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1 Introduction

Nowadays, the decision-making process in organizations confronts many challenges
due to the extensive changes and increasing complexity of issues faced in a rapidly
developing business environment. In recent decades, researchers introduced several
methods for multi-criteria decision-making (MCDM). These methods deal with the
complexities faced in decision-making and facilitate this process. They also increase
efficiency and improve the quality of the process [11].

Real-life decision-making problems are mainly composed of imprecise, and
uncertain data together with the subjective evaluations of the decision-makers (DMs)
which is based on their perceptions which is sure to differ from one person to another.
To face the unrealistic supposition that exact numerical values are proper to model
and handle real-life decision-making problems, Zadeh [65] introduced the notion of
fuzzy sets, later named type-1 fuzzy sets (T1FSs).

Due to the deficiency of T1FSs to express the uncertainties and cognitive limi-
tations in decision-making, different types of fuzzy sets were proposed by various
researchers to model diverse situations of vagueness and ambiguity. For example,
type-2 fuzzy sets (T2FSs) [66], neutrosophic sets (NFSs) [53], hesitant fuzzy sets
(HFSs) [56, 57], and spherical fuzzy sets (SFSs) [26].

Atanassov [2] defined intuitionistic fuzzy sets (IFSs) as a more general form of
fuzzy sets by adding the non-membership degree under the constraint that the sum
of the membership degree and the non-membership degree is less than or equal to
one. The indeterminacy degree is treated as a residual term such that the sum of the
three degrees is equal to one. Although IFSs are proficient at imprecise treatment
and inexact data, still, there are certain difficulties IFSs cannot handle. Atanassov [3]
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pointed out the possibility of changing the condition on the sum of the membership
degree and the non-membership degree by increasing the power.

Yager and Abbasov [63] and Yager [62] discussed the model of Pythagorean
fuzzy sets (PFSs) for a more human consistent reasoning under imperfect and impre-
cise data. In PFSs, the sum of the squares of the membership degree and the non-
membership degree is less than or equal to one, and still, the indeterminacy degree is
the square root of the residual term. The space of all PFSs includes IFSs. Thus, PFSs
can be used more widely than IFSs in handling practical problems with imprecision
and uncertainty.

Brauers and Zavadskas [5] proposed the MULTIMOORA (Multi-Objective Opti-
mization by Ratio Analysis plus full multiplicative form) for MCDM. The MULTI-
MOORA method proved to be one of the most practical MCDM methods that have
been applied in solving complex decision-making problems. It is a completely effec-
tive method for the evaluation and ranking of alternatives without subjective orien-
tation in various phenomena [11]. It satisfies all the necessary robustness’ condi-
tions proposed by Brauers and Zavadskas [5] to become the most robust system
of multi-objective optimization under the condition of support from the Amelio-
rated Nominal Group Technique and Delphi [5]. Due to its robustness and flexibility,
MULTIMOORAwas extended using different types of fuzzy sets and was applied to
various practical fields. Throughout its application, it provided high efficiency and
effectiveness in problem-solving [11].

The output of the MULTIMOORA results from ternary ranking techniques: ratio
analysis, reference point theory, and full multiplicative form. Based on the scores
of the three techniques, the alternatives are individually ranked in each technique.
Then, using these individual rankings the rules of the dominance theory are applied
to find the final ranking. However, the dominance theory has some limitations, e.g.,
multiple comparisons and circular reasoning [11].

As the ranking process using the dominance theory can be in some cases complex
and challenging, it is not preferred in large-scale applications and the scores of the
three techniques are aggregated instead [11, 68].

Up till now, when applying the reference point approach in the MULTIMOORA
method, only the best solution is taken into consideration. Utilizing the two reference
points, i.e., the best and worst solutions, was not previously studied.

When extended in the intuitionistic and Pythagorean fuzzy environment, the IF-
MULTIMOORA and the PF-MULTIMOORA might have two main drawbacks. In
the ratio analysis techniquewhich exploits the additive utility, theweighted averaging
operators play the main role. Most of these aggregation operators have a flaw that
might result in a biased treatment and false ranking. For an alternative, a single crite-
rion with the perfect rating (1, 0) will dominate regardless of its weight and abolish
the effect of all the other criteria, which is not fair in the assessment process. Simi-
larly, for the full multiplicative form in which the weighted geometric operators play
the main role a single criterion with the worst rating (0, 1) will dominate regardless
of its weight and abolish the effect of all the other criteria for an alternative, which
is also not fair in an evaluation process.
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In the last few decades, energy consumption increased and additional energy
supplies are needed to balance the increasing demand. It was found that renew-
able energies are the best approach for the provision of energy due to their sustain-
able nature and broad utilization due to their diverse presence such as wind, solar,
geothermal, bioenergy and hydropower. Yet, renewable sources usually cannot stand
alone in power plants because of their intermittent nature and significant fluctua-
tions, e.g., wind and solar energies. Energy storage technologies (ESTs) can solve
this problem when coupled with renewable energy resources. ESTs improve the
system’s performance and increase the penetration of renewable energy sources.
ESTs are continuously developed and different storage systems are established due
to the multiple utilization of energy and the different types of applications [42].
The choice of a suitable EST is an MCDM problem since multiple technologies are
defined for multiple conflicting criteria.

This chapter develops a new version MULTIMOORA in the Pythagorean fuzzy
environment that eliminates the shortcomings of the previous versions. So far, when
using the aggregation approach the result of each utility function is defuzzified using
the score function before the aggregation for ranking. This can be mainly attributed
to using the reference point approach which relies on the distance from the ideal
situation that is always employed as a crisp value. In fact, being a distance between
two fuzzy values it cannot be definitely determined. Hence, it is more appropriate
to define distance on a fuzzy basis rather than a crisp basis. Consequently, this
study will adopt the aggregation approach in which distances are utilized on a fuzzy
basis. As a result, defuzzification is employed only in the final step for ranking.
At this point, the accuracy function is also employed with the score function to
make the comparison more discriminatory and to overcome any drawbacks that may
be associated with the defuzzification using the score function solely. In addition,
newly proposed aggregation operators are exploited. These operators guarantee fair
treatment among the evaluation criteria since most of the aggregation operators have
a flaw that might result in a biased treatment and false ranking in certain situations.
A practical example that considers the evaluation of energy storage technologies is
provided to illustrate the developed method and to make a comparative analysis.

From the previous discussion, the contribution of the study encompasses twomain
features. In the reference point approach, fuzzy distance is employed. This allows
examining two reference points instead of one. The study also exploits aggregation
operators that make the decision results more precise and exact.

The chapter is organized as follows. In Sect. 2, the literature is reviewed. Section 3
includes the basic concepts, definitions, and operators of PFSs together with the
conventionalMULTIMOORA. Section 4 explains the proposed PF-MULTIMOORA
in detail. In Sect. 5, a practical example in the evaluation of energy storage technolo-
gies is provided to illustrate the newly developed method. Finally, the conclusion is
given in Sect. 6.
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2 Review of the Literature

2.1 The MULTIMOORA Method

Brauers and Zavadskas [4] proposed the MOORA method that combines two tech-
niques, the ratio analysis, and the reference point methods. In the ratio analysis, the
rating of each alternative to a criterion is compared to a denominator which is repre-
sentative of all the alternatives concerning that criterion. While the reference point
method measures the distance between the rating of an alternative for a criterion
and a reference point. This reference point has the highest rating for maximization
and the lowest for minimization. They applied the method to optimize privatization
processes, especially for transition economies.

Brauers and Zavadskas [5] clarified that using two different methods of multi-
objective optimization is more robust than using a single method. Also, using three
methods is more robust than using two methods. Accordingly, they proposed the
MULTIMOORA which is composed of the MOORA method and the full multi-
plicative form. In the full multiplicative form, the utility function is themultiplication
the ratings of an alternative for the evaluation criteria. They applied the method for
project management in a transition economy.

Since the introduction ofMULTIMOORA, it has been applied in various practical
sectors including industries, economics, civil services, and environmental policy-
making, healthcare management, and information and communications technologies
[28]. Several versions were also developed to handle uncertainty using different
types of data. For a comprehensive review of the MULTIMOORA different versions
applied to diverse practical problemsuntil 2018, the reader is referred toHafezalkotob
et al. [28]. The most recent articles about MULTIMOORA are summarized by the
type of data used as follows.

Using crisp data, Asante et al. [1] integrated MULTIMOORA with the Evalua-
tion based on Distance from Average Solution (EDAS) method for the evaluation of
renewable energy barriers in developing countries. Dizdar and Ünver [14] applied
MULTIMOORA method for the assessment procedure of occupational safety and
health based on the counts of occupational accidents and diseases. Fedajev et al. [17]
used MULTIMOORA and the Shannon Entropy Index to rank and classify the Euro-
pean Union (EU) countries according to the progress achieved in the implementation
of the “Europe 2020” strategy. Omrani et al. [45] proposed a new approach based on
the Best–Worst Method (BWM) and MULTIMOORA methods to calculate semi-
human development index (HDI). HDI is a useful tool for policymakers to understand
the degree of development in their societies and establish new policies to improve it.
Souzangarzadeh et al. [54] used the response surfacemethodology (RSM)D-optimal
Design along with MULTIMOORA to find the optimum design of segmented tubes
as energy absorbers in terms of various vehicles collision scenarios. Yörükoğlu and
Aydın [64] applied MULTIMOORA for wind turbine selection problem according
to qualitative and quantitative criteria.
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As for type-1 fuzzy sets, Chen et al. [8] proposed an extended MULTIMOORA
method using the ordered weighted geometric averaging (OWGA) operator and
Choquet integral for failure mode and effects analysis (FMEA). Dai et al. [12]
proposed a novel MULTIMOORA into the triangular fuzzy environment in which
the period weights and attribute weights are completely unknown. Rahimi et al. [49]
introduced a framework comprising Geographic Information System (GIS) tech-
niques and fuzzy MCDM methods to select sustainable landfill site. The criteria
weights were obtained using the fuzzy BWM. The suitability maps were generated
based on the GIS analysis. The selected sites were then analyzed and ranked using
the MULTIMOORAmethod. Tavana et al. [55] proposed an integrated approach for
supply chain risk–benefit assessment and supplier selection that combines the fuzzy
analytic hierarchy process (AHP) and the fuzzyMULTIMOORA. Dahooie et al. [11]
applied an objective weight determination method called CCSD (Correlation Coef-
ficient and Standard Deviation) to eliminate the limitations of the dominance theory
and increase the robustness of the MULTIMOORA and enhance its performance by
considering the importance level of the three different techniques (i.e., ratio system,
reference point, and full multiplicative form).

