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Preface

With the complexity of the socio-economic environment, today’s decision-making is
one of the most notable ventures, where the mission is to decide the best alternative
under the numerous known or unknown criteria. In cognition of things, people may
not possess a precise or sufficient level of knowledge of the problem domain and
hence they usually face uncertainties in their preferences over the objects. To address
it, a theory of fuzzy set, introduced by Lotfi A. Zadeh in 1965, had enclosed a lot
of ground with excellent achievements in almost all branches of science. Since its
appearance, many application and extensions of it have been developed which found
in both theoretical and practical studies from engineering area to arts and humanities,
and from life sciences to physical sciences.

In this book, a new extension of the fuzzy sets, entitled as Pythagorean fuzzy
sets, is introduced by eminent researchers with several applications. In this set, the
performance of the cognitive in terms of fuzzy environment is considered with the
help of degrees of membership and non-membership.

This book consists of three parts. The first part involves five chapters presenting
contribution on the information measures of Pythagorean fuzzy sets, such as correla-
tion coefficients, divergence measure, similarity measures and isomorphism ranking
methods between different sets. The second part contains seven chapters. These
chapters include Pythagorean fuzzy decision-making methods and different applica-
tions to the real-life problems. Finally, the last part which contains four chapters on
the theory of the extension of Pythagorean fuzzy sets and their applications to the
decision-making process.

Chapter “A Survey on Recent Applications of Pythagorean Fuzzy Sets:
A State-of-the-Art Between 2013 and 2020” in the first part of the book is to
conduct a deep survey on the recent applications of the Pythagorean fuzzy sets.
This chapter presents a comprehensive literature review to classify, analyse and
interprets the existing research to identify the research trends for the applications
of the PFSs is presented. Also, the insights regarding the future research direc-
tions, challenges and limitations are given. This literature review also analyzes
the chronological development of the extensions of the fuzzy set. Chapter “Some
NewWeighted Correlation Coefficients Between Pythagorean Fuzzy Sets and Their
Applications” defines the correlation and weighted correlation coefficients between
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the pairs of the Pythagorean fuzzy sets. By utilizing these correlation coefficients, it
presents an approach to solve themedical diagnosis and pattern recognition problems.
Chapter “Parametric Directed Divergence Measure for Pythagorean Fuzzy Set
and Their Applications to Multi-criteria Decision-Making” proposes novel para-
metric directed divergence measures of order α and degree β to solve the decision
making problems. A problem related to investment plan is taken to demonstrate
it. Chapter “Some Trigonometric Similarity Measures Based on the Choquet Inte-
gral for Pythagorean Fuzzy Sets and Applications to Pattern Recognition” intro-
duces several trigonometric similarity measures based on the Choquet integral for
Pythagorean fuzzy sets by using the trigonometric functions cosine and cotangent.
An application related to pattern recognition and medical diagnoses are discussed
with the proposed similarity measures. Chapter “Isomorphic Operators and Ranking
Methods for Pythagorean and Intuitionistic Fuzzy Sets” describes the isomorphism
between three pairs of fuzzy sets, namely intuitionistic fuzzy sets and Pythagorean
fuzzy sets, interval-valued intuitionistic fuzzy sets and interval-valued Pythagorean
fuzzy sets, dual hesitant fuzzy sets and dual hesitant Pythagorean fuzzy sets from
three aspects: operational laws, aggregation operators and ranking methods.

In the second part of the book, Chapter “A Risk Prioritization Method Based
on Interval-Valued Pythagorean Fuzzy TOPSIS and Its Application for Prioritiza-
tion of the Risks Emerged at Hospitals During the Covid-19 Pandemic” presents
a risk prioritization approach by using extended techniques for order preferences
by similarity to ideal solution (TOPSIS) under interval-valued Pythagorean fuzzy
environment. The approach is applied for the case of prioritizing the risks that
emerged at hospitals during the Covid-19 pandemic. Chapter “Assessment of Agri-
cultureCropSelectionUsingPythagoreanFuzzyCRITIC–VIKORDecision-Making
Framework” presents a new hybrid Pythagorean fuzzy model with CRITIC and
VIKORmethods named as PF-CRITIC-VIKORand employs to solve theKharif crop
selection problem. In this model, the criteria weights are computed by the CRITIC
approach and the preference order of Kharif crops is evaluated by VIKOR model,
which provides easy mathematical steps with accurate and consistent results for
assessing the crops. In addition, entropymeasures are utilized to assess to compute the
experts’ importance degrees. Chapter “Choquet Integral Under Pythagorean Fuzzy
Environment and Their Application in Decision Making” introduces Pythagorean
fuzzyChoquet integral operators,which not only consider the importance of elements
or their ordered positions but also consider the interaction among the criteria or
ordered positions in criteria of decision making process. A case of sustainable solid
waste management problem of between the major cities in Malaysia is presented to
illustrate the application of the proposed aggregation operators. Chapter “On Devel-
oping Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operators with Their
Application toMulticriteria DecisionMaking” introduces Pythagorean fuzzy Dombi
geometric Bonferroni mean and Pythagorean fuzzy weighted Dombi geometric
Bonferroni mean operators. Based on these aggregation operators, it presents an
approach for multi-criteria decision-making problems under the Pythagorean fuzzy
environment. Chapter “Schweizer–Sklar Muirhead Mean Aggregation Operators
Based on Pythagorean Fuzzy Sets and Their Application in Multi-criteria Deci-
sion-Making” is on the exploration of the Schweizer–Sklar (SS) operations based on
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Pythagorean fuzzy set and studied their score function, accuracy function. Based
on these SS operations, Muirhead mean (MM) operators namely, Pythagorean
fuzzy Muirhead mean (PFMM) and Pythagorean fuzzy weighted Muirhead mean
(PFWMM) are defined for the Pythagorean fuzzy numbers to aggregate the opinions
of different decision makers. Later on, based on this PFWMM operator, a decision-
making algorithm is introduced to solve the multi-attribute decision-making algo-
rithms. In the Chapter “Pythagorean Fuzzy MCDM Method Based on CODAS”,
COmbinative Distance-based ASsessment (CODAS) method is extended to its
Pythagorean CODAS version for handling the impreciseness and vagueness in
decision making process. Chapter “A Novel Pythagorean Fuzzy MULTIMOORA
Applied to the Evaluation of Energy Storage Technologies” is on to the evaluation of
energy storage technologies. As a result of the industrialization and the growing
population, energy demand has been increasing in the world. In this chapter, a
conventional multi-objective optimization by ratio analysis plus the full multiplica-
tive form (MULTIMOORA) method extend into its Pythagorean fuzzy version. The
proposed method adopts the aggregation approach in which distances are utilized on
a fuzzy basis. A practical example that considers the evaluation of energy storage
technologies is provided to illustrate the technique.

The third and last part of the book deals on the theory of the extension of
Pythagorean fuzzy sets such as Hesitant fuzzy set, Linguistic fuzzy set, soft set
and their applications to the solve the decision-making problems. In this part,
Chapter “Application of Linear Programming in Diet Problem Under Pythagorean
Fuzzy Environment” deals with Pythagorean fuzzy linear programming (PFLP) in
which the associated cost and variables are treated as Pythagorean fuzzy numbers.
With the aid of the score functions of the Pythagorean fuzzy numbers, a PFLP
model is converted into its proportional crisp linear programming. The utility of
the method is tested by solving some linear programming problems related to diet
problems. Chapter “Maclaurin Symmetric Mean-Based Archimedean Aggregation
Operators for Aggregating Hesitant Pythagorean Fuzzy Elements and Their Applica-
tions to Multicriteria Decision Making” in this part deals with hesitant Pythagorean
fuzzy information, an extension of the Pythagorean fuzzy set, to solve the decision-
making problems. In this chapter, weighted Maclaurin symmetric mean (MSM)
with Archimedean t-conorms and t-norms (At-CNs & t-CNs) aggregation opera-
tors are defined to aggregate the hesitant Pythagorean fuzzy information. Based on
the proposed operators, it presents an approach for multi-criteria decision-making
problems under the hesitant Pythagorean fuzzy environment. Chapter “Extensions
of Linguistic Pythagorean Fuzzy Sets and Their Applications in Multi-attribute
Group Decision-Making” extends the linguistic Pythagorean fuzzy sets to dual
hesitant linguistic Pythagorean fuzzy sets (DHLPFSs) and probabilistic DHLPFSs
(PDHLPFSs) in which each element is represented with a linguistic term. The
basic operational laws, ranking method and aggregation operators of DHLPFSs and
PDHLPFSs are stated. Based on these, multi-attribute group decision making algo-
rithms are established.The last chapter (Chapter “PythagoreanFuzzySoft Sets-Based
MADM”) describes Pythagorean fuzzy soft sets (PFSSs) with their properties. In
this chapter, some notions related to PFSS along with their algebraic properties are
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defined. The four algorithms, that is, choice value method, PFS-TOPSIS, VIKOR
and method of similarity measures, for modeling uncertainties in MADM problems
based upon PFSSs are established together with several numerical example.

We hope that this book will provide a useful resource of ideas, techniques, and
methods for the research on the theory and applications of Pythagorean fuzzy sets.We
are grateful to the referees for their valuable and highly appreciatedworks contributed
to select the high quality of chapters published in this book. We would like to also
thank the Springer Nature and its team for supporting throughout its publishing.

Patiala, India Harish Garg
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Isomorphic Operators and Ranking Methods for Pythagorean
and Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Yi Yang and Zhen-Song Chen

Pythagorean Fuzzy Multi-criteria Decision-Making

A Risk Prioritization Method Based on Interval-Valued
Pythagorean Fuzzy TOPSIS and Its Application for Prioritization
of the Risks Emerged at Hospitals During the Covid-19 Pandemic . . . . . . 147
Muhammet Gul and Melih Yucesan

Assessment of Agriculture Crop Selection Using Pythagorean
Fuzzy CRITIC–VIKOR Decision-Making Framework . . . . . . . . . . . . . . . . 167
Arunodaya Raj Mishra, Pratibha Rani, and Sitesh Bharti

ix



x Contents

Choquet Integral Under Pythagorean Fuzzy Environment
and Their Application in Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Lazim Abdullah, Pinxin Goh, Mahmod Othman,
and Ku Muhammad Na’im Ku Khalif

On Developing Pythagorean Fuzzy Dombi Geometric Bonferroni
Mean Operators with Their Application to Multicriteria Decision
Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Nayana Deb and Animesh Biswas

Schweizer–Sklar Muirhead Mean Aggregation Operators Based
on Pythagorean Fuzzy Sets and Their Application in Multi-criteria
Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Tahir Mahmood and Zeeshan Ali

Pythagorean Fuzzy MCDM Method Based on CODAS . . . . . . . . . . . . . . . . 261
Xindong Peng

A Novel Pythagorean Fuzzy MULTIMOORA Applied
to the Evaluation of Energy Storage Technologies . . . . . . . . . . . . . . . . . . . . . 273
Iman Mohamad Sharaf

Extensions of the Pythagorean Fuzzy Sets

Application of Linear Programming in Diet Problem Under
Pythagorean Fuzzy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Sapan Kumar Das and Seyyed Ahmad Edalatpanah

Maclaurin Symmetric Mean-Based Archimedean Aggregation
Operators for Aggregating Hesitant Pythagorean Fuzzy Elements
and Their Applications to Multicriteria Decision Making . . . . . . . . . . . . . . 329
Arun Sarkar and Animesh Biswas

Extensions of Linguistic Pythagorean Fuzzy Sets and Their
Applications in Multi-attribute Group Decision-Making . . . . . . . . . . . . . . . 367
Jun Wang, Xiaopu Shang, Wuhuan Xu, Chunliang Ji, and Xue Feng

Pythagorean Fuzzy Soft Sets-Based MADM . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Khalid Naeem and Muhammad Riaz



About the Editor

Harish Garg is Associate Professor at the School of Mathematics, Thapar
Institute of Engineering and Technology, Patiala, India. He completed his Ph.D. in
Mathematics from the Indian Institute of Technology Roorkee, India, in 2013. His
research interests include soft computing, decision making, aggregation operators,
evolutionary algorithm, expert systems, and decision support systems. He has
authored around 320 papers, published in international journals of repute, and has
supervised 7 Ph.D. dissertations. He is Recipient of the Top-Cited Paper by India-
based Author (2015–2019) from Elsevier Publisher. He serves as Editor-in-Chief for
Annals of Optimization Theory & Practice, Journal of Computational and Cognitive
Engineering, and Associate Editor for several renowned journals.

xi



Pythagorean Fuzzy Information Measures



A Survey on Recent Applications
of Pythagorean Fuzzy Sets:
A State-of-the-Art Between 2013 and
2020

Muhammet Deveci, Levent Eriskin, and Mumtaz Karatas

Acronyms

AHP Analytic Hierarchy Process
ARAS Fuzzy Additive Ratio Assessment
CoCoSo Combined Compromise Solution
CODAS Combinative Distance-Based Assessment
COPRAS Complex Proportional Assessment
CRITIC Criteria Importance Through Inter-criteria Correlation
DEA Data Envelopment Analysis
DM Decision-Maker
DNMA Double Normalization-Based Multiple Aggregation
EDAS Evaluation Based on Distance from Average Solution
ELECTRE ELimination Et Choix Traduisant la Realité
FS Fuzzy Sets
GRA Gray Relational Analysis
IFS Intuitionistic Fuzzy Set
MABAC Multi-attributive Border Approximation Area Comparison
MAIRCA Multi-Attribute Ideal Real Comparative Analysis
MCDM Multi-Criteria Decision-Making
MOORA Multi-Objective Optimization on the basis of Ratio Analysis
PROMETHEE Preference Ranking Organization METHod for Enrichment

of Evaluations

M. Deveci (B) · L. Eriskin · M. Karatas
Department of Industrial Engineering, Turkish Naval Academy, National Defence University,
34940 Tuzla, Istanbul, Turkey
e-mail: leriskin@dho.edu.tr

M. Karatas
e-mail: mkaratas@dho.edu.tr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
H. Garg (ed.), Pythagorean Fuzzy Sets,
https://doi.org/10.1007/978-981-16-1989-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1989-2_1&domain=pdf
mailto:leriskin@dho.edu.tr
mailto:mkaratas@dho.edu.tr
https://doi.org/10.1007/978-981-16-1989-2_1


4 M. Deveci et al.

PFS Pythagorean Fuzzy Set
PFN Pythagorean Fuzzy Number
QUALIFLEX QUALItative FLEXible
TODIM An acronym in Portuguese of interactive and multi-criteria

decision-making
TOPSIS Technique for Order of Preference by Similarity to Ideal

Solution
VIKOR Višekriterijumsko Kompromisno Rangiranje
WASPAS Weighted Aggregated Sum Product Assessment
WDBA Weighted Distance-Based Approximation

1 Introduction

The theory of fuzzy sets (FSs) known as type-1 fuzzy sets, which characterize the
uncertainties by membership functions, was introduced by Zadeh [1]. Due to its
potential to address uncertainty, it has achieved a great success in various fields
[2]. Several extensions of fuzzy sets in the literature have been proposed by various
researchers such as type-2 fuzzy sets [3], interval type-2 fuzzy sets [4], intuitionistic
fuzzy sets [5], neutrosophic sets [6], hesitant fuzzy sets [7], Pythagorean fuzzy sets
[8], picture fuzzy sets [9], q-rungOrthopair fuzzy sets [10], and so on. These sets have
been successfully applied in most of the decision-making problems under uncertain
environment such as personnel selection [11], supplier selection [12], evaluation
of airline service quality [13], health technology assessment [14, 15], factory site
selection [16], energy storage method selection [17], and offshore wind farm site
selection [18] problems.

Since FSs can only express the vagueness, they do not have the ability to handle
hesitation inherent in human thinking [19, 20]. In order to define the hesitationsmore
clearly, intuitionistic fuzzy sets (IFSs) were developed by Atanassov [5], which
are important generalization of the fuzzy sets. This approach uses the degree of
membership and non-membership tomodel vagueness and imprecisionwhile the sum
of the twomembership degrees must be less than or equal to 1. Themain contribution
of the IFSs is their ability to deal with the hesitancy that may exist due to imprecise
information [2]. However, if the sum of (membership)+(non-membership) is>1, the
IFSs fail to overcome this situation. Therefore, Pythagorean fuzzy sets (PFSs) were
proposed to address this shortcoming of IFS.

Yager and Abbasov [8] pioneered the PFSs to extend the IFSs which are rep-
resented by the degree of membership and non-membership. PFSs are successful
extensions of the IFSs and a new tool to cope with uncertainty regarding the degree
of memberships. The sum of the two degrees can be less or more than 1, however,
the sum of the squares of two degrees is ≤1. PFSs are very successful in dealing
with vagueness and imprecision involving human thoughts and subjective judgments
[21].When PFSs are compared to IFSs, we observe that they provide more flexibility
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Fig. 1 The development of
PFSs and the extensions of
classical fuzzy sets

and power to express the uncertainty, since the space of PFSs membership degrees
is larger than the space of IFSs (see Fig. 2) [22]. For example, a decision-maker
(DM) may provide his/her evaluation for the degree of membership of the element
x̂ ∈ X̂ with 0.7 and provide his/her evaluation for the degree of non-membership
of the element x̂ with 0.6. Since the sum of these two values (1.3) is greater than
1, PFSs are preferred for modeling the membership degrees because IFSs cannot
meet this condition. Having these properties, PFSs have attracted the attention of
many researchers and been applied to many real-life multi-criteria decision-making
(MCDM) problems in recent years [23, 24]. The main properties and historical
development processes of the FSs, IFSs, and PFSs are illustrated in Fig. 1.

Since PFSs are extensions of the IFSs, they naturally involve the metric space of
the IFSs. Moreover, PFSs not only have advantages of the IFSs, but also provide a
wider search space to reflect the agreement, disagreement, and hesitancy in decision-
making [22].

Having all these properties, PFSs have enormous potential for modeling uncer-
tainty inherent inmost of the real-lifeMCDMproblems. To the best knowledge of the
authors, there exists no comprehensive review regarding the theory and application
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areas, the PFSs that will help researchers extract quick and meaningful information.
To that end, this study attempts to present a comprehensive survey of application
areas and methods that are based on PFSs. In particular, upon collecting a number of
quantitative data, such as the year, number of citations, origin country of the articles
included in our work, we focus on the areas to which they are applied as well as
the MCDMmethods and tools they are implemented to. With this multi-dimensional
survey approach, we seek to provide a deeper understanding and awareness of how
previous research has incorporated the PFSs in different problem domains. This also
enables us to examine the most common advantages and challenges observed in
PFSs-based applications.

The rest of this paper is structured as follows. Section 2 introduces the basic
concepts, aggregation operators, and distance measures of the PFSs. The results of
the comprehensive survey are presented in Sect. 3. Finally, Sect. 4 concludes and
provides insights regarding advantages, challenges, limitations, and future research
directions of the PFSs.

2 Basic Concepts and Operators of Pythagorean Fuzzy Sets

In this section, some basic concepts, operators, and distance measures about PFSs
are reviewed.

2.1 Basic Concept of the Pythagorean Fuzzy Sets

First introduced by [5], IFSs are one of the extensions of the classical fuzzy sets to
address uncertainty.

Definition 1 Let a set F̂ in X̂ = {x̂1, x̂2, . . . , x̂n} be a finite universe of discourse.
IFSs F can be defined as follows:

F̂ =
{
〈x̂ : αF̂ (x̂), βF̂ (x̂)〉|x̂ ∈ X̂

}
, (1)

where αF̂ , βF̂ : X̂ → [0, 1] denote, respectively, the degree of membership and the
degree of non-membership of the element x̂ ∈ X̂ , and 0 ≤ αF̂ (x̂) + βF̂ (x̂) ≤ 1. The
pair (αF̂ (x̂), βF̂ (x̂)) can be called as intuitionistic fuzzy number (IFN) and each
IFN can be simply expressed as θ̂ = (

αθ̂ , βθ̂

)
, where αθ̂ , βθ̂ : X̂ → [0, 1] and αθ̂ +

βθ̂ ≤ 1.
The degree of hesitation γF̂ (x̂) of the element x̂ to F̂ can be defined as follows:

γF̂ (x̂) = 1 − (αF̂ (x̂) + βF̂ (x̂)). γF̂ : X̂ → [0, 1] and if γF̂ (x̂) = 0, the IFSA is close
to a fuzzy set.

IFSs consist of three membership degrees that include membership, non-
membership, and hesitancy degrees. However, in some instances, when the sum
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of αF̂ (x̂) + βF̂ (x̂) is greater than >1, the requirement of IFSs is not met. Obviously,
a new extension of IFSs is needed because it cannot address this situation. Hence,
the PFSs have been proposed by [8] as an extention to the IFSs. The PFSs are a new
tool to handle vagueness regarding the degree of membership [25].

Definition 2 Let X̂ be a nonempty set. A PFS P̂ can be defined by [26] as follows:

P̂ =
{
〈x̂ : αP̂(x̂), βP̂(x̂)〉|x̂ ∈ X̂

}
, (2)

where αP̂ , βP̂ : X̂ → [0, 1] denote the degree of membership and the degree of non-
membership of the element x̂ ∈ X̂ to P̂ , respectively. The following condition must
be satisfied for every x̂ ∈ X̂ :

0 ≤ αP̂(x̂)2 + βP̂(x̂)2 ≤ 1. (3)

The degree of hesitation γP̂(x̂) : X̂ → [0, 1] of x̂ to P̂ can be defined as follows:

γP̂(x̂) =
√
1 − (αP̂(x̂)2 + βP̂(x̂)2). (4)

If the value of γP̂(x̂) is small, then the information about P̂ is more precise [27].
Pythagorean fuzzy number (PFN) can be also expressed as P̂ = (

αP̂ , βP̂

)
and

each PFN can be simply expressed as δ̂ = (
αδ̂, βδ̂

)
by [28].

γδ̂(x̂) =
√
1 − (αδ̂(x̂)

2 + βδ̂(x̂)
2) and 0 ≤ αδ̂(x̂)

2 + βδ̂(x̂)
2 ≤ 1, (5)

where αδ̂, βδ̂ : X̂ → [0, 1].
The geometric interpretations of the space of a Pythagorean and intuitionistic

membership grades are depicted in Fig. 2 (adopted by [8, 28]). The main difference
between PFN and IFN is that they have different constraints, and if an element x̂ in
P̂ is IFN, then it must also be a PFN. However, not all PFNs are IFNs.

In many real-world situations, DMs prefer to use PFNs instead of PFSs to state
their evaluation values for alternatives in terms of evaluation criteria [29]. For
instance, the evaluation value of Alternative Ai δ̂i j = P̂(0.9, 0.3) expressed by the
DM demonstrates the membership degree as PFN. It should be noted that the alter-
native Ai is a great alternative in regards to Criterion C j as 0.9, and meanwhile alter-
native Ai is not great alternative as 0.4, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n
state the alternatives and criteria, respectively.
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Fig. 2 Comparison of
spaces of Pythagorean and
Intuitionistic membership
grades

2.2 Principal Operations

Let δ̂1 = (
αδ̂1

, βδ̂1

)
and δ̂2 = (

αδ̂2
, βδ̂2

)
be two PFNs in the set. Their basic operations

for PFNs can be expressed as follows [8, 26, 28, 30, 31]:

Definition 3 Three basic operations are initially defined by [26] as follows:

1. δ̂1 ∩ δ̂2 = P(max{αδ̂1
, αδ̂2

},min{βδ̂1
, βδ̂2

}).
2. δ̂1 ∪ δ̂2 = P(min{αδ̂1

, αδ̂2
},max{βδ̂1

, βδ̂2
}).

3. δ̂η = P(αδ̂, βδ̂).

Definition 4 Four operations for PFNs are recreated by [28] as follows:

1. δ̂1 ⊕ δ̂2 =
(√

α2
δ̂1

+ α2
[̂1.]δ2 − α2

δ̂1
· α2

δ̂2
, βδ̂1

· βδ̂2

)
.

2. δ̂1 ⊗ δ̂2 =
(
αδ̂1

· αδ̂2
,
√

β2
δ̂1

+ β2
δ̂2

− β2
δ̂1

· β2
δ̂2

)
.

3. ρδ̂ =
(√

1 − (1 − α2
δ̂
)ρ, β

ρ

δ̂

)
, ρ > 0.

4. δ̂ρ =
(
α

ρ

δ̂
,
√
1 − (1 − β2

δ̂
)ρ

)
, ρ > 0.

Definition 5 The corresponding operations are also described by [25] as follows:

1. δ̂1 � δ̂2 =
(√

α2
δ̂1

−α2
δ̂2

1−α2
δ̂2

,
βδ̂1
βδ̂2

)
, if αδ̂2

≤ αδ̂1
, βδ̂1

≤ min
{
βδ̂2

,
βδ̂2

γδ̂1
γδ̂2

}
.

2. δ̂1 � δ̂2 =
(

αδ̂1
αδ̂2

,

√
β2

δ̂1
−β2

δ̂2

1−β2
δ̂2

)
, if βδ̂2

≤ βδ̂1
, αδ̂1

≤ min
{
αδ̂2

,
αδ̂2

γδ̂1
γδ̂2

}
.



A Survey on Recent Applications of Pythagorean Fuzzy Sets … 9

2.3 Score and Accuracy Functions

In this section, a variety of score functions are presented from the literature to empha-
size the significance of PFNs.

Definition 6 [28] Let δ̂ be a PFN. The score function of δ̂ is described as follows:

Score(δ̂) = (αδ̂)
2 − (βδ̂)

2, (6)

where −1 ≤ Score(δ̂) ≤ 1.

Based on the defined score function of PFNs, the comparison laws of the PFNs
are expressed as follows:

Definition 7 [28] Let δ̂1 = (
αδ̂1

, βδ̂1

)
and δ̂2 = (

αδ̂2
, βδ̂2

)
be two PFNs. Score(δ̂1)

and Score(δ̂2) are expressed as follows:

1. If Score(δ̂1) > Score(δ̂2), then δ̂1 > δ̂2.

2. If Score(δ̂1) < Score(δ̂2), then δ̂1 < δ̂2.

3. If Score(δ̂1) = Score(δ̂2), then δ̂1 ∼ δ̂2.

Example 1 Let δ̂1 = (√
7/5, 3/8

)
and δ̂2 = (√

2/3, 2/7
)
be two PFNs. We can

calculate the score values of Score(δ̂1) and Score(δ̂2) according to Definition 7.
Score(δ̂1)=(

√
7/5)2 − (3/8)2=1/7, and Score(δ̂2) = (

√
2/3)2 − (2/7)2 = 1/7.

The results show that Score(δ̂1) = Score(δ̂2), then δ̂1 ∼ δ̂2.

Definition 8 To solve this problem for the equality case, the accuracy function has
been proposed by [25]. The accuracy function is expressed as follow:

Accuracy(δ̂) = (αδ̂)
2 + (βδ̂)

2, (7)

where Accuracy(δ̂) ∈ [0, 1].
1. If Score(δ̂1) > Score(δ̂2), then δ̂1 > δ̂2.

2. If Score(δ̂1) = Score(δ̂2), then

(a) If Accuracy(δ̂1) > Accuracy(δ̂2), then δ̂1 > δ̂2.

(b) If Accuracy(δ̂1) = Accuracy(δ̂2), then δ̂1 ∼ δ̂2.

2.4 Distance Measures

This subsection examines some widely used distance measures such as Hamming
distance, Euclidean distance, and Taxicab distance. The distance between PFNs (δ̂1
and δ̂2) can be calculated with different measures as follows [21]:
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Definition 9 [28] The Hamming distance measure is described as follow:

φZ X (δ̂1, δ̂2) = 1

2

(∣∣∣(αδ̂1
)2 − (αδ̂2

)2
∣∣∣ +

∣∣∣(βδ̂1
)2 − (βδ̂2

)2
∣∣∣ +

∣∣∣(γδ̂1
)2 − (γδ̂2

)2
∣∣∣
)
. (8)

Definition 10 [32] The Euclidean distance measure is described as follow:

φRXG(δ̂1, δ̂2) =
{1
2

[(
(α

δ̂1
)2 − (α

δ̂2
)2

)2 +
(
(β

δ̂1
)2 − (β

δ̂2
)2

)2 +
(
(γ

δ̂1
)2 − (γ

δ̂2
)2

)2]} 1
2
. (9)

Definition 11 [33] The Taxicab distance measure is described as follow:

φB(δ̂1, δ̂2) = 1

2

(∣∣αδ̂1
− αδ̂2

∣∣ + ∣∣βδ̂1
− βδ̂2

∣∣ + ∣∣γδ̂1
− γδ̂2

∣∣). (10)

Definition 12 [34] The Generalized distance measure is described as follow:

φC
τ (δ̂1, δ̂2) =

[1
2

(∣∣∣(αδ̂1
)2 − (αδ̂2

)2
∣∣∣
τ +

∣∣∣(βδ̂1
)2 − (βδ̂2

)2
∣∣∣
τ +

∣∣∣(γδ̂1
)2 − (γδ̂2

)2
∣∣∣
τ)] 1

τ

,

(11)
where τ is a distance parameter that satisfies τ ≥ 1. It degenerates to Hamming
distance as Eq. (8) and Euclidean distance as Eq. (9) when τ = 1 and τ = 2, respec-
tively.

Definition 13 [35] Another generalized distance measure is described as follows:

φLZ
τ (δ̂1, δ̂2) =

[1
4

(∣∣αδ̂1
− αδ̂2

∣∣τ + ∣∣βδ̂1
− βδ̂2

∣∣τ + ∣∣γδ̂1
− γδ̂2

∣∣τ + ∣∣ψδ̂1
− ψδ̂2

∣∣τ)] 1
τ

,

(12)
where ψδ̂1

and ψδ̂2
denote on a range of to 1 how fully the strengths γδ̂1

and γδ̂2
,

respectively.

2.5 Pythagorean Fuzzy Aggregation Operators

Some main aggregation operators are presented in this section. Before moving fur-
ther for a discussion of Pythagorean fuzzy aggregation operators, we would like to
emphasize the importance of the aggregation concept in the decision-making pro-
cess. In this regard, Fig. 3 shows a typical MCDM process for a ranking problematic.
For a ranking problematic involving multiple criteria to consider, the first step is to
determine the evaluation criteria. Then individual field experts evaluate these crite-
ria based on their own expertise. Essentially, all these evaluations contribute to the
overall information content of the problem. One significant task at this stage is to
aggregate all these information content provided by the individual experts. The way
we aggregate the information content may have dramatic impact on the results of the
decision, hence, choosing the proper aggregation operator that hinders information
loss is of utmost importance. Finally, the aggregated information is mapped into
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Fig. 3 Multi-criteria decision-making process for a ranking problematic

a score for each alternative which is used for ranking. Aforementioned decision-
making process reveals that aggregation operators are important components of the
MCDM methodologies which deserve further attention.

Let P̂i = (α̂i , β̂i )(i = 1, 2, . . . ,m) be PFNs and ω = (ω1, ω2, . . . , ωm)T be the
weight vector of P̂i , and

∑m
i ωi = 1.

Definition 14 [26] An O − PFW A (original Pythagorean fuzzy weighted averag-
ing) is defined by

O − PFW A(P̂1, P̂2, . . . , P̂m) =
( m∑

i=1

ωi α̂i ,

m∑
i=1

ωi β̂i

)
. (13)

If ω=( 1
m , 1

m , . . . , 1
m ), the O − PFWA operator degenerates into the O-Pythagorean

fuzzy average (O-PFA) operator:

O − PFW A(P̂1, P̂2, . . . , P̂m) =
(∑m

i=1 α̂i

m
,

∑m
i=1 β̂i

m

)
. (14)

Definition 15 [26] An O − PFWG (orginal Pythagorean fuzzy weighted geomet-
ric) is defined by

O − PFWG(P̂1, P̂2, . . . , P̂m) =
( m∏

i=1

α̂
ωi
i ,

m∏
i=1

β̂
ωi
i

)
. (15)

Ifω = ( 1
m , 1

m , . . . , 1
m ), theO − PFWG operator degenerates into theO-Pythagorean

fuzzy geometric (O-PFA) operator:
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O − PFWG(P̂1, P̂2, . . . , P̂m) =
( m∏

i=1

α̂
1
m
i ,

m∏
i=1

β̂
1
m
i

)
. (16)

Definition 16 [36] An PFW A (Pythagorean fuzzy weighted averaging) operator is
presented by

PFW A(P̂1, P̂2, . . . , P̂m) =
(√√√√1 −

m∏
i=1

(1 − (α̂i )2)ωi ,

m∏
i=1

(β̂i )
ωi

)
. (17)

If ω = ( 1
m , 1

m , . . . , 1
m ), the PFWA operator degenerates into the PFA operator:

PFA(P̂1, P̂2, . . . , P̂m) =
(√√√√1 −

m∏
i=1

(1 − (α̂i )2)
1
m ,

m∏
i=1

(β̂i )
1
m

)
. (18)

Definition 17 [36] An PFWG (Pythagorean fuzzy weighted geometric) operator
is defined by

PFW A(P̂1, P̂2, . . . , P̂m) =
( m∏

i=1

(α̂i )
ωi ,

√√√√1 −
m∏
i=1

(1 − (β̂i )2)ωi .

)
(19)

If ω = ( 1
m , 1

m , . . . , 1
m ), the PFWA operator degenerates into the PFA operator:

PFW A(P̂1, P̂2, . . . , P̂m) =
( m∏

i=1

(α̂i )
1
m ,

√√√√1 −
m∏
i=1

(1 − (β̂i )2)
1
m

)
. (20)

Apart from these aforementioned operators, there are other operators such as novel
neutrality operations-based Pythagorean fuzzy geometric aggregation [37] and new
logarithmic operational laws and their aggregation operators [38] in the literature.

3 Literature Review

3.1 Survey Methodology

Our survey mainly focused on journal papers, conference papers, and book chapters
addressing PFSs. The search was conducted on two prominent resource libraries for
scientific literature which cover most of the PFS applications, namely, ScienceDi-
rect and Scopus. Since it was the work of Yager [26] that paved the way for the



A Survey on Recent Applications of Pythagorean Fuzzy Sets … 13

Fig. 4 Flowchart of the literature review on PFSs

PFSs, the search was performed starting from year 2013 until 2020. The keywords
“pythagorean fuzzy information,” “pythagorean fuzzy MCDM,” and “pythagorean
fuzzy set” steered the search by examining the titles, abstracts, and keywords of the
papers. Among total of 145 papers identified, 136 of the papers are detected with the
keyword “pythagorean fuzzy set”, 46 papers arewith the keyword “pythagorean fuzzy
information”, and 1 paper with the keyword “pythagorean fuzzy MCDM”. Flowchart
of the survey methodology is given in Fig. 4.

Figure 5 displays the ratio of studies reached with these keywords. All of the
detected papers are found in Scopus database while ScienceDirect database yielded
only 28 of the papers.

In an effort to provide as much information as possible from the existing research,
we examined the identified papers in various dimensions. These dimensions that are
believed to elicit relevant information are given as follows:
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Fig. 5 Percentage of studies
with respect to the three
keywords used in this study

• Year: Year of the publication.
• Country: The country where the study was made. If not reported, country of the
first author is considered.

• Citations: The number of times the publication has been cited.
• Journal: The name of the journal where the paper was published.
• Application area: The area to which the proposed approach was applied.
• Methods and tools used: Other MCDM tools that were used in combination with
PFSs.

One of the aims of this survey is to reveal application areas of PFSs and future
research directions, hence, we generally focused on and discussed application-
oriented papers rather than the theoretical ones.

3.2 Survey Results

In this section, we give quantitative information regarding reviewed papers according
to identified review dimensions, firstly. Then, we discuss the literature based on the
application area and methods and tools dimensions.

Figure 6 shows the share of each country in the literature of PFSs. The figure
shows the number of studies with respect to the origin of country. The results reveal
that, China, the origin country of more than half of the 145 studies included in
this study, is leading the studies incorporating the PFS concept. China is followed
by the origin countries Turkey, Pakistan, Taiwan, and India with the number of
studies varying between 9 and 18 out of the 145 studies. Figure 7, on the other hand,
draws the attention to the yearly number of PFS related studies published between
2015 and 2020. The bars and solid line in the figure represent the individual yearly
published paper numbers and cumulative number of papers, respectively. According
to the figure, following [26]’s study in 2013, there is a growing interest in PFS
implementations especially after 2017. In particular, 38 and 63 papers have been
published in 2018 and 2019, respectively, and 25 papers appear to be published in
the first half of 2020.
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Fig. 7 Yearly and cumulative yearly number of studies.

Table 1 reports the breakdown of yearly number of papers published with respect
to the origin country. Once again, the table reveals the growing interest in PFS imple-
mentations starting after 2017. It is noteworthy that China is constantly improving
its contribution to the body of knowledge related to the PFS implementations.

Figure 8 depicts the frequency of citations for the 145 studies included in this
paper. The solid line shows the cumulative percentage values. According to the
results, more than half of these studies are cited by less than or equal to 10 papers,
and approximately a third of them have been cited for between 11 and 50 times.
Although the concept of PFSs is relatively new to the literature, the number of
citations collected by studies which incorporate PFSs shows that there is increasing
attention and awareness around the world of the capability of PFSs.



