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1 Introduction

The fuzzy morphological methodology delivers promising yields in quite a lot of
areas, whose narrative is pretty qualitative. The inspiration for the use of words or
sentences in preference to numbers is that philological descriptions or cataloging
are frequently fewer absolute than arithmetical or algebraic ones. Problems that are
equipped with unreliable conditions commonly occur in taking decisions, nonethe-
less are challenging due to perplexing condition of modeling and handling that arises
with such uncertainties. To tackle multifarious and complicated problems in day-to-
day life situations, the modus operandi customarily utilized as discussed in literature
of classical mathematics is not of assistance each time because of the presence of
uncertainties and indistinctness. There are abundant procedures that can be believed
as mathematical models for coping with imprecision, inexactness, and uncertain-
ties. Inauspiciously, all these simulations are fitted out with technical hitches and
complications. To get control on these sorts of insufficiencies, Zadeh [64] brought
together the notion of fuzzy sets (FSs). An FS is a substantial mathematical model
for stamping an assembling of articles having unintelligible boundary. Atanassov
[3–5] moved one step ahead by proposing intuitionistic fuzzy sets (IFSs). Atanassov
[6] presented geometrical version of the components of intuitionistic fuzzy objects.
Yager [60], by altering the condition on parameters, unveiled Pythagorean fuzzy sub-
sets. Yager and Abbasov [61] studied Pythagorean membership grades. Later, Yager
[62] employed these grades in decision-making.Molodtsov [41] patented the percep-
tion of a novel sort of model for sorting out uncertainties, traditionally acknowledged
as soft sets (SSs).
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FSs, SSs, and their further expansions are resilient mathematical models for solv-
ing many real-world problems. The researchers have coined various mathematical
models to deal with real-world problems. Çağman et al. [7] explored fuzzy soft
sets with applications. Feng et al. [15] presented an adjustable approach to fuzzy
soft set-based decision-making. Majumdar and Samanta [39] presented generalized
fuzzy soft sets. Feng et al. [16] promote the study of SSs pooled with FSs and rough
sets. Davvaz and Sadrabadi [11] presented usage of IFSs in medicine. Maji et al.
[38] acquainted with the notion of intuitionistic fuzzy soft sets (IFSSs). Feng et al.
[17] presented an additional outlook on generalized IFSSs and associated multi-
attribute decision-making methods. Li and Cui [36] studied topological structure of
IFSSs. Osmanoglu and Tokat [48] also presented IFS topology independently. Garg
and Arora [20] devised a nonlinear-programming methodology for multi-attribute
decision-making problem with interval-valued IFSSs information. Guleria and Bajaj
[25] used matrices to represent Pythagorean fuzzy soft sets. Naz et al. [45] extended
the notion of PFSs to PF graphs. Akram and Naz [2] presented energy of PF graphs
with applications. Peng and Yang [49] deliberated some results for PFSs. Peng et al.
[50] familiarized some PF information measures with their useful implementations.
Peng et al. [51] globalized PFSs to corresponding SSs and solidified their uses. Peng
and Selvachandran summed up the notions of Pythagorean fuzzy sets in [52]. Riaz
and Naeem [55, 56] obtained some indispensable philosophies of SSs organized
with soft σ -algebra and put on show some employments of soft mappings. Fei et al.
[14] discussed Pythagorean fuzzy decision-making using soft likelihood functions.
Fei and Deng [13], recently, studied multi-criteria decision-making in Pythagorean
fuzzy environment.

The decision-taking techniques of TOPSIS and VIKOR have been deliberated by
voluminous researchers includingHwang andYoon [28], Adeel et al. [1], Eraslan and
Karaaslan [12], Naeem et al. [44], Liu et al. [37], Kumar andGarg [33], Riaz et al. [54,
57], Li andNan [34], Opricovic and Tzeng [46, 47],Mohd andAbdullah [40], Naeem
et al. [43], Kalkan et al. [30], and Zhang and Xu [65]. Garg and Arora [18] presented
generalized IFS power aggregation operator along with its practical usage. Garg and
Arora [19] explored dual hesitant fuzzy soft aggregation operators with applications.
Garg and Arora [23] explored TOPSIS method based on correlation coefficient for
solving decision-making problems with IFSS information. Garg [22] presented, for
the purpose of multiple attribute group decision analysis, novel neutrality operations
based-Pythagorean fuzzy geometric aggregation operators. Li et al. [35] studied
some novel Pythagorean hybrid weighted aggregation operators using Pythagorean
fuzzy numbers along with their applications to decision-making. Recently, Garg [21]
unveiled Pythagorean fuzzy aggregation operators based upon neutrality operations
and rendered its utilizations in the process of multiple attribute group decision-
making. Garg and Arora [24] presented Maclaurin symmetric mean aggregation
operators based on t-norm operations for the dual hesitant fuzzy soft set.

The notion of similarity measure is indispensably significant in nearly every arena
of science and technology. It is ordinarily forged for testing the validity of an object,
situation, or document. Similarity measure serves as a substantial tool to decide the
level of alikeness between two or more data sets. The similarity measures established
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by means of the notions of FSs, SSs, IFSs, and PFSs are broadly and efficiently
applied inmedical diagnosis, pattern recognition, signal detection, image processing,
security verification systems, artificial intelligence, machine learning, etc. Similarity
measures on variousmodels are explored byHong andKim [26],Kharal [32],Kamaci
[31], Hung and Yang [27], Hyung et al. [29], Ye [63], Chen [8, 9], Chen et al. [10],
Wang et al. [58], andMuthukumar and Krishnan [42]. In recent times, Peng and Garg
[53] made public multiparametric similarity measures on PFSs with applications to
pattern recognition.

The goal of this chapter is to study Pythagorean fuzzy soft sets (PFSSs) and their
practical implementations. We make use of different techniques including choice
value method PFS-TOPSIS, VIKOR, and similarity measures for modeling uncer-
tainties in decision-making problems. PFSSs offer a plenty of uses in decision-taking
problems of daily life situations ranging from micro to high-level decisions. The
chapter is organized as follows: Sect. 2 gives access to essential operations and fun-
damental characteristics of PFSSs. We devote Sect. 3 for an application of multi-
criteria group decision-making (MCGDM) utilizing PFS matrices. In the very next
section,we propose PFS-TOPSIS algorithm accompanied by its application in choos-
ing appropriate persons for key ministries in a government. In Sect. 5, we propose
PFS-VIKOR and utilize it on the selection of brand ambassadors for a multi-national
company. In Sect. 6, we devise a similarity measure (SM) and weighted similarity
measure for PFSSs. Based on this SM, we present an application in life sciences. In
conclusion, we summarize our work in Sect. 7.

For better understanding of this unit, the reader is suggested to see [5, 7, 38, 41,
60–62, 64] for preliminary notions.

2 Structure of Pythagorean Fuzzy Soft Sets

Peng et al. [51] floated the notion ofPythagorean fuzzy soft set (PFSSs) and presented
some of their applications. Later, Guleria and Bajaj [25] made use of matrices to
represent PFSSs. The matrices used are known as Pythagorean fuzzy soft matrices
(PFS matrices).

In this segment, we study some fundamental concepts, basic properties, and alge-
braic operations on PFSSs. X will represent the universe of discourse and E the
aggregate of attributes with A, A1, A2, A3 ⊆ E , in this section.

Definition 2.1 A Pythagorean fuzzy soft set (PFSS) on X is a family of the form

(�, A) =
{(
e, {∂, σ�A(∂), ��A(∂)}) : e ∈ A, ∂ ∈ X

}

=
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

=
{(

e,

{
(σ�A(∂), ��A(∂))

∂

})
: e ∈ A, ∂ ∈ X

}
,
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Table 1 Tabulatory representation of PFSS �A

�A e1 e2 · · · en

∂1 (σ11, �11) (σ12, �12) · · · (σ1n, �1n)

∂2 (σ21, �21) (σ22, �22) · · · (σ2n, �2n)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

∂m (σm1, �m1) (σm2, �m2) · · · (σmn, �mn)

where σ�A and ��A are mappings dragging members of X to [0, 1], obeying the
requirement

0 ≤ σ 2
�A

(∂) + �2
�A

(∂) ≤ 1

.
Ifwewriteσi j = σ�A(e j )(∂i ) and�i j = ��A(e j )(∂i ), i = 1, . . . ,m; j = 1, . . . , n,

then the PFSS �A may be expressed in tabular array as in Table1.
The matrix representing PFSS �A is termed as Pythagorean fuzzy soft matrix

(PFS matrix), and has form

�A = [(σi j , �i j )]m×n

=

⎛
⎜⎜⎜⎝

(σ11, �11) (σ12, �12) · · · (σ1n, �1n)

(σ21, �21) (σ22, �22) · · · (σ2n, �2n)
...

...
. . .

...

(σm1, �m1) (σm2, �m2) · · · (σmn, �mn)

⎞
⎟⎟⎟⎠

Example 2.2 Let X = {∂i : i = 1, · · · , 4} and E = {ei : i = 1, 2, . . . , 5}. Take A =
{e2, e5}. Then,
�A =

{(
e2,

{( ∂1

(0.13, 0.91)

)
,
( ∂3

(0.25, 0.62)

)
,
( ∂4

(0.24, 0.89)

)})
,
(
e5,

{( ∂1

(0.71, 0.29)

)
,
( ∂2

(0.41, 0.06)

)})}

is a PFSS over X . The tabular representation of �A is given in Table2.

