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1 Introduction

In literature so far, the classical information theory has been widely used and repre-
sents the vagueness in the data in classical measure theory but the measures are
valid for precisely given data. Even, due to the various constraints in day-to-day
life, decision-makers may give their judgements under the uncertain and imprecise
situation. Thus, there is always a degree of hesitancy between the preferences of
the decision-making so that the analysis conducted under such circumstances is not
ideal and hence does not tell the exact information to the system analyst. To cope
up with impreciseness, vagueness, and the uncertainty in the data, the intuitionistic
fuzzy sets (IFSs) [1] are successful extension of the fuzzy set (FS) [2]. Over the
last several years, the IFS has received much attention by introducing the various
kinds of information measures, aggregation operators and employed them to solve
the decision-making problems under the different environment [3–10]. But, there
is some limitation in the studies of IFSs as it is valid only for the environments
where the degree’s sum is less than one. However, this condition is ruled out in many
situations. For instance, if a person gives their preference in the form of member-
ship and non-membership degrees toward a particular object as 0.8 and 0.5, then the
situation is not handled with IFSs. In order to resolve it, Yager [11, 12] proposed
the Pythagorean fuzzy (PF) sets (PFSs) by relaxing this sum condition to its square
sum less than one, i.e., corresponding to the above-considered example, we see that
(0.8)2 + (0.5)2 ≤ 1 and hence PFSs are an extension of the existing IFSs. After
their pioneer work, Yager and Abbasov [13] studied the relationship between the
Pythagorean numbers and the complex numbers. Later on, several aggregation oper-
ators under the PFS environment have been investigated by researchers [14, 15] using
different norm operations. Zhang and Xu [16] extended the TOPSIS approach from
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IF to the PF environment. Garg [6] presented a confidence level-based averaging
and geometric aggregation operators, by incorporating the confidence level of the
decision-makers (DMs) to the analysis. In the continuation, several authors intro-
duced different types of aggregation operators under PFSs [17–19] to solve many
decision-making problems.

Now, the degree of distance/similarity/divergence measures has been focused by
the authors and received attention in the last four decades for solving the decision-
making, pattern recognition, medical diagnosis problems. However, the prime task
for decision-maker (DM) is to rank the alternatives to get the best [20–23]. For
this, researchers have made efforts to enrich the concept of information measures
in Pythagorean fuzzy environments [24]. Zhang and Xu [16] suggested a distance
measure to solve a realistic problem under PFS. While Yang et al. [25] pointed out
an unreasonable case of proof in [16]. Wei and Wei [26] presented some similarity
measures between PFSswhich are actually based on the cosine function. Li et al. [27]
introduced the Hamming distance measure, the Euclidean distance measure, and the
Minkowski distance measure between PFSs, with their detailed properties. Zhang
[28] explored a novel similarity measure for PFSs, to deal the selection problem
of photovoltaic cells. Zeng et al. [29] considered five parameters for distance and
similarity measures of Pythagorean fuzzy sets and applied them in the selection
of China’s Internet stocks. Peng et al. [30] presented similarity measure, distance
measure, entropy, and inclusion measure for PFSs, put forward transformation rela-
tionships, and successfully applied them in pattern recognition, clustering analysis,
and medical diagnosis [31].

Thus, the observation from the above studies is that all the measures do not
incorporate the idea of decision-maker’s preferences into the measure and also these
measures do not follow the linear order. That’swhy, there is always a trouble in getting
the exact nature of the alternative. Therefore, we present a parametric directed diver-
gence measure order α and degree β for Pythagorean fuzzy set (PFS). Through this
proposed measure, the decision-maker can make more reliable and flexible decisions
for different values of parameters α and β. Several properties have been investigated
based on this measure with a numerical example to demonstrate the performance of
measure. Finally, concrete conclusion has been presented.

2 Basic Concepts

In this section, some basic definitions of IFSs and PFSs have been presented on the
universal set X.

2.1 Intuitionistic Fuzzy Set [1]

Definition 2.1 An IFS (intuitionistic fuzzy set) is defined as
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Ā = {〈
x, μ Ā(x), ν Ā(x)

〉: x ∈ X
}
,

where μ Ā(x) and ν Ā(x) represent the membership and non-membership degrees
such that 0 ≤ μ Ā(x) + ν Ā(x) ≤ 1withμ Ā(x), ν Ā(x) ∈ [0, 1]..

