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1 Introduction

In modern decision-making sciences, multi-attribute group decision-making
(MAGDM) refers to a series of decision issues where domain decision experts (DEs)
are required to provide their evaluations over feasible alternatives under multiple
attributes [1–5]. Some techniques or methods are then applied to help DEs to obtain
the ranking order of candidate alternatives so that the optimal one(s) is obtained
accordingly. However, it is quite difficult to deal with the inherent fuzziness and
uncertainties in practical MAGDM problems. Numerous scholars and scientists
devoted themselves to discover tools that can effectively handle fuzzy information in
data. Intuitionistic fuzzy sets (IFSs) [6], originally generated by Atanassov have the
capability of representing uncertain information and they depict fuzzy phenomenon
from both positive and negative perspectives. In other words, by simultaneously
incorporating membership degree (MD) and non-membership degree (NMD), IFSs
canmore comprehensively and accurately describe fuzzy and vague decision-making
information. Due to this characteristic, IFSs-based MAGDM theory and methods
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have been active fields, and quite a few new achievements have been made in the
past couple of years. For example, in [7] Xu originated the theory of aggregation
operators (AOs) for intuitionistic fuzzy numbers (IFNs). After it, some other AOs for
IFNs, such as intuitionistic fuzzyBonferronimean [8], intuitionistic fuzzy point oper-
ators [9], intuitionistic fuzzy Maclaurin symmetric mean [10], intuitionistic fuzzy
Muirhead mean [11], intuitionistic fuzzy power average operators [12], intuitionistic
fuzzy power Bonferroni mean [13], etc., have been proposed one after another.

MDs and NMDs of IFSs are denoted by crisp numbers, however, which is some-
times difficult to be determined by DEs. As MAGDM problems in practice are
becoming more and more complicated, rather than crisp numbers, DEs would like
to employ linguistic terms to denote MDs and NMDs to express their assessments.
Motivated by this fact, Chen et al. [14] generalized IFSs and proposed linguistic
intuitionistic fuzzy sets (LIFSs), which use linguistic terms to denote MD and NMD.
Linguistic terms are quite similar to natural language and so that it is more convenient
for DEs to use LIFSs to provide their evaluation values. After the appearance of LIFS,
Ou et al. [15] introduced the LIFS-TOPSIS method to deal with MAGDM problems.
Yuan et al. [16] proposed a series of linguistic intuitionistic fuzzy (LIF) Shapely AOs
to handle decision-making issueswith LIF numbers (LIFNs).Meng et al. [17] studied
preference relations under LIFSs and applied them in decision-making problems. Liu
and You [18] proposed a collection of novel LIF Heronian mean AOs under Einstein
t-norm and t-conorm. Liu and Qin [19] put forward LIF power average operator
in order to reduce the negative influence of unduly high or low aggregated LIFNs
on the final results. Liu and Qin [20], and Liu and Liu [21] further presented LIF
Maclaurin symmetric mean operators and LIF Hamy mean operators to capture the
interrelationship among multiple aggregated LIFNs. To effectively handle hetero-
geneous interrelationship among LIFNs, Liu and his colleagues [22] defined LIF
partitioned Heronian mean operators. Garg and Kumar [23] further introduced novel
LIF power average operators and the corresponding decision-making method based
on set pair analysis. Zhang et al. [24] proposed the LIF-ELECTRE decision-making
method and applied in coal mine safety evaluation problems. Peng and Wang [25]
introduced a LIFMAGDMmethod based on cloud model and studied its application
in selecting sustainable energy crop. For more studies on LIFSs-based MAGDM
methods, readers are suggested to refer [26–30].

Aforementioned literatures reveal that LIFSs are capable to depict fuzzy eval-
uation values provided by DEs effectively, however, they still have drawbacks
when dealing with some practical decision-making situations. The definition of
LIFS is as follows: let S̃ = {sα|s0 ≤ sα ≤ st , α ∈ [0, t] } be a predefined contin-
uous linguistic term set, then a LIFS defined on S̃ can be expressed as A =
{(x, sθ (x), sσ (x))|x ∈ X }. As is known,A should satisfy the constraint that θ+σ ≤ t ,
which cannot be always strictly satisfied in some practical MAGDM problems. For
example, an ordered pair (s3, s4) is used to depict a DE’s evaluation value, where
sl is a linguistic term and l ∈ [0, 6]. As 3 + 4 ≤ 6, the evaluation value (s3, s4)
cannot be handled by LIFSs, which illustrates the weakness of LIFSs. In order to
more accurately capture DEs’ complicated and uncertain decision information and
handle more difficult decision situations, Garg [31] proposed a new tool, called
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linguistic Pythagorean fuzzy sets (LPFSs), which are motivated by Pythagorean
fuzzy sets (PFSs) that introduced by Yager [32]. As is widely known, the constraint
of PFSs is that the square sum of MD and NMD is not greater than one and this
characteristic makes PFSs more powerful and flexible than IFSs, gaining great inter-
ests from scholars [33–42]. In LPFSs, MDs and NMDs are denoted by linguistic
terms, satisfying the constraint that θ2 + σ 2 ≤ t2 (sθ and sσ denote the MD and
NMD, respectively, and st is the largest linguistic term of the predefined linguistic
term set), and due to this reason, LPFSs can describe lager information span than
LIFSs. In [31], Garg proposed basic operational linguistic Pythagorean fuzzy (LPF)
values, presented their fundamental AOs, and applied in MAGDM problems. After
it, Liu et al. [43] studied LPF operational rules, AOs, and MAGDM method based
on Archimedean t-norm and t-conorm. Han et al. [44] introduced distance and
entropy measures of LPFSs and based on which, an LPF-TOPSIS decision-making
method was originated. To felicitously handle MAGDM issues where interrelation-
ship among attributes is heterogeneous, Lin et al. [45] put forward theLPFpartitioned
Bonferroni mean operators.

There exists high indeterminacy and hesitancywhen providingMDs andNMDs of
evaluation values in the most practical MAGDM processes. Hence, the key problem
is to effectively deal with the inherent fuzziness and uncertainties of data and DEs’
hesitancy. For instance, Torra [46] proposed the concept of hesitant fuzzy sets (HFSs)
by considering multiple possible MDs in an evaluation element. Compared with the
classical fuzzy set theory [47], HFSs can better depict DEs’ hesitancy. Similarly, Zhu
et al. [48] introduced the dual HFSs (DHFSs) by taking not only multiple MDs but
also NMDs into account. DHFSs are regarded as an extension of IFS, as they empha-
size multiple values of degrees instead single ones. Another example is dual hesitant
Pythagorean fuzzy sets introduced by Wei et al. [49], which consider more than
one Pythagorean fuzzy MDs and NMDs in the traditional PFSs. These publications
remind scholars and DEs an extensively existing phenomenon that most decisions
are made in a hesitant fuzzy environment and DEs’ hesitancy should be taken into
consideration before determining the rank of feasible alternatives. In LPF, decision-
making environment, we always encounter MAGDM situations wherein DEs are
hesitant among a set of linguistic terms when giving the MDs and NMDs an eval-
uation value. Motivated by DHFSs which allow the existence of multiple MDs and
NMDs in a decision evaluation value, this paper extends the traditional LPFSs to a
hesitant fuzzy environment and propose dual hesitant linguistic Pythagorean fuzzy
sets (DHLPFSs), which permit MDs and NMDs to be denoted by a set of linguistic
terms. Compared with LPFSs, DHLPFSs are more flexible and can depict attribute
values more accurately. In this chapter. We first give the definition, operational rules,
comparison method, and AOs of DHLPFSs and propose a novel MAGDM method
with DHLPFSs. We also show the performance of the proposed newmethod through
illustrative examples.

Additionally, to more accurately capture DEs’ evaluation value in hesitant fuzzy
decision-making environment, not only each member in an evaluation element but
also its probabilistic information should be considered. For example, Zhang et al.
[50] capture the probability of each member in HFSs and proposed the probabilistic



370 J. Wang et al.

HFSs (PHFSs). Compared with HFSs, the PHFSs not only depict the hesitant fuzzy
MDs but also the corresponding probabilistic information. Afterward, PHFSs have
been successfully applied in various fields, such as public company efficiency eval-
uation [51], hospital evaluation [52], virtual reality project declaration evaluation
[53], selection of the most influential teacher [54], etc. Similarly, Hao et al. [55]
extended DHFSs to probabilistic DHFSs by taking the probabilities of possible MDs
and NMDs into account. The ability of efficiency of probabilistic DHFSs to depict
DEs’ evaluation values is further studied in [56–58]. Additionally, some other new
information representation tools were also proposed, such as probabilistic linguistic
terms set [59], probabilistic linguistic dual hesitant fuzzy sets [60], and probabilistic
single-valued neutrosophic hesitant fuzzy sets [61]. These publications motivate us
to further extend DHLPFSs to a more generalized form, i.e., probabilistic DHLPFSs
(PDHLPFSs). The advantages of PDHLPFSs are outstanding. First, they allow the
MDandNMDtobedenoted by two collections of possible linguistic terms,which can
comprehensively describe DEs’ high hesitancy. Second, they also consider the corre-
sponding probabilistic information of each linguistic term, which can more effec-
tively depict group’s evaluation values. For the sake of applications of PDHLPFSs in
MAGDM, the basic operational laws, comparison method, and AOs of PDHLPFSs
are studied. Finally, the main steps of solving aMAGDMproblem under PDHLPFSs
are presented.