Table 2 Tabular representation of �A

�A e1 e2 e3 e4 e5

∂1 (0,1) (0.13,0.91) (0,1) (0,1) (0.71,0.29)

∂2 (0,1) (0,1) (0,1) (0,1) (0.41,0.06)

∂3 (0,1) (0.25,0.62) (0,1) (0,1) (0,1)

∂4 (0,1) (0.24,0.89) (0,1) (0,1) (0,1)
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The corresponding PFS matrix is

�A = [σi j , �i j ]4×5

=

⎛
⎜⎜⎝

(0, 1) (0.13, 0.91) (0, 1) (0, 1) (0.71, 0.29)
(0, 1) (0, 1) (0, 1) (0, 1) (0.41, 0.06)
(0, 1) (0.25, 0.62) (0, 1) (0, 1) (0, 1)
(0, 1) (0.24, 0.89) (0, 1) (0, 1) (0, 1)

⎞
⎟⎟⎠

Definition 2.3 A PFSS �(1)
A1

is called PFS subset of �(2)
A2
, i.e., �(1)

A1
⊆̃�(2)

A2
, if

(i) A1 ⊆ A2, and
(ii) �(1)(e) is PFS subset of �(2)(e), for all e ∈ A1.

It is remarkable to notice that �A⊆̃GB by no means requires that each member of
�(1)

A must also present in �(1)
B , contrary to classical set theory.

Definition 2.4 The union of two PFSSs (�1, A1) and (�2, A2) defined over X is
given as (�, A1 ∪ A2) = (�1, A1) ∪̃ (�2, A2), and for all e ∈ A,

� (e) =
⎧⎨
⎩

�1 (e) , if e ∈ A1 & e /∈ A2

�2 (e) , if e ∈ A2 & e /∈ A1

�1 (e) ∪ �2 (e) , if e ∈ A1 ∩ A2,

where �1 (e) ∪ �2 (e) is the union of two PFSSs.

Definition 2.5 The intersection of two PFSSs (�1, A1) and (�2, A2) is another
PFSS (�, A1 ∩ A2) = (�1, A1) ∩̃ (�2, A2), where � (e) = �1 (e) ∩ �2 (e) for all
e ∈ A1 ∩ A2.

Definition 2.6 The difference of two PFSSs (�1, A1) and (�2, A2) over X is defined
as

(�1, A1) \̃ (�2, A2) =
{(

e,
{
∂,min{σ�1(e)(∂), ��2(e)(∂)},max{��1(e)(∂), σ�2(e)(∂)}}

)
: ∂ ∈ X, e ∈ E

}
.

Definition 2.7 The complement of a PFSS (�, A) is a mapping �c : A → PFX

given by �c(e) = [�(e)]c, for all e ∈ A. It is represented as (�, A)c or sometimes
by (�c, A). Thus, if

�(e) = {(∂, σ�(e)(∂), ��(e)(∂)) : ∂ ∈ X}

then
�c(e) = {(∂, ��(e)(∂), σ�(e)(∂)) : ∂ ∈ X}

for all e ∈ A.
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Definition 2.8 A PFSS defined over X is termed as null PFSS if it is in the form

� =
{(

e,
{ ∂

(0, 1)

})
: e ∈ E, ∂ ∈ X

}
.

Definition 2.9 APFSS defined over X is termed as absolute PFSS if it is in the form

X̆ =
{(

e,
{ ∂

(1, 0)

})
: e ∈ E, ∂ ∈ X

}
.

Definition 2.10 If

�(1)
A1

=
{(

e,

{
∂

(σ�(1)
A1

(∂), ��(1)
A1

(∂))

})
: e ∈ A1, ∂ ∈ X

}

and

�(2)
A2

=
{(

e,

{
∂

(σ�(2)
A2

(∂), ��(2)
A2

(∂))

})
: e ∈ A2, ∂ ∈ X

}

are two PFSSs, then

�(1)
A1

⊕̃�(2)
A2

=
{(

e,

{
∂

(
√

(σ�(1)
A1

(∂))2+(σ�(2)
A2

(∂))2−(σ�(1)
A1

(∂)σ�(2)
A2

(∂))2, ��(1)
A1

(∂)��(2)
A2

(∂))

})
: e ∈ E, ∂ ∈ X

}

and

�(1)
A1

⊗̃�(2)
A2

=
{(

e,

{
∂

(σ�(1)
A1

(∂)σ�(2)
A2

(∂),
√

(��(1)
A1

(∂))2 + (��(2)
A2

(∂))2 − (��(1)
A1

(∂)��(2)
A2

(∂))2)

})
: e ∈ E, ∂ ∈ X

}

Definition 2.11 The necessity operator on the PFSS

�A =
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

is defined as

�̃�A =
{(

e,

{
∂

(σ�A(∂),

√
1 − σ 2

�A
(∂))

})
: e ∈ A, ∂ ∈ X

}
.

Definition 2.12 The possibility operator on the PFSS

�A =
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}
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is defined as


̃�A =
{(

e,

{
∂

(

√
1 − �2

�A
(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

Remark The modal operators presented in Definition 2.11 and 2.12 transform any
PFSS to the corresponding FSS.

We elaborate the notions presented above with the help of following example.

Example 2.13 Take X = {∂1, · · · , ∂4} and E = {e1, e2, · · · , e6}. Assume that A1 =
{e2, e4}, A2 = {e1, e4, e5} and A3 = {e2, e4, e6}. Consider the PFSSs

�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.11, 0.04) (0, 1) (0.73, 0.54) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.59, 0.51) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0, 1) (0, 1) (0.45, 0.58) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0, 1) (0, 1) (0.09, 0.28) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0, 1) (0, 1) (0.62, 0.67) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0, 1) (0, 1) (0.54, 0.82) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠

and

�(3)
A3

=

⎛
⎜⎜⎝

(0, 1) (0.31, 0.54) (0, 1) (0.39, 0.01) (0, 1) (0.22, 0.87)
(0, 1) (0.25, 0.04) (0, 1) (0.76, 0.21) (0, 1) (0.53, 0.16)
(0, 1) (0.49, 0.32) (0, 1) (0.62, 0.37) (0, 1) (0.42, 0.19)
(0, 1) (0.63, 0.45) (0, 1) (0.46, 0.54) (0, 1) (0.88, 0.32)

⎞
⎟⎟⎠ .

It may be observed that �(1)
A1

⊆̃�(3)
A3
, whereas neither �(1)

A1
⊆̃�(2)

A2
nor �(2)

A2
⊆̃�(3)

A3
.

Moreover,

�(1)
A1

∪̃�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0.27, 0.78) (0, 1) (0.45, 0.48) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0.11, 0.04) (0, 1) (0.73, 0.28) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0.56, 0.60) (0, 1) (0.62, 0.51) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0.62, 0.62) (0, 1) (0.54, 0.56) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠ ,

�(1)
A1

∩̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.39, 0.58) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.09, 0.54) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.59, 0.67) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.37, 0.82) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,
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(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠ ,

�(1)
A1

\̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.28, 0.54) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.59, 0.62) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�̃�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.96) (0, 1) (0.39, 0.92) (0, 1) (0, 1)
(0, 1) (0.11, 0.99) (0, 1) (0.73, 0.68) (0, 1) (0, 1)
(0, 1) (0.56, 0.83) (0, 1) (0.59, 0.81) (0, 1) (0, 1)
(0, 1) (0.62, 0.78) (0, 1) (0.37, 0.93) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,


̃�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.62, 0.78) (0, 1) (0.88, 0.48) (0, 1) (0, 1)
(0, 1) (0.99, 0.04) (0, 1) (0.84, 0.54) (0, 1) (0, 1)
(0, 1) (0.80, 0.60) (0, 1) (0.86, 0.51) (0, 1) (0, 1)
(0, 1) (0.78, 0.62) (0, 1) (0.83, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�(1)
A1

⊕̃�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0.27, 0.78) (0, 1) (0.57, 0.28) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0.11, 0.04) (0, 1) (0.73, 0.15) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0.56, 0.60) (0, 1) (0.77, 0.34) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0.62, 0.62) (0, 1) (0.62, 0.46) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠

and

�(1)
A1

⊗̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.18, 0.70) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.06, 0.59) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.36, 0.77) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.20, 0.88) (0, 1) (0, 1)

⎞
⎟⎟⎠ .

Proposition 2.14 Every PFSS �A may be sandwiched between � and X̆ , i.e.,
�⊆̃ �A ⊆̃X̆ .

Proposition 2.15 If �(1)
A1
, �(2)

A2
and �(3)

A3
are three PFSSs over X, then

(i) �(1)
A1

∩̃�(1)
A1

= �(1)
A1
.

(ii) �(1)
A1

∪̃�(1)
A1

= �(1)
A1
.

(iii) �(1)
A1

∩̃�(2)
A2

= �(2)
A2

∩̃�(1)
A1
.
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(iv) �(1)
A1

∪̃�(2)
A2

= �(2)
A2

∪̃�(1)
A1
.

(v) �(1)
A1

∩̃(�(2)
A2

∩̃�(3)
A3

) = (�(1)
A1

∩̃�(2)
A2

)∩̃�(3)
A3
.

(vi) �(1)
A1

∪̃(�(2)
A2

∪̃�(3)
A3

) = (�(1)
A1

∪̃�(2)
A2

)∪̃�(3)
A3
.