2.2 Hesitant Fuzzy Set [32, 33]

Definition 2.2 A HFS (hesitant fuzzy set) is defined as a function
HFS : X → [0, 1] and is given by

Ā = {〈
x, h Ā(x)

〉 : x ∈ X
}
,

where h Ā(x) represents HFE (hesitant fuzzy element).

2.3 Pythagorean Fuzzy Set [11, 16]

Definition 2.3 A PFS (Pythagorean fuzzy set) is defined as a set of ordered pairs
given by

Ā = {〈
x, μ Ā(x), ν Ā(x)

〉 : x ∈ X
}
,

where μ Ā(x) and ν Ā(x) represent the membership and non-membership degrees
such that (μ Ā(x))

2 + (ν Ā(x))
2 ≤ 1withμ Ā(x), ν Ā(x) ∈ [0, 1]. For convenience,

the pair of these membership functions is called a Pythagorean fuzzy number (PFN)
and it is denoted as α = <μα, να>.

3 Proposed Parametric Directed Divergence Measure
for Pythagorean Fuzzy Set (PFS)

In this section, we have proposed a flexible and generalized parametric divergence
measure of order α and degree β denoted as class of (α, β), under the environment
of PFSs. Some desirable properties of this measure are also being studied.
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3.1 Parametric Divergence Measure for PFSs

Definition 3.1 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, then a parametric directed divergence measure for PFSs based
on parameters α and β is denoted as Dβ

α (A|B) and defined as

Dβ
α (A|B) = α

n (2 − β)
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,

where μ, ν, and π are the membership, non-membership and hesitancy functions,
respectively, and it is valid for α, β > 0 and except β �= 2.

It is clearly seen from the definition that the Dβ
α (A|B) is not symmetric, so to

imbue the measure with symmetry, a parametric symmetric divergence measure for
PFSs has been defined as follows.

3.2 Parametric Symmetric Divergence Measure for PFSs

Definition 3.2 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, then a parametric directed divergence measure for PFSs based
on parameters α and β is denoted as Dβ

α (A;, B) and defined as

Dβ
α (A; B) = Dβ

α (A |B) + Dβ
α (B|A) ⇒

Dβ
α (A;B) = α

n (2 − β)
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+ α

n (2 − β)

∑

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

μ

2α
(2−β)
B log

⎛

⎜⎜
⎝

2μ
2α

(2−β)
B

μ

2α
(2−β)
A + μ

2α
(2−β)
B

⎞

⎟⎟
⎠ + ν

2α
(2−β)
B log

⎛

⎜⎜
⎝

2ν
2α

(2−β)
B

ν

2α
(2−β)
A + ν

2α
(2−β)
B

⎞

⎟⎟
⎠

+ π

2α
(2−β)
B log

⎛

⎜⎜
⎝

2π
2α

(2−β)
B

π

2α
(2−β)
A + π

2α
(2−β)
B

⎞

⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

From the definition of Dβ
α (A | B) and Dβ

α (A; B), it has been observed that

Dβ
α (A | B) ≥ 0, Dβ

α (A; B) ≥ 0,
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and A = B ⇒Dβ
α (A | B) =Dβ

α (A; B).

Divide the universe X into two parts X1 and X2, where

X1 = {xi : xi ∈ X, A(xi ) ⊆ B(x)}, i.e.,

μA(xi ) ≤ μB(xi ), νA(xi ) ≥ νB(xi ) ∀ xi ∈ X1,

X2 = {xi : xi ∈ X, A(xi ) ⊇ B(x)}, i.e.,

μA(xi ) ≥ μB(xi ), νA(xi ) ≤ νB(xi ) ∀ xi ∈ X2,

.

Now, we propose some properties based on the above considerations.

3.3 Some Properties of Parametric Symmetric Divergence
Measure for PFSs

Property 3.3.1 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, such that they satisfy for any xi ∈ X either A ⊆ B or B ⊆ A,

Dβ
α (A ∪ B; A ∩ B) = Dβ

α (A; B).

Proof It is clear that
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On the other hand,
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and
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.

Thus, the results hold.

