joint decision
policy is, cycle time T = 2.05 years, selling price of the product p = $13.19 per
unit, Q = 1239 units and the optimal solution for the joint decision is πr(p, T ) =
$2278.75, πs(p, T ) = $1756.89, πJ(p, T ) = $4035.64. Also, the optimal values of
the decision variables are obtained in the independent decision policy is, cycle time
T = 2.81 years, p = $36.41 per unit, Q = 685.60 units and the optimal solution
for the independent decision policy is πr(p, T ) = $2961.19, πs(p, T ) = $706.45,
πI(p, T ) = $3667.65.

Example 5.8 (Joint and Independent Decision for Scenario 2 (Mi ≤ T ): For case
2.6 (t1 ≤ t2 ≤ M2 ≤ T ))

Without a discount

Taking same data as given in Example 5.1 except M1 = 0.12 ≈ 44 days and
M2 = 0.20 ≈ 73 days, the optimal value of decision variables for joint decision
policy is, cycle time T = 3.52 years, selling price of the product p = $14.19
per unit, Q = 1794 units and the optimal solution for the joint decision policy
is πr(p, T ) = $1602.32, πs(p, T ) = $1721.82, πJ(p, T ) = $3324.14. Also, the
optimal values of the decision variables are obtained in the independent decision
policy is, cycle time T = 4.44 years, p = $43.36 per unit, Q = 799.64 units and
the optimal solution for the independent decision policy is πr(p, T ) = $2364.07,
πs(p, T ) = $591.24, πI(p, T ) = $2955.31.

From Table 1, players gain more profit when they take a joint decision and with
discount strategy. Case 5.7 (t1 ≤ t2 ≤ M1 ≤ T ) is the best case of all.

Optimality of the total profit of the supply chain in a joint decision is described
by two methods, i.e., by the graph, and by hessian matrix. As shown in Fig. 4, the
unit total profit of the joint decision for the supply chain is concave up.

The proof of global optimality using the well-known Hessian matrix is shown as
follows:

Let |H(p∗, T ∗)| be the determinant of the Hessian matrix H(p∗, T ∗) =(
∂2πJ(p∗,T ∗)

∂p2
∂2πJ(p∗,T ∗)

∂p∂T
∂2πJ(p∗,T ∗)

∂p∂T
∂2πJ(p∗,T ∗)

∂T 2

)

of the objective function πJ(p, T ) (profit function) at the

optimal point (p∗, T ∗).
For the function to be concave, the following sufficient conditionmust be satisfied.

det(H(p∗, T ∗)) < 0, provided that,
(

∂2πJ(p∗,T ∗)
∂p2

)(
∂2πJ(p∗,T ∗)

∂T 2

)
−

(
∂2πJ(p∗,T ∗)

∂p∂T

)2
> 0

additionally,
(

∂πJ(p∗,T ∗)
∂p

)
< 0 and

(
∂πJ(p∗,T ∗)

∂T

)
< 0 (Yu, 2018).

For the optimal case t1 ≤ t2 ≤ M1 ≤ T ,
(

∂2πJ(p∗,T ∗)
∂p2

)(
∂2πJ(p∗,T ∗)

∂T 2

)
−

(
∂2πJ(p∗,T ∗)

∂p∂T

)2 = 1607.98 > 0, ∂2πJ (p∗,T ∗)
∂p2 = −6.34 < 0

and ∂2πJ(p∗,T ∗)
∂T 2 = −260.87 < 0. Hence, the said solution is a unique optimal solution.
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Fig. 4 Concavity of the
profit function

Special case: To explore the impact of trade credit when choosing between an inde-
pendent or joint decision on the supply chain performance, using the same data as
in Example 5.1, the optimal solutions of ‘cash on delivery’ (i.e., M1 = M2 = 0) and
‘2/44 net 73’ for each case are listed in Table 2.

Table 2 shows that the total profit for both the players and the whole supply chain
for the two different type of credit limit strategy is greater than the total profit for
the cash on delivery strategy. Therefore, the two different types of trade credits are
beneficial to the supply chain as a whole. However, the profit gains in percentage
are not always positive for the supplier. Under second credit limit 1.7 years or as
the supplier extends the due date to second trade credit 2 years after delivery the
supplier’s profit gains in percentage are negative. To analyze the effect of trade credit
using the same data of Example 5.1, computational result about M1 and M2 are
obtained. From Table 2 it is analyzed that after 2 years of trade credit there is no
effect of M1 trade credit. In addition, after M2 = 2 years discount in purchasing cost
strategy is no longer beneficial for the players as well as supply chain. The positive
and negative impact of total profit in % is described in the last three columns of
Table 2.

From Table 3, it is examined that if the supply chain adopts joint decision with
two different trade credits strategy than supply chain earns more profit compare to
other strategies. Table 3 shows that under the joint and independent decision policies
if the supplier offers trade credit to the retailer than it results in a lower selling price
and therefore a greater market demand and supply chain profit. However, when the
players opt independent policy, nevertheless of whether or not the supplier offers
trade credit to the retailer, the selling price set in order to maximize the retailer’s
profit is two times more than that associated with a joint policy. The increasing price
in turn shrinks market demand affecting the retailer’s order quantity to drip for each
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Table 3 Optimal profit of the whole supply chain under different strategies

Decision
making

Credit
term(s)

Time for
payment
(in
days)

Q (units) p (in
$)

T (in
year)

πr(p, T ) (in
$)

πs(p, T ) (in
$)

π(p, T ) (in
$)