16 M. Deveci et al.

Table 1 The number of yearly PFSs-based studies with respect to different countries

Country 2015 2016 2017 2018 2019 2020 Sum

Austria – – – 1 – – 1

Canada – 1 1 – – – 2

China 1 3 11 17 35 12 79

India – – 1 2 4 2 9

Iran – – 1 – 2 1 4

Mexico – – – 1 1 – 2

Nigeria – – – – 1 – 1

Pakistan – – – 4 4 5 13

Portugal – – – – 1 – 1

Taiwan – – – 7 4 1 12

Thailand – – – – – 1 1

Turkey – – – 6 9 3 18

USA – – – – 1 – 1

Vietnam – – – – 1 – 1

Sum 1 4 14 38 63 25 145
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In Table 2 the papers are categorized with respect to the journals they are pub-
lished in for each year between 2015 and 2020. Note that the journals are listed
in decreasing order of the number of articles published (given in the last column).
Among the 53 journals listed, IEEE Access, Mathematics, and Soft Computing are
the top three journals with 14, 11, and 10 articles published, respectively, in the
last three years. Applied Soft Computing, Complexity, and Symmetry are the next
three journals with 7 published articles in the PFS domain. We also observe that
most of the journals published articles concerning PFSs are peer-reviewed journals
in engineering, computational science, information, and mathematics domains. We
also note that 4 of the studies out of 145 are conference papers; hence, we do not list
them in Table 2.

As emphasized previously, the concept of membership and non-membership
degree provides an effective means for modeling vagueness and imprecision as
addressed by the IFSs. As a successful extension to the IFSs, the PFSs provide a
representation on a larger body of membership and non-standard membership grades
which enables DMs to take uncertainty into consideration more flexibly [39]. Being
superior to other types of fuzzy extensions, the PFSs are better options for modeling
real-life phenomenons. In this regard, many real-lifeMCDMproblems from a variety
of fields have been addressed by the PFSs.

Table 3 shows the number of yearly studies published with respect to different
application areas. The table reveals that MCDM problems pertaining to supply chain
management, investment/capital management, risk management, and project selec-
tion areas have been frequently addressed by the PFSs-based MCDM approaches.
Additionally, the interest in supply chain management applications is growing
recently. When we examine the country origins of these studies with respect to
the application areas, we observe that researchers from China mainly focused on
supply chain management applications, as seen in Table 4. Turkey, as the second
leading country in terms of number of publications, generally publishes on the risk
assessment area. Practitioners from other countries, on the other hand, show interest
on a variety of application areas without focusing on a particular one.

Classification of papers with respect to application areas and years is presented
in Table 5. As remarked, the application area where the PFSs are utilized mostly is
the supply chain management. A sustainable supply chain management is important
for a company to improve long-term performance while meeting economic, social,
and environmental objectives. Selecting the most proper supplier in this regard has
become a critical decision problematic for a company since it directly affects organi-
zation’s success. Havingmultiple criteria to considermost ofwhich involve uncertain
information, the PFSs are utilized for choosing a sustainable supplier [27, 40–44],
green supplier [45–48], and partner [49–51] extensively.

Risk assessment is another field where PFSs are commonly applied. Risk assess-
ment enables DMs to identify and analyze potential future events that may impact
on assets, projects, environments, or individuals. Even though the results of the
assessment can be expressed in terms of qualitative or quantitative fashion, partic-
ularly quantitative measures help DMs to identify the amount of tolerability of the
risks. Inherent uncertainty in the future events make fuzzy approaches useful alter-
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Table 2 The number of yearly PFSs-based studies published in different journals
Journal 2015 2016 2017 2018 2019 2020 Sum

IEEE Access – – – 3 9 2 14
Mathematics – – – 6 3 2 11
Soft Computing – – – 1 4 5 10
Applied Soft Computing – 1 2 1 3 – 7
Complexity – – 1 4 1 1 7
Symmetry – – – 2 3 2 7
International Journal of Fuzzy Systems – – 1 1 3 1 6
Computers and Industrial Engineering – – – 1 3 1 5
Expert Systems With Applications – – – 1 1 2 4
IEEE Transactions on Fuzzy Systems – 1 1 1 – 1 4
Information – – – 2 1 1 4
Neural Computing and Applications – – – – 4 – 4
Economic Research-Ekonomska Istraživanja – – – – 2 1 3
International Journal of Computational Intelligence Systems – – – 2 1 – 3
Applied Intelligence – – – – 2 – 2
Archives of Control Sciences – – 1 – 1 – 2
Artificial Intelligence Review – – 1 – 1 – 2
Cognitive Computation – – – – 2 – 2
Computational and Applied Mathematics – – – – 2 – 2
Human and Ecological Risk Assessment – – – 1 1 – 2
Information Sciences – 1 – 1 – – 2
Journal of Ambient Intelligence and Humanized Computing – – – – 1 1 2
Journal of Cleaner Production – – – 1 1 – 2
Journal of Experimental and Theoretical Artificial Intelligence – – – 1 1 – 2
Journal of Intelligent Systems – – – 1 – 1 2
Knowledge and Information Systems – – 1 – 1 – 2
Safety Science – – – 2 – – 2
Mathematical Problems in Engineering – – – 1 – – 1
Bulletin of the Brazilian Mathematical Society – – – – 1 – 1
Computational and Mathematical Organization Theory – – 1 – – – 1
Discrete Dynamics in Nature and Society 1 – – – – – 1
Engineering Applications of Artificial Intelligence – – – – 1 – 1
EURO Journal on Decision Processes – – – – – 1 1
IEEE Transactions on Engineering Management – – – – 1 – 1
IEEE/CAA Journal of Automatica Sinica – – – – 1 – 1
Information Fusion – – – 1 – – 1
International Journal of Approximate Reasoning – – – – – 1 1
International Journal of Hydrogen Energy – – – – 1 – 1
International Journal of Information Technology and Decision-Making – 1 – – – – 1
International Journal of Occupational Safety and Ergonomics – – – 1 – – 1
International Journal of Uncertainty – – – 1 – – 1
International Journal of Intelligent Systems – – – 1 – – 1
Inzinerine Ekonomika-Engineering Economics – – – – – 1 1
Iranian Journal of Fuzzy Systems – – – – 1 – 1
Journal of Applied Mathematics and Computing – – – – – 1 1
Journal of Failure Analysis and Prevention – – – – 1 – 1
Journal of Mathematics and Computer Science – – – – – 1 1
Journal of Natural Gas Science and Engineering – – – – 1 – 1
Journal of Safety Research – – – – 1 – 1
Journal of the Operational Research Society – – – – 1 – 1
New Mathematics and Natural Computation – – – 1 – – 1
Scientia Iranica – – – 1 – – 1
Sustainability – – – – 1 – 1
Sum 1 4 9 39 62 26 141
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Table 3 The number of yearly PFSs-based studies published with respect to different application
areas

Application Area 2015 2016 2017 2018 2019 2020 Sum

Supply Chain Management – – 4 6 12 2 24

Investment/Capital Management – – 1 10 4 3 18

Risk Assessment 1 1 1 7 7 – 17

Project Selection – – 1 4 6 1 12

System/Alternative Evaluation – – 1 2 4 4 11

Product Selection – – 3 3 1 1 8

Healthcare Management – – – – 5 3 8

Location Selection – – – 1 3 3 7

Company Selection – 1 2 1 3 – 7

Information System Management – – 1 2 3 1 7

Construction Management – – – 1 2 1 4

Employee Selection 1 1 – – 2 4

Pattern Recognition – – – – 4 – 4

Emergency Management – – – 1 1 1 3

Environment Management – – – 1 2 – 3

Military Planning – – – – 2 1 3

Technology Management – – – – 3 – 3

Logistics Management – – – 1 – 1 2

Sum 1 4 14 39 62 25 145

natives for quantifying these risks. For instance, technological innovation projects
play a vital role for high-tech firms to obtain competitive advantage against their
rival firms. Hence, evaluating risks associated with potential projects is important
for a company [52]. Occupational health and safety risks [53–56], safety risks in gas
pipeline construction and mining projects [57–59], personal credit default risks [60],
assessment of commercial banks’ credit risks [61] are some other examples of PFS
applications.

Companies quite often face investment decisions for handling the financial and
other assets. In accordance with these decisions, short or long-term strategies for
acquiring and disposing of portfolio holdings are determined. In some cases, govern-
ments or private companies need tomake strategic decisions regardingwhich technol-
ogy to invest.All these decisions require numerous factors or criteria to consider in the
presence of uncertainty of the future. Having the ability to model uncertain environ-
ments very successfully, the fuzzy set theory is the prominent option for addressing
investment/capital management decisions. As seen from Table 5, PFSs have fre-
quently been applied to investment/capital management problems such as renewable
energy investments [62], financing decision on aggressive/conservative policies of
working capital management [63, 64], evaluating Internet companies for investment
[22], determining multinational company’s future investment group strategies [65,
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Table 5 Application areas of PFSs-based studies

Application area # of Studies Year Papers

Company Selection 7 2016 [30]

2017 [31, 72]

2018 [73]

2019 [74–76]

Construction Management 4 2018 [52]

2019 [77, 78]

2020 [21]

Emergency Management 3 2018 [79]

2019 [80]

2020 [81]

Employee Selection 4 2016 [32]

2017 [82]

2020 [83, 84]

Environment Management 3 2018 [19]

2019 [85, 86]

Healthcare Management 8 2019 [87–91]

2020 [92–94]

Information System Manage-
ment

7 2017 [31]

2018 [95, 96]

2019 [75, 97, 98]

2020 [99]

Investment/Capital Manage-
ment

18 2017 [22]

2018 [34, 62–64, 66, 67, 70,
100, 101],

2019 [68, 76, 102, 103],

2020 [65, 69, 71, 104]

Location Selection 7 2018 [105]

2019 [39, 106, 107]

2020 [108–110]

Logistics Management 2 2018 [111]

2020 [112]

Military Planning 3 2019 [107, 113]

2020 [114]

Pattern Recognition 4 2019 [91, 115–117]

(continued)

66], investment decision on Research and Development (R&D) projects [34], evalu-
ating manufacturing companies to invest in [67–69], personal investment decisions
[70], market expansion [71].
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Table 5 (continued)

Application Area # of Studies Year Papers

Product Selection 8 2017 [31, 118, 119]

2018 [120–122]

2019 [123]

2020 [124]

Project Selection 12 2017 [125]

2018 [121, 126–128]

2019 [129–134]

2020 [135]

Risk Assessment 17 2015 [136]

2016 [29]

2017 [137]

2018 [52–56, 58, 138]

2019 [57, 59–61, 139–141]

Supply Chain Management 24 2017 [40, 46, 142, 143]

2018 [41, 47, 48, 51, 144, 145]

2019 [27, 42, 43, 43–45, 49, 50,
76, 146–148]

2020 [91, 149]

System/Alternative Evaluation 11 2017 [150]

2018 [34, 51]

2019 [31, 61, 151, 152]

2020 [94, 153–155]

Technology Management 3 2019 [23, 156, 157]

Project selection problems have also drawn attention of PFS practitioners. Per-
taining decision-making process needs considering many aspects of the project such
as budget, schedule, safety, reliability, and feasibility [129]. R&D and high-tech
projects, for instance, require substantial budgets and span long periods of time. Due
to these features, failure of these projects may harm governmental development poli-
cies or reputations of companies as well as causing social costs to the society. When
the problem at hand is to keep a project portfolio which corresponds to periodic and
continuous process of evaluating a set of projects, the problem gets more complex
and analytical techniques dealing with potential uncertainties are required. In order
to address this decision problem, several MCDM approaches utilizing PFSs have
been proposed in the literature. Remarkable examples involve PFSs-basedWASPAS
and MOORA framework for high-technology project evaluation and project portfo-
lio selection [129], determining the best rail project for China railway construction
and high-speed rail operating system among the projects of different countries [130],
selecting competitive projects from the oil, gas, and petrochemical markets [131],
ranking China-Pakistan Economic Corridor (CPEC) projects [127], R&D project
selection [128], selecting the best energy project [125, 132].
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In some cases, companies or people need to determine the best product that fits
their requirements. For instance, a person might need to decide which luxury car to
buy, however, price of the luxury car and uncertainty associated with the evaluation
criteria make the decision-making process a demanding one [120]. Examples of such
products span from Internet wealth management assets [124] to batch of SSDs for
computer systems [121]. Fuzzy practitioners addressed several product selections
and evaluation problems with PFSs.

Healthcare management deals with management and administration of healthcare
systems, hospitals, and hospital networks. As a common application, evaluation of
healthcare service quality of hospitals requires considering tangible and intangible
criteria such as hospital hygiene, appearance, adequacy of equipment, and facili-
ties. As an another example, selecting the best location of a new healthcare facility
also necessitate considering multiple criteria such as demand, cost, distance to the
nearest transportation. Presumable hesitancy of decision-makers in evaluating these
alternativeswith respect to given criteriamakes these decision problems a good appli-
cation area for PFSs. Among PFS applications to healthcare management problems;
evaluation and selection of adequate medical service institutions for enhancing the
effectiveness of hospital-based post-acute care [87], medical diagnosis by evaluat-
ing the observed symptoms [90, 92], ranking physicians according to patient ratings
[93], priority ranking of various rehabilitation treatment measures for hospitalized
patients [88], ranking countries in terms of healthcare systems [89] are representative
examples to mention.

The main aim of the location selection problems is to determine the best location
for a facility. These problems generally involve multiple tangible and intangible
criteria some of which conflict with each other. For instance, when selecting an
appropriate landfill site location, some of the criteria dictate a location that is far away
from the city center in order to decrease social costs, while the criteria associatedwith
transportation costs imply a closer one [39]. Due to superiority of the PFSs to model
uncertainty more flexibly, they are applied to problems such as hydrogen production
facility location selection [106], scenic spot for vacation [109], and optimal siting of
electric vehicle charging stations [105] in the literature.

Information system management consists of managing a variety of tasks pertain-
ing to information systems and overseeing network security or Internet operations.
The systems under consideration might be Enterprise Resource Planning (ERP) sys-
tems or softwares that will expedite the business processes or increase the produc-
tivity. Considering the remarkable contributions of these systems to an organization,
selecting the best one turns out to be a significant decision problem for the information
systemmanagers. Several PFSs-basedMCDMapproaches have been proposed in the
literature to help confused information system managers to deal with this problem.
Among real-life applications; electronic health record system selection [98], ERP
system selection [75, 96], software selection [95, 97, 99] can be given.

In the business world, another decision problem encountered by the managers
is evaluating and selecting the most appropriate company in accordance with some
purpose. The companies under consideration might be candidates to corporate with
or to invest in. Among company selection examples utilizing PFSs; evaluating airline
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Table 6 The number of yearly studies published with respect to different methods

Method 2015 2016 2017 2018 2019 2020 Sum

TOPSIS – 1 2 6 12 3 24

VIKOR – – – 3 5 1 9

AHP – – – 4 4 1 9

TODIM – 1 1 – 3 – 5

MOORA – – – 1 3 – 4

WASPAS – – – – 2 1 3

ELECTRE – – – 1 1 1 3

COPRAS – – 1 – 1 – 2

PROMETHEE – – – 1 1 – 2

CoCoSo – – – – 1 – 1

CODAS – – – – – 1 1

CRITIC – – – – 1 – 1

DEA – – – – 1 – 1

DNMA – – – – – 1 1

EDAS – – 1 – – – 1

GRA – – – – 1 – 1

QUALIFLEX – 1 – – – – 1

WDBA – – – – 1 – 1

Sum 0 3 5 16 37 9 70

companies to determine the best one [30, 72, 73], evaluating emerging technology
companies [74], ranking companies from different sectors for investment decisions
[76] can be mentioned.

Another field that the PFS-basedMCDM approaches are utilized is pattern recog-
nition. Having applications in statistical learning, signal processing, computer graph-
ics, and image processing, pattern recognition corresponds to the detection of patterns
and regularities associated with the data. As shown by many studies, PFSs are good
alternatives for representing patterns in the data. Once the patterns are represented
with the fuzzy sets, the recognition process is performed with the proposed similar-
ity measures. Examples of patterns considered in the proposed studies are building
materials [116] and symptoms for medical diagnosis [91, 115, 117].

As seen from Tables 3-5, application areas other than the explicitly discussed
ones where PFSs are frequently utilized are; construction management, emergency
management, environmentmanagement, logisticsmanagement, technologymanage-
ment, and military planning. On the other hand, we need to remark that this list is
not an exhaustive one. We believe that prospective PFSs-based studies will add other
application areas to the current list in the near future.

In our review, we also investigate the most commonly used tools and methods
which incorporate the PFSs. Table 6 reports the number of yearly studies published
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with respect to different methods. The table reveals that PFSs have been intensively
applied with many well-known MCDM methods such as TOPSIS, VIKOR, AHP,
PROMETHEE, ELECTRE, WASPAS, TODIM, and MOORA. The results show
that PFSs are mostly implemented with the three MCDM tools TOPSIS, VIKOR,
and AHP, followed by other approaches such as TODIM, MOORA, ELECTRE,
CORPAS, and PROMETHEE.

The TOPSIS methodology is used to solve MCDM problems by computing the
shortest distance from the positive ideal solution as well as the farthest distance
from the negative ideal solution [158]. In [30], the authors propose a Pythagorean
fuzzy ordered weighted averaging weighted average distance (PFOWAWAD) oper-
ator which basically utilizes both the ordered weighted averaging operator and
the weighted average. Next, they develop a hybrid methodology which uses both
the PFOWAWAD and the TOPSIS and show its performance on the problem of
assessing the service quality of different airlines. As another TOPSIS application
example, [125] implement hesitant Pythagorean fuzzy sets (HPFSs) with TOPSIS
in the context of energy project selection. Considering a risk assessment applica-
tion for workplace safety, [53] propose an MCDM-based risk assessment method-
ology which employs Pythagorean and trapezoidal fuzzy sets via fuzzy AHP and
fuzzy TOPSIS. Similarly, [58] extend the TOPSIS method with the PFSs for risk
assessment and prioritizing hazards. Wan et al. [19] extend the TOPSIS approach
for determining DMs’ weights based on PFNs for a haze management applica-
tion. Yang et al. [127] implement a Pythagorean fuzzy TOPSIS (PF-TOPSIS)
based approach which is based on entropy measures in the context of assessing
China-Pakistan Economic Corridor projects. Similarly, [113] considers the entropy
measure of PFSs for evaluating uncertainties and determining attribute weights in
TOPSIS. Liang et al. [128] first develop a model of Pythagorean fuzzy decision-
theoretic rough sets (PFDTRSs) and then integrates with TOPSIS. In another appli-
cation, [74] adopt a PF-TOPSIS to assess emerging technology commercializa-
tion. Some other important studies which implement TOPSIS with PFSs include
[27, 50, 81, 88, 106, 107, 107, 123, 124, 130, 133, 139, 154].

There also exist a few studies which use PF-TOPSIS to compare their proposed
MCDM approaches. For example, [46] proposes a Pythagorean fuzzy mathematical
programming approach which formulates a bi-objective mathematical model that
seeks to minimize the two inconsistency based on Pythagorean fuzzy-positive ideal
solution (PFPIS) and Pythagorean fuzzy-negative ideal solution (PFNIS), respec-
tively. Then the authors present a comparison of their approach with Pythagorean
fuzzy TOPSIS and Pythagorean fuzzy TODIM techniques for a green supplier selec-
tion application. In [105], use a generalized Pythagorean fuzzy ordered weighted
standardized distance (GPFOWSD) operator with the VIKOR method for select-
ing sites for electric vehicle charging stations, and compare their approach with
TOPSIS with PFSs. Building on fuzzy TODIM and the intuitionistic fuzzy TODIM
approaches, [32] proposes an extension to the TODIM approach to handle MCDM
problems by using PFSs. TODIM, an interactive MCDM tool, is capable of charac-
terizing the DMs’ psychological behaviors and attitudes in MCDM problems which
involve uncertainty and risk. The authors compare the performance of TODIM (with
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PFSs) with those of Pythagorean fuzzy TOPSIS, fuzzy TODIM, and the intuitionistic
fuzzy TODIM approaches on a case study on selecting the governor of a bank.

The VIKOR methodogy, introduced by Opricovic [159], is another well-known
MCDM tool used in decision problems which involve non-commensurable and gen-
erally conflicting assessment criteria. Among articles included in our study, [34]
is a good example which integrates PFSs and VIKOR and demonstrates the per-
formance of Pythagorean fuzzy VIKOR (PF-VIKOR) the on a number of real-
world applications. Considering a renewable energy technology selection problem,
[23] implement a PF-VIKOR approach which uses Pythagorean fuzzy-entropy and
Pythagorean fuzzy-divergence measures. In another study [56] implement a com-
bined Pythagorean fuzzy AHP and fuzzy VIKOR (PF-AHP-FVIKOR) approach for
risk assessment purposes. Chen [87], on the other hand considers the remoteness and
remoteness-based multiple criteria ranking indices within PF-VIKOR in the context
of hospital selection.Mete et al. [139] develop a decision-support system that is based
on the PF-VIKORmethod and apply it on a pipeline project risk assessment problem.
Using the same PF-VIKOR approach, [59] present a safety risk assessment applica-
tion in mine industry. Reference [141] extend the Hamy mean operator (a tool used
to handle interaction between aggregated arguments) and propose the Pythagorean
uncertain linguistic variable Hamy mean (PULVHM) operator and integrate it with
the VIKOR on an investment project selection problem. Zhang et al. [124] develop
a Pythagorean fuzzy double normalization-based multiple aggregation (PF-DNMA)
method for selecting Internet financial products and compare it with fuzzy TOPSIS
and VIKOR methods.

AHP, a popular MCMD technique introduced by Saaty [160], is mostly used to
obtain the relative importance of a set of alternatives in MCDM problems by pair-
wise comparisons and matrix operations. Razi and Karatas [161] summarize the
main steps of AHP as defining the problem and objective, constructing decision tree,
establishing priorities by pairwise comparisons, synthesizing these comparisons to
generate alternative weights. As one of the first PFS implementations in AHP, [39,
54] develop the Pythagorean fuzzy AHP (PF-AHP) method and demonstrate it in a
landfill site selection problem. Ilbahar et al. [55] propose an integrated methodol-
ogy called the Pythagorean Fuzzy Proportional Risk Assessment (PFPRA) approach
which utilizes Fine Kinney, PF-AHP and a fuzzy inference system for risk assess-
ment. The authors compare the performance of their proposed model with that of the
Pythagorean Fuzzy FailureModes andEffectsAnalysis (PFFMEA). In another study,
[49] proposes an integrated assessment procedure which uses PF-AHP and complex
proportional assessment for group decision-making processes in the context of sup-
ply chain partner selection. Considering knowledge management problems, [151]
developed a 2-tuple IFNs, PFSs, and Bayesian network mechanism with fuzzy AHP.
In [57], the authors propose a failure mode and effect analysis (FMEA) based hybrid
AHP-MOORAmethodwith PFSs for evaluating risks in natural gas pipeline projects.
As another hybrid application example, [154] propose a PF-AHP and PF-TOPSIS
solution methodology for evaluating hospital service quality.

ELECTRE method introduced by [162] is also based on pairwise comparisons of
multiple criteria and seeks to provide asmuch as possible set of actions by eliminating
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outranked alternatives. Chen [63] develop a risk attitudinal assignment model which
involves PFSs and interval-valued Pythagorean fuzzy sets (IVPFSs). Next the authors
extend the ELECTRE method and propose the IVPF-ELECTRE and implement it
to financial decision-making problems. Akram et al. [86] propose the Pythagorean
fuzzyELECTRE (PF-ELECTRE) approach formulti-criteria group decision-making
problems and apply it to two real-world examples observed in health safety and
environment management domains. Chen [21] implement the Chebyshev distance
measures for PFSs integrated to ELECTRE method.

Being a utility theory-based MCDM approach, WASPAS is a unique combi-
nation of the weighted sum model (WSM) and weighted product model (WPM)
[163]. Mohagheghi et al. [131] implement the interval-valued Pythagorean fuzzy
sets (IVPFSs) with WASPAS on a project portfolio selection problem. In a similar
study, [93] develop a WASPAS method under PFSs for a physician selection prob-
lem. Mohagheghi and Mousavi [129] propose a decision-making process based on
the WASPAS and MOORA methods with PFSs on a project assessment and project
selection problem.

The MOORA method [164] is another MCDM tool used for comparing dis-
crete alternatives especially observed in well-being economy. Among studies which
employ this approach, spsciteperez2018moora proposes an integrated method that
utilizes MOORA multi-objective optimization and PFSs. The MOORA under the
PFS environment (PF-MOORA) is shown to be a potentially effective application in
a variety of domains. The authors also report that the comparison results obtained
from the PF-MOORA in terms of rankings and selection of the best alternative are
consistent with those obtained from the PF-TOPSIS. Liang [98] consider the mul-
tiplicative form of MOORA and propose the implementation of PFSs with MUL-
TIMOORA to solve MCDM problems in the context of hospital electronic health
record selection problem.

The PROMETHEE approach introduced by Brans [165] and later extended by
Brans and Vincke [166] is an outranking technique for ranking a set of discrete alter-
natives in the presence of multiple conflicting criteria. References [52, 77] propose
an extension to this approach and develop the Pythagorean fuzzy PROMETHEE
(PF-PROMETHEE) which is based on the PFSs for multiple criteria analysis. The
technique is tested on a bridge construction method selection problem. See Table 7
for a detailed breakdown of the methods and tools used with respect to years and
individual studies.

4 Conclusion and Future Outlook

As we discussed in Sect. 3.2, PFSs-based MCDM approaches have been applied to a
variety of fields. Common features of the decision problems pertaining to these fields
are; the problems are complex that requires considering multiple criteria simultane-
ously and they inherently involve vagueness and imprecision, hence, cannot be solved
with conventional MCDM approaches which do not address uncertainty. All these
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Table 7 Methods and tools used

Methods used # of Studies Year Papers

AHP 9 2018 [53–56]

2019 [39, 49, 57, 151]

2020 [154]

CoCoSo 1 2019 [31]

CODAS 1 2020 [65]

COPRAS 2 2017 [31]

2019 [49]

CRITIC 1 2019 [31]

DEA 1 2019 [45]

DNMA 1 2020 [124]

EDAS 1 2017 [31]

ELECTRE 3 2018 [63]

2019 [86]

2020 [21]

GRA 1 2019 [61]

MOORA 4 2018 [111]

2019 [57, 98, 129]

PROMETHEE 2 2018 [52]

2019 [77]

QUALIFLEX 1 2016 [29]

TODIM 5 2016 [32]

2017 [46]

2019 [60, 61, 152]

TOPSIS 24 2016 [30]

2017 [125]

2018 [19, 46, 53, 58, 105,
127, 128]

2019 [27, 50, 74, 88, 106,
107, 107, 113, 123,
130, 133, 139]

2020 [81, 124, 154]

VIKOR 9 2018 [34, 56, 105]

2019 [23, 59, 87, 139, 141],

2020 [124]

WASPAS 3 2019 [129, 131]

2020 [93]

WDBA 1 2019 [80]
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features make PFSs-based MCDM approaches to sound and reliable methodologies
for solving these problems.

In line with this assessment, we observe that PFSs are mostly applied to supply
chain management, investment/capital management, risk assessment, project selec-
tion, and system/alternative selection problems which constitute 56% of the stud-
ies discussed. Among application areas that present rare usage of PFSs are emer-
gency management, environment management, military planning, technology man-
agement, and logisticsmanagement. Conversely,we believe that these areas also have
significant potential for PFS applications due to vagueness and imprecision involved
in pertaining problems. In military planning, for instance, the future threat environ-
ment is always uncertain and relevant problems are complex ones having multiple
criteria to consider. In this regard, PFSs are good options for modeling uncertainty
associated with the military planning problems.

Many different PFSs-based MCDM approaches such as Multi-attributive Border
Approximation Area Comparison (MABAC), Additive Ratio Assessment Method
(ARAS), and Multi-Attribute Ideal Real Comparative Analysis (MAIRCA) can be
considered in application areas. In recent years, many researchers have been dis-
covering some new extensions of the Pythagorean fuzzy sets. The new operator is
also being developed and combined with PFSs to achieve great success in MCDM
problems. It is possible to reflect the new advancements, such as operations and dis-
tance measures with better PFSs-based MCDM approaches for future studies which
may follow the proposed or similar methods. Additionally, new extentions to the
PFSs are probable. Another potential future work regarding the PFSs is to develop
a novel hybrid PFSs-based MCDM approach for real-life military decision-making
problems.

As an important advantage, PFSs involve more information in terms of both
membership and non-membership degrees than the classical hesitant fuzzy sets.
Therefore, PFSs-based MCDM methods and tools are capable of solving decision
problems with multiple and conflicting criteria in a more efficient way. Additionally,
our review revealed that PFSs have been successfully implemented with a variety of
MCDM tools by many researchers. Among them TOPSIS, VIKOR, AHP, TODIM,
MOORA, WASPAS, and ELECTRE are the most commonly employed techniques.
In our review of literature we have also observed that PF-based MCDM tools tend
to be more practicable and suitable in real-world problems compared to the classical
approaches. In other words, proposedMCDM tools provide a better representation of
the problem of interest and DM preferences under Pythagorean fuzzy environment.
Due to the increasing complexity of real DM problems, it is always a challenge to
represent attribute values accurately and appropriately. Therefore, PFS can be useful
tool for handling uncertainty such as vagueness.

The majority real-world decision problems are complex. This introduces a design
issue with respect to the application of fuzzy theory to such problems, since as the
complexity of a problem increases, the number of inputs also increases alongwith the
uncertainty level. Hence, experts often struggle in adapting membership functions
that capture various aspects of the problem fully and properly.Meta-heuristicsmaybe
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be used to search and optimize the best parameter settings for the PFSs membership
functions.

Disclaimer Conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of any affiliated organization or government.
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Some New Weighted Correlation
Coefficients Between Pythagorean Fuzzy
Sets and Their Applications

P. A. Ejegwa and C. Jana

1 Introduction

Many real-life problems are enmeshed with uncertainties hence making decision-
making a herculean task. To address such common challenges, Zadeh [64] intro-
duced fuzzy sets to resolve/curb the embedded uncertainties in decision-making.
Some decision-making problems could not be controlled with a fuzzy approach
because fuzzy set only considered membership grade whereas, many real-life prob-
lems have the component of bothmembership grade and non-membership gradewith
the possibility of hesitation. Such cases can best be addressed by IFSs [1, 2]. IFS is
described with membership gradeμ, non-membership grade ν and hesitation margin
π in such a way that their sum is one and μ + ν is less than or equal to one. Due to
the usefulness of IFS, it has been applied to tackle pattern recognition problems [43,
57], career determination/appointment processes [7, 18, 19, 23] and other MCDM
problems discussed in [3–5, 21, 22, 24, 46, 51, 52]. Some improved similarity and
distance measures based on the set pair analysis theory with applications have been
studied [39, 40].

The idea of IFS though vital, cannot be suitable in a condition where a decision-
maker wants to take decision in a multi-criteria problem when μ + ν is greater than
one. Suppose μ = 1

2 and ν = 3
5 , clearly IFS cannot model such a situation. This pro-

vokedAtanassov [2] to propose intuitionistic fuzzy set of second type or Pythagorean
fuzzy sets (PFSs) [58, 61] to generalize IFSs such that μ + ν is also greater than one
and μ2 + ν2 + π2 = 1. PFS is a special case of IFS with additional conditions and
thus has more ability to restraint hesitations more appropriate with higher degree of
accuracy. The concept of PFSs have been sufficiently explored by different authors so
far [8, 13, 60]. Some new generalized Pythagorean fuzzy information and aggrega-
tion operators usingEinstein operations have been studied in [26, 31]with application
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to decision-making. Garg [32] studied some methods for strategic decision-making
with immediate probabilities in Pythagorean fuzzy environment, and the idea of lin-
guistic PFSs has been studied with application to multi-attribute decision-making
problems [34]. The notion of interval-valued PFSs has been explicated with regards
to score function and exponential operational laws with applications [28, 29, 33].
Many applications of PFSs have been discussed in pattern recognitions [10, 12, 15],
TOPSIS method applications [27, 66], MCDM problems using different approaches
[9, 11, 35, 58, 59, 61, 62, 67] and other applicative areas [6, 20, 29, 36, 65]. Sev-
eral measuring tools have been employed to measure the similarity and dissimilarity
indexes between PFSs with applications to MCDM problems as discussed in [8, 11,
12, 15, 20].

The concept of correlation coefficient which is a vital tool for measuring interde-
pendency, similarity, and interrelationship between two variables was first studied in
statistics by Karl Pearson in 1895 to measure the interrelation between two variables
or data. By way of extension, numerous professions like engineering and sciences
among others have applied the tool to address their peculiar challenges. To equip
correlation coefficient to better handle fuzzy data, the idea was encapsulated into
intuitionistic fuzzy context and applied to manyMCDM problems. The first work on
the correlation coefficient between IFSs (CCIFSs)was carried out byGerstenkorn and
Manko [42]. Hung [44] used a statistical approach to develop CCIFSs by capturing
only the membership and non-membership functions of IFSs, and CCIFSs was pro-
posed based on centroidmethod in [45].Mitchell [48] studied a newCCIFSs based on
integral function. Park et al. [49] and Szmidt and Kacprzyk [53] extended the method
in [44] by incorporating the hesitation margin of IFS. Liu et al. [47] introduced a new
CCIFSs with the application. Garg and Kumar [38] proposed novel CCIFSs based
on set pair analysis and applied the approach to solve some MCDM problems. The
concept of correlation coefficient and its applications have been extended to com-
plex intuitionistic fuzzy and intuitionistic multiplicative environments, respectively
[30, 41]. TOPSIS method based on correlation coefficient was proposed in [37] to
solve decision-making problems with intuitionistic fuzzy soft set information. Sev-
eral other methods of CCIFSs have been studied and applied to decision-making
problems [14, 54, 56, 62, 63].

Garg [25] initiated the study of correlation coefficient between Pythagorean fuzzy
sets (CCPFSs) by proposing twonovel correlation coefficient techniques to determine
the interdependency between PFSs, and applied the techniques to MCDM problems.
Thao [55] extended the work on CCIFSs in [54] to CCPFSs and applied the approach
to solve some MCDM problems. Singh and Ganie [50] proposed some CCPFSs
procedures with applications, but the procedures do not incorporate all the orthodox
parameters of PFSs. Ejegwa [16] proposed a triparametric CCPFSs method which
generalized one of the CCPFSs techniques studied in [25], and applied the method
to decision-making problems. Though one cannot doubt the important of distance
and similarity measures as viable soft computing tools, the preference for correlation
coefficient measure in information measure theory is because of its considerations of
both similarity (which is the dual of distance) and interrelationship/interdependence
indexes between PFSs.
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In the computation of CCPFSs, the idea of weights of the elements of sets upon
which PFSs are built are often ignored, which many times lead to misleading results.
Thus, Garg [25] proposed some weighted correlation coefficients between PFSs
(WCCPFSs). From the work of Garg [25], we are enthused to provide improved
methods of computing WCCPFSs for the enhancement of efficient application. In
this chapter, some new WCCPFSs methods are proposed which are provable to be
more reliable with better performance indexes than the existing ones. The objectives
of the work are to

(i) explore theWCCPFSsmethods studied in [25] and propose somenewWCCPFSs
methods to enhance accuracy and reliability in measuring CCPFSs.

(ii) mathematically corroborate the proposedWCCPFSsmethodswith the axiomatic
conditions for CCPFSs, and numerically verify the authenticity of the proposed
methods over the existing ones.

(iii) establish the applications of the proposed methods in some MCDM problems.

The rest of the chapter is delineated as follow; Sect. 2 briefly revises some basic
notions of PFSs and Sect. 3 discusses some CCPFSs methods studied in [16, 25]
with numerical verifications. Section4 discusses existingWCCPFSs methods, intro-
duces new WCCPFSs methods and numerically verifies their authenticity. Section5
demonstrates the application of the new WCCPFSs methods in pattern recogni-
tion and medical diagnosis problems, all represented in Pythagorean fuzzy values.
Section6 concludes the chapter and gives some areas for future research.

2 Basic Notions of Pythagorean Fuzzy Sets

Definition 2.1 [1] An intuitionistic fuzzy set of X denoted by A (where X is a
non-empty set) is an object having the form

A = {〈μA(x), νA(x)

x
〉 | x ∈ X}, (1)

where the functions μA(x), νA(x) : X → [0, 1] define the degrees of membership
and non-membership of the element x ∈ X such that

0 ≤ μA(x) + νA(x) ≤ 1.

For any intuitionistic fuzzy set A of X , πA(x) = 1 − μA(x) − νA(x) is the intuition-
istic fuzzy set index or hesitation margin of A.

Definition 2.2 [58] A Pythagorean fuzzy set of X denoted by A (where X is a
non-empty set) is the set of ordered pairs defined by

A = {〈μA(x), νA(x)

x
〉 | x ∈ X}, (2)



42 P. A. Ejegwa and C. Jana

where the functions μA(x), νA(x) : X → [0, 1] define the degrees of member-
ship and non-membership of the element x ∈ X to A such that 0 ≤ (μA(x))2 +
(νA(x))2 ≤ 1. Assuming (μA(x))2 + (νA(x))2 ≤ 1, then there is a degree of inde-
terminacy of x ∈ X to A defined by πA(x) = √

1 − [(μA(x))2 + (νA(x))2] and
πA(x) ∈ [0, 1].
Definition 2.3 [61] Suppose A and B are PFSs of X , then

(i) A = {〈νA(x), μA(x)

x
〉|x ∈ X}.

(ii) A ∪ B = {〈max(
μA(x), μB(x)

x
),min(

νA(x), νB(x)

x
)〉|x ∈ X}.

(iii) A ∩ B = {〈min(
μA(x), μB(x)

x
),max(

νA(x), νB(x)

x
)〉|x ∈ X}.