In the context of probabilistic linguistic information (PLI), Chen et al. [7] proposed
a MULTIMOORA and introduced an innovative two-step comparative method to
evaluate cloud-based enterprise resource planning (ERP) systems. Liu and Li [39]
established the prospect theory-basedMULTIMOORAmethod. They used the prob-
abilistic linguistic terms set (PLTS) to describe qualitative information not only to
provide every possible evaluation value but also to give the weight of these values.

MULTIMOORA was also extended using the hesitant fuzzy linguistic term set
(HFLTS). Liang et al. [34] designed a MULTIMOORA method using a dual hesi-
tant fuzzy extended Bonferroni mean (DHFEBM) to select a renewable energy tech-
nology. Liao et al. [37] improved theMULTIMOORAmethod by integratingwith the
ORESTE (organísation, rangement et Synthèse de données relationnelles) method,
and extended the method to the unbalanced hesitant fuzzy linguistic context based on
an introduced score function to eliminate the defects of the subscript-based operations
on HFLTSs.

Regarding picture fuzzy numbers (PFNs), Lin et al. [38] proposed a novel picture
fuzzy MULTIMOORA to solve the site selection problem for car-sharing stations
based on a novel score function and Borda rule.

In the intuitionistic fuzzy environment, Luo et al. [40] developed a distance-based
IF-MULTIMOORAmethod integrating a novel weight-determiningmethod to select
medical equipment. Zhang et al. [68] proposed an IF-MULTIMOORA method for
MCDM that involves information fusion to allow processing both crisp and fuzzy
information.

On the subject of PFSs, Li et al. [33] proposed a newMULTIMOORA method to
evaluate the passenger satisfaction level of the public transportation system under a
large group environment. Xian et al. [60] developed aMULTIMOORAmethod using
interval 2-tuple Pythagorean fuzzy linguistic sets to evaluate financial management
performance in universities. Liang et al. [35] presented a MULTIMOORA method
with interval-valued Pythagorean fuzzy sets (IVPFSs) to solve the selection problem
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of hospital open-source electronic health records (EHRs) systems for MedLab in
Ghana.

Concerning the neutrosophic fuzzy environment, Liang et al. [36] proposed a
MULTIMOORA approach based on linguistic neutrosophic numbers (LNNs) and
applied this new approach to select the optimal mining method. Based on a neutro-
sophicMULTIMOORA technique, Siksnelyte et al. [52] presented an original frame-
work for sustainable energy development indicators. They analyzed the trends of
energy development across the Baltic Sea Region (BSR) countries from 2008 to
2015.

Lately, Gündoğdu [25] developed a MULTIMOORA method using spherical
fuzzy sets (SFSs) to increase its efficiency at solving complex problems that require
evaluation and estimation under unreliable data environment.

2.2 Pythagorean Fuzzy Operators

Various scholars have paid attention to MCDM problems under PF environment. To
develop effective and efficient methods to solve these problems, PF operational laws
and aggregation operators are crucial. Yager [61] developed the Pythagorean fuzzy
weighted averaging (PFWA) operator and Pythagorean fuzzy weighted geometric
(PFWG) operator to handle multiple attribute decision making (MADM) problems.
Ma and Xu [41] defined some novel PFWG and PFWA operators for PF infor-
mation which can treat the membership degree and the non-membership degree
neutrally. Garg [19, 20] developed some generalized PF Einstein weighted and
ordered weighted averaging operators. Zhang [69] presented a new PFWA operator
and PF-ordered weighted averaging (PFOWA) operator to aggregate PFSs. Garg [18]
presented the averaging and the geometric aggregation operators under the interval-
valued PF environment. Peng and Yang [47] developed a PF Choquet integral oper-
ator for multiple attribute group decision-making (MAGDM) problems. Wei and Lu
[59] proposed some PFMaclaurin symmetric mean operators for MADM. Garg [19]
defined two new exponential operational laws for interval-valued Pythagorean fuzzy
sets (IVPFSs) and their corresponding aggregation operators. Garg [22] developed
some new logarithm operational laws (LOL)with a real number base for PFSs. Based
on the properties of these LOL, various weighted averaging and geometric operators
were developed and a decision-making method was introduced under PF informa-
tion using the proposed operators. Garg [23] developed some new operational laws
and their corresponding PFWGA operators by including the feature of the proba-
bility sum and the interaction coefficient into the analysis to get a neutral or a fair
treatment to the membership and non-membership functions of PFSs. Later, Garg
[24] defined some new PF weighted, ordered weighted, and hybrid neutral aver-
aging aggregation operators for PF information. He utilized these operators that can
neutrally treat the membership and non-membership degrees to present an algorithm
to solve theMAGDMproblems under the PF environment.Wang et al. [58] presented
some PF interactive Hamacher power aggregation operators such as PF interactive
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Hamacher power average, weighted average, ordered weighted average, PF interac-
tive Hamacher power geometric, weighted geometric, and ordered geometric oper-
ators, respectively. In addition, they defined a PF entropy measure and established
a method to determine the attribute weights. They explored a novel approach for
MADM problems and assessed express service quality.

Shahzadi et al. [51] introduced six families of aggregation operators namely,
PF Yager weighted averaging aggregation, PF Yager ordered weighted averaging
aggregation, PF Yager hybrid weighted averaging aggregation, PF Yager weighted
geometric aggregation, PF Yager ordered weighted geometric aggregation and PF
Yager hybridweightedgeometric aggregation.These operators inherit the operational
advantages of Yager parametric families.

2.3 Energy Storage Technologies

With the development of renewable energy, energy storage is becoming increasingly
important; hence, finding and implementing cost-effective and sustainable energy
storage and conversion systems is vital [13].

ESTs not only store the excess of energy but also increase renewable energy
penetration and decrease its limitations as a power plant cannot depend solely on a
renewable energy source without EST. This results in decreasing fuel consumption
and CO2 emissions. ESTs balance between the energy supply and demand while
reducing renewable energy fluctuations due to its intermittent nature. They improve
the overall efficiency of a power plant, thus reducing the operating cost in the long
run. They also reduce the peak energy loads which will, in turn, decrease the risk
of load shedding especially when the large capacity of storage is considered. The
flexibility of ESTs makes it convenient and suitable to cover distant areas that suffer
from the lack of electricity [42]. The major problem with ESTs is their investment
cost and operational cost that should bewithin acceptable limits. Finding the possible
low cost, efficient, and long term ESTs that don’t harm the environment is a subject
of extensive research [30].

The only way of storing electrical energy is by converting it to other forms of
energy such as thermal energy, chemical energy, electrochemical energy, mechanical
energy, and electromagnetic energy [31].

Thermal energy storage (TES): it is a technology that stores thermal energy by
heating or cooling a storagemediumand then utilizes this stored energywhen needed.
The stored energy can be used at a later time for heating and cooling applications
and power generation [50]. Power is generated from this stored energy by applying
a Rankine cycle turbine with the system. TES systems are applicable in diverse
industrial and residential purposes, e.g., space heating or cooling, process heating
and cooling, hot water production, and electricity generation. TES can be classified
into three types: latent heat, sensible heat, and thermochemical heat storage. Sensible
heat storage stores heat energy in any material depending on its heat capacity and the
change of the material’s temperature during the process of charging and discharging.
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The main advantage of this type is that charging and discharging is completely
reversible and have unlimited life cycles [30]. Latent heat storage is based on the
amount of heat released or absorbed during the phase change of any material. Heat
is stored in phase change materials which could be both organics and inorganics and
can change their phase with varying heat [31]. The materials for storing the heat can
be both liquid and solid. They are successfully integrated with solar energy systems
[68].

Chemical energy storage (CES): Chemical energy is stored in the chemical
bonds of atoms and molecules that can be only observed when released in a chemical
reaction in the form of heat. After the release of chemical energy, the substance is
often changed into a completely different substance. Chemical fuels are the dominant
form of energy storage regarding electrical generation and energy transportation.
Chemical energy storage is suitable for storing large amounts of energy and for
longer durations [27]. CES includes hydrogen storage and biofuels [30]. Biofuels
are produced by a biological process instead of geological processes. Biomass is an
organic matter derived from the biodegradable fraction of energy crops, the waste
matter of plants and animals. This biomass is used to produce biogas which can be
converted through a generator to electricity. Biofuels include ethanol, biodiesel, bio-
alcohols, bio-ether, green diesel, biofuel gasoline, vegetable oils, syngas, and solid
biomass [30]. Hydrogen energy storage technology is one of the most prominent
types. The process involves two steps: producing and storing hydrogen when there
is excess power available, and then producing electricity from the stored hydrogen
using fuel cells in case of power shortage [31].