Independent Cash on
delivery

0 679 36.97 2.81 2952.23 700.59 3652.82

Trade
credit
2/44,
net 73

44 685 36.41 2.81 2961.19 706.45 3667.65

Joint Cash on
delivery

0 1201 13.52 2.03 2286.55 1727.3 4013.85

Trade
credit
2/44,
net 73

44 1239 13.19 2.05 2278.75 1756.89 4035.64

Allocated 3258.30 777.33 4035.63

Bold values are optimum values of decision parameters

order. If the order quantity is reduced than the profit of the supplier and supply chain
decrease remarkably. Additionally, from the supplier’s point of view, a joint decision
is more profitable than an independent policy even though the reverse is true for the
retailer. Hence, in order to benefit both the players, a compensationmethod suggested
by Goyal (1976) is applied to sustain long term business between both the players.
The profit of the players is reallocated as follows:

Retailer’s profit = πJ
(
p∗, T ∗) × πr(p∗, T ∗)

[πr(p∗, T ∗) + πs(p∗, T ∗)]

= 4035.64 × 2961.19

3667.65
= 3258.30

Supplier’s profit = πJ
(
p∗, T ∗) × πs(p∗, T ∗)

[πr(p∗, T ∗) + πs(p∗, T ∗)]

= 4035.64 × 706.45

3667.65
= 777.33

The allocated results are also listed at the bottom of Table 3.
In Table 4, to illustrate the benefit of a coordinated lot size trade credit policy

more clearly, a Summary of the profit of the supply chain under different strategies is
listed in Table 4. This shows that the profit increase of a joint supply chain system is
$361.03 (= $4013.85 − $3652.82) for the ‘cash on delivery’ scenario and $367.99
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Table 4 Summary of the
profit of the supply chain
under different strategies

Credit term(s) Independent
decision

Joint
decision

Improvement

Cash on
delivery

$3652.82 $4013.85 $361.03
(9.88%)

Trade credit
2/44, net 73

$3667.65 $4035.64 $367.99 (10%)

Improvement $14.83 (0.4%) $21.79
(0.54%)

$382.82
(10.48%)

(= $4035.64 − $3667.65) for the trade credit scenario. The percentage increase is
approximate 10% in both the examples. Moreover, profit increase in the independent
decision is $14.83 (= $3667.65 − $3652.82) approximately 0.4% compared to cash
on delivery strategy. Profit increase in the joint decision is $21.79 (= $4035.64 −
$4013.85) approximately 0.54% compared to cash on delivery strategy. In conclu-
sion, the joint procedure of optimizing supply chain’s total profit and trade credit
policies is beneficial for the whole supply chain performance.

5 Sensitivity Analysis

Table 5 depicts the sensitivity analysis of example for centralized option carried out
by varying one variable at a time as −20, −10, 10, and 20%.

To observe the sensitivity of the inventory parameters on the optimal solution,
the data provided in the numerical example are considered. Optimal solutions for
different values of a, b2, t1, t2, Icr, fcs, Ar, h, η and C are presented in Table 5. The
following observations could be made from Table 5.

1. Scale demand of the product, the exponential rate of change of demand for the
product, time point t1 and flexibility cash rate of the supplier decreases selling
price of the product slowly however time point t2, rate of interest earned for
the retailer, ordering cost for the retailer and holding cost rate increases selling
price of the product slowly. Moreover, the mark-up for selling price increases
selling price of the product rapidly whereas the purchasing cost of the product
increases the selling price of the product rapidly.

2. Rate of interest earned for the retailer, scale demand of the product, the expo-
nential rate of change of demand for the product and time point t1 decreases
cycle time slowly whereas flexibility cash rate of the supplier, time point t2,
ordering cost for the retailer and holding cost rate increases cycle time slowly.
In addition, the mark-up for selling price and purchasing cost of the product
increase cycle time rapidly.

3. The exponential rate of change of demand for the product, time point t2, rate of
interest earned for the retailer, ordering cost for the retailer and holding cost rate
decreases the total joint profit of the supply chain slowly however scale demand
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Table 5 Sensitivity analysis of inventory parameters

Inventory parameter Change (in %) p T πJ(p, T )

a 8000 13.26 2.12 3199.73

9000 13.22 2.08 3617.55

10,000 13.19 2.05 4035.64

11,000 13.16 2.02 4453.94

12,000 13.14 2.00 4872.39

b2 0.072 13.36 2.20 4113.76

0.081 13.27 2.12 4073.85

0.09 13.19 2.05 4035.64

0.099 13.11 1.99 3998.98

0.108 13.05 1.93 3963.70

t1 0.04 13.37 2.29 3906.79

0.045 13.28 2.17 3969.46

0.05 13.19 2.05 4035.64

0.055 13.10 1.92 4105.95

0.06 13.01 1.78 4181.24

t2 0.064 12.90 1.61 4266.28

0.072 13.04 1.84 4143.88

0.08 13.19 2.05 4035.64

0.088 13.33 2.24 3937.71

0.096 13.48 2.42 3847.71

Icr 0.128 12.46 2.16 4094.31

0.144 12.83 2.10 4064.08

0.16 13.19 2.05 4035.64

0.176 13.53 2.01 4008.75

0.192 13.86 1.97 3983.21

fcs 0.136 13.97 1.98 3976.64

0.153 13.58 2.01 4005.40

0.17 13.19 2.05 4035.64

0.187 12.78 2.09 4067.58

0.204 12.36 2.14 4101.44

Ar 240 13.13 1.99 4065.33

270 13.16 2.02 4050.38

300 13.19 2.05 4035.64

330 13.22 2.08 4021.11

360 13.25 2.11 4006.76

h 0.064 13.07 2.02 4065.56

(continued)



200 U. Chaudhari et al.

Table 5 (continued)

Inventory parameter Change (in %) p T πJ(p, T )

0.072 13.13 2.03 4050.56

0.08 13.19 2.05 4035.64

0.088 13.25 2.07 4020.81

0.096 13.31 2.08 4006.05

η 1.08 29.25 1.87 5966.68

1.2 13.19 2.05 4035.64

1.32 9.18 2.20 2898.40

1.44 7.37 2.34 2140.22

C 1.6 10.40 1.87 4307.48

1.8 11.79 1.96 4163.46

2 13.19 2.05 4035.64

2.2 14.60 2.14 3920.73

2.4 16.02 2.22 3816.34

Bold values are optimum values of decision parameters

of the product, time point t1 and flexibility cash rate of the supplier increases the
total joint profit of the supply chain slowly. Moreover, the mark-up for selling
price and purchasing cost of the product decreases cycle time rapidly.

