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1 Introduction

Many real-life problems are enmeshed with uncertainties hence making decision-
making a herculean task. To address such common challenges, Zadeh [64] intro-
duced fuzzy sets to resolve/curb the embedded uncertainties in decision-making.
Some decision-making problems could not be controlled with a fuzzy approach
because fuzzy set only considered membership grade whereas, many real-life prob-
lems have the component of bothmembership grade and non-membership gradewith
the possibility of hesitation. Such cases can best be addressed by IFSs [1, 2]. IFS is
described with membership gradeμ, non-membership grade ν and hesitation margin
π in such a way that their sum is one and μ + ν is less than or equal to one. Due to
the usefulness of IFS, it has been applied to tackle pattern recognition problems [43,
57], career determination/appointment processes [7, 18, 19, 23] and other MCDM
problems discussed in [3–5, 21, 22, 24, 46, 51, 52]. Some improved similarity and
distance measures based on the set pair analysis theory with applications have been
studied [39, 40].

The idea of IFS though vital, cannot be suitable in a condition where a decision-
maker wants to take decision in a multi-criteria problem when μ + ν is greater than
one. Suppose μ = 1

2 and ν = 3
5 , clearly IFS cannot model such a situation. This pro-

vokedAtanassov [2] to propose intuitionistic fuzzy set of second type or Pythagorean
fuzzy sets (PFSs) [58, 61] to generalize IFSs such that μ + ν is also greater than one
and μ2 + ν2 + π2 = 1. PFS is a special case of IFS with additional conditions and
thus has more ability to restraint hesitations more appropriate with higher degree of
accuracy. The concept of PFSs have been sufficiently explored by different authors so
far [8, 13, 60]. Some new generalized Pythagorean fuzzy information and aggrega-
tion operators usingEinstein operations have been studied in [26, 31]with application
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to decision-making. Garg [32] studied some methods for strategic decision-making
with immediate probabilities in Pythagorean fuzzy environment, and the idea of lin-
guistic PFSs has been studied with application to multi-attribute decision-making
problems [34]. The notion of interval-valued PFSs has been explicated with regards
to score function and exponential operational laws with applications [28, 29, 33].
Many applications of PFSs have been discussed in pattern recognitions [10, 12, 15],
TOPSIS method applications [27, 66], MCDM problems using different approaches
[9, 11, 35, 58, 59, 61, 62, 67] and other applicative areas [6, 20, 29, 36, 65]. Sev-
eral measuring tools have been employed to measure the similarity and dissimilarity
indexes between PFSs with applications to MCDM problems as discussed in [8, 11,
12, 15, 20].

The concept of correlation coefficient which is a vital tool for measuring interde-
pendency, similarity, and interrelationship between two variables was first studied in
statistics by Karl Pearson in 1895 to measure the interrelation between two variables
or data. By way of extension, numerous professions like engineering and sciences
among others have applied the tool to address their peculiar challenges. To equip
correlation coefficient to better handle fuzzy data, the idea was encapsulated into
intuitionistic fuzzy context and applied to manyMCDM problems. The first work on
the correlation coefficient between IFSs (CCIFSs)was carried out byGerstenkorn and
Manko [42]. Hung [44] used a statistical approach to develop CCIFSs by capturing
only the membership and non-membership functions of IFSs, and CCIFSs was pro-
posed based on centroidmethod in [45].Mitchell [48] studied a newCCIFSs based on
integral function. Park et al. [49] and Szmidt and Kacprzyk [53] extended the method
in [44] by incorporating the hesitation margin of IFS. Liu et al. [47] introduced a new
CCIFSs with the application. Garg and Kumar [38] proposed novel CCIFSs based
on set pair analysis and applied the approach to solve some MCDM problems. The
concept of correlation coefficient and its applications have been extended to com-
plex intuitionistic fuzzy and intuitionistic multiplicative environments, respectively
[30, 41]. TOPSIS method based on correlation coefficient was proposed in [37] to
solve decision-making problems with intuitionistic fuzzy soft set information. Sev-
eral other methods of CCIFSs have been studied and applied to decision-making
problems [14, 54, 56, 62, 63].

Garg [25] initiated the study of correlation coefficient between Pythagorean fuzzy
sets (CCPFSs) by proposing twonovel correlation coefficient techniques to determine
the interdependency between PFSs, and applied the techniques to MCDM problems.
Thao [55] extended the work on CCIFSs in [54] to CCPFSs and applied the approach
to solve some MCDM problems. Singh and Ganie [50] proposed some CCPFSs
procedures with applications, but the procedures do not incorporate all the orthodox
parameters of PFSs. Ejegwa [16] proposed a triparametric CCPFSs method which
generalized one of the CCPFSs techniques studied in [25], and applied the method
to decision-making problems. Though one cannot doubt the important of distance
and similarity measures as viable soft computing tools, the preference for correlation
coefficient measure in information measure theory is because of its considerations of
both similarity (which is the dual of distance) and interrelationship/interdependence
indexes between PFSs.
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In the computation of CCPFSs, the idea of weights of the elements of sets upon
which PFSs are built are often ignored, which many times lead to misleading results.
Thus, Garg [25] proposed some weighted correlation coefficients between PFSs
(WCCPFSs). From the work of Garg [25], we are enthused to provide improved
methods of computing WCCPFSs for the enhancement of efficient application. In
this chapter, some new WCCPFSs methods are proposed which are provable to be
more reliable with better performance indexes than the existing ones. The objectives
of the work are to

(i) explore theWCCPFSsmethods studied in [25] and propose somenewWCCPFSs
methods to enhance accuracy and reliability in measuring CCPFSs.

