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1 Introduction

MADM is a proficient technique that can provide the ranking results for the finite
alternatives according to the attribute values of different alternatives and it is the
important aspect of decision sciences. In recent years, the development of enterprises
and social decision-making in all aspects are related to the issue of MADM. In real
decision process, an important problem is how to express the attribute value more
efficiently and accurately. In the real world, because of the complexity of decision-
makingproblems and the fuzziness of decision-making environments, it is not enough
to express attribute values of alternatives by exact values. For this the notion of fuzzy
set (FS)was exploredbyZadeh [1]. FS composes of the grade of supporting belonging
to the unit interval, as a proficient technique to cope with unreliable and awkward
information in realistic decision issues. At the point when a decision-maker gives
the data as pair (0.5, 0.4) for truth and falsity grades, the notion of FS is not able
to resolve it. For coping with such kind of issues, Atanassove [2] introduced the
notion of intuitionistic FS (IFS) with the condition that the total of supporting and
supporting against grades isn’t surpassed from unit interval. IFS has gotten more
consideration from researchers and a huge number of researchers have investigated
their speculations [3–5].

There are some practical cases if the decision-maker gives 0.9 for positive grade
and 0.3 for negative so their summust be greater than 1, unlike the problem captured
in IFS. Therefore, the work of Yager [6] called Pythagorean FS (PFS) can be success-
fully applied in different awkward fields because the sum of the square of positive
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grade and square of negative grade is restricted to [0,1]. Due to its constraint, PFS
becomes an essential tool to copewith awkward anddifficult fuzzy information. Since
it was established, it has received the attention of many researchers and it is utilized
in the environment of aggregation operators, similarity measures, hybrid aggrega-
tion operators, and so on. The various existing works based on PFS are elaborated
as follow as:

1. Operators-based Approaches: Based on the aggregation operators, many
scholars have successfully utilized in the environment of PFS. For instance,
Mohagheghi et al. [7] explored the new last aggregation evaluation based on
PFSs, Ma and Xu [8] presented weighted averaging/geometric aggregation
operators based on PFSs, Wei [9] discovered interaction aggregation operators
based on PFSs, Garg [10] introduced information aggregation using Einstein
operations based on PFSs, Garg [11] examined the confidential levels based
on Pythagorean fuzzy aggregation operators, new logarithmic and aggregation
operators based on PFSs were presented by Garg [12, 13] discovered the novel
neutrality operation based on PFSs and their aggregation operators.

2. Measures-based Approaches: Similarity measure (SM) is a proficient tech-
nique to accurately examine the degree between any two objects. Many scholars
have applied SM in different notions. For example, Wei and Wei [14] explored
similarity measures based on PFSs, Garg [15] presented correlation coefficient
based on PFSs, Biswas and Sarkar [16] discovered the similarity measures
based on point operators by using PFSs, Li and Zeng [17] introduced distance
measures based on PFSs and Zhang [18] examined similarity measures based
on PFSs.

3. Hybrid Operators-based Approaches: To find the interrelationships between
two objects, the hybrid aggregation operators play an essential role in the envi-
ronment of realistic decision theory. Various scholars using the PFSs, explored
different hybrid aggregation operators. For example, Liang et al. [19] discovered
geometric Bonferroni mean operators based on PFSs, Prioritized aggregation
operators [20], Bonferronimean aggregation operators [21], Dombi aggregation
operators [22], power aggregation operators [23], etc. [24–26].

After that, a more generalized operator was presented, that is, the Muirhead mean
[26], which was added an alterable parametric vector P on the basis of considering
interrelationships among multiple input parameters, and some existing operators
are its special cases, for instance, arithmetic and geometric mean (GM) operators
(not considering the correlations), Bonferroni mean (BM) operator, and Maclaurin
symmetric mean (MSM). When dealing with MCDM problems, some aggregation
operators cannot consider the relationship between any input parameters, whileMuir-
head mean (MM) operator can take into account the correlation between inputs by a
variable parameter. Therefore, the MM operator is more superior when dealing with
MCDM problems.

Multi-criteria decision-making refers to the use of existing decision information,
in the case of multi-criteria that are in conflict with each other and cannot coexist, and
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in which the limited alternatives are ranked or selected in a certain way. Schweizer–
Sklar operation uses a variable parameter to make their operations more effective and
flexible. MCDM alludes to the utilization of existing choice data, for the situation of
multi-models that are in strife with one another and can’t exist together, and in which
the constrained options are positioned or chosen with a specific goal in mind. SS
activity utilizes a variable boundary to make their tasks increasingly successful and
adaptable. What’s more, PFS can deal with inadequate, uncertain, and conflicting
data under fuzzy conditions. Subsequently, we directed further examination on SS
tasks for PFS and applied SS activities to MCDM issues. Besides, in light of the fact
that theMMoperator thinks about interrelationships among different info boundaries
by the alterable parametric vector, subsequently consolidating theMM operator with
the SS activity gives some collection operators, and it was progressively significant
to build up some new way to comprehend the MCDM issues in the Pythagorean
fuzzy environment. As indicated by this, the reason furthermore, noteworthiness of
this article are.

