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3.1 Introduction

Human exercises in the last few years have caused extreme concern related to the
environment and its preservation. Water shortage, water contamination, air contam-
ination, soil debasement, poor administration of waste, loss of biodiversity are some
of the ecological concerns that have caused permanent health impacts on humans as
well as on animals and plants. Also, the advancement in industrialization, just as
science and innovation, has prompted the enhancement of waste and lethal materials
in the environment. Thus, the degradation and diminution of natural resources must
be circumvented to achieve a sustainable environment. The conventional physico-
chemical strategies utilized for the reclamation of the common habitat were seen as
improper because of cost, lower productivity and nonspecificity. Consequently, to
overcome these constraints, biological methods were amalgamated with the
nanotechnology-based physiochemical techniques for the removal of pollutants
from the environment (Guerra et al. 2018). The present chapter reviews the existing
physical, chemical and biological methods for the treatment of pollutants along with
their merits, demerits and the application of nanotechnology in the bioremediation of
contaminants. Furthermore, the chapter will likewise concentrate on the biological
synthesis of the nanoparticles using microbes which will provide insight into
nanobioremediation for removing contaminants from the environment. This
nanobioremediation approach for the expulsion of toxicants from nature will be
the most dependable and suitable technology as for the cost and effectiveness
relative to the financial status of the developing countries.
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3.2 Present Day Treatment Methods for the Ouster
of Pollutants

Since the contaminants are lethal in nature, they have been contemplated dangerous
to the environment. The treatment of these toxins in an environmentally safe way is
obligatory before they are being released into the environment. The physical,
chemical and biological techniques are the current treatment methods used for the
expulsion of contaminants from the environment. Physical techniques incorporate
methods like adsorption, reverse osmosis, electrodialysis, etc. Countless toxins are
being discharged into the environment, out of which some are exceptionally hard to
be treated by regular physical techniques. To solve the limitations of physical
techniques, some of the chemical methods like precipitation, ion exchange,
electroflotation, coagulation, flocculation, reduction and so forth were utilized for
the expulsion of contaminants from the environment. In spite of the fact that the
chemical methods used are productive, quick and can remove a wide range of toxins
present in nature, their utilization is constrained by the significant price and sludge
disposal issues. Furthermore, plenty of chemicals and high level of energy are
required by these chemical methods. Considering all the above constraints,
biological methods including the utilization of microorganisms (bioremediation)
were utilized for the expulsion of lethal contaminants present in the environment
(Ojuederie et al. 2017; Sinha et al. 2016; Behl et al. 2019). The process of bioreme-
diation is economically attractive as well as environmentally friendly. Also, there is
an advantage of minimum sludge generation, regeneration of biosorbent and possi-
bility of metal recovery. However, the processes are slow, additional nutrition and
maintenance are required. Moreover, the pollutants sometimes become toxic to the
microorganisms involved in the process. Thus, every above mentioned techniques
have their own benefits and disadvantages which make them insufficient to manage
the issue of contaminant expulsion from nature.

3.3 Nanotechnology

The remediation of the toxicants by the existing traditional physicochemical
methods and biological methods was not very efficient and effective in cleaning
up the environment. Therefore, a new technology named ‘nanotechnology’ can be
applied for the bioremediation of contaminants from the environment. Nanotechnol-
ogy is derived from the Greek word ‘dwarf’ (El Saliby et al. 2008) and can be
defined as the science of micro-engineering. Micro-engineering is the technique that
deals with particles smaller than 100 nm. Nanotechnology was first proposed by
Richard Feynman (1960), which now has become one of the fastest developing areas
of research and development all around (Yadav et al. 2017). Presently, the field of
nanotechnology is regarded as the ‘Next Industrial Revolution’ as in the future it will
lessen the industrial costs by diminishing the consumption of energy, environmental
pollution and enhancing the production efficiencies in developed countries (Roco
2005). Moreover, nanotechnology may also prove helpful in handling particular
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social issues of developing nations like the necessity of clean water and treatment of
epidemic diseases (Fleischer and Grunwald 2008; Schmidt 2007). Nanotechnology
offers a large amount of environmental benefits in remediation, pollution prevention
and contributes a lot to developing smaller, more accurate sensing and monitoring
devices (Savage et al. 2008). The ability of nanotechnology to abridge contamina-
tion is in progress that can result in extensive and profound changes in pollution
control (Watlington 2005). Table 3.1 lists some of the common nanomaterials
utilized in the remediation process.