The main motivations of our works are to propose novel MAGDM methods, that
only not more accurately depict DEs’ evaluation information but also help them
to appropriately determine the optimal alternatives. The main contributions of this
chapter are four-fold. First, two information expression tools were proposed, namely
DHLPFSs and PDHLPFSs. These two fuzzy set theories have obvious advantages
and superiorities in depicting DEs’ evaluations. Second, we proposed a series of
AOs to fuse DHLPFSs and PDHLPFSs, which are potential for introducing novel
decision-making methods. Third, we proposed two newMAGDMmethods. Finally,
real MAGDM problems were employed to prove the validity of our methods. The
rest of this chapter is organized as follows. Section 2 recalls basic notions which
will be used in the following sections. Section 3 introduces DHLPFSs and the corre-
sponding MAGDM method. Section 4 further proposes DHLPFSs and studies their
applications in MAGDM. Conclusion remarks can be found in Sect. 5.

2 Basic Concepts

This section briefly reviews basic notions that will be used in the following sections.

Definition 1 ([31]) Let X be a fixed set and S̃ = {s0, s1, s2 . . . , sl} be a continuous
linguistic term set with odd cardinality. A linguistic Pythagorean fuzzy set (LPFS)
defined in X is given as

γ = {(
x, sα(x), sβ(x)

)|x ∈ X
}
, (1)
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where sα(x), sβ(x) ∈ S[0,l], sα , and sβ represent the linguistic MD and linguistic
NMD, respectively, such that 0 ≤ α2 + β2 ≤ l2. For convenience, the ordered pair
γ = (

sα, sβ
)
is called a linguistic Pythagorean fuzzy value (LPFV). The linguistic

indeterminacy degree of γ is expressed as π(x) = s
(l2−α2−β2)

1/2 .
The basic operational rules of LPFVs are presented as follows.

Definition 2 ([31]) Let γ1 = (
sα1 , sβ1

)
, γ2 = (

sα2 , sβ2

)
, and γ = (

sα, sβ
)
be LPFVs

and λ be a positive real number, then

(1) γ1 ⊕ γ2 =
(
s
(α2

1+α2
2−α2

1α
2
2/ l

2)
1/2 , s(β1β2/ l)

)
;

(2) γ1 ⊗ γ2 =
(
s(α1α2/ l), s(β2

1+β2
2−β2

1β
2
2 / l

2)
1/2

)
;

(3) λγ =
(
s
l
(
1−(1−α2/ l2)

λ
)1/2 , sl(β/ l)λ

)
;

(4) γ λ =
(
sl(α/ l)λ , sl

(
1−(1−β2/ l2)

λ
)1/2

)
.

Garg [31] proposed a method to compare any two LPFVs.

Definition 3 ([31]) Let γ = (
sα, sβ

) ∈ �[0,l] be a LPFV, then the score function
S(γ ) of γ is expressed as

S(γ ) = s√
(l2+α2−β2)/2

, (2)

and the accuracy function H(γ ) is defined as

H(γ ) = s√
α2+β2 , (3)

where S(γ ), H(γ ) ∈ S. Let γ1 = (
sα1 , sβ1

)
and γ2 = (

sα2 , sβ2

)
be any two LPFVs,

then

(1) If S(γ1) > S(γ2), then γ1 > γ2;
(2) If S(γ1) = S(γ2), then

If H(γ1) > H(γ2), then γ1 > γ2;
If H(γ1) = H(γ2), then γ1 = γ2.

3 Dual Hesitant Linguistic Pythagorean Fuzzy Sets
and Their Applications in MAGDM

In this section, we introduce the notion of DHLPFSs and study their application in
MAGDM problems. For this purpose, we first introduce the motivations to explain
why we propose DHLPFSs and why we need them. Afterward, some related notions,
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such as operational rules, comparison method, and AOs are proposed. Finally, we
employ DHLPFSs as well as their AOs to solve MAGDM problems.

3.1 Motivations and Necessity of Proposing DHLPFSs

In LPFSs, MD and NMD are denoted by two linguistic terms. As is known, linguistic
terms set and linguistic terms are similar to natural language so that LPFSs provide
DEs a convenient and natural manner to express their evaluation values. Due to this
reason, LPFSs aremore suitable than PFSs to depict DEs’ fuzzy and complex evalua-
tion information. However, the traditional LPFSs still have limitations in some prac-
tical MAGDM problems. As real decision-making problems are very complicated,
sometimes it is difficult for DEs to provide single linguistic terms for MD and NMD.
Actually, DEs are always hesitant among a collection of possible linguistic terms
when determining MDs and NMDs of their evaluation values. To better demonstrate
this phenomenon, we provide the following example.

Example 1 Suppose there are three professors and they are invited to evaluate the
innovativeness of a doctoral student’s research proposal. To more accurately and
effectively evaluate the quality and innovation, DEs are permitted to use multiple
values to denoteMDs andNMDs of their evaluation values. Let S be a given linguistic
term set, where S = {s0 = very poor, s1 = poor, s2 = slightly poor, s3 = fair, s4
= slightly good, s5 = good, s6 = slightly good}. the three professors use multiple
linguistic terms to express their evaluation information and DEs’ evaluation opinions
are listed in Table 1.

Take the first professor as an example, as seen inTable 1, he/she is hesitant between
s4 and s5 when giving MD and s1, s2 and s3 when providing MD. It is obvious that in
the framework of LPFSs, the overall evaluation values of the decision group cannot
be denoted. This is because LPFS theory only allows single MD and NMD, and so
that it is insufficient to handle Example 1. In practical MAGDM problems, due to
many reasons, such as lacking prior knowledge or time, DEs often hesitate among
several values when providing MDs and NMDs and obviously LPFSs are incapable
to handle these situations. Therefore, it is necessary to study LPFSs under hesitant
fuzzy decision environment.

Table 1 The evaluation
information provided by DEs
in Example 1

Possible MDs Possible NMDs

The first professor {s4, s5} {s1, s2, s3}
The second professor {s2, s3, s4} {s0, s3}
The third professor {s1, s2, s4} {s0, s2, s3}
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3.2 Definition of DHLPFSs

Definition 4 Let X be a fixed set and S̃ = {sα|0 ≤ α ≤ l } be continuous linguistic
term set with odd cardinality. A dual hesitant linguistic Pythagorean fuzzy set
(DHLPFSs) defined on X is expressed as

D = {〈x, hD(x), gA(x)〉|x ∈ X}, (4)

where hA(x), gA(x) ⊆ S̃ are two sets of some linguistic terms, denoting the possible
linguisticMDs and linguistic NMDs of element x ∈ X to the setD, respectively, such
that σ 2+η2 ≤ l2, where sσ ∈ hD(x), and sη ∈ gD(x) for x ∈ X . For convenience, we
call the ordered pair d(x) = (hD(x), gD(x)) a dual hesitant linguistic Pythagorean
fuzzy element (DHLPFE), which can be denoted as d = (h, g), where sσ ∈ h, sη ∈ g
and σ 2 + η2 ≤ l2.

Definition 4 reveals that DHLPFSs can be regarded as a generalized form of
LPFSs, by considering situations of the existence of multiple MDs and NMDs. In
other words, LPFS is a special case of DHLPFSs. Hence, the proposed DHLPFSs
are more suitable to deal with decision-making cases wherein DEs have different
opinions and they cannot reach an agreement. In Example 1, if we use DHLPFSs to
denote the overall evaluation value, then it should be d = {{s1, s2, s3, s4, s5}, {s0,
s1, s2, s3}}, which is obviously a DHLPFE.

3.3 Operations of DHLPFEs

Based on the definition of DHLPFEs and the operations principle of DHFEs, we
propose some basic operational rules of DHLPFEs.

Definition5 Letd1 = (h1, g1),d2 = (h1, g2), andd = (h, g)be any threeDHLPFEs
and λ be a positive real number, then

(1) d1 ⊕ d2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s
(σ 2

1 +σ 2
2 −σ 2

1 σ 2
2 / l2)

1/2

}
,
{
s(η1η2/ l)

}}
;

(2) d1 ⊗ d2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s(σ1σ2/ l)

}
,
{
s
(η2

1+η2
2−η2

1η
2
2/ l

2)
1/2

}}
;

(3) λd = ⋃
σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ
)1/2

}
,
{
sl(η/ l)λ

}}
;

(4) dλ = ⋃
σ∈h,η∈g

{{
sl(σ/ l)λ

}
,

{
s
l
(
1−(1−η2/ l2)

λ
)1/2

}}
.

Example 2 Letd1 = {{s3, s4, s5}, {s2, s3}} andd2 = {{s2, s4}, {s4}}be twoDHLPFEs
derived from a pre-defined linguistic term set S̃ = {sα|0 ≤ α ≤ 6 }, then
d1 ⊕ d2 = {{s3.4641, s4.5826, s4.2687, s4.9889, s5.1208, s5.4671}, {s1.3333, s2.0000}};
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d1 ⊗ d2 = {{s1.0000, s1.333, s2.6667, s3.3333}, {s4.2687, , s4.5826}};
3d1 = {{s4.5621, , s5.4614, s5.9138}, {s0.2222, s0.7500}};
d3
1 = {{s0.7500, s1.7778, s3.4722}, {s3.2735, s4.5621}}.