Property 3.3.2 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

(1) Dβ
α (A;A ∪ B) = Dβ

α (B;A ∩ B)

(2) Dβ
α (A;A ∩ B) = Dβ

α (B;A ∪ B)
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(3) Dβ
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By using Eq. (3), the expressions are same from both sides. This proves the result.
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Property 3.3.3 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have
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Now,
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
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Since all themembership and non-membership lies between [0, 1]. This completes
the proof.

Property 3.3.4 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

Dβ
α (A ∩ B;C) + Dβ

α (A ∪ B;C) = Dβ
α (A;C) + Dβ

α (B;C)

Proof

Dβ
α (A ∩ B;C)
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n (2 − β)
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⎢⎢⎢⎢⎢⎢⎢
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⎛
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⎠
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⎝ 2π
2α

(2−β)
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⎥⎥⎥⎥⎥⎥⎥
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⎢⎢⎢⎢⎢⎢⎢
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⎛
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⎠
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⎥⎥⎥⎥⎥⎥⎥
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Now,
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Dβ
α (A ∪ B;C)
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⎥⎥⎥⎥⎥⎥⎥
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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.

By adding all of the above equations, we get the required result and this completes
the proof.

Property 3.3.5 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

(1) Dβ
α (A ; B) = Dβ

α (Ac; Bc)

(2) Dβ
α (A ; Bc) = Dβ

α (Ac; B)

(3) Dβ
α (A ; B) + Dβ

α (Ac ; B) = Dβ
α (Ac; Bc) + Dβ

α (A ; Bc).

Proof Clearly, first and second parts are similar and the third one can be proved by
adding these two. So, we prove only (1).
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⎥⎥⎥⎥⎥⎥⎥
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.

Then (1) holds.

4 Decision-Making Method Based on Proposed Parametric
Directed Divergence Measure for Pythagorean Fuzzy Set
(PFS)

In this section, we shall investigate the decision-making problem based on Proposed
Parametric Directed Divergence Measure Dβ

α in which the attribute values are eval-
uated by the expert which give their preferences in terms of Pythagorean fuzzy
numbers PFNs. Assume that a set of “m” alternatives A = {A1, A2, . . . , Am} to be
considered under the set of “n” criterion G = {G1, G2, . . .Gn}. Experts have eval-
uated these “m” alternatives under each criterion and give their rating value in the
form of IFNs. Then, we have the following steps for computing the best alternative(s)
based on the proposed measure.

Step 1: Construction of decision-making matrix: Suppose Dm × n(xi j ) = 〈
μi j , νi j

〉

be the intuitionistic fuzzy decision matrix, where μi j represents the degree that the
alternative Ai satisfies the criteria G j and νi j indicates the degree that the alter-
native Ai does not satisfy the criteria G j given by the decision-maker such that
μi j , νi j ∈ [0 , 1] with μi j + νi j ≤ 1, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. So,
the intuitionistic fuzzy decision matrix is constructed as follows:
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Dm × n(xi j ) =

⎡

⎢⎢⎢
⎣

〈
μ11 , ν11

〉 〈
μ12 , ν12

〉 · · · 〈
μ1n , ν1n

〉
〈
μ21 , ν21

〉 〈
μ22 , ν22

〉 · · · 〈
μ2n , ν2n

〉

...
...

. . .
...〈

μm1 , νm1
〉 〈

μm2 , νm2
〉 · · · 〈

μmn , νmn
〉

⎤

⎥⎥⎥
⎦

.

Step 2: Compute the ideal alternatives: Ideal alternative is denoted as A ∗ and given
as

A ∗ = {〈
μ∗
1 , ν∗

1

〉
,
〈
μ∗
2 , ν∗

2

〉
, . . . ,

〈
μ∗
n , ν∗

n

〉}
,

where μ∗
j = m

max
i = 1

(μi j ) and ν∗
j = m

min
i = 1

(νi j ).

