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Abstract Accurate and stable estimation of vehicle driving state information is
essential for vehicle kinematic control and active safety control. The thesis takes
distributed-driven electric vehicles as the research object, and designs an adap-
tive vehicle driving state estimation method based on the federal-cubature Kalman
filter theory. The corresponding nonlinear three-degree-of-freedomvehicle dynamics
model is established and the state space equations are obtained. By using information
fusion technology to fuse low-cost sensor signals with multiple information sources,
and using vehicle dynamics theory to build a vehicle driving state estimator. Select
typical experimental conditions and apply Simulink to build the algorithm model
and co-simulated with CarSim for verification. Experimental results show that the
proposed estimation method can improve accuracy and stability of state estimation.

Keywords Distributed drive electric vehicle · Federal-cubature Kalman filter ·
Driving state estimation · Information fusion · Simulation verification

1 Introduction

The driving state information such as the longitudinal and lateral speed of the car and
the side angle of the center of mass are important parameter variables for dynamic
control and active safety control. Accurate state information can improve the control
of the entire vehicle, so that the vehicle can still maintain good stability and safety
under extremely severe working conditions. Driving state estimation plays a deci-
sive role as a key part in these closed-loop controls, and its study is the basis and
premise for the further development of active safety technology in the future. At
present, there are three main methods for obtaining driving state information: one is
to directly use the corresponding sensor formeasurement, which is limited by the cost
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of the equipment and is only suitable for use in laboratories and some special scenes.
One method is to use the wheel speed sensor and integrate the steering wheel corner
information directly converted to get the driving status information. This method
has a large error, so it is difficult to apply it to vehicle dynamics control. Another
is the use of low-cost vehicular sensors, combined with dynamics theory based on
algorithmic model estimation research, which is the most effective and most suit-
able method for application in dynamic control at present. Reference [1] designed
a vehicle state estimation algorithm based on Cubature Kalman filter (CKF) theory,
and the sensor signals such as steering wheel angle, longitudinal/lateral acceleration
are used as the input of the algorithm model to estimate the vehicle speed, yaw rate
and centroid sideslip angle. Reference [2] proposes a vehicle state estimator based
on extended Kalman filtering, which uses a dynamic vehicle model to determine the
longitudinal and lateral speeds and yaw rate of the vehicle, and the effectiveness
is verified through experiments under different excitations. In Ref. [3], the method
of combining dynamic model and kinematic model is used to estimate the vehicle
motion based on the extended Kalman filter theory, and the effectiveness of the algo-
rithm is verified by the actual data collected from the conventional urban road. In
Ref. [4], a vehicle state parameter estimation algorithm is designed based on the
adaptive unscented Kalman filtering algorithm. By combining fuzzy control theory
with unscented Kalman filtering, according to different driving conditions, the value
of the measurement error matrix can be adaptively adjusted to improve the accuracy
of the estimation. Reference [5] introduces a genetic algorithm based on the basis of
unscented Kalman filter (UKF) to achieve the purpose of self-adaptive adjustment
of noise matrix and achieve a more accurate estimate of the driving state of conven-
tional front-wheel steering vehicles. The literature [6] first designed an algorithm
for estimating the driving state of a vehicle based on CKF theory, and on this basis,
designed an algorithm for estimating the pavement adhesion coefficients, which was
fused together in series and directly updated in real time using the square root of
the covariance matrix. This improves the accuracy, stability and timeliness of the
estimation.

Federal Kalman Filter (FKF) is gradually developed from the basis of decen-
tralized filtering. It is mostly used in the field of military navigation that requires
high accuracy and robustness. It has only been gradually applied in the automotive
field in recent years. It usually consists of two filter structures, one is a number of
sub filter structures and the other is the primary filter structure. The core idea is
the principle of “information allocation”, where the global state information and the
system noise matrix are dispersed and assigned to each sub-filter, and then integrate
the estimated information of each sub-filter through the main filter to achieve the
optimal fusion estimation. This structure does not change the unique form of the
sub-filter algorithm, which makes it flexible and fault-tolerant in design [7]. In order
to improve the estimation accuracy of the algorithm and ensure the real-time nature
of the algorithm, the fusion reset structure is selected and designed using two sub-
filters and a master filter. The Cubature Kalman filter algorithm is used for the time
update and measurement update in each sub-filter. This combined approach takes
full advantage of their respective advantages, which can make the process noise
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change adaptively in the estimation process, that is, the statistical parameters of the
process noise are constantly corrected in real time as the working conditions change
at different moments, thus effectively solving the problem of estimation results diver-
gence [8], which not only has good fault tolerance and stability, but also improves
the estimation accuracy of the algorithm.