It follows that, A = B iff μA(x) = μB(x), νA(x) = νB(x) ∀x ∈ X , and A ⊆ B iff
μA(x) ≤ μB(x), νA(x) ≥ νB(x) ∀x ∈ X . We say A ⊂ B iff A ⊆ B and A 
= B.

Remark 2.4 Suppose A, B and C are PFSs of X . By Definition 2.3, the following
properties hold:

(i)

A = A
(ii)

A ∩ A = A

A ∪ A = A
(iii)

A ∩ B = B ∩ A

A ∪ B = B ∪ A
(iv)

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C
(v)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(vi)
(A ∩ B) = A ∪ B

(A ∪ B) = A ∩ B.

Definition 2.5 [12] Pythagorean fuzzy pairs (PFPs) or Pythagorean fuzzy values
(PFVs) is characterized by the form 〈a, b〉 such that a2 + b2 ≤ 1 where a, b ∈ [0, 1].
PFPs are used for the assessment of objects for which the components (a and b) are
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interpreted as membership degree and non-membership degree or degree of validity
and degree of non-validity, respectively.

3 Correlation Coefficients Between PFSs

Correlation coefficient in the Pythagorean fuzzy environment was pioneered by the
work of Garg [25]. The concept of CCPFSs is very valuable in solving MCDM
problems. What follows is the axiomatic definition of CCPFSs.

Definition 3.1 [16] Suppose A and B are PFSs of X . Then, the CCPFSs for A and
B denoted by K(A, B) is a measuring function K : PFS × PFS → [0, 1] which
satisfies the following conditions;

(i) K(A, B) ∈ [0, 1],
(ii) K(A, B) = K(B, A),
(iii) K(A, B) = 1 if and only if A = B.

Now, we recall the existing CCPFSs methods in [16, 25] as follows:

3.1 Some Existing/New CCPFSs Methods

Assume A and B are PFSs of X = {xi } for i = 1, . . . , n. Then, the CCPFSs for A
and B as in [25] are as follows:

K1(A, B) = C(A, B)

max[C(A, A),C(B, B)] (3)

and

K2(A, B) = C(A, B)√
C(A, A)C(B, B)

, (4)

where

C(A, A) =
n∑

i=1

[μ4
A(xi ) + ν4

A(xi ) + π4
A(xi )]

C(B, B) =
n∑

i=1

[μ4
B(xi ) + ν4

B(xi ) + π4
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (5)

C(A, B) =
n∑

i=1

[μ2
A(xi )μ

2
B(xi ) + ν2

A(xi )ν
2
B(xi ) + π2

A(xi )π
2
B(xi )]. (6)

Ejegwa [16] generalized Eq. (3) as follows:
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K(A, B) = C(A, B)

max[C(A, A),C(B, B)] , (7)

where

C(A, A) =
n∑

i=1

[μk
A(xi ) + νk

A(xi ) + π k
A(xi )]

C(B, B) =
n∑

i=1

[μk
B(xi ) + νk

B(xi ) + π k
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (8)

and

C(A, B) =
n∑

i=1

[μ k
2
A(xi )μ

k
2
B(xi ) + ν

k
2
A (xi )ν

k
2
B (xi ) + π

k
2

A (xi )π
k
2

B (xi )], (9)

for k = 1, . . . , 4.
In particular, for k = 3, we have

K3(A, B) = C(A, B)

max[C(A, A),C(B, B)] , (10)

where

C(A, A) =
n∑

i=1

[μ3
A(xi ) + ν3

A(xi ) + π3
A(xi )]

C(B, B) =
n∑

i=1

[μ3
B(xi ) + ν3

B(xi ) + π3
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (11)

and

C(A, B) =
n∑

i=1

[
√

(μA(xi )μB(xi ))3 +
√

(νA(xi )νB(xi ))3 +
√

(πA(xi )πB(xi ))3].
(12)

Bymodifying Eq. (10), we obtain the following newCCPFSsmethods as follows:

K4(A, B) = C(A, B)

Aver[C(A, A),C(B, B)] (13)

and

K5(A, B) = C(A, B)√
C(A, A)C(B, B)

, (14)

whereC(A, A),C(B, B) andC(A, B) are equivalent to Eqs. (11) and (12). Certainly,
K3(A, B) ∈ [0, 1], K4(A, B) ∈ [0, 1] and K5(A, B) ∈ [0, 1], respectively.
Proposition 3.2 The CCPFSs K4(A, B) and K5(A, B) are equal if and only if
C(A, A) = C(B, B).
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Proof Straightforward. �

Remark 3.3 IfK4(A, B) = K5(A, B) and C(A, A) 
= C(B, B), then it must be as a
result of approximation in the computational processes.

3.1.1 Flowchart for the New CCPFSs Methods
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3.2 Numerical Illustrations for Computing CCPFSs

Here, we give examples of PFSs and apply the CCPFSs methods to find the inter-
relationship between the PFSs. Assume that A, B, and C are PFSs of X = {a, b, c}
such that

A = {〈0.3, 0.6, 0.7416
a

〉, 〈0.5, 0.3, 0.8124
b

〉, 〈0.4, 0.5, 0.7681
a

〉},

B = {〈0.3, 0.6, 0.7416
a

〉, 〈0.5, 0.3162, 0.8062
b

〉, 〈0.3873, 0.5, 0.7746
a

〉}

and

C = {〈0.1, 0.1, 0.9899
a

〉, 〈1, 0, 0
b

〉, 〈0, 1, 0
a

〉}.

Now, we find the correlation coefficients between (A, C), and (B, C), respectively,
using Eqs. (3), (4), (10), (13), and (14).

By using Eqs. (3) and (4), we obtain

C(A, C) =
3∑

i=1

[(0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992)

+ (0.52 × 12) + (0.32 × 02) + (0.81242 × 02)

+ (0.38732 × 02) + (0.52 × 12) + (0.77462 × 02)]
= 1.0434

C(B, C) =
3∑

i=1

[(0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992)

+ (0.52 × 12) + (0.31622 × 02) + (0.80622 × 02)

+ (0.42 × 02) + (0.52 × 12) + (0.76812 × 02)]
= 1.0434

C(A, A) =
3∑

i=1

[0.34 + 0.64 + 0.74164 + 0.54 + 0.34

+ 0.81244 + 0.44 + 0.54 + 0.76814]
= 1.3825
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C(B, B) =
3∑

i=1

[0.34 + 0.64 + 0.74164 + 0.54 + 0.31624

+ 0.80624 + 0.38734 + 0.54 + 0.77464]
= 1.3801

C(C, C) =
3∑

i=1

[0.14 + 0.14 + 0.98994 + 14 + 04

+ 04 + 04 + 14 + 04]
= 2.9604.

Hence,

K1(A, C) = 1.0434

max[1.3825, 2.9604] = 0.3525,

K1(B, C) = 1.0434

max[1.3801, 2.9604] = 0.3525,

⎫
⎪⎪⎬

⎪⎪⎭

K2(A, C) = 1.0434√
1.3825 × 2.9604

= 0.5158,

K2(B, C) = 1.0434√
1.3801 × 2.9604

= 0.5162.

⎫
⎪⎪⎬

⎪⎪⎭

By using Eqs. (10), (13), and (14), we have

C(A, C) =
3∑

i=1

[
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3

+
√

(0.5 × 1)3 +
√

(0.3 × 0)3 +
√

(0.8124 × 0)3

+
√

(0.3873 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7746 × 0)3]
= 1.3560

C(B, C) =
3∑

i=1

[
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3

+
√

(0.5 × 1)3 +
√

(0.3162 × 0)3 +
√

(0.8062 × 0)3

+
√

(0.4 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7681 × 0)3]
= 1.3560
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C(A, A) =
3∑

i=1

[0.33 + 0.63 + 0.74163 + 0.53 + 0.33

+ 0.81243 + 0.43 + 0.53 + 0.76813]
= 1.9812

C(B, B) =
3∑

i=1

[0.33 + 0.63 + 0.74163 + 0.53 + 0.31623

+ 0.80623 + 0.38733 + 0.53 + 0.77463]
= 1.9793

C(C, C) =
3∑

i=1

[0.13 + 0.13 + 0.98993 + 13 + 03

+ 03 + 03 + 13 + 03]
= 2.9720.

Hence,

K3(A, C) = 1.3560

max[1.9812, 2.9720] = 0.4563,

K3(B, C) = 1.3560

max[1.9793, 2.9720] = 0.4563,

⎫
⎪⎪⎬

⎪⎪⎭

K4(A, C) = 1.3560

Aver[1.9812, 2.9720] = 0.5475,

K4(B, C) = 1.3560

Aver[1.9793, 2.9720] = 0.5477,

⎫
⎪⎪⎬

⎪⎪⎭

K5(A, C) = 1.3560√
1.9812 × 2.9720

= 0.5588,

K5(B, C) = 1.3560√
1.9793 × 2.9720

= 0.5591.

⎫
⎪⎪⎬

⎪⎪⎭

3.2.1 Comparison of the New Methods of Computing CCPFSs with the
Existing Methods

Table1 contains the computational results for easy analysis.
From Table1, we infer that the (i) CCPFSs methods via maximum approach in

[16, 25] cannot determine the interrelationship between almost two equal PFSs with
respect to an unrelated PFS, (ii) new CCPFSs methods are very reliable and can
determine the interrelationship between almost two equal PFSs with respect to an
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Table 1 CCPFSs outputs

CCPFSs (A, C) (B, C)

K1 0.3525 0.3525

K2 0.5158 0.5162

K3 0.4563 0.4563

K4 0.5475 0.5477

K5 0.5588 0.5591

unrelated PFS. Again, the new CCPFSs methods have better performance indexes
when compare to the ones in [16, 25]. From the computations,we conclude that
(B, C) are more related to each other than (A, C) because

Ki (B, C) > Ki (A, C) ∀i = 1, 2, 3, 4, 5.

4 Some Existing/New WCCPFSs Methods

Inmany applicative areas, different elements of sets have differentweights. In order to
have a reliable interdependence index between PFSs, the impact of the weights must
be put into consideration. Suppose A and B are PFSs of X = {xi } for i = 1, . . . , n
such that the weights of the elements of X is a set α = {α1, α2, . . . , αn} with αi ≥ 0
and

∑n
i=1 αi = 1.

4.1 Some Existing WCCPFSs Methods

We recall some WCCPFSs methods proposed by Garg [25] as follows:

K̃1(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] (15)

and

K̃2(A, B) = Cα(A, B)√
Cα(A, A)Cα(B, B)

, (16)

where

Cα(A, A) =
n∑

i=1

αi [μ4
A(xi ) + ν4

A(xi ) + π4
A(xi )]

Cα(B, B) =
n∑

i=1

αi [μ4
B(xi ) + ν4

B(xi ) + π4
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (17)
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, and

Cα(A, B) =
n∑

i=1

αi [μ2
A(xi )μ

2
B(xi ) + ν2

A(xi )ν
2
B(xi ) + π2

A(xi )π
2
B(xi )]. (18)

4.2 New Methods of Computing WCCPFSs

By modifying Eqs. (10), (13) and (14), we have the following new WCCPFSs A
and B:

K̃3(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] , (19)

K̃4(A, B) = Cα(A, B)

Aver[Cα(A, A),Cα(B, B)] (20)

and

K̃5(A, B) = Cα(A, B)√
Cα(A, A)Cα(B, B)

, (21)

where

Cα(A, A) =
n∑

i=1

αi [μ3
A(xi ) + ν3

A(xi ) + π3
A(xi )]

Cα(B, B) =
n∑

i=1

αi [μ3
B(xi ) + ν3

B(xi ) + π3
B(xi )]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (22)

and

Cα(A, B) =
n∑

i=1

αi [
√

(μA(xi )μB(xi ))3 +
√

(νA(xi )νB(xi ))3 +
√

(πA(xi )πB(xi ))3].
(23)

Proposition 4.1 The WCCPFSs K̃4(A, B) and K̃5(A, B) are equal if and only if
Cα(A, A) = Cα(B, B).

Proof Straightforward. �
Proposition 4.2 The WCCPFSs K̃3(A, B), K̃4(A, B) and K̃5(A, B) are CCPFSs.

Proof We are to prove that K̃3(A, B), K̃4(A, B) and K̃5(A, B) are CCPFSs. First,
we show that K̃3(A, B) is a CCPFS. Thus, we verify that K̃3(A, B) satisfies the
conditions in Definition 3.1.

Clearly, K̃3(A, B) ∈ [0, 1] implies 0 ≤ K̃3(A, B) ≤ 1. Certainly, K̃3(A, B) ≥ 0
since Cα(A, B) ≥ 0 and [Cα(A, A),Cα(B, B)] ≥ 0. Now, we prove that K̃3(A, B) ≤
1. Assume we have the following:
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n∑

i=1

μ3
A(xi ) = ω1,

n∑

i=1

μ3
B(xi ) = ω2,

n∑

i=1

ν3
A(xi ) = ω3,

n∑

i=1

ν3
B(xi ) = ω4,

n∑

i=1

π3
A(xi ) = ω5,

n∑

i=1

π3
B(xi ) = ω6.

But, K̃3(A, B) = Cα(A, B)

max[Cα(A, A),Cα(B, B)] . By Cauchy–Schwarz’s inequality,

we get

K̃3(A, B) =
∑n

i=1 αi [μ
3
2
A (xi )μ

3
2
B (xi ) + ν

3
2
A (xi )ν

3
2
B (xi ) + π

3
2

A (xi )π
3
2

B (xi )]
max[∑n

i=1 αi (μ
3
A(xi ) + ν3A(xi ) + π3A(xi )),

∑n
i=1 αi (μ

3
B(xi ) + ν3B(xi ) + π3B(xi ))]

=
∑n

i=1 αi [μ
3
2
A (xi )μ

3
2
B (xi )] + ∑n

i=1 αi [ν
3
2
A (xi )ν

3
2
B (xi )] + ∑n

i=1 αi [π
3
2

A (xi )π
3
2

B (xi )]
max[αi (

∑n
i=1 μ3A(xi ) + ∑n

i=1 ν3A(xi ) + ∑n
i=1 π3A(xi )), αi (

∑n
i=1 μ3B(xi ) + ∑n

i=1 ν3B(xi ) + ∑n
i=1 π3B(xi ))]

≤
αi [

∑n
i=1 μ3A(xi )

∑n
i=1 μ3B(xi )]

1
2 + αi [

∑n
i=1 ν3A(xi )

∑n
i=1 ν3B(xi )]

1
2 + αi [

∑n
i=1 π3A(xi )

∑n
i=1 π3B(xi )]

1
2

max[αi (
∑n

i=1 μ3A(xi ) + ∑n
i=1 ν3A(xi ) + ∑n

i=1 π3A(xi )), αi (
∑n

i=1 μ3B(xi ) + ∑n
i=1 ν3B(xi ) + ∑n

i=1 π3B(xi ))

= αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)] .

Thus,

K̃3(A, B) − 1 ≤ αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]
− 1

= αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ] − max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]

= − {max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)] − αi [(ω1ω2)
1
2 + (ω3ω4)

1
2 + (ω5ω6)

1
2 ]}

max[αi (ω1 + ω3 + ω5), αi (ω2 + ω4 + ω6)]
≤ 0.

So K̃3(A, B) ≤ 1. Hence, K̃3(A, B) ∈ [0, 1].
Certainly, K̃3(A, B) = K̃3(B, A), so we omit details. Also, we show that

K̃3(A, B) = 1 ⇔ A = B. Suppose A = B, then we obtain

K̃3(A, B) = Cα(A, A)

max[Cα(A, A),Cα(A, A)] = Cα(A, A)

Cα(A, A)
= 1.

The converse is straightforward. Therefore, K̃3(A, B) is a CCPFS. The proofs for
K̃4(A, B) and K̃5(A, B) are similar.

�
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4.2.1 Flowchart for the New WCCPFSs Methods
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4.3 Numerical Verifications of the WCCPFSs Methods

By using the information in Subsection 3.2, and putting into consideration the effect
of the weights of the elements of X = {a, b, c}, we compute the interdependence
indexes of A and B. Assume α = {0.4, 0.32, 0.28}, and using Eqs. (15) and (16), we
obtain

Cα(A, C) =
3∑

i=1

[0.4((0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992))

+ 0.32((0.52 × 12) + (0.32 × 02) + (0.81242 × 02))

+ 0.28((0.38732 × 02) + (0.52 × 12) + (0.77462 × 02))]
= 0.3674

Cα(B, C) =
3∑

i=1

[0.4((0.32 × 0.12) + (0.62 × 0.12) + (0.74162 × 0.98992))

+ 0.32((0.52 × 12) + (0.31622 × 02) + (0.80622 × 02))

+ 0.28((0.42 × 02) + (0.52 × 12) + (0.76812 × 02))]
= 0.3674

Cα(A, A) =
3∑

i=1

[0.4(0.34 + 0.64 + 0.74164) + 0.32(0.54 + 0.34 + 0.81244)

+ 0.28(+0.44 + 0.54 + 0.76814)]
= 0.4602

Cα(B, B) =
3∑

i=1

[0.4(0.34 + 0.64 + 0.74164) + 0.32(+0.54 + 0.31624 + 0.80624)

+ 0.28(0.38734 + 0.54 + 0.77464)]
= 0.4591

Cα(C, C) =
3∑

i=1

[0.4(0.14 + 0.14 + 0.98994) + 0.32(14 + 04 + 04)

+ 0.28(04 + 14 + 04)]
= 0.9841.

Hence,
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K̃1(A, C) = 0.3674

max[0.4602, 0.9841] = 0.3733,

K̃1(B, C) = 0.3674

max[0.4591, 0.9841] = 0.3733,

⎫
⎪⎪⎬

⎪⎪⎭

K̃2(A, C) = 0.3674√
0.4602 × 0.9841

= 0.5459,

K̃2(B, C) = 0.3674√
0.4591 × 0.9841

= 0.5466.

⎫
⎪⎪⎬

⎪⎪⎭

By using Eqs. (19), (20) and (21), we have

Cα(A, C) =
3∑

i=1

[0.4(
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3)

+ 0.32(
√

(0.5 × 1)3 +
√

(0.3 × 0)3 +
√

(0.8124 × 0)3)

+ 0.28(
√

(0.3873 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7746 × 0)3)]
= 0.4717

Cα(B, C) =
3∑

i=1

[0.4(
√

(0.3 × 0.1)3 +
√

(0.6 × 0.1)3 +
√

(0.7416 × 0.9899)3)

+ 0.32(
√

(0.5 × 1)3 +
√

(0.3162 × 0)3 +
√

(0.8062 × 0)3)

+ 0.28(
√

(0.4 × 0)3 +
√

(0.5 × 1)3 +
√

(0.7681 × 0)3)]
= 0.4717

Cα(A, A) =
3∑

i=1

[0.4(0.33 + 0.63 + 0.74163) + 0.32(0.53 + 0.33 + 0.81243)

+ 0.28(+0.43 + 0.53 + 0.76813)]
= 0.6604

Cα(B, B) =
3∑

i=1

[0.4(0.33 + 0.63 + 0.74163) + 0.32(+0.53 + 0.31623 + 0.80623)

+ 0.28(0.38733 + 0.53 + 0.77463)]
= 0.6595
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Cα(C, C) =
3∑

i=1

[0.4(0.13 + 0.13 + 0.98993) + 0.32(13 + 04 + 03)

+ 0.28(03 + 13 + 03)]
= 0.9888.

Hence,

K̃3(A, C) = 0.4717

max[0.6604, 0.9888] = 0.4770,

K̃3(B, C) = 0.4717

max[0.6595, 0.9888] = 0.4770,

⎫
⎪⎪⎬

⎪⎪⎭

K̃4(A, C) = 0.4717

Aver[0.6604, 0.9888] = 0.5720,

K̃4(B, C) = 0.4717

Aver[0.6595, 0.9888] = 0.5723,

⎫
⎪⎪⎬

⎪⎪⎭

K5(A, C) = 0.4717√
0.6604 × 0.9888

= 0.5837,

K5(B, C) = 0.4717√
0.6595 × 0.9888

= 0.5841.

⎫
⎪⎪⎬

⎪⎪⎭

4.3.1 Comparison of the New Methods of Computing WCCPFSs with
the Existing Methods

Table2 contains the computational results for easy analysis.
By comparing Tables1 and 2, it is not superfluous to say thatWCCPFSs give a bet-

ter measure of interrelationship. This bespeaks the impact of weights on measuring
correlation coefficient. From Table2, we surmise that the (i) WCCPFSs techniques
via maximummethod in [25] and K̃3 cannot determine the interrelationship between
almost two equal PFSs with respect to an unrelated PFS, (ii) new WCCPFSs tech-
niques are more reasonable and accurate and can determine the interrelationship
between almost two equal PFSs with respect to an unrelated PFS. Again, the new

Table 2 WCCPFSs outputs

WCCPFSs (A, C) (B, C)

K̃1 0.3733 0.3733

K̃2 0.5459 0.5466

K̃3 0.4770 0.4770

K̃4 0.5720 0.5723

K̃5 0.5837 0.5841
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WCCPFSs techniques have better performance indexes in contrast to the ones in
[25]. From the computations, we conclude that (B, C) are more related to each other
than (A, C).

5 Determination of Pattern Recognition and Medical
Diagnostic Problem via WCCPFSs

In this section, we apply the WCCPFSs methods discussed so far to problems of
pattern recognition and medical diagnosis to ascertain the more efficient approach
and agreement of decision via the WCCPFSs techniques.

5.1 Applicative Example in Pattern Recognition

Pattern recognition is the process of identifying patterns by using machine learning
procedure. Pattern recognition has a lot to do with artificial intelligence and machine
learning. The idea of pattern recognition is important because of its application
potential in neural networks, software engineering, computer vision, etc. Assume
there are three pattern Ci , represented in Pythagorean fuzzy values in X = {xi }, for
i = 1, . . . , 3 and α = {0.4, 0.3, 0.3}. If there is an unknown pattern P represented
in Pythagorean fuzzy values in X = {xi }. The Pythagorean fuzzy representations of
these patterns are in Table3.

Table 3 Pythagorean fuzzy representations of patterns

Feature space

PFS x1 x2 x3
μC1 1.0000 0.8000 0.7000

νC1 0.0000 0.0000 0.1000

πC1 0.0000 0.6000 0.7071

μC2 0.8000 1.0000 0.9000

νC2 0.1000 0.0000 0.1000

πC2 0.5916 0.0000 0.4243

μC3 0.6000 0.8000 1.0000

νC3 0.2000 0.0000 0.0000

πC3 0.7746 0.6000 0.0000

μP 0.5000 0.6000 0.8000

νP 0.3000 0.2000 0.1000

πP 0.8124 0.7746 0.5916
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To enable us to classify P into any of Ci ,i = 1, 2, 3, we deploy the WCCPFSs in
[25] and the proposed WCCPFSs as follows:

Using Eqs. (15) and (16), we obtain

Cα(C1, P) = 0.3805, Cα(C2, P) = 0.4392, Cα(C3, P) = 0.5218,

Cα(C1, C1) = 0.7088, Cα(C2, C2) = 0.7195, Cα(C3, C3) = 0.6582, Cα(P, P) = 0.5095.

Hence,

K̃1(C1, P) = 0.5368, K̃1(C2, P) = 0.6104, K̃1(C3, P) = 0.7928.

K̃2(C1, P) = 0.6332, K̃2(C2, P) = 0.7254, K̃2(C3, P) = 0.9011.

Using Eqs. (19), (20) and (21), we have

Cα(C1, P) = 0.5434, Cα(C2, P) = 0.5973, Cα(C3, P) = 0.6808,

Cα(C1, C1) = 0.8277, Cα(C2, C2) = 0.8299, Cα(C3, C3) = 0.7939, Cα(P, P) = 0.6312.

Hence,

K̃3(C1, P) = 0.6565, K̃3(C2, P) = 0.7197, K̃3(C3, P) = 0.8575.

K̃4(C1, P) = 0.7449, K̃4(C2, P) = 0.8175, K̃4(C3, P) = 0.9554.

K̃5(C1, P) = 0.7518, K̃5(C2, P) = 0.8253, K̃5(C3, P) = 0.9617.

Table4 presents the results for glance analysis.
From Table4, P is suitable to be classified with C3 because K̃i (C3, P) >

K̃i (C2, P) > K̃i (C1, P) ∀ i = 1, . . . , 5.
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Table 4 WCCPFSs outputs

WCCPFSs (C1, P) (C2, P) (C3, P)

K̃1 0.5368 0.6104 0.7928

K̃2 0.6332 0.7254 0.9011

K̃3 0.6565 0.7197 0.8575

K̃4 0.7449 0.8175 0.9554

K̃5 0.7518 0.8253 0.9617

5.2 Applicative Example in Medical Diagnosis

Medical diagnosis is a delicate exercise because failure to make the right decision
may lead to the death of the patient. Diagnosis of diseases is challenging due to
embedded fuzziness in the processes. Here, we present a scenario of a mathematical
approach of diagnosing a patient medical status via WCCPFSs methods, where the
symptoms or clinical manifestations of the diseases are represented in Pythagorean
fuzzy values by using hypothetical cases.

Suppose we have a set of diseases D = {D1, D2, D3, D4, D5} represented in
Pythagorean fuzzy values, where D1 = viral fever, D2 = malaria, D3 = typhoid
fever, D4 = peptic ulcer, D5 = chest problem, and a set of symptoms

S = {s1, s2, s3, s4, s5}

for s1= temperature, s2 = headache, s3 = stomach pain, s4= cough, s5 = chest pain,
which are the clinical manifestations of Di , i = 1, . . . , 5. From the knowledge of the
clinicalmanifestations, theweight of the symptomsasα = {0.3, 0.25, 0.1, 0.25, 0.1}.

Assume a patient P with a manifest symptoms S is also capture in Pythagorean
fuzzy values. Table5 contains Pythagorean fuzzy information of Di , i = 1, . . . , 5
and P with respect to S.

Now, we find which of the diseases Di has the greatest interrelationship with the
patient P with respect to the clinical manifestations S by deploying Eqs. (15), (16),
(19), (20), and (21).

By using Eqs. (15) and (16), we have

Cα(D1, P) = 0.4609, Cα(D2, P) = 0.4740, Cα(D3, P) = 0.4213,

Cα(D4, P) = 0.3252, Cα(D5, P) = 0.2289, Cα(D1, D1) = 0.5930,

Cα(D2, D2) = 0.5203, Cα(D3, D3) = 0.5761, Cα(D4, D4) = 0.5297,
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Table 5 Pythagorean fuzzy representations of diagnostic process

Clinical manifestations

PFS s1 s2 s3 s4 s5
μD1 0.4000 0.3000 0.1000 0.4000 0.1000

νD1 0.0000 0.5000 0.7000 0.3000 0.7000

πD1 0.9165 0.8124 0.7071 0.8660 0.7071

μD2 0.7000 0.2000 0.0000 0.7000 0.1000

νD2 0.0000 0.6000 0.9000 0.0000 0.8000

πD2 0.7141 0.7746 0.4359 0.7141 0.5916

μD3 0.3000 0.6000 0.2000 0.2000 0.1000

νD3 0.3000 0.1000 0.7000 0.6000 0.9000

πD3 0.9055 0.7937 0.6856 0.7746 0.4243

μD4 0.1000 0.2000 0.8000 0.2000 0.2000

νD4 0.7000 0.4000 0.0000 0.7000 0.7000

πD4 0.7071 0.8944 0.6000 0.6856 0.6856

μD5 0.1000 0.0000 0.2000 0.2000 0.8000

νD5 0.8000 0.8000 0.8000 0.8000 0.1000

πD5 0.5916 0.6000 0.5657 0.5657 0.5916

μP 0.8000 0.6000 0.2000 0.6000 0.1000

νP 0.1000 0.1000 0.8000 0.1000 0.6000

πP 0.5916 0.7937 0.5657 0.7937 0.7937

Cα(D5, D5) = 0.5274, Cα(P, P) = 0.4859.

Hence,

K̃1(D1, P) = 0.7772, K̃1(D2, P) = 0.9110, K̃1(D3, P) = 0.7313,

K̃1(D4, P) = 0.6139, K̃1(D5, P) = 0.4340.

K̃2(D1, P) = 0.8586, K̃2(D2, P) = 0.9427, K̃2(D3, P) = 0.7963,

K̃2(D4, P) = 0.6410, K̃2(D5, P) = 0.4522.

Using Eqs. (19), (20) and (21), we obtain

Cα(D1, P) = 0.6354, Cα(D2, P) = 0.6840, Cα(D3, P) = 0.5945,
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Table 6 WCCPFSs outputs

WCCPFSs (D1, P) (D2, P) (D3, P) (D4, P) (D5, P)

K̃1 0.7772 0.9110 0.7313 0.6139 0.4340

K̃2 0.8586 0.9427 0.7963 0.6410 0.4522

K̃3 0.8508 0.9549 0.8052 0.6486 0.5037

K̃4 0.8685 0.9562 0.8174 0.6493 0.5040

K̃5 0.8688 0.9562 0.8175 0.6494 0.5040

Cα(D4, P) = 0.4646, Cα(D5, P) = 0.3608, Cα(D1, D1) = 0.7468,

Cα(D2, D2) = 0.7143, Cα(D3, D3) = 0.7383, Cα(D4, D4) = 0.7146,

Cα(D5, D5) = 0.7154, Cα(P, P) = 0.7163.

Hence,

K̃3(D1, P) = 0.8508, K̃3(D2, P) = 0.9549, K̃3(D3, P) = 0.8052,

K̃3(D4, P) = 0.6486, K̃3(D5, P) = 0.5037.

K̃4(D1, P) = 0.8685, K̃4(D2, P) = 0.9562, K̃4(D3, P) = 0.8174,

K̃4(D4, P) = 0.6493, K̃4(D5, P) = 0.5040.

K̃5(D1, P) = 0.8688, K̃5(D2, P) = 0.9562, K̃5(D3, P) = 0.8175,

K̃5(D4, P) = 0.6494, K̃5(D5, P) = 0.5040.

Table6 presents the results for glance analysis.
From Table6, it is inferred that the patient is suffering from malaria since

K̃i (D2, P) > K̃i (D1, P) > K̃i (D3, P) > K̃i (D4, P) > K̃i (D5, P)

for i = 1, . . . , 5.
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6 Conclusion

In this chapter, we have studied some techniques of calculating CCPFSs and
WCCPFSs, respectively. It is found that the approach of WCCPFSs is more reli-
able than CCPFSs. By juxtaposing the existing methods of computing WCCPFSs
and the novel ones, it is proven that the novel methods of calculating WCCPFSs are
more accurate and efficient. SomeMCDMproblemswere considered via the existing
and the novel WCCPFSs methods to demonstrate applicability. The novel methods
of computing WCCPFSs could be applied to more MCDM problems via object-
oriented approach in cases of larger population. Extending the concept of weights
on elements of PFSs to other existing correlation coefficients in Pythagorean fuzzy
domain [16, 50] could be of great interest in other different applicative areas through
clustering algorithm.
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Parametric Directed Divergence Measure
for Pythagorean Fuzzy Set and Their
Applications to Multi-criteria
Decision-Making

Nikunj Agarwal

1 Introduction

In literature so far, the classical information theory has been widely used and repre-
sents the vagueness in the data in classical measure theory but the measures are
valid for precisely given data. Even, due to the various constraints in day-to-day
life, decision-makers may give their judgements under the uncertain and imprecise
situation. Thus, there is always a degree of hesitancy between the preferences of
the decision-making so that the analysis conducted under such circumstances is not
ideal and hence does not tell the exact information to the system analyst. To cope
up with impreciseness, vagueness, and the uncertainty in the data, the intuitionistic
fuzzy sets (IFSs) [1] are successful extension of the fuzzy set (FS) [2]. Over the
last several years, the IFS has received much attention by introducing the various
kinds of information measures, aggregation operators and employed them to solve
the decision-making problems under the different environment [3–10]. But, there
is some limitation in the studies of IFSs as it is valid only for the environments
where the degree’s sum is less than one. However, this condition is ruled out in many
situations. For instance, if a person gives their preference in the form of member-
ship and non-membership degrees toward a particular object as 0.8 and 0.5, then the
situation is not handled with IFSs. In order to resolve it, Yager [11, 12] proposed
the Pythagorean fuzzy (PF) sets (PFSs) by relaxing this sum condition to its square
sum less than one, i.e., corresponding to the above-considered example, we see that
(0.8)2 + (0.5)2 ≤ 1 and hence PFSs are an extension of the existing IFSs. After
their pioneer work, Yager and Abbasov [13] studied the relationship between the
Pythagorean numbers and the complex numbers. Later on, several aggregation oper-
ators under the PFS environment have been investigated by researchers [14, 15] using
different norm operations. Zhang and Xu [16] extended the TOPSIS approach from
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IF to the PF environment. Garg [6] presented a confidence level-based averaging
and geometric aggregation operators, by incorporating the confidence level of the
decision-makers (DMs) to the analysis. In the continuation, several authors intro-
duced different types of aggregation operators under PFSs [17–19] to solve many
decision-making problems.

Now, the degree of distance/similarity/divergence measures has been focused by
the authors and received attention in the last four decades for solving the decision-
making, pattern recognition, medical diagnosis problems. However, the prime task
for decision-maker (DM) is to rank the alternatives to get the best [20–23]. For
this, researchers have made efforts to enrich the concept of information measures
in Pythagorean fuzzy environments [24]. Zhang and Xu [16] suggested a distance
measure to solve a realistic problem under PFS. While Yang et al. [25] pointed out
an unreasonable case of proof in [16]. Wei and Wei [26] presented some similarity
measures between PFSswhich are actually based on the cosine function. Li et al. [27]
introduced the Hamming distance measure, the Euclidean distance measure, and the
Minkowski distance measure between PFSs, with their detailed properties. Zhang
[28] explored a novel similarity measure for PFSs, to deal the selection problem
of photovoltaic cells. Zeng et al. [29] considered five parameters for distance and
similarity measures of Pythagorean fuzzy sets and applied them in the selection
of China’s Internet stocks. Peng et al. [30] presented similarity measure, distance
measure, entropy, and inclusion measure for PFSs, put forward transformation rela-
tionships, and successfully applied them in pattern recognition, clustering analysis,
and medical diagnosis [31].

Thus, the observation from the above studies is that all the measures do not
incorporate the idea of decision-maker’s preferences into the measure and also these
measures do not follow the linear order. That’swhy, there is always a trouble in getting
the exact nature of the alternative. Therefore, we present a parametric directed diver-
gence measure order α and degree β for Pythagorean fuzzy set (PFS). Through this
proposed measure, the decision-maker can make more reliable and flexible decisions
for different values of parameters α and β. Several properties have been investigated
based on this measure with a numerical example to demonstrate the performance of
measure. Finally, concrete conclusion has been presented.

2 Basic Concepts

In this section, some basic definitions of IFSs and PFSs have been presented on the
universal set X.

2.1 Intuitionistic Fuzzy Set [1]

Definition 2.1 An IFS (intuitionistic fuzzy set) is defined as
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Ā = {〈
x, μ Ā(x), ν Ā(x)

〉: x ∈ X
}
,

where μ Ā(x) and ν Ā(x) represent the membership and non-membership degrees
such that 0 ≤ μ Ā(x) + ν Ā(x) ≤ 1withμ Ā(x), ν Ā(x) ∈ [0, 1]..

2.2 Hesitant Fuzzy Set [32, 33]

Definition 2.2 A HFS (hesitant fuzzy set) is defined as a function
HFS : X → [0, 1] and is given by

Ā = {〈
x, h Ā(x)

〉 : x ∈ X
}
,

where h Ā(x) represents HFE (hesitant fuzzy element).

2.3 Pythagorean Fuzzy Set [11, 16]

Definition 2.3 A PFS (Pythagorean fuzzy set) is defined as a set of ordered pairs
given by

Ā = {〈
x, μ Ā(x), ν Ā(x)

〉 : x ∈ X
}
,

where μ Ā(x) and ν Ā(x) represent the membership and non-membership degrees
such that (μ Ā(x))

2 + (ν Ā(x))
2 ≤ 1withμ Ā(x), ν Ā(x) ∈ [0, 1]. For convenience,

the pair of these membership functions is called a Pythagorean fuzzy number (PFN)
and it is denoted as α = <μα, να>.

3 Proposed Parametric Directed Divergence Measure
for Pythagorean Fuzzy Set (PFS)

In this section, we have proposed a flexible and generalized parametric divergence
measure of order α and degree β denoted as class of (α, β), under the environment
of PFSs. Some desirable properties of this measure are also being studied.
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3.1 Parametric Divergence Measure for PFSs

Definition 3.1 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, then a parametric directed divergence measure for PFSs based
on parameters α and β is denoted as Dβ

α (A|B) and defined as

Dβ
α (A|B) = α

n (2 − β)
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,

where μ, ν, and π are the membership, non-membership and hesitancy functions,
respectively, and it is valid for α, β > 0 and except β �= 2.

It is clearly seen from the definition that the Dβ
α (A|B) is not symmetric, so to

imbue the measure with symmetry, a parametric symmetric divergence measure for
PFSs has been defined as follows.

3.2 Parametric Symmetric Divergence Measure for PFSs

Definition 3.2 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, then a parametric directed divergence measure for PFSs based
on parameters α and β is denoted as Dβ

α (A;, B) and defined as

Dβ
α (A; B) = Dβ

α (A |B) + Dβ
α (B|A) ⇒

Dβ
α (A;B) = α
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.