(ii) mathematically corroborate the proposedWCCPFSsmethodswith the axiomatic
conditions for CCPFSs, and numerically verify the authenticity of the proposed
methods over the existing ones.

(iii) establish the applications of the proposed methods in some MCDM problems.

The rest of the chapter is delineated as follow; Sect. 2 briefly revises some basic
notions of PFSs and Sect. 3 discusses some CCPFSs methods studied in [16, 25]
with numerical verifications. Section4 discusses existingWCCPFSs methods, intro-
duces new WCCPFSs methods and numerically verifies their authenticity. Section5
demonstrates the application of the new WCCPFSs methods in pattern recogni-
tion and medical diagnosis problems, all represented in Pythagorean fuzzy values.
Section6 concludes the chapter and gives some areas for future research.

2 Basic Notions of Pythagorean Fuzzy Sets

Definition 2.1 [1] An intuitionistic fuzzy set of X denoted by A (where X is a
non-empty set) is an object having the form

A = {〈μA(x), νA(x)

x
〉 | x ∈ X}, (1)

where the functions μA(x), νA(x) : X → [0, 1] define the degrees of membership
and non-membership of the element x ∈ X such that

0 ≤ μA(x) + νA(x) ≤ 1.

For any intuitionistic fuzzy set A of X , πA(x) = 1 − μA(x) − νA(x) is the intuition-
istic fuzzy set index or hesitation margin of A.

Definition 2.2 [58] A Pythagorean fuzzy set of X denoted by A (where X is a
non-empty set) is the set of ordered pairs defined by

A = {〈μA(x), νA(x)

x
〉 | x ∈ X}, (2)
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where the functions μA(x), νA(x) : X → [0, 1] define the degrees of member-
ship and non-membership of the element x ∈ X to A such that 0 ≤ (μA(x))2 +
(νA(x))2 ≤ 1. Assuming (μA(x))2 + (νA(x))2 ≤ 1, then there is a degree of inde-
terminacy of x ∈ X to A defined by πA(x) = √

1 − [(μA(x))2 + (νA(x))2] and
πA(x) ∈ [0, 1].
Definition 2.3 [61] Suppose A and B are PFSs of X , then

(i) A = {〈νA(x), μA(x)

x
〉|x ∈ X}.

(ii) A ∪ B = {〈max(
μA(x), μB(x)

x
),min(

νA(x), νB(x)

x
)〉|x ∈ X}.

(iii) A ∩ B = {〈min(
μA(x), μB(x)

x
),max(

νA(x), νB(x)

x
)〉|x ∈ X}.

It follows that, A = B iff μA(x) = μB(x), νA(x) = νB(x) ∀x ∈ X , and A ⊆ B iff
μA(x) ≤ μB(x), νA(x) ≥ νB(x) ∀x ∈ X . We say A ⊂ B iff A ⊆ B and A = B.

Remark 2.4 Suppose A, B and C are PFSs of X . By Definition 2.3, the following
properties hold:

(i)

A = A
(ii)

A ∩ A = A

A ∪ A = A
(iii)

A ∩ B = B ∩ A

A ∪ B = B ∪ A
(iv)

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C
(v)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(vi)
(A ∩ B) = A ∪ B

(A ∪ B) = A ∩ B.

Definition 2.5 [12] Pythagorean fuzzy pairs (PFPs) or Pythagorean fuzzy values
(PFVs) is characterized by the form 〈a, b〉 such that a2 + b2 ≤ 1 where a, b ∈ [0, 1].
PFPs are used for the assessment of objects for which the components (a and b) are
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interpreted as membership degree and non-membership degree or degree of validity
and degree of non-validity, respectively.

3 Correlation Coefficients Between PFSs

Correlation coefficient in the Pythagorean fuzzy environment was pioneered by the
work of Garg [25]. The concept of CCPFSs is very valuable in solving MCDM
problems. What follows is the axiomatic definition of CCPFSs.

Definition 3.1 [16] Suppose A and B are PFSs of X . Then, the CCPFSs for A and
B denoted by K(A, B) is a measuring function K : PFS × PFS → [0, 1] which
satisfies the following conditions;

(i) K(A, B) ∈ [0, 1],
(ii) K(A, B) = K(B, A),
(iii) K(A, B) = 1 if and only if A = B.