The model examines that mark-up for selling price and purchasing cost of the
product is a highly impactful parameter for the model.

6 Conclusions

The paper contained two-layered supply chain inventory model of the constant dete-
riorating item. This model considered time- and price-dependent trapezoidal demand
which is a very realistic approach for electronics and fashion industries. In this paper,
supplier gave two different types of trade credit options that if retailer pay at first
trade credit then the retailer can be entitled to get a discount in purchasing cost.
However, if the player failed to pay at first and paid all the payment at the second
trade credit then the player will not be entitled to the same. Furthermore, the player
also discussed two different decisions, one is joint, and other is an independent deci-
sion. Paper concluded that if the retailer pays at the first trade credit and takes benefit
of discount and also supply chain worked together then the whole supply chain gets
more profit than other decisions. Moreover, this discount policy is not useful for a
long period of the business. As a result, the paper concluded from Table 4 that if the
supplier sets the long period of trade credit means nearer to cycle time then discount
policy is not worked.
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The current study canhavenumerous likely extensions, for example, themodel can
be further generalized by finite production rate, time-varying deterioration product,
partial or full backlogging credit limit related with order amount at the receipt in the
inventory system. One can also analyze and apply a multi-echelon supply chain. One
can allow shortages in this model.
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A Coordinated Single-Vendor
Single-Buyer Inventory System
with Deterioration and Freight Discounts

Monika K. Naik and Nita H. Shah

Abstract This chapter deals with a coordinated inventory model by considering
supply chain of two stage, single-vendor and single-buyer. An equally sized shipment
from vendor to buyer is conducted, and the buyer’s rate of market demand is taken
as a constant. Also, in the model, the concept of cost associated with freight discount
is undertaken, and formulations are done on the basis of all-weight freight discount
model and incremental freight discount model. In this chapter, an estimation of the
optimal values of replenishment cycle length, lot size byminimizing the buyer’s total
cost, vendor’s total cost as well as total cost of the supply chain inventory system
dealing deteriorating items are considered. The increase in the number of production
batch lot size factor and number of shipments from the vendor to the buyerwill lead to
decrease the total cost. Numerical examples are provided to illustrate the theoretical
results and convexity of total cost is established.Managerial observations are outlined
using sensitivity analysis. The result analysis demonstrates that on imposing freight
discount into inventory model results in significant reduction on total cost. Finally,
it can be concluded that freight discount model associated with incremental concept
gives substantial effects on minimizing the objective of system’s aggregate inventory
cost.

Keywords Inventory models · Single-vendor and single-buyer · Freight cost ·
Deterioration · All-weight freight discount · Incremental freight discount

1 Introduction

The inventory models related to system dealing with two-step supply chain having a
buyer and a vendor are considered as amajor research areawhich is joint economic lot
sizing model (JELS). Model focuses majorly on combining manufacturing result in
vendor direction as well as shipment plan in buyer direction to minimize aggregate
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cost. Though, generally JELS included cost associated with freight discount as a
portion of ordering cost (OC) by disregarding its association with size of shipments.
In real situations, the cost associated with freight discount is the key element of
aggregate cost associated with logistic. The authors Swenseth and Godfrey (2002)
claimed that uplifting of fifty percentage of the aggregate cost associated with total
logistic is due to carriage action. So, linking cost associated with freight discount
in manufacturing and inventory choices is necessary to add in order to have a well
concluding scheduling choice.

Baumol and Vinod (1970) were the first authors who have introduced the inven-
tory–theoreticmodels including transportation and inventory costs. Byusing enumer-
ation technique, Langley (1980) considered actual carrier freight rates function into
lot sizing decision. Abad and Aggarwal (2005) developed a model for determining
the buyer’s lot sizing and pricing that there are freight and all-unit quantity discount.
Ertogral et al. (2007) introduced a production-inventory model including freight
cost by considering cost associated with discounts of freight structures in all unit.
Toptal (2009) included cost associated with freight discounts and all-unit quantity
discounts in cost function of inventory. Mendoza and Ventura (2008) proposed an
algorithm depending on a grossly simplified freight rate structure. He et al. (2010)
explained an algorithm for finding the optimal purchase quantity utilizing actual
freight rates. Darwish (2008) extended the model by including freight rate discount.
Juhari et al. (2016) introduced an integrated inventorymodel for single-vendor single-
buyer system with freight rate discount and stochastic demand. An inventory model
dealing with modeling and analyzing incremental quantity discounts in transporta-
tion costs for a joint economic lot sizing problem was derived by Rasay et al. (2019).
An integrated inventory systemwith freight costs and two types of quantity discounts
was proposed by Darma and Wangsa (2020).

As such, deterioration is a process of becoming gradually worse, damage, decay,
spoilage, loss of utility resulting in a declination of the usefulness of the original one.
Deterioration reduces the quality and physical quantity of inventory. The product’s
selling price is one of the key factors in uplifting customer’s demand of a product
which is directly influenced by customer’s satisfaction level. Recent studies include
selling price-based rate of market demand and much weightage on deterioration is
drawn to highlight the shorter life cycles of goods. Therefore, appropriate inventory
control of deterioration of items is considered to be a crucial matter to elaborate.