2 Vehicle Estimation Model

2.1 Distributed-Drive Electric Vehicle Dynamics Model

Vehicle dynamics model represents the mathematical relationship between different
parametric variables during the motion of a vehicle and is the basis for designing
the vehicle state and parameter estimation algorithm. For distributed-drive electric
vehicles, the three-degree-of-freedom vehicle estimation model is built based on the
traditional two-degree-of-freedom modeling method [9], considering the timeliness
of the entire estimation algorithm and the motion of the three aspects of longitudinal,
lateral and transverse pendulum. The model assumes the following.

(1) The origin of coordinates coincides with the mass centre.
(2) It is assumed that the vehicle consists of a rigid body and four wheels that are

controlled independently of each other.
(3) Assuming that the mechanical characteristics of the tires are the same.
(4) Ignore the function of the suspension system.

The vehicle model is shown in Fig. 1.
In Fig. 1, a and b are the distance from the center of mass to the front and rear

axles, t f and tr are the distance between the front and rear wheel track, vi j is thewheel
center speed, δi j is the four-wheel angle obtained directly by the steeringmotor, Fx_i j

is the longitudinal force of the tire, Fy_i j is the lateral force of the tire, and αi j is the

Fig. 1 Vehicle dynamics
estimation model
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lateral deflection of the tire. Among them, i represents the front or rear wheel and j
represents the left or right wheel.

The vehicle dynamics model equations are shown in (1), (2), (3):

.
u = ax + vr (1)

.
v = ay − ur (2)

.
r = 1

Iz
� (3)

where, v and u are the longitudinal/lateral speed, ax and ay are the longitudinal/lateral
acceleration, r is the angular velocity of the sway, Iz is the inertia of the car around
the z axle and � is the yaw moment.

The formulas for calculating ax , ay and � from the dynamic model are shown in
(4), (5), and (6).

ax = 1

m

(
Fx_ f l cos δ f l − Fy_ f l sin δ f l

+ Fx_ f r cos δ f r − Fy_ f r sin δ f r

+ Fx_rl cos δrl + Fy_rl sin δrl

+Fx_rr cos δrr + Fy_rr sin δrr
)

(4)

ay = 1

m

(
Fx_ f l sin δ f l + Fy_ f l cos δ f l

+ Fx_ f r sin δ f r + Fy_ f r cos δ f r

−Fx_rl cos δrl + Fy_rl sin δrl

−Fx_rr cos δrr + Fy_rr sin δrr
)

(5)

� = a
(
Fx_ f l sin δ f l + Fy_ f l cos δ f l

)

− t f
2

(
Fx_ f l cos δ f l − Fy_ f l sin δ f l

)

+ a
(
Fx_ f r sin δ f r + Fy_ f r cos δ f l

)

+ t f
2

(
Fx_ f r cos δ f r − Fy_ f r sin δ f r

)

+ b
(
Fx_rl cos δrl − Fy_rl sin δrl

)

− tr
2

(
Fx_rl cos δrl + Fy_rl sin δrl

)

+ b
(
Fx_rr cos δrr − Fy_rr sin δrr

)

+ tr
2

(Fx_rr cos δrr + Fy_rr sin δrr ) (6)
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where, the lateral deflection angle, line speed and normal reaction force of the four
wheels are calculated as shown in (7), (8) and (9).

α f l, f r = δ f l, f r − arctan

(
v+ar

u± t f
2 r

)

αrl,rr = δrl,rr − arctan
(

−v+br
u± tr

2 r

) (7)

v f l, f r =
√(

u ± t f
2 r

)2 + (v + ar)2

vrl,rr =
√(

u ± tr
2 r

)2 + (v − br)2
(8)

Fz_ f l, f r =
(
1
2mg ± may

h
t f

)
b
l − 1

2max
h
l

Fz_rl,rr =
(
1
2mg ± may

h
tr

)
b
l + 1

2max
h
l

(9)

where, Fz_i j is the normal reaction of the ground to the wheels, m is the mass of the
vehicle, l is the wheelbase and h is the height of the center of mass.