Now, we recall the existing CCPFSs methods in [16, 25] as follows:

3.1 Some Existing/New CCPFSs Methods

Assume A and B are PFSs of X = {xi } for i = 1, . . . , n. Then, the CCPFSs for A
and B as in [25] are as follows:

K1(A, B) = C(A, B)

max[C(A, A),C(B, B)] (3)

and

K2(A, B) = C(A, B)√
C(A, A)C(B, B)

, (4)

where

C(A, A) =
n∑

i=1

[μ4
A(xi ) + ν4

A(xi ) + π4
A(xi )]

C(B, B) =
n∑

i=1

[μ4
B(xi ) + ν4

B(xi ) + π4
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (5)

C(A, B) =
n∑

i=1

[μ2
A(xi )μ

2
B(xi ) + ν2

A(xi )ν
2
B(xi ) + π2

A(xi )π
2
B(xi )]. (6)

Ejegwa [16] generalized Eq. (3) as follows:
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K(A, B) = C(A, B)

max[C(A, A),C(B, B)] , (7)

where

C(A, A) =
n∑

i=1

[μk
A(xi ) + νk

A(xi ) + π k
A(xi )]

C(B, B) =
n∑

i=1

[μk
B(xi ) + νk

B(xi ) + π k
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (8)

and

C(A, B) =
n∑

i=1

[μ k
2
A(xi )μ

k
2
B(xi ) + ν

k
2
A (xi )ν

k
2
B (xi ) + π

k
2

A (xi )π
k
2

B (xi )], (9)

for k = 1, . . . , 4.
In particular, for k = 3, we have

K3(A, B) = C(A, B)

max[C(A, A),C(B, B)] , (10)

where

C(A, A) =
n∑

i=1

[μ3
A(xi ) + ν3

A(xi ) + π3
A(xi )]

C(B, B) =
n∑

i=1

[μ3
B(xi ) + ν3

B(xi ) + π3
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (11)

and

C(A, B) =
n∑

i=1

[
√

(μA(xi )μB(xi ))3 +
√

(νA(xi )νB(xi ))3 +
√

(πA(xi )πB(xi ))3].
(12)

Bymodifying Eq. (10), we obtain the following newCCPFSsmethods as follows:

K4(A, B) = C(A, B)

Aver[C(A, A),C(B, B)] (13)

and

K5(A, B) = C(A, B)√
C(A, A)C(B, B)

, (14)

whereC(A, A),C(B, B) andC(A, B) are equivalent to Eqs. (11) and (12). Certainly,
K3(A, B) ∈ [0, 1], K4(A, B) ∈ [0, 1] and K5(A, B) ∈ [0, 1], respectively.
Proposition 3.2 The CCPFSs K4(A, B) and K5(A, B) are equal if and only if
C(A, A) = C(B, B).
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Proof Straightforward. �

Remark 3.3 IfK4(A, B) = K5(A, B) and C(A, A) = C(B, B), then it must be as a
result of approximation in the computational processes.

3.1.1 Flowchart for the New CCPFSs Methods
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3.2 Numerical Illustrations for Computing CCPFSs

Here, we give examples of PFSs and apply the CCPFSs methods to find the inter-
relationship between the PFSs. Assume that A, B, and C are PFSs of X = {a, b, c}
such that

A = {〈0.3, 0.6, 0.7416
a

〉, 〈0.5, 0.3, 0.8124
b

〉, 〈0.4, 0.5, 0.7681
a

〉},

B = {〈0.3, 0.6, 0.7416
a

〉, 〈0.5, 0.3162, 0.8062
b

〉, 〈0.3873, 0.5, 0.7746
a

〉}

and

C = {〈0.1, 0.1, 0.9899
a

〉, 〈1, 0, 0
b

〉, 〈0, 1, 0
a

〉}.

Now, we find the correlation coefficients between (A, C), and (B, C), respectively,
using Eqs. (3), (4), (10), (13), and (14).

By using Eqs. (3) and (4), we obtain

C(A, C) =
3∑

i=1

[(0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992)

+ (0.52 × 12) + (0.32 × 02) + (0.81242 × 02)

+ (0.38732 × 02) + (0.52 × 12) + (0.77462 × 02)]
= 1.0434

C(B, C) =
3∑

i=1

[(0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992)

+ (0.52 × 12) + (0.31622 × 02) + (0.80622 × 02)

+ (0.42 × 02) + (0.52 × 12) + (0.76812 × 02)]
= 1.0434

C(A, A) =
3∑

i=1

[0.34 + 0.64 + 0.74164 + 0.54 + 0.34

+ 0.81244 + 0.44 + 0.54 + 0.76814]
= 1.3825
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C(B, B) =
3∑

i=1

[0.34 + 0.64 + 0.74164 + 0.54 + 0.31624

+ 0.80624 + 0.38734 + 0.54 + 0.77464]
= 1.3801

C(C, C) =
3∑

i=1

[0.14 + 0.14 + 0.98994 + 14 + 04

+ 04 + 04 + 14 + 04]
= 2.9604.