From the definition of Dβ
α (A | B) and Dβ

α (A; B), it has been observed that

Dβ
α (A | B) ≥ 0, Dβ

α (A; B) ≥ 0,
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and A = B ⇒Dβ
α (A | B) =Dβ

α (A; B).

Divide the universe X into two parts X1 and X2, where

X1 = {xi : xi ∈ X, A(xi ) ⊆ B(x)}, i.e.,

μA(xi ) ≤ μB(xi ), νA(xi ) ≥ νB(xi ) ∀ xi ∈ X1,

X2 = {xi : xi ∈ X, A(xi ) ⊇ B(x)}, i.e.,

μA(xi ) ≥ μB(xi ), νA(xi ) ≤ νB(xi ) ∀ xi ∈ X2,

.

Now, we propose some properties based on the above considerations.

3.3 Some Properties of Parametric Symmetric Divergence
Measure for PFSs

Property 3.3.1 Let A and B be the two PFSs defined on universal set X =
{x1, x2, . . . , xn}, such that they satisfy for any xi ∈ X either A ⊆ B or B ⊆ A,

Dβ
α (A ∪ B; A ∩ B) = Dβ

α (A; B).

Proof It is clear that
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α (A ∩ B|A ∪ B).

On the other hand,
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.

(2)

Then, by adding Eqs. (1) and (2), we get
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α (A |B) + Dβ

α (B| A) = Dβ
α (A; B)

.

Thus, the results hold.

Property 3.3.2 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

(1) Dβ
α (A;A ∪ B) = Dβ

α (B;A ∩ B)

(2) Dβ
α (A;A ∩ B) = Dβ

α (B;A ∪ B)
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(3) Dβ
α (A;A ∪ B) + Dβ

α (A;A ∩ B) = Dβ
α (A;B)

(4) Dβ
α (B;A ∪ B) + Dβ
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α (A;B).

Proof All can be proved similarly. So, we prove only the first one, i.e.,

Dβ
α (A;A ∪ B) = Dβ

α (B;A ∩ B)
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Dβ
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Similarly, RHS
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.

By using Eq. (3), the expressions are same from both sides. This proves the result.



Parametric Directed Divergence Measure for Pythagorean … 73

Property 3.3.3 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

(1) Dβ
α (A;C) + Dβ

α (B;C) − Dβ
α (A ∪ B;C) ≥ 0

(2) Dβ
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α (A ∩ B;C) ≥ 0.

Proof Both can be proved similarly. So, we prove only the first one, i.e.,

Dβ
α (A;C) = Dβ

α (A |C) + Dβ
α (C |A)

= α

n (2 − β)

n∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

μ
2α

(2−β)

A (xi ) log

⎛

⎝ 2μ
2α

(2−β)

A (xi )

μ
2α

(2−β)

A (xi ) + μ
2α

(2−β)

C (xi )

⎞

⎠ + ν
2α

(2−β)

A (xi ) log

⎛

⎝ 2ν
2α

(2−β)

A (xi )

ν
2α

(2−β)

A (xi ) + ν
2α

(2−β)

C (xi )

⎞

⎠

+ π
2α

(2−β)

A (xi ) log

⎛

⎝ 2π
2α

(2−β)

A (xi )

π
2α

(2−β)

A (xi ) + π
2α

(2−β)

C (xi )

⎞

⎠

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

+ α

n (2 − β)

n∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

μ
2α

(2−β)

C (xi ) log

⎛

⎝ 2μ
2α

(2−β)

C (xi )

μ
2α

(2−β)

C (xi ) + μ
2α

(2−β)

A (xi )

⎞

⎠ + ν
2α

(2−β)

C (xi ) log

⎛

⎝ 2ν
2α

(2−β)

C (xi )

ν
2α

(2−β)

C (xi ) + ν
2α

(2−β)

A (xi )

⎞

⎠

+ π
2α

(2−β)

C (xi ) log

⎛

⎝ 2π
2α

(2−β)

C (xi )

π
2α

(2−β)

C (xi ) + π
2α

(2−β)

A (xi )

⎞

⎠

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

and

Dβ
α (B;C) = Dβ

α (B |C) + Dβ
α (C |B)

= α

n (2 − β)

n∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

μ
2α

(2−β)

B (xi ) log

⎛

⎝ 2μ
2α

(2−β)

B (xi )

μ
2α

(2−β)

B (xi ) + μ
2α

(2−β)

C (xi )

⎞

⎠ + ν
2α

(2−β)

B (xi ) log

⎛

⎝ 2ν
2α

(2−β)

B (xi )

ν
2α

(2−β)

B (xi ) + ν
2α

(2−β)

C (xi )

⎞

⎠

+ π
2α

(2−β)

B (xi ) log

⎛

⎝ 2π
2α

(2−β)

B (xi )

π
2α

(2−β)

B (xi ) + π
2α

(2−β)

C (xi )

⎞

⎠

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

+ α

n (2 − β)

n∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

μ
2α

(2−β)

C (xi ) log

⎛

⎝ 2μ
2α

(2−β)

C (xi )

μ
2α

(2−β)

C (xi ) + μ
2α

(2−β)

B (xi )

⎞

⎠ + ν
2α

(2−β)

C (xi ) log

⎛

⎝ 2ν
2α

(2−β)

C (xi )

ν
2α

(2−β)

C (xi ) + ν
2α

(2−β)

B (xi )

⎞

⎠

+ π
2α

(2−β)

C (xi ) log

⎛

⎝ 2π
2α

(2−β)

C (xi )

π
2α

(2−β)

C (xi ) + π
2α

(2−β)

B (xi )

⎞

⎠

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

Now,
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Then,
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Since all themembership and non-membership lies between [0, 1]. This completes
the proof.

Property 3.3.4 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

Dβ
α (A ∩ B;C) + Dβ
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.

By adding all of the above equations, we get the required result and this completes
the proof.

Property 3.3.5 For any two PFSs A and B defined on universal set X =
{x1, x2, . . . , xn}, we have

(1) Dβ
α (A ; B) = Dβ

α (Ac; Bc)

(2) Dβ
α (A ; Bc) = Dβ

α (Ac; B)

(3) Dβ
α (A ; B) + Dβ

α (Ac ; B) = Dβ
α (Ac; Bc) + Dβ

α (A ; Bc).

Proof Clearly, first and second parts are similar and the third one can be proved by
adding these two. So, we prove only (1).
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.

Then (1) holds.

4 Decision-Making Method Based on Proposed Parametric
Directed Divergence Measure for Pythagorean Fuzzy Set
(PFS)

In this section, we shall investigate the decision-making problem based on Proposed
Parametric Directed Divergence Measure Dβ

α in which the attribute values are eval-
uated by the expert which give their preferences in terms of Pythagorean fuzzy
numbers PFNs. Assume that a set of “m” alternatives A = {A1, A2, . . . , Am} to be
considered under the set of “n” criterion G = {G1, G2, . . .Gn}. Experts have eval-
uated these “m” alternatives under each criterion and give their rating value in the
form of IFNs. Then, we have the following steps for computing the best alternative(s)
based on the proposed measure.

Step 1: Construction of decision-making matrix: Suppose Dm × n(xi j ) = 〈
μi j , νi j

〉

be the intuitionistic fuzzy decision matrix, where μi j represents the degree that the
alternative Ai satisfies the criteria G j and νi j indicates the degree that the alter-
native Ai does not satisfy the criteria G j given by the decision-maker such that
μi j , νi j ∈ [0 , 1] with μi j + νi j ≤ 1, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. So,
the intuitionistic fuzzy decision matrix is constructed as follows:
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Dm × n(xi j ) =

⎡

⎢⎢⎢
⎣

〈
μ11 , ν11

〉 〈
μ12 , ν12

〉 · · · 〈
μ1n , ν1n

〉
〈
μ21 , ν21

〉 〈
μ22 , ν22

〉 · · · 〈
μ2n , ν2n

〉

...
...

. . .
...〈

μm1 , νm1
〉 〈

μm2 , νm2
〉 · · · 〈

μmn , νmn
〉

⎤

⎥⎥⎥
⎦

.

Step 2: Compute the ideal alternatives: Ideal alternative is denoted as A ∗ and given
as

A ∗ = {〈
μ∗
1 , ν∗

1

〉
,
〈
μ∗
2 , ν∗

2

〉
, . . . ,

〈
μ∗
n , ν∗

n

〉}
,

where μ∗
j = m

max
i = 1

(μi j ) and ν∗
j = m

min
i = 1

(νi j ).

Step 3: Evaluation of proposed Symmetric Divergence Measure: Now we calculate
Dβ

α (Ai ; A ∗) , i = 1 , 2 , . . . , m by the given formula:
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.

Step 4: Ranking the alternative: Rank all the alternative according to indexing as
obtained from k = arg min

1≤ i ≤m
{Dβ

α (Ai ; A∗)}.

5 Illustrative Example

In this section, one illustrative example from the field of decision-making has been
taken for demonstrating the proposed approach.

Example: Decision-Making Problem. Consider the field of investment, where a
person wants to invest some sort of money. As in these days, more and more compa-
nies have attracted the customers by reducing price and giving some other kind of
benefits, so it is difficult for the investor to choose the best market for investment.
In order to avoid the risk factor in the market and to make the decision more clear,
they constitute a committee to invest the money in five major companies, namely,



Parametric Directed Divergence Measure for Pythagorean … 79

retail, food, computer, petrochemical, and a car company, respectively, denoted by
A1, A2, A3, A4, A5. Experts have been hired who gave their preferences of each
alternative under the set of four major analyses, namely, the growth (G1) , the risk
(G2) , the social-political impact (G3) and the environmental impact (G4) . The
rating value of each alternative Ai = (i = 1 , 2 , . . . , 5) under each factor has
been assessed in terms of PFNs αi j = 〈

μi j , νi j
〉
5× 4 and is summarized as follows.

D =

⎡

⎢⎢⎢⎢⎢
⎣

<0.5, 0.4> <0.6, 0.3> <0.3, 0.6> <0.2, 0.7>
<0.7, 0.3> <0.7, 0.2> <0.7, 0.2> <0.4, 0.5>
<0.6, 0.4> <0.5, 0.4> <0.5, 0.3> <0.6, 0.3>
<0.8, 0.1> <0.6, 0.3> <0.3, 0.4> <0.2, 0.6>
<0.6, 0.2> <0.4, 0.3> <0.7, 0.1> <0.5, 0.3>

⎤

⎥⎥⎥⎥⎥
⎦

.

By using these normalized data, the ideal value for all the criteria is given by

A ∗ = {<0.8, 0.1> , <0.7, 0.2> , <0.7, 0.1> , <0.6, 0.3>}.

Thus, based on it the directed divergence measure from ideal alternative to each
alternative is computed by taking α = 1, β = 0.5 and their corresponding
measures are summarized as follows:

Dβ
α (A1; A∗) = 0.1289; Dβ

α (A2; A∗) = 0.0228; Dβ
α (A3; A∗) = 0.0468;

Dβ
α (A4; A∗) = 0.0742; Dβ

α (A5; A∗) = 0.0258
.

So, the ranking order of these alternatives is

A2 � A5 � A3 � A4 � A1.

Hence, Food company is the best one for investment point of view.

6 Conclusions

Here, a parametric directed divergence measure of order α and degree β under the
environment of Pythagorean fuzzy sets (PFSs) has been explored. We also discussed
some desirable properties of this measure. For demonstration, a decision-making
problem (investment problem) has been solved by using this technique. The param-
eters of this measure provide the flexibility to the decision-makers and that thing
makes it more generalized. Thus, we conclude that the proposed divergence measure
is suitable to solve several real-life problems and can be found as an alternative one
among the various approaches to solve the decision-making problems. In future, we
will be dealing with some more complicated problems or more realistic problems in
the field of fuzzy cluster analysis, medical diagnosis, etc.
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Some Trigonometric Similarity Measures
Based on the Choquet Integral
for Pythagorean Fuzzy Sets and
Applications to Pattern Recognition

Ezgi Türkarslan, Murat Olgun, Mehmet Ünver, and Şeyhmus Yardimci

1 Introduction

The notion of the fuzzy set was presented by Zadeh [35] via a membership function
and it was expanded to the notion of intuitionistic fuzzy set (IFS) byAtanassov [1] via
a membership function with a non-membership function such that the sum of these
functions is less than or equal to one. However, data in real-world problems cannot
always be represented by a fuzzy set or an IFS. For instance, if a decision-maker
or expert uses the intuitionistic fuzzy environment to give their preferences with the
membership degree 0.7 and the non-membership degree 0.4, then we see that the
sum of these degrees is equal to 1.1 which is larger than 1 and so this case cannot be
characterized with an IFS. Thus, these were expanded to some more useful notions
to solve real-world problems. With this motivation, Yager [30] presented the notion
of Pythagorean fuzzy set (PFS) that is represented by a membership function with a
non-membership function such that the sum of squares of these functions is less than
or equal to 1. For instance, in the example above, we obtain that 0.72 + 0.42 ≤ 1.
Therefore, a PFS is more useful than an IFS as well as a fuzzy set while handling
real-life applications with imprecision and uncertainty.
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Some expansions of PFSs such as interval-valued Pythagorean fuzzy sets [21],
complex Pythagorean fuzzy sets [25], and Pythagorean fuzzy linguistic sets [9, 13,
22] were improved and they were applied to some extensive fields. One of these
extensive areas of application is the notion of similarity measure for PFSs, which
is an effective tool to find the degree of similarity between two objects. There are
several versions of similarity measures for PFSs that satisfy some certain conditions
and they have various applications to some different fields such as pattern recogni-
tion and medical diagnosis. For example, Peng and Garg [23] presented the concept
of multiparametric similarity measures for PFSs with multiple parameters. Nyugen
et al. [20] introduced the concept of exponential similarity measures by consider-
ing the exponential function. Firozja et al. [4] proposed new similarity measures by
using triangular conorms. Another version of similarity measures is a cosine simi-
larity measure [28, 33]. There exist various studies that introduce versions of cosine
similarity measures for PFSs and that give applications of these similarity measures
on pattern recognition, medical diagnosis, decision-making, and face recognition
systems [5, 28, 31].

The process of combining several numerical values into a single representative
one is called aggregation, and a numerical function performing this process is called
an aggregation function. This concept has various application areas such as arti-
ficial intelligence, operations research, economics and finance, pattern recognition
and image processing, data fusion, multicriteria decision-making, automated reason-
ing, etc. (see, e.g., [15]). The arithmetic mean and the weighted mean are the most
well-known aggregation operators. Moreover, a cosine similarity measure uses the
arithmetic mean or the weighted arithmetic mean to aggregate the cosine values of
the angle among conjugate components of the vector representations of two PFSs.
Various researchers have studied and enhanced the theory of PFSs using aggre-
gation operators. For example, Zeng et al. [36] developed some induced ordered
weighted aggregation operator for PFSs. Wei and Lu [29] presented a power aggre-
gation operator for PFS to solve decision-making problems. Recently, Garg [10, 12]
presented some neutrality operation-based Pythagorean fuzzy geometric aggrega-
tion operators and then defined some novel Pythagorean fuzzy weighted, ordered
weighted, and hybrid neutral averaging aggregation operators for Pythagorean fuzzy
information, which can neutrally treat themembership and non-membership degrees.
Moreover, Garg [8, 11] developed some new probabilistic aggregation operators with
Pythagorean fuzzy information by using an ordered weighted average operator. All
of these existing aggregation operators ignore the interaction between the elements.
In this paper, to overcome this deficiency, we use the notion of Choquet integral with
respect to a fuzzy measure that considers the interaction between elements.

Choquet integral is a non-linear continuous aggregation operator that uses non-
additive measures. In 1953, Choquet [3] presented the notion of fuzzy measure (or
capacity or non-additive measure) and Choquet integral. The notion of fuzzy mea-
sure permits assignment of “weights”on subsets of the universal set and it has been
used in a wide range of fields as a common disciplinary method such as decision-
making, pattern recognition, and medical diagnosis [7, 14, 16, 26, 27]. Actually, the
Choquet integral is an extension of Lebesgue integral and a non-additive extension
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of the weighted arithmetic mean. Although a fuzzy integral has more complicated
structure due to the lack of additivity in contrast to the additive integrals such as
Lebesgue integral, use of a fuzzy measure and a fuzzy integral is more effective in
the aggregation. In [19], it is shown that the Choquet integral performs significantly
more orders than the weighted arithmetic mean and that the difference gets larger
when the number of the elements of the set gets larger. Moreover, it has been proved
in [18] that when the number of the element of the finite set increases, the proba-
bility of getting more optimal ranking in the Choquet integral increases compared
to the weighted arithmetic mean. Actually, fuzzy measures and fuzzy integrals let
us to take the preferences into account that are not contained in the weights in the
weighted arithmetic mean [24]. In the literature, there are some studies that con-
sider the Choquet integral as an aggregation function for some fuzzy sets (see, e.g.,
[6, 17]) and there are some studies that consider fuzzy measure theory to introduce
a similarity measure for IFSs (see, e.g., [2, 32]). In this chapter, we use the Cho-
quet integral to present some trigonometric similarity measures for PFSs instead of
weighted arithmetic mean.

This chapter presents a synthesis which is an innovative tool by considering the
Choquet integral to define a similarity measure for PFSs via some trigonometric
functions inspired by the definition of the weighted cosine similarity measure for
PFSs. The remainder of this chapter is organized as follows: in Sect. 2, the notion of
PFS is recalled and the existing similarity measures for PFS are given. In Sect. 3, we
recall the notions of fuzzy measure and the Choquet integral. Then we propose ten
trigonometric similarity measures for PFSs via the Choquet integral. In Sect. 4, we
compare the proposed similarity measures with some existing similarity measures
for PFSs and to express the effectiveness of proposed similarity measures, we apply
them on some pattern recognition and medical diagnosis problems.

2 Preliminaries

The notion of PFS was defined by Yager [30] to model real-life problems includ-
ing imprecision, uncertainty, and vagueness situations more precisely with higher
accuracy. In this section, we start with recalling the notion of PFS and some existing
trigonometric similarity measures for PFSs.

Definition 1 Let U = {ξ1, ξ2, . . . , ξn} be a finite set. A PFS Ã in U is given with

Ã = {
< ξ,μ Ã(ξ), ν Ã(ξ) > |ξ ∈ U

}
, (1)

where μ Ã and ν Ã are functions from U to [0, 1]with the condition μ2
Ã
(ξ) + ν2

Ã
(ξ) ≤

1, for any ξ ∈ X . The numbers μ Ã(ξ) and ν Ã(ξ) indicate the membership degree
and the non-membership degree of the element ξ to the set Ã, respectively [30].
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Fig. 1 Comparison of IFSs
and PFSs

For any PFS Ã of U, π Ã(ξ) = (1 − μ2
Ã
(ξ) − ν2

Ã
(ξ))1/2 is called the hesitancy

degree of ξ to Ã, for each ξ ∈ U [30]. It is obvious that 0 ≤ π Ã(ξ) ≤ 1.

If (r Ã(ξ), θ Ã(ξ)) is the polar coordinates of (μ Ã(ξ), ν Ã(ξ)) for a point ξ ∈ U,
then the function dÃ : X → [0, 1] can be considered the direction of commitment at
point ξ where dÃ(ξ) := (1 − θ Ã(ξ)) π

2 [30]. The function dÃ scales the first quadrant
between zero and one, i.e., if θ Ã(ξ) = π

2 then μ Ã(ξ) = 0 and ν Ã(ξ) = r Ã(ξ) which
means the direction dÃ(ξ) = 0 and if θ Ã(ξ) = 0 then μ Ã(ξ) = r Ã(ξ) and ν Ã(ξ) = 0
which means the direction dÃ(ξ) = 1. Therefore, a PFS Ã can be expressed by either
(μ Ã, ν Ã) or (r Ã, dÃ) (see Fig. 1).

Now, we examine some similarity measures for PFSs. Peng and Garg [23] pro-
posed two similarity measures for PFSs by using relation of similarity measures with
distance measures.

Let Ã = {
< ξ,μ Ã(ξ), ν Ã(ξ) > |ξ ∈ U

}
and B̃ = {

< ξ,μB̃(ξ), νB̃(ξ) > |ξ ∈ U
}

be two PFSs in a finite set U = {ξ1, ξ2, . . . , ξn}. Two similarity measures between Ã
and B̃ are given with

S1( Ã, B̃)

:= 1 −
⎧
⎨

⎩
1

2nt pk

n∑

i=1

⎛

⎝

∣∣∣(tk − 1)(μ2
Ã
(ξi ) − μ2

B̃
(ξi )) − (ν2

Ã
(ξi ) − ν2

B̃
(ξi ))

∣∣∣
p

+
∣∣∣(tk − k)(ν2

Ã
(ξi ) − ν2

B̃
(ξi )) − k(μ2

Ã
(ξi ) − μ2

B̃
(ξi ))

∣∣∣
p

⎞

⎠

⎫
⎬

⎭

1

p

(2)

and
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S2( Ã, B̃)

:= 1 −
⎧
⎨

⎩
1

nt pk

n∑

i=1

max

⎛

⎝

∣∣∣(tk − 1)(μ2
Ã
(ξi ) − μ2

B̃
(ξi )) − (ν2

Ã
(ξi ) − ν2

B̃
(ξi ))

∣∣∣
p

,
∣∣∣(tk − k)(ν2

Ã
(ξi ) − ν2

B̃
(ξi )) − k(μ2

Ã
(ξi ) − μ2

B̃
(ξi ))

∣∣∣
p

⎞

⎠

⎫
⎬

⎭

1

p
,

(3)

where k ≥ 0, p ≥ 1, and tk are parameters such that tk ≥ k + 1.
Following similaritymeasures are theweightedversions of the similaritymeasures

recalled in (2)–(3):

Sω
1 ( Ã, B̃)

:= 1 −
⎧
⎨

⎩
1

2t pk

n∑

i=1

ωi

⎛

⎝

∣∣∣(tk − 1)(μ2
Ã
(ξi ) − μ2

B̃
(ξi )) − (ν2

Ã
(ξi ) − ν2

B̃
(ξi ))

∣∣∣
p

+
∣∣∣(tk − k)(ν2

Ã
(ξi ) − ν2

B̃
(ξi )) − k(μ2

Ã
(ξi ) − μ2

B̃
(ξi ))

∣∣∣
p

⎞

⎠

⎫
⎬

⎭

1

p

(4)

and

Sω
2 ( Ã, B̃)

:= 1 −
⎧
⎨

⎩
1

t pk

n∑

i=1

ωi max

⎛

⎝

∣∣∣(tk − 1)(μ2
Ã
(ξi ) − μ2

B̃
(ξi )) − (ν2

Ã
(ξi ) − ν2

B̃
(ξi ))

∣∣∣
p

,
∣∣∣(tk − k)(ν2

Ã
(ξi ) − ν2

B̃
(ξi )) − k(μ2

Ã
(ξi ) − μ2

B̃
(ξi ))

∣∣∣
p

⎞

⎠

⎫
⎬

⎭

1

p
,

(5)

where ωi ∈ [0, 1] for each i = 1, 2, . . . , n and
∑n

i=1 ωi = 1.
Effectiveness of these similarity measures was illustrated with some case studies

of pattern recognition in [23] and the decision-maker tried to explain the effect of
variables on the samples using the 1–8 scale for k and the 1–9 scale for p and tk .
That is, by limiting the parameters, the decision-maker studied the examples under
special choices. Moreover, when tk = 1, k = 0 and Ã and B̃ two PFSs such that
ν2
Ã
(ξi ) = ν2

B̃
(ξi ) for any i = 1, 2, . . . , n andweobtain that S1( Ã, B̃) = S2( Ã, B̃) = 1

for any p ≥ 1. As a result, the μ membership function and p parameter lose their
importance and information carried byμ becomes insignificant and so it is neglected.
Moreover, a contradiction emerges when the similarity of different PFSs is equal to
one. The main reason of this contradiction is the use of relation of similarity measure
with distance measure to obtain similarity measure for PFSs.

Nyugen et al. [20] proposed three weighted exponential similarity measures for
PFSs by using exponential function:

SM0( Ã, B̃) :=
n∑

i=1

ωi S
μ

i ( Ã, B̃) Sν
i ( Ã, B̃), (6)
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SM1( Ã, B̃) :=
n∑

i=1

ωi

(
Sμ

i ( Ã, B̃) + Sν
i ( Ã, B̃)

2

)

, (7)

and

SMp( Ã, B̃) :=
n∑

i=1

ωi

⎛

⎜⎜⎜⎜
⎝

(
(Sμ

i ( Ã, B̃))p + (Sν
i ( Ã, B̃))p

)

2

1

p

⎞

⎟⎟⎟⎟
⎠

, for all p ∈ {1, 2, . . .}

(8)

where Sμ

i ( Ã, B̃) := e
−

∣∣∣μ2
Ã
(ξi )−μ2

B̃
(ξi )

∣∣∣ and Sν
i ( Ã, B̃) := e

−
∣∣∣ν2

Ã
(ξi )−ν2

B̃
(ξi )

∣∣∣ and
ωi ∈ (0, 1] for each i = 1, 2, . . . , n and

∑n
i=1 ωi = 1.

These similarity measures were applied to some pattern recognition problems.
Since the proposed similarity measures are given with the help of the exponential
function, as the number of elements of the universal set and p variable increase, the
effort of calculating the similarity increases.

Firozja et al. [4] presented similarity measures for PFSs via the notion of S-norm.
They applied them some pattern recognition andmedical diagnosis problems to show
the effectiveness of proposed similarity measures. Based on S-norm three weighted
similarity measures between Ã and B̃ are given with

S1 :=
n∑

i=1

ωi

√
1 − {

(μ Ã(ξi ) − μB̃(ξi ))2 ∨ (ν Ã(ξi ) − νB̃(ξi ))2
}
, (9)

S2 :=
n∑

i=1

ωi

√
1 − {

(μ Ã(ξi ) − μB̃(ξi ))2 + (ν Ã(ξi ) − νB̃(ξi ))2 ∧ 1
}
, (10)

S3 :=
n∑

i=1

ωi

√
1 − {

(μ Ã(ξi ) − μB̃ (ξi ))2 + (ν Ã(ξi ) − νB̃ (ξi ))2 − (μ Ã(ξi ) − μB̃ (ξi ))2(ν Ã(ξi ) − νB̃ (ξi ))2
}
,

(11)
where “∨” and “∧” denote the maximum operator and minimum operator, respec-
tively. Moreover, ωi ∈ [0, 1] for each i = 1, 2, . . . , n and

∑n
i=1 ωi = 1.

However, the proposed similarity measures do not evaluate the Pythagorean fuzzy
information carried byμ and νwell enough in somecases. In [4], the distance between
components is more important than the information carried by fuzzy values. As a
result, the decision-making process becomes difficult because the similarities of two
different Pythagorean fuzzy sets or values are equal.

Wei and Wei [28] proposed two similarity measures via cosine function among
PFS Ã and PFS B̃ by using the arithmetic mean:
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PFC1 ( Ã, B̃) := 1

n

n∑

i=1

μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi )

, (12)

PFC2 ( Ã, B̃) := 1

n

n∑

i=1

μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi ) + π2

Ã
(ξi )π

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi ) + π4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi ) + π4

B̃
(ξi )

.

(13)
They also proposed four more similarity measures via cosine function among PFS

Ã and PFS B̃ by using the arithmetic mean:

PFCS1( Ã, B̃) := 1

n

n∑

i=1

cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (14)

PFCS2( Ã, B̃) := 1

n

n∑

i=1

cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (15)

PFCS3( Ã, B̃)

:= 1

n

n∑

i=1

cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(16)

PFCS4( Ã, B̃)

:= 1

n

n∑

i=1

cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

.

(17)

Moreover, they proposed four similarity measures via cotangent function among
PFS Ã and PFS B̃ by using the arithmetic mean:

PFCT1( Ã, B̃) := 1

n

n∑

i=1

cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

,

(18)

PFCT2( Ã, B̃) := 1

n

n∑

i=1

cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

,

(19)
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PFCT3( Ã, B̃)

:= 1

n

n∑

i=1

cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(20)

PFCT4( Ã, B̃)

:= 1

n

n∑

i=1

cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

.

(21)

Following similarity measures [28] are the weighted versions of the similarity
measures recalled in (12)–(21):

WPFC1( Ã, B̃) =
n∑

i=1

ωi

μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi )

, (22)

WPFC2 ( Ã, B̃) :=
n∑

i=1

ωi

μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi ) + π2

Ã
(ξi )π

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi ) + π4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi ) + π4

B̃
(ξi )

,

(23)

WPFCS1( Ã, B̃) :=
n∑

i=1

ωi cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

,

(24)

WPFCS2( Ã, B̃) :=
n∑

i=1

ωi cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

,

(25)

WPFCS3( Ã, B̃)

:=
n∑

i=1

ωi cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(26)

WPFCS4( Ã, B̃)

:=
n∑

i=1

ωi cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(27)
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WPFCT1( Ã, B̃)

:=
n∑

i=1

ωi cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (28)

WPFCT2( Ã, B̃) :=
n∑

i=1

ωi cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (29)

WPFCT3( Ã, B̃)

:=
n∑

i=1

ωi cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(30)

WPFCT4( Ã, B̃)

:=
n∑

i=1

ωi cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(31)

where 0 ≤ ω1, ω2, . . . , ωn ≤ 1 with
∑n

i=1 ωi = 1.

3 Trigonometric Similarity Measures Defined with the
Choquet Integral For PFSs

As we mentioned before, the notion of the Choquet integral is a non-additive exten-
sion of the notion ofweighted arithmeticmean. In this study,we consider theChoquet
integral and cosine and cotangent functions to construct ten new similarity measures
motivating from the trigonometric similarity measures (22)–(31) defined by [28].

First of all, let us recall some basic notions of fuzzy measure theory that are used
in this section.

Definition 2 Let U �= ∅ be a finite set and let P(U) be the family of all subsets of
U. If

(i) σ(∅) = 0,
(ii) σ(U) = 1,
(iii) A ⊆ B implies σ(A) ≤ σ(B) (monotonicity), then the set function σ : P(U) →

[0, 1] is called a fuzzy measure on U [3].

Note that, a fuzzy measure need not to be additive.
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Definition 3 Let U = {ξ1, ξ2, . . . , ξn} be a finite set and let σ be a fuzzy measure on
U. The Choquet integral [3] of a function f : U → [0, 1]with respect to σ is defined
by

(C)

∫

U

f dσ :=
n∑

k=1

(
f (ξ(k)) − f (ξ(k−1))

)
σ(E(k)), (32)

where the sequence
{
ξ(k)

}n
k=0 is a new permutation of the sequence {ξk}nk=0 such that

0 : = f (ξ(0))≤ f (ξ(1)) ≤ f (ξ(2)) ≤ · · · ≤ f (ξ(n)) and E(k) := {
ξ(k), ξ(k+1), . . . , ξ(n)

}
.

If σ is an additive measure then the Choquet integral reduces to weighted arith-
metic mean.

Throughout this section we let U = {ξ1, ξ2, . . . , ξn} be a finite set, Ã and B̃ be
two PFSs in U and σ be a fuzzy measure on U.

Definition 4 AChoquet cosine similaritymeasure among PFS Ã and PFS B̃ is given
with

W (C,σ )

PFC1 ( Ã, B̃) := (C)

∫

U

f Ã,B̃(ξ) dσ(ξ), (33)

where

f Ã,B̃(ξi ) := μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi )

, (34)

for i = 1, 2, . . . , n.

In Fig. 2, we see that cos θi = f Ã,B̃(ξi ) for any i = 1, 2, . . . , n.

Fig. 2 The angle between
vector representations
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Proposition 1 The cosine similarity measure W (C,σ )

PFC1 satisfies the following proper-
ties:
(P1) 0 ≤ W (C,σ )

PFC1 ( Ã, B̃) ≤ 1

(P2) W
(C,σ )

PFC1( Ã, B̃) = W (C,σ )

PFC1 (B̃, Ã)

(P3) If Ã = B̃ then W (C,σ )

PFC1 ( Ã, B̃) = 1.

Proof (P1) Since f Ã,B̃(ξi ) ∈ [0, 1] for any i = 1, 2, . . . , n and the Choquet integral

is monotone we have 0 ≤ W (C,σ )

PFC1 ( Ã, B̃) ≤ 1 immediately.
(P2) It is trivial since f Ã,B̃(ξi ) = f B̃, Ã(ξi ) for any i = 1, 2, . . . , n

(P3) If Ã = B̃ thenwehaveμ Ã(ξi ) = μB̃(ξi ) andν Ã(ξi ) = νB̃(ξi ), for i = 1, 2, . . . , n,
which yields that f Ã,B̃(ξi ) = 1. Hence, we obtain W (C,σ )

tPFC1 ( Ã, B̃) = 1. �

Considering the functions μ, ν, and π we propose another similarity measure via
cosine function and the Choquet integral.

Definition 5 AChoquet cosine similaritymeasure among PFS Ã and PFS B̃ is given
with

W (C,σ )

PFC2( Ã, B̃) := (C)

∫

U

gÃ,B̃(ξ) dσ(ξ), (35)

where

gÃ,B̃(ξi ) := μ2
Ã
(ξi )μ

2
B̃
(ξi ) + ν2

Ã
(ξi )ν

2
B̃
(ξi ) + π2

Ã
(ξi )π

2
B̃
(ξi )

√
μ4

Ã
(ξi ) + ν4

Ã
(ξi ) + π4

Ã
(ξi )

√
μ4

B̃
(ξi ) + ν4

B̃
(ξi ) + π4

B̃
(ξi )

, (36)

for i = 1, 2, . . . , n.

Remark 1 Similar to the proof of Proposition 1 it can be proved thatW (C,σ )

PFC2 satisfies
the conditions P1 − P3.

Definition 6 Considering the cosine function and the Choquet integral two new
similarity measures among PFS Ã and PFS B̃ are given with

W (C,σ )

PFCS1
( Ã, B̃) := (C)

∫

U

h(1)
Ã,B̃

(ξ) dσ(ξ), (37)

W (C,σ )

PFCS2
( Ã, B̃) := (C)

∫

U

h(2)
Ã,B̃

(ξ) dσ(ξ), (38)

where

h(1)
Ã,B̃

(ξi ) := cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (39)
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and
h(2)
Ã,B̃

(ξi ) := cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (40)

for i = 1, 2, . . . , n, respectively.

Proposition 2 The cosine similarity measure W (C,σ )

PFCSk
satisfies P1, P2 and the fol-

lowing properties:
(P′

3) Ã = B̃ if and only if W (C,σ )

PFCSk
( Ã, B̃) = 1.

(P4) If C̃ is an PFS in U and Ã ⊂ B̃ ⊂ C̃ then W (C,σ )

PFCSk
( Ã, C̃) ≤ W (C,σ )

PFCSk
( Ã, B̃) and

W (C,σ )

PFCSk
( Ã, C̃) ≤ W (C,σ )

PFCSk
(B̃, C̃).

Proof P1 and P2 can be proved similar to Proposition 1.
(P′

3) For any two PFSs Ã and B̃ in U, if Ã=B̃ , this implies μ2
Ã
(ξi )=μ2

B̃
(ξi ) and

ν2
Ã
(ξi )=ν2

B̃
(ξi ), for i=1, 2, . . . , n. Thus,

∣∣∣μ2
Ã
(ξi )−μ2

B̃
(ξi )

∣∣∣=0 and
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣=0.

Therefore, we have h(k)
Ã,B̃

(ξi ) = 1 and so W (C,σ )

PFCk ( Ã, B̃) = 1 for k = 1, 2.

Conversely, let W (C,σ )

PFCSk
( Ã, B̃) = 1 for k = 1, 2. Then, since cos 0 = 1 we have

h(k)
Ã,B̃

(ξi ) = 1 which yields that
∣∣∣μ2

Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ = 0 and
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ = 0,

i = 1, 2, . . . , n. Therefore, we obtain μ2
Ã
(ξi ) = μ2

B̃
(ξi ) and ν2

Ã
(ξi ) = ν2

B̃
(ξi ), for

i = 1, 2, . . . , n. Hence, Ã = B̃.
(P4) If Ã ⊂ B̃ ⊂ C̃ then μ Ã(ξi ) ≤ μB̃(ξi ) ≤ μC̃(ξi ) and ν Ã(ξi ) ≥ νB̃(ξi ) ≥ νC̃(ξi ),
for i = 1, 2, . . . , n. Then,μ2

Ã
(ξi ) ≤ μ2

B̃
(ξi ) ≤ μ2

C̃
(ξi ) and ν2

Ã
(ξi ) ≥ ν2

B̃
(ξi ) ≥ ν2

C̃
(ξi ),

for i = 1, 2, . . . , n. Thus, we have

∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣
∣∣∣μ2

B̃
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣
∣∣∣ν2

B̃
(ξi ) − ν2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣ .

So, we obtain h(k)
Ã,C̃

(ξi ) ≤ h(k)
Ã,B̃

(ξi ) and h(k)
Ã,C̃

(ξi ) ≤ h(k)
B̃,C̃

(ξi ) which yields that

W (C,σ )

PFCSk
( Ã, C̃) ≤ W (C,σ )

PFCSk
( Ã, B̃) and W (C,σ )

PFCSk
( Ã, C̃) ≤ W (C,σ )

PFCSk
(B̃, C̃), for k = 1, 2.

Hence, the proof is completed.