Datta andPal (2001) proposed an inventorymodelwith stock-dependent andprice-
based demand rate. Further, joint pricing inventory model for deteriorating items
with quantity discount and time-dependent partial backlogging by applying Weibull
distribution was derived by Papachristos and Skouri (2003). Singh (2006) studied an
inventorymodel for deteriorating itemswith price-based demand. Chang et al. (2010)
proposed an optimal replenishment policy for non-instantaneous deteriorating items
with stock dependent demand. Under progressive payment scheme, for price-stock-
based demand for obtaining an optimal ordering and pricing policy a model was
proposed by Shah et al. (2011).

Hou et al. (2011) derived an inventory model for perishable products under partial
backlogging, inflation having stock-based selling rate. Two warehouses inventory
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model for non-instantaneous perishable products for stock-dependent demand were
proposed by Singh and Malik (2011).

On considering a joint pricing policy, partial backlogging and time–price-based
market demand rate for a non-instantaneous deteriorating item was proposed by
Maihami and Kamalabadi (2012). Panda et al. (2013) explained an inventory model
for deteriorating products by utilizing ramp-type demand. An inventory model by
Qin et al. (2014) estimates an optimal solution by formulating an algorithm for
calculating selling price, where deterioration is considered as quality and physical
quantity dependent.

An inventorymodel byRabbani et al. (2016)was proposeddealingwith immediate
deterioration for quality anddelayeddeterioration for physical quantity for estimating
optimal dynamic pricing and replenishment policies. An inventory model under
price- and stock-dependent demand for controllable deterioration rate with short-
ages and preservation technology investmentwas represented byMishra et al. (2017).
An integrated inventory model for deteriorating items with price-dependent demand
under two-level trade credit policy was derived by Rameswari and Uthayakumar
(2018).An inventory control problembyconsidering joint pricingof duopoly retailers
with deteriorating items and linear demandwas considered byMahmoodi (2019). An
economic order quantity model under two-level partial trade credit for time varying
deteriorating items was described by Mahata et al. (2020).

The uniqueness of this chapter is it consists of constant demand rate where an
estimation of the optimal values of replenishment cycle length, lot size byminimizing
the buyer’s aggregate cost, vendor’s aggregate cost as well as total cost of the supply
chain inventory system dealing deteriorating items are considered. Finally, the model
is validated through hypothetical data.

The chapter contains five sections. In Sect. 2, notations and assumptions are
explained. Section 3 deals with the development of mathematical model. Numerical
examples and sensitivity analysis are given in Sect. 4. Section 5 consists of conclusion
part.

2 Notations and Assumptions

2.1 Notations

Inventory parameters

D Rate of market demand/unit time (in units)

P Rate of production/unit time (in units)

K Setup cost of production (in dollars)

A Cost of order by buyer/order with size (in dollars)

v Cost of purchase/unit product (in dollars)

(continued)
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(continued)

Inventory parameters

FC j Cost of freight discount by buyer at discount level j/unit product (in
dollars)

PF j Addition of cost of purchase and cost of freight discount at level of
discount j (in dollars)

PC Cost of production by vendor/unit product (in dollars)

t1 Time for in-transit (in years)

Q j Breakpoint of quantity at level of discount j (in units)

OC Cost of ordering/unit time (in dollars)

SC j Cost of shipping at level of discount level j/unit time (in dollars)

HCB Aggregate cost of holding by buyer/unit time (in dollars)

HCT Cost of holding related to in-transit by buyer/unit time (in dollars)

HCH Cost of holding related to in-house by buyer/unit time (in dollars)

SCV Cost of Setup by vendor/unit time (in dollars)

HCV Cost of holding by vendor/unit time (in dollars)

TCB j Projected cost for buyer/unit time at level of discount j (in dollars)

TCV Projected cost for vendor/unit time (in dollars)

TC j Projected aggregate cost/unit time at level of discount j (in dollars)

ICH Charge of inventory carrying related to in-transit by buyer (in dollars)

ICT Charge of inventory carrying related to in-house by buyer (in dollars)

ICV Charge of inventory carrying by vendor (in dollars)

n Count of shipments from vendor to buyer (an integer which is
positive)

m Lot size factor of batch of production (in a positive integer)

Q Equal shipment size from vendor to buyer (in units)

T Replenishment cycle length (in years)

θ1 Deterioration rate from buyer to vendor

θ2 Deterioration rate from vendor to customer

2.2 Assumptions

1. A single-vendor single-buyer integrated inventory system for single item is
considered.

2. The market demand is taken constant.
3. The product is sold to buyer by vendor then customer purchases the product

from buyer.
4. The buyer orders the product to the vendor in a constant lot of size nq.
5. The buyer’s order is considered in nq/D interval.
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Table 1 The fright cost
offered by the shipper

K Weight of shipment P Freight cost Nk

0 0 < P < M1 N0

1 M1 ≤ P < M2 N1

:
:

:
:

:
:

K P ≥ K NK

Source Juhari et al. (2016)

6. The batch size of vendor production is mq with finite rate of production
P(P > D).

7. Let the deterioration rates be θ1 and θ2 be constants where 0 ≤ θ1, θ2 ≤ 1.
8. The freight cost is considered and charged to the buyer.

In this problem, the buyer pays freight cost
(
Y j

)
to the shipper for each shipment

weight of W, scheduled by the shipper assuming that the weight of a shipment is
proportional to its lot size. The shipper provides two discount policies, namely all-
weight freight discount and incremental freight discount. The fright cost offered by
the shipper as shown in Table 1 as in Juhari et al. (2016). Here, MK is the weight
of freight where rate of freight breakpoint comes. The fright-rate breakpoint occurs
at the sequence M1 < M2 < M3 < . . . < MK . Each weight’s fright cost (Nk)

is incurred at a shipment for weight W that lies on interval MK and MK+1 with
N0 > N1 > N2 > . . . > NK .