Hence,

K1(A, C) = 1.0434

max[1.3825, 2.9604] = 0.3525,

K1(B, C) = 1.0434

max[1.3801, 2.9604] = 0.3525,

⎫
⎪⎪⎬

⎪⎪⎭

K2(A, C) = 1.0434√
1.3825 × 2.9604

= 0.5158,

K2(B, C) = 1.0434√
1.3801 × 2.9604

= 0.5162.

⎫
⎪⎪⎬

⎪⎪⎭

By using Eqs. (10), (13), and (14), we have

C(A, C) =
3∑

i=1

[
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3

+
√

(0.5 × 1)3 +
√

(0.3 × 0)3 +
√

(0.8124 × 0)3

+
√

(0.3873 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7746 × 0)3]
= 1.3560

C(B, C) =
3∑

i=1

[
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3

+
√

(0.5 × 1)3 +
√

(0.3162 × 0)3 +
√

(0.8062 × 0)3

+
√

(0.4 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7681 × 0)3]
= 1.3560
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C(A, A) =
3∑

i=1

[0.33 + 0.63 + 0.74163 + 0.53 + 0.33

+ 0.81243 + 0.43 + 0.53 + 0.76813]
= 1.9812

C(B, B) =
3∑

i=1

[0.33 + 0.63 + 0.74163 + 0.53 + 0.31623

+ 0.80623 + 0.38733 + 0.53 + 0.77463]
= 1.9793

C(C, C) =
3∑

i=1

[0.13 + 0.13 + 0.98993 + 13 + 03

+ 03 + 03 + 13 + 03]
= 2.9720.

Hence,

K3(A, C) = 1.3560

max[1.9812, 2.9720] = 0.4563,

K3(B, C) = 1.3560

max[1.9793, 2.9720] = 0.4563,

⎫
⎪⎪⎬

⎪⎪⎭

K4(A, C) = 1.3560

Aver[1.9812, 2.9720] = 0.5475,

K4(B, C) = 1.3560

Aver[1.9793, 2.9720] = 0.5477,

⎫
⎪⎪⎬

⎪⎪⎭

K5(A, C) = 1.3560√
1.9812 × 2.9720

= 0.5588,

K5(B, C) = 1.3560√
1.9793 × 2.9720

= 0.5591.

⎫
⎪⎪⎬

⎪⎪⎭

3.2.1 Comparison of the New Methods of Computing CCPFSs with the
Existing Methods

Table1 contains the computational results for easy analysis.
From Table1, we infer that the (i) CCPFSs methods via maximum approach in

[16, 25] cannot determine the interrelationship between almost two equal PFSs with
respect to an unrelated PFS, (ii) new CCPFSs methods are very reliable and can
determine the interrelationship between almost two equal PFSs with respect to an
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Table 1 CCPFSs outputs

CCPFSs (A, C) (B, C)

K1 0.3525 0.3525

K2 0.5158 0.5162

K3 0.4563 0.4563

K4 0.5475 0.5477

K5 0.5588 0.5591

unrelated PFS. Again, the new CCPFSs methods have better performance indexes
when compare to the ones in [16, 25]. From the computations,we conclude that
(B, C) are more related to each other than (A, C) because

Ki (B, C) > Ki (A, C) ∀i = 1, 2, 3, 4, 5.

4 Some Existing/New WCCPFSs Methods

Inmany applicative areas, different elements of sets have differentweights. In order to
have a reliable interdependence index between PFSs, the impact of the weights must
be put into consideration. Suppose A and B are PFSs of X = {xi } for i = 1, . . . , n
such that the weights of the elements of X is a set α = {α1, α2, . . . , αn} with αi ≥ 0
and

∑n
i=1 αi = 1.

4.1 Some Existing WCCPFSs Methods

We recall some WCCPFSs methods proposed by Garg [25] as follows:

K̃1(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] (15)

and

K̃2(A, B) = Cα(A, B)√
Cα(A, A)Cα(B, B)

, (16)

where

Cα(A, A) =
n∑

i=1

αi [μ4
A(xi ) + ν4

A(xi ) + π4
A(xi )]

Cα(B, B) =
n∑

i=1

αi [μ4
B(xi ) + ν4

B(xi ) + π4
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (17)
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, and

Cα(A, B) =
n∑

i=1

αi [μ2
A(xi )μ

2
B(xi ) + ν2

A(xi )ν
2
B(xi ) + π2

A(xi )π
2
B(xi )]. (18)

4.2 New Methods of Computing WCCPFSs

By modifying Eqs. (10), (13) and (14), we have the following new WCCPFSs A
and B:

K̃3(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] , (19)

K̃4(A, B) = Cα(A, B)

Aver[Cα(A, A),Cα(B, B)] (20)

and

K̃5(A, B) = Cα(A, B)√
Cα(A, A)Cα(B, B)

, (21)

where

Cα(A, A) =
n∑

i=1

αi [μ3
A(xi ) + ν3

A(xi ) + π3
A(xi )]

Cα(B, B) =
n∑

i=1

αi [μ3
B(xi ) + ν3

B(xi ) + π3
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (22)

and

Cα(A, B) =
n∑

i=1

αi [
√

(μA(xi )μB(xi ))3 +
√

(νA(xi )νB(xi ))3 +
√

(πA(xi )πB(xi ))3].
(23)

Proposition 4.1 The WCCPFSs K̃4(A, B) and K̃5(A, B) are equal if and only if
Cα(A, A) = Cα(B, B).