�
Definition 7 Considering the cosine function and theChoquet integral two similarity
measures among PFS Ã and PFS B̃ are given with

W (C,σ )

PFCS3
( Ã, B̃) := (C)

∫

U

p(1)
Ã,B̃

(ξ) dσ(ξ), (41)



Some Trigonometric Similarity Measures Based on the Choquet Integral . . . 95

W (C,σ )

PFCS4
( Ã, B̃) := (C)

∫

U

p(2)
Ã,B̃

(ξ) dσ(ξ), (42)

where

p(1)
Ã,B̃

(ξi ) := cos
[π

2

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

, (43)

and

p(2)
Ã,B̃

(ξi ) := cos
[π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

, (44)

for i = 1, 2, . . . , n, respectively.

Remark 2 Similar to the proof of Proposition 2 it can be proved that W (C,σ )

PFCS3
and

W (C,σ )

PFCS4
satisfy the conditions P1, P2, P ′

3 and P4.

Definition 8 Considering the cotangent function and the Choquet integral two sim-
ilarity measures among PFS Ã and PFS B̃ are given with

W (C,σ )

PFCT1
( Ã, B̃) := (C)

∫

U

r (1)
Ã,B̃

(ξ) dσ(ξ), (45)

W (C,σ )

PFCT2
( Ã, B̃) := (C)

∫

U

r (2)
Ã,B̃

(ξ) dσ(ξ), (46)

where

r (1)
Ã,B̃

(ξi ) := cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (47)

and

r (2)
Ã,B̃

(ξi ) := cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣
)]

, (48)

for i = 1, 2, . . . , n, respectively.

Definition 9 Considering the cotangent function and the Choquet integral two new
similarity measures among PFS Ã and PFS B̃ are given with

W (C,σ )

PFCT3
( Ã, B̃) := (C)

∫

U

q(1)
Ã,B̃

(ξ) dσ(ξ), (49)

W (C,σ )

PFCT4
( Ã, B̃) := (C)

∫

U

q(2)
Ã,B̃

(ξ) dσ(ξ), (50)
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where

q(1)
Ã,B̃

(ξi ) := cot
[π

4
+ π

4

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ∨
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ∨
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(51)
and

q(2)
Ã,B̃

(ξi ) := cot
[π

4
+ π

8

(∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ +
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ +
∣∣∣π2

Ã
(ξi ) − π2

B̃
(ξi )

∣∣∣
)]

,

(52)
for i = 1, 2, . . . , n, respectively.

Proposition 3 The cotangent similaritymeasureW (C,σ )

PFCTk
( Ã, B̃), (k = 1, 2, 3, 4) sat-

isfies P1, P2, P ′
3 and P4.

Proof P1 and P2 can be proved similar to Proposition 1.
(P′

3) For any two PFSs Ã and B̃ in U, if Ã = B̃ , then we have μ2
Ã
(ξi ) = μ2

B̃
(ξi ) and

ν2
Ã
(ξi ) = ν2

B̃
(ξi ), for i = 1, 2, . . . , n. Thus, we obtain

∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ = 0 and
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ = 0 which implies q(k)
Ã,B̃

(ξi ) = 1 and soW (C,σ )

PFCTk
( Ã, B̃) = 1 for k =

1, 2, 3, 4. Conversely, if W (C,σ )

PFCTk
( Ã, B̃) = 1 for k = 1, 2, 3, 4, then since cot

π

4
= 1

we have q(k)
Ã,B̃

(ξi ) = 1 and so
∣∣∣μ2

Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ = 0 and
∣∣∣ν2

Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ = 0,

i = 1, 2, . . . , n. Thus, we obtain μ2
Ã
(ξi ) = μ2

B̃
(ξi ) and ν2

Ã
(ξi ) = ν2

B̃
(ξi ), for i =

1, 2, . . . , n which yields that Ã = B̃.
(P4) If Ã ⊂ B̃ ⊂ C̃ then μ Ã(ξi ) ≤ μB̃(ξi ) ≤ μC̃(ξi ) and ν Ã(ξi ) ≥ νB̃(ξi ) ≥ νC̃(ξi ),
for i = 1, 2, . . . , n. Then,μ2

Ã
(ξi ) ≤ μ2

B̃
(ξi ) ≤ μ2

C̃
(ξi ) and ν2

Ã
(ξi ) ≥ ν2

B̃
(ξi ) ≥ ν2

C̃
(ξi ),

for i = 1, 2, . . . , n.
Case 1 : Let

∣∣∣μ2
Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≥
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣. Then from the assumption of

non-membership functions, we have

∣∣∣ν2
Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣
∣∣∣ν2

B̃
(ξi ) − ν2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣ .

On the other hand, from the assumption of the membership functions, we have

∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣
∣∣∣μ2

B̃
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣

Case 2 : Let
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣. Then from the assumption of

membership functions, we have
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∣∣∣μ2
Ã
(ξi ) − μ2

B̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣
∣∣∣μ2

B̃
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣μ2

Ã
(ξi ) − μ2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣ .

Furthermore, from the assumption of the non-membership functions, we have

∣∣∣ν2
Ã
(ξi ) − ν2

B̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣
∣∣∣ν2

B̃
(ξi ) − ν2

C̃
(ξi )

∣∣∣ ≤
∣∣∣ν2

Ã
(ξi ) − ν2

C̃
(ξi )

∣∣∣ .

Both in Case 1 and Case 2, we have q(k)
Ã,C̃

(ξi ) ≤ q(k)
Ã,B̃

(ξi ) and q(k)
Ã,C̃

(ξi ) ≤ q(k)
B̃,C̃

(ξi )

which implies that W (C,σ )

PFCTk
( Ã, C̃) ≤ W (C,σ )

PFCTk
( Ã, B̃) and W (C,σ )

PFCTk
( Ã, C̃) ≤ W (C,σ )

PFCTk

(B̃, C̃), for k = 1, 2, 3, 4. Thus, the proof is completed. �

Remark 3 If we consider additivemeasures instead of fuzzymeasures, then the sim-
ilarity measures proposed in Definitions 4–9 are reduced to (22)–(31), respectively.
On the other hand, considering the weights as measures of singletons we conclude
that trigonometric similarity measures (22)–(31) are considered as trigonometric
similarity measures based on the Choquet integral given in Definitions 4–9, respec-
tively.

4 Applications

In this section, to show the effectiveness of the proposedChoquet similaritymeasures,
we give some applications on pattern recognition and medical diagnosis problems.

4.1 Pattern Recognition Problem

A pattern recognition problem investigates how an object is coherent with a given
pattern. We apply the proposed Choquet similarity measures to show their outper-
forming and suitability in pattern recognition. We consider a pattern recognition
problem which is studied in [5, 28]. Wei and Wei [28] obtained that pattern Ã
belongs to class Ã3, using similarity measures between (12) and (21) (Table 1 of
[28]).

Example 1 Let Ã1, Ã2 and Ã3 be three patterns which are represented by using
following PFSs of a finite set U = {ξ1, ξ2, ξ3}:
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Table 1 Fuzzy measure

σ(∅) = 0 σ({ξ1}) = 0.5 σ({ξ2}) = 0.3

σ({ξ3}) = 0.2 σ({ξ1, ξ2}) = 0.7 σ({ξ1, ξ3}) = 0.8

σ({ξ2, ξ3}) = 0.6 σ({ξ1, ξ2, ξ3}) = 1

Ã1 = {〈ξ1, 1, 0〉 , 〈ξ2, 0.8, 0〉 , 〈ξ3, 0.7, 0.1〉}
Ã2 = {〈ξ1, 0.8, 0.1〉 , 〈ξ2, 1, 0〉 , 〈ξ3, 0.9, 0.1〉}
Ã3 = {〈ξ1, 0.6, 0.2〉 , 〈ξ2, 0.8, 0〉 , 〈ξ3, 1, 0〉}

Let Ã = {〈ξ1, 0.5, 0.3〉 , 〈ξ2, 0.6, 0.2〉 , 〈ξ3, 0.8, 0.1〉} be a pattern that needs to be
classified in one of three classes Ã1, Ã2 and Ã3.

We use a hypothetical fuzzy measure. For this purpose, we use the hypothetical
weights used in [28] as the fuzzy measures of singletons and we create the remaining
measures using the monotonicity property of the fuzzy measure as follows (Table1).

From the recognition principle of maximum degree of similarity between PFSs,
the process of assigning the pattern Ã to Ãi is described by

k = arg max
1≤i≤3

{
WPFS(C, σ )( Ãi , Ã).

}
(53)

The rankings obtained by ten similarity measures are visualized in Fig. 3 and
comparison of the results is given in Table 2. The numerical result presented in
Tables 2 and Eq. (53) shows that k = Ã3 for each similarity measure. Namely, Ã
pattern belongs to class Ã3 with respect to each trigonometric similarity measure.
When the results are compared to the results in [5, 28], we see that they are in
agreement (see Table 2).

Fig. 3 Visualization of the rankings of the alternatives according to ten trigonometric similarity
measures
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Table 2 Comparison of classification result of Example1

Similarity measure Similarity scores

( Ã1, Ã) ( Ã2, Ã) ( Ã3, Ã)

WPFC1 0.9686 0.9712 0.9844

WPFC2 0.6273 0.7237 0.9266

WPFCS1 0.6573 0.7627 0.9329

WPFCS2 0.8843 0.9228 0.9782

WPFCS3 0.6573 0.7627 0.9329

WPFCS4 0.6573 0.7627 0.9329

WPFCT1 0.4475 0.4995 0.7206

WPFCT2 0.6554 0.6887 0.8225

WPFCT3 0.4475 0.4995 0.7206

WPFCT4 0.4475 0.4995 0.7206

W (C, σ )

PFC1 0.9738 0.9759 0.9864

W (C, σ )

PFC2 0.6788 0.7478 0.9275

W (C, σ )

PFCS1
0.7094 0.7909 0.9268

W (C, σ )

PFCS2
0.9020 0.9299 0.9771

W (C, σ )

PFCS3
0.7094 0.7909 0.9268

W (C, σ )

PFCS4
0.7094 0.7909 0.9268

W (C, σ )

PFCT1
0.4910 0.5223 0.7120

W (C, σ )

PFCT2
0.6838 0.7001 0.8193

W (C, σ )

PFCT3
0.4910 0.5223 0.7120

W (C, σ )

PFCT4
0.4910 0.5223 0.7120

4.2 Medical Diagnosis Problem

A medical diagnosis aims to determine which disease explains the symptoms of a
patient. In this process, patterns of symptoms are compared with patterns of disease.
Now, we apply proposed Choquet similarity measures to show their outperforming
and suitability in medical diagnosis problems. We consider a medical diagnosis
problem that was studied in [28]. Wei and Wei [28] obtained unknown class �

belonging to class	2 according to similarity measures between (13) and (21) except
for (12) (see Table 3 of [28]).

Example 2 Let us consider a set of diagnoses and symptoms as follows:
	={	1(Viral fever),	2(Malaria),	3(Typhoid),	4(Stomach problem), 	5(Chest
Problem)}
Z={ζ1(Temperature), ζ2(Headache), ζ3(Stomach pain), ζ4(Cough), ζ5(Chest pain)}.

Assume that a patient that has all the symptoms is represented by the
following PFS:
�(Patient)= {〈ζ1, 0.8, 0.1〉 , 〈ζ2, 0.6, 0.1〉 , 〈ζ3, 0.2, 0.8〉 , 〈ζ4, 0.6, 0.1〉 , 〈ζ5, 0.1, 0.6〉}.
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Table 3 Comparison of classification result of Example2

Similarity measure Similarity scores

(	1,�) (	2,�) (	3,�) (	4,�) (	5,�)

WPFC1 0.8237 0.7840 0.8283 0.3512 0.2360

WPFC2 0.8865 0.8904 0.8116 0.6629 0.5205

WPFCS1 0.9191 0.9250 0.8599 0.7627 0.6392

WPFCS2 0.9623 0.9554 0.9449 0.8115 0.7502

WPFCS3 0.9151 0.9244 0.8599 0.7601 0.6392

WPFCS4 0.9151 0.9244 0.8599 0.7601 0.6392

WPFCT1 0.6965 0.6917 0.6623 0.5193 0.4393

WPFCT2 0.7861 0.7802 0.7778 0.5844 0.5210

WPFCT3 0.6876 0.6898 0.6623 0.5096 0.4393

WPFCT4 0.6876 0.6898 0.6623 0.5096 0.4393

W (C, σ )

PFC1 0.9162 0.9560 0.7280 0.3345 0.2324

W (C, σ )

PFC2 0.8755 0.8890 0.7846 0.5988 0.5192

W (C, σ )

PFCS1
0.9125 0.9260 0.8400 0.7211 0.6392

W (C, σ )

PFCS2
0.9556 0.9757 0.9318 0.7924 0.7485

W (C, σ )

PFCS3
0.9088 0.9256 0.8400 0.7184 0.6392

W (C, σ )

PFCS4
0.8785 0.9256 0.8736 0.7184 0.6392

W (C, σ )

PFCT1
0.6824 0.6860 0.6359 0.4858 0.4392

W (C, σ )

PFCT2
0.7672 0.8166 0.7510 0.5479 0.5196

W (C, σ )

PFCT3
0.6747 0.6847 0.6359 0.4762 0.4392

W (C, σ )

PFCT4
0.6322 0.6847 0.6714 0.4762 0.4392

Moreover, assume that each diagnosis 	i (i = 1, 2, 3, 4, 5) is given as PFSs:

	1(Viral fever) = {〈ζ1, 0.4, 0.0〉 , 〈ζ2, 0.3, 0.5〉 , 〈ζ3, 0.1, 0.7〉 , 〈ζ4, 0.4, 0.3〉 , 〈ζ5, 0.1, 0.7〉}
	2(Malaria) = {〈ζ1, 0.7, 0.0〉 , 〈ζ2, 0.2, 0.6〉 , 〈ζ3, 0.0, 0.9〉 , 〈ζ4, 0.7, 0.0〉 , 〈ζ5, 0.1, 0.8〉}
	3(Typhoid) = {〈ζ1, 0.3, 0.3〉 , 〈ζ2, 0.6, 0.1〉 , 〈ζ3, 0.2, 0.7〉 , 〈ζ4, 0.2, 0.6〉 , 〈ζ5, 0.1, 0.9〉}

	4(Stomach problem) = {〈ζ1, 0.1, 0.7〉 , 〈ζ2, 0.2, 0.4〉 , 〈ζ3, 0.8, 0.0〉 , 〈ζ4, 0.2, 0.7〉 , 〈ζ5, 0.2, 0.7〉}
	5(Chest Problem) = {〈ζ1, 0.1, 0.8〉 , 〈ζ2, 0.0, 0.8〉 , 〈ζ3, 0.2, 0.8〉 , 〈ζ4, 0.2, 0.8〉 , 〈ζ5, 0.8, 0.1〉} .

Our aim is to classify � into one of the diagnosis 	i (i = 1, 2, 3, 4, 5). First of
all we construct a fuzzy measure. As in the pattern recognition problem, we use a
hypothetical fuzzy measure for this example by taking into account the hypothetical
weights given in [28] as fuzzy measures of singletons (see Table 4).

When we consider Table 3, it is seen that the results are in agreement with the
results in [28] all except forWPFC1(	i ,�),WPFCT1(	i ,�) andWPFCT2(	i ,�),
whereas they are fully compatible with the results in [5]. From (53), we see that
k = 	2 for each similarity measure. Namely, � patient has viral fever. Therefore,
the ten similarity measures proposed are more sensitive and consistent than the ones
suggested by Wei and Wei [28].
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Table 4 Fuzzy measure

σ(∅) = 0 σ({ζ1}) = 0.15 σ({ζ2}) = 0.25

σ({ζ3}) = 0.20 σ({ζ4}) = 0.15 σ({ζ5}) = 0.25

σ({ζ1, ζ2}) = 0.35 σ({ζ1, ζ3}) = 0.30 σ({ζ1, ζ4}) = 0.25

σ({ζ1, ζ5}) = 0.39 σ({ζ2, ζ3}) = 0.40 σ({ζ2, ζ4}) = 0.31

σ({ζ2, ζ5}) = 0.45 σ({ζ3, ζ4}) = 0.30 σ({ζ3, ζ5}) = 0.42

σ({ζ4, ζ5}) = 0.35 σ({ζ1, ζ2, ζ3}) = 0.45 σ({ζ1, ζ2, ζ4}) = 0.40

σ({ζ1, ζ2, ζ5}) = 0.50 σ({ζ1, ζ3, ζ4}) = 0.35 σ({ζ1, ζ3, ζ5}) = 0.50

σ({ζ1, ζ4, ζ5}) = 0.60 σ({ζ2, ζ3, ζ4}) = 0.45 σ({ζ2, ζ3, ζ5}) = 0.55

σ({ζ2, ζ4, ζ5}) = 0.46 σ({ζ3, ζ4, ζ5}) = 0.45 σ({ζ1, ζ2, ζ3, ζ4}) = 0.7

σ({ζ1, ζ2, ζ3, ζ5}) = 0.75 σ({ζ1, ζ2, ζ4, ζ5}) = 0.80 σ({ζ1, ζ3, ζ4, ζ5}) = 0.95

σ({ζ2, ζ3, ζ4, ζ5}) = 0.85 σ({ζ1, ζ2, ζ3, ζ4, ζ5}) = 1

Fig. 4 Visualization of the rankings of the alternatives according to ten trigonometric similarity
measures

The rankings obtained by ten similarity measures are also visualized in Fig. 4.
Now, we give the comparison of the proposed similarity measures with the sim-

ilarity measures (6)–(11). The numerical results presented in Table 5 show that the
proposed Choquet cosine similarity measure consistent with [4] and [20]. Namely,
pattern Ã belongs to class Ã3. However, as the decision-maker and the fuzzy environ-
ment change, the weights vary, and this increases the sensitivity. For example, when
we consider Table 6, patient P has typhoid in [4] while it has malaria with respect
to proposed Choquet integral model. The reason of this change is that when solving
the medical diagnosis problem in this model, the weights of symptoms and their
interaction with each other are taken into account with the help of fuzzy measure.
The similarity measures given in Tables 5 and 6 are defined similar to Definitions
4–9 with the help of Choquet integral.
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Table 5 Comparison of classification result of Example1

Similarity measure Similarity scores

( Ã1, Ã) ( Ã2, Ã) ( Ã3, Ã)

S1 [4] 0.92594 0.95092 0.98739

S2 [4] 0.89294 0.93369 0.97766

S3 [4] 0.90006 0.93573 0.97797

SM0 [20] 0.60585 0.63322 0.78205

SM1 [20] 0.79017 0.80766 0.88802

SM2 [20] 0.57250 0.58144 0.63113

W (C, σ )
S1

0.93726 0.95462 0.98730

W (C, σ )
S2

0.90758 0.93748 0.98165

W (C, σ )
S3

0.91342 0.93932 0.98189

W (C, σ )
SM0

0.63526 0.64504 0.77848

W (C, σ )
SM1

0.80658 0.81316 0.88653

W (C, σ )
SM2

0.58214 0.58378 0.63054

Table 6 Comparison of classification results of Example2

Similarity measure Similarity scores

(	1,�) (	2,�) (	3,�) (	4,�) (	5,�)

S1[4] 0.9635 0.9536 0.9768 0.6962 0.8856

S2 [4] 0.9471 0.9253 0.9733 0.2746 0.7180

S3 [4] 0.9493 0.9318 0.9742 0.5922 0.8193

W (C, σ )
S1

0.9513 0.9778 0.9320 0.8028 0.7712

W (C, σ )
S2

0.9445 0.9706 0.9028 0.5592 0.5117

W (C, σ )
S3

0.9454 0.9712 0.9104 0.7199 0.6632

5 Conclusion

In this paper, we propose new similarity measures based on the Choquet integral for
PFSs.Moreover, we apply thismeasures to pattern recognition andmedical diagnosis
problems and then we compare our results with some existing results. We see that
our results are consistent with the literature while some of them are incompatible.
The main reason of this difference is the sensitivity of the Choquet integral. The
proposed Choquet integral model has a wide range of applications. In the future, we
shall expand the proposed Choquet integral model with some different information
measures and fuzzy environments and we shall apply them to decision-making, risk
analysis, and many other fields under uncertain environments [9, 13, 34].
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Isomorphic Operators and Ranking
Methods for Pythagorean
and Intuitionistic Fuzzy Sets

Yi Yang and Zhen-Song Chen

1 Introduction

After decades of research, the theories and methods of intuitionistic fuzzy sets (IFSs)
[1] have formed a relatively perfect decision-making system and been applied to
multi-attribute decision-making (MADM) problems in various fields. The aggrega-
tion operators and the ranking methods of fuzzy sets are the key components of the
decision-makingmethod. In the process of solvingMADMproblems, fuzzy informa-
tion aggregation operators and sorting methods play a key role. Operators are mainly
used to aggregate multiple attribute evaluation information to obtain the comprehen-
sive evaluation values of the alternatives. Sorting methods are mainly applied to get
the ranking of comprehensive evaluation value to obtain the optimal alternative.

Because intuitionistic fuzzy sets have the advantage of considering both member-
ship degree and nonmembership degree, in recent years, scholars have cross-fusing
other types of fuzzy sets, such as interval-valued fuzzy sets (IVFSs) [2] and hesitation
fuzzy sets (HFSs) [4], with intuitionistic fuzzy sets to derive interval-valued intuition-
istic fuzzy sets (IVIFSs) [3] and dual hesitation fuzzy sets (DHFSs) [5]. These new
fuzzy sets integrate the advantages of the combiner, which makes the related opera-
tion rules, aggregation operators, and rankingmethods get close attention of scholars.
A series of fuzzy multi-attribute decision-making (FMADM)methods are developed
and applied. In 2014, the concept of Pythagorean fuzzy sets (PFSs) [6] is introduced,
which expands the value range of membership degree and nonmembership degree
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from triangle region to quarter circle region. In other words, intuitionistic fuzzy sets
belong to the category of PFSs. Following the development of intuitionistic fuzzy
sets, interval-valued fuzzy sets and hesitant fuzzy sets are extended to Pythagorean
fuzzy environment, and interval-valued Pythagorean fuzzy sets (IVPFSs) [7, 8] and
dual hesitant Pythagorean fuzzy sets (DHPFSs) [9] are derived. The aggregation
operators and sorting methods of these extended fuzzy sets have been a hot topic in
recent years.

The aggregation operators of fuzzy sets are generally based on operational laws,
mainly including four types of operations such as addition, multiplication, scalar
multiplication, and exponentiation. Dual Archimedean t-norm and s-norm [10, 11]
are the core tools to define these laws, especially Algebraic t-norm/s-norm, Einstein
t-norm/s-norm, Hamming t-norm/s-norm, and frank t-norm/s-norm are the four most
commonly used tools. On this basis, a series of Archimedes fuzzy aggregation oper-
ators are generated. For example, Pythagorean fuzzy interactive Hamacher power
aggregation operators [32] and generalized Pythagorean fuzzy Einstein geometric
aggregation operators [33] are developed to construct multiple attribute group
decision-making methods. In terms of sorting methods, the score function and accu-
racy function of fuzzy numbers are generally used to construct sorting methods to
distinguish different fuzzy numbers. The Pythagorean fuzzy sets and its extended
sets mainly follow the relevant theories and methods of intuitionistic fuzzy sets in
terms of aggregation operators and ranking methods. It is mainly reflected in the
operators based on Archimedean t-norm and s-norm, and the ranking methods are
based on score function and accuracy function. However, the current researches on
Pythagorean fuzzy sets mainly focus on how to extend the theory andmethod of intu-
itionistic fuzzy sets to Pythagorean fuzzy decision-making environment, and pay less
attention to the internal relationship between the two kinds of fuzzy sets. Therefore,
from the perspective of isomorphism, this study will reveal the internal relationship
and transformation relationship between the relevant theoretical methods of two
types of fuzzy sets, and provides method support for solving the two kinds of fuzzy
multi-attribute decision-making problems.

The purpose of this study is to reveal the substantial relationship between three
kinds of intuitionistic fuzzy sets and three kinds of Pythagorean fuzzy sets, including
IFSs and PFSs, IVIFSs and IVPFSs, and DHFSs and DHPFSs. The isomorphism
between three pairs of fuzzy sets is studied from three aspects: operational laws,
aggregation operators, and ranking methods.

2 Preliminaries

Some basic concepts of several kinds of fuzzy sets and the related concepts of t-norm
and s-norm are reviewed.
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2.1 Related Definitions of Intuitionistic Fuzzy Sets
and Pythagorean Fuzzy Sets

Atanassov [1] generalizes Zadeh’s fuzzy set theory [12] with the concept of
intuitionistic fuzzy sets (IFSs) as defined below:

Definition 1 ([1]) Let X be a universe of discourse. An IFS I in X is given by

I = {〈x, μI (x), vI (x)〉|x ∈ X }, (1)

where the functionμI : X → [0, 1] defines the degree of membership and vI : X →
[0, 1] defines the degree of nonmembership of the element x ∈ X to I , respectively,
and for every x ∈ X , it holds that μI (x) + vI (x) ≤ 1.

Pythagorean fuzzy set (PFS) is a generalization of intuitionistic fuzzy sets (IFSs)
and its definition is given as follows:

Definition 2 ([6]) Let X be a universe of discourse. A PFS P in X is given by

P = {〈x, μP(x), vP(x)〉|x ∈ X }, (2)

where the function μP : X → [0, 1] defines the degree of membership and vP :
X → [0, 1] defines the degree of nonmembership of the element x ∈ X to P ,
respectively, and for every x ∈ X , it holds that (μP(x))2 + (vP(x))2 ≤ 1.The degree
of indeterminacy πP(x) =

√
1 − (μP(x))2 − (vP(x))2.

For simplicity, we called (μP(x), vP(x)) a Pythagorean fuzzy number (PFN)

denoted by P = (μP , vP), where μP , vP ∈ [0, 1],πP =
√
1 − μ2

P − v2P , and μ2
P +

v2P ≤ 1.
Interval-valued intuitionistic fuzzy set (IVIFS) is a combination of interval-valued

fuzzy sets and intuitionistic fuzzy sets and its definition is given as follows:

Definition 3 ([3]) We let K denote a finite universal set. An IVIFS B on K is
provided as

B = {〈q, μB(q), vB(q)〉|q ∈ K }, (3)

where μB : K → [0, 1] is the interval membership function, vB :
K → [0, 1] is the interval nonmembership function of B, satisfying μB =[
μ−

B (q), μ+
B (q)

]
, vB = [

v−
B (q), v+

B (q)
]
, 0 ≤ μ−

B (q) ≤ μ+
B (q) ≤ 1, 0 ≤

v−
B (q) ≤ v+

B (q) ≤ 1, μ+
B (q) + v+

B (q) ≤ 1 for any q ∈ K . Especially,
πB = [

1 − μ+
B (q) − v+

B (q), 1 − μ−
B (q) − v−

B (q)
]
is the indeterminacy degree of
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q ∈ K . The pair β = ([μ−
B (q), μ+

B (q)
]
,
[
v−
B (q), v+

B (q)
])
is called IVIFN and simply

expressed as β = ([
μ−, μ+],

[
v−, v+]), where

[
μ−, μ+],

[
v−, v+] ⊆ [0, 1] and

μ+ + v+ ≤ 1.
According to Definition 1, if μ− = μ+ and v− = v+, then IVIFN β reduces to

an intuitionistic fuzzy number (IFN) [1].
Interval-valuedPythagorean fuzzy set (IVPFS) is a combination of interval-valued

fuzzy sets and Pythagorean fuzzy sets and its definition is given as follows:

Definition 4 ([7, 8]) Given a finite universal set K , an interval-valued PFS (IVPFS)
P on K is given by

P = {〈y, μP(y), vP(y)〉|y ∈ K }, (4)

where μP(y) : K → ε([0, 1]) is the membership degree, vP(y) : K →
ε([0, 1]) is the nonmembership degree, and sup

(
μ2

P(y)
) + sup

(
v2P(y)

) ≤ 1. And
ε([0, 1]) is the set of all closed intervals in the unit interval, and we call the two-
tuples (μP(y), vP(y)) as interval-valued Pythagorean fuzzy number (IVPFN). Let
μP(y) = [

a−, a+] and vP(y) = [
b−, b+], then the IVPFN can be expressed as

β = ([a−, a+],
[
b−, b+]), and

(
b+)2 + (a+)2 ≤ 1.

According to Definition 2, if a− = a+ and b− = b+, then IVPFN β reduces to
an Pythagorean fuzzy number (PFN) [6].

Considering the advantages of IFSs and hesitant fuzzy sets, the concept of dual
hesitant fuzzy sets (DHFSs) is defined, which are composed of membership hesitant
fuzzy sets and nonmembership hesitant fuzzy sets.

Definition 5 Let X be a universe of discourse. A DHFS δ in X is given by

δ = {〈x, pI (x), qI (x)〉|x ∈ X } (5)

in which pI (x) and qI (x) are two sets of some values in [0, 1], denoting the possible
membership degrees and nonmembership degrees of the element x ∈ X to δ, respec-
tively, with the conditions: maxγ∈pI {γ } + maxη∈qI {η} ≤ 1, where γ ∈ pI (x) and
η ∈ qI (x) for all x ∈ X . For convenience, the pair δ = (pI (x), qI (x)) is called a hesi-
tant Pythagorean fuzzy number (HPFN) denoted by δ = (p, q), with the conditions:
γ ∈ p, η ∈ qγ, η ∈ [0, 1], and maxγ∈p{γ } + maxη∈q{η} ≤ 1.

Considering the advantages of PFSs and hesitant fuzzy sets, the concept of dual
hesitant fuzzy sets (DHFSs) is defined, which are composed of membership hesitant
fuzzy sets and nonmembership hesitant fuzzy sets.
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Definition 6 Let X be a universe of discourse. A DHPFS ψ in X is given by

ψ = {〈x, aP(x), bP(x)〉|x ∈ X } (6)

in which aP(x) and bP(x) are two sets of some values in [0, 1], denoting the possible
membership degrees and nonmembership degrees of the element x ∈ X toψ , respec-
tively, with the conditions: maxτ∈aP

{
τ 2
}+maxς∈bP

{
ς2
} ≤ 1, where τ ∈ aP(x) and

ς ∈ bP(x) for all x ∈ X . For convenience, the pair ψ = (aP(x), bP(x)) is called
a hesitant Pythagorean fuzzy number (HPFN) denoted by ψ = (a, b), with the
conditions: τ ∈ a, ς ∈ bτ, ς ∈ [0, 1], and maxτ∈a

{
τ 2
}+maxς∈q

{
ς2
} ≤ 1.

Figure 1 describes the relationship between various fuzzy sets. From Fig. 1, we
have

(1) An intuitionistic fuzzy number (IFN) is also a Pythagorean fuzzy number
(PFN), but not all PFNs are IFNs;

(2) A dual hesitant fuzzy number (DHFN) is also a dual hesitant Pythagorean
fuzzy number (DHPFN), but not all DHPFNs are DHFNs;

(3) An interval-valued intuitionistic fuzzy number (IVIFN) is also an interval-
valued Pythagorean fuzzy number (IVPFN), but not all IVPFNs are IVIFNs.

These results mean we can use the PFNs (DHPFNs/IVPFNs) with less limitation
than IFNs (DHIFNs/IVIFNs) in some special situation.

2.2 T-Norm and Its Dual T-Conorm

A triple (T, S, N ), where T is a t-norm, S a t-conorm and N a fuzzy complement is
called a dual triple if T and S are dual with respect to N . The dual triple (T, S, N )

is a utility tool to define the generalized operational laws for a variety of different
fuzzy environments.

The concepts of t-norm and t-conorm are given as follows:

Definition 7 ([10]). A function T : [0, 1] × [0, 1] → [0, 1] is called a t-norm if it
satisfies the following four conditions:

(1) (Neutral element): T (1, x) = x , for all x .
(2) (Commutativity): T (y, x) = T (x, y), for all x and y.
(3) (Associativity): T (T (x, y), z) = T (x, T (y, z)), for all x , y, and z.
(4) (Monotonicity): If x ≤ x ′ and y ≤ y′, then T (x, y) ≤ T

(
x ′, y′).

Definition 8 ([10]) A function S : [0, 1] × [0, 1] → [0, 1] is called a t-conorm if it
satisfies the following four conditions:

(1) (Neutral element): S(0, x) = x , for all x .
(2) (Commutativity): S(y, x) = S(x, y), for all x and y.



112 Y. Yang and Z.-S. Chen

F
ig
.1

In
cl
us
io
n
re
la
tio

ns
of

si
x
ki
nd
s
of

fu
zz
y
se
ts



Isomorphic Operators and Ranking Methods for Pythagorean … 113

(3) (Associativity): S(S(x, y), z) = S(x, S(y, z)), for all x , y, and z.
(4) (Monotonicity): if x ≤ x ′ and y ≤ y′, then S(x, y) ≤ S

(
x ′, y′).

Continuous Archimedean t-norms are very useful because they can be represented
via additive generator. Now, the definitions of Archimedean t-norm and t-conorm are
given as follows:

Definition 9 ([10]) A t-norm is called Archimedean t-norm if for each (a, b) ∈

]0, 1[2 there is an n ∈ {1, 2, · · ·} with T

n−times
︷ ︸︸ ︷
(a, · · · , a) < b.

Definition 10 ([10]) A t-conorm is called Archimedean t-conorm if for each (a, b) ∈

]0, 1[2 there is an n ∈ {1, 2, · · ·} with S

n−times
︷ ︸︸ ︷
(a, · · · , a) > b.

Any continuous Archimedean t-norm and t-conorm can be represented with the
help of a continuous additive generator.

Proposition 1 ([10]) A continuous Archimedean t-norm T is expressed via its
additive generator g : [0, 1] → [0,∞], which verifies g(1) = 0 as T (x, y) =
g−1(g(x) + g(y)), where g is a continuous strictly decreasing function and g−1(t) =
sup{z ∈ [0, 1]|g(z) > t, t ∈ [0,∞] } is the pseudo-inverse of g.
Proposition 2 ([10]) A continuous Archimedean t-conorm S is expressed via its
additive generator h : [0, 1] → [0,∞], which verifies h(0) = 0 as S(x, y) =
h−1(h(x) + h(y)), where h is a continuous strictly increasing function and h−1(t) =
sup{z ∈ [0, 1]|h(z) < t, t ∈ [0,∞] } is the pseudo-inverse of h.
Definition 11 ([10]) A fuzzy complement is a mapping denoted by N : [0, 1] →
[0, 1] that satisfies the following:

(1) Boundary conditions: N (0) = 1 and N (1) = 0.
(2) Monotonicity: for all a, b ∈ [0, 1], if a ≤ b, then N (a) ≥ N (b),
(3) Continuity
(4) Involution: N (N (a)) = a for all a ∈ [0, 1].

Yager class of fuzzy complements [13, 14] is defined by N (a) = (1 − a p)1/ p ,
where p ∈ (0,∞). When p = 1, this function becomes the classical fuzzy comple-
ments NI (a) = 1− a. while p = 2 will make this function become the Pythagorean
complement [6] NP(a) = √

1 − a2.
Klir and Yuan [11] first put forward the concept of dual triple (T, S, N ), which

denote that T and S are dual with respect to N , and let any such triple be called a
dual triple.
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Definition 12 ([11]) A t-norm T and a t-conorm S are dual with respect
to a fuzzy complement N iff T (x, y) = N (S(N (x), N (y))) and S(x, y) =
N (T (N (x), N (y))).

Theorem 1 ([11]). Given a t-norm T and an involutive fuzzy complement N, the
binary operation S on [0, 1] defined by S(x, y) = N (T (N (x), N (y))) for all x ,
y ∈ [0, 1] is a t-conorm such that (T, S, N ) is a dual triple.

Proposition 3 ([11]) Let T be a t-norm, S its dual t-conorm, and g : [0, 1] →
[0,∞] an additive generator of T . The function h : [0, 1] → [0,∞] defined by
h(t) = g(N (t)) is an additive generator of S.

2.3 Four Types of Dual Archimedean T-Norm and S-Norm

It is found that the traditional triple (T, S, NI ) ismainly used to define the operational
laws and aggregation operators of intuitionistic fuzzy sets, dual hesitant fuzzy sets,
and interval-valued intuitionistic fuzzy sets. For convenience, this study denotes such
triples as (TI , SI , NI ). Triple (T, S, NP) is mainly used in the operation laws and
aggregation operators of Pythagorean fuzzy sets, dual hesitant Pythagorean fuzzy
sets, and interval-valued Pythagorean fuzzy sets. For convenience, this study denotes
such triples as (TP , SP , NP).

This subsection introduces four classic types of dual T-norm and S-norm,
whose specific forms are different in the intuitionistic fuzzy environment and the
Pythagorean fuzzy environment. But there is a certain transformational relationship.
See Table 1 for details.

Table 1 Generators of operations for IFSs and PFSs

Generators for
IFSs/References

Generators for
PFSs/References

Relation

Algebraic operations gI (t) = − log t , [15] gP (t) = − log t2,
[16]

gP (t) = gI (φ(t))

Einstein operations gI (t) = log
( 2−t

t

)
,

[15]
gP (t) = log

(
2−t2

t2

)
,

[16]

gP (t) = gI (φ(t))

Hamacher operations gI (t) =
log
(

τ+(1−τ)t
t

)
, [15]

gP (t) =
log
(

τ+(1−τ)t2

t2

)
, [16]

gP (t) = gI (φ(t))

Frank operations gI (t) =
ln γ−1

γ t−1 , γ > 1, [15]

gP (t) =
ln γ−1

γ t2−1
, γ > 1, [17]

gP (t) = gI (φ(t))
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Theorem 2 If the additive generators of SI and SP satisfy gP(t) = gI (φ(t)), then

SP(x, y) = φ−1(SI (φ(x), φ(y))), TP(x, y) = φ−1(TI (φ(x), φ(y))),

where TI and TP are the dual t-norm of SI and SP , respectively, and φ(t) = t2 is
an automorphism on [0, 1].