1. To build up various new MM operators by consolidating MM operators, SS
activities, and PFS.

2. To talk about some significant properties and various instances of these operators
set forward.

3. To manage a MCDM strategy for PFS data more adequately dependent on the
operators set forward.

4. To show the feasibility and prevalence of the recently evolved strategy.

The aims of this manuscript are summarized as follow: In Sect. 2, we briefly state
the fundamental conceptions of PFS, SS T-norm (SSTN), SS T-conorm (SSCTN),
andMM operators. In Sect. 3, we explore the SS operators based on PFS and studied
their score function, accuracy function, and their relationships. Further, based on
these operators, the MM operators based on PFS are called Pythagorean fuzzy MM
(PFMM) operator, Pythagorean fuzzy weighted MM (PFWMM) operator, and their
special cases are presented. In Sect. 4, multi-attribute decision-making (MADM)
problem is solved by using the explored operators based on PFS to observe the consis-
tency and efficiency of the produced approach. Finally, the advantages, comparative
analysis, and their geometrical representation are also discussed. The conclusion of
this manuscript is discussed in Sect. 5.

2 Preliminaries

In this study we review some basic notions of PFSs and their fundamental laws.
Throughout this manuscript, the universal set is expressed by .
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2.1 Pythagorean Fuzzy Sets

Definition 1: [6] A PFS RP is initiated by

RP = {(
μRP (x), ηRP (x)

) : x ∈ X
}

(1)

whereμP and ηP are the grades of supporting and supporting against, with a condition
such that 0 ≤ μ2

Rp(x) + η2
Rp(x) ≤ 1. The refusal grade is of the form ξRp(x) = 1 −

(
μ2

Rp(x) + η2
Rp(x)

) 1
2
. The Pythagorean fuzzy number (PFN) is denoted byRP−i =

(
μRP−i , ηRP−i

)
. Further, the score function and accuracy function for PFS RP−1 =(

μRP−1 , ηRP−1

)
are initiated by

SSF (RP−1) = μ2
RP−1

− η2
RP−1

(2)

HAF (RP−1) = μ2
RP−1

+ η2
RP−1

(3)

where SSF (RP−1) ∈ [−1, 1] and HAF (RP−1) ∈ [0, 1].
To examine the interrelationships between any two PFSsRP−1 = (

μRP−1 , ηRP−1

)

and RP−2 = (
μRP−2 , ηRP−2

)
, then

If SSF (RP−1) > SSF (RP−2) ⇒ RP−1 > RP−2; (4)

If SSF (RP−1) = SSF (RP−2) ⇒, (5)

If HAF (RP−1) > HAF (RP−2) ⇒ RP−1 > RP−2; (6)

If HAF (RP−1) = HAF (RP−2) ⇒ RP−1 = RP−2. (7)

Further, we discussed the existing operator based on PFSs, which is discussed
below. For any two PFSs RP−1 = (

μRP−1 , ηRP−1

)
and RP−2 = (

μRP−2 , ηRP−2

)
,

then.

1. RP−1 ⊕ RP−2 =
((

μ2
RP−1

+ μ2
RP−2

− μ2
RP−1

μ2
RP−2

) 1
2
, ηRP−1ηRP−2

)
;

2. RP−1 ⊗ RP−2 =
(

μRP−1μRP−2 ,
(
η2
RP−1

+ η2
RP−2

− η2
RP−1

η2
RP−2

) 1
2

)
;

3. δRP−1 =
((

1 −
(
1 − μ2

RP−1

)δ
) 1

2

, ηδ
RP−1

)

;

4. δRP−1 =
(

μδ
RP−1

,

(
1 −

(
1 − η2

RP−1

)δ
) 1

2

)

.
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2.2 Muirhead Mean Operator

Definition 2: [26] For any positive real numbers RP−i (i = 1, 2, 3, . . . , ξ ), with
their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the MM operator is initiated by

MMP(
RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPi

P−σ(i)

) 1
∑ξ

i=1 Pi (8)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and Sξ

expressed the family of permutations (i = 1, 2, .., ξ ). Additionally, Eq. (8), holds
the following axioms.

1. If P = (1, 0, 0, . . . , 0), then the MM convert to
MM (1,0,0,...,0)

(
RP−1,RP−2, . . . ,RP−ξ

) = 1
ξ

∑ξ

i=1 RP−i , which is expressed
the arithmetic averaging operator.

2. If P =
(
1
ξ
, 1

ξ
, . . . ., 1

ξ

)
, then the MM convert to

MM
(

1
ξ
, 1

ξ
,...., 1

ξ

)(
RP−1,RP−2, . . . ,RP−ξ

) = ∏ξ

i=1 R
1
ξ

P−σ(i), which is expressed
the geometric mean operator.

3. If P = (1, 1, 0, . . . , 0), then the MM convert to

MM (1,1,0,...,0)
(
RP−1,RP−2, . . . ,RP−ξ

) =
(

1
ξ(ξ−1)

∑ξ

i �= j=1 RP−iRP− j

) 1
2
,

which is expressed the Bonferroni mean operator.