Proof Straightforward. �
Proposition 4.2 The WCCPFSs K̃3(A, B), K̃4(A, B) and K̃5(A, B) are CCPFSs.

Proof We are to prove that K̃3(A, B), K̃4(A, B) and K̃5(A, B) are CCPFSs. First,
we show that K̃3(A, B) is a CCPFS. Thus, we verify that K̃3(A, B) satisfies the
conditions in Definition 3.1.

Clearly, K̃3(A, B) ∈ [0, 1] implies 0 ≤ K̃3(A, B) ≤ 1. Certainly, K̃3(A, B) ≥ 0
since Cα(A, B) ≥ 0 and [Cα(A, A),Cα(B, B)] ≥ 0. Now, we prove that K̃3(A, B) ≤
1. Assume we have the following:



Some New Weighted Correlation Coefficients Between Pythagorean Fuzzy Sets … 51

n∑

i=1

μ3
A(xi ) = ω1,

n∑

i=1

μ3
B(xi ) = ω2,

n∑

i=1

ν3
A(xi ) = ω3,

n∑

i=1

ν3
B(xi ) = ω4,

n∑

i=1

π3
A(xi ) = ω5,

n∑

i=1

π3
B(xi ) = ω6.

But, K̃3(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] . By Cauchy–Schwarz’s inequality,

we get

K̃3(A, B) =
∑n

i=1 αi [μ
3
2
A (xi )μ

3
2
B (xi ) + ν

3
2
A (xi )ν

3
2
B (xi ) + π

3
2

A (xi )π
3
2

B (xi )]
max[∑n

i=1 αi (μ
3
A(xi ) + ν3A(xi ) + π3A(xi )),

∑n
i=1 αi (μ

3
B(xi ) + ν3B(xi ) + π3B(xi ))]

=
∑n

i=1 αi [μ
3
2
A (xi )μ

3
2
B (xi )] + ∑n

i=1 αi [ν
3
2
A (xi )ν

3
2
B (xi )] + ∑n

i=1 αi [π
3
2

A (xi )π
3
2

B (xi )]
max[αi (

∑n
i=1 μ3A(xi ) + ∑n

i=1 ν3A(xi ) + ∑n
i=1 π3A(xi )), αi (

∑n
i=1 μ3B(xi ) + ∑n

i=1 ν3B(xi ) + ∑n
i=1 π3B(xi ))]

≤
αi [

∑n
i=1 μ3A(xi )

∑n
i=1 μ3B(xi )]

1
2 + αi [

∑n
i=1 ν3A(xi )

∑n
i=1 ν3B(xi )]

1
2 + αi [

∑n
i=1 π3A(xi )

∑n
i=1 π3B(xi )]

1
2

max[αi (
∑n

i=1 μ3A(xi ) + ∑n
i=1 ν3A(xi ) + ∑n

i=1 π3A(xi )), αi (
∑n

i=1 μ3B(xi ) + ∑n
i=1 ν3B(xi ) + ∑n

i=1 π3B(xi ))

= αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)] .

Thus,

K̃3(A, B) − 1 ≤ αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]
− 1

= αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ] − max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]

= − {max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)] − αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]}

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]
≤ 0.

So K̃3(A, B) ≤ 1. Hence, K̃3(A, B) ∈ [0, 1].
Certainly, K̃3(A, B) = K̃3(B, A), so we omit details. Also, we show that

K̃3(A, B) = 1 ⇔ A = B. Suppose A = B, then we obtain

K̃3(A, B) = Cα(A, A)

max[Cα(A, A),Cα(A, A)] = Cα(A, A)

Cα(A, A)
= 1.

The converse is straightforward. Therefore, K̃3(A, B) is a CCPFS. The proofs for
K̃4(A, B) and K̃5(A, B) are similar.