(vii) �(1)
A1

∪̃(�(2)
A2

∩̃�(3)
A3

) = (�(1)
A1

∪̃�(2)
A2

)∩̃(�(1)
A1

∪̃�(3)
A3

).

(viii) �(1)
A1

∩̃(�(2)
A2

∪̃�(3)
A3

) = (�(1)
A1

∩̃�(2)
A2

)∪̃(�(1)
A1

∩̃�(3)
A3

).

Proposition 2.16 If �(1)
A1

and �(2)
A2

are two PFSSs over X, then

(i) �(1)
A1

∩̃ �(2)
A2

⊆̃ �(1)
A1

⊆̃ �(1)
A1

∪̃�(2)
A2

(ii) �(1)
A1

∩̃ �(2)
A2

⊆̃ �(2)
A2

⊆̃ �(1)
A1

∪̃�(2)
A2
.

The above propositions are easy consequences of definition.

Remark Consider the PFSSs �(1)
A1

and �(2)
A2

given in Example 2.13. We have

(
�(1)

A1
∪̃ �(2)

A2

)c =

⎛
⎜⎜⎝

(0.27, 0.56) (0.78, 0.27) (1, 0) (0.48, 0.45) (0.78, 0.33) (1, 0)
(0.85, 0.11) (0.04, 0.11) (1, 0) (0.28, 0.73) (0.51, 0.42) (1, 0)
(0.49, 0.76) (0.60, 0.56) (1, 0) (0.51, 0.62) (0.21, 0.92) (1, 0)
(0.71, 0.54) (0.62, 0.62) (1, 0) (0.56, 0.54) (0.48, 0.87) (1, 0)

⎞
⎟⎟⎠

(1)

(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠ ,

(�(2)
A2

)c =

⎛
⎜⎜⎝

(0.27, 0.56) (1, 0) (1, 0) (0.58, 0.45) (0.78, 0.33) (1, 0)
(0.85, 0.11) (1, 0) (1, 0) (0.28, 0.09) (0.51, 0.42) (1, 0)
(0.49, 0.76) (1, 0) (1, 0) (0.67, 0.62) (0.21, 0.92) (1, 0)
(0.71, 0.54) (1, 0) (1, 0) (0.82, 0.54) (0.48, 0.87) (1, 0)

⎞
⎟⎟⎠

Since A1 ∩ A2 = {e4}, so

(
�(1)

A1

)c∩̃(
�(2)

A2

)c =

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.48, 0.45) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.28, 0.73) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.51, 0.62) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.56, 0.54) (0, 1) (0, 1)

⎞
⎟⎟⎠ (2)

From (1) & (2), we conclude that De Morgan’s laws do not make sense in PFSS
theory.

Theorem 2.17 If (�1, A1) and (�2, A2) are two PFSSs over X, then

(a)
(
(�1, A1)∪̃(�2, A2)

)c �= (�1, A1)
c∩̃(�2, A2)

c, and
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(b)
(
(�1, A1)∩̃(�2, A2)

)c �= (�1, A1)
c∪̃(�2, A2)

c.

Remark Consider again the PFSS �(1)
A1

given in Example 2.13. We have

�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.11, 0.04) (0, 1) (0.73, 0.54) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.59, 0.51) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠

∴
(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠

Now,

�(1)
A1

∪̃(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.11, 0.04) (1, 0) (0.73, 0.54) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.59, 0.51) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠

�= X̆

and

�(1)
A1

∩̃(
�(1)

A1

)c =

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.04, 0.11) (0, 1) (0.54, 0.73) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.51, 0.59) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠

�= �

These observations lead to the following theorem.

Theorem 2.18 If (�, A) is any PFSS over X, then

(1) �A∪̃�c
A �= X̆ , and

(2) �A∩̃�c
A �= �.

Definition 2.19 We know that

�(1)
A1

⊗̃�(2)
A2

=
{(

e,

{
∂

(σ�(1)
A1

(∂)σ�(2)
A2

(∂),
√

(��(1)
A1

(∂))2+(��(2)
A2

(∂))2−(��(1)
A1

(∂)��(2)
A2

(∂))2)

})
: e ∈ E, ∂ ∈ X

}
.

If we substitute �(1)
A1

= �(2)
A2

= �A, then
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�A⊗̃�A =
{(

e,

{
∂

(σ 2
�A

(∂),

√
2�2

�A
(∂) − �4

�A
(∂))

})
: e ∈ E, ∂ ∈ X

}
.

That is,

(�A)
2 =

{(
e,

{
∂

(
σ 2

�A
(∂),

√
1 − (1 − �2

�A
)2

)
})

: e ∈ E, ∂ ∈ X

}
.

In general, if k is any non-negative real number, then

(�A)
k =

{(
e,

{
∂

(
σ k

�A
(∂),

√
1 − (1 − �2

�A
)k

)
})

: e ∈ E, ∂ ∈ X

}
.

In particular, for k = 1
2 , we have

(�A)
1
2 =

{(
e,

{
∂

(√
σ�A(∂),

√
1 −

√
1 − �2

�A

)
})

: e ∈ E, ∂ ∈ X

}

(�A)
2 is called concentration of �A, denoted as con(�A) whereas (�A)

1
2 is entitled

as dilation of �A, denoted as dil(�A).

Example 2.20 For PFSS�(1)
A1

= �A given in Example 2.13, concentration and dila-
tion are

con(�A) =

⎛
⎜⎜⎝

(0, 1) (0.07, 0.92) (0, 1) (0.15, 0.64) (0, 1) (0, 1)
(0, 1) (0.01, 0.06) (0, 1) (0.53, 0.71) (0, 1) (0, 1)
(0, 1) (0.31, 0.77) (0, 1) (0.35, 0.67) (0, 1) (0, 1)
(0, 1) (0.38, 0.79) (0, 1) (0.14, 0.73) (0, 1) (0, 1)

⎞
⎟⎟⎠

and

dil(�A) =

⎛
⎜⎜⎝

(0, 1) (0.52, 0.61) (0, 1) (0.62, 0.35) (0, 1) (0, 1)
(0, 1) (0.33, 0.03) (0, 1) (0.85, 0.40) (0, 1) (0, 1)
(0, 1) (0.75, 0.45) (0, 1) (0.77, 0.37) (0, 1) (0, 1)
(0, 1) (0.79, 0.46) (0, 1) (0.61, 0.41) (0, 1) (0, 1)

⎞
⎟⎟⎠

respectively.

We observe that in concentration of the PFSS, the value of membership function
is reduced and that of non-membership function exceeds the corresponding original
values. On the other hand, in case of dilation of the PFSS, the value of membership
function exceeds and that of non-membership function reduces as compared to the
corresponding original values.
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Keeping in mind this observation, we may link phonetic terms like “very”, “mod-
erate”, “highly”, and “not” with the PFSS �A by giving different non-negative real
values to k. For Example,

k = 1

2
⇒ “very”

k = 3

4
⇒ “moderate”

k = 1

5
⇒ “highly”

k = 4 ⇒ “not”

For conceiving these notions effectively, consider the following example.

Example 2.21 Choose X = {Angelica,Smith,Adina,Paul} as the class of students
and E = {e1, · · · , e5} as the collection of attributes, where

e1 = Sharp in Mathematics

e2 = Sharp in Physics

e3 = Sharp in Chemistry

e4 = Obedient

e5 = Active in physical games

Assume that the PFSS representing members of X and the value of trait e j in the
form of PFNs is

�A =

⎛
⎜⎜⎝

(0.83, 0.28) (0.54, 0.21) (0.37, 0.64) (0.59, 0.16) (0.86, 0.11)
(0.31, 0.26) (0.56, 0.57) (0.43, 0.32) (0.74, 0.25) (0.13, 0.05)
(0.52, 0.27) (0.64, 0.12) (0.45, 0.57) (0.61, 0.35) (0.29, 0.51)
(0.48, 0.59) (0.35, 0.21) (0.57, 0.13) (0.21, 0.21) (0.88, 0.41)

⎞
⎟⎟⎠

The entry at (1, 1) position, i.e., (0.83, 0.28) shows that Angelica’s tendency
towards sharpness in mathematics is 83% whereas against it is 28%.

Now,

very(�A) =

⎛
⎜⎜⎝

(0.91, 0.20) (0.73, 0.15) (0.61, 0.48) (0.77, 0.11) (0.93, 0.08)
(0.56, 0.19) (0.75, 0.42) (0.66, 0.23) (0.86, 0.18) (0.36, 0.04)
(0.72, 0.19) (0.80, 0.09) (0.67, 0.42) (0.78, 0.25) (0.54, 0.37)
(0.69, 0.44) (0.59, 0.15) (0.75, 0.09) (0.46, 0.15) (0.94, 0.30)

⎞
⎟⎟⎠ ,

moderate(�A) =

⎛
⎜⎜⎝

(0.87, 0.24) (0.63, 0.18) (0.47, 0.57) (0.67, 0.14) (0.89, 0.10)
(0.42, 0.23) (0.65, 0.51) (0.53, 0.28) (0.80, 0.22) (0.22, 0.04)
(0.61, 0.23) (0.72, 0.10) (0.55, 0.51) (0.69, 0.31) (0.40, 0.45)
(0.58, 0.52) (0.46, 0.18) (0.66, 0.11) (0.31, 0.18) (0.91, 0.36)

⎞
⎟⎟⎠ ,
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highly(�A) =

⎛
⎜⎜⎝

(0.96, 0.13) (0.88, 0.09) (0.82, 0.32) (0.90, 0.07) (0.97, 0.05)
(0.79, 0.12) (0.89, 0.27) (0.84, 0.15) (0.94, 0.11) (0.66, 0.02)
(0.88, 0.12) (0.91, 0.05) (0.85, 0.27) (0.91, 0.16) (0.78, 0.24)
(0.86, 0.29) (0.81, 0.09) (0.89, 0.06) (0.73, 0.09) (0.97, 0.19)

⎞
⎟⎟⎠

and

not (�A) =

⎛
⎜⎜⎝

(0.47, 0.53) (0.09, 0.41) (0.02, 0.94) (0.12, 0.31) (0.55, 0.22)
(0.01, 0.49) (0.10, 0.89) (0.03, 0.59) (0.30, 0.48) (0.00, 0.10)
(0.07, 0.51) (0.17, 0.24) (0.04, 0.89) (0.14, 0.64) (0.01, 0.84)
(0.05, 0.91) (0.02, 0.41) (0.11, 0.26) (0.00, 0.41) (0.60, 0.72)

⎞
⎟⎟⎠ .