In case of implementing the discount associated with incremental policy, cost
associated with freight discount in the scheduled table is applicable to weight lying
in the discount category range. However, considering the policy of discount as all-
weight which is applicable to all weight shipping as elongated as the weight of
shipping is upgrowing the rate of freight breakpoint. This plan of discount is depen-
dent on weight of freight which can be changed by qk = Mk/p. where qk represents
the lot size if breakpoint of freight rate arises and p is the weight for freight per
unit product. Therefore, cost of freight occurring at cut-off point k is calculated as
Fk = pNk .

Assume that the payment is received by the vendor which is previously delivered
and the shipper accumulates sum later the items reach at the place of buyer. Therefore,
consider the categories of cost of holding by buyer as cost associated with in-transit
and cost associated with in-house. The cost of holding by buyer is associated per
item to buyer from vendor throughout in-transit duration (t). The cost of holding
associated with in-transit sum is based on cost of purchasing as buyer have yet to
recompense the cost associated with freight discount in case items yet on the journey.
While cost of holding associated with in-house sum is based on cost of purchasing
and cost associated with freight discount, as once the arrival of shipment at buyer’s
place, the freight cost has been paid.
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3 Mathematical Model Formulation

Let θ1 = θ01, 0 ≤ θ01 ≤ 1, θ2 = θ02, 0 ≤ θ02 ≤ 1 be the constant deterioration
rates from buyer to vendor and vendor to customers. The inventory level Ii (t) for
i = 1, 2 at any time instant t , at buyer and at vendor, respectively, declines due
to the combined effect of rate of demand and deterioration. Also, increases due to
production rate per unit time P are governed by the following differential equations
for each time periods.

dI1(t)

dt
= P − D − θ1 I1(t); 0 ≤ t ≤ t1 (1)

dI2(t)

dt
= D − θ2 I2(t); t1 ≤ t ≤ T (2)

with boundary conditions;

I1(0) = I2(T ) = 0. (3)

On applying the boundary conditions to Eqs. (1) and (2), we get the respective
inventory levels of buyer and vendor

I1(t) = (P − D)

θ1
+ (D − P)

θ1eθ1t
(4)

I2(t) = D
(−1 + eθ2(T−t)

)

θ2
(5)

This section consists of proposing two inventory models containing the freight
discount policy stated as freight discount model associated with all-weight policy
and freight discount model associated with incremental policy.

1. Freight discount model associated with all-weight policy

Themodel’smain aim is tominimize the projected aggregate cost per unit time
(
TC j

)

of inventory system consisting of the projected buyer cost
(
TCB j

)
at level j and the

projected cost to vendor (TCV). The projected cost associated with buyer contains
ordering cost/unit time (OC), cost associated with shipping at level of discount j /unit
time

(
SC j

)
, cost of holding to buyer/unit time (HCB). For buyer, ordering cost (OC)

for each order (A) is acquired by buyer per order having size (nQ) and amount of
order/unit time (D/nQ). Therefore, below costs are calculated as

The ordering cost (OC) per unit time:

The ordering cost (OC) per unit time: OC = DA

nQ
(6)
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The
(
SC j

)
is incurred by the buyer to the shipper on each shipment with size of

Q at the level j . The cost associated with level j of freight discount policy
(
FC j

)

and the cost of freight discount for batch size Q are calculated as QFj . Therefore,(
SC j

)
per unit time is defined by taking the product of number of shipments per unit

time (D/Q), and hence, shipment cost is given as follows:

SC j = D
(
FC j

)
Q

Q
; j = 0, 1, . . . J (7)

The HCB contains two types of cost associated with holding, namely cost associ-
ated with holding in in-transit policy HCT and cost associated with holding in-house
policy HCH. The cost associated with holding in in-transit policy is calculated using
Eq. (4):

HCT = vICT

t1∫

0

I1(t)dt (8)

The charge associated in carrying inventory by in-house policy ICH, the aggregate
of cost of purchasing, cost of freight discount FC j and average of level of inventory
of buyer in duration, cost associated in holding inventory with in-house policy for
buyer are derived as

HCH = ICH
(
v + FC j

)Q
2

(9)

Therefore, the calculation of aggregate cost of holding by buyer is the total of
Eqs. (8) and (9)

HCB = HCT + HCH = vICT

t1∫

0

I1(t)dt + ICH
(
v + FC j

)Q
2

(10)

Lastly, the projected cost for buyer/unit time TCB j can be derived using Eqs. (6),
(7) and (10)

TCB j = OC + HCB + SC j , for j = 0, 1, 2 . . . J (11)

2. Freight discount model associated with incremental policy

The projected aggregate cost/unit time TC j for freight discount model associated
with incremental policy consists of the projected buyer cost TCB j and the projected
vendor cost TCV. The projected cost for the buyer consists of OC, SC j and cost
of holding of the buyer HCB. In derivation of aggregate projected cost/unit time
for incremental freight discount model, we utilize buyer’s shipping cost and buyer’s
cost of holding associated with in-house policy that utilizes freight discount model
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of incremental policy depending on incremental quantity discount model developed
by Muckstadt and Sapra (2010).