Theorem 2 reveals the transformation between intuitionistic fuzzy triple
(TI , SI , NI ) and Pythagorean fuzzy triple (TP , SP , NP).

3 Operations Isomorphism

Operations are mainly used to construct aggregation operators. As mentioned in the
previous section, the operational laws of the three types of fuzzy sets are all based
on t-norm and s-norm. From the isomorphism perspective, this section will reveal
the correlation between the operational laws of the three types of intuitionistic fuzzy
sets and Pythagorean fuzzy sets.

3.1 Operations Isomorphism Between IFSs and PFSs

Firstly, the relationship between the intuitionistic fuzzy operations and the
Pythagorean fuzzy operations is analyzed.

Dual Archimedean t-norm and s-norm are used to define the generalized intuition-
istic fuzzy operations, which can be reduced to special operations such as Einstein,
Hamacher, and Frank operation.

Definition 13 ([15]). For three IFNs ϑ = (ρ, σ ) and ϑi = (ρi , σi )(i = 1, 2), then
we have

(1)
ϑ1 ⊕ ϑ2 = (SI (ρ1, ρ2), TI (σ1, σ2))

= (h−1
I (hI (ρ1) + hI (ρ2)), g

−1
I (gI (σ1) + gI (σ2))

);

(2)
ϑ1 ⊗ ϑ2 = (TI (ρ1, ρ2), SI (σ1, σ2))

= (g−1
I (gI (ρ1) + gI (ρ2)), h

−1
I (hI (σ1) + hI (σ2))

);

(3) λϑ = (h−1
I (λhI (ρ)), g−1

I (λgI (σ ))
)
, λ > 0;

(4) ϑλ = (g−1
I (λgI (ρ)), h−1

I (λhI (σ ))
)
, λ > 0;

where TI and SI are dual with respect to NI and NI (a) = 1 − a. gI and hI are the
additive generators of TI and SI , respectively.

By referring to the intuitionistic fuzzy generalized operations, some new dual
Archimedean t-norm and s-norm suitable for Pythagorean fuzzy environment are
proposed and used to construct Pythagorean fuzzy generalized operations.
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Definition 14 ([16]). For three PFNs α = (μα, vα) and αi=
(
μαi , vαi

)
(i = 1, 2),

then we have

(1)
α1 ⊕ α2 = (SP(μ1, μ2), TP(v1, v2))

= (h−1
p (hP(μ1) + hP(μ2)), g

−1
p (gP(v1) + gP(v2))

);

(2)
α1 ⊗ α2 = (TP(μ1, μ2), SP(v1, v2))

= (g−1
p (gP(μ1) + gP(μ2)), h

−1
p (hP(v1) + hP(v2))

);

(3) λα = (h−1
p (λhP(μ)), g−1

p (λgP(v))
)
, λ > 0;

(4) αλ = (g−1
p (λgP(μ)), h−1

p (λhP(v))
)
, λ > 0;

where TP and SP are dual with respect to NP and NP(a) = √
1 − a2. gP and hP are

the additive generators of TP and SP , respectively.
For convenience, in this study, the set of all the intuitionistic fuzzy sets is denoted

as AI , and the set of all the Pythagorean fuzzy sets is denoted as AP .

Definition 15 Let αi = (μi , νi )P ∈ AP , a mapping ℘P→I : AP → AI is defined as
follows:

℘P→I (αi ) = (φ(μi ), φ(νi ))I ∈ AI ,

where ϕ(x) = x2 is an automorphism on [0, 1].
Definition 15 reveals that IFSs and PFSs have amathematical isomorphism℘P→I .

Theorem 3 Let αi = 〈μi , νi 〉P ∈ AP , ℘P→I (αi ) = (φ(μi ), φ(νi ))I ∈ AI , and
the operations of αi = 〈μi , νi 〉P on AP and the operations of ℘P→I (αi ) =
(φ(μi ), φ(νi ))I on AI are defined based on the t-norm and s-norm, then we have

(1) ℘P→I (α1 ⊕ α2) = ℘P→I (α1) ⊕ ℘P→I (α2);
(2) ℘P→I (α1 ⊗ α2) = ℘P→I (α1) ⊗ ℘P→I (α2);
(3) ℘P→I (λα1) = λ℘P→I (α1);
(4) ℘P→I

(
αλ
1

) = ℘P→I (α1)
λ.

From Theorem 3, ℘P→I can be proved to be an isomorphic mapping from AP

to AI . Theorem 3 reveals that IFSs and PFSs do not only have a mathematical
isomorphism, but also have a operations isomorphism. The later is a substantial
relationship between IFSs and PFSs not reported up to now in literature.

3.2 Operations Isomorphism Between IVIFSs and IVPFSs

Atanassov [18] proposed the interval-valued intuitionistic fuzzy Algebraic opera-
tions, and several classical t-norm and s-norm are applied to interval-valued intu-
itionistic fuzzy environment, and various operations, such as Hamacher, Frank and
Einstein operations, are proposed [19–21]. In this study, the uniform generalized
interval-valued intuitionistic operations are provided as follow.
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Definition 16 For three IVIFNs ϑ̃ = ([
ρ−, ρ+],

[
σ−, σ+]) and ϑ̃i =([

ρ−
i , ρ+

i

]
,
[
σ−
i , σ+

i

])
(i = 1, 2), then

(1) ϑ̃1 ⊕ ϑ̃2 =
([

SI
(
ρ−
1 , ρ−

2

)
, SI
(
ρ+
1 , ρ+

2

)]
,
[
TI
(
σ−
1 , σ−

2

)
, TI
(
σ+
1 , σ+

2

)])
;

(2) ϑ̃1 ⊗ ϑ̃2 =
([

TI
(
ρ−
1 , ρ−

2

)
, TI
(
ρ+
1 , ρ+

2

)]
,
[
SI
(
σ−
1 , σ−

2

)
, SI
(
σ+
1 , σ+

2

)])
;

(3) λϑ̃ =
([

h−1
I

(
λhI

(
ρ−)), h−1

I

(
λhI

(
ρ+))],

[
g−1
I

(
λgI
(
σ−)), g−1

I

(
λgI
(
σ+))]), λ > 0;

(4) ϑ̃λ =
([

g−1
I

(
λgI
(
ρ−)), g−1

I

(
λgI
(
ρ+))],

[
h−1
I

(
λhI

(
σ−)), h−1

I

(
λhI

(
σ+))]), λ > 0.

where TI (x, y) = g−1
I (gI (x) + gI (y)) and SI (x, y) = h−1

I (hI (x) + hI (y)) are dual
with respect to NI and NI (a) = 1 − a. gI and hI are the additive generators of TI

and SI , respectively.
Similar to interval-valued intuitionistic fuzzy operations, some kinds of interval-

valuedPythagorean fuzzy operations are proposed. The uniformgeneralized interval-
valued Pythagorean operations are provided as follow.

Definition 17 ([22]). For three IVPFNs α̃ = ([
μ−, μ+],

[
v−, v+]) and α̃i =([

μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
(i = 1, 2), then

(1) α̃1 ⊕ α̃2 =
([

SP
(
μ−
1 , μ−

2

)
, SP

(
μ+
1 , μ+

2

)]
,
[
TP
(
v−1 , v−2

)
, TP

(
v+1 , v+2

)])
;

(2) α̃1 ⊗ α̃2 =
([

TP
(
μ−
1 , μ−

2

)
, TP

(
μ+
1 , μ+

2

)]
,
[
SP
(
v−1 , v−2

)
, SP

(
v+1 , v+2

)])
;

(3) λα̃ =
([

h−1
P

(
λhP

(
μ−)), h−1

P

(
λhP

(
μ+))],

[
g−1
P

(
λgP

(
v−
))

, g−1
P

(
λgP

(
v+
))])

, λ > 0;

(4) α̃λ =
([

g−1
P

(
λgP

(
μ−)), g−1

P

(
λgP

(
μ+))],

[
h−1
P

(
λhP

(
v−
))

, h−1
P

(
λhP

(
v+
))])

, λ > 0.

where TP(x, y) = g−1
P (gP(x) + gP(y)) and SP(x, y) = h−1

P (hP(x) + hP(y)) are
dual with respect to NP and NP(a) = √

1 − a2. gP and hP are the additive generators
of TP and SP , respectively.

For convenience, in this study, the set of all the interval-valued intuitionistic fuzzy
sets is denoted as ÃI , and the set of all the interval-valued Pythagorean fuzzy sets is
denoted as ÃP .

Definition 18 Let α̃i = ([μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P

∈ AP , amapping ℘̃P→I : ÃP → ÃI

is defined as follows:

℘̃P→I (α̃i ) = ([φ(μ−
i

)
, φ
(
μ+
i

)]
,
[
φ
(
v−
i

)
, φ
(
v+
i

)])
I ∈ ÃI ,

where ϕ(x) = x2 is an automorphism on [0, 1].
Definition 18 reveals that IVIFSs and IVPFSs have a mathematical isomorphism

℘̃P→I .
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Theorem 4 Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P ∈ ÃP , ℘̃P→I (α̃i ) =

([
φ
(
μ−
i

)
, φ
(
μ+
i

)]
,
[
φ
(
v−
i

)
, φ
(
v+
i

)])
I ∈ ÃI , and the operations of α̃i ∈ ÃP on ÃP

and the operations of ℘̃P→I (α̃i ) ∈ ÃI on ÃI are defined based on the t-norm and
s-norm, then we have

(1) ℘̃P→I (α̃1 ⊕ α̃2) = ℘̃P→I (α̃1) ⊕ ℘̃P→I (α̃2);
(2) ℘̃P→I (α̃1 ⊗ α̃2) = ℘̃P→I (α̃1) ⊗ ℘̃P→I (α̃2);
(3) ℘̃P→I (λα̃1) = λ℘̃P→I (α̃1);
(4) ℘̃P→I

(
α̃λ
1

) = ℘̃P→I (α̃1)
λ.

From Theorem 4, ℘̃P→I can be proved to be an isomorphic mapping from ÃP

to ÃI . Theorem 4 reveals that IVIFSs and IVPFSs do not only have a mathematical
isomorphism, but also have a operations isomorphism. The later is a substantial
relationship between IVIFSs and IVPFSs not reported up to now in literature.

3.3 Operations Isomorphism Between DHFSs and DHPFSs

Inspired by intuitionistic fuzzy Archimedean operations and Pythagorean fuzzy
Archimedean operations, some scholars developed dual hesitant fuzzy Archimedean
operations and dual hesitant Pythagorean fuzzyArchimedean operations by applying
Archimedes t-norm and s-norm [23, 24].

Definition 19 ([23]) For three DHFNs δ = (p, q) and δi = (pi , qi )(i = 1, 2), then
we have

(1)
δ1 ⊕ δ2 = ∪γi∈pi ,ηi∈qi {{SI (γ1, γ2)}, {TI (η1, η2)}}

= ∪γi∈pi ,ηi∈qi
{{
h−1
I (hI (γ1) + hI (γ2))

}
,
{
g−1
I (gI (η1) + gI (η2))

}};

(2)
δ1 ⊗ δ2 = ∪γi∈pi ,ηi∈qi {{TI (γ1, γ2)}, {SI (η1, η2)}}

= ∪γi∈pi ,ηi∈qi
{{
g−1
I (gI (γ1) + gI (γ2))

}
,
{
h−1
I (hI (η1) + hI (η2))

}};

(3) λδ = ∪γ∈p,η∈q
{{
h−1
I (λhI (γ ))

}
,
{
g−1
I (λgI (η))

}}
, λ > 0;

(4) δλ = ∪γ∈p,η∈q
{{
g−1
I (λgI (γ ))

}
,
{
h−1
I (λhI (η))

}}
, λ > 0.

where TI and SI are dual with respect to NI (a) = 1 − a. gI and hI are the additive
generators of TI and SI , respectively.

Definition 20 ([24]) For three DHPFNs ψ = (a, b) and ψi = (ai , bi )(i = 1, 2),
then we have

(1)
ψ1 ⊕ ψ2 = ∪τi∈ai ,ςi∈bi {{SP(τ1, τ2)}, {TP(ς1, ς2)}}

= ∪τi∈ai ,ςi∈bi
{{
h−1
P (hP(τ1) + hP(τ2))

}
,
{
g−1
P (gP(ς1) + gP(ς2))

}};

(2)
ψ1 ⊗ ψ2 = ∪τi∈ai ,ςi∈bi {{TP(τ1, τ2)}, {SP(ς1, ς2)}}

= ∪τi∈ai ,ςi∈bi
{{
g−1
P (gP(τ1) + gP(τ2))

}
,
{
h−1
P (hP(ς1) + hP(ς2))

}} ;
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(3) λψ = ∪τ∈a,ς∈b
{{
h−1
P (λhP(τ ))

}
,
{
g−1
P (λgP(ς))

}}
, λ > 0;

(4) δλ = ∪τ∈a,ς∈b
{{
g−1
P (λgP(τ ))

}
,
{
h−1
P (λhP(ς))

}}
, λ > 0.

where TP and SP are dual with respect to NP(a) = √
1 − a2. gP and hP are the

additive generators of TP and SP , respectively.
For convenience, in this study, the set of all the dual hesitant fuzzy sets is denoted

as ÂI , and the set of all the Pythagorean fuzzy sets is denoted as ÂP .

Definition 21 Let ψi = (ai , bi )P ∈ ÂP , a mapping ℘̂P→I : ÂP → ÂI is defined as
follows

℘̂P→I (ψi ) =
(
φ̂(ai ), φ̂(bi )

)

I
∈ AI ,

where ϕ(x) = x2 is an automorphism on [0, 1], and φ̂(ai ) = ∪τi∈ai {φ(τi )} and
φ̂(bi ) = ∪τi∈ai {φ(ςi )}.

Definition 20 reveals that DHFSs and DHPFSs have a mathematical isomorphism
℘̃P→I .

Theorem 5 Let ψi = (ai , bi )P ∈ ÂP , ℘̂P→I (ψi ) =
(
φ̂(ai ), φ̂(bi )

)

I
∈ ÂI , and the

operations of ψi on ÂP and the operations of ℘̂P→I (ψi ) on ÂI are defined based
on the t-norm and s-norm, then we have

(1) ℘̂P→I (ψ1 ⊕ ψ2) = ℘̂P→I (ψ1) ⊕ ℘P→I (ψ2);
(2) ℘̂P→I (ψ1 ⊗ ψ2) = ℘̂P→I (ψ1) ⊗ ℘P→I (ψ2);
(3) ℘̂P→I (λψ1) = λ℘̂P→I (ψ1);
(4) ℘̂P→I

(
ψλ

1

) = ℘̂P→I (ψ1)
λ.

From Theorem 5, ℘̂P→I can be proved to be an isomorphic mapping from ÂP to
ÂI . Theorem 5 reveals that DHFSs and DHPFSs do not only have a mathematical
isomorphism, but also have an operations isomorphism. The later is a substantial
relationship between DHFSs and DHPFSs not reported up to now in literature.

4 Aggregation Operators Isomorphism

In the previous section, the isomorphic relationship between three kinds of
Archimedean intuitionistic fuzzy operations and three kinds of Archimedean
Pythagorean fuzzy operations is studied. On this basis, in this section, the rela-
tionship between three kinds of intuitionistic fuzzy aggregation operators and three
kinds of Pythagorean fuzzy aggregation operators will be studied.
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4.1 Aggregation Operators Isomorphism Between PFSs
and IFSs

By extending four classical Archimedean t-norm and s-norm to the intuitionistic
fuzzy environment, the scholars proposed Archimedean intuitionistic fuzzy aggre-
gation operators, which can be used to aggregate intuitionistic fuzzy information
and constitute a systematic intuitionistic fuzzy information aggregation system to
support the construction of intuitionistic fuzzy decision-making method. It provides
a reference for the generalized operators of interval-valued intuitionistic fuzzy sets,
Pythagorean fuzzy sets, and so on.

Definition 22 ([16]) Let ϑi = (
ραi , σαi

)
(i = 1, 2, . . . , n) be a collection of

IFNs, wi (i = 1, 2, . . . , n) is the weights of αi (i = 1, 2, . . . , n), and wi ∈
[0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) the Archimedean intuitionistic fuzzy weighted average operator is defined as
follows:

Arch − I FW A(ϑ1, ϑ2, . . . , ϑn) =
(

h−1
I

(
n∑

i=1

wihI (ρi )

)

, g−1
I

(
n∑

i=1

wi gI (σi )

))

,

(2) the Archimedean intuitionistic fuzzy weighted geometric operator is defined
as follows:

Arch − I FWG(ϑ1, ϑ2, . . . , ϑn) =
(

g−1
I

(
n∑

i=1

wi gI (ρi )

)

, h−1
I

(
n∑

i=1

wihI (σi )

))

.

Inspired by the Archimedean intuitionistic fuzzy aggregation operators, the
Archimedean fuzzy aggregation operator is proposed based on the Pythagorean fuzzy
operational rules in the previous section.

Definition 23 ([15]) Let αi = (
μαi , ναi

)
(i = 1, 2, . . . , n) be a collection of

PFNs, wi (i = 1, 2, . . . , n) is the weights of αi (i = 1, 2, . . . , n), and wi ∈
[0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) the Archimedean Pythagorean fuzzy weighted average operator is defined as
follows:

Arch − PFW A(α1, α2, . . . , αn) =
(

h−1
P

(
n∑

i=1

wih p(μi )

)

, g−1
P

(
n∑

i=1

wi gp(vi )

))

.
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(2) the Archimedean Pythagorean fuzzy weighted geometric operator is defined
as follows:

Arch − PFWG(α1, α2, . . . , αn) =
(

g−1
P

(
n∑

i=1

wi gp(μi )

)

, h−1
P

(
n∑

i=1

wih p(vi )

))

.

Based on the mapping relation ℘P→I in Sect. 3.1, the relationship between two
kinds of fuzzy aggregation operators is studied

Theorem 6 Let αi = 〈μi , νi 〉P ∈ AP(i = 1, 2, . . . , n) be a collection of PFNs,
℘P→I (αi ) = (φ(μi ), φ(νi ))I ∈ AI be a collection of IFNs, then

(1) ℘P→I (Arch − PFW A(α1, α2, . . . , αn)) = Arch −
I FW A(℘P→I (α1), ℘P→I (α2), . . . , ℘P→I (αn)).

(2) ℘P→I (Arch − PFWG(α1, α2, . . . , αn)) = Arch −
I FWG(℘P→I (α1), ℘P→I (α2), . . . , ℘P→I (αn)).

From Theorem 6, the Archimedean Pythagorean and intuitionistic fuzzy aggre-
gation operators are isomorphic with respect to the mapping ℘P→I .

4.2 Aggregation Operators Isomorphism Between IVPFSs
and IVIFSs

In recent years, based on the classical Algebraic operations of interval-valued intu-
itionistic fuzzy sets, scholars extended Eistein, Hamacher, and Frank t-norm and
s-norm to the environment of interval-valued intuitionistic fuzzy sets [19–21]. For
convenience, these results are expressed in a general form as follows.

Definition 24 Let ϑ̃i = ([
ρ−
i , ρ+

i

]
,
[
σ−
i , σ+

i

])
(i = 1, 2, . . . , n) be a collection

of IVIFNs, wi (i = 1, 2, . . . n) is the weights of α̃i (i = 1, 2, . . . , n), and wi ∈
[0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) the Archimedean interval-valued intuitionistic fuzzy weighted average oper-
ator is defined as follows:

Arch-IVI FW A
(
ϑ̃1, ϑ̃2, . . . , ϑ̃n

)

=
([

h−1
I

(
n∑

i=1

wihI
(
ρ−
i

)
)

, h−1
I

(
n∑

i=1

wihI
(
ρ+
i

)
)]

,

[

g−1
I

(
n∑

i=1

wi gI
(
σ−
i

)
)

, g−1
I

(
n∑

i=1

wi gI
(
σ+
i

)
)])
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(2) the Archimedean interval-valued intuitionistic fuzzy weighted geometric
operator is defined as follows:

Arch-IVI FWG
(
ϑ̃1, ϑ̃2, . . . , ϑ̃n

)

=
([

g−1
I

(
n∑

i=1

wigI
(
ρ−
i

)
)

, g−1
I

(
n∑

i=1

wigI
(
ρ+
i

)
)]

,

[

h−1
I

(
n∑

i=1

wihI
(
σ−
i

)
)

, h−1
I

(
n∑

i=1

wihI
(
σ+
i

)
)])

.

The Archimedean interval-valued Pythagorean fuzzy aggregation operators are
proposed to aggregate IVPFNs based on the operations.

Definition 25 ([22]) Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
(i = 1, 2, . . . , n) be a collec-

tion of IVPFNs, wi (i = 1, 2, . . . , n) is the weights of α̃i (i = 1, 2, . . . , n), and
wi ∈ [0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) theArchimedean interval-valuedPythagorean fuzzyweighted average operator
is defined as follows:

Arch-IVPFW A(α̃1, α̃2, . . . , α̃n)

=
([

h−1
P

(
n∑

i=1

wih p
(
μ−
i

)
)

, h−1
P

(
n∑

i=1

wih p
(
μ+
i

)
)]

,

[

g−1
P

(
n∑

i=1

wi gp
(
v−
i

)
)

, g−1
P

(
n∑

i=1

wigp
(
v+
i

)
)])

.

(2) the Archimedean interval-valued Pythagorean fuzzy weighted geometric
operator is defined as follows:

Arch-IVPFWG(α̃1, α̃2, . . . , α̃n)

=
([

g−1
P

(
n∑

i=1

wigp
(
μ−
i

)
)

, g−1
P

(
n∑

i=1

wi gp
(
μ+
i

)
)]

,

[

h−1
P

(
n∑

i=1

wih p
(
v−
i

)
)

, h−1
P

(
n∑

i=1

wih p
(
v+
i

)
)])

.

Based on the mapping relation ℘̃P→I in Sect. 3.2, the relationship between two
kinds of fuzzy aggregation operators is studied.



Isomorphic Operators and Ranking Methods for Pythagorean … 123

Theorem 7 Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P ∈ ÃP(i = 1, 2, . . . , n) be a

collection of IVPFNs, ℘̃P→I (α̃i ) = ([
φ
(
μ−
i

)
, φ
(
μ+
i

)]
,
[
φ
(
v−
i

)
, φ
(
v+
i

)])
I ∈

ÃI (i = 1, 2, . . . , n) be a collection of IVIFNs, then

(1) ℘̃P→I (Arch − I V PFW A(α̃1, α̃2, . . . , α̃n))

= Arch − I V I FW A(℘̃P→I (α̃1), ℘P→I (α̃2), . . . , ℘P→I (α̃n))

(2)
℘̃P→I (Arch − I V PFW A(α̃1, α̃2, . . . , α̃n))

= Arch − I V I FW A(℘̃P→I (α̃1), ℘P→I (α̃2), . . . , ℘P→I (α̃n))
.

FromTheorem 7, the Archimedean interval-valued Pythagorean and intuitionistic
fuzzy aggregation operators are isomorphic with respect to the mapping ℘̃P→I .

4.3 Aggregation Operators Isomorphism Between HPFSs
and DHFSs

Based on the Archimedean dual hesitant fuzzy operations in the previous section,
some series of Archimedean dual hesitant fuzzy power weighted aggregation opera-
tors are constructed. In this study, the degenerate operator Archimedes dual hesitant
fuzzy weighted aggregation operators are mainly studied.

Definition 26 ([23]) Let δi = (pi , qi ) (i = 1, 2, . . . , n) be a collection of
IVIFNs, wi (i = 1, 2, . . . , n) is the weights of δi (i = 1, 2, . . . , n), and wi ∈
[0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) the Archimedean dual hesitant fuzzy weighted average operator is defined as
follows:

Arch − DHFW A(δ1, δ2, . . . , δn)

= ∪γi∈pi ,ηi∈qi

{{

h−1
I

(
n∑

i=1

wihI (γi )

)}

,

{

g−1
I

(
n∑

i=1

wi gI (ηi )

)}}
.

(2) the Archimedean dual hesitant fuzzy weighted geometric operator is defined
as follows:

Arch − DHFWG(δ1, δ2, . . . , δn)

= ∪γi∈pi ,ηi∈qi

{{

g−1
I

(
n∑

i=1

wi gI (γi )

)}

,

{

h−1
I

(
n∑

i=1

wihI (ηi )

)}}
.

The Archimedean dual hesitant Pythagorean fuzzy aggregation operators are
proposed to aggregate DHPFNs based on the operations.
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Definition 27 ([24]) Let ψi = (ai , bi )P ∈ ÂP (i = 1, 2, . . . , n) be a collection
of IVPFNs, wi (i = 1, 2, . . . , n) is the weights of ψi (i = 1, 2, . . . , n), and wi ∈
[0, 1](i = 1, 2, . . . , n) and

∑n
i=1 wn = 1 . Then,

(1) the Archimedean dual hesitant Pythagorean fuzzy weighted average operator
is defined as follows:

Arch − DHPFW A(ψ1, ψ2, . . . , ψn)

= ∪τi∈ai ,ςi∈bi

{{

h−1
P

(
n∑

i=1

wih p(τi )

)}

,

{

g−1
P

(
n∑

i=1

wi gp(ςi )

)}}
.

(2) theArchimedean dual hesitant Pythagorean fuzzyweighted geometric operator
is defined as follows:

Arch − DHPFWG(ψ1, ψ2, . . . , ψn)

= ∪τi∈ai ,ςi∈bi

{{

g−1
P

(
n∑

i=1

wi gp(τi )

)}

,

{

h−1
P

(
n∑

i=1

wih p(ςi )

)}}
.

Based on the mapping relation ℘̂P→I in Sect. 3.3, the relationship between two
kinds of fuzzy aggregation operators is studied.

Theorem 8 Let ψi = (ai , bi )P ∈ ÂP (i = 1, 2, . . . , n) be a collection of IVPFNs,

℘̂P→I (ψi ) =
(
φ̂(ai ), φ̂(bi )

)

I
∈ ÂI (i = 1, 2, . . . , n) be a collection of IVIFNs, then

(1) ℘̂P→I (Arch − DHPFW A(ψ1, ψ2, . . . , ψn))

= Arch − DHFW A
(
℘̂P→I (ψ1), ℘̂P→I (ψ2), . . . , ℘̂P→I (ψn)

)

(2)
℘̂P→I (Arch − DHPFWG(ψ1, ψ2, . . . , ψn))

= Arch − DHFWG
(
℘̂P→I (ψ1), ℘̂P→I (ψ2), . . . , ℘̂P→I (ψn)

).

From Theorem 8, the Archimedean dual hesitant Pythagorean and dual hesitant
fuzzy aggregation operators are isomorphic with respect to the mapping ℘̂P→I .

The effectiveness of isomorphic operators is verified and illustrated by aggregating
the evaluation information of Pythagorean fuzzy multi-attribute decision-making
problem.

Example 1 Let Xi (i = 1, 2) be two alternatives, C j ( j = 1, 2, 3, 4) be four
attributes, and wj = 1

/
4 is the weight of C j ( j = 1, 2, 3, 4). Suppose the

Pythagorean fuzzy decision matrix D = (
αi j
)
2×4 = ((

μi j , vi j
))

2×4 is provided
in Table 2.

We use the Pythagorean fuzzy weighted average (PFWA) operator [6] to aggrega-
tion decision information αi j ( j = 1, 2, 3, 4) for alternatives Xi (i = 1, 2), and obtain
the comprehensive evaluation information αi (i = 1, 2):
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Table 2 Pythagorean fuzzy decision matrix D

C1 C2 C3 C4 PFWA operator

X1 (0.4, 0.5) (0.3, 0.6) (0.4, 0.6) (0.2, 0.5) (0.3375, 0.3130)

X2 (0.5, 0.3) (0.6, 0.3) (0.7, 0.2) (0.4, 0.2) (0.5715, 0.5384)

Table 3 Intuitionistic fuzzy decision matrix DI with mapping relation ℘P→I

C1 C2 C3 C4 IFWA operator

X1 (0.16, 0.25) (0.09, 0.36) (0.16, 0.36) (0.04, 0.25) (0.1139, 0.0980)

X2 (0.25, 0.09) (0.36, 0.03) (0.49, 0.04) (0.16, 0.04) (0.3266, 0.2898)

α1 = PFW A(α11, α12, α13, α14) =
(√

1−
∏4

j=1

(
1 − μ2

1 j

)wj

,
∏4

j=1
v
wj

1 j

)

= (0.3375, 0.3130)

α2 = PFW A(α21, α22, α23, α24) =
(√

1−
∏4

j=1

(
1 − μ2

2 j

)wj

,
∏4

j=1
v
wj

2 j

)

= (0.5715, 0.5384)

.

Based on the mapping relation ℘P→I , we obtain the intuitionistic fuzzy deci-

sion matrix DI =
(
α

′
i j

)

2×4
, which is shown in Table 3. We use the intuitionistic

fuzzy weighted average (IFWA) operator [31] to aggregation decision informa-
tion α

′
i j ( j = 1, 2, 3, 4) for alternatives Xi (i = 1, 2), and obtain the comprehensive

evaluation information α
′
i (i = 1, 2).

α
′
1 = I FW A

(
α

′
1, α

′
12, α

′
13, α

′
14

)

= I FW A
(
℘̂P→I (α11), ℘̂P→I (α12), ℘̂P→I (α13), ℘̂P→I (α14)

)

=
(
1−
∏4

j=1

(
1 − ρ1 j

)wj
,
∏4

j=1
σ
wj

1 j

)
= ℘̂P→I (α1) = (0.1139, 0.0980)

α
′
2 = I FW A

(
α

′
21, α

′
22, α

′
23, α

′
24

)

= I FW A
(
℘̂P→I (α21), ℘̂P→I (α22), ℘̂P→I (α23), ℘̂P→I (α24)

)

=
(
1−
∏4

j=1

(
1 − ρ1 j

)wj
,
∏4

j=1
σ
wj

1 j

)
= ℘̂P→I (α2)=(0.3266, 0.2898)

.

Example 1 shows that isomorphism operators can transform Pythagorean fuzzy
multi-attribute decision-making (FMADM) problem into intuitionistic FMADM
problem, and the aggregation result obtained is consistent with that before transfor-
mation. Similarly, the hesitant Pythagorean FMADM problem and interval-valued
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Pythagorean FMADM problem can be transformed into dual hesitant FMADM
problem and interval-valued intuitionistic FMADM problem, respectively.

5 Ranking Methods Isomorphism

For fuzzy multi-attribute decision-making approach, the ranking method of fuzzy
numbers is used to sort the comprehensive attribute values to determine the evaluation
results. The rankingmethod of three groups of research objects in this study ismainly
based on score function and accuracy function. Based on the isomorphic perspective,
this section will study the relationship between three sets of fuzzy sets.

5.1 Ranking Methods Isomorphism Between IFNs and PFNs

The score function and accuracy function of intuitionistic fuzzy sets constitute the
sorting method of intuitionistic fuzzy numbers and also lay a foundation for the
sorting methods of other fuzzy sets.

Definition 28 ([25]) For any two IFNs, ϑi = (ρi , σi )(i = 1, 2):

(i) if scoI (ϑ1) < scoI (ϑ2), then ϑ1 <I ϑ2;
(ii) if scoI (ϑ1) = scoI (ϑ2), then

(a) if accI (ϑ1) < accI (ϑ2), then ϑ1 <I ϑ2;
(b) if accI (ϑ1) = accI (ϑ2), then ϑ1 = ϑ2,

where scoI (ϑi ) = ρi − σi and accI (ϑi ) = ρi + σi (i = 1, 2) are the score functions
and accuracy functions, respectively.

Based on the score function and accuracy function of intuitionistic fuzzy sets,
scholars put forward the score function and accuracy function of the Pythagorean
fuzzy sets, and then constructed the sorting method for ranking Pythagorean fuzzy
numbers.

Definition 29 ([26, 27]) For any two PFNs αi = (μi , vi )(i = 1, 2):

(i) if scoP(α1) < scoP(α2), then α1 <p α2;
(ii) if scoP(α1) = scoP(α2), then

(a) if accP(α1) < accP(α2), then α1 <p α2;
(b) if accP(α1) = accP(α2), then α1 ∼p α2,

where scoP(αi ) = μ2
i − v2i (i = 1, 2) are the score functions of αi (i = 1, 2), and

accP(αi ) = μ2
i + v2i (i = 1, 2) are the accuracy functions.

Based on the mapping relation ℘P→I in Sect. 3.1, the relationship between two
kinds of fuzzy ranking methods is studied.
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Theorem 9 Let αi = 〈μi , νi 〉P ∈ AP , ℘P→I (αi ) = (φ(μi ), φ(νi ))I ∈ AI , then we
have

(1) scoP(αi ) = scoI (℘P→I (αi ));
(2) accP(αi ) = accI (℘P→I (αi )).

Theorem 10 Let αi = 〈μi , νi 〉P ∈ AP , ℘P→I (αi ) = (φ(μi ), φ(νi ))I ∈ AI . Then,

α1 <p α2 if and only if ℘P→I (α1) <I ℘P→I (α2)

and

α1 ∼p α2 if and only if ℘P→I (α1) ∼I ℘P→I (α2).

Theorem 10 reveals IFSs and PFSs have a ranking method isomorphism.

5.2 Ranking Methods Isomorphism Between IVIFNs
and IVPFNs

The ranking methods of interval intuitionistic fuzzy numbers and interval
Pythagorean fuzzy numbers are mainly defined by using score function and accu-
racy function. In recent years, scholars have proposed a series of scoring functions
and accuracy functions of interval-valued Pythagorean fuzzy numbers (IVPFNs)
from different perspectives, and used to construct corresponding decision analysis
methods. For example, fuzzy linear programming model [34] and TOPSIS method
[35] based on improved score function, decision analysismethods based on improved
accuracy function [36, 37]. Considering the generality, this paper mainly analyzes
the traditional score function and accuracy function of IVPFNs.

Definition 30 ([28]) For any two IFNs, ϑ̃i = ([ρ−
i , ρ+

i

]
,
[
σ−
i , σ+

i

])
(i = 1, 2):

(i) if ScoI
(
ϑ̃1

)
< ScoI

(
ϑ̃2

)
, then ϑ̃1 < Ĩ ϑ̃2;

(ii) if ScoI
(
ϑ̃1

)
= ScoI

(
ϑ̃2

)
, then

(a) if AccI
(
ϑ̃1

)
< AccI

(
ϑ̃2

)
, then ϑ̃1 < Ĩ ϑ̃2;

(b) if AccI
(
ϑ̃1

)
= AccI

(
ϑ̃2

)
, then ϑ̃1 ∼ Ĩ ϑ̃2,

where ScoI
(
ϑ̃i

)
= (

ρ−
i +ρ+

i − σ−
i − σ+

i

)/
2 and AccI

(
ϑ̃i

)
=

(
ρ−
i +ρ+

i + σ−
i + σ+

i

)/
2(i = 1, 2) are the score functions and accuracy functions,

respectively.

Definition 31 ([7, 29]). For any two IVPFNs α̃i = ([μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
(i = 1, 2):

(i) if ScoP(α̃1) < ScoP(α̃2), then α̃1 <P̃ α̃2;
(ii) if ScoP(α̃1) = ScoP(α̃2), then
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(a) if AccP(α̃1) < AccP(α̃2), then α̃1 <P̃ α̃2;
(b) if AccP(α̃1) = AccP(α̃2), then α̃1 ∼P̃ α̃2,

where ScoP(α̃i ) =
((

μ−
i

)2+(μ+
i

)2 − (v−
i

)2 − (v+
i

)2)/
2 and AccP(α̃i ) =

((
μ−
i

)2+(μ+
i

)2+(v−
i

)2+(v+
i

)2)/
2 are the score functions and accuracy functions,

respectively.
Based on the mapping relation ℘̂P→I in Sect. 3.2, the relationship between two

kinds of fuzzy ranking methods is studied.

Theorem 11 Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P ∈ ÃP , ℘̃P→I (α̃i ) =

([
φ
(
μ−
i

)
, φ
(
μ+
i

)]
,
[
φ
(
v−
i

)
, φ
(
v+
i

)])
I ∈ ÃI , then

(1) ScoP(α̃i ) = ScoI (℘̃P→I (α̃i ));

(2) AccP(α̃i ) = AccI (℘̃P→I (α̃i )).

Theorem 12 Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P ∈ ÃP , ℘̃P→I (α̃i ) =

([
φ
(
μ−
i

)
, φ
(
μ+
i

)]
,
[
φ
(
v−
i

)
, φ
(
v+
i

)])
I ∈ ÃI . Then,

(1) α̃1 <P̃ α̃2 if and only if ℘̃P→I (α̃1) < Ĩ ℘̃P→I (α̃2);
(2) α̃1 ∼P̃ α̃2 if and only if ℘̃P→I (α̃1) ∼ Ĩ ℘̃P→I (α̃2);

Theorem 12 reveals IVIFSs and IVPFSs have a ranking method isomorphism.

5.3 Ranking Methods Isomorphism Between DHFSs
and DHPFSs

The score function and accuracy function of DHFSs and DHPFSs are constructed
mainly from the perspective of the expected mean of membership degree values and
nonmembership degree values.