Theorem 1 Let d1 = (h1, g1), d2 = (h1, g2), and d = (h, g) be any three
DHLPFEs, then

(1) d1 ⊕ d2 = d2 ⊕ d2;
(2) d1 ⊗ d2 = d2 ⊗ d1;
(3) λ(d1 ⊕ d2) = λd1 ⊕ λd2;
(4) λ1d ⊕ λ2d = (λ1 + λ2)d, (λ1, λ2 ≥ 0);
(5) dλ1 ⊗ dλ2 = dλ1+λ2 , (λ1, λ2 ≥ 0);
(6) dλ

1 ⊗ dλ
2 = (d1 ⊗ d2)

λ, (λ ≥ 0).

Proof It is easy to prove that (1) and (2) hold, in the following we attempt to prove
other formulas. According to Definition 5, we have

λ(d1 ⊕ d2) =
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(
1−
((

1−σ21 / l2
)(

1−σ22 / l2
))λ

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
(
η1η2/ l2

)λ

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,

and

λd1 ⊕ λd2 =
⋃

σ1∈h1,η1∈g1

{{

s
l
(
1−(1−σ 2

1 / l2
)λ)1/2

}

,
{
sl(η1/ l)λ

}}

⊕
⋃

σ2∈h2,η2∈g2

{{

s
l
(
1−(1−σ 2

2 / l2
)λ)1/2

}

,
{
sl(η2/ l)λ

}}

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2

}

,
{
sl(η1η2/ l2)λ

}}

= λ(d1 ⊕ d2),

which proves the correctness of (3).
Meanwhile, we can obtain that

λ1d ⊕ λ2d

=
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ1
)1/2

}

,
{
sl(η/ l)λ1

}}

⊕
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ2
)1/2

}

,
{
sl(η/ l)λ2

}}

=
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ2+λ1
)1/2

}

,
{
s(l(η/ l)λ1+λ2

)
}}

,

and

(λ1 + λ2)d =
⋃

σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ1+λ2
)1/2

}
,
{
sl(η/ l)λ1+λ2

}} = λ1d ⊕ λ2d,
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which proves the validity of (4).
Moreover,

dλ1 ⊗ dλ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1

}
,

{
s
l
(
1−(1−η2/ l2)

λ1
)1/2

}}

⊗
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ2
)1/2

}}
,

=
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2

}}

dλ1+λ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2

}}
= dλ1 ⊗ dλ2 ,

which proves the rightness of (5).
Besides,

dλ
1 ⊗ dλ

2 =
⋃

σ1∈h1,η1∈g1

{{
sl(σ1/ l)

λ

}
,

{
s
l
(
1−(1−η2

1/ l
2)

λ
)1/2

}}

⊗
⋃

σ2∈h2,η2∈g2

{{
sl(σ2/ l)

λ

}
,

{
s
l
(
1−(1−η2

2/ l
2)

λ
)1/2

}}
,

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)

λ

}
,

{
s
l
(
1−((1−η2

1/ l
2)(1−η2

2/ l
2))

λ
)1/2

}}
.

In addition,

(d1 ⊗ d2)
λ =

⎛

⎝
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎨

⎩

{
sσ1σ2/ l

}
,

⎧
⎨

⎩
s(

η21+η22−η21η22/ l2
)1/2

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎠

λ

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎪⎨

⎪⎩

⎧
⎨

⎩
s
l
(
σ1σ2/ l2

)λ

⎫
⎬

⎭
,

⎧
⎪⎨

⎪⎩
s
l

(
1−
((

1−η21/ l2
)(

1−η22/ l2
))λ

)1/2

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
= dλ

1 ⊗ dλ
2 ,

which demonstrates (6) holds.

3.4 Comparison Method of DHLPFEs

To rank DHLPFEs, we provide the following comparison method.

Definition 6 Let d = (h, g) be a DHLPFEs, the score function τ(d) of d is
expressed as

τ(d) = s√√√√
(

l2+
(

#h∑

i=1,σ∈h
σ 2
i

)

/#h−
(

#g∑

j=1,η∈g
η2
j

)

/#g

)

/2

, (5)
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and the accuracy function ϕ(d) is defined as

ϕ(d) = s√√√√
((

#h∑

i=1,σ∈h
σ 2
i

)

/#h+
(

#g∑

j=1,η∈g
η2
j

)

/#g

)

/2

. (6)

where #h and #g denote the numbers of elements in h and g. For any two DHLPFEs
d1 and d2,

(3) If τ(d1) > τ(d2), then d1 > d2;
(4) If τ(d1) = τ(d2), then

If ϕ(d1) > ϕ(d2), then d1 > d2;
If ϕ(d1) = ϕ(d2), then d1 = d2.

Example 3 Let S̃ = {sα|0 ≤ α ≤ 6} be a pre-defined continuous linguistic term set,
and d1 = {{s0, s2, s3}, {s4, s5}} and d2 = {{s1, s3}, {s2, s3, s5}} be two DHLPFEs
defined on S̃, then we have

τ(d1) = s√(
62+

(
02+22+32

)
/3−

(
42+52

)
/2
)
/2

= s3.1491, ϕ(d1) = s√((
02+22+32

)
/3+

(
42+52

)
/2
)
/2

= s3.5237

τ(d2) = s√(
62+

(
12+32

)
/2−

(
22+32+52

)
/3
)
/2

= s3.7639, ϕ(d2) = s√((
12+32

)
/2+

(
22+32+52

)
/3
)
/2

= s2.9721

According to Definition 6, we can get d2 > d1.

3.5 Some Basic Aggregation Operators of DHLPFEs

To aggregate attribute values under DHLPFSs, we propose a series of weighted AOs
for DHLPFEs and discuss their properties.

Definition 7 Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of DHLPFEs, and let
w = (w1,w2, . . . ,wn)

T be the weight vector, such that 0 ≤ wi ≤ 1 and
∑n

i=1 wi =
1. The dual hesitant linguistic Pythagorean fuzzy weighted average (DHLPFWA)
operator is defined as

DHLPFW A(d1, d2, . . . , dn) = ⊕n
i=1widi , (7)

Based on the operations of DHLPFEs, the following aggregated value can be
obtained.
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Theorem 2 Let di = (hi , gi )(i = 1, 2, . . . , n) be collection of DHLPFEs, then the
aggregation result by using the DHLPFWA operator is also a DHLPFE and

DHLPFW A(d1, d2, . . . , dn ) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
n∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎨

⎪⎩
s
l

n∏

i=1

(
ηi / l

)wi

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (8)

Proof When n = 2, then

w1d1 =
⋃

σ1∈h1,η1∈g1

{{
s
l(1−(1−σ 2

1 / l2)
w1)

1/2

}
,
{
sl(η1/ l)w1

}}
,

and

w2d2 =
⋃

σ2∈h2,η2∈g2

{{
s
l(1−(1−σ 2

2 / l2)
w2)

1/2

}
,
{
sl(η2/ l)w2

}}
.

Then

DHLPFW A(d1, d2) = w1d1 ⊕ w2d2

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎨

⎩

⎧
⎨

⎩
s
l
(
1−
(
1−σ21 / l2

)w1
(
1−σ22 / l2

)w2
)1/2

⎫
⎬

⎭
,

{

s(
l
(
η1/ l

)w1
(
η2/ l

)w2
)

}}

,

which implies that Eq. (8) holds for n = 2.
In addition, we assume Eq. (8) holds for n = k, i.e.,

DHLPFW A
(
d1, d2, . . . , dk

) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
k∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎨

⎪⎪⎩
s
l

k∏

i=1

(
ηi / l

)wi

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

then when n = k + 1, we can obtain

DHLPFW A(d1, d2, . . . , dk , dk+1) = ⊕k
i=1wi di

⊕ wk+1dk+1

⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k∏

i=1

(
1−σ 2

i / l2
)wi

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi / l)wi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭

⊕
⋃

σk+1∈hk+1,ηk+1∈gk+1

{{

s
l
(
1−(1−σ 2

k+1/ l
2
)λ)1/2

}

,

{
s
l
(
η2k+1/ l

)λ

}}

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k+1∏

i=1

(
1−σ 2

i / l2
)wi

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
k+1∏

i=1
(ηi / l)wi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,
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i.e., Eq. (8) holds for n= k+ 1. Therefore, (12) holds for all n. The proof of Theorem2
is completed.

In the following, we investigate some properties of DHLPFWA operator.

Theorem 3 (Monotonicity) Let di = (hi , gi ) and d∗
i = (

h∗
i , g

∗
i

)
(i = 1, 2, . . . , n)

be two collections of DHLPFEs, where sσi ∈ hi , sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
, then

DHLPFW A(d1, d2, . . . , dn) ≤ DHLPFW A
(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
. (9)

Proof For any i , there are sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
. For the terms in the aggregated

results, we have

s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 ≤ s
l

(
1−

n∏

i=1
(1−σ ∗2

i / l2)
wi

)1/2 and s
l

n∏

i=1
(ηi/ l)

wi
≥ s

l
n∏

i=1
(η∗

i / l)
wi

.