Step 3: Evaluation of proposed Symmetric Divergence Measure: Now we calculate
Dβ

α (Ai ; A ∗) , i = 1 , 2 , . . . , m by the given formula:
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(2−β)

j ∗ (xi j )

⎞

⎟
⎠ + ν

2α
(2−β)

i j (xi j ) log

⎛

⎜
⎝

2ν
2α

(2−β)

i j (xi j )

ν
2α

(2−β)

i j (xi j ) + ν
2α

(2−β)

j ∗ (xi j )

⎞

⎟
⎠

+ π
2α

(2−β)

i j (xi j ) log

⎛

⎜
⎝

2π
2α

(2−β)

i j (xi j )

π
2α

(2−β)

i j (xi j ) + π
2α

(2−β)

j ∗ (xi j )

⎞

⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ α

n (2 − β)

n∑

j=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

μ
2α

(2−β)

j ∗ (xi j ) log

⎛

⎜
⎝

2μ
2α

(2−β)

j ∗ (xi j )

μ
2α

(2−β)

j ∗ (xi j ) + μ
2α

(2−β)

i j (xi j )

⎞

⎟
⎠ + ν

2α
(2−β)

j ∗ (xi j ) log

⎛

⎜
⎝

2ν
2α

(2−β)

j ∗ (xi j )

ν
2α

(2−β)

j ∗ (xi j ) + ν
2α

(2−β)

i j (xi j )

⎞

⎟
⎠

+ π
2α

(2−β)

j ∗ (xi j ) log

⎛

⎜
⎝

2π
2α

(2−β)

j ∗ (xi j )

π
2α

(2−β)

j ∗ (xi j ) + π
2α

(2−β)

i j (xi j )

⎞

⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Step 4: Ranking the alternative: Rank all the alternative according to indexing as
obtained from k = arg min

1≤ i ≤m
{Dβ

α (Ai ; A∗)}.

5 Illustrative Example

In this section, one illustrative example from the field of decision-making has been
taken for demonstrating the proposed approach.

Example: Decision-Making Problem. Consider the field of investment, where a
person wants to invest some sort of money. As in these days, more and more compa-
nies have attracted the customers by reducing price and giving some other kind of
benefits, so it is difficult for the investor to choose the best market for investment.
In order to avoid the risk factor in the market and to make the decision more clear,
they constitute a committee to invest the money in five major companies, namely,
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retail, food, computer, petrochemical, and a car company, respectively, denoted by
A1, A2, A3, A4, A5. Experts have been hired who gave their preferences of each
alternative under the set of four major analyses, namely, the growth (G1) , the risk
(G2) , the social-political impact (G3) and the environmental impact (G4) . The
rating value of each alternative Ai = (i = 1 , 2 , . . . , 5) under each factor has
been assessed in terms of PFNs αi j = 〈

μi j , νi j
〉
5× 4 and is summarized as follows.

D =

⎡

⎢⎢⎢⎢⎢
⎣

<0.5, 0.4> <0.6, 0.3> <0.3, 0.6> <0.2, 0.7>
<0.7, 0.3> <0.7, 0.2> <0.7, 0.2> <0.4, 0.5>
<0.6, 0.4> <0.5, 0.4> <0.5, 0.3> <0.6, 0.3>
<0.8, 0.1> <0.6, 0.3> <0.3, 0.4> <0.2, 0.6>
<0.6, 0.2> <0.4, 0.3> <0.7, 0.1> <0.5, 0.3>

⎤

⎥⎥⎥⎥⎥
⎦

.

By using these normalized data, the ideal value for all the criteria is given by

A ∗ = {<0.8, 0.1> , <0.7, 0.2> , <0.7, 0.1> , <0.6, 0.3>}.

Thus, based on it the directed divergence measure from ideal alternative to each
alternative is computed by taking α = 1, β = 0.5 and their corresponding
measures are summarized as follows:

Dβ
α (A1; A∗) = 0.1289; Dβ

α (A2; A∗) = 0.0228; Dβ
α (A3; A∗) = 0.0468;

Dβ
α (A4; A∗) = 0.0742; Dβ

α (A5; A∗) = 0.0258
.

So, the ranking order of these alternatives is

A2 � A5 � A3 � A4 � A1.

Hence, Food company is the best one for investment point of view.

6 Conclusions

Here, a parametric directed divergence measure of order α and degree β under the
environment of Pythagorean fuzzy sets (PFSs) has been explored. We also discussed
some desirable properties of this measure. For demonstration, a decision-making
problem (investment problem) has been solved by using this technique. The param-
eters of this measure provide the flexibility to the decision-makers and that thing
makes it more generalized. Thus, we conclude that the proposed divergence measure
is suitable to solve several real-life problems and can be found as an alternative one
among the various approaches to solve the decision-making problems. In future, we
will be dealing with some more complicated problems or more realistic problems in
the field of fuzzy cluster analysis, medical diagnosis, etc.
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