The four-wheel longitudinal force can be calculated by formula (10).

Fx_i j = Ti j − Ji j · ·
ωi j

Re
(10)

where, Ti j is the driving torque of the four wheels, Ji j represents the moment of

inertia of the four wheels,
·

ωi j represents the angular acceleration of the four wheels.

2.2 Calculation of Lateral Forces

The Dugoff tire model [10] is used to calculate the lateral forces of the four wheels,
the equation is shown in (11).

Fy_i j = μ_i j Fz_i jCy
tan

(
αij

)

1 − λ_i j
f (L) (11)

where, μ_i j is the pavement adhesion coefficient, Cy is the tire cornering stiffness,
λ_i j is the longitudinal slip rate.

f (L) =
{
L · (2 − L), L < 1
1, L ≥ 1

(12)

L = 1

2

√
C2

xλ
2
_i j + C2

y tan
2αij

(
1 − λ_i j

)
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×
(
1 − ε · u ·

√
C2

xλ
2
_i j + C2

y tan
2αij

)
(13)

where, Cx is the longitudinal stiffness of the tire and ε is the velocity impact factor.
The corresponding slip rate equation for braking and driving is shown in (14).

λi j = Reωi j−vi j
vi j

= Reωi j

vi j
− 1 < 0 (brake)

λi j = Reωi j−vi j
Reωi j

= 1 − vi j
Reωi j

> 0 (drive)
(14)

3 Design of Vehicle Driving State Estimation Algorithm

3.1 Principle of Vehicle Driving State Estimation

The driving state estimation schematic diagram of distributed drive electric vehicle is
shown in Fig. 2. It can be seen from the figure that the signal collected by the vehicle
sensor through the vehicle network mainly includes the longitudinal acceleration
ax , lateral acceleration ay , yaw rate γ , four-wheel corner δi j , four-wheel speed ωi j

and four-wheel drive torque Ti j . These sensor signals are used as signal inputs of
the two sub-filters, the main filter and the Dugoff tire model in the vehicle’s driving
condition estimator, while setting a fixed value for the road adhesion coefficient as
another signal input of the Dugoff tire model. The lateral force of the tire is output
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through the solution of the tire model, and the longitudinal force calculation module
converts the collected four-wheel drive torque directly into the longitudinal force of
the four wheels, in order to reduce the error of the tire model itself on the calculation
of the tire force. The obtained tire force is used as another input of the two sub-
filters and the main filter in the vehicle driving condition estimator. The main filter
is initialized after receiving these signals, and the default value of the information
distribution coefficient is zero. The driving state, covariancematrix, and process noise
matrix are assigned to each sub-filter simultaneously, and each sub-filter integrates
the received sensor signal and the assigned signal. First complete the time update
to obtain the priori state estimate, then complete the measurement update according
to the respective measured values to obtain the posterior local estimate, and then
pass these data together to the main filter for integration to complete the global
optimal estimate. At the same time, the optimal estimate is used as the output and
the information of each sub-filter is allocated again according to a specific allocation
principle, so as to complete an iteration. With the continuous iteration of time, a
closed-loop system is formed in the vehicle driving state estimator. At the same time,
the global optimal estimation value is fed back to the tire model and its parameters
are constantly corrected to form a closed loop system, which completes the accurate
estimation of the vehicle driving state.

3.2 Vehicle Driving State Estimation Algorithm

The specific process of the estimation algorithm is shown in formula (15) to formula
(31).

(1) Information distribution process

The traveling state variables, the error covariance matrix, and the system process
noise covariance matrix are first assigned to each sub-filter by the main filter
according to the information allocation principle.

X̂si,k−1 = Xs f,k−1 (15)

P−1
si,k−1 = βsi P

−1
s f,k−1 (16)

Q−1
si,k−1 = βsi Q

−1
s f,k−1 (17)

where, βsi is the driving state information distribution coefficient, where i = 1, 2
(i.e. two sub-filters), according to the information conservation principle, there is
βs1 + βs2 = 1.

(2) Time update process

The time update is performed independently in each driving state sub-filter.
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➀ Decomposition the covariance matrix Ps,k−1 by SVD method.

Ps,k−1 = As,k−1
s,k−1A
T
s,k−1 (18)

where, As,k−1 is the feature matrix corresponding to the driving state covariance
matrix Ps,k−1, 
s,k−1 = diag[S2s1,k−1, S

2
s2,k−1 . . . , S2sn,k−1], where S2si,k−1 is the

square root of the eigenvalue corresponding to Ps,k−1.