According to Definition 6, we can get DHLPFW A(d1, d2, . . . , dn) ≤
DHLPFW A

(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
with equality if and only if sσi = sσ ∗

i
and sηi = sη∗

i

for all i .

Theorem 4 (Boundedness) Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of
DHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let d− = (

smin{σi }, smax{ηi }
)
,

d+ = (
smax{σi }, smin{ηi }

)
. Then

DHLPFW A
(
d−, d−, . . . , d−) ≤ DHLPFW A(d1, d2, . . . , dn)

≤ DHLPFW A
(
d+, d+, . . . , d+). (10)

Proof For∀i = 1, 2, . . . , n, we have smin{σi } ≤ sσi ≤ smax{σi }, smin{ηi } ≤ sηi ≤ smax{ηi }.
Then

s
l

(
1−

n∏

i=1

(
1−σ 2

i / l2
)wi

) 1
2

≥ s
l

(
1−

n∏

i=1

(
1−(min{σi }/ l)2

)wi
) 1

2
= s

l

⎛

⎜
⎝1−(1−(min{σi }/ l)2

)
n∑

i=1
wi

⎞

⎟
⎠

1
2

= smin{σi },

⇒ s
l

n∏

i=1
(ηi / l)wi

≤ s
l

n∏

i=1
(max{ηi }/ l)wi

= smax{ηi },

⇒ s
l

(
1−

n∏

i=1

(
1−σ 2

i / l2
)wi

) 1
2

≤ s
l

(
1−

n∏

i=1

(
1−(max{σi }/ l)2

)wi
) 1

2
= smax{σi },

⇒ s
l

n∏

i=1
(ηi / l)wi

≥ s
l

n∏

i=1
(min{ηi }/ l)wi

= smin{ηi }.

Further,

DHLPFW A
(
d−, d−, . . . , d−) = ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
n∏

i=1

(
1−(min

{
σi
}
/ l
)2
)wi

)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎨

⎪⎩
s
l

n∏

i=1

(
max

{
ηi
}
/ l
)wi

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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=
{
smin

{
σi
}, smax

{
ηi
}
}
;

DHLPFW A
(
d+, d+, . . . , d+) = ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
n∏

i=1

(
1−(max

{
σi
}
/ l
)2
)wi

)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎨

⎪⎩
s
l

n∏

i=1

(
min

{
ηi
}
/ l
)wi

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{
smax

{
σi
}, smin

{
ηi
}
}
;

According to Definition 6, we have DHLPFW A(d1, d2, . . . , dn) ≥
DHLPFW A

(
d−, d−, . . . , d−) with equality if and only if di is same as d−.

Similarly, DHLPFW A(d1, d2, . . . , dn) ≤ DHLPFW A
(
d+, d+, . . . , d+) with

equality if and only if di is same as d+ can be obtained. So, the proof of the theorem
is completed.

Definition 8 Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of DHLPFEs, and let

w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1 and

n∑

i=1
wi = 1.

The dual hesitant linguistic Pythagorean fuzzy weighted geometric (DHLPFWG)
operator is defined as

DHLPFWG(d1, d2, . . . , dn) = ⊗n
i=1d

wi
i , (11)

Theorem 5 Let di = (hi , gi )(i = 1, 2, . . . , n) be collection of DHLPFEs, then the
aggregation result by using the DHLPFWG operator is also a DHLPFE and

DHLPFWG(d1, d2, . . . , dn ) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩
s
l

n∏

i=1

(
ηi / l

)wi

⎫
⎪⎬

⎪⎭
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
n∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (12)

The proof of Theorem 5 is similar to that of Theorem 2, which is omitted here.
In addition, DHLPFWG operator has the following properties and the proofs are
similar to those of Theorems 3 and 4.

Theorem 6 (Monotonicity) Let di = (hi , gi ) and d∗
i = (

h∗
i , g

∗
i

)
(i = 1, 2, . . . , n)

be two collections of DHLPFEs, where sσi ∈ hi , sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
, then

DHLPFWG(d1, d2, . . . , dn) ≤ DHLPFWG
(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
. (13)

Theorem 7 (Boundedness) Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of
DHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let d− = (

smin{σi }, smax{ηi }
)
,

d+ = (
smax{σi }|, smin{ηi }

)
. Then

d− ≤ DHLPFWG(d1, d2, . . . , dn) ≤ d+. (14)
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3.6 A MAGDMMethod Based on DHLPFSs

In this section, we study DHLPFSs and their AOs inMAGDMproblems and propose
a new MAGDM method. We further provide a real decision-making example to
illustrate the effectiveness of the new method.

3.6.1 Description of a Typical MAGDM Problem Under DHLPFSs

A typical MAGDM problem under DHLPFSs can be described as follows: Let
A = {A1, A2, . . . , Am} be a set of candidates and G = {G1,G2, . . . ,Gn} be
set of attributes. The weight vector of attributes is w = (w1,w2, . . . ,wn)

T , such
that

∑n
j=1 wj = 1 and 0 ≤ wj ≤ 1. A group of DEs D = {D1, D2, . . . , Dt }

is invited to assess the performance of all the alternatives. The weight vector
of DEs is λ = (λ1, λ2, . . . , λt )

T , such that 0 ≤ λe ≤ 1 and
∑t

e=1 λe =
1. Let S̃ = {sh|h ∈ [0, l] } be a pre-defined continuous linguistic term set. To
properly evaluate the feasible alternatives, for attribute G j ( j = 1, 2, . . . , n) of

Ai (i = 1, 2, . . . ,m), DE De(e = 1, 2, . . . , t) uses a DHLPFEs de
i j =

(
hei j , g

e
i j

)

defined on S̃ to express his/her evaluation information. Finally, a series of dual hesi-
tant linguistic Pythagorean fuzzy decision matrices are obtained. In the following,
based on the proposed AOs we further present a method to solve this problem.

3.6.2 The Steps of a Novel MAGDM Method Based on DHLPFEs

Step 1. Normalize the original decisionmatrix. Inmost practicalMAGDMproblems,
there are two types of attributes, i.e., benefit type and cost type. Hence, the original
decision matrices should be normalized according to the following formula:

de
i j =

⎧
⎨

⎩

(
hei j , g

e
i j

)
f or bene f i t attr ibute

(
gei j , h

e
i j

)
f or cost attribute

. (15)

Step 2. Compute the overall decision matrix. For alternative Xi (i = 1, 2, . . . ,m),
use DHLPFWA operator

di j = DHLPFW A
(
d1
i j , d

2
i j , . . . , d

t
i j

)
, (16)

or the DHLPWG operator

di j = DHLPFWG
(
d1
i j , d

2
i j , . . . , d

t
i j

)
, (17)
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to determine the comprehensive evaluation matrix.

Step 3. Compute the final overall evaluation values of alternatives. For alternative
Xi (i = 1, 2, . . . ,m), use DHLPFWA operator

di = DHLPFW A(di1, di2, . . . , din), (18)

or the DHLPWG operator

di = DHLPFWG(di1, di2, . . . , din), (19)

to compute its comprehensive evaluation value.

Step 4. Calculate the score value S(di ) and accuracy value H(di ) of di .

Step 5. Rank all the alternatives according to the score and accuracy values.

3.6.3 An Illustrative Example

Example 5 In order to improve the accommodation conditions of students, a univer-
sity plans to install air conditioners in student dormitories. After primary evaluation,
there are four suppliers to be select (A1, A2, A3, and A4). In order to choose the
optimal air conditioners supplier, the university arranges an expert group composed
of students and teachers to evaluate all candidate alternatives. All the five possible
candidates are evaluated under four attributes, namely reputation (G1), competitive
power (G2), quality of products (G3), and price advantage (G4). The weight vector of
attributes is w = (0.3, 0.1, 0.2, 0.4)T . We assume there are three DEs (D1, D2, and
D3) whose weight is δ = (0.243, 0.514, 0.243)T . Let S = {s0 = extremely poor, s1 =
very poor, s2 = poor, s3 = slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 =
very good, s8 = extremely good} be a linguistic term set, and DEs use DHLPFEs to
express their evaluation values. The original decision matrices are listed in Tables 2,
3, 4. In the following, we use the proposed MAGDM method to determine the most
suitable air conditioners supplier.