On the basis of the calculation of SC j in (7), deriving the updated SC j which
utilizes freight discount model associated with incremental policy. Derived model
consists of cost associated with aggregate of cost associated with freight discount
for a shipment size of Q lying on discount interval FC j , and FC j+1 is given by:

FC(Q) = FC0(Q1 − Q0) + FC1(Q2 − Q1) + · · · + FC j−1
(
Q j − Q j−1

)

+ FC j
(
Q − Q j

)
,

where, j = 1, 2, . . . J (12)

As stated in Juhari et al. (2016), we can derive the shipping cost in the similar
manner as

SC j = D
(
FC j

)
Q

Q
; j = 0, 1, . . . J

= D
((
R j + FC j Q − FC j Q

)
/Q

)
(13)

where R j = (FC0)(Q(1) − Q(0)) + (FC1)(Q(2) − Q(1)) + · · · + (FC j−1)(Q( j) −
Q( j − 1)) and taking R0 = 0.

In order to derive the cost associatedwith in-house holding policy based on freight
discount model with incremental policy, using Eq. (8) as the elementary equation.
In case of freight discount model with incremental policy, the aggregate of cost of
purchasing and cost of freight discount at discount level j and SC j is derived as
SC j = v + FC j . Therefore, Eq. (8) is

HCT = (
v + FC j

)
ICT

t1∫

0

I1(t)dt (14)

Therefore, fright cost associated with holding in-house inventory by incremental
policy is

HCH = ICH
(
v + FC j

)Q
2

(15)

Therefore, the buyer’s total holding cost is given by

HCB = HCT + HCH = (
v + FC j

)
ICT

t1∫

0

I1(t)dt + ICH
(
v + FC j

)Q
2

(16)

Lastly, the projected cost for buyer/unit time in incremental freight model TCB j

can be calculated by considering Eqs. (6), (12) and (16)
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TCB j = OC + HCB + SC j , for j = 0, 1, 2 . . . J (17)

The projected cost by vendor contains cost of setup (SCV) as well as cost of
holding by vendor (HCV). As the cost associated with setup of vendor for individual
production run as K and the quantity of setup of production/unit time is D

mQ , cost
associated with setup/unit time can be computed by

Setup cost of vendor: SCV = DK

mQ
(18)

The cost of holding by vendor is computed by charge of carrying inventory ICV,
cost of production PC and the average of level of inventory of vendor. Therefore, the

Holding cost of vendor: HCV = mQ ICVPC
∫ T
t1
I2(t)dt

2P
(19)

Therefore, the total vendor cost can be calculated as

TCV = SCV + HCV = DK

mQ
+ mQ ICVPC

∫ T
t1
I2(t)dt

2P
(20)

Therefore, the total cost of inventory system can be calculated as

TC j = TCB j + TCV, where j = 1, 2, . . . J (21)

Solution Methodology

The procedure for finding the optimal solution can be computed by using the
following algorithm, in both cases with respective formulae for computing the
optimality.

Solution Algorithm for Both Cases

1. Start.
2. For fixed n and m, computing the sum of ordering cost and freight cost per

unit.
3. Computing production lot size Q j , for each j = 0, 1, 2…, J and replenishment

cycle length T.
4. Computing total cost TC j , for each j = 0, 1, 2 …, J.
5. Is Q∗

j ≤ Q j , j = 0, 1, 2 …, J. If yes, go to step 6; otherwise, go to step 7.
6. Q∗

j is the feasible solution then, computing total cost TC j at Q∗
j , where

TC
(
Q∗

j

)
= TC∗

j . Then, go to step 8.

7. Q∗
j is not a feasible solution then, computing production lot size Q j , for another

j value and replenishment cycle length T. Then, go to step 4.
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8. Is TC∗
j ≤ TC j , for each j as 0, 1, 2 …, J and for all m as m − 1. If yes, set m

as m + 1 and switch to step 9; otherwise, repeat steps 1–5.
9. Is TC∗

j ≤ TC j , for each j = 0, 1, 2 …, J. Then, go to step 10 otherwise go to
step 5.

10. TC∗
j is final optimal solution.

11. Stop.

Now, by classical optimization technique to minimize the total cost stated in
Eq. (22), we apply the necessary and sufficient condition:

∂TC j

∂T
= 0,

∂TC j

∂Q
= 0 (22)

To check the convexity of the total cost function of obtained solution, we adopt
the below stated algorithm,

Step 1: Assigning the inventory parameters some specific hypothetical values.
Step 2: Obtaining the solutions by solving simultaneous equations stated in
Eq. (22), utilizing the mathematical software Maple XVIII.
Step 3: For convexity of total cost function with respect to optimal replenishment
cycle and ordered quantity, computing all the eigen values of below statedHessian

matrix H for the optimal values obtained from Eq. (22), H =
[

∂2TC j

∂T 2
∂2TC j

∂T Q
∂2TC j

∂QT
∂2TC j

∂Q2

]

.

If all of the eigenvalues are positive, the total cost isminimumat the optimal values.
Then, we can conclude that total cost function is convex in nature with respect to
replenishment cycle lengths as well as ordered quantity both.

4 Numerical Example and Sensitivity Analysis

4.1 Numerical Analysis

Consider the specified value of the variables in all-units freight discount model and
incremental freight discount model for different freight discount policies with cases
with n = 1–2 and m = 1–4 as in Tables 2 and 3, respectively.