Definition 2.22 A PFSS (�, A) is termed as a Pythagorean fuzzy soft point (PFS
point), denoted as ϑ�, if for the element ϑ ∈ A we have

(i) �(ϑ) �= �, and
(ii) �(ϑ ′) = X̆ , for all ϑ ′ ∈ A − {ϑ}.
Definition 2.23 A PFS point ϑ�∈̃(�, A) is said to be in PFSS (�1, A1), i.e.,
ϑ�∈̃(�1, A1) if ϑ ∈ A1 ⇒ �(ϑ) ⊆ �1(ϑ).

Example 2.24 Let X = {i, n, k} and E = {ϑ1, ϑ2}, then

ϑ�1 = {(ϑ1, {(i, 0.42, 0.57), (k, 0.43, 0.42)})},

and
ϑ�2 = {(ϑ2, {(n, 0.37, 0.56), (k, 0.68, 0.29)})}

are two distinct PFS points contained in the PFSS

�E = {
(ϑ1, {(i, 0.42, 0.57), (k, 0.43, 0.42)}), (ϑ2, {(n, 0.37, 0.56), (k, 0.68, 0.29)})}.

Notice that �E = ϑ�1∪̃ϑ�2 , i.e., a PFS is union of its PFS points.

3 Multi-criteria Group Decision-Making Using
Pythagorean Fuzzy Soft Information

There are lots of expressions that we casually use in daily life that have fuzzy struc-
ture. Usually we use numerical or, sometimes, verbal expressions to explain an event,
refer to something, evaluating expertise of someone, and in many other situations
include fuzziness. It is customary to use lingual expressions. These expressions gen-
erally do not express cast-iron certainty when deciding on a situation or elucidating
some event. For example, the words poor, middle class, lower middle class, upper
middle class, upper class and rich, etc. are used according to the income of an indi-
vidual. We use the word “fast” to express a speed of 80km/h while traveling on a
rough road but call it “slow” while moving on motorways. These examples illustrate
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how human brain works and decides in ambiguous and uncertain situations, and how
it recognizes, assesses, and commands events.

Science and technology have made tremendous developments with the advent of
FSs. The mathematics of FSs has gained a large number of practical implementa-
tions in both theoretical and applied studies ranging from life sciences to artificial
intelligence, and from physical sciences to engineering and humanities.

Often, we face problems in daily life situations which are not precise and clear.
This issue leads us to different sorts of decision-making mechanisms. We endeavor
to reach at some flawless and intellectual decision employing these mechanisms. For
that reason, it is the need of the hour to have improved mathematical models and
techniques for handling uncertainty and imprecision.

Shrewdly choice making is an energetic portion of trade, financial matters, social
sciences, and other real-world issues. It marks out from day-by-day moo level oper-
ational appraisals at low-ranking administration level to long-term key arranging
confronted by senior members of any organization. Conclusions that are delivered
at any level can cause genuine or awful results, but is there an unequivocal format
that choice producers ought to embrace in arrange to guarantee victory, or ought to
supersede the standard plans of tackling a problem?

The choice producers ought to contract numerous components into consideration
before reaching a unanimous and consistent choice. So it is basic to discover all
these components are taken before the assurance is finalized. In parliamentary law
to guarantee that all the vital realities and figures are scrutinized, it is irreplaceable
to arrange the choice making advancement with an ordered demeanor.

Above and beyond other colossal applications, the science of mathematics helps
us too in coming to conclusions on logical evidence. PFSSs take a broad view of
both of IFSs and SSs in the sense that all intuitionistic fuzzy numbers used to express
membership and non-membership degrees are part of Pythagorean fuzzy numbers.
In daily decision-taking problems, PFSSs cover a greater membership space than the
IFSS. As a consequence, PFSSs are more capable than IFSSs to model imprecision
and uncertainty in choice making problems.

In this segment, we present an algorithm for handling multiple criteria group
decision-making problem using choice value method under the umbrella of PFSSs
supported by an illustration.

Algorithm 1:

Step 1: Input X = {∂i : i = 1, 2, · · · ,m} as an aggregate of choices and E = {ei :
i = 1, 2, · · · , n} as a collection of attributes.

Step 2: Construct the PFS matrix with the assistance of experts.
Step 3: Compute relative importance, i.e., weight wi of each attribute such that

�n
i=1wi = 1.

Step 4: Compute the matrix of choice values using C = �E × Wt .
Step 5: Compute the score value s for each alternative using s j = nσ j − n� j , where

nσ j denotes number of times σ j goes beyond or equals other values of σk ,
k �= j .

Step 6: The alternative for which score value is highest is the requisite choice.
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Table 3 Tabular representation of �E

�E e1 e2 e3 e4 e5

∂1 (0.42,0.56) (0.37,0.54) (0.59,0.11) (0.23,0.59) (0.11,0.92)

∂2 (0.34,0.13) (0.52,0.41) (0.54,0.11) (0.33,0.02) (0.22,0.14)

∂3 (0.89,0.24) (0.77,0.31) (0.56,0.15) (0.50,0.13) (0.28,0.13)

∂4 (0.43,0.44) (0.56,0.67) (0.83,0.29) (0.47,0.58) (0.37,0.09)

∂5 (0.56,0.67) (0.49,0.52) (0.57,0.38) (0.21,0.34) (0.38,0.36)

∂6 (0.79,0.34) (0.44,0.43) (0.56,0.58) (0.91,0.39) (0.33,0.39)

∂7 (0.54,0.24) (0.51,0.42) (0.55,0.55) (0.11,0.09) (0.39,0.56)

As a case study, we employ Algorithm 1 in stock exchange investment problem using
hypothetical information.

Example 3.1 Suppose that an investor wishes to invest some money in some busi-
ness with least risk. Let X = {∂i : i = 1, · · · , 7} be the collection of choices under
consideration. For the purpose of reducing the risk factor, he decides to invest his
capital in the ratio 3:2 in accordance with the top ranked two businesses. After
getting advice from his four financial advisors, he chooses the set of attributes as
E = {ei : i = 1, · · · , 5}, where

e1 = Standing reputation of the business

e2 = Impact on market

e3 = Prospects

e4 = Product Viability

e5 = Investment Safety

Studying the history and trends of these businesses, the members of the technical
team of the investor arranges the gathered information in the form of Table3 of the
PFS-set �E .

This information may be put in the form of PFS matrix as

�E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.42, 0.56) (0.37, 0.54) (0.59, 0.11) (0.23, 0.59) (0.11, 0.92)
(0.34, 0.13) (0.52, 0.41) (0.54, 0.11) (0.33, 0.02) (0.22, 0.14)
(0.89, 0.24) (0.77, 0.31) (0.56, 0.15) (0.50, 0.13) (0.28, 0.13)
(0.43, 0.44) (0.56, 0.67) (0.83, 0.29) (0.47, 0.58) (0.37, 0.09)
(0.56, 0.67) (0.49, 0.52) (0.57, 0.38) (0.21, 0.34) (0.38, 0.36)
(0.79, 0.34) (0.44, 0.43) (0.56, 0.58) (0.91, 0.39) (0.33, 0.39)
(0.54, 0.24) (0.51, 0.42) (0.55, 0.55) (0.11, 0.09) (0.39, 0.56)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assume that the four financial advisors provide the relative importance, i.e.,
weights, which are fuzzified, to each attribute and are given in the form of following
matrix:
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M =

⎛
⎜⎜⎝
0.54 0.38 0.59 0.89 0.76
0.37 0.47 0.48 0.94 0.88
0.82 0.46 0.76 0.23 0.79
0.18 0.32 0.57 0.46 0.69

⎞
⎟⎟⎠

After normalizing the entries of M , the normalized matrix appears to be

M̂ =

⎛
⎜⎜⎝
0.507 0.461 0.485 0.639 0.485
0.348 0.570 0.394 0.675 0.562
0.770 0.558 0.625 0.165 0.504
0.169 0.388 0.468 0.330 0.441

⎞
⎟⎟⎠

Thus, the weighted values for the attributes are

W (e1) = 0.188,W (e2) = 0.207,W (e3) = 0.207,W (e4) = 0.190,W (e5) = 0.209.