4. If P =
⎛

⎝
k

︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k
︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎠, then the MM convert

to MM

⎛

⎜⎜
⎝

k︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎟⎟
⎠(

RP−1,RP−2, . . . ,RP−ξ

) =
(⊕1≤i1≤....≤ik≤ξ ⊗k

j=1RP−i j

Ck
ξ

) 1
k

, which is expressed the Maclaurin symmetric mean

operator.

From Def. (2) and the exceptional instances of the MM operator referenced
above, we realize that the favorable position of the MM operator is that it can
catch the general interrelationships among the numerous input boundaries and it
is a speculation of some current total operators.

2.3 Schweizer–Sklar Operations

In this study, we review the basic notions of SS operations, which contain the SS
sum and product based on T-norm and T-conorm.
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Definition 3: [27] For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then.

RP−1 ∩T ,T ∗ RP−2 = (
T

(
μRP−1 , μRP−2

)
, T ∗(ηRP−1 , ηRP−2

))
(9)

RP−1 ∪T ,T ∗ RP−2 = (
T ∗(μRP−1 , μRP−2

)
, T

(
ηRP−1 , ηRP−2

))
(10)

where T and T ∗ are expressed the T-norm (TN) and T-conorm (TCN). Additionally,
the SSTN and SSTCN are discussed below:

TSS,γ (x, y) = (xγ + yγ − 1)
1
γ (11)

T ∗
SS,γ (x, y) = 1 − ((1 − x)γ + (1 − y)γ − 1)

1
γ (12)

where γ < 0, x, y , ∈ [0, 1]. If γ = 0, then Tγ ( x, y ) = and T ∗
γ (x, y ) = x + y

− xy, which are expressed the algebraic TN and TCN. Further, we have defined the
SSTN and SSTCN for PFS, which are stated below:

Definition 4: For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then the generalized union and intersection using SS operational

laws, such that

RP−1 ⊗T ,T ∗ RP−2 = (
T

(
μ2
RP−1

, μ2
RP−2

)
, T ∗(η2

RP−1
, η2

RP−2

))
(13)

RP−1 ⊕T ,T ∗ RP−2 = (
T ∗(μ2

RP−1
, μ2

RP−2

)
, T

(
η2
RP−1

, η2
RP−2

))
. (14)

Based on Eqs. (11) and (12), we present SS operations based on PFSs, such that

RP−1 ⊗SS RP−2 =

⎛

⎜⎜
⎝

(
μ
2γ
RP−1

+ μ
2γ
RP−2

− 1
) 1

2γ
,

(
1 −

((
1 − η2

RP−1

)γ +
(
1 − η2

RP−2

)γ − 1
) 1

γ

) 1
2

⎞

⎟⎟
⎠ (15)

RP−1 ⊕SS RP−2 =

⎛

⎜⎜
⎝

(
1 −

((
1 − μ2

RP−1

)γ +
(
1 − μ2

RP−2

)γ − 1
) 1

γ

) 1
2

,

(
η
2γ
RP−1

+ η
2γ
RP−2

− 1
) 1

2γ

⎞

⎟⎟
⎠ (16)

�RP−1 =

⎛

⎜⎜
⎝

(
1 −

(
�

(
1 − μ2

RP−1

)γ − (� − 1)
) 1

γ

) 1
2

,

(
�η

2γ
RP−1

− (� − 1)
) 1

2γ

⎞

⎟⎟
⎠ (17)
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R�
P−1 =

⎛

⎜⎜
⎝

(
�μ

2γ
RP−1

− (� − 1)
) 1

2γ
,

(
1 −

(
�

(
1 − η2

RP−1

)γ − (� − 1)
) 1

γ

) 1
2

⎞

⎟⎟
⎠. (18)

Theorem 1: For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then

1. RP−1 ⊕SS RP−2 = RP−2 ⊕SS RP−1;
2. RP−1 ⊗SS RP−2 = RP−2 ⊗SS RP−1;
3. �(RP−1 ⊕SS RP−2) = �RP−1 ⊕SS �RP−2;
4. R�1+�2

P−1 = �1RP−1 ⊗SS �2RP−1

Proof: Straightforward.

3 Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Aggregation Operations

The aim of this study is to present the MM operators based on PFS are called
Pythagorean fuzzy MM (PFMM) operator, Pythagorean fuzzy weighted MM
(PFWMM) operator, and their special cases are presented.

After that, a more generalized operator was presented, that is, the Muirhead mean
[26], which was added an alterable parametric vector P on the basis of considering
interrelationships among multiple input parameters, and some existing operators
are its special cases, for instance, arithmetic and geometric mean (GM) operators
(not considering the correlations), Bonferroni mean (BM) operator, and Maclaurin
symmetric mean (MSM). When dealing with MCDM problems, some aggregation
operators cannot consider the relationship between any input parameters, whileMuir-
head mean (MM) operator can take into account the correlation between inputs by a
variable parameter. Therefore, the MM operator is more superior when dealing with
MCDM problems.