Electrochemical energy storage (EcES): this storage technology converts elec-
tric energy into chemical energy and vice versa during energy storage and recovery.
There are two main branches of EcES: electrochemical batteries and electrochem-
ical capacitors. The type of the EcES differs according to the nature of the chemical
reaction, structural features, and design. Electrochemical cells and batteries are clas-
sified according to three features. The first classification depends on the operation
principle and contains 4 categories; primary cell or battery, secondary cell or battery,
reserve cell, and fuel cell. In the primary batteries, the chemical once consumed
cannot be recharged, while the secondary batteries can be charged and discharged
many times. In power system applications, only secondary batteries are utilized [31].
The second classification is based on discharge depth, either shallow or deep cycle
batteries. Deep cycle batteries are suitable for renewable applications. The third
classification depends on the characteristic of the electrolyte in the battery, either
flooded or wet and sealed. Flooded or wet batteries are vastly utilized in renewable
applications [27]. EcES plays a vital role in our daily life since they are applied
in small devices, e.g., laptops, tablets, and cell phones, and in larger devices, e.g.,
electric cars, to provide efficient and reliable use of energy. Battery energy storage
is the most widespread storage method. It is available in different sizes ranging from
tens of watts to megawatts [31]. Batteries have two main disadvantages. First, the
long charging time since they have an intrinsically low power handling capability
(<1 kW/kg, normalized by the device mass). Second, the short device cycle life. The
specific power ofmodern batteries has been increased; yet, the cost of these advanced
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batteries is high, and they still do not fulfill the power demands of many applications,
e.g., electric vehicles [32].

Electrical energy storage (EES): in this technology electrical energy is converted
from a power network or source via an energy conversionmodule into another energy
storagemedium. This intermediate energy is stored for a limited time, then converted
back into electrical energy when needed [43]. ESS is most suitable for any specific
application in power systems. EES includes capacitors, supercapacitors, and super-
conducting magnetic energy storage (SMES). In supercapacitors the electric energy
is stored in the form of the electrostatic field created in-between the two porous elec-
trodes, separated by a separator. On the other hand, SMES stores electric energy in
the electromagnetic field generated by a current following through a superconducting
conductor [31]. The capacitors can be used for high currents, but for extremely short
periods due to their relatively low capacitance generation. A Supercapacitor can
replace a regular capacitor, but it offers very high capacitance in a small package.
Superconducting magnetic energy storage systems are preferred on the outlet of
power plants to stabilize the output or on industrial sites to accommodate peaks in
energy consumption [27].

Mechanical energy storage (MES): this technology takes advantage of kinetic
or gravitational forces to store energy. MES is easily adaptable to convert and store
energy from water current, wave, and tidal sources [27]. Mechanical energy storage
offers several advantages compared to other ESTs especially in terms of environ-
mental impact, cost, and sustainability. In MES the energy is stored by doing some
mechanical work, and then energy from mechanical work is exploited upon its
requirement [30]. MES can be found in two forms according to the utilization of
stored energy. The first form is pure mechanical if the system is directly used. The
second form is mechanical–electrical when energy is transmitted via an electric
motor-generator. The pure mechanical systems can provide mechanical work such
as smoothing the rotation of a rotating mass; mechanical–electric systems are used
to supply the grid with electricity. MES is classified by the working principle as
follows: pressurized gas, forced springs, kinetic energy, and potential energy. The
main types of MES are pumped hydroelectric storage (PHS), compressed air energy
storage (CAES), and flywheel energy storage (FES) [42].

The wide range of ESTs, with each EST being different in terms of the scale of
power, response time, energy/power density, discharge duration, and cost coupled
with the complex characteristics matrices, makes it difficult to choose a particular
EST for a specific application.
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3 Preliminaries

3.1 Pythagorean Fuzzy Sets

In this section, the basic definitions, operations, and aggregation operators of PFSs
are reviewed.

Definition 1 ([63]). A Pythagorean fuzzy set Ã in a finite universe of discourse X
is defined by

Ã = {
x, μ Ã(x), υ Ã(x) : x ∈ X

}
, (1)

where μ Ã(x) : X → [0, 1] denotes the membership degree,
υ Ã(x) : X → [0, 1] denotes the non-membership degree,
satisfying the constraint

0 ≤ μ2
Ã
(x) + υ2

Ã
(x) ≤ 1. (2)

The hesitation margin, i.e., the degree of uncertainty, is represented by

π Ã(x) =
√

1 −
(
μ2

Ã
(x) + υ2

Ã
(x)

)
. (3)

Definition 2 ([62]). For the PFSs
{
Ã1, Ã2, . . . , Ãn

}
having weights

(w1,w2, . . . ,wn), with wi ∈ [0, 1] and
∑n

i=1 wi = 1, the Pythagorean fuzzy
weighted averaging operator (PFWAY ) and the Pythagorean fuzzy weighted
geometric operator (PFWGY ) are defined as follows:

(i)

PFWAY =
(

n∑

i=1

wiμ Ãi
,

n∑

i=1

wiυ Ãi

)

, (4)

(ii)

PFWGY =
(

n∏

i=1

μ
wi

Ãi
,

n∏

i=1

υ
wi

Ãi

)

. (5)

Definition 3 ([41]). For any two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
the

operational laws are given by
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(i)

Ã ⊕ B̃ =
(√

μ2
Ã

+ μ2
B̃

− μ2
Ã
μ2

B̃
, υ ÃυB̃

)
, (6)

(ii)

Ã ⊗ B̃ =
(
μ ÃμB̃,

√
υ2
Ã

+ υ2
B̃

− υ2
Ã
υ2
B̃

)
, (7)

(iii)

λ � Ã =
(√

1 −
(
1 − μ2

Ã

)λ

, υλ

Ã

)

, (8)

(iv)

Ãλ =
(

μλ

Ã
,

√

1 −
(
1 − υ2

Ã

)λ

)

,where λ > 0 is a scalar. (9)

Based on the operational laws given in Definition 3, the PFWAMX and the
PFWGMX are defined as follows:

Definition 4 ([41]). Consider the PFSs
{
Ã1, Ã2, . . . , Ãn

}
with weights

(w1,w2, . . . ,wn), where wi ∈ [0, 1] and
∑n

i=1 wi = 1, the PFWAMX and the
PFWGMX are defined as follows.

(i)

PFWAMX

(
Ã1, Ã2, . . . , Ãn

)
=

(
w1 � Ã1

)
⊕

(
w2 � Ã2

)
⊕ . . . ⊕

(
wn � Ãn

)

=
([

1 −
n∏

i=1

(
1 − μ2

Ãi

)wi
] 1

2

,
n∏

i=1
υ
wi

Ãi

)

,

(10)

(ii)

PFWGMX

(
Ã1, Ã2, . . . , Ãn

)
= Ãw1

1 ⊗ Ãw2
2 ⊗ . . . ⊗ Ãwn

n .

=
(

n∏

i=1
μ
wi

Ãi
,

[
1 −

n∏

i=1

(
1 − υ2

Ãi

)wi
] 1

2

)
(11)

Definition 5 ([51]). For any two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
, θ >

0 and λ > 0, Yager’s t-norm and t-conorm operations are defined as follows:
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(i)

Ã� B̃ =
⎛

⎜
⎝

√√√√min

(

1,
(
μ2θ
Ã

+ μ2θ
B̃

) 1
θ

)

,

√√√√√1 − min

⎛

⎝1,

((
1 − υ2

Ã

)θ +
(
1 − υ2

B̃

)θ
) 1

θ

⎞

⎠

⎞

⎟
⎠,

(12)

(ii)

Ã� B̃ =
⎛

⎜
⎝

√√√√√1 − min

⎛

⎝1,

((
1 − μ2

Ã

)θ +
(
1 − μ2

B̃

)θ
) 1

θ

⎞

⎠,

√√√√min

(

1,
(
υ2θ
Ã

+ υ2θ
B̃

) 1
θ

)⎞

⎟
⎠,

(13)

(iii)

λ � Ã =
⎛

⎝

√

min

(
1,

(
λμ2θ

Ã

) 1
θ

)
,

√√√√1 − min

(

1,

(
λ
(
1 − υ2

Ã

)θ
) 1

θ

)⎞

⎠,

(14)

(iv)

Ãλ =
⎛

⎝

√√√√1 − min

(

1,

(
λ
(
1 − μ2

Ã

)θ
) 1

θ

)

,

√

min

(
1,

(
λυ2θ

Ã

) 1
θ

)⎞

⎠. (15)

Based on the operational laws given in Definition 5, the PFYWA and the PFYWG
are defined as follows.

Definition 6 ([51]). For the PFSs
{
Ã1, Ã2, . . . , Ãn

}
having weights

(w1,w2, . . . ,wn), with wi ∈ [0, 1] and
∑n

i=1 wi = 1, the PFYWA and the
PFYWG are given as follows:

PFYWA
(
Ã1, Ã2, . . . , Ãn

)
=

(
w1 � Ã1

)
�

(
w2 � Ã2

)
� . . . �

(
wn � Ãn

)

=
⎛

⎜
⎝

√√√√√min

⎛

⎝1,

(
n∑

i=1

(
wiμ

2θ
Ãi

)) 1
θ

⎞

⎠,

√√√√√1 − min

⎛

⎝1,

(
n∑

i=1

(
wi

(
1 − υ2

Ãi

)θ
)) 1

θ

⎞

⎠

⎞

⎟
⎠,

(16)

PFYWG
(
Ã1, Ã2, . . . , Ãn

)
= Ãw1

1 � Ãw2
2 � . . . � Ãwn

n

=
⎛

⎝

√√√√1 − min

(

1,

(
n∑

i=1

(
wi

(
1 − μ2

Ãi

)θ
)) 1

θ

)

,

√√√√min

(

1,

(
n∑

i=1

(
wiυ

2θ
Ãi

)) 1
θ

)⎞

⎠.