3.3.1 Properties of Nanoparticles

The essential part of nanotechnology is the very small particles called nanoparticles
or ultrafine particles. Nanoparticles are particles somewhere in the range of

Table 3.1 Various nanomaterials used in remediation process

Process
exploited Target compounds Nanomaterials

Properties of
nanomaterials References

Photocatalysis Organic pollutants,
NOX, VOCs, Azo
dye, Congo red
dye,
4-chlorophenol
and Orange II,
PAHs

TiO2, ZnO,
species of iron
oxides (Fe III,
Fe2O3, Fe3O4)

Photocatalytic
activity in solar
spectrum, low
human toxicity,
high stability and
selectivity, low
cost

Khedr
et al.
(2009)

Redox
reactions

Halogenated
organic
compounds,
metals, nitrate,
arsenate, oil, PAH,
PCB

Nanoscale zero-
valent iron
(nZVI), nanoscale
calcium peroxide

Electron transfers
such as
photosynthesis,
respiration,
metabolism and
molecular
signalling

Zhang
et al.
(2003)

Adsorption Heavy metals,
organic
compounds,
arsenic, phosphate,
Cr (IV), mercury,
PAHs, DDT,
dioxin

Iron oxides,
carbon-based
nanomaterials
such as
dendrimers and
polymers, carbon
nanotubes (CNTs)

High specific
surface area and
assessable
adsorption sites,
selective and more
adsorption sites,
short intra-particle
diffusion distance,
tunable surface
chemistry, easy
reuse

Bhaumik
et al.
(2012)

Disinfection Diamines, phenols,
formaldehyde,
hydrogen
peroxide, silver
ions, halogens,
glutaraldehyde,
acridines

Nanosilver/
titanium dioxide
(Ag/TiO2) and
CNTs

Strong
antimicrobial
activity, low
toxicity and cost,
high chemical
stability, ease of
use

Amin et al.
(2014)
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1–100 nm in size that can intensely change their physicochemical properties when
contrasted with the bulk material. These particles are comprised of carbon, metal,
metal oxides or organic matter and their function relies upon the type of synthesis,
size and shape of the particles. They can be round, tubular, cylindrical and so
on. Their surface can be uniform or irregular, while some are crystalline to amor-
phous with single or multi-crystal solids either free or agglomerated.

The nanoparticles are classified into organic, inorganic and carbon based. Organic
nanoparticles incorporate dendrimers, liposomes, ferritin and so forth that are
non-toxic, biodegradable and are likewise sensitive to thermal and electromagnetic
radiation like heat and light, making them ideal for drug delivery (Tiwari et al. 2008).
Inorganic nanoparticles are not comprised of carbon. They largely involve metal and
metal oxide nanoparticles such as aluminium, copper, gold, iron, iron oxide, alu-
minium oxide, magnetite, etc. (Dreaden 2012). Carbon-based nanoparticles are
totally comprised of carbon like graphene, fullerenes, carbon nanotubes (Saeed
and Khan 2016).

The unusual chemical, physical, optical, thermal and electrical properties
(Panigrahi et al. 2004) of nanoparticles can be used in various fields like drug
delivery (Horcajada et al. 2008), medical imaging (Lee et al. 2008), optical receptors
(Dahan et al. 2003), biolabelling (Liang et al. 2006), antimicrobial agents (Sanpui
et al. 2008). There are other remarkable properties of nanoparticles like its small size
which can cause increase in the surface area per unit mass that makes them
profoundly helpful in bioremediation. Because of the small size, a lot of
nanoparticles can come into contact with the surrounding medium, consequently
influencing its reactivity. Nanoparticles show a remarkable property of surface
plasmon resonance which helps in the detection of contaminants present in nature.
Furthermore unique properties of nanoparticles likewise make them appropriate for
the advancement of electrochemical sensors as well as biosensor (Peng and Miller
2011; Selid et al. 2009). Moreover, scientists have created nanosensors for the
recognition of auxin and oxygen dissemination in plants (Koren et al. 2015).
Because of the outstanding properties of nanoparticles, they have been proposed
as a proficient, economical and environment friendly substitute to the present
treatment advancements, in resource preservation as well as in ecological remedia-
tion (Friedrich et al. 1998; Dastjerdi and Montazer 2010). The ability of
nanomaterials to abate pollution production is in progress and could potentially
catalyse the most revolutionary changes in the environmental field in the coming
decades (Fig. 3.1).