Multi-criteria decision-making refers to the use of existing decision information,
in the case of multi-criteria that are in conflict with each other and cannot coexist, and
in which the limited alternatives are ranked or selected in a certain way. Schweizer–
Sklar operation uses a variable parameter to make their operations more effective and
flexible. MCDM alludes to the utilization of existing choice data, for the situation of
multi-models that are in strife with one another and can’t exist together, and in which
the constrained options are positioned or chosen with a specific goal in mind. SS
activity utilizes a variable boundary to make their tasks increasingly successful and
adaptable. What’s more, PFS can deal with inadequate, uncertain, and conflicting
data under fuzzy conditions.
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3.1 Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Operator

The aims of this study are to explore the idea of PFSSMM operator and their results
to improve the quality of the explored work. The special cases of the explored work
are also explored in this sub-section.

Definition 5: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ), with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the PFSSMM operator is initiated by

PFSSMMP(
RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPi

P−σ(i)

) 1
∑ξ

i=1 Pi
,

(19)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and Sξ

expressed the family of permutations (i = 1, 2, .., ξ ).
By using Eq. (19) and the novel operational laws of SS, which are stated in the

form of Def. (4), we get Theorem 2.

Theorem 2: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ ),with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , then by using Eq. (19) and Def. (4), we get
Pythagorean fuzzy Schweizer–Sklar MM operator, such that

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜
⎝

∑
σ∈Sξ

⎛

⎜⎜
⎝

1−
(

1+
∑ξ

i=1 Pi

(
μ
2γ
P−σ(i) − 1

)
) 1

γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑
σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
∑ξ

i=1 Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(20)

Proof: By using the Def. (4), we get

RPi
P−σ(i) =

⎛

⎜
⎝

(
Piμ

2γ
RP−σ(i)

− (Pi − 1)
) 1

γ

,
(
1 −

(
Pi

(
1 − η2

RP−σ(i)

)γ − (Pi − 1)
) 1

γ

)

⎞

⎟
⎠
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ξ∏

i=1

RPi
P−σ(i) =

⎛

⎜⎜⎜⎜⎜
⎝

(
ξ∑

i=1
Piμ

2γ
RP−σ(i)

−
ξ∑

i=1
Pi + 1

) 1
γ

,
⎛

⎝1 −
(

ξ∑

i=1
Pi

(
1 − η2

RP−σ(i)

)γ −
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

⎞

⎟⎟⎟⎟⎟
⎠

∑

σ∈Sξ

ξ∏

i=1

RPi
P−σ(i) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 −
⎛

⎝ ∑

σ∈Sξ

⎛

⎝1 −
(

ξ∑

i=1
Piμ

2γ
RP−σ(i)

−
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

γ

− 1

⎞

⎠

1
γ

,

⎛

⎝ ∑

σ∈Sξ

⎛

⎝1 −
(

ξ∑

i=1
Pi

(
1 − η2RP−σ(i)

)γ −
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

γ

− 1

⎞

⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ !
∑

σ∈Sξ

ξ∏

i=1

RPi
P−σ(i)

⎞

⎠

1
∑ξ

i=1 Pi

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Hence complete the proof.
Additionally, we have proved some properties like Monotonicity, Commutativity,

and some special cases of the explored operators.

Theorem 3: For any two families of PFSs RP−i (i = 1, 2, 3, . . . , ξ ) and R′
P−i ,

with their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if μRP−i ≥ μ′
RP−i

and
ηRP−i ≤ η′

RP−i
, then

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
. (21)

Proof: Let PFSSMMP(
RP−1,RP−2, . . . ,RP−ξ

) = (T, I ) and

PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
= (

T ′, I ′), where
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T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1

+ 1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

T ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ′ 2γ

P−σ(i) − 1
)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

and

I =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

I ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η′ 2
P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

.

By hypothesis it’s given that μRP−i ≥ μ′
RP−i

and ηRP−i ≤ η′
RP−i

, then

(

1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)) 1
γ

≥
(

1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)) 1

γ

⇒ 1 −
(

1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)) 1
γ

≤ 1 −
(

1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)) 1

γ

⇒
⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

≥
⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

⇒
⎛

⎜
⎝1 + 1

ξ !

⎛

⎜
⎝

∑

σ∈Sξ

⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

− 2

⎞

⎟
⎠

⎞

⎟
⎠

1
γ

≤
⎛

⎜
⎝1 + 1

ξ !

⎛

⎜
⎝

∑

σ∈Sξ

⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

− 2

⎞

⎟
⎠

⎞

⎟
⎠

1
γ
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⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

≥

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ′ 2γ

P−σ(i) − 1
)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

.

Similarly, we examine the ηRP−i ≤ η′
RP−i

, then by combining the above both, we
get

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
.

Theorem 4: For any two families of PFSsRP−i (i = 1, 2, 3, . . . , ξ) andR′
P−i ,with

their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if R′
P−i is a permutations of

RP−i , then

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) = PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
. (22)

Proof: Omitted.
Additionally, we will examine the special cases of the explored operators based

on PFSs.