(17)
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For a PFS Ã = (
μ Ã, υ Ã

)
, Zhang andXu [70] proposed a score function to evaluate

and compare PFSs and it is defined as follows:

S
(
Ã
)

= μ2
Ã

− υ2
Ã
,where S

(
Ã
)

∈ [−1, 1]. (18)

In addition, Peng and Yang [46] proposed an accuracy function to help in
discrimination whenever a tie occurs. The accuracy function is defined as follows:

A
(
Ã
)

= μ2
Ã

+ υ2
Ã
,where A

(
Ã
)

∈ [0, 1]. (19)

Definition 7 ([48]). The complement or the negation pf a PFS Ã = (
μ Ã, υ Ã

)
is

denoted by

Ãc = (
υ Ã, μ Ã

)
. (20)

Definition 8 ([46]). Two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
are compared as

follows:

(a) If S
(
Ã
)

< S
(
B̃

)
, then Ã < B̃;

(b) If S
(
Ã
)

> S
(
B̃

)
, then Ã > B̃;

(c) If S
(
Ã
)

= S
(
B̃

)
, the accuracy function is employed

(i) If A
(
Ã
)

< A
(
B̃

)
, then Ã < B̃;

(ii) If A
(
Ã
)

> A
(
B̃

)
, then Ã > B̃;

(iii) If A
(
Ã
)

= A
(
B̃

)
, then Ã ≈ B̃.

Distance and similarity measures are important topics and have been extensively
used in diverse fields such as pattern recognition, machine learning, and market
prediction [68]. Some common metrics, e.g., Hamming distance and Euclidean
distance, arewidely used tofind the distance between twoPFSs. Initially, themember-
ship degree and the non-membership degree were only considered in the distance
formulas. Later, these formulas were modified to include the degree of hesitation as
well. The distance formulas in a Pythagorean fuzzy environment are given as follows
[29].

i. Hamming distance

dHm

(
Ã, B̃

)
= 1

2

n∑

i=1

{∣∣∣μ2
Ã
(xi ) − μ2

B̃
(xi )

∣∣∣ +
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣ +
∣∣∣π2

Ã
(xi ) − π2

B̃
(xi )

∣∣∣
}
.

(21)
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ii. Normalized Hamming distance

dNHm

(
Ã, B̃

)
= 1

2n

n∑

i=1

{∣∣∣μ2
Ã
(xi ) − μ2

B̃
(xi )

∣∣∣ +
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣ +
∣∣∣π2

Ã
(xi ) − π2

B̃
(xi )

∣∣∣
}
.

(22)

iii. Euclidean distance

dE
(
Ã, B̃

)
=

√√√√ 1

2

n∑

i=1

{(
μ2

Ã
(xi ) − μ2

B̃
(xi )

)2 +
(
υ2
Ã
(xi ) − υ2

B̃
(xi )

)2 +
(
π2
Ã
(xi ) − π2

B̃
(xi )

)2}
.

(23)

iv. Normalized Euclidean distance

dNE

(
Ã, B̃

)
=

√√√√ 1

2n

n∑

i=1

{(
μ2

Ã
(xi ) − μ2

B̃
(xi )

)2 +
(
υ2
Ã
(xi ) − υ2

B̃
(xi )

)2 +
(
π2
Ã
(xi ) − π2

B̃
(xi )

)2}
.

(24)

v. Hausdorff distance

dHs

(
Ã, B̃

)
=

n∑

i=1

max
{∣∣∣μ2

Ã
(xi ) − μ2

B̃
(xi )

∣∣∣,
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣
}
. (25)

vi. Normalized Hausdorff distance

dNHs

(
Ã, B̃

)
= 1

n

n∑

i=1

max
{∣∣∣μ2

Ã
(xi ) − μ2

B̃
(xi )

∣∣∣ +
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣
}
. (26)

The concepts of distance measure and similarity measure are dual concepts.
Hence, the distance between two PFSs is used to define the similarity between two
PFSs.

Proposition 1 ([16]). Let d
(
Ã, B̃

)
be the distance between two PFSs Ã and B̃, then

the similarity measure between the two PFSs is given as

S
(
Ã, B̃

)
= 1 − d

(
Ã, B̃

)
. (27)

Hussian and Yang [29] defined other similarity measures based on the Hausdorff
metric beside the simple linear function (27). These similaritymeasures use a rational
function and an exponential function as follows:
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S
(
Ã, B̃

)
=

1 − dHs

(
Ã, B̃

)

1 + dHs

(
Ã, B̃

) , (28)

and

S
(
Ã, B̃

)
= edHs( Ã,B̃) − e−1

1 − e−1
. (29)

3.2 The Classical MULTIMOORA Method

The MULTIMOORA method is an extension of the multi-objective optimization by
ratio analysis (MOORA) method by incorporating the full multiplicative form of
multiple objectives [5]. The MULTIMOORAmethod can be summarized as follows
[5, 35]:

Suppose the general decision matrix of an MCDM problem is given by

D = [
Xi j

] =

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢
⎣

X11 X12

X21 X22
· · · X1m

X2m
...

. . .
...

Xn1 Xn2 · · · Xnm

⎤

⎥⎥⎥
⎦

,

where its element Xi j is the rating of the alternative Xi ; i = 1, 2, . . . , n for the crite-
rion C j ; j = 1, 2, . . . ,m. First, the data of the general decision matrix is normalized
by dividing the rating of an alternative for a criterion by the square root of the sum
of squares of the ratings of the entire alternatives for that criterion,

XN
i j = Xi j√∑n

i=1 X
2
i j

. (30)

Hence, the normalized general decision matrix DN =
[
XN
i j

]
is formed.

In the ratio system technique, the elements XN
i j are added in case of maximization

and subtracted in case of minimization. Let g be the number of benefit criteria to be
maximized and m − g be the number of cost criteria to be minimized, the overall
index of each alternative is:
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Ri =
g∑

j=1

XN
i j −

m∑

j=g+1

XN
i j . (31)

Using (31), the alternatives are ranked. The higher the value of Ri , the higher the
rank.

In the reference point technique, the Reference Point Theory is applied with the
Min–Max Metric of Chebyshev. The jth criterion reference point is defined by

X∗
j =

{
maxi X N

i j , for benefit criteria,
mini X N

i j , for cost criteria.
(32)

The deviation of the normalized rating of each alternative from the reference point
is calculated by

di = min
i

{
max

j

∣∣X∗
j − XN

i j

∣∣
}
. (33)

Using (33), the alternatives are ranked. The lower the value of di , the higher the
rank.

The full multiplicative form combines both maximization and minimization of
the multiplicative utility function. The overall utility of each alternative is given by
the dimensionless number

Ui = Ub
i

Uc
i

, (34)

where Ub
i = ∏g

j=1 Xi j denotes the product of an alternative’s ratings of benefit
criteria, andUb

i = ∏m
j=g+1 Xi j denotes the product of an alternative’s ratings of cost

criteria. Using (34), the alternatives are ranked. The higher the value ofUi , the higher
the rank.

Utilizing the dominance theory, the alternatives are ranked based on the previous
three ranking lists and the final decision is made, i.e., the alternative with the highest
appearance in the first place on all the ranking lists is the best.

4 The Proposed PF-MULTIMOORA

In this section, the MULTIMOORA method is utilized in PF environment due to
its appealing features. The MULTIMOORA is one of the most practical MCDM
methods. It is an effective, efficient, flexible, and robust method. It was successfully
applied to various practical fields.
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Consider anMCDM problem with n alternatives {X1, X2, . . . , Xn} andm criteria
{C1,C2, . . . ,Cm}, with weights (w1,w2, . . . ,wm) satisfying

∑m
i=1 wi = 1. The

Pythagorean fuzzy general decision matrix is represented as

∼
D=

[∼
Xi j

]
=

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢⎢⎢
⎣

∼
X11

∼
X12∼

X21
∼
X22

· · ·
∼
X1m∼
X2m

...
. . .

...
∼
Xn1

∼
Xn2 · · · ∼

Xnm

⎤

⎥⎥⎥⎥⎥
⎦

,

where
∼
Xi j = (

μi j , υi j
)
indicates the ratings of the alternatives for the assessment

criteria expressed by PFSs. The value “μij” indicates the degree to which an alterna-
tive Xi satisfies a criterion C j , and the value “υi j” indicates the degree to which Xi

fails to satisfy this criterion. In constructing the decision matrix, the complement of
the PFS is used for the ratings of the cost criteria. Hence, the decision matrix needs
no further processing and the three techniques are directly applied.

The three techniques are expressed in detail in the following subsections.

4.1 The Ratio System Technique

The ratio system is based on the additive utility function. As the ratings are already
expressed by PFSs they do not need normalization. In addition, since the complement
is used in case of cost criteria, all the criteria are treated as benefit ones and subtraction
operation (31) is not required. A Pythagorean fuzzy weighted averaging aggregation
operator is applied.

Most of the proposed weighted average aggregation operators cannot be applied
in a certain situation that is illustrated by the following example. Consider a simple
MCDM problem with two alternatives and three criteria. The criteria weights are
0.2, 0.3, and 0.5, respectively. The ratings of the alternatives for the criteria are given
by the following decision matrix.

C1 C2 C3
∼
D= A1

A2

[
(1, 0)

(0.9, 0.1)
(0.1, 0.9)
(0.8, 0.2)

(0.1, 0.9)
(0.9, 0.1)

]

From the decision matrix, the performance of A2 far exceeds that of A1 for the
second and third criteria that have larger weights, while the performance of A1 is
slightly better than that of A2 for the first criterion that has the smallest weight.
Therefore, it is obvious that A2 is better than A1 by intuition.
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Using the PFWAMX (10) and the score function (18), we get PFWAMX
(
A1|C j

) =
(1, 0) with S(A1) = 1, while PFWAMX

(
A2|C j

) = (0.8774, 0.1231) with S(A2) =
0.7547. This result leads to the selection of A1 despite being not the better choice
by logic. Accordingly, it can be concluded that a single criterion with the perfect
rating (1, 0) will dominate regardless of its weight and abolish the effect of the rest
of the evaluation criteria, which is not fair in the assessment process. In this case,
the selection is biased to the alternative having a single perfect rating regardless of
its ratings for the other criteria. Therefore, false ranking is obtained.