Definition 32 ([30]) For any two DHFNs, δi = (pi , qi ) (i = 1, 2):

(i) if ŜcoI (δ1) < ŜcoI (δ2), then δ1 < Î δ2;
(ii) if ŜcoI (δ1) = ŜcoI (δ2), then

(a) if ÂccI (δ1) < ÂccI (δ2), then δ1 < Î δ2;
(b) if ÂccI (δ1) = ÂccI (δ2), then δ1 ∼ Î δ2,

where ŜcoI (δi ) = 1
#pi

∑
γi∈pi

γi − 1
#qi

∑
ηi∈qi ηi and ÂccI (δi ) =

1
#pi

∑
γi∈pi

γi+ 1
#qi

∑
ηi∈qi ηi (i = 1, 2) are the score functions and accuracy func-

tions, respectively.
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Definition 33 ([9]) For any two HPFNs, ψi = (ai , bi ) (i = 1, 2):

(i) if ŜcoP(ψ1) < ŜcoP(ψ2), then ψ1 <P̂ ψ2;
(ii) if ŜcoP(ψ1) = ŜcoP(ψ2), then

(a) if ÂccP(ψ1) < ÂcoP(ψ2), then ψ1 <P̂ ψ2;
(b) if ÂccP(ψ1) = ÂcoP(ψ2), then ψ1 ∼P̂ ψ2,

where ŜcoP(ψi ) = 1
#ai

∑
τ∈ai τi − 1

#bi

∑
ςi∈bi ςi and ÂccP(ψi ) =

1
#ai

∑
τ∈ai τi+ 1

#bi

∑
ςi∈bi ςi (i = 1, 2) are the score functions and accuracy functions,

respectively.
Based on the mapping relation ℘̂P→I in Sect. 3.3, the relationship between two

kinds of fuzzy ranking methods is studied.

Theorem 13 Let ψi = (ai , bi )P ∈ ÂP , ℘̂P→I (ψi ) =
(
φ̂(ai ), φ̂(bi )

)

I
∈ ÂI , then

we have

(1) ŜcoP(ψi ) = ŜcoI
(
℘̂P→I (ψi )

)
;

(2) ÂccP(ψi ) = ÂccI
(
℘̂P→I (ψi )

)

Theorem 14 Let α̃i = ([
μ−
i , μ+

i

]
,
[
v−
i , v+

i

])
P ∈ ÃP , ℘̂P→I (ψi ) =(

φ̂(ai ), φ̂(bi )
)

I
∈ ÂI . Then,

(1) ψ1 <P̂ ψ2 if and only if ℘̂P→I (ψ1) < Ĩ ℘̂P→I (ψ2)

(2) ψ1 ∼P̂ ψ2 if and only if ℘̂P→I (ψ1) ∼ Ĩ ℘̂P→I (ψ2).

Theorem 12 reveals DHFSs and DHPFSs have a ranking method isomorphism.

Example 2 (Continuation Example 1) In this example, the evaluation matrix of
Tables 1 and 2 in Example 1 is used. Based on the score functions for Pythagorean
and intuitionistic fuzzy numbers, we obtain the score matrix for Tables 1 and 2,
which is shown in Table 3. Since scoP

(
α1 j
)

< scoP
(
α2 j
)
, j = 1, 2, 3, 4, then

α1 j <P α2 j , j = 1, 2, 3, 4. Since scoI
(
α

′
1 j

)
= scoI

(
℘P→I

(
α1 j
))

< scoI
(
α

′
2 j

)
=

scoI
(
℘P→I

(
α2 j
))

, j = 1, 2, 3, 4, then α
′
1 j <P α

′
2 j , j = 1, 2, 3, 4. Table 4 shows

that the scoring matrix corresponding to Tables 2 and 3 is the same, and the
effectiveness of isomorphic ranking method is verified.

Table 4 Score matrix

C1 C2 C3 C4

X1 −0.09 −0.27 −0.33 −0.12

X2 0.16 0.27 0.45 0.12
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6 Proofs

Proof of Theorem 2

Proof Since

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

)⇒ g−1
I (t) = φ

(
g−1
P (t)

)

and

hP(t) = hI (φ(t)) ⇒ h−1
P (t) = φ−1

(
h−1
I (t)

)⇒ h−1
I (t) = φ

(
h−1
P (t)

)

Then

SP(x, y) = h−1
P (hP(x) + hP(y)) = φ−1

(
h−1
I (hI (φ(x)) + hP(φ(y)))

)

= φ−1(SI (φ(x), φ(y)))

and

TP(x, y) = g−1
P (gP(x) + gP(y)) = φ−1(g−1

I (gI (φ(x)) + gP(φ(y)))
)

= φ−1(TI (φ(x), φ(y))).

Theorem 2 is proven.

Proof of Theorem 3

Proof Because αi = 〈μi , νi 〉P ∈ AP , we have μ2
i + ν2

i ≤ 1. It means that if αi is a
PFN on AP , and then ℘P→I (αi ) is an IFN on AI .

(1) Following Definition 14 and Theorem 2, we have

α1 ⊕ α2 = (SP(μ1, μ2), TP(v1, v2))

and

SP(x, y) = φ−1(SI (φ(x), φ(y))), TP(x, y) = φ−1(TI (φ(x), φ(y)))

then

℘P→I (α1 ⊕ α2) = (φ(SP(μ1, μ2)), φ(TP(v1, v2)))

= (SI (φ(μ1), φ(μ2)), TI (φ(v1), φ(v2)))

= ℘P→I (α1) ⊕ ℘P→I (α2)

which completes the proof of (1).
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(2) The proof of (2) is similar to (1) and it is hence omitted here.
(3) Following Definition 14, we have λα = (h−1

p (λhP(μ)), g−1
p (λgP(v))

)
, λ > 0,

and

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

)⇒ g−1
I (t) = φ

(
g−1
P (t)

)
,

then

℘P→I (λα) = (φ(h−1
P (λhP(μ))

)
, φ
(
g−1
P (λgP(v))

))

= (h−1
I (λhP(μ)), g−1

I (λgP(v))
)

=(h−1
I (λhI (φ(μ))), g−1

I (λgI (φ(v)))
)

= λ℘P→I (α)

,

which completes the proof of (3).

(4) The proof of (4) is similar to (3) and it is hence omitted here.

Theorem 3 is proven.
Proof of Theorem 4

Proof (1) Following Definition 17 and Theorem 2, we have

α̃1 ⊕ α̃2 = ([SP
(
μ−
1 , μ−

2

)
, SP

(
μ+
1 , μ+

2

)]
,
[
TP
(
v−
1 , v−

2

)
, TP

(
v+
1 , v+

2

)])

and

SP(x, y) = φ−1(SI (φ(x), φ(y))), TP(x, y) = φ−1(TI (φ(x), φ(y))),

then

℘̃P→I (α̃1 ⊕ α̃2) = ([φ(SP
(
μ−
1 , μ−

2

))
, φ
(
SP
(
μ+
1 , μ+

2

))]
,
[
φ
(
TP
(
v−
1 , v−

2

))
, φ
(
TP
(
v+
1 , v+

2

))])

=
( [

φ
(
φ−1(SI

(
φ
(
μ−
1

)
, φ
(
μ−
2

))))
, φ
(
φ−1(SI

(
φ
(
μ+
1

)
, φ
(
μ+
2

))))]
,

[
φ
(
φ−1(TI

(
φ
(
v−
1

)
, φ
(
v−
2

))))
, φ
(
φ−1(TI

(
φ
(
v+
1

)
, φ
(
v+
2

))))]

)

= ([SI
(
φ
(
μ−
1

)
, φ
(
μ−
2

))
, SI
(
φ
(
μ+
1

)
, φ
(
μ+
2

))]
,

[
TI
(
φ
(
v−
1

)
, φ
(
v−
2

))
, TI
(
φ
(
v+
1

)
, φ
(
v+
2

))])

= ℘̃P→I (α̃1) ⊕ ℘̃P→I (α̃2)

,

which completes the proof of (1).
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(2) The proof of (2) is similar to (1) and it is hence omitted here.
(3) Following Definitions 16 and 17, we have λα̃ =([
h−1
P

(
λhP

(
μ−)), h−1

P

(
λhP

(
μ+))],

[
g−1
P

(
λgP

(
v−)), g−1

P

(
λgP

(
v+))]), λ > 0,

and

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

)⇒ g−1
I (t) = φ

(
g−1
P (t)

)

then

℘̃P→I (λα̃) = ([φ(h−1
P

(
λhP

(
μ−))), φ

(
h−1
P

(
λhP

(
μ+)))],

[
φ
(
g−1
P

(
λgP

(
v−))), φ

(
g−1
P

(
λgP

(
v+)))])

=
( [

φ
(
φ−1
(
h−1
I

(
λhI
(
φ
(
μ−))))), φ

(
φ−1
(
h−1
I

(
λhI
(
φ
(
μ+)))))],

[
φ
(
φ−1
(
g−1
I

(
λgI
(
φ
(
v−))))), φ

(
φ−1
(
g−1
I

(
λgI
(
φ
(
v+)))))]

)

= ([h−1
I

(
λhI
(
φ
(
μ−))), h−1

I

(
λhI
(
φ
(
μ+)))],

[
g−1
I

(
λgI
(
φ
(
v−))), g−1

I

(
λgI
(
φ
(
v+)))])

= λ℘̃P→I (α̃)

which completes the proof of (3).
(4) The proof of (4) is similar to (3) and it is hence omitted here.
Theorem 4 is proven.

Proof of Theorem 5

Proof

(1) Following Definition 20 and Theorem 2, we have

ψ1 ⊕ ψ2 = ∪τi∈ai ,ςi∈bi {{SP(τ1, τ2)}, {TP(ς1, ς2)}}

and

SP(x, y) = φ−1(SI (φ(x), φ(y))), TP(x, y) = φ−1(TI (φ(x), φ(y)))

then

℘̂P→I (ψ1 ⊕ ψ2) = ∪τi∈ai ,ςi∈bi {{φ(SP(τ1, τ2))}, {φ(TP(ς1, ς2))}}
= ∪τi∈ai ,ςi∈bi

{{
φ
(
φ−1(SI (φ(τ1), φ(τ2)))

)}
,

{
φ
(
φ−1(TI (φ(ς1), φ(ς2)))

)}}

= ∪τi∈ai ,ςi∈bi {{SI (φ(τ1), φ(τ2))}, {TI (φ(ς1), φ(ς2))}}
= ℘P→I (α1) ⊕ ℘P→I (α2)
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which completes the proof of (1).

(2) The proof of (2) is similar to (1) and it is hence omitted here.
(3) Following Definitions 19 and 20, we have λψ =

∪τ∈a,ς∈b
{{
h−1
P (λhP(τ ))

}
,
{
g−1
P (λgP(ς))

}}
,

and

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

)⇒ g−1
I (t) = φ

(
g−1
P (t)

)

then

℘̂P→I (λψ1) = ∪τ1∈a1,ς1∈b1
{{

φ
(
h−1
P (λhP (τ1))

)}
,
{
φ
(
g−1
P (λgP (ς1))

)}}

= ∪τ1∈a1,ς1∈b1
{{

φ
(
φ−1

(
h−1
I (λhI (φ(τ1)))

))}
,
{
φ
(
φ−1

(
g−1
I (λgI (φ(ς1)))

))}}

= ∪τ1∈a1,ς1∈b1
{{

h−1
I (λhI (φ(τ1)))

}
,
{
g−1
I (λgI (φ(ς1)))

}}

= λ℘̂P→I (ψ1)

which completes the proof of (3).

(4) The proof of (4) is similar to (3) and it is hence omitted here.

Theorem 5 is proven.
Proof of Theorem 6

Proof

(1) Since

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

)⇒ g−1
I (t) = φ

(
g−1
P (t)

)

and

hP(t) = hI (φ(t)) ⇒ h−1
P (t) = φ−1

(
h−1
I (t)

)⇒ h−1
I (t) = φ

(
h−1
P (t)

)
.

Then, according to Definition 21, we have
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℘P→I (Arch − PFW A(α1, α2, . . . , αn))

= ℘P→I

(

h−1
P

(
n∑

i=1

wih p(μi )

)

, g−1
P

(
n∑

i=1

wi gp(vi )

))

=
(

φ

(

h−1
P

(
n∑

i=1

wih p(μi )

))

, φ

(

g−1
P

(
n∑

i=1

wi gp(vi )

)))

=
(

φ

(

φ−1

(

h−1
I

(
n∑

i=1

wihI (φ(μi ))

)))

, φ

(

φ−1

(

g−1
I

(
n∑

i=1

wi gI (φ(vi ))

))))

=
(

h−1
I

(
n∑

i=1

wihI (φ(μi ))

)

, g−1
I

(
n∑

i=1

wigI (φ(vi ))

))

= Arch − I FW A(℘P→I (α1), ℘P→I (α2), . . . , ℘P→I (αn))

.

(2) The proof of (2) is similar to (1) and it is hence omitted here.

Theorem 6 is proven.

Proof of Theorem 7

Proof

(1) Since

gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1(g−1

I (t)
)⇒ g−1

I (t) = φ
(
g−1
P (t)

)

and

hP(t) = hI (φ(t)) ⇒ h−1
P (t) = φ−1

(
h−1
I (t)

)⇒ h−1
I (t) = φ

(
h−1
P (t)

)
.

Then, according to Definitions 24 and 25, we have
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℘P→I (Arch − I V PFW A(α̃1, α̃2, . . . , α̃n))

=
([

φ

(

h−1
P

(
n∑

i=1

wih p
(
μ−
i

)
))

, φ

(

h−1
P

(
n∑

i=1

wih p
(
μ+
i

)
))]

,

[

φ

(

g−1
P

(
n∑

i=1

wi gp
(
v−
i

)
))

, φ

(

g−1
P

(
n∑

i=1

wi gp
(
v+
i

)
))])

=

⎛

⎜⎜⎜⎜⎜
⎝

[

φ

(

φ−1

(

h−1
I

(
n∑

i=1

wihI
(
φ
(
μ−
i

))
)))

, φ

(

φ−1

(

h−1
I

(
n∑

i=1

wihI
(
φ
(
μ+
i

))
)))]

,

[

φ

(

φ−1

(

g−1
I

(
n∑

i=1

wi gI
(
φ
(
v−
i

))
)))

, φ

(

φ−1

(

g−1
I

(
n∑

i=1

wi gI
(
φ
(
v+
i

))
)))]

⎞

⎟⎟⎟⎟⎟
⎠

=
([

h−1
I

(
n∑

i=1

wihI
(
φ
(
μ−
i

))
)

, h−1
I

(
n∑

i=1

wihI
(
φ
(
μ+
i

))
)]

,

[

g−1
I

(
n∑

i=1

wi gI
(
φ
(
v−
i

))
)

, g−1
I

(
n∑

i=1

wi gI
(
φ
(
v+
i

))
)])

= Arch − I V I FW A(℘P→I (α̃1), ℘P→I (α̃2), . . . , ℘P→I (α̃n))

.

(2) The proof of (2) is similar to (1) and it is hence omitted here.

Theorem 7 is proven.

Proof of Theorem 8

Proof

(1) Since gP(t) = gI (φ(t)) ⇒ g−1
P (t) = φ−1

(
g−1
I (t)

) ⇒ g−1
I (t) = φ

(
g−1
P (t)

)

and

hP(t) = hI (φ(t)) ⇒ h−1
P (t) = φ−1(h−1

I (t)
)⇒ h−1

I (t) = φ
(
h−1
P (t)

)
.

Then, according to Definitions 26 and 27, we have

℘̂P→I (Arch − HPFW A(ψ1, ψ2, . . . , ψn))

= ∪τi∈ai ,ςi∈bi

{{

φ

(

h−1
P

(
n∑

i=1

wih p(τi )

))}

,

{

φ

(

g−1
P

(
n∑

i=1

wi gp(ςi )

))}}

= ∪τi∈ai ,ςi∈bi

{{

h−1
I

(
n∑

i=1

wihI (φ(τi ))

)}

,

{

g−1
I

(
n∑

i=1

wi gI (φ(ςi ))

)}}

= Arch − I FWG
(
℘̂P→I (ψ), ℘̂P→I (ψ2), . . . , ℘̂P→I (ψn)

)

.
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(2) The proof of (2) is similar to (1) and it is hence omitted here.

Theorem 8 is proven.

Proof of Theorem 9

Proof By Definitions 28 and 29, we have

scoP(αi ) = μ2
i − v2i =φ(μi ) − φ(vi ) = scoI (℘P→I (αi ))

accP(αi ) = μ2
i + v2i =φ(μi ) + φ(vi ) = accI (℘P→I (αi )).

Theorem 9 is proven.

Proof of Theorem 10

Proof According to Theorem 9, we have

scoP(αi ) = scoI (℘P→I (αi )), accP(αi ) = accI (℘P→I (αi )).

Therefore,

scoP(α1) < scoP(α2) ⇔ scoI (℘P→I (α1)) < scoI (℘P→I (α2))

scoP(α1) = scoP(α2) ⇔ scoI (℘P→I (α1)) = scoI (℘P→I (α2))

accP(α1) < accP(α2) ⇔ accI (℘P→I (α1)) < accI (℘P→I (α2))

accP(α1) = accP(α2) ⇔ accI (℘P→I (α1)) = accI (℘P→I (α2))

.

Thus, we have

Case 1

(i) if scoP(α1) < scoP(α2), then α1 <p α2, and scoI (℘P→I (α1)) <

scoI (℘P→I (α2)), then

℘P→I (α1) <I ℘P→I (α2)

(ii) if scoP(α1) = scoP(α2), then scoI (℘P→I (α1)) = scoI (℘P→I (α2)), and

(a) if accP(α1) < accP(α2) then α1 <p α2, and accI (℘P→I (α1)) <

accI (℘P→I (α2)), then

℘P→I (α1) <I ℘P→I (α2)
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(b) if accP(α1) = accP(α2) then α1 ∼p α2, and accI (℘P→I (α1)) =
accI (℘P→I (α2)), then

℘P→I (α1) ∼I ℘P→I (α2).

Case 2. If ℘P→I (α1) <I ℘P→I (α2) then α1 <p α2.
The proof of Case 2 is similar to Case 1 and it is hence omitted here.
Theorem 10 is proven.

Proof of Theorem 11.

Proof According to Definitions 30 and 31, we have

ScoI (℘̃P→I (α̃i ))=φ
(
μ−
i

)+φ
(
μ+
i

)−φ
(
v−
i

)−φ
(
v+
i

)

2

=
(
μ−
i

)2+(μ+
i

)2−(v−
i

)2−(v+
i

)2

2
= ScoP(α̃i ),

AccI (℘̃P→I (α̃i ))=φ
(
μ−
i

)+φ
(
μ+
i

)+φ
(
v−
i

)+φ
(
v+
i

)

2

=
(
μ−
i

)2+(μ+
i

)2+(v−
i

)2+(v+
i

)2

2
= AccP(α̃i ).

.

Theorem 11 is proven.

Proof of Theorem 11.

Proof According to Definitions 30 and 31, we have

ScoI (℘̃P→I (α̃i ))=φ
(
μ−
i

)+φ
(
μ+
i

)−φ
(
v−
i

)−φ
(
v+
i

)

2

=
(
μ−
i

)2+(μ+
i

)2−(v−
i

)2−(v+
i

)2

2
= ScoP(α̃i ),

AccI (℘̃P→I (α̃i ))=φ
(
μ−
i

)+φ
(
μ+
i

)+φ
(
v−
i

)+φ
(
v+
i

)

2

=
(
μ−
i

)2+(μ+
i

)2+(v−
i

)2+(v+
i

)2

2
= AccP(α̃i ).

Theorem 11 is proven.
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Proof of Theorem 12.

Proof According to Theorem 10, we have

scoP(αi ) = scoI (℘P→I (αi )), accP(αi ) = accI (℘P→I (αi )).

Therefore,

ScoP(α̃1) < ScoP(α̃2) ⇔ ScoI (℘̃P→I (α̃1)) < ScoI (℘̃P→I (α̃2))

ScoP(α̃1) = ScoP(α̃2) ⇔ ScoI (℘̃P→I (α̃1)) = ScoI (℘̃P→I (α̃2))

AccP(α̃1) < AccP(α̃2) ⇔ AccI (℘̃P→I (α̃1)) < AccI (℘̃P→I (α̃2))

AccP(α̃1) = AccP(α̃2) ⇔ AccI (℘̃P→I (α̃1)) = AccI (℘̃P→I (α̃2))

.

Thus, we have
α̃1 <P̃ α̃2 if and only if ℘̃P→I (α̃1) < Ĩ ℘̃P→I (α̃2).

Theorem 12 is proven.

Proof of Theorem 13.

Proof According to Definitions 32 and 33,

ŜcoI
(
℘̂P→I (ψi )

) = 1

#ai

∑

τ∈ai
φ(τi ) − 1

#bi

∑

ςi∈bi
φ(ςi )

= 1

#ai

∑

τ∈ai
τ 2
i − 1

#bi

∑

ςi∈bi
ς2
i =ŜcoP(ψi )

ÂccI
(
℘̂P→I (ψi )

) = 1

#ai

∑

τ∈ai
φ(τi )+ 1

#bi

∑

ςi∈bi
φ(ςi )

= 1

#ai

∑

τ∈ai
τ 2
i + 1

#bi

∑

ςi∈bi
ς2
i = ÂccP(ψi )

.

Theorem 13 is proven.

Proof of Theorem 14.

Proof According to Theorem 13, we have

ŜcoP(ψi ) = ŜcoI
(
℘̂P→I (ψi )

)
, ÂccP(ψi ) = ÂccI

(
℘̂P→I (ψi )

)
.

Therefore,

ŜcoP(ψ1) < ŜcoP(ψ2) ⇔ ŜcoI
(
℘̂P→I (ψ1)

)
< ŜcoI

(
℘̂P→I (ψ2)

)

ŜcoP(ψ1) = ŜcoP(ψ2) ⇔ ŜcoI
(
℘̂P→I (ψ1)

) = ŜcoI
(
℘̂P→I (ψ2)

)

ÂccP(ψ1) < ÂccP(ψ2) ⇔ ÂccI
(
℘̂P→I (ψ1)

)
< ÂccI

(
℘̂P→I (ψ2)

)

ÂccP(ψ1) = ÂccP(ψ2) ⇔ ÂccI
(
℘̂P→I (ψ1)

) = ÂccI
(
℘̂P→I (ψ2)

)

.
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Thus, we have

ψ1 <P̂ ψ2 if and only if ℘̂P→I (ψ1) < Ĩ ℘̂P→I (ψ2).

Theorem 14 is proven.

7 Conclusion

The main results of this paper are shown in Table 5.
The isomorphism operators in Table 5 reveal that the results obtained by the

following two patterns are equivalent:
(1) A collection of PFNs −→ operatorcomprehensive PFN −→ isomorphismcomprehensive I FN

(2) A collection of PFNs −→ isomorphismA collection of I FNs −→ operatorcomprehensive I FN .

The isomorphic ranking methods in Table 5 reveal that the ranking relationship of
two different PFNs remains unchanged after being converted into IFNs. Similarly,
the same conclusion can be obtained for IVPFNs (vs. IVIFNs) and DPHFNs (vs.
DHFNs).

When dealing with multiple attribute decision-making problems, isomorphism
operators and ranking methods can reveal some interesting facts. Let Xi (i = 1, 2)
be two alternatives, and their related collections of PFNs are Ai (i = 1, 2). From
Table 2, we know that the following two sort results are consistent:

Two collection of PFNs
(
A
/
B
)

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−→ operator Two comprehensive PFN
(
α1
/

α2
)

−→ isomorphismTwo collection of I FNs
(
A

′/
B

′)

−→ operatortwo comprehensive I FNs
(
α

′
1

/
α

′
2

)

−→ ranking X1 < X2

.

The above analysis shows that the Pythagorean fuzzy multi-attribute decision-
making problem can be transformed into intuitionistic fuzzymulti-attribute decision-
making problem by isomorphism, and the decision-making results are consistent.

In this study, the isomorphic relation between each pair of fuzzy sets is studied
from three aspects, such as the operations, aggregation operators, and sorting
methods. Aggregation operator and ranking method play an important role in the
construction of fuzzy multi-attribute decision-making methods, which are mainly
used for information aggregation and ranking. The study of isomorphic operators and
isomorphic ranking methods reveals the essential relationship between intuitionistic
FMADM method and Pythagorean FMADM method.
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Ta
bl
e
5

R
es
ul
ts

Is
om

or
ph
is
m

In
tu
iti
on

is
tic

fu
zz
y
se
ts
ve
rs
us

Py
th
ag
or
ea
n
fu
zz
y
se
ts

M
at
he
m
at
ic
al
is
om

or
ph

is
m

D
efi

ni
tio

n
15

{
α
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=
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∈
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,
φ
(x

)
=

x2

℘
P

→
I(

α
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∈
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{
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The advantage of this research is that it can transform the Pythagorean FMADM
problem into intuitionistic FMADM problem. Especially in the face of large-scale
group decision-making problems, some small groups provide Pythagorean fuzzy
decision-makingmatrix, and some small groups provide intuitionistic fuzzy decision-
makingmatrix. The isomorphic aggregation operators and rankingmethods proposed
in this paper can effectively deal with such decision situations. The limitations of
this paper are mainly reflected in two aspects: first, the limitation of isomorphic
operators is that the related operation rules are constructed based on Archimedean
t-norm and s-norm; second, the limitation of isomorphic ranking method is that
the related score functions and accuracy functions are constructed based on the
difference, sum value, and expectation between membership and nonmembership
degree. In the future research, we will focus on other types of isomorphism operators
of various fuzzy sets, such as Bonferroni operator, Heronian operator, etc.
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Pythagorean Fuzzy Multi-criteria
Decision-Making



A Risk Prioritization Method Based
on Interval-Valued Pythagorean Fuzzy
TOPSIS and Its Application
for Prioritization of the Risks Emerged
at Hospitals During the Covid-19
Pandemic

Muhammet Gul and Melih Yucesan

1 Introduction

Hospitals stay at a critical point in providing first care to people who are affected
in a natural or human-made disaster. Pandemics can lead to an increasing spread of
disease, with irregular and suddenly increasing patient demands that can affect the
capacity of hospitals and the overall functioning of the health system. At these times,
risks arising based on hospital location, building, medical staff, patients, and health
care process strongly have a negative impact on the fight against the outbreak. In
order to cope with the difficulty of such an epidemic disaster, hospitals must have
completed their preparations and taken the required measures against risks before
these events occur.

Nowadays, the vast majority of the world is struggling against the epidemic of
Covid-19. The world is faced with the demand for infected patients who arrive at
the hospitals heavily and irregularly. Hospitals are facilities with complex processes,
mostly connected to external support and supply lines [1]. Even in regular times,
many hospitals operate at full capacity or close to full capacity. In epidemic condi-
tions, with surge demand, hospitals may find it challenging to carry out their basic
functional activities, and capacity may no longer meet this demand [2]. Even a well-
prepared hospital for disasters will have a hard time coping with the consequences
of a Covid-19 pandemic. It is an effective hospital management policy that will
reduce these difficulties to some extent. In a report of WHO, it is highlighted that
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this effective hospital management will help (1) continuity of essential services, (2)
well-coordinated implementation of priority action, (3) clear and accurate internal
and external communication, (4) swift adaptation to increased demands, (5) effective
use of scarce resources, and (6) safe environment for health workers [3].

Considering the possible negative consequences of theCovid-19 pandemic, where
the healthcare sector and hospitals are currently in a great struggle, it is clear that
making the hospitals prepared and ready for such disaster-based risks should be
made quickly and reliably. This reinforces the conclusion that risk assessment studies
for determining the hazards that arise in hospitals and eliminating these hazards or
reducing their effects to an acceptable level are of great importance to reduce the
losses of the epidemic.

During natural disasters and pandemics, necessary measures should be taken to
determine the risks in the service process and to minimize these risks in order to
increase the service quality of hospitals and to enable the society to access health
services more easily. Studies evaluating the risks that may arise in the hospital during
the pandemic period are very rare in the literature. In this context, the risks that may
arise especially during the pandemic were evaluated and preventive measures were
presented.

Therefore, in this study, an interval-valued Pythagorean fuzzy technique for order
preferences by similarity to ideal solution (IVPF-TOPSIS) based risk prioritization
approach is proposed. Since the risk assessment studies contain uncertainty due
to the subjective nature of human judgments, interval-valued Pythagorean fuzzy
sets (IVPFSs) can reflect the fuzziness, ambiguity, and uncertainty well in making
decisions. The proposed approach is further applied in prioritizing the risks that
emerged at hospitals in times of the Covid-19 pandemic.

The rest of the chapter is presented as follows: literature review of IVPFSs and
IVPF-TOPSIS are presented in the next section. The situation analysis of Turkey’s
covid-19 pandemic is given in Sect. 3. The applied methodology is presented in
Sect. 4. The case study is given in Sect. 5. In the last section, the conclusion is
presented.

2 Literature Review

The evaluator role of decision-makers in decision-making problems requires the use
of fuzzy logic theory in the face of various uncertainties. Subjectivity and uncertainty
in the judgments of the evaluators about the evaluation criteria is an important and
difficult problem that alsooccurs in the solutionof theproblemaddressed in this study.
The fuzzy set theory (FST) presented by Zadeh [4] has been previously applied to
the solution of many decision problems. This theory has been developed over time
and transformed into different versions and these versions have been effectively
applied to many decision problems. They have also been merged with various multi-
criteria decision-making (MCDM) methods ([5–11]). One of these extensions is
Pythagorean fuzzy sets. Pythagorean fuzzy sets, first proposed by Yager in 2014, are
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a new extension of intuitionistic fuzzy sets. These sets inherit the durability feature
of intuitionistic fuzzy sets. They do not only depict the imprecise and ambiguous
information that intuitionistic fuzzy set can capture, but they can also model the
more complex uncertainty in practical situations, which the latter cannot identify.
An extended version of Pythagorean fuzzy sets is IVPFSs which this study selects as
amethodology to handle ambiguous information [12–15]. IVPFSs allowmembership
and non-membership degrees to a specific set to have a range value. Therefore, they
have wider application potential due to their ability to handle strong uncertainty in
the decision-making process and can be used in this research to capture uncertain
information in the prioritization of risks that emerged at hospitals in Covid-19 times.
When the advantages of the TOPSIS method, which has been successfully applied to
many crucial risk prioritization problems, are added to the aforementioned advantage
of this special set (IVPFSs), an answer to the question of why the proposed approach
is applied to this particular problem can emerged.

In the literature, many scholars have dealt with IVPFSs and applied it to various
areas [12–20]. Garg [14], proposes an improved score function for solving MCDM
problem with partially known weight information. In another study, new exponential
operational laws and their aggregation operators for interval-valued Pythagorean
fuzzy multi-criteria decision-making are described [15]. Moreover, a new improved
accuracy function [12] and a new score function [13] for IVPFSs are developed.
Recently, by Garg, linguistic IVPFSs concept is introduced and applied in MCDM
domain [16]. In addition to the theoretical contributions of IVPFSs, there are some
studies that implemented IVPFSs with TOPSIS. Yu et al. [11] developed a group
decision-making sustainable supplier selection approach using extended TOPSIS
under IVPFSs. Sajjad Ali Khan et al. [21] extended the TOPSIS under IVPFSs via
Choquet integral. Ho et al. [22] proposed a Pearson-like correlation-based TOPSIS
method with IVPFSs and applied it to multiple criteria decision analysis of stroke
rehabilitation treatments. Ak and Gul [23] used integration of AHP-TOPSIS under
IVPFSs for an information security risk analysis problem. Onar et al. [24] assessed
cloud service providers by an IVPF-TOPSIS approach. Yucesan and Gul [25] used
IVPF-TOPSIS as an auxiliary MCDMmethod in hospital service quality evaluation.

Considering the findings obtained from both IVPFSs and interval-valued
Pythagoras IVPF-TOPSIS literature, this study contributes to the literature by the
following aspects and differs from similar existed ones.

(1) Theoretically, although there are many studies on IVPFSs, there are limited
studies on IVPF-TOPSIS. Among these, ones that are adapted to real-life prob-
lems consist of the mentioned studies above. Therefore, this method (IVPF-
TOPSIS) has been applied to the risk prioritization problem for the first time
in the literature to capture the uncertainty information of decision-makers. In
addition, the special case of Covid-19 increases its importance in terms of
showing the originality of the study and the applicability of such methods in
the field of public health.

(2) Secondly, to the problem of prioritizing risks, a GRA-TOPSIS integrated
approach based on IVPFSs as in Yu et al. [11] has been applied. The distance
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and similarity between the alternatives are evaluated at the same time, which
makes the ranking results more solid.

(3) Thirdly, a comparative analysis with other existing IVPF-TOPSIS approaches
is performed to provide its validity.

3 Situation Analysis of Turkey’s Covid-19 Pandemic

This disease first appeared on December 30, 2019, in Wuhan, China [26]. In nearly
6 months, the infection, which first expanded to Iran and Italy, is spread all over
the world. The world is faced with the demand for infected patients who apply to
hospital emergency units heavily and irregularly. As of July 4, 2020, it has caused
nearly 11,2 million cases and 529,882 deaths in the world [3]. The symptoms of
Covid-19 are not specific, and they can range from no symptoms (asymptomatic) to
severe pneumonia and death. According to the figures of the report “Report of the
WHO-China Joint Mission on Coronavirus Disease 2019 (Covid-19)”, typical signs
and symptoms are expressed such as fever, dry cough, fatigue, sputum production,
shortness of breath, sore throat, and headache[27].

As of June 28, 2020, similar to the fights of countries against this pandemic
throughout the world, Turkey continues its struggle. After the first Covid-19 cases in
Turkey were notified on March 11, 2020, higher than 3 million tests were performed
in total. Between 1 and 28 June, nearly 1,2 million tests were performed. In total,
198,284 laboratory-confirmedCovid-19 cases and 5,097 deaths due toCovid-19 have
been reported in Turkey. The total number of hospitalizations was 105,416 and 5,773
patients were hospitalized between 22 and 28 June. The recovery rate and death rate
of all confirmed cases were 86.04% and 2.57%, respectively [28]. All these statistical
figures show that Turkey is at a better level than the world average. This is related to
Turkey’s early isolation decisions and as well as the case of being prepared for such
an event. Therefore, hospitals are required to prepare for such pandemics.

4 Applied Methodology

Traditionally, it is assumed that the information obtained when making assessments
is known as crisp numbers [14, 15]. Moreover, MCDM-based models merged with
fuzzy extensions are frequently applied to occupational risk assessment problems
in hospitals [29, 30]. However, the use of MCDM in prioritization problems (such
as risk prioritization) along the area of public health or the emerging of Covid-19
pandemic is a new platform to make research [31–33]. Therefore, the current study
aims to remedy the gap in this respect. This will help hospital decision-makers and
national policymakers in making hospitals ready for such outbreaks. The proposed
method is presented in Fig. 1. Also, the calculation details are discussed in Sect. 4.
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The Proposed Approach

Determination of experts

Determination the risks emerged at 
hospitals during Covid-19 

pandemic

Procedural steps of  IVPF-TOPSIS-based approach

Step 1: Construction of decision 
matrix

Step 2: Calculation of expected 
Pythagorean fuzzy decision matrix 

Step 3: Calculation of the group 
aggregated decision matrix based on 

all experts

Step 4: Calculation Weight of risk 
parameters 

Step 5: Determination of  Positive 
ideal solution (PIS) and negative ideal 

solution (NIS) 

Step 6: Computation of distance 
values and weighted distance values 

from PIS and NIS. 

Step 7: Computation of the grey 
relational coefficients and grades  

Step 8: Calculation of the integrated 
value of distance and grey relational 

grade 

Step 9: Calculation of the optimized 
ideal reference point 

Step 10: Computation of the distance 
from each risk to point R  

Step 11: Prioritizing Covid-19 risks’  
values in increasing order and 
obtaining the final priorities

Fig. 1 Flow chart of the proposed approach

In the applied methodology, the uncertain information of decision-makers is
considered in IVPFSs. Weights of decision-makers and criteria are determined in
the way of Yu et al. [11]. Then, hazards that emerged due to Covid-19 pandemic at
hospitals are evaluated by the grey correlation analysis (GRA) andTOPSIS integrated
method [11].
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4.1 Preliminaries

In this section,we provide some definitions, notions, and formulae regarding IVPFSs.

Definition 1 Let X be a universe of discourse. A Pythagorean fuzzy set P is an object
having the form [11–15]:

P = {〈x, μP(x), vP(x)〉|x ∈ X } (1)

where μP(x) : X �→ [0, 1] defines the degree of membership and vP(x) : X �→
[0, 1][0, 1] defines the degree of non-membership of the element x ∈ X to P,
respectively, and, for every x ∈ X , it holds:

0 ≤ μP(x)2 + vP(x)2 ≤ 1 (2)

For any P and x ∈ X , πP(x) =
√
1 − μ2

P(x) − v2P(x) is called the degree of
indeterminacy of x to P.