1. If P = (1, 0, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar arithmetic averaging operator

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) = 1

ξ

ξ∑

i=1

RP−i

=
⎛

⎜
⎝

(
1 −

(
1 + 1

ξ

(∑ξ

i=1

(
μ2
P−σ(i) − 1

)γ − 2

))) 1
2γ

,

(

1 + 1

ξ

(∑

σ∈Sξ

η
2γ
P−σ(i) − 2

) 1
γ

) 1
2

⎞

⎟
⎠

. (23)

2. If P = (δ, 0, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar generalized arithmetic averaging operator
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PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ

ξ∑

i=1

Rδ
P−i

⎞

⎠

1
δ

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1
δ

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ

⎛

⎜⎜
⎝

∑ξ
i=1

⎛

⎜⎜
⎝

1−
(

1+
δ
(
μ
2γ
P−σ(i) − 1

)
) 1

γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1
δ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ

⎛

⎜⎜⎜⎜
⎝

∑ξ
i=1

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
δ

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (24)

3. If P = (1, 1, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar Bonferroni mean operator

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ(ξ − 1)

ξ∑

i �= j=1

RP−iRP− j

⎞

⎠

1
2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ(ξ−1)

⎛

⎜⎜
⎝

∑ξ
i �= j=1

⎛

⎜⎜
⎝

1−
(

μ
2γ
P−σ(i)+

μ
2γ
P−σ( j) − 1

) 1
γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ(ξ−1)

⎛

⎜⎜
⎝

∑ξ
i �= j=1

⎛

⎜⎜
⎝

1−
(

μ
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4. IfP =
⎛

⎝
k

︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k
︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎠, then the MM convert to Pythagorean

fuzzy Schweizer–Sklar Maclaurin symmetric mean operator
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PFSSMMP (
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5. If P =
(
1
ξ
, 1

ξ
, . . . ., 1

ξ

)
, then the MM convert to Pythagorean fuzzy Schweizer–

Sklar geometric mean operator

PFSSMMP (
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) =
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3.2 Pythagorean Fuzzy Schweizer–Sklar Weighted Muirhead
Mean Operator

The aim of this study is to explore the idea of PFSSWMM operator and their results
to improve the quality of the explored work. The special cases of the explored work
are also explored in this sub-section.

Definition 6: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ), with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the WMM operator is initiated by

PFSSWMMP(
RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPiωW−i

P−σ(i)

) 1
∑ξ

i=1 Pi
,

(28)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and
Sξ expressed the family of permutations (i = 1, 2, .., ξ ). The weight vector is

denoted and defined by: ωW = (
ωW−1, ωW−2, .., ωW−ξ

)T
with a condition that is

∑ξ

i=1 ωW−i = 1, ωW−i ∈ [0, 1], i = 1, 2, 3, . . . , ξ .
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By using Eq. (28) and the novel operational laws of SS, which are stated in the
form of Def. (4), we get Theorem 5.

Theorem 5: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ ),with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , then by using Eq. (28) and Def. (4), we get
Pythagorean fuzzy Schweizer–Sklar MM operator, such that

PFSSWMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
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(29)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 2).

Theorem 6: For any two families of PFSs RP−i (i = 1, 2, 3, . . . , ξ ) and R′
P−i ,

with their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if μRP−i ≥ μ′
RP−i

and
ηRP−i ≤ η′

RP−i
, then

PFSSWMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSWMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
.

(30)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 3).

Theorem 7: For any two families of PFSsRP−i (i = 1, 2, 3, . . . , ξ) andR′
P−i ,with

their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if R′
P−i is a permutations of

RP−i , then

PFSSWMMP(RP−1,RP−2, . . . ,RP−ξ

) = PFSSWMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)

(31)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 4).
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4 Multi-criteria Decision-Making Problems Based
on Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Aggregation Operations

To examine the proficiency of the explored operators in thismanuscript, we presented
the MCDM technique based on weighted MM operators by using Pythagorean
fuzzy information’s. To addressed effectively such kind of issues, we choose the
family of alternatives and their criteria with weight vectors, whose expressions
are summarized in the following ways: AAL = {AAL−1,AAL−2, . . . ,AAL−m}
and CCR = {

CCR−1, CCR−2, . . . , CCR−ξ

}
with their weight vector ωW =

(
ωW−1, ωW−2, . . . , ωW−ξ

)T
with a condition that is

∑ξ

i=1 ωW−i = 1, ωW−i ∈ [0, 1].
For resolving such kind of issues, we construct the decision matrix, whose repre-
sentation is of the form R = (

RP−i j
)
m×ξ

, whose every entries in the form of

Pythagorean fuzzy numbers that areRP−i j = (
μRP−i j , ηRP−i j

)
. Then the steps of the

decision-making technique is summarized in the following ways:

Step 1: By using Eq. (32), we normalized the decision matrix, if needed.

R =
{(

μRP−i j , ηRP−i j

)
f or beξe f i t(

ηRP−i j , μRP−i j

)
f or cost

(32)

Step 2: By using Eq. (29), we aggregated the normalized decision matrix.
Step 3: By using Eq. (2), examine the score values of the aggregated values.
Step 4: Rank to all alternatives, and examine the best one.
Step 5: The end.