Consider the specified value of the variables in incremental freight discountmodel
for different freight discount policies with cases with n = 1–2 and m = 1–4.
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Table 2 All-units freight discount model with n = 1–2 and m = 1–4

D units P units K $ A $ ICT $ ICH $ ICV $ m n t1 years PC $ θ1 % θ2 %

10,000 50,000 10 10 0.01 0.8 0.2 1 1 1 2 10 10

0.6 2 30 20

0.67 0.45 0.3 3 30 25

0.92 0.451 4

0.01 0.8 0.2 1 10 10

0.6 2

0.1 0.54 3

0.7 0.552 0.1 4

0.01 0.6 0.1 1 10 10

0.45 2

0.88 0.451 3

0.455 0.147 4

0.2 0.7 0.1 1 10 10

0.09 0.52 2

0.48 0.49 3

0.75 0.325 4

10,000 50,000 10 10 0.01 0.6 0.2 1 2 1 2 10 10

0.4 2

0.334 3

0.9 0.314 4

0.99 0.675 1

0.99 0.475 2

0.99 0.334 3

0.89 0.265 4

0.8 0.496 0.1 1

0.87 0.35 2

0.87 0.3 3

0.81 0.178 4

0.68 0.56 1

0.9 0.403 2

0.8 0.198 3

0.89 0.172 4

Source Own
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Table 3 Incremental freight discount model with n = 1–2 and m = 1–4

D units P units K $ A $ ICT $ ICH $ ICV $ m n t1 years PC $ θ1 % θ2 %

10,000 50,000 10 10 0.93 0.751 0.1 1 1 1 2 10 10

0.9 0.603 2

0.83 0.54 3

0.98 0.399 4 1

0.89 0.6 1 2 2

0.959 0.471 2

0.95 0.421 3 3

0.9 0.34 4 2

0.93 0.86 1 1 2

0.91 0.68 2 2

0.863 0.41 3 2 1 1

0.85 0.282 0.6 4 3 90 90

0.9 0.68 0.1 1 2 2 10 10

0.9 0.504 2 2 2

0.9 0.315 3

10,000 50,000 10 10 0.9 0.2719 4

0.480 0.379 0.1 1 1 1 2 10 10

0.5 0.299 2

0.752 0.3 3

0.65 0.23 4

0.53 0.37 1 2 1

0.041 0.24 2

0.385 0.25 3

0.69 0.22 4

Source Own

Solution: All units freight discount model [For n = 1]

Case with freight
discount rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost
TCV

Total cost
TC j

0 < w < 450 1.5 1 447 15,671.361 223.498 15,894.859

2 447 15,559.490 111.735 15,671.225

3 447 15,630.178 74.501 15,704.680

4 447 15,651.303 55.808 15,707.111

450 ≤ w < 550 1.2 1 476 12,629.792 209.660 12,839.452

2 477 12,524.877 104.813 12,629.691

3 477 12,497.068 69.851 12,566.919

(continued)
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(continued)

Case with freight
discount rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost
TCV

Total cost
TC j

4 477 12,527.746 52.337 12,580.084

550 ≤ w < 600 0.9 1 592 9506.866 168.737 9675.604

2 592 9422.429 84.355 9506.784

3 592 9451.362 56.267 9507.630

4 592 9558.392 42.219 9600.612

w ≥ 600 0.6 1 603 6506.029 166.528 6675.772

2 603 6491.698 95.386 6502.491

3 603 6415.595 58.497 6472.895

4 603 6468.791 41.405 6510.197

All units freight discount model [For n = 2]

Case with freight
discount rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost
TCV

Total cost
TC j

0 < w < 450 1.5 1 447 15,447.790 223.462 15,671.252

2 447 15,335.950 111.695 15,447.646

3 447 15,298.959 74.523 15,373.483

4 447 15,435.410 55.919 15,491.329

450 ≤ w < 550 1.2 1 477 12,499.287 209.509 12,708.797

2 477 12,394.333 104.701 12,499.035

3 477 12,440.065 69.865 12,509.931

4 477 12,478.590 52.401 12,530.992

550 ≤ w < 600 0.9 1 592 9389.731 168.744 9558.476

2 592 9309.845 84.349 9394.194

3 592 9281.695 56.226 9337.921

4 592 9369.432 42.165 9411.597

w ≥ 600 0.6 1 603 6375.015 165.704 6540.720

2 603 6306.272 82.852 6389.124

3 603 6374.880 55.240 6430.120

4 603 6435.708 41.453 6477.161
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Freight discount model associated with incremental policy [For n = 1]

Case with
freight discount
rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost TCV

Total cost
TC j

0 < w < 450 1.5 1 447 15,952.248 223.550 16,175.798

2 447 15,831.794 111.829 15,943.623

3 447 15,772.021 74.428 15,846.449

4 447 15,948.493 54.688 16,003.182

450 ≤ w < 550 1.2 1 476 15,629.970 209.474 15,839.445

2 477 15,519.314 104.653 15,623.968

3 477 15,624.065 69.740 15,693.805

4 477 15,642.360 52.396 15,694.756

550 ≤ w < 600 0.9 1 592 3135.090 168.896 3303.987

2 592 3090.807 84.348 3175.156

3 592 3111.631 56.265 3167.897

4 592 3143.771 42.202 3185.974

w ≥ 600 0.6 1 603 1223.081 165.676 1388.758

2 603 1096.758 82.902 1179.660

3 603 1136.054 55.222 1191.276

4 603 1212.691 41.5055 1254.197

Freight discount model associated with incremental policy [For n = 2]

Case with freight
discount rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost
TCV

Total cost
TC j

0 < w < 450 1.5 1 447 15,716.300 223.460 15,939.761

2 447 15,625.678 111.770 15,737.448

3 447 15,585.232 74.454 15,659.686

4 447 15,629.220 55.834 15,685.055

450 ≤ w < 550 1.2 1 476 15,417.084 209.569 15,626.653

2 477 15,311.944 104.751 15,416.695

3 477 15,421.385 69.786 15,491.171

4 477 15,475.096 52.310 15,527.407

550 ≤ w < 600 0.9 1 592 3074.397 168.684 3243.081

2 592 3027.813 84.418 3112.232

3 592 3058.238 56.257 3114.495

4 592 3133.109 42.166 3175.275

w ≥ 600 0.6 1 603 1143.678 165.723 1309.401

(continued)
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(continued)