�
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4.2.1 Flowchart for the New WCCPFSs Methods
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4.3 Numerical Verifications of the WCCPFSs Methods

By using the information in Subsection 3.2, and putting into consideration the effect
of the weights of the elements of X = {a, b, c}, we compute the interdependence
indexes of A and B. Assume α = {0.4, 0.32, 0.28}, and using Eqs. (15) and (16), we
obtain

Cα(A, C) =
3∑

i=1

[0.4((0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992))

+ 0.32((0.52 × 12) + (0.32 × 02) + (0.81242 × 02))

+ 0.28((0.38732 × 02) + (0.52 × 12) + (0.77462 × 02))]
= 0.3674

Cα(B, C) =
3∑

i=1

[0.4((0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992))

+ 0.32((0.52 × 12) + (0.31622 × 02) + (0.80622 × 02))

+ 0.28((0.42 × 02) + (0.52 × 12) + (0.76812 × 02))]
= 0.3674

Cα(A, A) =
3∑

i=1

[0.4(0.34 + 0.64 + 0.74164) + 0.32(0.54 + 0.34 + 0.81244)

+ 0.28(+0.44 + 0.54 + 0.76814)]
= 0.4602

Cα(B, B) =
3∑

i=1

[0.4(0.34 + 0.64 + 0.74164) + 0.32(+0.54 + 0.31624 + 0.80624)

+ 0.28(0.38734 + 0.54 + 0.77464)]
= 0.4591

Cα(C, C) =
3∑

i=1

[0.4(0.14 + 0.14 + 0.98994) + 0.32(14 + 04 + 04)

+ 0.28(04 + 14 + 04)]
= 0.9841.

Hence,
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K̃1(A, C) = 0.3674

max[0.4602, 0.9841] = 0.3733,

K̃1(B, C) = 0.3674

max[0.4591, 0.9841] = 0.3733,

⎫
⎪⎪⎬

⎪⎪⎭

K̃2(A, C) = 0.3674√
0.4602 × 0.9841

= 0.5459,

K̃2(B, C) = 0.3674√
0.4591 × 0.9841

= 0.5466.

⎫
⎪⎪⎬

⎪⎪⎭

By using Eqs. (19), (20) and (21), we have

Cα(A, C) =
3∑

i=1

[0.4(
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3)

+ 0.32(
√

(0.5 × 1)3 +
√

(0.3 × 0)3 +
√

(0.8124 × 0)3)

+ 0.28(
√

(0.3873 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7746 × 0)3)]
= 0.4717

Cα(B, C) =
3∑

i=1

[0.4(
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3)

+ 0.32(
√

(0.5 × 1)3 +
√

(0.3162 × 0)3 +
√

(0.8062 × 0)3)

+ 0.28(
√

(0.4 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7681 × 0)3)]
= 0.4717

Cα(A, A) =
3∑

i=1

[0.4(0.33 + 0.63 + 0.74163) + 0.32(0.53 + 0.33 + 0.81243)

+ 0.28(+0.43 + 0.53 + 0.76813)]
= 0.6604

Cα(B, B) =
3∑

i=1

[0.4(0.33 + 0.63 + 0.74163) + 0.32(+0.53 + 0.31623 + 0.80623)

+ 0.28(0.38733 + 0.53 + 0.77463)]
= 0.6595
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Cα(C, C) =
3∑

i=1

[0.4(0.13 + 0.13 + 0.98993) + 0.32(13 + 04 + 03)

+ 0.28(03 + 13 + 03)]
= 0.9888.

Hence,

K̃3(A, C) = 0.4717

max[0.6604, 0.9888] = 0.4770,

K̃3(B, C) = 0.4717

max[0.6595, 0.9888] = 0.4770,

⎫
⎪⎪⎬

⎪⎪⎭

K̃4(A, C) = 0.4717

Aver[0.6604, 0.9888] = 0.5720,

K̃4(B, C) = 0.4717

Aver[0.6595, 0.9888] = 0.5723,

⎫
⎪⎪⎬

⎪⎪⎭

K5(A, C) = 0.4717√
0.6604 × 0.9888

= 0.5837,

K5(B, C) = 0.4717√
0.6595 × 0.9888

= 0.5841.

⎫
⎪⎪⎬

⎪⎪⎭

4.3.1 Comparison of the New Methods of Computing WCCPFSs with
the Existing Methods

Table2 contains the computational results for easy analysis.
By comparing Tables1 and 2, it is not superfluous to say thatWCCPFSs give a bet-

ter measure of interrelationship. This bespeaks the impact of weights on measuring
correlation coefficient. From Table2, we surmise that the (i) WCCPFSs techniques
via maximummethod in [25] and K̃3 cannot determine the interrelationship between
almost two equal PFSs with respect to an unrelated PFS, (ii) new WCCPFSs tech-
niques are more reasonable and accurate and can determine the interrelationship
between almost two equal PFSs with respect to an unrelated PFS. Again, the new

Table 2 WCCPFSs outputs

WCCPFSs (A, C) (B, C)

K̃1 0.3733 0.3733

K̃2 0.5459 0.5466

K̃3 0.4770 0.4770

K̃4 0.5720 0.5723

K̃5 0.5837 0.5841
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WCCPFSs techniques have better performance indexes in contrast to the ones in
[25]. From the computations, we conclude that (B, C) are more related to each other
than (A, C).

5 Determination of Pattern Recognition and Medical
Diagnostic Problem via WCCPFSs

In this section, we apply the WCCPFSs methods discussed so far to problems of
pattern recognition and medical diagnosis to ascertain the more efficient approach
and agreement of decision via the WCCPFSs techniques.