Example 1: We allude to a case of MCDM to demonstrate the plausibility and
legitimacy of the introduced technique. We allude to the decision-making issue in
Ref. [28]. There is a speculation organization, which plans to pick the most ideal
interest in the other options. There are four potential alternatives for the speculation
organization to browse: (1) a vehicle organization AAL−1; (2) a food organization
AAL−2; (3) a PC organization AAL−3; (4) an arms organization AAL−4. The venture
organization will think about the accompanying three assessment records to settle
on decisions: (1) the hazard investigation CCR−1; (2) the development examination
CCR−2; and (3) the natural impact investigation. Among CCR−1 and CCR−2 are the
advantage standards and CCR−3 is the cost basis. The weight vector of the standards
is w = (0.5, 0.3, 0.2)T. The four potential options are assessed regarding the over
three rules by the type of SVNSs, and single-esteemed neutrosophic choice network
R is developed as recorded in Table 1.

Then the steps of the decision-making technique are summarized in the following
ways:

Step 1: By using Eq. (32), we normalized the decision matrix, if needed, but it’s
not needed, see Table 2.
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Table 1 Original decision
matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.4, 0.3) (0.4, 0.3) (0.2, 0.5)

AAL−2 (0.6, 0.2) (0.6, 0.2) (0.5, 0.2)

AAL−3 (0.3, 0.3) (0.5, 0.3) (0.5, 0.2)

AAL−4 (0.7, 0.1) (0.6, 0.2) (0.4, 0.2)

Table 2 Normalized
decision matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.4, 0.3) (0.4, 0.3) (0.2, 0.5)

AAL−2 (0.6, 0.2) (0.6, 0.2) (0.5, 0.2)

AAL−3 (0.3, 0.3) (0.5, 0.3) (0.5, 0.2)

AAL−4 (0.7, 0.1) (0.6, 0.2) (0.4, 0.2)

Step 2: By using Eq. (29), we aggregated the normalized decision matrix for
P = (1, 1, 1), γ = −1.

AAL−1 = (0.5547, 0.4462),AAL−2 = (0.4492, 0.4308),AAL−3 = (0.5455, 0.4382),AAL−4 = (0.4559, 0.4258)

Step 3: By using Eq. (2), examine the score values of the aggregated values.

SSF (AAL−1) = 0.1086,SSF (AAL−2) = 0.01613,SSF (AAL−3) = 0.1056,SSF (AAL−4) = 0.0265

Step 4: Rank to all alternatives, and examine the best one.

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

The best alternative is AAL−1.

Step 5: The end.

To check the effect of the boundaries vectors P and γ on the decision-making
of the case, we select assorted boundaries vectors P and γ and give the arranging
aftereffects of the other options. We can see the outcomes in Tables 3.

From the above analysis it is clear that for the different values of parameter the
same ranking results are given, the best option is AAL−1.

4.1 Advantages of the Explored Operators

Additionally, to examine the reliability and proficiency of the explored operators,
we choose the Pythagorean fuzzy kind of information’s to find the accuracy and
superiority of the explored operators.
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Table 3 Examine the fluency of the parameter for γ = −0.1

Parameter P Score values Ranking values

(1, 1, 1) SSF (AAL−1) =
0.1086,SSF (AAL−2) = 0.0161,

SSF (AAL−3) =
0.1056,SSF (AAL−4) = 0.0265

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(1, 2, 1) SSF (AAL−1) =
0.219,SSF (AAL−2) = 0.110,

SSF (AAL−3) =
0.214,SSF (AAL−4) = 0.121

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(1, 1, 3) SSF (AAL−1) =
0.304,SSF (AAL−2) = 0.185,

SSF (AAL−3) =
0.297,SSF (AAL−4) = 0.196

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(4, 1, 1) SSF (AAL−1) =
0.404,SSF (AAL−2) = 0.380,

SSF (AAL−3) =
0.402,SSF (AAL−4) = 0.382

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(3, 4, 5) SSF (AAL−1) =
0.662,SSF (AAL−2) = 0.591,

SSF (AAL−3) =
0.619,SSF (AAL−4) = 0.593

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(4, 5, 6) SSF (AAL−1) =
0.683,SSF (AAL−2) = 0.662,

SSF (AAL−3) =
0.681,SSF (AAL−4) = 0.663

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

Example 2: We allude to a case of MCDM to demonstrate the plausibility and
legitimacy of the introduced technique. We allude to the decision-making issue in
Ref. [28]. There is a speculation organization, which plans to pick the most ideal
interest in the other options. There are four potential alternatives for the speculation
organization to browse: (1) a vehicle organization AAL−1; (2) a food organization
AAL−2; (3) a PC organization AAL−3; (4) an arms organization AAL−4. The venture
organization will think about the accompanying three assessment records to settle
on decisions: (1) the hazard investigation CCR−1; (2) the development examination
CCR−2; and (3) the natural impact investigation. Among CCR−1 and CCR−2 are the
advantage standards and CCR−3 is the cost basis. The weight vector of the standards
is w = (0.5, 0.3, 0.2)T. The four potential options are assessed regarding the over
three rules by the type of SVNSs, and single-esteemed neutrosophic choice network
R is developed as recorded in Table 4.