Table 2 The original decision matrix provided by D1 in Example 5

G1 G2 G3 G4

A1 {{s6, s7}, {s2, s8}} {{s7}, {s2, s4}} {{s5}, {s2}} {{s6, s7}, {s3}}

A2 {{s5}, {s4}} {{s1}, {s7, s6}} {{s6, s3}, {s3}} {{s3}, {s3}}

A3 {{s5, s8}, {s2}} {{s5}, {s2}} {{s1}, {s7}} {{s2, s4}, {s6}}

A4 {{s3}, {s8}} {{s2, s3}, {s6}} {{s1}, {s6}} {{s2}, {s6}}
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Table 3 The original decision matrix provided by D2 in Example 5

G1 G2 G3 G4

A1 {{s2, s3}, {s2}} {{s5, s7}, {s4}} {{s3}, {s2, s4}} {{s6}, {s2, s4}}

A2 {{s1, s2}, {s4}} {{s1, s2}, {s6}} {{s3}, {s1, s6}} {{s5}, {s3}}

A3 {{s8}, {s2, s4}} {{s5}, {s2}} {{s1}, {s5}} {{s4}, {s3, s6}}

A4 {{s2, s3}, {s5, s8}} {{s2}, {s5}} {{s4, s5}, {s1}} {{s2, s5}, {s8}}

Table 4 The original decision matrix provided by D3 in Example 5

G1 G2 G3 G4

A1 {{s3}, {s6}} {{s2, s7}, {s4}} {{s3}, {s2, s5}} {{s6}, {s3, s4}}

A2 {{s1, s5}, {s3, s4}} {{s1, s3}, {s6}} {{s3}, {s3}} {{s5, s7}, {s1}}

A3 {{s8}, {s2}} {{s5, s6}, {s1}} {{s4}, {s6}} {{s4}, {s4, s6}}

A4 {{s3, s5}, {s8}} {{s2}, {s4}} {{s1}, {s6}} {{s1}, {s8}}

Step 1. It is easy to find out that all attributes are benefit types and hence the original
decision matrices do not need to be normalized.

Step 2. Use the DHLPFWA operator to compute the comprehensive decision matrix,
which is shown in Table 5.

Step 3. Use the DHLPFWA to compute the comprehensive evaluation values of
alternatives. As the final overall evaluation values of all the feasible alternatives are
too complicated, we omit them here.

Table 5 The comprehensive decision matrix of Example 5 using the DHLPFWA operator

G1 G2

A1 {{s4.8878, s4.6964, s4.1619, s3.8970}, {s2.6120,
s3.6582}}

{{s7.0, s6.5568, s6.2839, s5.4469}, {s3.3799,
s4.0}}

A2 {{s3.7547, s2.8160, s3.9158, s3.0527}, {s4.0,
s3.7299}}

{{s1.0, s1.7450, s1.60, s2.1342}, {s5.9591,
s5.74}}

A3 {{s8.0}, {s2.0}} {{s5.0, s5.5291}, {s1.69}}

A4 {{s2.5464, s3.3307, s3.0, s0.36617}, {s8.0,
s6.2831}}

{{s2.2924, s2.0}, {s4.9506}}

G3 G4

A1 {{s3.6617}, {s2.0, s2.4988, s2.8560, s3.5683}} {{s6.3198, s6.0}, {s2.4356, s2.6120, s3.4781,
s3.7299}}

A2 {{s4.1619, s3.0}, {s1.7056, s4.284}} {{s3.6478, s5.5125}, {s2.2971}}

A3 {{s2.2424}, {s5.6718}} {{s3.6504, s4.0}, {s5.437, s6.0, s3.8074,
s4.2017}}

A4 {{s3.0361, s3.8423}, {s2.3888}} {{s1.8123, s3.9171}, {s7.4598}}
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Table 6 The comprehensive decision matrix of Example 5 using the DHLPFWG operator

G1 G2

A1 {{s3.6859, s2.9925, s3.5504, s2.8824}, {s3.7608,
s8.0}}

{{s7.0, s5.1628, s5.8883, s4.3429}, {s3.6504,
s4.0}}

A2 {{s2.1862, s1.4786, s3.1220, s2.1114}, {s4.0,
s3.7928}}

{{s1.0, s1.3060, s1.4280, s1.8650}, {s1.6582,
s5.8011}}

A3 {{s7.1368}, {s2.0}} {{s5.0, s5.2265}, {s1.8123}}

A4 {{s2.4356, s2.7575, s3.0, s3.3965}, {s8.0,
s6.2831}}

{{s2.2071, s2.0}, {s5.1142}}

G3 G4

A1 {{s3.3965}, {s2.0, s3.1565, s3.2406, s3.9773}} {{s6.2290, s6.0}, {s2.5464, s2.8906, s3.5561,
s3.7928}}

A2 {{s3.5504, s3.0}, {s2.2414, s5.0126}} {{s4.4163, s4.7926}, {s2.6748}}

A3 {{s1.4006}, {s5.9559}} {{s3.3799, s4.0}, {s5.6641, s6.0, s4.3406,
s4.9381}}

A4 {{s2.0392, s2.2870}, {s4.6390}} {{s1.6900, s2.7066}, {s8.0}}

Step 4. Compute score values of alternatives according to Definition 6 and we can
get the following results:

τ(d1) = 6.4920, τ (d2) = 6.0067, τ (d3) = 7.6187, τ (d4) = 4.5884

Step 5. Based on the score values presented in the afore step, we get the ranking
order of alternatives, i.e., A3 � A1 � A2 � A4, and A3 is the the best alternative.

In step 2, if the DHLPFWG operator is used to compute the comprehensive
decision matrix, then we can get the following results (see Table 6).

Then, we continue to use the DHLPFWG operator to compute the overall values
and calculate the score values according to Definition 6, we have

τ(d1) = 4.7904, τ (d2) = 5.3967, τ (d3) = 5.3515, τ (d4) = 1.6702

Therefore, the ranking order of alternatives is A2 � A3 � A1 � A4, and A2 is
best alternative.

3.6.4 Further Discussion

This section proposes a new MAGDMmethod wherein DHLPFSs are used to prop-
erty DEs’ evaluation values. The main advantages of our developed decision-making
method are two-fold. First, it allows attribute values or DEs’ evaluation values to be
denoted by linguistic terms, which provides DEs a flexible and reliable manner to
express their assessments. In actual decision-making situations, DEs usually would
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Table 7 Characteristics of different MAGDM methods

Whether it
depicts DEs’
qualitative
evaluation

Whether it
depicts DEs’
qualitative
evaluation

Whether it permits
multiple MDs and
NMDs

The degree of
flexibility it
provides for DEs

Gag’s [31] method
based on LPFSs

Yes Yes No Medium

Yu et al.’s [62]
method based on
DHFSs

Yes No Yes Medium

Our proposed
method

Yes Yes Yes High

like to use linguistic terms numbers to evaluate the performance of possible alter-
natives. Hence, our MAGDM method provides DEs, scientists, and practitioners
a practical approach to make reasonable decisions. Second, our method permits
the attribute values by several possible linguistic terms, which effectively handle
DEs’ hesitancy. Therefore, our method is more practical and powerful than some
existing decision-making methods. First, it is more useful than that proposed by
Garg [31] based on LPFSs. Garg’s [31] MAGDM method only allows the MD and
NMD of attribute values to be denoted by single linguistic terms, which overlooks
DEs’ high hesitancy in complicated MAGDM situations. In addition, our method
can solve decision-making problems in which attribute values are in the form of
LPFSs. However, the decision-making method introduced by Garg [31] is unable to
handle MAGDM problems in DHLPFSs. Additionally, our proposed method is also
more powerful than that put forward by Yu et al.’s [62] based on DHFSs. Similar
to DHLPFSs, DHFSs can also effectively deal with DEs’ high hesitancy in alterna-
tives’ performance evaluation process. However, in DHFSs the possible MDs and
NMDs are represented by crisp numbers while in DHLPFSs all MDs and NMDs
are denoted by linguistic terms. In other words, DHFSs can only describe DEs’
quantitative evaluation values, while DHLPFSs depict both DEs’ quantitative and
qualitative evaluation information. Hence, our method is also better than Yu et al.’s
[62] MAGDMmethod. We provide Table 7 to better illustrate the advantages of our
proposed method.

4 Probabilistic Dual Hesitant Linguistic Pythagorean
Fuzzy Sets and Their Applications

In this section, we introduce another new concept, called PDHLPFSs, for depicting
DEs’ evaluation information. We first introduce the motivations of proposing
PDHLPFSs. Then, the definition of PDHLPFSs, as well as some other notions,
such as operational rules, comparison method, and AOs are studied. Based on these
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notions, a new MAGDM method is proposed and its actual performance in realistic
decision-making problems is illustrated through numerical examples.

4.1 Motivations of Proposing PDHLPFSs

As discussed above, DHLPFSs permit multiple linguistic MDs and NMDs, which
canmore effectively describeDEs’ evaluation values. However, as realisticMAGDM
problems and very complicated, there are quite a few situations that cannot be handled
by DHLPFSs. In DHLPFSs, all possible values provided by DEs have importance,
which is not consistent with real decision-making situations. Actually, each member
inDHLPFEshas a different degree of importance.Weprovide the following examples
to better explain the drawbacks of DHLPFSs.