3.4 Synthesis of Nanoparticles

Nanoparticles can be synthesized by various strategies and approaches that incorpo-
rate physical, chemical and biological methods (Fig. 3.2) (Luechinger et al. 2010;
Mohanpuria et al. 2008). Conventionally, the nanoparticles were produced by
physicochemical strategies that enable them to be synthesized in enormous amounts
with definite shape and size in a constrained timeframe; howbeit, these methods are
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expensive, wasteful, complicated, utilize hazardous chemicals, require high energy
and produce toxic by-products that are hazardous to the environment (Li et al.
2011a, b; Rodriguez-Sanchez et al. 2000).

Lately, the interest has been focussed on the production of economical and
eco-friendly nanoparticles that do not give rise to dangerous and toxic by-products
during the manufacturing procedure (Chauhan et al. 2012; Li et al. 2011a, b). Thus,
recently, nanoparticles are being produced by biological methods that include
microorganisms, plants and their by-products with the assistance of some biological
tools. Biologically synthesized nanoparticles have striking and outstanding benefits
over physical and chemical strategies like the production approaches are economi-
cal, quick and eco-friendly. In addition, the nanoparticles produced by biological
path does not require any further stabilizing agents, as microorganisms and plants
themselves act as stabilizing agents (Makarov et al. 2014). The biological synthesis
of nanoparticles is a bottom-up approach where reducing and stabilizing agents help
in synthesizing the nanoparticles (Fig. 3.2). Bio-fabrication of nanoparticles is in
general achieved either through reduction or oxidation process. The biomolecules
present in microbes or botanical species were found to be responsible for reduction-
cum-stabilization of metal ions into their respective nanostructures (Singh et al.
2011). Biosynthesis of various nanoparticles using plants and microorganisms like
bacteria, algae, fungi yeast and microbial polysaccharides is compiled below.

3.4.1 Synthesis of Nanoparticles Utilizing Plants

Biological synthesis of nanoparticles by plants is getting a lot of attention these days
because of its simple, stable, rapid, cheap and eco-friendly method (Mittal et al.
2013). Additionally, plants are abundantly available, safe to handle and have a wide
variability of metabolites that help in reduction. Plant extracts containing bioactive

Fig. 3.1 Applications of nanomaterials in bioremediation
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alkaloids, proteins, sugars, phenolic acids, polyphenols play an important role in first
reducing the metallic ions and then stabilizing them (Castro et al. 2011). Table 3.2
compiles the information on a large number of plants being utilized for the synthesis
of various nanoparticles and it is clear from the information that the synthesis of
nanoparticles, their size, application all vary from plant to plant.

3.4.2 Synthesis of Nanoparticles Utilizing Bacteria

Biosynthesis of nanoparticles utilizing bacteria has gained a lot of attention in the
area of green nanotechnology over the globe because of their abundance in the
environment and their capacity to adjust to extraordinary conditions. Additionally,
these are fast-growing, inexpensive to cultivate and simple to control (Mehrotra et al.
2019a, b; Kumar et al. 2019). Moreover, the nanoparticles synthesized from bacteria
have higher catalytic reactivity, more specific surface area and are of uniform size
(Mehrotra et al. 2019a, b). Various species of bacteria till now have been effectively

Fig. 3.2 Different methods and approaches for synthesizing nanoparticles. Source: (Siavash 2011)
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used for the synthesis of different nanoparticles like gold, silver, zinc, cadmium
sulphide, palladium, etc. (Table 3.3).

3.4.3 Synthesis of Nanoparticles Utilizing Fungi and Yeast

The utilization of fungi in the synthesis of nanoparticles has gained fast interest
because of their toleration and metal bioaccumulation capability (Sastry et al. 2003).
A large amount of enzymes can be produced by utilizing fungi since they are
magnificent secretors of extracellular proteins, which eventually can regulate the
synthesis of nanoparticles (Castro-Longoria et al. 2012). Fungi is viewed as better
than bacteria in the production of nanoparticles as these secrete huge volume of
proteins which directly gets converted to nanoparticles, causing higher productivity
(Mohanpuria et al. 2008). Furthermore, various fungal species grow very fast,
making their maintenance in the research lab simple. In a similar way, easy mainte-
nance of yeast production in the laboratory, its rapid growth and the use of simple
nutrients are some of the remarkable advantages of yeast over bacteria for the mass
production of nanoparticles (Skalickova et al. 2017). Fungi and yeast have suprem-
acy over other biological systems because of their wide diversity, simple culture

Table 3.2 List of various plants used for the synthesis of nanoparticles

Plant species
Plant
material

Type of
nanoparticles

Mechanism/
causative agents

Size
(in nm) References

Azadirachta
indica

Kernel Silver, gold Azadirachtin 50–100 Shukla et al.
(2012)

Jatropha
curcas L.