On the other hand, using the PFYWA (16) and the score function (18),
we get PFYWA

(
A1|C j

) = (0.6688, 0.7222) with S(A1) = −0.0743, while
PFYWA

(
A2|C j

) = (0.8735, 0.1375) with S(A2) = 0.7441. This result leads to
the selection of A2, which is the better alternative by intuition. Here, the obtained
ranking is rational.

From the previous illustration, the PFYWA (16) is chosen for aggregation. Hence,
the additive utility U A

i of each alternative Xi is given by

Ũ A
i = PFYWA

(
X̃i j | j = 1, 2, . . . ,m;w

)
=

(
w1 � X̃i1

)
�

(
w2 � X̃i2

)
� . . . �

(
wn � X̃im

)

=

⎛

⎜⎜
⎝

√√√√√√min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(
wiμ

2θ
X̃i j

)⎞

⎠

1
θ

⎞

⎟
⎠,

√√√√√√1 − min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(

w j

(
1 − υ2

X̃i j

)θ
)⎞

⎠

1
θ

⎞

⎟
⎠

⎞

⎟⎟
⎠.

4.2 The Reference Point Technique

So far, the reference point technique proceeds by identifying a reference point for each
criterion; this reference point indicates the best rating obtained by an alternative for a
criterion. Then, the distance between the rating of each alternative for a criterion and
the reference point is calculated using a distance formula. Therefore, the reference
point approach yields a crisp value.

The reference point can be the theoretical reference point defined by (1, 0, 0).
Otherwise, it can be an empirical reference point, i.e., defined from the data of the
problem. In this case, it is given by

R̃ j =
(
μ

′
j , υ

′
j

)
,whereμ

′
j = max

i
μi j , υ

′
j = min

i
υi j , j = 1, 2, . . . ,m. (35)

Actually, a distance between two fuzzy values cannot be definitely and uniquely
defined. It is closer to be a fuzzy value rather than a crisp value. Therefore, it is more
proper to define the distance between two PFSs with a PFS.

In this proposed PF-MULTIMOORA two reference points are considered, the best
rating and the worst rating. We are in favor of an alternative according to its degree
of similarity to the best rating and oppose this alternative according to its degree
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of similarity to the worst rating, and the degree of indeterminacy can be calculated
residually. The reference point utility value is estimated as follows:

The weighted general decision matrix is calculated first. It is given by

D̃w =
[
X̃i j

]
=

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢
⎣

X̃11 X̃12

X̃21 X̃22
· · · X̃1m

X̃2m
...

. . .
...

X̃n1 X̃n2 · · · X̃nm

⎤

⎥⎥⎥
⎦

, where X̃i j = wj � X̃i j .

The theoretical reference point is employed to guarantee that the resulting value
is a PFS. Let R̃+

j be the best rating (1, 0, 0) and R̃−
j be the worst rating (0, 1, 0).

Applying the normalized Euclidean distance (24) to find the distance between the
ratings of an alternative for the criteria and the best rating

d+
i

( ∼
X i j , R̃

+
j

)
=

√√√√ 1

2m

m∑

j=1

{(
μ2

∼
X i j

− 1

)2

+ υ4
∼
X i j

+ π4
∼
X i j

}

. (36)

Similarly, the normalized Euclidean distance (24) is applied to find the distance
between the ratings of an alternative for the criteria and the worst rating

d−
i

( ∼
X i j , R̃

−
j

)
=

√√√√ 1

2m

m∑

j=1

{

μ4
∼
X i j

+
(

υ2
∼
X i j

− 1

)2

+ π4
∼
X i j

}

. (37)

Then, the utility value based on the reference point approach is expressed by

Ũ R
i = (μi , υi ) (38)

where

μi = S+
i

( ∼
X i j , R̃

+
j

)
= 1 − d+

i

( ∼
X i j , R̃

+
j

)
(39)

represents the degree of agreement on an alternative for the assessment criteria
regarding its closeness to the best rating,

υi = S−
i

( ∼
X i j , R̃

−
j

)
= 1 − d−

i

( ∼
X i j , R̃

−
j

)
(40)

represents the degree of disagreement on an alternative for the assessment criteria
regarding its closeness to the worst rating.
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4.3 The Full Multiplicative Form Technique

The full multiplicative technique is based on the multiplicative utility function. Since
all the criteria are treated as benefit criteria after using the complement of the ratings
of the cost criteria, the division operation (34) is no longer required. A Pythagorean
fuzzy weighted geometric aggregation operator is applied.

For an MCDM problem with two alternatives and three criteria with weights 0.2,
0.3, and 0.5, respectively, the ratings of the alternatives for the criteria are given by
the following decision matrix.

C1 C2 C3
∼
D= A1

A2

[
(0, 1)

(0.1, 0.9)
(0.9, 0.1)
(0.2, 0.8)

(0.9, 0.1)
(0.1, 0.9)

]
.

From the decision matrix, the ratings of A1 exceeds that of A2 for the second and
third criteria that have larger weights, and the rating of A2 is slightly better than that
of A1 for the first criteria that has the smallest weight. Therefore, it is obvious that
A1 is better than A2.

Using the PFWGMX (11) and the score function (18) we get PFWGMX
(
A1|C j

) =
(0, 1) with S(A1) = −1, while PFWGMX

(
A2|C j

) = (0.1231, 0.4637) with
S(A2) = −0.1999. This result leads to the selection of A2 although it is not the
better choice by intuition. Therefore, it can be concluded that a single criterion with
the worst performance (0, 1) will dominate regardless of its weight and abolish the
effect of the rest of the evaluation criteria, which is also not fair in evaluation. In this
case, the selection is biased against the alternative having this worst performance
regardless of its performance for the other criteria. This leads to false ranking.

On the other hand, using the PFYWG (17) and the score function (18)
we get PFYWG

(
A1|C j

) = (0.7222, 0.6688) with S(A1) = 0.0743, while
PFYWG

(
A2|C j

) = (0.1375, 0.8735) with S(A2) = −0.7441. This result leads
to the selection of A1, which is actually the better alternative by intuition.

From the previous illustration, the PFYWG (17) is chosen for aggregation. Hence,
the multiplicative utility UM

i of each alternative Xi is given by

Ũ M
i = PFYWG

(
X̃i j | j = 1, 2, . . . ,m;w

)
= X̃

w1
i1 � X̃

w2
i2 � . . . � X̃wn

in

=

⎛

⎜⎜
⎝

√√√√√√1 − min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(

wi

(
1 − μ2

X̃i j

)θ
)⎞

⎠

1
θ

⎞

⎟
⎠,

√√√√√√min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(
wiυ

2θ
X̃i j

)⎞

⎠

1
θ

⎞

⎟
⎠

⎞

⎟⎟
⎠.
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4.4 The Overall Utility Score

Finally, the results of the three techniques are combined to get the overall utility
value. In the early versions of the MULTIMOORA, the dominance theory was
applied to rank the alternatives. When using the dominance theory several rules
are utilized for discrimination: absolute dominance, general dominance, transitive-
ness, overall dominance, absolute equability, and partial equability [6]. In spite of
all these rules, circular reasoning is possible. For example, consider the following
alternatives in an MCDM problem with their ranking by the three techniques
X1(11 − 20 − 14), X2(14 − 6 − 15), and X3(15 − 19 − 12). When applying the
dominance rules we have: X1 generally dominates X2, X2 generally dominates X3,
and X3 generally dominates X1. Accordingly, the same ranking is given to the three
objects [6]. Therefore, the dominance theory in large scale applications has twomain
drawbacks: multiple comparisons and circular reasoning.

To overcome these drawbacks, recent researches proposed the aggregation of
the three techniques to enhance the accuracy and efficiency of the MULTIMOORA
method [11, 68].

Therefore, the three utility values are aggregated into the overall utility value.
Here, the common trend is to defuzzify the utility values and then aggregate. This is
accomplished by

Ui = ωAU
A
i + ωRU

R
i + ωMU

M

i , (41)

where ωA, ωR , and ωM are the coefficient of importance of the utility scores, and
their sum is equal to one.

The main disadvantage of this trend is having equal scores for different PFSs
which will surely affect the overall utility. For example, the PFSs (0.6, 0.6) and
(0.3, 0.3) have the same score. Therefore, it is preferable to use a weighted average
aggregation operator first, and then use the score function (18) for defuzzification. In
this case, whenever we have equal scores the accuracy function (19) can be applied
for discrimination.

The overall utility is computed byusing theweighted average aggregation operator
(4) for similar treatment of the membership and non-membership information for
the three utility values:

Ũ T
i = PFWAY

(
Ũ A

i , Ũ R
i , Ũ M

i |ωA,ωR, ωM

)

=
(
ωAμŨ A

i
+ ωRμŨ R

i
+ ωMμŨ M

i
, ωAυŨ A

i
+ ωRυŨ R

i
+ ωMυŨ M

i

)
,

ωA = ωR = ωM , and ωA + ωR + ωM = 1. (42)

Then, the score function (18) and the accuracy function (19) are used for ranking.
The alternative with the highest overall utility score is the best.

The steps of the PF-MUTIMOORA are shown in Fig. 1.
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Set the fuzzy distance 

The full multiplicative 
form technique

The ratio system 
technique

The reference point technique

Apply the Pythagorean 

fuzzy Yager weighted 

averaging aggregation 

operator

Apply the Pythagorean 

fuzzy Yager weighted 

geometric aggregation 

Form the weighted general decision

matrix.