Then the steps of the decision-making technique are summarized in the following
ways:
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Table 4 Original decision
matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.9, 0.3) (0.91, 0.3) (0.92, 0.3)

AAL−2 (0.8, 0.4) (0.81, 0.4) (0.82, 0.4)

AAL−3 (0.7, 0.5) (0.71, 0.5) (0.72, 0.5)

AAL−4 (0.85, 0.35) (0.86, 0.35) (0.87, 0.35)

Table 5 Normalized
decision matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.9, 0.3) (0.91, 0.3) (0.92, 0.3)

AAL−2 (0.8, 0.4) (0.81, 0.4) (0.82, 0.4)

AAL−3 (0.7, 0.5) (0.71, 0.5) (0.72, 0.5)

AAL−4 (0.85, 0.35) (0.86, 0.35) (0.87, 0.35)

Step 1: By using Eq. (32), we normalized the decision matrix, if needed, but it’s
not needed, see Table 5.

Step 2: By using Eq. (29), we aggregated the normalized decision matrix for
P = (1, 1, 1), γ = −0.1.

AAL−1 = (0.9458, 0.0402),AAL−2 = (0.9225, 0.0408),AAL−3 = (0.9555, 0.0416),AAL−4 = (0.9499, 0.0405)

Step 3: By using Eq. (2), examine the score values of the aggregated values.

SSF (AAL−1) = 0.8930,SSF (AAL−2) = 0.9056,SSF (AAL−3) = 0.9112,SSF (AAL−4) = 0.9008

Step 4: Rank to all alternatives, and examine the best one.

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

The best alternative is AAL−3.

Step 5: The end.

To check the effect of the boundaries vectors P and γ on the decision-making
of the case, we select assorted boundaries vectors P and γ and give the arranging
aftereffects of the other options. We can see the outcomes in Tables 6.

From the above analysis it is clear that for the different values of parameter the
same ranking results are given, the best option is AAL−3.
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Table 6 Examine the fluency of the parameter for γ = –0.1

Parameter P Score values Ranking values

(1, 1, 1) SSF (AAL−1) = 0.893,SSF (AAL−2) =
0.905,

SSF (AAL−3) = 0.911,SSF (AAL−4) =
0.900

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(1, 2, 1) SSF (AAL−1) = 0.918,SSF (AAL−2) =
0.928,

SSF (AAL−3) = 0.932,SSF (AAL−4) =
0.924

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(1, 1, 3) SSF (AAL−1) = 0.936,SSF (AAL−2) =
0.942,

SSF (AAL−3) = 0.946,SSF (AAL−4) =
0.939

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(4, 1, 1) SSF (AAL−1) = 0.955,SSF (AAL−2) =
0.958,

SSF (AAL−3) = 0.959,SSF (AAL−4) =
0.957

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(3, 4, 5) SSF (AAL−1) = 0.976,SSF (AAL−2) =
0.978,

SSF (AAL−3) = 0.979,SSF (AAL−4) =
0.977

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(4, 5, 6) SSF (AAL−1) = 0.982,SSF (AAL−2) =
0.983,

SSF (AAL−3) = 0.983,SSF (AAL−4) =
0.982

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

4.2 Comparative Analysis of the Explored Operators

The comparison of the explored approach with some existing approaches evaluates
the reliability and effectiveness of the explored operators. The information of the
existing operators are discussed below, for instance, Pythagorean fuzzy Schweizer–
Sklar arithmetic averaging (PFSSAA) operator, Pythagorean fuzzy Schweizer–
Sklar Bonferroni mean (PFSSBM) operator, Pythagorean fuzzy Schweizer–Sklar
Maclaurin symmetric mean (PFSSMSM) operator, intuitionistic fuzzy Schweizer–
Sklar arithmetic averaging (IFSSAA) operator, intuitionistic fuzzy Schweizer–Sklar
Bonferroni mean (IFSSBM) operator, and intuitionistic fuzzy Schweizer–Sklar
Maclaurin symmetric mean (IFSSMSM) operator. The comparative analysis of the
explored work with some existing works is discussed in the form of Table 7, for
Example 1.

From the above analysis it is clear that the explored operator and existing operators
give the different ranking values, and the best one is AAL−2 and AAL−1.
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Table 7 Comparative analysis for the information of Example 1

Method Score values Ranking values

IFSSAA operator SSF (AAL−1) =
−0.844,SSF (AAL−2) = −0.95,

SSF (AAL−3) =
−0.843,SSF (AAL−4) =
−0.948

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

IFSSBM operator SSF (AAL−1) =
−0.71,SSF (AAL−2) = −0.93,

SSF (AAL−3) =
−0.70,SSF (AAL−4) = −0.93

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

IFSSMSM operator SSF (AAL−1) =
−0.71,SSF (AAL−2) = −0.93,

SSF (AAL−3) =
−0.70,SSF (AAL−4) = −0.93

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

Ma and Xu [8] SSF (AAL−1) =
−0.271,SSF (AAL−2) = −0.29,

SSF (AAL−3) =
−0.23,SSF (AAL−4) = −0.31

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

PFSSAA operator SSF (AAL−1) =
−0.282,SSF (AAL−2) = −0.32,

SSF (AAL−3) =
−0.28,SSF (AAL−4) = −0.31

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

PFSSBM operator SSF (AAL−1) =
−0.044,SSF (AAL−2) = −0.11,

SSF (AAL−3) =
−0.045,SSF (AAL−4) = −0.10

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

PFSSMSM operator SSF (AAL−1) =
−0.044,SSF (AAL−2) = −0.11,

SSF (AAL−3) =
−0.045,SSF (AAL−4) = −0.10

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

Proposed operator SSF (AAL−1) =
0.108,SSF (AAL−2) = 0.0161,

SSF (AAL−3) =
0.1056,SSF (AAL−4) = 0.0256

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

The comparative analysis of the explored work with some existing works is
discussed in the form of Table 8, for Example 2.