Example 6 A professor is invited to evaluate the innovation of a student’s thesis
(which can be denoted as A for convenience). Let S = {s0 = very poor, s1 = poor,
s2 = slightly poor, s3 = fair, s4 = slightly good, s5 = good, s6 = slightly good} be
a pre-defined linguistic term set. The professor may express that he/she is 30% sure
that the MD should be s4, and 70% sure that the MD should be s5. In addition, he/she
is 40% sure that the NMD should be s0, 40% and 20% sure that the NMD should be
s2 and s3, respectively. Then the evaluation value of the expert can be expressed as

Innovation (A) = {{s4(0.3), s5(0.7)}, {s0(0.4), s2(0.4), s3(0.4)}}

Example 7 There are a hundred teachers and students and they are required to express
how they feel about the satisfied degree of the design scheme of new campus (which
can be denoted as B convenience). Let S = {s0 = very poor, s1 = poor, s2 = slightly
poor, s3 = fair, s4 = slightly good, s5 = good, s6 = slightly good} be a pre-defined
linguistic term set. For the MDs, 28 of them state it should be s3, 34 of them argue
it should be s4, and the other 38insist it should be s5. For the NMDs, 57 of them
state it should be s1 and the other 42 of them insist it should be s3. Then the overall
evaluation value can be expressed as

Satisfied degree(B) = {{s3(0.28), s4(0.34), s5(0.38)}, {s1(0.57), s3(0.43)}}

The above examples reveal that in order to more accurately capture DEs’ evalu-
ation values, not only multiple MDs and NMDs but also their corresponding proba-
bilistic information should be taken into account. As a matter of fact, some scholars
have noticed this phenomenon and some effective information description tools have
been proposed, such as probabilistic linguistic sets, probabilistic hesitant fuzzy sets,
and probabilistic dual hesitant fuzzy sets. Motivated by these fuzzy set theories, we
genialize DHLPFSs into PDHLPFSs.
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4.2 Definition of PDHLPFSs

Definition 9 Let X be a fixed set and S̃ = {sα|0 ≤ α ≤ l } be continuous linguistic
term set with odd cardinality. A probabilistic dual hesitant linguistic Pythagorean
fuzzy set (PDHLPFSs) E is expressed as

E = {〈x, hE (x)|p(x), gE (x)|t(x)〉|x ∈ X}. (20)

The component hE (x)|p(x) and gE (x)|t(x) are two sets of some possible values,
where hE (x), gE (x) ⊆ S̃, denoting the possible linguistic MDs and NMDs of the
element x ∈ X to the set E, respectively, such that σ q + ηq ≤ lq(q ≥ 1), where
sσ ∈ hE (x), and sη ∈ gE (x) for x ∈ X . p(x) and t(x) are corresponding probabilistic
information of hE (x) and gE (x), respectively, such that 0 ≤ pi ≤ 1, 0 ≤ t j ≤ 1,
∑#h

i=1 pi = 1, and
∑#g

j=1 t j = 1. For convenience, we call the ordered paper e(x) =
(hE (x)|p(x), gE (x)|t(x)) a probabilistic dual hesitant linguistic Pythagorean fuzzy
element (PDHLPFE), which can be denoted as e = (h|p, g|t) for simplicity.

From Definition 9, it is seen that PDHLPFS is a generalized form of DHLPFS
and DHLPFS is a special case of PDHLPFS, where the importance degrees of all
members are equal. In the framework of PDHLPFSs, the overall evaluation value of
DEs’ in Example 1 can be express as d = {{s1 | 0.125, s2 | 0.250, s3 | 0.125, s4 | 0.375,
s5 | 0.125}, {s0 | 0.250, s1 | 0.125, s2 | 0.250, s3 | 0.375}}, which is a PDHLPFE.

4.3 Operation of PDHLPFEs

Definition 10 Let e1 = (
h1
∣∣ph1 , g1

∣∣tg1
)
, e2 = (

h2
∣∣ph2 , g2

∣∣tg2
)
, and e = (h|p, g|t)

be any three PDHLPFEs and λ be a positive real number,

(5) e1⊕e2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s
(σ 2

1 +σ 2
2 −σ 2

1 σ 2
2 / l2)

1/2 |pσ1 pσ2

}
,
{
s(η1η2/ l)|tη1 tη2

}}
;

(6) e1⊗e2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s(σ1σ2/ l)|pσ1 pσ2

}
,
{
s
(η2

1+η2
2−η2

1η
2
2/ l

2)
1/2 |tη1 tη2

}}
;

(7) λe = ⋃
σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ
)1/2 |pσ

}
,
{
sl(η/ l)λ |tη

}}
;

(8) eλ = ⋃
σ∈h,η∈g

{{
sl(σ/ l)λ |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ
)1/2 |tη

}}
.

Example 8 Let e1 = {{s3|0.5, s4|0.2, s5|0.3}, {s2|0.6, s3|0.4}} and e2 =
{{s2|0.3, s4|0.7}, {s4|1}} be two PDHLPFEs defined on a pre-given continuous
linguistic set S̃ = {sα|0 ≤ α ≤ 6 }, then

e1 ⊕ e2

=
{ {

s3.4641
∣∣0.1500, s4.5826

∣∣0.3500, s4.2687|0.0600, s4.9889|0.1400, s5.1208
∣∣0.0900, s5.4671

∣∣0.2100
}
,

{s1.3333|0.6000, s2.0000|0.4000}

}

;
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e1 ⊗ e2

=
{

{s1.0000|0.1500, s1.333|0.0600, s1.6667|0.0900, s2.0000|0.3500, s2.6667|0.1400, s3.3333|0.2100},{
s4.2687

∣∣0.6000, s4.5826
∣∣0.4000

}

}

;

3e1 = {{s4.5621|0.5000, s5.4614|0.2000, s5.9138|0.3000}, {s0.2222|0.6000, s0.7500|0.4000}};

e32 = {{s0.2222|0.3000, s1.7778|0.7000}, {s5.4614|1}}

Theorem 8 Let e1 = (
h1
∣∣ph1 , g1

∣∣tg1
)
, e2 = (

h2
∣∣ph2 , g2

∣∣tg2
)
, and e = (h|p, g|t) be

any three PDHLPFEs, then

(1) e1 ⊕ e2 = e2 ⊕ e2;
(2) e1 ⊗ e2 = e2 ⊗ e1;
(3) λ(e1 ⊕ e2) = λe1 ⊕ λe2;
(4) λ1e ⊕ λ2e = (λ1 + λ2)e, (λ1, λ2 ≥ 0);
(5) eλ1 ⊗ eλ2 = eλ1+λ2 , (λ1, λ2 ≥ 0);
(6) eλ

1 ⊗ eλ
2 = (e1 ⊗ e2)

λ, (λ ≥ 0).

Proof It is easy to prove that (1) and (2) hold. In the following, we try to prove
the correctness of the following equations. According to the operational rules for
PDHLPFEs presented in Definition 10, we have

λ(e1 ⊕ e2) =
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2 |pσ1 pσ2

}

,
{
sl(η1η2/ l2)λ |tη1 tη2

}}

,

and

λe1 ⊕ λe2 =
⋃

σ1∈h1,η1∈g1

{{

s
l
(
1−(1−σ 2

1 / l2
)λ)1/2 |pσ1

}

,
{
sl(η1/ l)λ |tη1

}}

⊕
⋃

σ2∈h2,η2∈g2

{{

s
l
(
1−(1−σ 2

2 / l2
)λ)1/2 |pσ2

}

,
{
sl(η2/ l)λ |tη2

}}

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2 |pσ1 pσ2

}

,
{
sl(η1η2/ l2)λ |tη1 tη2

}}

= λ(e1 ⊕ e2).

which proves that (3) holds.
Meanwhile, we can obtain that

λ1e ⊕ λ2e

=
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ1
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

{
s
l(η/ l)λ1

|tη
}
⎫
⎪⎪⎬

⎪⎪⎭

⊕
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ2
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

{
s
l(η/ l)λ2

|tη
}
⎫
⎪⎪⎬

⎪⎪⎭
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=
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ2+λ1
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎨

⎩
s(
l(η/ l)λ1+λ2

)|tη
⎫
⎬

⎭

⎫
⎪⎪⎬

⎪⎪⎭
,

and

(λ1 + λ2)e =
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ1+λ2
)1/2 |pσ

}

,
{
sl(η/ l)λ1+λ2 |tη

}}

= λ1e ⊕ λ2e,

which illustrates the validity of (4).
Moreover,

eλ1 ⊗ eλ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1
)1/2 |tη

}}

⊗
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ2
)1/2 |tη

}}
,

=
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2 |tη

}}
,

and

eλ1+λ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2 |tη

}}
= eλ1 ⊗ eλ2 .

Hence, (5) holds.
Finally,

eλ
1 ⊗ eλ

2 =
⋃

σ1∈h1,η1∈g1

{{
sl(σ1/ l)λ |pσ1

}
,

{

s
l
(
1−(1−η21/ l

2
)λ)1/2 |tη1

}}

⊗
⋃

σ2∈h2,η2∈g2

{{
sl(σ2/ l)λ |pσ2

}
,

{

s
l
(
1−(1−η22/ l

2
)λ)1/2 |tη2

}}

,

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)λ |pσ1 pσ2

}
,

{

s
l
(
1−((1−η21/ l

2
)(
1−η22/ l

2
))λ)1/2 |tη1 tη2

}}

,

and

(e1 ⊗ e2)
λ =

(⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sσ1σ2/ l |pσ1 pσ2

}
,
{
s(

η21+η22−η21η
2
2/ l

2
)1/2 |tη1 tη2

}})λ

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)λ |pσ1 pσ2

}
,

{

s
l
(
1−((1−η21/ l

2
)(
1−η22/ l

2
))λ)1/2 |tη1 tη2

}}

= eλ
1 ⊗ eλ

2 ,

which demonstrates the correctness of (6).
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4.4 Comparison Method of PDHLPFEs

Definition 11 Let e = (h|p, g|t) be a PDHLPFEs, the score function �(e) of e is
expressed as

�(e) = s√√√√
(

l2+
#h∑

i=1,σ∈h
σ 2
i pσi −

#g∑

j=1,η∈g
η2
j tη j

)

/2

, (21)

and the accuracy function 
(e) is defined as


(e) = s√√√√
(

#h∑

i=1,σ∈h
σ 2
i pσi +

#g∑

j=1,η∈g
η2
j tη j

)

/2

, (22)

where #h and #g denote the numbers of elements in h and g. For any two PDHLPFEs
e1 and e2, then

(1) If �(e1) > �(e2), then e1 > e2;
(2) If �(e1) = �(e2), then

If 
(e1) > 
(e2), then e1 > e2;
If 
(e1) = 
(e2), then e1 = e2.