Case with freight
discount rate

Freight
discount
rate FC j

Production
batch lot
size m

Production
lot size Q j

Buyer cost
TCB j

Vendor
cost
TCV

Total cost
TC j

2 603 1076.325 82.889 1159.214

3 603 1040.415 55.259 1095.675

4 603 1142.980 41.408 1184.388

As such in the incremental freight discount policy, with number of shipments
from vendor to buyer as 2 and production batch lot size as 3 gives the minimum total
cost with 1095.67 dollars with the optimal values as shown in Table 4. The eigen
values of Hessian matrix at the optimal values for incremental freight discount are
given by

H =
[

∂2TC4
∂T 2

∂2TC4
∂T Q

∂2TC4
∂QT

∂2TC4
∂Q2

]

=
[
0.001181 0

0 36.2054

]
and λ1 = 0.001810 > 0, λ2 =

36.2054 > 0.
Both the eigenvalues of Hessian matrix are positive. Therefore, the cost function

is convex in nature. So, it is a positive definite matrix, and hence, total cost function
is convex in nature.

5 Sensitivity Analysis and Conclusion

• By using Table 5, on varying the inventory parameters like the in-transit inventory
carrying charge incurred by buyer and purchasing cost plays a vital role in decli-
nation of the total cost of the coordinated system, which is desirable. Incremental
freight discount model gives the minimum total cost of the system. By increasing
the m, n values, the total cost of the system decreases.

• The result analysis demonstrates that on imposing freight discount into inventory
model results in significant reduction on total cost. Finally, it can be concluded
that freight discount model associated with incremental policy gives important
effects on minimizing the objective of system’s total inventory cost.

• Some possible future directions for research are:

1. To uplift the demand of the firm, efforts for advertising and/or service investment
can be utilized. 2. Learning effects could be considered. 3. Shortages can be consid-
ered. 4. Demand can be considered as one or combination of time, price, reliability
or trade credit dependent. 5. Preservation technology investment can be utilized.
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Table 5 Sensitivity analysis of decision variables along various inventory parameters

Inventory
parameters

Decision
variables

Percentage variation of decision variables

−20% −10% 0 10% 20%

D TCB 609.837 815.6 1040.415 1282.097 1538.822

TCV 46.954 51.208 55.259 59.129 62.838

TC 656.792 866.809 1095.675 1341.226 1601.661

Q 567 585 603 620 636

T 0.0709 0.065 0.060 0.056 0.053

P TCB 784.255 916.517 1040.415 1156.818 1266.472

TCV 57.813 56.493 55.259 54.103 53,016

TC 842.068 973.011 1095.675 1210.921 1319.488

Q 576 590 603 616 628

T 0.057 0.059 0.060 0.061 0.062

K TCB 897.699 970.468 1040.415 1107.722 1172.552

TCV 45.412 50.397 55.259 60.005 64.641

TC 943.112 1020.865 1095.675 1167.727 1237.193

Q 587 595 603 611 618

T 0.058 0.059 0.060 0.061 0.061

A TCB 804.642 925.992 1040.415 1148.568 1251.020

TCV 57.565 56.377 55.259 54.205 53.209

TC 862.208 982.369 1095.675 1202.773 1304.230

Q 579 591 603 614 626

T 0.057 0.059 0.060 0.061 0.062

PC TCB 1040.415 104.415 1040.415 1040.415 1040.415

TCV 55.259 55.259 55.259 55.259 55.259

TC 1095.675 1095.675 1095.675 1095.675 1095.675

Q 603 603 603 603 603

T 0.0603 0.0603 0.0603 0.0603 0.0603

v TCB 2128.251 2111.160 2094.241 2077.491 2060.907

TCV 42.070 42.271 42.471 42.669 42.865

TC 2170.321 2153.432 2136.713 2120.161 2103.772

Q 792 788 784 781 777

T 0.079 0.078 0.078 0.078 0.077

ICT TCB 2007.390 2051.481 2094.241 2135.738 2176.032

TCV 43.366 42.912 42.471 42.044 41.630

TC 2050.756 2094.393 2136.713 2177.782 2217.662

Q 768.644 776 784 792 800

T 0.076 0.077 0.078 0.079 0.080

(continued)
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Table 5 (continued)

Inventory
parameters

Decision
variables

Percentage variation of decision variables

−20% −10% 0 10% 20%

ICH TCB 1566.987 1296.844 1040.415 796.731 563.754

TCV 49.425 52.423 55.259 57.956 60.533

TC 1616.413 1348.882 1095.675 854.688 624.288

Q 674 635 603 575 550

T 0.067 0.063 0.060 0.057 0.055

ICV TCB 1040.415 1040.415 1040.415 1040.415 1040.415

TCV 55.259 55.259 55.259 55.259 55.259

TC 1095.675 1095.675 1095.675 1095.675 1095.675

Q 603 603 603 603 603

T 0.060 0.060 0.060 0.060 0.060

t1 TCB 665.041 851.663 1040.415 −235.686 −231.526

TCV 59.006 57.140 55.259 68.089 68.047

TC 724.048 908.803 1095.675 −167.597 −163.479

Q 564 583 603 489 489

T 0.0706 0.064 0.060 0.445 0.408

θ1 TCB 1046.731 1043.568 1040.415 1037.273 1034.141

TCV 55.196 55.228 55.259 55.290 55.321

TC 1101.928 1098.796 1095.675 1092.564 1089.463

Q 603 603 603 602 602

T 0.060 0.060 0.060 0.060 0.060

θ2 TCB 1040.415 1040.415 1040.415 1040.415 1040.415

TCV 55.259 55.259 55.259 55.259 55.259

TC 1095.675 1095.675 1095.675 1095.675 1095.675

Q 603 603 603 603 603

T 0.060 0.060 0.060 0.060 0.060

Source Own
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