5.1 Applicative Example in Pattern Recognition

Pattern recognition is the process of identifying patterns by using machine learning
procedure. Pattern recognition has a lot to do with artificial intelligence and machine
learning. The idea of pattern recognition is important because of its application
potential in neural networks, software engineering, computer vision, etc. Assume
there are three pattern Ci , represented in Pythagorean fuzzy values in X = {xi }, for
i = 1, . . . , 3 and α = {0.4, 0.3, 0.3}. If there is an unknown pattern P represented
in Pythagorean fuzzy values in X = {xi }. The Pythagorean fuzzy representations of
these patterns are in Table3.

Table 3 Pythagorean fuzzy representations of patterns

Feature space

PFS x1 x2 x3
μC1 1.0000 0.8000 0.7000

νC1 0.0000 0.0000 0.1000

πC1 0.0000 0.6000 0.7071

μC2 0.8000 1.0000 0.9000

νC2 0.1000 0.0000 0.1000

πC2 0.5916 0.0000 0.4243

μC3 0.6000 0.8000 1.0000

νC3 0.2000 0.0000 0.0000

πC3 0.7746 0.6000 0.0000

μP 0.5000 0.6000 0.8000

νP 0.3000 0.2000 0.1000

πP 0.8124 0.7746 0.5916
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To enable us to classify P into any of Ci ,i = 1, 2, 3, we deploy the WCCPFSs in
[25] and the proposed WCCPFSs as follows:

Using Eqs. (15) and (16), we obtain

Cα(C1, P) = 0.3805, Cα(C2, P) = 0.4392, Cα(C3, P) = 0.5218,

Cα(C1, C1) = 0.7088, Cα(C2, C2) = 0.7195, Cα(C3, C3) = 0.6582, Cα(P, P) = 0.5095.

Hence,

K̃1(C1, P) = 0.5368, K̃1(C2, P) = 0.6104, K̃1(C3, P) = 0.7928.

K̃2(C1, P) = 0.6332, K̃2(C2, P) = 0.7254, K̃2(C3, P) = 0.9011.

Using Eqs. (19), (20) and (21), we have

Cα(C1, P) = 0.5434, Cα(C2, P) = 0.5973, Cα(C3, P) = 0.6808,

Cα(C1, C1) = 0.8277, Cα(C2, C2) = 0.8299, Cα(C3, C3) = 0.7939, Cα(P, P) = 0.6312.

Hence,

K̃3(C1, P) = 0.6565, K̃3(C2, P) = 0.7197, K̃3(C3, P) = 0.8575.

K̃4(C1, P) = 0.7449, K̃4(C2, P) = 0.8175, K̃4(C3, P) = 0.9554.

K̃5(C1, P) = 0.7518, K̃5(C2, P) = 0.8253, K̃5(C3, P) = 0.9617.

Table4 presents the results for glance analysis.
From Table4, P is suitable to be classified with C3 because K̃i (C3, P) >

K̃i (C2, P) > K̃i (C1, P) ∀ i = 1, . . . , 5.
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Table 4 WCCPFSs outputs

WCCPFSs (C1, P) (C2, P) (C3, P)

K̃1 0.5368 0.6104 0.7928

K̃2 0.6332 0.7254 0.9011

K̃3 0.6565 0.7197 0.8575

K̃4 0.7449 0.8175 0.9554

K̃5 0.7518 0.8253 0.9617

5.2 Applicative Example in Medical Diagnosis

Medical diagnosis is a delicate exercise because failure to make the right decision
may lead to the death of the patient. Diagnosis of diseases is challenging due to
embedded fuzziness in the processes. Here, we present a scenario of a mathematical
approach of diagnosing a patient medical status via WCCPFSs methods, where the
symptoms or clinical manifestations of the diseases are represented in Pythagorean
fuzzy values by using hypothetical cases.

Suppose we have a set of diseases D = {D1, D2, D3, D4, D5} represented in
Pythagorean fuzzy values, where D1 = viral fever, D2 = malaria, D3 = typhoid
fever, D4 = peptic ulcer, D5 = chest problem, and a set of symptoms

S = {s1, s2, s3, s4, s5}

for s1= temperature, s2 = headache, s3 = stomach pain, s4= cough, s5 = chest pain,
which are the clinical manifestations of Di , i = 1, . . . , 5. From the knowledge of the
clinicalmanifestations, theweight of the symptomsasα = {0.3, 0.25, 0.1, 0.25, 0.1}.

Assume a patient P with a manifest symptoms S is also capture in Pythagorean
fuzzy values. Table5 contains Pythagorean fuzzy information of Di , i = 1, . . . , 5
and P with respect to S.

Now, we find which of the diseases Di has the greatest interrelationship with the
patient P with respect to the clinical manifestations S by deploying Eqs. (15), (16),
(19), (20), and (21).