Latex Lead Curcacycline A
and Curcacycline
B

10–12.5 Joglekar et al.
(2011)

Camellia
sinensis

Leaves Platinum Pure tea
polyphenol

30–60 Alshatwi et al.
(2015)

Nephelium
lappaceum L

Peels Nickel oxide Nickel–ellagate
complex
formation

50 Yuvakkumar
et al. (2014)

Eucalyptus Leaves Iron oxide Epicatechin and
quercetin–
glucuronide

20–80 Wang et al.
(2014)

Syzygium
aromaticum

Flower
buds

Iron oxide Eugenol 5–40 Subhankari et al.
(2013)

Aloe
barbadensis
miller

Leaves Zinc oxide Phenolic
compounds,
terpenoids or
proteins

25–40 Sangeetha et al.
(2011)

Alfa sprouts Living
plant

Silver In situ synthesis 2–20 GardeaTorresdey
et al. (2003)

Asparagus
racemosus

Tuber
cortex

Palladium Tuber cortex 1–6 Raut et al. (2013)
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methods, less time and low cost which successively lead to an eco-friendly approach
for the synthesis of nanoparticles. Some of the fungal and yeast species successfully
utilized for the production of the nanoparticles are documented in Table 3.4.

3.4.4 Synthesis of Nanoparticles Utilizing Algae

From the past few years, the utilization of algae for the biosynthesis of nanoparticles
has increased tremendously because of their simple access and efficiency (Ogi et al.
2010; Singaravelu et al. 2007). At present, they are also called as ‘biofactories’ for
the synthesis of nanoparticles since they are an excellent source of biomolecules
(Manivasagan and Kim 2015). These biomolecules like proteins, pigments, starch,
nucleic acids, fats and secondary metabolites such as alkaloids present in the algal
cell wall act as reducing agents which eventually prompts the reduction and synthe-
sis of metal and metal oxide nanoparticles at ambient conditions (Siddiqi and Husen
2016). Also, seaweeds are advantageous over different reductants because of their
high metal accumulating capability, minimal effort, plainly visible structure and anti-
biological fouling properties (Davis et al. 2003). In addition, seaweeds have both
anti-inflammatory and inhibitory properties that can be utilized to treat diverse
ailments and stifle a few types of malignant growth (Fawcett et al. 2017). The
biogenic manufacturing of different nanoparticles utilizing diverse algal species is
presented in Table 3.5.

3.4.5 Remediation Using Biogenic Polysaccharide

Polysaccharides are natural biopolymers of biological systems that have been
extracted and put to extensive use. These biopolymers are renewable materials,
environment friendly, non-toxic, biodegradable and have excellent functional
properties. In recent years, polysaccharide nanomaterial composites have attracted
attention of researchers in nanobioremediation due to improved processability,
surface area, stability, tunable properties and cost-effectiveness. Table 3.6 provides
an overview of biogenic polysaccharides that have been used in the preparation of
bionanocomposites.

3.5 Nanobioremediation

Utilization of nanomaterials, synthesized from plants, algae, bacteria, fungi and
yeast, to clean up the environmental pollutants such as organic or inorganic waste
and heavy metals from the affected sites is termed as nanobioremediation (Yadav
et al. 2017). The concept of green technology has gained immense interest in the area
of nanomaterials for application in bioremediation and also due to its cost-
effectiveness in large-scale use, enhanced efficiency and shortened time for the
remediation process. Several other reasons contribute towards the use of
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nanotechnology in bioremediation. Firstly, the size in the range of nanoscale helps to
increase the surface area per unit mass of a material, allowing enhanced reactivity
rate. Secondly, nanomaterials exhibit quantum effect, thereby requires less activa-
tion energy to attain chemical reactions. Lastly, another feature shown by the
nanomaterials is surface plasmon resonance (SPR) which can be used to detect
toxic materials. There are a diverse range of multiple nanomaterials used for
bioremediation, with high level of remedial versatility such as in removing wastes
including hydrocarbons, heavy metals and radioactive materials like uranium, in
remediation of soil, groundwater and wastewater.

The potential of nanomaterials to alleviate the pollution load is ongoing and could
potentially bring about the most profound changes in the field of bioremediation
sector in the upcoming years (Rizwan et al. 2014) (Table 3.7).