Example 9 Let S̃ = {sα|0 ≤ α ≤ 6} be a pre-defined continuous linguistic
term set, and e1 = {{s0|0.2, s2|0.3, s3|0.5}, {s4|0.4, s5|0.6}} and e2 =
{{s1|0.5, s3|0.5}, {s2|0.2, s3|0.7, s5|0.1}} be two PDHLPFEs defined on S̃, then we
have

�(e1) = s√
(62+(02∗0.22+22∗0.32+32∗0.52)/3−(42∗0.42+52∗0.62)/2)/2 = s3.9427,


(e1) = s√
((02∗0.22+22∗0.32+32∗0.52)/3+(42∗0.42+52∗0.62)/2)/2 = s1.8235,

�(e2) = s√
(62+(12∗0.52+32∗0.52)/2−(22∗0.22+32∗0.72+52∗0.12)/3)/2 = s4.2216,


(e2) = s√
((12∗0.52+32∗0.52)/2+(22∗0.22+32∗0.72+52∗0.12)/3)/2 = s1.1951.

According to Definition 11, we can get e2 > e1.
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4.5 Aggregation Operators of PDHLPFEs

Definition 12 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collection of

PDHLPFEs and w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. The probabilistic dual hesitant linguistic Pythagorean fuzzy
weighted average (PDHLPFWA) operator is expressed as

PDHLPFW A(e1, e2, . . . , en) = ⊕n
i=1wiei , (23)

Theorem 9 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be collection of PDHLPFEs,

then the aggregation result by using the PDHLPFWA operator is also a PDHLPFEs
and

PDHLPFW A(e1, e2, . . . , en)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
n∏

i=1

pσi

⎫
⎬

⎭
,

{

s
l

n∏

i=1
(ηi/ l)

wi
|

n∏

i=1

tηi

}⎫⎬

⎭
, (24)

Proof We first prove that (24) holds for n = 2. Since

w1e1 =
⋃

σ1∈h1,η1∈g1

{{
s
l(1−(1−σ 2

1 / l2)
w1)

1/2 |pσ1

}
,
{
sl(η1/ l)w1 |tη1

}}
,

and

w2e2 =
⋃

σ2∈h2,η2∈g2

{{
s
l(1−(1−σ 2

2 / l2)
w2)

1/2 |pσ2

}
,
{
sl(η2/ l)w2 |tη2

}}
.

Then

PDHLPFW A
(
e1, e2

) = w1e1 ⊕ w2e2

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2
⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l
(
1−
(
1−σ21 / l2

)w1
(
1−σ22 / l2

)w2
)1/2 |pσ1 pσ2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s(
l
(
η1/ l

)w1
(
η2/ l

)w2
)|tη1 tη2

⎫
⎬

⎭

⎫
⎬

⎭
.

which demonstrates that Eq. (24) holds for n = 2.
If Eq. (24) holds for n = k, i.e.,

PDHLPFW A(e1, e2, . . . , ek)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

k∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
k∏

i=1

pσi

⎫
⎬

⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi/ l)

wi
|

k∏

i=1

tηi

⎫
⎬

⎭

⎫
⎬

⎭
,
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then when n = k + 1, we can obtain

PDHLPFW A(e1, e2, . . . , ek+1) = ⊕k
i=1wi ei ⊕ wk+1ek+1

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k∏

i=1

(
1−σ 2

i / l2
)wi

)1/2 |
k∏

i=1

pσi

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi / l)wi

|
k∏

i=1

tηi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭

⊕
⋃

σk+1∈hk+1,ηk+1∈gk+1

{{

s
l
(
1−(1−σ 2

k+1/ l
2
)λ)1/2 |pσk+1

}

,

{
s
l
(
η2k+1/ l

)λ |tηk+1

}}

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k+1∏

i=1

(
1−σ 2

i / l2
)wi

)1/2 |
k+1∏

i=1

pσi

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
k+1∏

i=1
(ηi / l)wi

|
k+1∏

i=1

tηi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,

i.e., Eq. (24) holds for n = k + 1. Therefore, Eq. (24) holds for all n. The proof
of Theorem 9 is completed.

Theorem 10 (Monotonicity) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)

and e∗
i =(

h∗
i

∣∣ph∗
i
, g∗

i

∣∣tg∗
i

)
(i = 1, 2, . . . , n) be two collections of PDHLPFEs, where sσi ∈ hi ,

sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For ∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
,

while the probabilities are the same, i.e., pσi = pσ ∗
i
,tηi = tη∗

i
, then

PDHLPFW A(e1, e2, . . . , en) ≤ PDHLPFW A
(
e∗
1, e

∗
2, . . . , e

∗
n

)
. (25)

Proof For any i , there are sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
. For the terms in the aggregated

results, we have

s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 ≤ s
l

(
1−

n∏

i=1
(1−σ ∗2

i / l2)
wi

)1/2 and s
l

n∏

i=1
(ηi/ l)

wi
≥ s

l
n∏

i=1
(η∗

i / l)
wi

.

According to the score function in Definition 11, we can get
PDHLPFW A(e1, e2, . . . , en) ≤ PDHLPFW A

(
e∗
1, e

∗
2, . . . , e

∗
n

)
with equality if

and only if sσi = sσ ∗
i
and sηi = sη∗

i
for all i .

Theorem 11 (Boundedness) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collec-

tion of PDHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let e− =(
smin{σi }

∣∣pmin{σi }, smax{ηi }
∣∣tmax{ηi }

)
, e+ = (

smax{σi }
∣∣pmax{σi }, smin{ηi }

∣∣tmin{ηi }
)
. Then

PDHLPFW A
(
e−, e−, . . . , e−

)
≤ PDHLPFW A

(
e1, e2, . . . , en

) ≤ PDHLPFW A
(
e+, e+, . . . , e+

)
. (26)

Proof For∀i = 1, 2, . . . , n, we have smin{σi } ≤ sσi ≤ smax{σi }, smin{ηi } ≤ sηi ≤ smax{ηi },
pmin{σi } ≤ pσi ≤ pmax{σi }, tmin{ηi } ≤ tηi ≤ tmax{ηi }. Then

s
l

(
1−

n∏
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(
1−σ 2

i / l2
)wi

) 1
2

≥ s
l

(
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(
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)wi
) 1

2
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l

⎛

⎜
⎝1−(1−(min{σi }/ l)2

)
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i=1
wi

⎞

⎟
⎠

1
2

= smin{σi },
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s
l

n∏

i=1
(ηi / l)wi

≤ s
l

n∏

i=1
(max{ηi }/ l)wi

= smax{ηi },

s
l
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(1−σ 2
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l
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2
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s
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= smin{ηi }.

For the probabilities:

n∏

i=1
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n∏
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n∏
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n∏
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tσi ≤
n∏
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And,

PDHLPFW A
(
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=
⋃

⎧
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⎩

⎧
⎨

⎩
s
l

(
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)1/2 |
n∏
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⎫
⎬
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s
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|
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}⎫⎬
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∣∣∣∣∣
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PDHLPFW A
(
e+, e+, . . . , e+)

=
⋃

⎧
⎨
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⎨
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(
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}⎫⎬

⎭

=
{

smax{σi }

∣∣∣∣∣

n∏
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∣∣∣∣∣
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}

According to the score function in Definition 11, we have
PDHLPFW A(e1, e2, . . . , en) ≥ PDHLPFW A

(
e−, e−, . . . , e−) with equality

if and only if ei is same as e−. Similarly, PDHLPFW A(e1, e2, . . . , en) ≤
PDHLPFW A

(
e+, e+, . . . , e+) with equality if and only if ei is same as e+ can

be obtained. So, the proof of the theorem is completed.
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Definition 13 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collection of

PDHLPFEs and w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. The probabilistic dual hesitant linguistic Pythagorean fuzzy
weighted geometric (PDHLPFWG) operator is expressed as

PDHLPFWG(e1, e2, . . . , en) = ⊗n
i=1e

wi
i , (27)

Theorem 12 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be collection of PDHLPFEs,

then the aggregation result by using the PDHLPFWG operator is also a PDHLPFEs
and

PDHLPFWG(e1, e2, . . . , en)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

{

s
l

n∏

i=1
(ηi/ l)

wi
|

n∏

i=1

pσi

}

,

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
n∏

i=1

tηi

⎫
⎬

⎭

⎫
⎬

⎭
, (28)

The proof of Theorem 12 is similar to that of Theorem, which is omitted here. In
addition, it is easy to prove that PDHLPFWG operator has the following properties.