Hence, the weight vector is

W = (
0.188 0.207 0.207 0.190 0.209

)

Thus, the PF-matrix for choice values is

C = �E × Wt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.42, 0.56) (0.37, 0.54) (0.59, 0.11) (0.23, 0.59) (0.11, 0.92)
(0.34, 0.13) (0.52, 0.41) (0.54, 0.11) (0.33, 0.02) (0.22, 0.14)
(0.89, 0.24) (0.77, 0.31) (0.56, 0.15) (0.50, 0.13) (0.28, 0.13)
(0.43, 0.44) (0.56, 0.67) (0.83, 0.29) (0.47, 0.58) (0.37, 0.09)
(0.56, 0.67) (0.49, 0.52) (0.57, 0.38) (0.21, 0.34) (0.38, 0.36)
(0.79, 0.34) (0.44, 0.43) (0.56, 0.58) (0.91, 0.39) (0.33, 0.39)
(0.54, 0.24) (0.51, 0.42) (0.55, 0.55) (0.11, 0.09) (0.39, 0.56)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0.188
0.207
0.207
0.190
0.209

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.3444, 0.5442)
(0.3920, 0.1651)
(0.5962, 0.1922)
(0.5352, 0.4105)
(0.4440, 0.4521)
(0.5974, 0.4286)
(0.4234, 0.3801)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The values of the score function along with ranking are given in Table4.
Table4 demonstrates that

∂3 � ∂6 � ∂2 = ∂4 � ∂7 � ∂5 � ∂1

This ranking is depicted in Fig. 1.
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Table 4 Values of score function and ranking

X s Ranking

∂1 0 − 6 = −6 6

∂2 1 − 0 = 1 3

∂3 5 − 1 = 4 1

∂4 4 − 3 = 1 3

∂5 3 − 5 = −2 5

∂6 6 − 4 = 2 2

∂7 2 − 2 = 0 4

Fig. 1 Ranking of companies

In view of this ranking, it may be concluded that the investor should invest 60%
of the capital on ∂3, and 40% on ∂6.

3.1 Comparison Analysis

We compare the results of our proposed Algorithm 1 with that of some existing
methods. The results obtained are shown in Table5.

The results portrayed in Table5 approve the validity of the proposed technique.

Table 5 Comparison of results of suggested algorithm 1 with some existing techniques

Method Ranking of choices

Algorithm 1 (Suggested) ∂3 � ∂6 � ∂2 = ∂4

Guleria and Bajaj (Case-I) [25] ∂3 � ∂6 � ∂2 � ∂4

Guleria and Bajaj (Case-II) [25] ∂3 � ∂6 � ∂2 � ∂4

Peng et al. [51] ∂3 � ∂6 � ∂4 � ∂2
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Table 6 Phonetic labels for assessing alternatives

Linguistic Terms Fuzzy Weights

Very Necessary (VN) (0.80, 1]

Mandatory (M) (0.50, 0.80]

More or Less Required (MLR) (0.20, 0.50]

Average Requirement (AR) (0.10, 0.20]

Of No Use (ONU) [0, 0.10]

4 TOPSIS Approach for Choice Making with Pythagorean
Fuzzy Soft Sets

In this section, we study the utilization of PFSSs in intelligent decision-taking. For
this purpose, we first extend TOPSIS to PFSS. The proposed version will be called
PFS-TOPSIS. Afterwards, we shall consider a problem of choosing suitable candi-
dates for key ministries of a country, where PFSSs may be used.

We launch by illuminating the offered modus operandi a step at a time. The
suggested PFS-TOPSIS is generality of fuzzy soft TOPSIS suggested in [12] by
Eraslan and Karaaslan.
Algorithm 2:

Step 1: Recognizing the problem: Suppose that DM = {Di : i = 1, · · · , n} is team
of decision experts, C = {c̈i = 1, · · · , l} is the assemblage of choices and
Q = {q j : j = 1, · · · ,m} is family of attributes.

Step 2: Picking the phonetic terms as given in Table6, prepare weighted parameter
matrix as [wi j ]n×m , where wi j is the weight allocated by the decision expert
Di to the attribute q j .

Step 3: Normalize the weighted matrix to get N̂ = [n̂i j ]n×m , where n̂i j = wi j√
�n

i=1w
2
i j

and obtaining the weight vector W = (w1,w2, · · · ,wm), where w j =∑n
i=1 n̂i j

m
∑m

k=1 n̂ik
.

Step 4: Construct PFS matrix

Di = [vi
jk]l×m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vi
11 vi

12 · · · vi
1m

vi
21 vi

22 · · · vi
2m

...
...

. . .
...

vi
j1 vi

j2 · · · vi
jm

...
...

. . .
...

vi
l1 vi

l2 · · · vi
lm,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where vi
jk is a PFS-element, provided by i th decision expert. Then obtain

the aggregated matrix

D = D1 + D2 + · · · + Dn

n
= [v̇ jk]l×m .
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Step 5: Achieve the weighted PFS matrix

Dw = [r̈ jk]l×m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̈11 r̈12 · · · r̈1m
r̈21 r̈22 · · · r̈2m
...

...
. . .

...

r̈ j1 r̈ j2 · · · r̈ jm
...

...
. . .

...

r̈l1 r̈l2 · · · r̈lm,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where r̈ jk = wk × v̇ jk .
Step 6: Track the PFS-valued positive ideal solution (PFSV-PIS) and PFS-valued

negative ideal solution (PFSV-NIS). For this purpose, we employ in order

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
m }

= {
(∨k r̈ jk,∧k r̈ jk); k = 1, · · · ,m

}

= {
(σ+

k , �+
k ) : k = 1, · · · ,m

}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
m }

= {
(∧k r̈ jk,∨k r̈ jk); k = 1, · · · ,m

}

= {
(σ−

k , �−
k ) : k = 1, · · · ,m

}
,

where ∨ stands for PFS union and ∧ represents PFS intersection.
Step 7: Compute distances of each alternative from PFSV-PIS and PFSV-NIS,

respectively, utilizing

Z+
j =

√
�m

k=1

{(
σ jk − σ+

k

)2 + (
� jk − �+

k

)2}

and

Z−
j =

√
�m

k=1

{(
σ jk − σ−

k

)2 + (
� jk − �−

k

)2}
.

Step 8: Attain the closeness coefficient of each alternative with ideal solution by
making use of

C∗
j = Z−

j

Z+
j + Z−

j

∈ [0, 1].

Step 9: Arrange the ranking of choices in decreasing (or increasing) for obtaining
the priority order of the choices.
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As an illustration ofAlgorithm 2,we discuss a statemanagerial problem following
the procedural steps given in Algorithm 2.

Example 4.1 Suppose that a political party clean sweeps in general elections in a
country. The party has got chance for the first time to make national government and
wishes to prove that it is the best. The party chairmanwants to deliver to the people of
the country his best. The partywants to fill the positions of keyministries by choosing
ministers, who should also be competent, well educated/trained and meritorious in
their respective fields. The party’s top leadership constitutes a committee of experts
to help him solve this riddle on scientific grounds. They also decide that no member
should be given more than one ministry. Assume that

C = {c1, c2, . . . , c6}

is the set of candidates who are to be deputed in different keyministries (ministries of
foreign affairs, defence, finance, and information & broadcasting in order). Further
suppose that

Q = {q1, q2, . . . , q5}

is the set of qualification/merit mandatory for filling a position. The committee inter-
views each candidate carefully to see who is appropriate for which ministry.

Picking the weights from Table6, the experts provide the following weighted
parameter matrix

P =

⎛
⎜⎜⎝

VN MLR MLR ONU VN
M AR AR AR VN
M M VN M M

MLR AR MLR AR VN

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
0.90 0.40 0.30 0.10 0.90
0.70 0.15 0.20 0.15 0.85
0.60 0.70 0.90 0.80 0.75
0.40 0.15 0.40 0.15 0.90

⎞
⎟⎟⎠

The normalized weighted matrix is

N̂ =

⎛
⎜⎜⎝
0.667 0.480 0.286 0.120 0.528
0.519 0.180 0.191 0.180 0.499
0.445 0.840 0.858 0.960 0.440
0.296 0.180 0.381 0.180 0.528

⎞
⎟⎟⎠

and hence the weight vector is W = (0.220, 0.192, 0.196, 0.164, 0.228).
Assume that the four experts provide the following PFS matrices in which the

PFN at (i, j)th position demarcated grades of candidates row-wise and the attribute
column-wise.
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D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.57, 0.39) (0.49, 0.74) (0.77, 0.38) (0.54, 0.21) (0.12, 0.48)
(0.66, 0.51) (0.54, 0.54) (0.32, 0.13) (0.99, 0.13) (0.54, 0.07)
(0.15, 0.68) (0.19, 0.32) (0.76, 0.41) (0.45, 0.15) (0.11, 0.49)
(0.67, 0.74) (0.09, 0.83) (0.59, 0.31) (0.84, 0.16) (0.37, 0.21)
(0.59, 0.17) (0.33, 0.67) (0.34, 0.68) (0.52, 0.19) (0.58, 0.61)
(0.27, 0.54) (0.49, 0.46) (0.48, 0.59) (0.55, 0.54) (0.38, 0.01)