3.6 Conclusion

Nanotechnology has the potential to metamorphose all the existing technologies that
include the techniques involving pollution control as well. This technology is
gaining recognition globally for successfully removing the contaminants from the
environment. The extraordinary properties of nanoparticles and their concurrence
with the present day technologies offer a great opportunity to revolutionize environ-
mental clean-up. It is clear from the reviewed literature that while much attention has
been focused on the development and potential benefits of nanomaterials in water
treatment processes, concerns have also been raised regarding their potential human
and environmental toxicity. Biogenic synthesis of nanoparticles can solve the
problem of toxicity to a great extent. Thus, the utilization of biologically synthesized
nanoparticles for the process of bioremediation can go a long way in attaining a
sustainable environment. Biosynthesis of nanoparticles using microbes helps to
reduce the toxicity, is cheap, eco-friendly and saves time. Due to the remarkable

Table 3.6 List of microbial polysaccharides utilized as bionanocomposites Source: Manikandan
et al. (2017)

Polysaccharide Source
Active functional
group

Gellan Sphingomonas elodea OH

Dextran Lactobacillus sps, Streptococcus mutans OH

Cellulose Aerobacter, Acetobacter, Agrobacterium, Azotobacter,
Pseudomonas

OH

Alginate Azotobacter and Pseudomonas OH, COO�

Chitosan Fungal cell walls, Cunninghamella elegans OH, COO

Hyaluronic
acid

Streptococcal sps and Bacillus subtilis OH

Zooglan Zoogloea ramigera OH

Pullulan Aureobasidium pullulans OH

Xanthan Xanthomonas campestris OH
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Table 3.7 Some of the nanoparticles used for removal of contaminants. Source: (Yadav et al.
2017; Yang et al. 2019; Vittal and Jamuna 2011)

Contaminant to be removed Nanomaterials/nanoparticles

Lead Ca-alginate iron oxide magnetic nanoparticles;
polyacrylic acid-stabilized zero-valent iron
nanoparticles (PAA-ZVIN)

Mercury Carboxy-methylated chitosan ferromagnetic
nanoparticles; thiol-functionalized silica
ferromagnetic nanoparticles

Heavy metals Thiol-functionalized super-paramagnetic
nanoparticles

Arsenic Zinc oxide nanoparticles

Cobalt and iron Iron nanoparticles

Metal ions Carbon nanoparticles

Lead, mercury, manganese, copper, cadmium,
arsenic, chromium

Graphene based nanocomposites

Arsenic and copper metal Iron nanoparticles

Methylene blue Goethite nanoparticles

Tri-chloroethane (TCE) Metallic gold nanoparticles coated with
palladium

Chlorinated ethane Metallic gold nanoparticles coated with
palladium

Chlorinated methane Metallic gold nanoparticles coated with
palladium

Inorganic-mercury Gold nanoparticles supported on alumina

Trihalomethanes (THM) α-Fe2O3 sintered in zeolite form

Chlorpyrifos and malathion Silver nanoparticles; gold nanoparticles

Escherichia coli and Staphylococcus aureus Gold nanoparticles; silver nanoparticles

Pathogenic bacteria Silver nanoparticles

Escherichia coli Cerium oxide nanoparticles

Escherichia coli, Bacillus megaterium,
Bacillus subtilis

Magnesium oxide nanoparticles; copper oxide
nanoparticles

Escherichia coli Aluminium nanoparticles; titanium dioxide
nanoparticles

Escherichia coli, Pseudomonas fluorescens,
Listeria monocytogenes, Salmonella enteritidis

Zinc oxide nanoparticles

Toluene, NO2 Nanocrystalline zeolites

Heavy metal ions
Benzene, toluene, ethylbenzene, xylene
p-nitrophenol benzene, toluene,
dimethylbenzene
Heavy metal ions
Trihalomethanes (THMs)
Heavy metal ions
THMs chlorophenols
Herbicides
Microcystin toxins

Carbonaceous nanomaterials
CeO2-carbon nanotubes (CNTs)
Activated carbon fibres (ACFs)
CNTs functionalized with polymers
CNTs functionalized with Fe
Single-walled carbon nanotubes
Multi-walled carbon nanotubes

(continued)
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and significant capability of nanobioremediation, it is assumed that their application
will enhance at a great leap in the near future and will perform a very important and
indispensable part in achieving a green and renewable environment.
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