Define the best and worst ratings

Find the degree of similarity between 

the ratings of each alternative and the 

best and worst ratings

Calculate the overall fuzzy utility scores

using Yager’s Pythagorean fuzzy 

weighted averaging operator

Apply the score function, and the accuracy function if required 

Formation of the 

Pythagorean fuzzy general 

decision matrix

Rank and select the best alternative

Fig. 1 The proposed PF-MULTIMOORA

5 Evaluation of Energy Storage Technologies

5.1 An Overview

As a result of industrialization and the growing population, energy demand has been
increasing in the world. Renewable energy sources (RESs) are seen as effective
alternatives to fulfill these increasing requirements. Since RESs are fluctuating and
intermittent, energy storage technologies (ESTs) enable the storage of excess energy
and utilize it when needed to secure energy supply [9]. ESTs provide a wide range of
approaches to create a more resilient energy infrastructure and bring cost savings to
utilities and consumers. Energy storage devices are charged when they absorb energy
and discharged when they deliver the stored energy back into the grid. Charging and
discharging processes normally require power conversion devices to transform elec-
trical energy into a different energy form, e.g., chemical, electrochemical, electrical,
mechanical, and thermal. In other words, energy storage enables supply and demand
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to be balanced even when the generation and consumption of energy do not happen
at the same time [44].

Finding better ways to store energy is critical to becoming more energy effi-
cient. Advances in energy storage can be achieved by finding new materials and
understanding how current and new materials function. ESTs can be used in diverse
applications. While some of them can be properly selected for specific applications,
some others are applicable in wider frames. The key factor to success lies inmatching
the application to technology [27].

ESTs can be classified into five main categories thermal energy, chemical energy,
electrochemical energy, mechanical energy, and electromagnetic energy storage as
previouslymentioned in Sect. 2. The formof converted energy determines the class of
the EST. The power storing capacity, energy and power densities, response time, cost
and economy scale, operating life, monitoring and control mechanisms, efficiency,
and operating constraints are the critical parameters that govern the choice as to
which type of technology.

The selection of an EST is an MCDM problem since the evaluation of ESTs is
based on multiple conflicting criteria. The main criteria in the assessment of the
performance of EST to achieve sustainability and energy security are technological,
economic, and environmental criteria. Technological criteria allow assessing the reli-
ability of the used technology and its ability to ensure safe energy supply. Economic
criteria take into account competitiveness and affordability issues through the asso-
ciated costs of installation and their impact on energy prices. Environmental criteria
allow addressing environmental sustainability [68].

5.2 A Practical Example

The proposed PF-MULTIMOORA is utilized to rank a set of different ESTs. Four-
teen alternatives are evaluated by using eleven criteria. The alternatives are given in
Table 1. The criteria from one to eight are technological; the ninth and tenth criteria
are economical, the eleventh criteria are environmental. The assessment criteria are
defined as follows.

(C1) The power rating: indicates the size of the power conversion subsys-
tems resulting from the maximum power requirements of the electrical load on the
discharging part (generation side) and the appearing excess power on the charging
part (input side) [67]. The power rating is measured in megawatt (MW). High power
rating indicates better EST [68].

(C2) The energy rating: measured in hours, is the duration of discharge, i.e., the
duration needed to empty the reservoir initially full at maximum outflow capacity
[10]. It indicates how long a storage device can maintain output. Long discharge
period is preferred since operating flexibility is required to manage variations in
renewable energy generation and load to match demand. A Long duration EST refers
to an EST with durations of 10 or more hours [15].
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Table 1 The evaluated ESTs

Alternative Name Technology

X1 Hydrogen Chemical storage

X2 Pumped hydroelectric storage (PHS) Mechanical storage

X3 Compressed air energy storage (CAES) Mechanical storage

X4 Flywheel Mechanical storage

X5 Superconducting magnetic energy storage (SMES) Electrical storage

X6 Supercapacitors (Supercap) Electrical storage

X7 Lead-acid (Pb-acid) Electrochemical storage

X8 Nickel–cadmium (NiCd) Electrochemical storage

X9 Lithium-ion (Li-ion) Electrochemical storage

X10 Sodium–Sulphur (NaS) Electrochemical storage

X11 Sodium–nickel chloride (NaNiCl) Electrochemical storage

X12 Vanadium redox (VRB) Electrochemical storage

X13 Zinc–bromine (ZnBr) Electrochemical storage

X14 Molten Salt Thermal storage

(C3) The response time: indicates the required time to activate the system, i.e.,
howquickly a storage technology can be brought into operation and discharge energy.
ESTs with short response time provide electricity instantly, while ESTs with long
response time provide electricity after a time interval [67]. It is measured on a
linguistic scale. The lower this value the better the EST, since the rapid response
is preferred [68].

(C4) The energy density: the ratio of energy storage capacity to the system
volume or mass [67]. It is measured in Wh/kg. High energy density indicates better
EST [68].

(C5) The self-discharge time: also known as idling losses, it is the losses occur-
ring during the time inwhich energy remains stored [67]. It is measured in percentage
per day, the lower the losses the better the EST [68].

(C6) The round-trip efficiency: it is the ratio of input energy (in MWh) to the
energy retrieved fromstorage (inMWh). It ismeasured in percentage.High round-trip
efficiency is required [68].

(C7) The lifetime: also known as the service period, it is expressed in years for a
certain cycling rate, or in the total number of cycles, where a cycle is the time during
which the system is fully charged and discharged. Long lifetime is required [68].

(C8) The number of cycles of operation: the charge/discharge performance that
represents the demands associated with a specific application placed on an EST.

(C9) The power cost: it is the total costs of installation. It is measured in Eur/kW.
Lower costs are desired [68].

(C10)The energy cost: it is the costs of energy supply. It is measured in Eur/kWh.
Lower costs are desired [68].
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(C11) The environmental impact: this encompasses the impacts of the construc-
tion, disposal/end of life, and usage of ESTs on the environment. For example, wastes
from batteries manufacturing and recycling are a crucial and growing challenge for
public health due to their toxicity, abundance and durability in the environment [13].
It is measured on a qualitative scale, and of course, the minimum impact must be
attained.

From the previous illustration of the criteria, it is clear that they not only have
quantitative and qualitative data but also the quantitative data have different units
of measurement. Moreover, they differ in the objective. It is required to maximize
{C1,C2,C4,C6,C7, andC8}, and minimize {C3,C5,C9,C10, andC11}. Zhang et al.
[68] transformed all the data into IFSs. In addition, the IFSs representing the criteria
to be minimized was negated using (20). Therefore, the data given and used in this
chapter is the data in its final form ready to be processed. The main difference is
in the residual term, i.e., the hesitation margin, which is calculated under the PF
condition. The problem data is given in Table 2. For detailed information about data
transformation and fusion, the reader is referred to Zhang et al. [68].

Several weighting strategies were proposed by Zhang et al. [68] to test the effect
of the different priorities on the selection of energy storage technologies. Each of the
three strategies: technological, economic, and environmental is assigned a weight.
Then, the weight of each strategy is equally distributed among its criteria.

First, they treated the main three strategies as equally important (balanced
strategy). Hence, the weight of each dimension is (1/3). Therefore the weights of
the criteria are

(0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.167, 0.167, 0.333).

Second, they gave a high priority to the technological strategy (0.5) and (0.25)
for the other two strategies. Then the weights of the criteria are given as follows:

(0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.125, 0.125, 0.25).

Third, they gave a high priority to the economic strategy (0.5) and (0.25) for the
other two strategies. Then the weights of the criteria are given as follows

(0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.25, 0.25, 0.25).

Fourth, they gave a high priority to the environmental strategy (0.5) and (0.25)
for the other two strategies. Then the weights of the criteria are given as follows:

(0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.125, 0.125, 0.5).

The proposed PF-MULTIMOORA is applied to solve this problem for the differ-
ently proposed weights. The value of θ = 2. The solution steps are demonstrated as
follows:
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Step 1. Form the Pythagorean fuzzy general decision matrix and determine the
weights of the criteria.

The general decision matrix is given in Table 2.
Step 2. Apply the ratio system technique using (16).

Ũ A
i = PFYWA

(
X̃i j | j = 1, 2, . . . ,m;w

)
.

Step 3. Apply the reference point technique.

(i) Form the weighted general decision matrix.
(ii) Define the best rating (1, 0, 0) and the worst rating (0, 1, 0).
(iii) Find the degree of similarity between the ratings of each alternative for the

evaluation criteria and the best rating.

μi = S+
i

( ∼
X i j , R̃

+
j

)
= 1 − d+

i

( ∼
X i j , R̃

+
j

)
,

where d+
i

( ∼
X i j , R̃

+
j

)
is the normalized Euclidean distance (36).

(iv) Find the degree of similarity between the ratings of each alternative for the
evaluation criteria and the worst rating.

υi = S−
i

( ∼
X i j , R̃

−
j

)
= 1 − d−

i

( ∼
X i j , R̃

−
j

)
,

where d−
i

( ∼
X i j , R̃

−
j

)
is the normalized Euclidean distance (37).

(v) Set the fuzzy distance from the reference point.

Ũ R
i = (μi , υi ).

Step 4. Apply the full multiplicative form approach using (17).

Ũ M
i = PFYWG

(
X̃i j | j = 1, 2, . . . ,m;w

)
.

Step 5. Calculate the overall fuzzy utility scores using (4).

Ũ T
i = PFW AY

(
Ũ A

i , Ũ
R

i , Ũ
M

i |ωA, ωR, ωM

)
,



302 I. M. Sharaf

where ωA = ωR = ωM , andωA + ωR + ωM = 1.
Step 6. Rank the alternatives by the overall fuzzy utility scores using the score

function (18) and the accuracy function (19).
The results of the three techniques, the overall fuzzy scores, and the ranking are

summarized in Table 3.
The best ESTs obtained by the proposed PF-MULTIMOORA are NaNiCl, Ni–

Cd, and ZnBr. Meanwhile, the worst ESTs are Pb-acid, VRB, and SMES. The best
ESTs obtained by the IF-MULTIMOORA [68] is Molten salt, NaNiCl, and ZnBr.
The worst three technologies coincide in the two methods.