⎞
⎟⎟⎟⎟⎟⎟⎠

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.34, 0.52) (0.58, 0.21) (0.47, 0.21) (0.70, 0.31) (0.11, 0.34)
(0.47, 0.33) (0.39, 0.32) (0.56, 0.20) (0.38, 0.11) (0.26, 0.18)
(0.59, 0.17) (0.33, 0.17) (0.19, 0.28) (0.59, 0.06) (0.78, 0.16)
(0.44, 0.17) (0.38, 0.23) (0.58, 0.27) (0.71, 0.24) (0.54, 0.02)
(0.32, 0.28) (0.56, 0.11) (0.44, 0.37) (0.49, 0.29) (0.55, 0.55)
(0.34, 0.47) (0.52, 0.37) (0.11, 0.18) (0.47, 0.13) (0.47, 0.27)

⎞
⎟⎟⎟⎟⎟⎟⎠

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.11, 0.58) (0.37, 0.22) (0.56, 0.11) (0.21, 0.69) (0.79, 0.32)
(0.13, 0.67) (0.46, 0.13) (0.36, 0.54) (0.56, 0.27) (0.46, 0.61)
(0.59, 0.13) (0.25, 0.11) (0.62, 0.33) (0.47, 0.28) (0.28, 0.47)
(0.11, 0.49) (0.23, 0.05) (0.50, 0.28) (0.34, 0.48) (0.61, 0.54)
(0.17, 0.29) (0.82, 0.34) (0.56, 0.51) (0.50, 0.28) (0.49, 0.12)
(0.33, 0.69) (0.57, 0.61) (0.48, 0.57) (0.33, 0.02) (0.46, 0.31)

⎞
⎟⎟⎟⎟⎟⎟⎠

D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.40, 0.59) (0.41, 0.32) (0.49, 0.12) (0.35, 0.65) (0.39, 0.12)
(0.25, 0.17) (0.38, 0.10) (0.85, 0.26) (0.44, 0.57) (0.92, 0.14)
(0.38, 0.51) (0.36, 0.11) (0.52, 0.29) (0.48, 0.38) (0.52, 0.35)
(0.56, 0.11) (0.73, 0.16) (0.35, 0.27) (0.58, 0.62) (0.62, 0.63)
(0.11, 0.01) (0.33, 0.37) (0.28, 0.38) (0.47, 0.32) (0.71, 0.19)
(0.58, 0.17) (0.44, 0.15) (0.56, 0.16) (0.33, 0.21) (0.88, 0.26)

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the aggregated matrix is

D =

⎛
⎜⎜⎜⎜⎜⎝

(0.355, 0.520) (0.463, 0.373) (0.573, 0.205) (0.450, 0.465) (0.353, 0.315)
(0.378, 0.420) (0.443, 0.273) (0.523, 0.283) (0.593, 0.270) (0.545, 0.250)
(0.428, 0.373) (0.373, 0.178) (0.523, 0.328) (0.498, 0.218) (0.423, 0.368)
(0.445, 0.378) (0.358, 0.318) (0.505, 0.283) (0.618, 0.375) (0.535, 0.350)
(0.298, 0.188) (0.510, 0.373) (0.405, 0.485) (0.495, 0.270) (0.583, 0.368)
(0.380, 0.468) (0.505, 0.398) (0.408, 0.375) (0.420, 0.225) (0.548, 0.213)

⎞
⎟⎟⎟⎟⎟⎠

and hence the weighted PFS matrix is
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Table 7 Distance & closeness coefficient of each candidate

Candidate Z+
j Z−

j C∗
j

c1 0.1137 0.0714 0.3857

c2 0.0620 0.0843 0.5762

c3 0.0774 0.0830 0.5175

c4 0.0741 0.0782 0.5135

c5 0.0909 0.0934 0.5068

c6 0.0953 0.0725 0.4321

Dw =

⎛
⎜⎜⎜⎜⎜⎝

(0.078, 0.114) (0.089, 0.072) (0.112, 0.040) (0.074, 0.076) (0.080, 0.072)
(0.083, 0.092) (0.085, 0.052) (0.103, 0.055) (0.097, 0.044) (0.124, 0.057)
(0.094, 0.082) (0.072, 0.034) (0.103, 0.064) (0.082, 0.036) (0.096, 0.084)
(0.098, 0.083) (0.069, 0.061) (0.099, 0.055) (0.101, 0.062) (0.122, 0.080)
(0.066, 0.041) (0.098, 0.072) (0.079, 0.095) (0.081, 0.044) (0.133, 0.084)
(0.084, 0.103) (0.097, 0.076) (0.080, 0.074) (0.069, 0.037) (0.125, 0.049)

⎞
⎟⎟⎟⎟⎟⎠

The positive and negative ideal solutions are

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
5 }

= {(0.098, 0.041), (0.098, 0.034), (0.112, 0.040), (0.101, 0.036), (0.133, 0.049)}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
5 }

= {(0.066, 0.114), (0.069, 0.076), (0.079, 0.095), (0.069, 0.076), (0.096, 0.084)}

respectively.
The distance of each candidate from PFSV-PIS and PFSV-NIS accompanied by

their relative closeness coefficients are displayed in Table7.
Hence, the ranking preference is

c2 � c3 � c4 � c5 � c6 � c1

. This preference order is depicted in Fig. 2.
The above priority order advocates that the ministry of foreign affairs should be

given to c2, defence to c3, finance to c4 and theministry of information&broadcasting
to c5.



Pythagorean Fuzzy Soft Sets-Based MADM 429

Fig. 2 Ranking of candidates

5 Multiple Criteria Group Decision-Making Using
PFS-VIKOR Method

The word VIKOR is abbreviated version of “Vlse Kriterijumska Optimizacija Kom-
promisno Resenje” from Serbian language to mean manifold-criteria analysis (or
optimization) and middle ground way out. This technique was devised by Ser-
afim Opricovic to handle choice making problems having dissenting and non-
commensurable principles, with the assumption that finding the middle grounds
is apt for resolving any clash. The team of experts rummages around for a solution
that neighbors the superlative idyllic solution, and the choices are evaluated fol-
lowing all recognized rules. VIKOR has transpired as a widely held multi-criteria
decision-making technique mainly because of its computational straightforwardness
and scrupulousness of solution.

We elucidate the suggested technique bit by bit as below. First six steps of PFS-
VIKOR are the same as of PFS-TOPSIS given in Algorithm 2, so we skip them.

Algorithm 3 (PFS-VIKOR):

Step 7: Use the formulae

Si = �m
j=1w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Ri = m
max
j=1

w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Qi = κ

(
Si − S−

S+ − S−

)
+ (1 − κ)

(
Ri − R−

R+ − R−

)
,

where S+ = maxi Si , S− = mini Si , R+ = maxi Ri , and R− = mini Ri , to
get the values of group utility Si , individual regret Ri , and compromise Qi .
The real number κ is termed as coefficient of decision mechanism. The
role of the coefficient κ is that if compromise solution is to be selected by
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majority, we choose κ > 0.5; for consensus we use κ = 0.5, and κ < 0.5
represents veto.w j represents the weight of the j th criteria, which expresses
its relative importance.

Step 8: Arrange Si , Ri , and Qi in ascending array. The choice r̈α would be announced
middle ground solution if it has theminimumvalue of Qi and further gratifies
the following two necessities in chorus:

(a) If r̈α1 and r̈α2 are two best choices regarding Qi , then

Q
(
r̈α2

) − Q
(
r̈α1

) ≥ 1

n − 1

n being the number of attributes.
(b) The choice r̈α1 must be best ranked by at least one of Ri and Si .

There will exist multiple compromise solutions otherwise, which may be
located as under:

(i) r̈α1 and α2 will be the compromise solutions in case merely (a) is gratified.
(ii) r̈α1 , r̈α2 , · · · , r̈αu would be the compromise solutions in case (a) is not ful-

filled, where r̈αu may be found employing

Q
(
r̈αu

) − Q
(
r̈α1) ≥ 1

n − 1
.

Example 5.1 Assume that a multi-national company wants to choose some brand
ambassadors for advertisement of its products. The CEO of that company constitutes
a committee of four experts to give recommendations about the selection of ambas-
sadors. The number of ambassadors may vary from one to any reasonable number.
The CEO needs a unanimous decision about their selection. The committee decides
to work on scientific grounds. Assume that

C = {a1, a2, · · · , a6}

is the set of persons under consideration as embassador. Further suppose that

Q = {q1, q2, · · · , q5}

is the set of qualities under consideration for the selection of any individual. The
committee ponders on the personalities and the effectiveness of those individuals on
the mob.

Picking the weights from Table6, the experts provide the following weighted
parameter matrix
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P =

⎛
⎜⎜⎝

VN MLR MLR ONU VN
M AR AR AR VN
M M VN M M

MLR AR MLR AR VN

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
0.90 0.40 0.30 0.10 0.90
0.70 0.15 0.20 0.15 0.85
0.60 0.70 0.90 0.80 0.75
0.40 0.15 0.40 0.15 0.90

⎞
⎟⎟⎠

The normalized weighted matrix is

N̂ =

⎛
⎜⎜⎝
0.667 0.480 0.286 0.120 0.528
0.519 0.180 0.191 0.180 0.499
0.445 0.840 0.858 0.960 0.440
0.296 0.180 0.381 0.180 0.528

⎞
⎟⎟⎠

and hence the weight vector is W = (0.220, 0.192, 0.196, 0.164, 0.228).
Assume that the four experts provide the following PFS matrices in which the

PFN at (i, j)th position demarcated grades of candidates row-wise and the attribute
column-wise.