➁ Calculate the cubature point of the previous moment.

Xsj,k−1 = Asi,k−1Ssi,k−1ξ j + X̂s,k−1 (19)

where, i = 1, 2 . . . n, n is the dimension of the driving state variable, ξ j is the cubature
point, and ξ j = √m

2 [1] j , where j = 1, 2 . . .m, m is the number of cubature points
and the size is two times the dimension of the driving state variable, [1] j represents
the jth cubature point element. In this paper, the number of vehicle driving state
variables is n = 6, then the cubature point set is:
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➂ Calculate the cubature point of the system equation after iteration.

X∗
s j,k/k−1 = f

(
Xsj,k/k−1,Uk

)
(20)

➃ Estimate the state prediction value after time update.

X̂s,k/k−1 =
m∑

j=1

1

m
X∗
s j,k/k−1 (21)

➄ Predicted value of the estimated error covariance matrix.

Ps,k/k−1 =
m∑

j=1

1

m
X∗
s j,k/k−1X

∗T
s j,k/k−1 − X̂s,k/k−1 X̂

T
s,k/k−1 + Qs (22)

where, Qs is the noise covariance matrix during the driving process.

(3) The process of updating the vehicle’s driving condition measurement

Measurements are updated individually in each driving state sub-filters.



Driving State Estimation of Distributed Drive Electric Vehicle … 681

➀ The predicted covariance matrix Ps,k/k−1 is decomposed by the SVD method.

Ps,k/k−1 = As,k/k−1
s,k/k−1A
T
s,k/k−1 (23)

➁ Calculate cubature points.

Xsj,k/k−1 = Asi,k/k−1Ssi,k/k−1ξ j + X̂s,k/k−1 (24)

➂ Calculate new cubature points based on measured variables.

Zsj,k/k−1 = h
(
Xsj,k/k−1, X̂s j,k/k−1,U (k)

)
(25)

➃ Mean values for volume points.

Ẑs j,k/k−1 =
m∑

j=1

1

m
Zsj,k/k−1 (26)

➄ Calculate the variance of new interest.

Pszz,k/k−1 =
m∑

j=1

1

m
Zsj,k/k−1Z

T
s j,k/k−1 − Ẑs,k/k−1 Ẑ

T
s,k/k−1 + Rs (27)

where, Rs is the noise covariance matrix of driving state measurement.

➅ Calculate cross-covariance.

Psxz,k/k−1 =
m∑

j=1

1

m
Xsj,k/k−1Z

T
s j,k/k−1 − X̂s,k/k−1 Ẑ

T
s,k/k−1 (28)

➆ Calculate filter gain.

Ks,k = Psxz,k/k−1P
−1
szz,k/k−1 (29)

➇ Estimated state after correction for measured variables.

X̂s,k = X̂s,k/k−1 + Ks,k

(
Zs,k − Ẑs,k/k−1

)
(30)

➈ Corrected error covariance matrix.

Ps,k = Ps,k/k−1 − Ks,k Pszz,k/k−1K
T
s,k (31)
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(4) Information fusion process for vehicle driving status

The local estimated values of each sub-filter in the vehicle driving state are fused
through the main filter to obtain a global optimum estimate.

P−1
s f,k = P−1

s1,k + P−1
s2,k (32)

X̂s f,k = P−1
s f,k

(
P−1
s1,k X̂s1,k + P−1

s2,k X̂s2,k

)
(33)

Establish the state and measurement equations of the nonlinear system and give
the parameters contained in each variable. The formula is shown in (34):

Ẋs,k = f
(
Xs,k,Us,k, wk

)

Zs,k = h
(
Xs,k, vk

) (34)

The state variables of the two sub-filters are:

Xsi,k = [
u, v, ax , ay, γ, �

]

The measured variable of sub-filter 1 in the driving state estimator is:

Zs1,k = [
ax , ay, γ

]

The measured variable of sub-filter 2 in the driving state estimator is:

Zs2,k = [
ay, γ

]

The estimator control input variable is:

Uk = [
δ f l , δ f r , δrl , δrr , ω f l , ω f r , ωrl , ωrr

]

where, δi j is four-wheel corner, which is calculated according to certain rules by
collecting steering wheel corner signals from sensors.