From the above analysis it is clear that the explored operator and existing operators
give the same ranking values, and the best one is AAL−3.
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Table 8 Comparative analysis for the information’s of Example 2

Method Score values Ranking values

IFSSAA operator Failed −
IFSSBM operator Failed −
IFSSMSM operator Failed −
Ma and Xu [8] SSF (AAL−1) =

0.71,SSF (AAL−2) = 0.732,

SSF (AAL−3) =
0.75,SSF (AAL−4) = 0.721

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSAA operator SSF (AAL−1) =
0.7053,SSF (AAL−2) = 0.7352,

SSF (AAL−3) =
0.7486,SSF (AAL−4) = 0.7239

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSBM operator SSF (AAL−1) =
0.8430,SSF (AAL−2) = 0.8608,

SSF (AAL−3) =
0.8687,SSF (AAL−4) = 0.8541

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSMSM operator SSF (AAL−1) =
0.8430,SSF (AAL−2) = 0.8608,

SSF (AAL−3) =
0.8687,SSF (AAL−4) = 0.8541

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

Proposed operator SSF (AAL−1) =
0.8930,SSF (AAL−2) = 0.9055,

SSF (AAL−3) =
0.9112,SSF (AAL−4) = 0.9008

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

4.3 Graphical Representations of the Explored Operators

The graphical interpretation of the explored work with some existing approaches
is discussed in the form of figures, to improve the quality of the research work,
to examine the reliability and effectiveness of the explored work. The comparative
analysis of the explored work with some existing works, which are discussed in the
form of Table 7, is summarized with the help of Fig. 1.

From the above figure, it is clear that Fig. 1 contains five series which show
different colors representing by the family of alternatives. There are many places
which show the values are called the score function.Byusing these valueswe examine
the best alternative from the family of alternatives.

The comparative analysis of the explored work with some existing works, which
are discussed in the form of Table 8, is summarized with the help of Fig. 2.
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Fig. 1 Geometrical interpretation of the explored work for Table 5

Fig. 2 Geometrical interpretation of the explored work for Table 6

From the above figure, it is clear that Fig. 2 contains five series which show
different colors representing by the family of alternatives. There are many places
which show the values are called the score function.Byusing these valueswe examine
the best alternative from the family of alternatives.

From the above analysis, it is clear that the explored operators based on PFSs are
more proficient and more valuable than existing methods.



Schweizer–Sklar Muirhead Mean Aggregation Operators … 257

5 Conclusion

SS activity can make data conglomeration progressively adaptable, and the MM
operator can consider the relationship among contributions by a variable parameter.
Since customary MM is just accessible for genuine numbers and PFS can all the
more likely express deficient and dubious data in choice frameworks. The objectives
of this manuscript, first we explore the SS operators based on PFS and studied their
score function, accuracy function, and their relationships. The limitation of the SS
operators is discussed below:

1. Multi-criteria decision-making refers to the use of existing decision information,
in the case ofmulti-criteria that are in conflictwith each other and cannot coexist,
and in which the limited alternatives are ranked or selected in a certain way.
Schweizer–Sklar operation uses a variable parameter to make their operations
more effective and flexible. In addition, PFS can handle incomplete, indeter-
minate, and inconsistent information under fuzzy environments. Therefore, we
conducted further research on SS operations for PFS and applied SS operations
to MCDM problems. Furthermore, because the MM operator considers interre-
lationships among multiple input parameters by the alterable parametric vector,
hence combining the MM operator with the SS operation gives some aggrega-
tion operators, and it was more meaningful to develop some newmeans to solve
the MCDM problems in the Pythagorean fuzzy environment. According to this,
the purpose and significance of this article are

2. To develop a number of new MM operators by combining MM operators, SS
operations, and PFS;

3. To discuss somemeaningful properties and a number of cases of these operators
put forward;

4. To deal with an MCDMmethod for PFS information more effectively based on
the operators put forward;

5. To demonstrate the viability and superiority of the newly developed method.

Further, based on these operators, the MM operators based on PFS are called
PFMM operator, PFWMM operator, and their special cases are presented. Addi-
tionally, MADM problem is solved by using the explored operators based on PFS
to observe the consistency and efficiency of the produced approach. Finally, the
advantages, comparative analysis, and their geometrical representation are also
discussed.

In future, we will extend these ideas into complex fuzzy sets [29], picture hesitant
fuzzy sets [30, 31], complex q-rung orthopair fuzzy sets [32–34], etc. [35–40]. By
considering the superiority of new PFS, we can also extend them to some other
aggregation operators, such as power mean aggregation operators, Bonferroni mean
operators, Heronian mean operators, and so on.
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