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.57, 0.39) (0.49, 0.74) (0.77, 0.38) (0.54, 0.21) (0.12, 0.48)
(0.66, 0.51) (0.54, 0.54) (0.32, 0.13) (0.99, 0.13) (0.54, 0.07)
(0.15, 0.68) (0.19, 0.32) (0.76, 0.41) (0.45, 0.15) (0.11, 0.49)
(0.67, 0.74) (0.09, 0.83) (0.59, 0.31) (0.84, 0.16) (0.37, 0.21)
(0.59, 0.17) (0.33, 0.67) (0.34, 0.68) (0.52, 0.19) (0.58, 0.61)
(0.27, 0.54) (0.49, 0.46) (0.48, 0.59) (0.55, 0.54) (0.38, 0.01)

⎞
⎟⎟⎟⎟⎟⎟⎠

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.34, 0.52) (0.58, 0.21) (0.47, 0.21) (0.70, 0.31) (0.11, 0.34)
(0.47, 0.33) (0.39, 0.32) (0.56, 0.20) (0.38, 0.11) (0.26, 0.18)
(0.59, 0.17) (0.33, 0.17) (0.19, 0.28) (0.59, 0.06) (0.78, 0.16)
(0.44, 0.17) (0.38, 0.23) (0.58, 0.27) (0.71, 0.24) (0.54, 0.02)
(0.32, 0.28) (0.56, 0.11) (0.44, 0.37) (0.49, 0.29) (0.55, 0.55)
(0.34, 0.47) (0.52, 0.37) (0.11, 0.18) (0.47, 0.13) (0.47, 0.27)

⎞
⎟⎟⎟⎟⎟⎟⎠

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.11, 0.58) (0.37, 0.22) (0.56, 0.11) (0.21, 0.69) (0.79, 0.32)
(0.13, 0.67) (0.46, 0.13) (0.36, 0.54) (0.56, 0.27) (0.46, 0.61)
(0.59, 0.13) (0.25, 0.11) (0.62, 0.33) (0.47, 0.28) (0.28, 0.47)
(0.11, 0.49) (0.23, 0.05) (0.50, 0.28) (0.34, 0.48) (0.61, 0.54)
(0.17, 0.29) (0.82, 0.34) (0.56, 0.51) (0.50, 0.28) (0.49, 0.12)
(0.33, 0.69) (0.57, 0.61) (0.48, 0.57) (0.33, 0.02) (0.46, 0.31)

⎞
⎟⎟⎟⎟⎟⎟⎠
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D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.40, 0.59) (0.41, 0.32) (0.49, 0.12) (0.35, 0.65) (0.39, 0.12)
(0.25, 0.17) (0.38, 0.10) (0.85, 0.26) (0.44, 0.57) (0.92, 0.14)
(0.38, 0.51) (0.36, 0.11) (0.52, 0.29) (0.48, 0.38) (0.52, 0.35)
(0.56, 0.11) (0.73, 0.16) (0.35, 0.27) (0.58, 0.62) (0.62, 0.63)
(0.11, 0.01) (0.33, 0.37) (0.28, 0.38) (0.47, 0.32) (0.71, 0.19)
(0.58, 0.17) (0.44, 0.15) (0.56, 0.16) (0.33, 0.21) (0.88, 0.26)

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the aggregated matrix is

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.355, 0.520) (0.463, 0.373) (0.573, 0.205) (0.450, 0.465) (0.353, 0.315)
(0.378, 0.420) (0.443, 0.273) (0.523, 0.283) (0.593, 0.270) (0.545, 0.250)
(0.428, 0.373) (0.373, 0.178) (0.523, 0.328) (0.498, 0.218) (0.423, 0.368)
(0.445, 0.378) (0.358, 0.318) (0.505, 0.283) (0.618, 0.375) (0.535, 0.350)
(0.298, 0.188) (0.510, 0.373) (0.405, 0.485) (0.495, 0.270) (0.583, 0.368)
(0.380, 0.468) (0.505, 0.398) (0.408, 0.375) (0.420, 0.225) (0.548, 0.213)

⎞
⎟⎟⎟⎟⎟⎟⎠

and hence the weighted PFS matrix is

Dw =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.078, 0.114) (0.089, 0.072) (0.112, 0.040) (0.074, 0.076) (0.080, 0.072)
(0.083, 0.092) (0.085, 0.052) (0.103, 0.055) (0.097, 0.044) (0.124, 0.057)
(0.094, 0.082) (0.072, 0.034) (0.103, 0.064) (0.082, 0.036) (0.096, 0.084)
(0.098, 0.083) (0.069, 0.061) (0.099, 0.055) (0.101, 0.062) (0.122, 0.080)
(0.066, 0.041) (0.098, 0.072) (0.079, 0.095) (0.081, 0.044) (0.133, 0.084)
(0.084, 0.103) (0.097, 0.076) (0.080, 0.074) (0.069, 0.037) (0.125, 0.049)

⎞
⎟⎟⎟⎟⎟⎟⎠

The positive and negative ideal solutions are

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
5 }

= {(0.098, 0.041), (0.098, 0.034), (0.112, 0.040), (0.101, 0.036), (0.133, 0.049)}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
5 }

= {(0.066, 0.114), (0.069, 0.076), (0.079, 0.095), (0.069, 0.076), (0.096, 0.084)}

respectively.
Choosing κ = 0.5, the values of Si , Ri , and Qi for each choice r̈i are calculated

utilizing

Si = �5
j=1w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Ri = 5
max
j=1

w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Qi = κ

(
Si − S−

S+ − S−

)
+ (1 − κ)

(
Ri − R−

R+ − R−

)
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Table 8 Values of Si , Ri , and Qi for alternatives

Alternative Si Ri Qi

a1 0.7698 0.2589 1.0000

a2 0.3663 0.1469 0.0000

a3 0.5788 0.2280 0.6260

a4 0.5562 0.1491 0.2457

a5 0.6531 0.1025 0.5754

a6 0.6148 0.0358 0.4368

Fig. 3 3D column chart of
rankings

and are given in Table8 below:
The rank of choices is as under:

By Qi : a2 ≺ a4 ≺ a6 ≺ a5 ≺ a3 ≺ a1

By Si : a2 ≺ a4 ≺ a3 ≺ a6 ≺ a5 ≺ a1

By Ri : a6 ≺ a5 ≺ a2 ≺ a4 ≺ a3 ≺ a1

Since

Q(a4) − Q(a2) = 0.2457 �
1

4

so (a) is not gratified. Further,

Q(a6) − (a2) = 0.4368 ≥ 1

4

Thus, the committee recommends that the persons a2, a4, and a6 must be chosen
as brand ambassadors. These rankings are depicted in Fig. 3.
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6 A Similarity Measure for PFSSs

In this section, we propose a new similarity measure for PFSSs based on cosine
similarity measure and Frobenius inner product of matrices and render some of its
characteristics.

Definition 6.1 Let X={∂i : i=1, · · · ,m}be a crisp set and E = {e j : j = 1, · · · , n}
be the aggregate of attributes. If

�1 =

⎛
⎜⎜⎜⎝

(σ11, �11)�1 (σ12, �12)�1 · · · (σ1n, �1n)�1

(σ21, �21)�1 (σ22, �22)�1 · · · (σ2n, �2n)�1

...
...

. . .
...

(σm1, �m1)�1 (σm2, �m2)�1 · · · (σmn, �mn)�1

⎞
⎟⎟⎟⎠

and

�2 =

⎛
⎜⎜⎜⎝

(σ11, �11)�2 (σ12, �12)�2 · · · (σ1n, �1n)�2

(σ21, �21)�2 (σ22, �22)�2 · · · (σ2n, �2n)�2

...
...

. . .
...

(σm1, �m1)�2 (σm2, �m2)�2 · · · (σmn, �mn)�2

⎞
⎟⎟⎟⎠

are PFS matrices of PFSSs (�1, E) and (�2, E), then similarity measure between
(�1, E) and (�2, E) is given as

Sim(�1,�2) = < �1,�2 >

‖ �1 ‖‖ �2 ‖ ,

where

< �1,�2 > = tr(�T
1 �2)

‖ �1 ‖ =
√

< �1,�1 >.

Here tr(�T
1 �2) (known as trace of the matrix �T

1 �2) denotes the sum of ele-
ments at principal diagonal of the matrix �T

1 �2. The above definition holds good if
hesitation margin εi j is also taken into account. Moreover, this similarity measure
satisfies the following:

(1) 0 ≤ Sim(�1,�2) ≤ 1.
(2) Sim(�1,�2) = 1 ⇔ �1 = �2.
(3) Sim(�1,�2) = Sim(�2,�1).
(4) Sim(�,�c) = 1 iff � is a crisp set.
(5) If (�1, E)�̃(�2, E)�̃(�3, E), then Sim(�1,�3) ≤ Sim(�2,�3).

Example 6.2 Let X = {∂1, · · · , ∂4} be the universe and E = {ei | i = 1, 2, 3} be
the aggregate of attributes. Consider the PFS matrices
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�1 =

⎛
⎜⎜⎝

(0.95, 0.21) (0.73, 0.46) (0.53, 0.71)
(0.38, 0.82) (1, 0) (0.67, 0.52)
(0.28, 0.57) (0.58, 0.31) (0.62, 0.79)

(0, 1) (0.91, 0.19) (0.63, 0.74)

⎞
⎟⎟⎠

and

�2 =

⎛
⎜⎜⎝

(0.54, 0.29) (0.61, 0.67) (0.76, 0.02)
(0.07, 0.53) (0.56, 0.11) (0.39, 0.79)
(0.58, 0.17) (0.36, 0.34) (0.17, 0.58)
(0.21, 0.83) (0.49, 0.48) (0.21, 0.87)

⎞
⎟⎟⎠

representing PFSSs (�1, E) and (�2, E), respectively. Now,

< �1, �2 > = (0.95, 0.21).(0.54, 0.29) + (0.73, 0.46).(0.61, 0.67) + · · · + (0.63, 0.74).(0.21, 0.87)

= 6.7180,

‖ �1 ‖ =
√
0.952 + 0.212 + 0.732 + · · · + 0.742

= 3.1089,

‖ �2 ‖ =
√
0.542 + 0.292 + 0.612 + · · · + 0.872

= 2.4784.