By using Eqs. (15) and (16), we have

Cα(D1, P) = 0.4609, Cα(D2, P) = 0.4740, Cα(D3, P) = 0.4213,

Cα(D4, P) = 0.3252, Cα(D5, P) = 0.2289, Cα(D1, D1) = 0.5930,

Cα(D2, D2) = 0.5203, Cα(D3, D3) = 0.5761, Cα(D4, D4) = 0.5297,
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Table 5 Pythagorean fuzzy representations of diagnostic process

Clinical manifestations

PFS s1 s2 s3 s4 s5
μD1 0.4000 0.3000 0.1000 0.4000 0.1000

νD1 0.0000 0.5000 0.7000 0.3000 0.7000

πD1 0.9165 0.8124 0.7071 0.8660 0.7071

μD2 0.7000 0.2000 0.0000 0.7000 0.1000

νD2 0.0000 0.6000 0.9000 0.0000 0.8000

πD2 0.7141 0.7746 0.4359 0.7141 0.5916

μD3 0.3000 0.6000 0.2000 0.2000 0.1000

νD3 0.3000 0.1000 0.7000 0.6000 0.9000

πD3 0.9055 0.7937 0.6856 0.7746 0.4243

μD4 0.1000 0.2000 0.8000 0.2000 0.2000

νD4 0.7000 0.4000 0.0000 0.7000 0.7000

πD4 0.7071 0.8944 0.6000 0.6856 0.6856

μD5 0.1000 0.0000 0.2000 0.2000 0.8000

νD5 0.8000 0.8000 0.8000 0.8000 0.1000

πD5 0.5916 0.6000 0.5657 0.5657 0.5916

μP 0.8000 0.6000 0.2000 0.6000 0.1000

νP 0.1000 0.1000 0.8000 0.1000 0.6000

πP 0.5916 0.7937 0.5657 0.7937 0.7937

Cα(D5, D5) = 0.5274, Cα(P, P) = 0.4859.

Hence,

K̃1(D1, P) = 0.7772, K̃1(D2, P) = 0.9110, K̃1(D3, P) = 0.7313,

K̃1(D4, P) = 0.6139, K̃1(D5, P) = 0.4340.

K̃2(D1, P) = 0.8586, K̃2(D2, P) = 0.9427, K̃2(D3, P) = 0.7963,

K̃2(D4, P) = 0.6410, K̃2(D5, P) = 0.4522.

Using Eqs. (19), (20) and (21), we obtain

Cα(D1, P) = 0.6354, Cα(D2, P) = 0.6840, Cα(D3, P) = 0.5945,
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Table 6 WCCPFSs outputs

WCCPFSs (D1, P) (D2, P) (D3, P) (D4, P) (D5, P)

K̃1 0.7772 0.9110 0.7313 0.6139 0.4340

K̃2 0.8586 0.9427 0.7963 0.6410 0.4522

K̃3 0.8508 0.9549 0.8052 0.6486 0.5037

K̃4 0.8685 0.9562 0.8174 0.6493 0.5040

K̃5 0.8688 0.9562 0.8175 0.6494 0.5040

Cα(D4, P) = 0.4646, Cα(D5, P) = 0.3608, Cα(D1, D1) = 0.7468,

Cα(D2, D2) = 0.7143, Cα(D3, D3) = 0.7383, Cα(D4, D4) = 0.7146,

Cα(D5, D5) = 0.7154, Cα(P, P) = 0.7163.

Hence,

K̃3(D1, P) = 0.8508, K̃3(D2, P) = 0.9549, K̃3(D3, P) = 0.8052,

K̃3(D4, P) = 0.6486, K̃3(D5, P) = 0.5037.

K̃4(D1, P) = 0.8685, K̃4(D2, P) = 0.9562, K̃4(D3, P) = 0.8174,

K̃4(D4, P) = 0.6493, K̃4(D5, P) = 0.5040.

K̃5(D1, P) = 0.8688, K̃5(D2, P) = 0.9562, K̃5(D3, P) = 0.8175,

K̃5(D4, P) = 0.6494, K̃5(D5, P) = 0.5040.

Table6 presents the results for glance analysis.
From Table6, it is inferred that the patient is suffering from malaria since

K̃i (D2, P) > K̃i (D1, P) > K̃i (D3, P) > K̃i (D4, P) > K̃i (D5, P)

for i = 1, . . . , 5.
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6 Conclusion

In this chapter, we have studied some techniques of calculating CCPFSs and
WCCPFSs, respectively. It is found that the approach of WCCPFSs is more reli-
able than CCPFSs. By juxtaposing the existing methods of computing WCCPFSs
and the novel ones, it is proven that the novel methods of calculating WCCPFSs are
more accurate and efficient. SomeMCDMproblemswere considered via the existing
and the novel WCCPFSs methods to demonstrate applicability. The novel methods
of computing WCCPFSs could be applied to more MCDM problems via object-
oriented approach in cases of larger population. Extending the concept of weights
on elements of PFSs to other existing correlation coefficients in Pythagorean fuzzy
domain [16, 50] could be of great interest in other different applicative areas through
clustering algorithm.
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