The problem is resolved using the normalized Hausdorff and the normalized
Hamming distances in the reference point approach to compare the ranking results.
The rankings obtained by the PF-MULTIMOORA using these distance measures
are given in Table 4. The results reveal that the ranking remains unchanged using
different normalized distance measures.

Table 3 Results using the normalized Euclidean distance in the reference point approach

AU RPU (Euclidean) MU Total Score Rank

Hydrogen (0.7189,
0.5219)

(0.2089, 0.7024) (0.4667,
0.7039)

(0.4879,
0.6802)

−0.2247 9

PHS (0.6773,
0.5314)

(0.2252, 0.6218) (0.4121,
0.7553)

(0.4698,
0.6878)

−0.2523 10

CAES (0.7291,
0.5866)

(0.2179, 0.6303) (0.4551,
0.7882)

(0.5048,
0.7265)

−0.2729 11

Flywheel (0.7880,
0.3809)

(0.1984, 0.7124) (0.6129,
0.6607)

(0.5582,
0.6250)

−0.0790 4

SMES (0.6351,
0.5884)

(0.1680, 0.7605) (0.3724,
0.8070)

(0.4164,
0.7570)

−0.3997 14

Super cap (0.6738,
0.3919)

(0.1977, 0.6978) (0.5459,
0.6377)

(0.4907,
0.6113)

−0.1329 6

Pb-acid (0.7573,
0.5816)

(0.2015, 0.7245) (0.4856,
0.8034)

(0.5064,
0.7408)

−0.2922 12

Ni–Cd (0.8339,
0.3646)

(0.2221, 0.6908) (0.6852,
0.6696)

(0.6034,
0.6116)

−0.0099 2

Li-ion (0.6695,
0.4192)

(0.1975, 0.7241) (0.5530,
0.6742)

(0.4934,
0.6396)

−0.1656 8

NaS (0.7039,
0.4217)

(0.1911, 0.7483) (0.5832,
0.6721)

(0.5146,
0.6470)

−0.1538 7

NaNiCl (0.8710,
0.3662)

(0.2282, 0.6812) (0.6970,
0.6740)

(0.6261,
0.6148)

0.01399 1

VRB (0.6418,
0.6096)

(0.1633, 0.7636) (0.4352,
0.7970)

(0.4399,
0.7472)

−0.3649 13

ZnBr (0.8135,
0.3711)

(0.2119, 0.6946) (0.6621,
0.6628)

(0.5866,
0.6152)

−0.0345 3

Molten salt (0.7887,
0.4279)

(0.2202, 0.6948) (0.5887,
0.6592)

(0.5575,
0.6323)

−0.0890 5
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The effect of the different strategies: technical, economic, and environmental
strategies, on the ranking of the ESTs is also studied. The three distance measures
are also used to rank the alternatives. The ranking using the environmental strategy
is the same as the balanced strategy utilizing the three distance measures. Regarding
the technical and economic strategies, the top-ranked three technologies and the
worst-ranked three technologies are the same for the three distance measures. Slight
differences are observed in the results from the balanced strategy in the moderately
performing technologies. From four to six alternatives exchange rankings, within
one or two places forward and backwards according to the used distance measure.

The ranking of the ESTs for the different strategies using the three distance
measures is quite consistent. In the economic and environmental strategies, the
ranking of the three distance measures is the same. In the technical strategy, only the
8th and 9th alternatives exchanged ranks. PHS is ranked the 8th andNaS is ranked the
9th using the normalized Euclidean and normalized Hamming distance. Meanwhile,
PHS is ranked the 9th and NaS is ranked the 8th using the normalized Hausdorff
distance. The results are summarized in Tables 5, 6, and 7.

The ranking of the proposed PF-MULTIMOORA and the IF-MULTIMOORA
[68] for the different strategies are given in Table 8.

The results of the three approaches in Table 3 are defuzzified as given in Table
9, and then the alternatives are ranked using the dominance theory. From Table 10,
the generally dominating rule is applied to rank the alternatives. The ranking is the

Table 5 Results using technical strategy

Technical

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hamming
distance

Score Rank Score Rank Score Rank

Hydrogen −0.2662 10 −0.2371 10 −0.2164 10

PHS −0.2649 9 −0.2258 8 −0.2126 8

CAES −0.3246 11 −0.2777 11 −0.2694 11

Flywheel −0.2107 5 −0.1889 5 −0.1716 5

SMES −0.4378 14 −0.4080 14 −0.3932 14

Super cap −0.2179 6 −0.1919 6 −0.1731 6

Pb-acid −0.3315 12 −0.3033 12 −0.2815 12

Ni–Cd −0.1250 2 −0.1074 2 −0.0869 2

Li-ion −0.2424 7 −0.2207 7 −0.2028 7

NaS −0.2469 8 −0.2308 9 −0.2133 9

NaNiCl −0.1148 1 −0.0982 1 −0.0774 1

VRB −0.4014 13 −0.3470 13 −0.3239 13

ZnBr −0.1535 3 −0.1337 3 −0.1137 3

Molten salt −0.1968 4 −0.1743 4 −0.1548 4
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Table 6 Results using economic strategy

Economic

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hausdorff
distance

Score Rank Score Rank Score Rank

Hydrogen −0.1146 9 −0.0887 9 −0.0704 9

PHS −0.1470 11 −0.1118 11 −0.0943 11

CAES −0.1357 10 −0.0998 10 −0.0824 10

Flywheel −0.0154 5 0.0052 5 0.0268 5

SMES −0.2878 14 −0.2455 14 −0.2251 14

Super cap −0.0609 6 −0.0360 6 −0.0124 6

Pb-acid −0.1610 12 −0.1321 12 −0.1066 12

Ni–Cd 0.0526 2 0.0677 2 0.0924 2

Li-ion −0.1048 8 −0.0799 8 −0.0574 8

NaS −0.0733 7 −0.0520 7 −0.0300 7

NaNiCl 0.0937 1 0.1060 1 0.1269 1

VRB −0.2519 13 −0.2013 13 −0.1733 13

ZnBr 0.0260 3 0.0439 3 0.0691 3

Molten salt 0.0120 4 0.0288 4 0.0468 4

Table 7 Results using environmental strategy

Environmental

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hausdorff
distance

Score Rank Score Rank Score Rank

Hydrogen −0.3009 9 −0.2729 9 −0.2538 9

PHS −0.3537 10 −0.3081 10 −0.2970 10

CAES −0.3669 11 −0.3160 11 −0.3031 11

Flywheel −0.0066 4 0.0107 4 0.0283 4

SMES −0.4814 14 −0.4483 14 −0.4335 14

Super cap −0.1203 6 −0.0988 6 −0.0801 6

Pb-acid −0.3942 12 −0.3654 12 −0.3438 12

Ni–Cd 0.0465 2 0.0594 2 0.0788 2

Li-ion −0.1481 8 −0.1280 8 −0.1096 8

NaS −0.1388 7 −0.1204 7 −0.1024 7

NaNiCl 0.0667 1 0.0788 1 0.0980 1

VRB −0.4470 13 −0.3862 13 −0.3650 13

ZnBr 0.0281 3 0.0434 3 0.0636 3

Molten salt −0.0836 5 −0.0656 5 −0.0477 5
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Table 8 Ranking results for different strategies using PF-MULTIMOORAand IF-MULTIMOORA

Technology Balanced Technical Economic Environmental

PF IF PF IF PF IF PF IF

Hydrogen 9 6 10 6 9 5 9 9

PHS 10 9 8 5 11 9 10 11

CAES 11 8 11 4 10 7 11 10

Flywheel 4 5 5 10 5 6 4 5

SMES 14 14 14 14 14 14 14 14

Super cap 6 11 6 11 6 11 6 8

Pb-acid 12 12 12 9 12 10 12 12

Ni–Cd 2 4 2 2 2 4 2 4

Li-ion 8 10 7 8 8 12 8 7

NaS 7 7 9 12 7 8 7 6

NaNiCl 1 2 1 7 1 2 1 1

VRB 13 13 13 13 13 13 13 13

ZnBr 3 3 3 3 3 3 3 2

Molten salt 5 1 4 1 4 1 5 3

Table 9 The scores of the
three approaches using the
Euclidean distance

Technology AU score RPU score MU score

Hydrogen 0.2444 −0.4497 −0.2777

PHS 0.1763 −0.3360 −0.4007

CAES 0.1875 −0.3498 −0.4141

Flywheel 0.4759 −0.4682 −0.0609

SMES 0.0571 −0.5501 −0.5126

Super cap 0.3004 −0.4478 −0.1087

Pb-acid 0.2352 −0.4843 −0.4096

Ni–Cd 0.5625 −0.4284 −0.0211

Li-ion 0.2725 −0.4853 −0.1487

NaS 0.3176 −0.5234 −0.1116

NaNiCl 0.6245 −0.4120 0.0315

VRB 0.0403 −0.5564 −0.4458

ZnBr 0.5241 −0.4376 0

Molten salt 0.4389 −0.4343 −0.0880

same till the ninth place. A slight change is observed in the least ranked ESTs. PHS
and Pb-acid exchange the 10th and 12th place, and SMES and VRB exchange the
13th and 14th place.
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Table 10 The solution using the dominance theory

Rank AU ranking RPU ranking MU ranking Total rank

1 NaNiCl PHS NaNiCl NaNiCl

2 Ni–Cd CAES Ni–Cd Ni–Cd

3 ZnBr NaNiCl ZnBr ZnBr

4 Flywheel Ni–Cd Flywheel Flywheel

5 Molten salt Molten salt Molten salt Molten salt

6 NaS ZnBr Super cap Super cap

7 Super cap Super cap NaS NaS

8 Li-ion Hydrogen Li-ion Li-ion

9 Hydrogen Flywheel Hydrogen Hydrogen

10 Pb-acid Pb-acid PHS Pb-acid

11 CAES Li-ion Pb-acid PHS

12 PHS NaS CAES CAES

13 SMES SMES VRB SMES

14 VRB VRB SMES VRB

6 Conclusion

The MULTIMOORA method is one of the most practical MCDM methods that
has been used to solve complicated decision-making problems. In this chapter, a
new version of MULTIMOORA is developed to increase its efficiency and accuracy
for solving large scale MCDM applications in the Pythagorean fuzzy environment.
The proposed PF-MULTIMOORA exploits newly proposed aggregation operators
that guarantee fair treatment among the evaluation criteria. Therefore, the proposed
method avoids any biased treatment and false ranking that might occur in certain situ-
ations.When applying the reference point technique the distance is defined on a fuzzy
basis rather than a crisp basis. Hence, instead of utilizing one reference point, i.e., the
best rating, two reference points are utilized: the best and worst ratings. To avoid the
complications of the dominance theory, the aggregation approach is applied. So, the
aggregation approach is carried out using the fuzzy results of the three techniques.
Thus, defuzzification is employed only in the final step for ranking in which the accu-
racy function can be also utilized with the score function to make the comparison
more discriminatory.