∴ Sim(�1, �2) = < �1, �2 >

‖ �1 ‖‖ �2 ‖
= 6.7180

3.1089 × 2.4784
= 0.8719.

Example 6.3 Let X = {∂1, ∂2, ∂3} and E = {e1, e2, e3}. Let

�1 =
⎛
⎝

(0.52, 0.73, 0.44) (0.89, 0.15, 0.43) (0.62, 0.59, 0.52)
(0.46, 0.73, 0.50) (1, 0, 0) (0.51, 0.51, 0.69)
(0.32, 0.19, 0.93) (0.64, 0.27, 0.72) (0.87, 0.03, 0.49)

⎞
⎠

�2 =
⎛
⎝

(0.68, 0.52, 0.52) (0.31, 0.69, 0.65) (0.44, 0.02, 0.90)
(0.61, 0.50, 0.61) (0.33, 0.57, 0.75) (0.81, 0.16, 0.56)
(0.52, 0.28, 0.81) (0.29, 0.22, 0.93) (0.21, 0.39, 0.90)

⎞
⎠

be the PFS matrices representing the PFSSs (�1, E) and (�2, E), respectively.
Now,

< �1,�2 > = (0.52, 0.73, 0.44).(0.68, 0.52, 0.52) + · · · + (0.74, 0.63, 0.49).(0.35, 0.54, 0.90)

= 7.0581,

‖ �1 ‖ =
√
0.522 + 0.732 + 0.442 + · · · + 0.492

= 2.9987,

‖ �2 ‖ =
√
0.682 + 0.522 + 0.312 + · · · + 0.542

= 2.9994
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∴ Sim(�1, �2) = < �1, �2 >

‖ �1 ‖‖ �2 ‖
= 7.0581

2.9987 × 2.9994
= 0.7847.

Example 6.4 Let X = {∂1, ∂2, ∂3} and E = {e1, e2, e3}. Consider the PFS matrices

(�1, E) =
⎛
⎝

(0.27, 0.39) (0.42, 0.51) (0.61, 0.43)
(0.25, 0.56) (0.58, 0.49) (0.92, 0.36)
(0.76, 0.23) (0.46, 0.48) (0.54, 0.21)

⎞
⎠

(�2, E) =
⎛
⎝

(0.45, 0.21) (0.26, 0.89) (0.54, 0.39)
(0.29, 0.28) (0.46, 0.44) (0.64, 0.31)
(0.27, 0.54) (0.28, 0.33) (0.89, 0.16)

⎞
⎠

(�3, E) =
⎛
⎝

(0.93, 0.15) (0.45, 0.59) (0.33, 0.14)
(0.39, 0.28) (0.51, 0.55) (0.64, 0.27)
(0.71, 0.32) (0.33, 0.18) (0.09, 0.56)

⎞
⎠

Then Sim(�2,�1) = 0.8925 > 0.82 and Sim(�1,�3) = 0.8491 > 0.82 but
Sim(�2,�3) = 0.8027 ≯ 0.82. This advocates that the relation of being similar
is not transitive.

Definition 6.5 Two PFSSs (�1, E1) and (�2, E2) defined over (X, E) are called λ-
similar, denoted as (�1, E1) ≈λ (�2, E2), if Sim(�1,�2) ≥ λ for some 0 < λ < 1.

Proposition 6.6 The relation of being λ-similar is reflexive and symmetric, but not
transitive.

Corollary 6.7 The relation of being λ-similar is not an equivalence relation.

6.1 Weighted Similarity Measure for PFSSs

In this subsection, we present weighted similarity measure between two PFSSs and
give some of its peculiar characteristics.

Definition 6.8 Let �1 and �2 be as given in Definition 6.1. Assume that the weight
of e j is w j ∈ [0, 1] for j = 1, 2, · · · , n. The weighted similarity measure between
�1 and �2 is given as

SimW (�1,�2) = < �1,�2 >

‖ �1 ‖‖ �2 ‖ ,

where
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< �1,�2 > = �i, jw j (σi j , �i j )�1 .(σi j , �i j )�2

� jw j

‖ �1 ‖ =
√

< �1,�1 >.

This weighted similarity measure satisfies the same properties as given in Defini-
tion 6.1.

Example 6.9 Consider the PFSSs given by the PFS matrices

�1 =
⎛
⎝

(0.52, 0.73) (0.89, 0.15) (0.62, 0.59)
(0.46, 0.73) (1, 0) (0.51, 0.51)
(0.32, 0.19) (0.64, 0.27) (0.87, 0.03)

⎞
⎠

�2 =
⎛
⎝

(0.68, 0.52) (0.31, 0.69) (0.44, 0.02)
(0.61, 0.50) (0.33, 0.57) (0.81, 0.16)
(0.52, 0.28) (0.29, 0.22) (0.21, 0.39)

⎞
⎠

Assume that the weights of the attributes e1, e2, and e3 arew1 = 0.52,w2 = 0.31,
and w3 = 0.47, respectively. Then,

< �1,�2 > = 1.7672

‖ �1 ‖ = 1.7020

‖ �2 ‖ = 1.3479

∴ SimW (�1,�2) = 0.7703

6.2 Practical Implementation of Proposed Similarity
Measure in Life Sciences

As a model, in this subsection, we employ proposed similarity measure to diagnose
whether a person has hepatitis or not. As earlier, we first propose Algorithm 4 before
heading towards numerical example where proposed similarity measure may be suc-
cessfully employed as follows:

Algorithm 4

Step 1: Choose the set X = {η1 = hepatitis, η2 = no hepatitis}.
Step 2: Choose the set of symptoms E = {e1, e2, · · · , en}.
Step 3: Choose a model PFS matrix (�, E) with which similarity is to be com-

puted.
Step 4: Choose PFS matrix (�1, E) for the patient.
Step 5: Compute similarity between (�1, E) and (�, E).
Step 6: Decide the threshold value λ ∈]0, 1[.
Step 7: The patient is diseased if Sim(�,�1) ≥ λ.
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Example 6.10 Presume that X = {η1 = hepatitis, η2 = no hepatitis}. Let’s choose
the set of parameters containing the collection of some detectible symptoms, say,
E = {ei : i = 1, 2, · · · , 5}, where

e1 = vomiting,

e2 = jaundice,

e3 = light/clay-colored stool,

e4 = abdominal discomfort, and

e5 = dark urine.

The PFS matrix (�, E) over X for hepatitis is given as under, which may be
constructed with the aid of clinical/medical experts:

(�, E) =

⎛
⎜⎜⎜⎜⎝

(0.62, 0.47) (0.36, 0.57)
(0.89, 0.41) (0.27, 0.93)
(0.58, 0.25) (0.31, 0.54)
(0.51, 0.62) (0.49, 0.38)
(0.63, 0.45) (0.53, 0.41)

⎞
⎟⎟⎟⎟⎠

The PFS matrix (�1, E) over X for hepatitis based upon an ill person is given as
follows:

(�1, E) =

⎛
⎜⎜⎜⎜⎝

(0.11, 0.07) (0.92, 0.15)
(0.14, 0.05) (0.86, 0.26)
(0.08, 0.96) (0.57, 0.02)
(0.36, 0.69) (0.83, 0.19)
(0.46, 0.37) (0.29, 0.84)

⎞
⎟⎟⎟⎟⎠

Let’s decide the threshold valueλ = 0.75. The similaritymeasure between (�, E)

and (�1, E) is Sim(�,�1) = 0.6497 < λ, so we conclude that the person does not
seem to be victim of hepatitis.

7 Conclusion

We studied some elementary notions of Pythagorean fuzzy soft sets in this chapter.
Some fundamental operations and their prime characteristics are also examined with
the assistance of elaborative examples. We proposed four algorithms, i.e., choice
value method, PFS-TOPSIS, VIKOR, andmethod of similarity measures, for model-
ing uncertainties in MADM problems based upon PFSSs. The proposed Algorithms
have been efficaciously applied on ranking different alternatives. To comprehend
the final rankings, we have made use of statistical charts. The proposed models
have tremendous potential for further exploration in theoretical besides application



Pythagorean Fuzzy Soft Sets-Based MADM 439

perspective and may be efficiently applied in other hybrid structures of fuzzy sets
including Pythagorean m-polar fuzzy sets, Pythagorean m-polar fuzzy soft sets, q-
rung fuzzy soft sets, neutrosophic soft sets, and Pythagorean fuzzy parameterized
soft sets, etc. with slight amendments. The ideas may be efficiently employed in
handling uncertainties in different sectors of real-life situations including business,
artificial intelligence, marketing, shortest route problem, image processing, electoral
system, pattern recognition, machine learning, medical diagnosis, trade analysis,
game theory, forecasting, agri-business analysis, robotics, coding theory, recruitment
problems, and many other problems.
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