The determination of information distribution coefficients is a key issue in the
design of the federated filter. The reasonable selection of information distribution
coefficients between primary and sub-filters can effectively improve the algorithmic
estimation accuracy and fault detection sensitivity of sub-filters, so as to ensure the
optimization of the global estimation. Given that the covariance matrix reflects the
estimation accuracy of each sub-filter to a great extent, it is used as an indicator to
calculate the information distribution factor. This paper uses Eq. (35) for distribution.

βi = tr(pi )

tr(p1) + tr(p2)
(35)
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where, tr(pi ) is the trace of the error covariance matrix and the initial value of the
information distribution coefficient is set as β1 = β2 = 0.

4 Simulation Verification

In order to verify the feasibility and reliability of the proposed estimation algorithm,
the corresponding algorithm model is built under Matlab/Simulink environment,
and co-simulation with CarSim, then evaluate the estimation effect of the estima-
tion algorithm on the nonlinear driving state of the vehicle. Set the corresponding
test condition and select the low adhesion double shift line test condition. Some
parameters of the vehicle model are shown in Table 1.

For this simulation, the parameters are selected as follows: constant speed is
25 km/h, pavement adhesion coefficient is 0.2, and sampling is a fixed step length of
0.01 s. The initial values of the two sub-filters are selected as follows.

Xs1,0 = [25/3.6, 0, 0, 0, 0, 0]

Ps1,0 = eye(6)

Qs1,0 = eye(6) ∗ 1000

Rs1.0 = diag([0.01, 1, 1]) ∗ 0.1

(36)

Xs2,0 = [25/3.6, 0, 0, 0, 0, 0]

Ps2,0 = eye(6)

Qs2,0 = eye(6) ∗ 1000

Rs2.0 = diag([0.1, 1]) ∗ 0.01

(37)

Table 1 Partial parameters of the vehicle model

Parameter name Symbol Value

Vehicle quality (kg) m 830

Sprung mass (kg) ms 747

The wheelbase (m) L 2.34

Front wheelbase (m) a 1.17

Rear wheelbase (m) b 1.17

Front wheel track (m) tf 1.416

Rear wheel track (m) tr 1.416

Wheel radius (m) r 0.278

The distance from the center of mass to the ground (m) h 0.54

The moment of inertia about the Z axis of the car coordinate system (kg/m2) Iz 1110
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The experimental results are shown in Figs. 3 and 4. The sensor signals collected
by the distributed drive electric vehicle are shown in Fig. 3, and the longitu-
dinal/sideways velocity and yaw rate after adding noise to the CarSim simulation
output are shown in (a), (b) and (c), respectively. In Fig. 3, (d), (e), and (f) are the
sensor signals of four-wheel corner, driving torque, and wheel speed, respectively.
Figure 4 shows the comparison curve between the estimated vehicle driving state
obtained by the estimation algorithm and the actual value of the vehicle driving state
output from the CarSim simulation. Figure 4a shows the comparison curve between
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Fig. 3 Sensor signal
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Fig. 4 Vehicle driving state simulation output

the estimated longitudinal speed of the vehicle and the actual value output from
the vehicle model. The estimated value is better consistent with the actual value in
terms of accuracy and real-time, and has good stability. Figure 4b shows the compar-
ison curve between the estimated lateral speed of the vehicle and the actual value
of the vehicle model output. The maximum error between the estimated value and
the actual value is about 0.1%, which has good real-time performance and stability.
Figure 4c shows a comparison curve between the estimated centroid sideslip angle
of the vehicle and the actual values output from the whole vehicle model, where the
estimated value is tracked steadily in real time and with high estimation accuracy.

5 Conclusion

(1) Adistributed driving electric vehicle driving state estimation algorithm is inves-
tigated. A federal Kalman filter is selected to design the vehicle driving state
estimator, and two sub-filters and amaster filter are used to improve the stability,
error tolerance, and estimation accuracy of the whole algorithm. In order to
further improve the estimation accuracy, the sub-filter is designed based on the
Cubature Kalman filter theory.
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(2) Matlab/Simulink is used to implement modular programming. At the same
time, the vehicle simulation model is built, and then the estimation algorithm
is verified in conjunction with the CarSim simulation platform. The simulation
results show that the algorithm has a good effect on the response, stability and
accuracy of the driving state estimation.
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