Theorem 13 (Monotonicity) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)

and e∗
i =(

h∗
i

∣∣ph∗
i
, g∗

i

∣∣tg∗
i

)
(i = 1, 2, . . . , n) be two collections of PDHLPFEs, where sσi ∈ hi ,

sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For ∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
,

while the probabilities are the same, i.e., pσi = pσ ∗
i
,tηi = tη∗

i
, then

PDHLPFWG(e1, e2, . . . , en) ≤ PDHLPFWG
(
e∗
1, e

∗
2, . . . , e

∗
n

)
. (29)

Theorem 14 (Boundedness) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collec-

tion of PDHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let e− =(
smin{σi }

∣∣pmin{σi }, smax{ηi }
∣∣tmax{ηi }

)
, e+ = (

smax{σi }
∣∣pmax{σi }, smin{ηi }

∣∣tmin{ηi }
)
. Then,

e− ≤ PDHLPFWG(e1, e2, . . . , en) ≤ e+. (30)

4.6 MAGDM Based on PDHLPFEs

In this section, we introduce a newMAGDMmethod under PDHLPFSs based on the
proposed AOs. Further, a numerical example is presented to show the effectiveness
of our proposed method.
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4.6.1 The Main Steps of a MAGDM Approach Under PDHLPFSs

A representative probabilistic dual hesitant linguistic Pythagorean fuzzy MAGDM
problem is described as follows: Let A = {A1, A2, . . . , Am} be a set of candidates
and G = {G1,G2, . . . ,Gn} be set of attributes. The weight vector of attributes is
w = (w1,w2, . . . ,wn)

T , such that
∑n

j=1 wj = 1 and 0 ≤ wj ≤ 1. Several DEs
D = {D1, D2, . . . , Dt } are invited to form a group to evaluate the efficiency of
all the feasible alternatives. The weight vector of DEs is λ = (λ1, λ2, . . . , λt )

T ,
such that 0 ≤ λe ≤ 1 and

∑t
e=1 λe = 1. Let S̃ = {sh |h ∈ [0, l] } be a pre-

defined continuous linguistic term set. For attribute G j ( j = 1, 2, . . . , n) of alter-
native Ai (i = 1, 2, . . . ,m), the DE Dk(k = 1, 2, . . . , t) uses a PDHLPFE eki j =(
hki j

∣∣∣phki j , g
k
i j

∣∣∣tgki j

)
to express his/her evaluation. Finally, a set of probabilistic dual

hesitant linguistic Pythagorean fuzzy decision matrices are gotten. In the following,
we use the proposed AOs to introduce a novel MAGDM method.

4.6.2 The Steps of a Novel MAGDM Method Based on PDHLPFEs

Step 1. Normalize the original decisionmatrix. Inmost practicalMAGDMproblems,
there are two types of attributes, i.e., benefit type and cost type. Hence, the original
decision matrices should be normalized according to the following formula:

eki j =
⎧
⎨

⎩

(
hki j

∣∣∣phki j , g
k
i j

∣∣∣tgki j

)
f or bene f i t attr ibute

(
gki j

∣∣∣tgki j , h
k
i j

∣∣∣phki j

)
f or cost attribute

. (31)

Step 2. Compute the overall decision matrix. For alternative Ai (i = 1, 2, . . . ,m),
use the PDHLPFWA operator

ei j = PDHLPFW A
(
e1i j , e

2
i j , . . . , e

f
i j

)
, (32)

or the PDHLPFWG operator

ei j = PDHLPFWG
(
e1i j , e

2
i j , . . . , e

f
i j

)
, (33)

to determine the comprehensive evaluation matrix.

Step 3. Compute the final overall evaluation values of alternatives. For alternative
Ai (i = 1, 2, . . . ,m), use the PDHLPFWA operator

ei = PDHLPFW A(ei1, ei2, . . . , ein), (34)
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or the PDHLPWG operator

ei = PDHLPFWG(ei1, ei2, . . . , ein), (35)

to compute its comprehensive evaluation value.

Step 4. Calculate the score value S(ei ) and accuracy value H(ei ) of ei .

Step 5. Rank all the alternatives according to the score and accuracy values.

4.6.3 A Real Application of the Proposed Method

Example 10 In order to stimulate the enthusiasm for research of doctoral students, a
college plans to evaluate the quality of doctoral students’ theses and selects the best
one and gives the author scholarship. After primary selection, there are five theses
authored by five students, and three professors are required to evaluate the five theses.
The weight vector of the three professors is λ = (0.243, 0.514, 0.243)T . The five
theses are assessed under four attributes, i.e., the significant degree of the study
(G1), the degree of innovation (G2), the degree of compliance with academic norms
(G3), and the significant degree methodology (G4). The weight vector of attributes
is w = (0.3, 0.1, 0.2, 0.4)T . Let S = {s0 = extremely poor, s1 = very poor, s2 =
poor, s3 = slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8
= extremely good} be a linguistic term set, and DEs use PDHLPFEs to express their
evaluation values. The original decision matrices are presented in Tables 8, 9, 10.

Step 1. As the original decision matrices are benefit types, the original decision
matrices do not need to be normalized.

Step 2. Use the PDHLPFWA operator to determine the comprehensive decision
matrix, and the result is listed in Table 11.

Step 3. Use the PDHLPFWA operator to calculate the overall evaluation values of
alternatives. As the comprehensive evaluations are too complicated, we omit them
here.

Step 4. Calculate the score values of alternatives, we can obtain

�(e1) = s5.6466, �(e2) = s5.6735, �(e3) = s5.5948, �(e4) = s5.6687

Step 5. Rank the alternatives and we can get A2 � A4 � A1 � A3, which implies
A2 is the optimal alternative.

Ifwe calculate the comprehensive decisionmatrix and overall evaluation values by
the PDHLPFWG operator, then the score values of alternatives are �(e1) = s5.6266,
�(e2) = s5.6583, �(e3) = s5.5646, and �(e4) = s5.6453, and the ranking order is
A2 � A4 � A1 � A3, which indicates A2 is the best alternative.
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4.6.4 Further Discussion

This section proposes a novelMAGDMmethodwhereinDEs’ evaluation information
or attribute values are expressed by PDHLPFSs. To sum up, the main advantages of
our proposed decision-making method have three aspects. First, it employs linguistic
terms to denote the possible MDs and NMDs, which makes it easy to denote DEs’
assessment information both quantificationally and qualitatively. Second, it allows
the existence of multiple MDs and NMDs, which is more capable of describing
DEs’ high hesitancy in realistic complex decision-making problems. Third, it can
also describe probabilistic information of each linguistic term, making it smoother
to describe a decision-making group’s overall evaluation information. These three
merits make our decision-making method more flexible and powerful. In addition,
our MAGDM method is also more powerful than some existing decision-making
approaches. First, compared with aforementioned decision-making method based
on DHLPFSs, the newly developed MAGDM method under PDHLPFSs can more
accurately depict DEs’ evaluation information, as it not only considers multiple
MDs and NMDs but also take the probabilistic values of MDs and NMDs into
consideration. Second, it is also more powerful than the method introduced by Hao
et al. [55]. It is noted that the method proposed by Hao et al. [55] is based on
PDHFSs, which use crisp numbers to denote the possible MDs and NMDs. Hence,
Hao et al.’s [55] method only consider DEs’ quantitative evaluation values. In our
proposed PDHLPFSs, the possible MDs and NMDs are denoted by linguistic terms,
and hence our method can describe DEs’ evaluation values both quantificationally
and qualitatively. We provide Table 12 to better demonstrate the advantages of our
developed MAGDM method.

Table 12 Characteristics of some MAGDM methods

Whether it considers
the probabilistic
information of MDs
and NMDs

Whether it considers
DEs’ quantitative and
qualitative evaluation
values simultaneously

Its degree of flexibility
when dealing with
practical MAGDM
problems

The aforementioned
decision-making
method based on
DHLPFSs

No Yes Medium

Hao et al.’s [55]
decision-making
method based on
PDHFSs

Yes No Medium

Our developed
method based on
PDHLPFSs

Yes Yes High
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5 Conclusion Remarks

The LPFSs can effectively describe DEs’ evaluation values in complicated decision-
making situations.However, themain drawbacks ofLPFSs are they overlookmultiple
MDs and NMDs as well as their corresponding probabilistic information. The aim
is to overcome the two shortcomings by probing extensions of LPFSs. We first
proposed the DHLPFSs, which have the ability of effectively dealing with multiple
MDs and NMDs. After it, we proposed AOs for DHLPFSs and applied in MAGDM
method. we continued to consider the fact that members in DHLPFSs may have
different frequencies, occurrences, and degrees of importance, we further generalize
DHLPFSs to PDHLPFSs by considering not multiple MDs and NMDs but also
their probabilities. We further showed how to use to PDHLPFSs to solve practical
MAGDM problems. Numerical examples have demonstrated the effectiveness of
our proposed novel MAGDM methods. In future research, we shall continue our
study from two aspects. First, we are studying applications of our methods in more
actual-life MAGDM methods. Second, we will study more extensions of LPFSs,
such as cubic LPFSs, hesitant LPFSs, uncertain LPFSs, etc., to accommodate more
complex decision-making environments and propose novel MAGDMmethods to aid
practitioners to make wise decisions.
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