Energy storage technologies were evaluated using the developed PF-
MULTIMOORA. Sodium-nickel chloride, nickel–cadmium, and zinc–brominewere
the top-ranked energy storage technologies. Meanwhile, lead-acid, vanadium redox,
and superconducting magnetic energy storage were the worst-ranked technologies.

The dominance theory was applied to rank the alternatives instead of aggregating
the three approaches. The result revealed that the alternatives till the ninth place
are unchanged. A slight change is observed in the least ranked ESTs. It was clear
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that ranking by aggregating the three approaches is more direct and simpler than the
dominance theory.

Besides the balanced weighting strategy, the effect of technical, economic, and
environmental strategies on the ranking of the ESTs was studied. Only slight
differences were observed in the results from the balanced strategy in the moder-
ately performing technologies, while the three top technologies and three worst
technologies remain unchanged.

In addition to the normalized Euclidean distance, another two distance measures
were examined in the reference point technique, the normalized Hausdorff and the
normalized Hamming distances. The ranking of the ESTs for the different weighting
strategies using the two distance measures was quite similar to the ranking using the
normalized Euclidean distance.

The contribution of the study can be summarized as follows. First, in the reference
point technique, two reference points are used instead of one. Hence, the distance
can be expressed using PFSs. Second, the study exploits aggregation operators in
the ratio system approach and the full multiplicative form approach that prevent
erroneous decisions.

The proposed PF-MULTIMOORA is restricted to using the theoretical reference
point to guarantee that the resulting fuzzy distance is a PFS. The Empirical reference
point cannot be utilized,which is a limitation in the proposedmethod. Future research
will focus on expressing fuzzy distances using both theoretical and empirical refer-
ence points. Also, reference point techniques namely, PF-TOPSIS and PF-VIKOR
will be implemented using fuzzy distances to study its performance compared with
using crisp distances.

References

1. Asante D, He Z, Adjei NO, Asante B (2020) Exploring the barriers to renewable energy
adoption utilising MULTIMOORA—EDAS method. Energy Policy 142:111479. https://doi.
org/10.1016/j.enpol.2020.111479

2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
3. Atanassov KT (1999) Intuitionistic Fuzzy sets: theory and applications. Springer Pyhsica-

Verlag Heidelberg, New York, NY
4. BrauersWKM, Zavadskas EK (2006) TheMOORAmethod and its application to privatization

in a transition economy. Control Cybern 35(2):445–496
5. Brauers WKM, Zavadskas EK (2010) Project management by MULTIMOORA as an

instrument for transition economies. Technol Econ Dev Econ Baltic J Sustain 16(1):5–24
6. Brauers WKM, Zavadskas EK (2012) Robustness of MULTIMOORA: a method for multi-

objective optimization. Informatica 23(1):1–25
7. Chen S, Wang J, Wang T (2019) Cloud-based ERP system selection based on extended prob-

abilistic linguistic MULTIMOORA method and Choquet integral operator. Comp Appl Math
38. https://doi.org/10.1007/s40314-019-0839-z.

8. Chen Y, Ran Y,Wang Z, Li X, Yang X, Zhang G (2020) An extended MULTIMOORAmethod
based on OWGA operator and Choquet integral for risk prioritization identification of failure
modes. Eng Appl Artif Intell 91:103605. https://doi.org/10.1016/j.engappai.2020.103605

https://doi.org/10.1016/j.enpol.2020.111479
https://doi.org/10.1007/s40314-019-0839-z
https://doi.org/10.1016/j.engappai.2020.103605


A Novel Pythagorean Fuzzy MULTIMOORA Applied to the Evaluation … 309

9. Çolak M, Kaya I (2020) Multi-criteria evaluation of energy storage technologies based on
hesitant fuzzy information: a case study for Turkey. J Energy Storage 28:101211. https://doi.
org/10.1016/j.est.2020.101211

10. Crampes C, Trochet J-M (2019) Economics of stationary electricity storagewith various charge
and discharge durations. J EnergyStorage JEnergyStorage 24:100746. https://doi.org/10.1016/
j.est.2019.04.020

11. Dahooie JH, Zavadskas EK, Firoozfar HR, Vanaki AS, Mohammadi N, Brauers WKM (2019)
An improved fuzzy MULTIMOORA approach for multi-criteria decision making based on
objective weighting method (CCSD) and its application to technological forecasting method
selection. Eng Appl Artif Intell 79:114–128

12. Dai W, Zhong Q, Qi C (2020) Multi-stage multi-attribute decision-making method based on
the prospect theory and triangular fuzzy MULTIMOORA. Soft Comput 24:9429–9440

13. Dehghani-Sanij AR, Tharumalingama E, Dusseault MB, Fraser R (2019) Study of energy
storage systems and environmental challenges of batteries. Renew Sustain Energy Rev
104:192–208

14. Dizdar EN, Ünver M (2019) The assessment of occupational safety and health in Turkey by
applying a decision-making method; MULTIMOORA. Hum Ecol Risk Assess. https://doi.org/
10.1080/10807039.2019.1600399

15. EdingtonANC(2019)The role of longduration energy storage in decarbonizing power systems.
A thesis Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the
requirements for the degree ofMaster of Science in Technology and Policy at theMassachusetts
Institute of Technology.

16. Ejegwa PA (2020) Distance and similarity measures for Pythagorean fuzzy sets. Granular
Comput 5:225–238. https://doi.org/10.1007/s41066-018-00149-z
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64. Yörükoğlu M, Aydın S (2020) Wind turbine selection by using MULTIMOORA method.
Energy. https://doi.org/10.1007/s12667-020-00387-8

65. Zadeh LH (1965) Fuzzy sets. Inf. Control 8(3):338–353
66. Zadeh LH (1975) The concept of a linguistic variable and its applications to approximate

reasoning. Inf Sci 8:199–249
67. Zafirakis DP (2010) Overview of energy storage technologies for renewable energy systems.

In: Kaldellis JK (ed) Stand-alone and hybrid wind energy systems technology, energy storage
and applications. Woodhead Publishing Series in Energy, pp 29–80

68. Zeng W, Li D, Yin Q (2018) Distance and similarity measures of Pythagorean fuzzy sets and
their applications tomultiple criteria group decisionmaking. Int J Intell Syst 33(11):2236–2254

69. Zhang C, Chen C, Streimikiene D, Balezentis T (2019) Intuitionistic fuzzy MULTIMOORA
approach for multi-criteria assessment of the energy storage technologies. Appl Soft Comput
J 79:410–423

https://doi.org/10.1155/2018/2602376
https://doi.org/10.1016/j.jclepro.2019.119186
https://doi.org/10.3390/su10010191
https://doi.org/10.3390/math8010070
https://doi.org/10.1007/s00158-020-02486-7
https://doi.org/10.1080/23302674.2020.1737754
https://doi.org/10.1007/s00500-020-05193-z
https://doi.org/10.1007/s12667-020-00387-8


312 I. M. Sharaf

70. Zhang X (2016) A novel approach based on similarity measure for Pythagorean fuzzy multiple
criteria group decision making. Int J Intel Syst. 31(6):593–611

71. Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with
Pythagorean fuzzy sets. Int J Intell Syst 29(12):1061–1078

Iman Mohamad Sharaf received the B.Sc. degree in Electronics and Communication Engi-
neering from Cairo University. She also received the M.Sc. and the Ph.D. degrees in Engineering
Mathematics from Cairo University, Egypt. Currently, she is an Associate Professor of Engi-
neering Mathematics at the Department of Basic Sciences, the Higher Technological Institute,
Tenth of Ramadan City, Egypt. She was the Head of the department for the academic year
2011/2012. She authored and co-authored several research papers published in refereed Inter-
national Journals and international book series. Her Research interests include: Mathematical
programming, multi-criteria decision making, fuzzy systems, computational intelligence, and soft
computing.


	 A Novel Pythagorean Fuzzy MULTIMOORA Applied to the Evaluation of Energy Storage Technologies
	1 Introduction
	2 Review of the Literature
	2.1 The MULTIMOORA Method
	2.2 Pythagorean Fuzzy Operators
	2.3 Energy Storage Technologies

	3 Preliminaries
	3.1 Pythagorean Fuzzy Sets
	3.2 The Classical MULTIMOORA Method

	4 The Proposed PF-MULTIMOORA
	4.1 The Ratio System Technique
	4.2 The Reference Point Technique
	4.3 The Full Multiplicative Form Technique
	4.4 The Overall Utility Score

	5 Evaluation of Energy Storage Technologies
	5.1 An Overview
	5.2 A Practical Example

	6 Conclusion
	References