Definition 2 Let β1 = P(μβ1 , vβ1) and β2 = P(μβ2 , vβ2) be two Pythagorean fuzzy
numbers in a simple demonstration then the following operations are defined ([34–
37]):

β1 ⊕ β2 = P(

√
μ2

β1
+ μ2

β2
− μ2

β1
μ2

β2
, vβ1 vβ2) (3)

λβ1 = P(

√
1 − (1 − μ2

β1
)λ, (vβ1)

λ), λ > 0 (4)

d(β1, β2) =
√(

μβ1 − μβ2

)2 + (
vβ1 − vβ2

)2 + (
πβ1 − πβ2

)2
(5)

Definition 3 An IVPFS P̃i of the universe of discourseU is depicted as follows [38]:

P̃i =
{
u, ([μL

P̃i
(u), μU

P̃i
(u)], [vLPi

(u), vUPi
(u)]|uεU

}
where 0 ≤

(
μU
P̃i

(u)
)2 +

(
vU
P̃i

(u)
)2 ≤ 1

Definition 4: An intuitionistic entropy of Pythagorean fuzzy set is computed via
Eq. (6) [39].

e = − 1

m ∗ ln2

m∑
i=1

[
μβi

2ln
(
μβi

)2 + vβi
2ln

(
vβi

)2 −
(
1 − πβi

2
)
ln

(
1 − πβi

2
)

− πβi
2ln2

]

(6)
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4.2 Procedural Steps of the Proposed IVPF-TOPSIS-based
Approach

First, experts should determine the status of risks in the decision-making process
[40]. For anMCDM problem, a decision matrix is required to construct the decision-
making process. Since, the problem that this study has dealt with a risk prioritization,
we have designed the decision matrix whose elements include the values of all
alternatives with respect to each criterion under IVPFSs.

LetCR = {cv1, cv2, . . . , cvm}m ≥ 2 be a set of alternatives (for this study “Covid-
19 risk”), RP = {

rp1, rp2, . . . , rpn
}
be a set of criteria set (for this study “risk

parameter”), w = {w1,w2, . . . ,wn} be a set of criteria weights for this study “risk
parameter weight”) that satisfy the conditions of 0 ≤ wj ≤ 1 and

∑n
j=1wj = 1,

and DM = {dm1, dm2, . . . , dmh} be a set of decision-makers’ weights for this study
“decision-maker (expert) weight”). Also, while λ = (λ1, λ2, . . . , λh) refers to the
optimism degree of experts, η = (η1, η2, . . . ., ηh) shows the relative weights of
experts satisfying

∑h
k=1ηk = 1. The procedural steps of our proposed IVPF-TOPSIS-

based risk prioritization approach are as follows:

Step 1: This step handles the construction of the decision matrix. In determining
the ratings of decision-makers regarding alternatives with respect to the criteria, the
IVPFSs-based linguistic scale given in Table 1 is used. Here, k refers to the indices
for decision-makers.

Step 2: In this step, expected Pythagorean fuzzy decision matrix of the decision-
makers is calculated using the optimism degree λ.

μk
ij = (1 − λk)μ

kL
ij + λkμ

kU
ij (7)

vkij = λkv
kL
ij + (1 − λk)v

kU
ij (8)

Step 3: The group aggregated decisionmatrix based on all experts’ expected decision
matrices by Eq. (9).

Table 1 The IVPFSs-based linguistic scale [11]

Linguistic term [μkL
ij , μkU

ij ] [vkLij , vkUij ]
Very Good VG 0.80 0.90 0.00 0.15

Good G 0.70 0.80 0.15 0.25

Medium Good MG 0.55 0.70 0.25 0.40

Medium M 0.45 0.55 0.40 0.55

Medium Poor MP 0.30 0.45 0.55 0.70

Poor P 0.20 0.30 0.70 0.80

Very Poor VP 0.00 0.20 0.80 0.95
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T =
{√

1 −
∏h

k=1

(
1 − μk2

ij

)ηk
,
∏h

k=1
vk

ηk

ij

}
(9)

Step 4: This step is aboutweight calculation of risk parameters using entropymeasure
of each parameter as in Eq. (10)

entj = − 1

m ∗ ln2

m∑
i=1

[
μij

2ln
(
μij

)2 + vij
2ln

(
vij

)2 −
(
1 − πij

2
)
ln

(
1 − πij

2
)

− πij
2ln2

]

(10)

Also, a divergence is introduced inEq. (11) and normalized risk parameterweights
are computed as in Eq. (12).

dj = 1 − entj, j = 1, 2, . . . , n (11)

wj = dj∑n
j=1dj

, j = 1, 2, . . . , n (12)

Step 5: Positive ideal solution (PIS) and negative ideal solution (NIS) are determined
using Eqs. (13)–(14).

PIS = A+ = {(
μ1

+, v1
+, π1

+)
,
(
μ2

+, v2
+, π2

+)
, . . . ,

(
μn

+, vn
+, πn

+)}
(13)

NIS = A− = {(
μ1

−, v1
−, π1

−)
,
(
μ2

−, v2
−, π2

−)
, . . . ,

(
μn

−, vn
−, πn

−)}
(14)

where μj
+ = max

{
μij

}
, vj+ = min

{
vij

}
, μj

− = min
{
μij

}
, vj− = max

{
vij

}
,

π+
j =

√
1 − μ+2

j − v+2
j , π−

j =
√
1 − μ−2

j − v−2
j

Step 6: This step concernswith computation of distance values andweighted distance
values from PIS and NIS. The required equations are provided in Eqs. (15)–(18).

�+
ij =

√{(
μij − μj

+)2 + (
vij − vj+

)2 + (
πij − πj

+)2}
(15)

�−
ij =

√{(
μij − μj

−)2 + (
vij − vj−

)2 + (
πij − πj

−)2}
(16)

dist+i =
∑n

j=1
wj�

+
ij (17)
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dist−i =
∑n

j=1
wj�

−
ij (18)

Step 7: According to the study of Yu et al. [11], grey relational analysis is merged into
TOPSIS. The grey relational coefficients and grades are computed as Eqs. (19)–(22),
respectively.

ψ+
ij =

min
i

min
j

�+
ij + ρ max

i
max

j
�+

ij

�+
ij + ρ max

i
max

j
�+

ij

(19)

ψ−
ij =

min
i

min
j

�−
ij + ρ max

i
max

j
�−

ij

�−
ij + ρ max

i
max

j
�−

ij

(20)

ς+
i = 1

n

∑n

j=1
wjψ

+
ij (21)

ς−
i = 1

n

∑n

j=1
wjψ

−
ij (22)

Step 8: In this step, the integrated value of distance and grey relational grade is
computed as in Eqs. (23)–(24).

inti
+ = α ∗ disti

− + β ∗ ς+
i , i = 1, 2, . . . ,m (23)

inti
− = α ∗ disti

+ + β ∗ ς−
i , i = 1, 2, . . . ,m (24)

Here α+β = 1. Generally, they are set to 0.5. inti+ and inti− refer to the closeness
of the ith Covid-19 risk to PIS and NIS.

Step 9: The optimized ideal reference point is calculated as in Eq. (25).

R = (
r+, r−) = (

max
(
inti

+)
,min(inti

−)
)
, i = 1, 2, . . . ,m (25)

Step 10: In this step, the distance from each Covid-19 risk to point R is computed as
in Eq. (26).

CCi =
√(

inti+ − r+)2 + (
inti− − r−)2

(26)

Step 11: The final step is about prioritizing Covid-19 risks’ CCi values in increasing
order and obtaining the final priorities.
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5 Case Study: Prioritization of the Risks Emerged
at Hospitals During the Covid-19 Pandemic

In this section, a case study for the applied methodology is carried out to prioritize
the risks that emerged at hospitals during Covid-19 pandemic. For this aim, twenty-
one Covid-19 risks are determined benefiting from the experience of the decision-
makers who participated in this study at two different hospitals. These hospitals are
state hospitals situated in the Black Sea region of Turkey and face a great number
of Covid-19 cases till March 2020. The first expert is an academician who studies
mathematical modeling of Covid-19 spreading, MCDM, and fuzzy logic modeling.
The second and third experts are working in these hospitals as “assistant hospital
manager”. Regarding the risk list, three different pillars are considered as hospital
(indicated as an abbreviation of “Hospital risk: HR”), patient & staff (indicated
as an abbreviation of “Patient & staff risk: PSR”) and healthcare (indicated as an
abbreviation of “Care risk: CR”). Six hospital risks, nine patient & staff risks, and six
care risks are identified as in Table 2. The risk parameters are determined as severity,
occurrence, and detection which is used as the parameters of a classical failure mode
and effect analysis. The twenty-one Covid-19 risks are assessed with respect to these
three risk parameters considering the weights of risk parameters, decision-makers,
and optimism degree of decision-makers. For this respect, we obtain weights of risk
parameters using entropy measures as follows:

wj = (0.386, 0.315, 0.299), j = severity, occurrence, detection. Weights of
decision-makers are assumed as η = (η1, η2, η3) = (0.4, 0.3, 0.3). Finally, the
optimism degrees of decision-makers are considered as λ = (λ1, λ2, λ3) =
(0.5, 0.5, 0.5) which are all equal.

By completing the requirements for the computational procedural steps of the
proposed approach, the following step-by-step operations is performed to find the
priorities of the emerged Covid-19-related risks at the hospital sites.

In the first step, following linguistic terms and their corresponding IVPFSs shown
in Table 1, the decision matrix assessed by each expert is constructed. Then, the
expected decision matrix for each expert is calculated by Eqs. (7) and (8). In the
third step of the approach, the group aggregated decision matrix is computed by
Eq. (9) and provided in Table 3.

In the fourth step of the proposed approach, we obtained the weight of risk param-
eters using entropy measure of each parameter using Eqs. (10), (11), and (12). In the
fifth step, PIS and NIS values are computed using Eqs. (13) and (14) as in Table 4.

In the sixth step, the weighted distances from each Covid-19 risk to the PIS
and the NIS are computed using Eqs. (15)–(18). Then, the grey relational grades are
calculated as the seventh step procedures using Eqs. (19)–(22). In the eighth step, the
integrated value of distance and grey relational grade is calculated by Eqs. (23)–(24).
The computation results are given in Table 5.

In the ninth step, the optimized ideal reference point G is obtained as (0.524,
0.081). Then, the distance from each Covid-19 risk to point G is computed using
Eq. (26). The final CCi results are given in Fig. 2. Considering the ranking of each
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Table 2 Descriptions of risks that emerged at hospitals during the Covid-19 pandemic

Risk Description of the risk at hospitals regarding Covid-19

HR1 The risk associated with isolation of the hospital’s admission unit (ED) or the whole
hospital

HR2 The risk associated with the ergonomic factors (ventilation, light, noise, etc.) factors of
the hospital

HR3 The risk associated with the disinfection of the places/room/medical device

HR4 The risk associated with the disposal of medical waste used in the treatment of
Covid-19 patients

HR5 Risks arising from social distance-based placement or layout design in the hospital
waiting areas and medical treatment

HR6 Risks arising from the location of the section where the swab sample is taken to make
a diagnosis of Covid-19

PSR1 The risk stems from non-utilizing personal protective equipment (PPE)

PSR2 Risk arising from non-following the personal hygiene rules

PSR3 The risk associated with non-following the hospital care rules, appropriate treatment
procedures and Covid-19 treatment algorithm

PSR4 The risk associated with non-performing the regular health checks due to the growing
literature on Covid-19

PSR5 The risk emerged in the transport of samples of Covid-19 patients

PSR6 Risk of non-documenting the patient records and/or keeping the Covid-19 patients
data in an organized way

PSR7 The risk due to lack of communication between the patient, the medical staff, and
relatives of patients

PSR8 Risks arising from failure to apply the necessary sterilization to medical equipment
contacted by Covid-19 suspects

PSR9 Risks arising from healthcare personnel who are in close contact with Covid-19
patients using the same living space as other staff

CR1 The risk associated with the quantity, lead time, storage, and transfer of medicine
under appropriate conditions

CR2 The risk associated with the quantity, lead time, storage, and transfer of PPEs against
Covid-19

CR3 Risk arising from the supplying of test kits

CR4 Risk arising from the supplying of respirators

CR5 Risk related to intensive care unit and other inpatients Covid-19 bed capacity

CR6 Risk related to the hospital’s food, cleaning, and generator adequacy

Covid-19 risks (byCCi values in increasing order), the PSR2 (Risk arising from non-
following the personal hygiene rules) is determined as the most crucial risk-related
Covid-19 at hospital sites.

As a result of the calculations, PSR2 was determined as the highest risk. Republic
of Turkey Ministry of Health has identified the implementation of personal hygiene
as an important criterion following the criterion of “usage of masks” in the fight
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Table 3 The group aggregated decision matrix

Covid-19
risk

Severity Occurrence Detection

HR1 0.719 0.231 0.656 0.418 0.576 0.703 0.100 0.875 0.474

HR2 0.250 0.750 0.612 0.205 0.798 0.567 0.100 0.875 0.474

HR3 0.418 0.576 0.703 0.516 0.460 0.723 0.250 0.750 0.612

HR4 0.268 0.744 0.613 0.294 0.710 0.640 0.418 0.576 0.703

HR5 0.683 0.268 0.680 0.468 0.516 0.718 0.322 0.696 0.642

HR6 0.826 0.101 0.555 0.205 0.798 0.567 0.581 0.378 0.720

PSR1 0.750 0.200 0.630 0.268 0.744 0.613 0.670 0.281 0.688

PSR2 0.750 0.200 0.630 0.625 0.325 0.710 0.786 0.149 0.600

PSR3 0.797 0.135 0.589 0.217 0.785 0.580 0.205 0.798 0.567

PSR4 0.593 0.364 0.718 0.761 0.172 0.626 0.205 0.798 0.567

PSR5 0.177 0.823 0.540 0.217 0.785 0.580 0.543 0.424 0.725

PSR6 0.161 0.835 0.525 0.294 0.710 0.640 0.375 0.625 ara> 0.685

PSR7 0.205 0.798 0.567 0.643 0.315 0.699 0.500 0.475 0.724

PSR8 0.643 0.315 0.699 0.643 0.315 0.699 0.750 0.200 0.630

PSR9 0.797 0.135 0.589 0.670 0.281 0.688 0.343 0.660 0.668

CR1 0.719 0.231 0.656 0.205 0.798 0.567 0.343 0.660 0.668

CR2 0.719 0.231 0.656 0.161 0.835 0.525 0.418 0.576 0.703

CR3 0.681 0.282 0.676 0.268 0.744 0.613 0.177 0.823 0.540

CR4 0.418 0.576 0.703 0.226 0.791 0.569 0.330 0.685 0.650

CR5 0.719 0.231 0.656 0.258 0.755 0.603 0.268 0.744 0.613

CR6 0.205 0.798 0.567 0.707 0.243 0.664 0.217 0.785 0.580

Table 4 The PIS (A +) and NIS (A−) values

Severity Occurrence Detection

A+ 0.826 0.101 0.555 0.761 0.172 0.626 0.786 0.149 0.600

A− 0.161 0.835 0.525 0.161 0.835 0.525 0.100 0.875 0.474

against Covid-19. Although this risk has a high impact on the spread of the virus,
it is very difficult to determine whether personal hygiene rules are followed. For
this reason, brochures and instructions reminding the personal hygiene rules were
placed in the visible places of the hospital. The second most important risk was
identified as PSR8. The detectability of this risk is relatively easy. But if action is
not taken, it can cause devastating effects. For this reason, Covid-19 suspects are
accepted to carry viruses from the moment they enter the hospital. The tomography
and other diagnostic devices used in the diagnosis of the disease are disinfected
after each use. The third most important risk has been identified as PSR9 medical
staff in Turkey as in other countries were affected by the virus. Some measures
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Table 5 The integrated value
of distance and grey relational
grades

Covid-19 risk inti+ inti−

HR1 0.259 0.340

HR2 0.057 0.557

HR3 0.226 0.342

HR4 0.160 0.412

HR5 0.311 0.257

HR6 0.394 0.224

PSR1 0.371 0.208

PSR2 0.524 0.081

PSR3 0.274 0.323

PSR4 0.365 0.238

PSR5 0.143 0.460

PSR6 0.117 0.489

PSR7 0.254 0.330

PSR8 0.460 0.122

PSR9 0.429 0.160

CR1 0.262 0.320

CR2 0.269 0.333

CR3 0.222 0.356

CR4 0.165 0.410

CR5 0.255 0.320

CR6 0.208 0.384

Fig. 2 CCI and priority (rank) values of Covid-19 risks
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have been taken to prevent the spread of the virus to medical staff. State-owned
guesthouses were made free of charge to healthcare professionals and they were
encouraged to reside there. The fourth most important risk has been identified as
HR6. Healthcare professionals are closer than 20 cm to take a swab sample, which
makes the virus spread possible. In this context, some measures have been taken by
the hospitals. Cabins were ordered to prevent contact with medical staff and patients.
These cabins are located in areas where there are fewer patients and healthcare
professionals. The fifth most important risk has been identified as PSR1. In order to
prevent Covid-19 transmission in healthcare professionals, N95 typemaskswith high
protection were provided. Necessary information was provided by announcing the
instructions for the use of protective equipment determined by theMinistry of Health
to medical staff. The sixth most important risk was identified as PSR4. Patients who
needed regular care and treatment during the fight against Covid-19 were adversely
affected. For this reason, “clean hospitals ”were determined for each region, and
there was no Covid-19 patient in those hospitals, and it was served to combat regular
diseases. The seventh most important risk has been identified as HR5. In order to
provide social isolation, serious changes have been made especially in emergency
departments. Covid-19 suspects were separated from the patients who would receive
other emergency services and the two groups were prevented from contacting each
other.

5.1 Comparative Study

To compare the performance of our approach in this case with other similar IVPF-
TOPSIS approaches, we conducted a comparative study. In this study, the results of
our current study (final TOPSIS scores and risk rankings) were compared with the
analysis results obtained by applying IVPF-TOPSIS of Garg [13] to our case which
uses a modified score function. The results obtained are summarized in Table 6.

In applying Garg’s IVPF-TOPSIS to our data, we used interval-valued
Pythagorean fuzzy weighted average operator (IVPFWAO) of Peng and Yang [41] in
aggregating evaluation of each three decision-maker. Theweights of decision-makers
and weights of three risk parameters are set to the same in the current approach.
Figure 3 presents the comparison of the results obtained from the current approach
with the results we obtained by applying Garg [13]. Therefore, it was concluded from
Fig. 3 that the results calculated by the approach taken from the literature coincide
with the results of the proposed approach. The correlation test for final scores and
risk rankings also supports this result. The Spearman’s Rank Correlation Coefficient
(Rho) gives a value of 0.819 (approximately 82%) for both method ranking order
results. Also, the Pearson correlation analysis is performed in final IVPF-TOPSIS
results of both approaches and value of -0.753 (approximately 75%) is obtained.
The negative and higher value shows a strong and inverse relationship between the
results. In our proposed approach, a lower final CCi value is desired unlike in Garg’s
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Table 6 Results obtained by applying Garg [13]’s IVPF-TOPSIS to our case

Covid-19 risk Distance from ideal
(d+)

Distance from
anti-ideal (d−)

Final IVPF-TOPSIS
score (CCi)

Rank

HR1 1.355 0.391 0.224 8

HR2 2.119 0.491 0.188 16

HR3 1.190 0.192 0.139 21

HR4 1.611 0.287 0.151 20

HR5 0.961 0.217 0.184 17

HR6 1.178 0.480 0.289 4

PSR1 1.017 0.355 0.259 5

PSR2 0.086 0.381 0.815 1

PSR3 1.586 0.499 0.239 6

PSR4 1.122 0.338 0.232 7

PSR5 1.901 0.449 0.191 13

PSR6 1.885 0.418 0.182 18

PSR7 1.462 0.339 0.188 15

PSR8 0.140 0.240 0.631 2

PRS9 0.705 0.372 0.346 3

CR1 1.364 0.354 0.206 10

CR2 1.354 0.381 0.220 9

CR3 1.554 0.363 0.189 14

CR4 1.566 0.301 0.161 19

CR5 1.429 0.357 0.200 11

CR6 1.792 0.438 0.197 12

IVPF-TOPSIS CCi value. In Garg’s approach, a higher CCi is desired. This is why
we obtained a negative correlation coefficient.

6 Conclusion

The quality and continuity of hospital services play an important role in reducing
the social and economic impacts of the pandemic on countries. In many countries,
the health system is not ready for a pandemic. Moreover, the system is locked and
there is a serious weakness both in the fight against pandemic and in routine health
services. In this context, in order to ensure the continuity of hospital services and
to increase the quality of service, the risks that may arise in hospitals, especially
during the pandemic period, were identified and preventive actions were taken for
high-priority risks.
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The time of the pandemic and the risks in the hospital during regular times differ
from each other. In this study, risks that may arise in the hospital are arranged by
considering pandemic conditions. In the light of the evaluations, the most important
risks were identified, and preventive measures were presented. During the pandemic,
it may be necessary to change the infrastructure, revise the processes, differentiate the
measures, and reorganize the personnel management. In addition, the interests and
concerns of healthcare personnel and patients differ during these periods. When all
these factors are considered, while preventing the detected risks improves the quality
of health care; It will be a helpful element in the decision-making mechanisms of
hospital management. It is not enough to evaluate only one hospital to be able to
analyze pandemic situation. The authors will conduct a risk analysis of all hospitals
in the region in future studies. In addition, it is planned to integrate the discrete event
simulation with the risk analysis for hospitals. Thus, the effects of the preventive
measures can be determined and how hospitals can serve in pandemics and natural
disasters can be tested with different scenarios. This information will assist decision-
makers on which regional hospitals can be declared “pandemic hospitals”.
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Assessment of Agriculture Crop Selection
Using Pythagorean Fuzzy
CRITIC–VIKOR Decision-Making
Framework

Arunodaya Raj Mishra, Pratibha Rani, and Sitesh Bharti

1 Introduction

The selection of an appropriate crop pattern shows an important role in encouraging
sustainable farming procedure, optimizing natural resources, and maximizing the
economic benefits of any country. In India, there are mainly two seasons for farming:
Kharif season andRabi season. TheKharif season crops like Zeamays, cotton, paddy,
jute, sugarcane, Sorghum, etc., are cultivated in the season from April to October.
The crop pattern selection process is much more complicated due to various factors
that vary from region to region. Many criteria as available environmental resources,
water quality, soil quality, and farming process influence the process of crop pattern
assessment.

In recent times, lots of studies have been presented regarding agricultural sustain-
ability across the globe. For illustration, Roy and Chan [47] developed a procedure
by including agriculture sustainability factors in Bangladesh. Ramırez-Garcıa et al.
[39] suggested an multi-criteria decision-making (MCDM) analysis for the selec-
tion of covering crop species and cultivars. A method for crop pattern selection
was suggested by Sorensen et al. [50]. Pramanik [37] and Bozdag et al. [4] studied
location selection for agricultural land in Darjeeling district (India) and Cihanbeyli
(Turkey), respectively, by employing AHP- and GIS-based approaches. It has been
proven that the fuzzy sets (FSs) theory-based MCDM procedure offers many irre-
placeable merits over the classical MCDMmethods. The theory of FSs expresses the
linguistic assessments and reduces the human inaccuracy in MCDM processes [57].
Rezaei-MoghaddamandKarami [46] designed a framework based on theAHPmodel
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for selecting the sustainable agricultural progress. Cobuloglu and Buyuktahtakin [7]
suggested a new fuzzy-based method for biomass crop assessment. Qureshi et al.
[38] evaluated the Indian farming system by a new fuzzy-based method. Deepa et al.
[12] proposed a predictivemathematical model to handle and evaluate the agriculture
crop in India. Deepa and Ganeshan [10] developed a soft decision system with rough
set and VIKOR model to select the agriculture crop in India. Deepa and Ganeshan
[11] recommended DRSA based model for agriculture crop classification. Samba-
sivam et al. [48] applied a combined model with AHP and TOPSIS approaches for
assessing an ideal Rabi crop in India. To the best of the authors’ awareness, this is the
first work which offers crop pattern assessment for Kharif season with sustainable
farming procedures under Pythagorean fuzzy sets (PFSs).

In the last two decades, there are various extensions on FSs available in the liter-
ature, namely, intuitionistic fuzzy sets (IFSs), PFSs, and others. To avoid the inad-
equacy of FSs, Atanassov [3] established the concept of IFSs, which are described
by belongingness degree (BD) and non-belongingness degree (ND), and satisfies
a requirement that the addition of the BD and ND is less than or equal to unity.
Mishra [29] introduced a method on the basis of trigonometric entropy and simi-
larity measures aiming for the evaluation of the township development problems
with IFSs. Das et al. [9] recommended a robust decision-making framework with
intuitionistic fuzzy numbers. Djatna et al. [14] introduced an intuitionistic fuzzy
decision tree to classify the different types of stroke disease in BioMed Central data.
Zheng and Liu [59] generalized the Triple I model for multiple-rules approximate
reasoning on IFSs. Kumari and Mishra [25] evaluated and selected the most suitable
green supplier by employing multi-criteria COPRAS approach. So far, several other
researchers have studied many theories related to IFSs and implemented in pattern
recognition, fuzzy reasoning, fuzzy control, decision-making, etc. [22, 27, 31].

In several applications, there may be a case in which the experts present his/her
opinion as (

√
3
2 , 1

2 ). Consequently, IFS is unable to deal with this situation because√
3
2 + 1

2 > 1. To conquer this issue, Yager [55] established the theory of PFSs,
described by the BD, ND, and HD, and satisfied a constraint that the square addition
of belongingness degree (BD) and non-belongingness degree (ND) is less than or
equal to 1. The IFSs and PFSs can express the opinions of decision-makers (DMs)
more systematically. Moreover, if one is an intuitionistic fuzzy number (IFN), then it
must also be a Pythagorean fuzzy number (PFN), but not all PFNs are the IFNs. Thus,
the PFSs are assumed as a more reliable model to solve the complex MCDM prob-
lems. Zhang and Xu [58] studied basic operational laws for PFNs. Peng and Yang
[34] suggested some elementary operations to solve the MCDM issue for PFSs.
Ma and Xu [28] recommended symmetric operators for PFSs with application in
MCDM problem. Wu and Wei [53] initiated some Hamacher aggregation operators
for PFSs and utilized them for multiple criteria decision analysis. Further, Garg [16]
pioneered some new Pythagorean fuzzy (PF) weighted and ordered weighted opera-
tors based on confidence levels. Garg [18] suggested an innovative PF-based method
with probabilistic information and immediate probabilities philosophy. With the use
of PF-entropy and PF-divergence measures-based decision-making framework, the
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most desirable renewable energy technologies are evaluated and selected by Rani
et al. [42]. Further, Garg [17] and Garg [19] introduced some neutral operational
laws based on PF-geometric aggregation operators and PF-averaging aggregation
operators, respectively, and then employed for multiple criteria decision analysis.
In a further study, Wang et al. [51] presented a novel PF-entropy measure and a
series of interactive Hamacher power aggregation operators for PFSs. Akram et al.
[2] suggested two decision-making methods, namely, ELECTRE-I and TOPSIS
with complex PFSs for evaluating the multi-criteria group decision-making prob-
lems with complex Pythagorean fuzzy information. Rani et al. [45] suggested a
novel PF-WASPAS method for a multi-criteria physician selection problem with
uncertain information. Apart from them, various other studies have been presented
from different perspectives such as aggregation operators [15, 24, 56], information
measures [36, 40, 43, 54], decision-making approaches [1, 20, 41]. Nonetheless, no
work has been presented regarding the assessment of Kharif season crops under the
environment of PFSs.

The application of MCDM depends on the computing of criteria weight, which
is significant for selecting and sorting. The weight determination method is divided
into objective weights and subjective weights, depending on whether the weight
is computed indirectly from the result or directly by decision-makers. The criteria
importance through inter-criteria correlation (CRITIC) method, proposed by Diak-
oulaki et al. 13, is based on the standard deviation which uses correlation anal-
ysis to measure the value of each criterion and achieves relatively objective criteria
weights in the MCDM problems. It collects entire preference information contained
in the evaluation criteria based on the analysis of the evaluation matrix. Recently,
few hybrid methods have been introduced by combining CRITIC and many other
MCDM approaches under uncertain environments [23, 35, 52]. However, there is no
work in the literature which evaluates the related criteria by PF-CRITIC method in
the assessment of Kharif season crops.

MCDM, a part of decision theory, is an act of choosing an ideal choice from
a given set of decision variants. Due to widespread changes and development of
socio-economic surroundings, practical decision-making problems are becoming
more and more complex. During the past few decades, a variety of approaches have
been proposed to deal with real-life MCDM problems, where each of them has its
own advantages and drawbacks. To tackle the MCDM problems, Opricovic [33]
pioneered a compromise programming-based method, named as VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR). The main objective of this method
is to present compromise solution(s) that supports the minimum individual regret for
the opponent and the maximum group utility for the majority. The VIKOR approach
provides the ranking of a set of alternatives and generates compromise solutions
with the closeness to the ideal solution similar to TOPSIS approach, but the basic
principle of the TOPSIS is that the chosen alternative should be the closest to the
ideal solution and farthest to the negative ideal solution. To deal with the uncertainty
that arises in MCDM problems, Mishra and Rani [30] studied a collective MCDM
frameworkbasedonShapley function, classicalVIKORapproach, entropy, anddiver-
gence measures with IFSs. With the use PF-VIKOR method, a set of electric vehicle
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charging stations was ranked by Cui et al. [8]. Chen [6] suggested interval-valued
Pythagorean fuzzy-based VIKOR technique for the assessment of pilot hospitals
under an uncertain environment. Liang et al. [26] evaluated and ranked the quality
of internet banking websites in the Ghanaian banking industry by using a combined
methodologybasedonVIKOR,TODIM, andPFSs.Rani et al. [42] recommendedPF-
VIKOR-based decision-making method to rank the renewable energy technologies
in India. In another study, Naeem et al. [32] developed a newMCDM structure based
on TOPSIS and VIKORmethods with Pythagorean fuzzy soft set. Most recent, Rani
and Mishra [44] evaluated the eco-industrial thermal plants by employing single-
valued neutrosophic set-based VIKOR method. Although, several other authors [21,
41, 49] have developed VIKOR under different fuzzy environments. According to
the existing literature, we have found that no one has combined the CRITIC and
VIKOR methods with PFSs for the MCDM of the Kharif season crops.

1.1 Motivation and Contributions

Uncertainty is commonly occurred in theKharif season crops assessment process due
to the presence of multiple constraints, lack of knowledge, vague human mind, and
inconsistency of the problem, therefore, this process can be considered as complex
MCDM problem. In the recent past, PFSs have been verified as one of the flex-
ible and superior tools to cope with the uncertainty and ambiguity that occurred in
real-life MCDM problems. Consequently, the present chapter focuses on the envi-
ronment of PFSs. As far as we know, there is no study in the literature regarding
a combined decision-making framework based on the combination of CRITIC and
VIKOR approaches with entropy and divergence measures under PFSs environment.
Thus, this is the first study which combines the CRITIC andVIKOR approaches with
PFSs and named PF-CRITIC–VIKOR. In this methodology, the objective criteria
weights estimated by the CRITIC model are more sensible for the MCDM process.
Next, the VIKOR method implements a simplistic calculation process with accurate
and consistent results for assessing Kharif season crops.

The major contributions of the chapter are explained as follows.

(a) To offer a comprehensive Pythagorean fuzzy modeling structure by covering
several factors in the selection of Kharif season crop patterns.

(b) To evaluate the importance of criteria, CRITIC method is applied and VIKOR
method is used to assess the Kharif season crop pattern for sustainable farming
practices.

(c) Newdivergencemeasure is developed to implementVIKORmodel and entropy
measure based method to compute the decision-makers’ weight.

We summarize the present study in the followingmanner: Section 2 presents basic
concepts related to PFSs. Section 3 introduces new divergence and entropy measures
for PFSs. Section 4 proposes a novel PF-CRITIC–VIKOR method for the evalua-
tion of MCDM problems within uncertain environment, wherein decision-makers
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and criteria weights are fully unknown. To reveal the effectiveness of the proposed
method, Sect. 5 presents an illustrative case study of Kharif season crops assessment,
in which the evaluation values of the alternatives over the criteria are given in terms
of PFNs. In addition, comparative and sensitivity analyses are discussed to reveal
the potentiality of the proposed method. Section 6 concludes the whole study and
presents the future research directions.

2 Preliminaries

This section presents some elementary notions of PFSs, which are used throughout
this study.

Definition 1 ([55]) A PFS J on a fixed set � is defined as J =
{〈ui , μJ (ui ), νJ (ui )〉|ui ∈ �}, where μJ : � → [0, 1] and νJ : � → [0, 1]
denote the BD and ND of an element ui ∈ �, respectively and for each ui ∈ �,
0 ≤ (μJ (ui ))

2 + (νJ (ui ))
2 ≤ 1.

The degree of indeterminacy is denoted by πJ (ui ) =
√
1 − μ2

J (ui ) − ν2
J (ui ), for

every ui ∈ �. Zhang and Xu [58] defined a PFN as η = J
(
μη, νη

)
which holds

μη, νη ∈ [0, 1] and 0 ≤ μ2
η + ν2

η ≤ 1.

Definition 2 Consider a PFN η = J
(
μη, νη

)
. Then score and accuracy values of η

are given by Zhang and Xu [58], Peng and Yang [34]:

S(η) = (
μη

)2 − (
νη

)2
, S(η) ∈ [−1, 1] and �(η) = (

μη

)2 + (
νη

)2
, �(η) ∈ [0, 1].

As S(η) ∈ [−1, 1], then Wu and Wei [53] presented an improved score value for
η, given as

S
∗(η) = 1

2
(S(η) + 1), where S(η) ∈ [0, 1]. (1)

Definition 3 Let η = J
(
μη, νη

)
, η1 = J

(
μη1 , νη1

)
and η2 = J

(
μη2 , νη2

)
be the

PFNs. Then, the following operations on PFNs as [55].

ηc = J
(
νη, μη

)
,

η1 ⊕ η2 = J
(√

μ2
η1

+ μ2
η2

− μ2
η1

μ2
η2

, νη1νη2

)
,

η1 ⊗ η2 = J
(
μη1μη2 ,

√
ν2

η1
+ ν2

η2
− ν2

η1
ν2

η2

)
,

λη = J

(√
1 − (

1 − μ2
η

)λ
,
(
νη

)λ

)
, λ > 0,

ηλ = J

((
μη

)λ
,

√
1 − (

1 − ν2
η

)λ

)
, λ > 0.
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Definition 4 Let J, K ∈ PFSs(�). A real-valued function D : PFSs(�) ×
PFSs(�) → R is said to be PF-divergence measure (PF-DM) if satisfies the
postulates, given as Rani et al. [42].

(a1). D(J, K ) = D(K , J ),
(a2). D(J, K ) = 0 ⇔ J = K ,
(a3). D(J ∩ L , K ∩ L) ≤ D(J, K ) for every L ∈ PFS(�),
(a4). D(J ∪ L , K ∪ L) ≤ D(J, K ) for every L ∈ PFS(�).

Definition 5 A PF-entropy (PFE) E : PFS(�) → [0, 1] is a real-valued mapping
which satisfies the following assumptions [36, 42]:

(P1). 0 ≤ E(J ) ≤ 1;
(P2). E(J ) = 0 iff J is a crisp set;
(P3). E(J ) = 1 iff μJ (ui ) = νJ (ui ),∀ui ∈ �;
(P4). E(J ) = E(J c);
(P5). For each ui ∈ �, E(J ) ≤ E(K ) if J is less than K,

i.e., μJ (ui ) ≤ μK (ui ) ≤ νK (ui ) ≤ νJ (ui ) or νJ (ui ) ≤ νK (ui ) ≤ μK (ui ) ≤ μJ (ui ).

3 Proposed Divergence and Entropy Measures

As the divergence and entropy measures have widely been employed in real-world
problems, however, very few authors have focused their attention on the development
of new PF-DM and PFE. Thus, the aim of the section is to first introduce a new
divergence measure within PFSs context. Next, based on the proposed divergence
measure, we have introduced a new entropy measure for PFSs. On the basis of these
measures, we will develop a scientific decision-making tool in the next section.

Let J, K ∈ PFSs(�). Then divergence measure for PFSs is defined by

D(J, K ) = 1

n

n∑
i =1

(∣∣μ2
J (ui ) − μ2

K (ui )
∣∣. exp

( ∣∣μ2
J (ui ) − μ2

K (ui )
∣∣

1
2

(
μ2

J (ui ) + μ2
K (ui )

)
)

+ ∣∣ν2
J (ui ) − ν2

K (ui )
∣∣ exp

( ∣∣ν2
J (ui ) − ν2

K (ui )
∣∣

1
2

(
ν2
J (ui ) + ν2

K (ui )
)
)

+∣∣π2
J (ui ) − π2

K (ui )
∣∣ exp

( ∣∣π2
J (ui ) − π2

K (ui )
∣∣

1
2

(
π2
J (ui ) + π2

K (ui )
)
))

. (2)
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Theorem 1 The function Eq. (2) is a valid PF-DM.

Proof (a1)–(a2). Proofs are omitted here.
(a3). For J, K , L ∈ PFSs(�), we have

∣∣min
(
μ2

J (ui ), μ
2
L(ui )

) − min
(
μ2

K (ui ), μ
2
L(ui )

)∣∣ ≤ ∣∣μ2
J (ui ) − μ2

K (ui )
∣∣,∣∣min

(
ν2
J (ui ), ν

2
L(ui )

) − min
(
ν2
K (ui ), ν

2
L(ui )

)∣∣ ≤ ∣∣ν2
J (ui ) − ν2

K (ui )
∣∣

and
∣∣min

(
π2
J (ui ), π

2
L(ui )

) − min
(
π2
K (ui ), π

2
L(ui )

)∣∣ ≤ ∣∣π2
J (ui ) − π2

K (ui )
∣∣.

Therefore, we obtain

(∣∣min
(
μ2

J (ui ), μ
2
L(ui )

) − min
(
μ2

K (ui ), μ
2
L(ui )

)∣∣

exp

( ∣∣min
(
μ2

J (ui ), μ
2
L(ui )

) − min
(
μ2

K (ui )μ2
L(ui )

)∣∣
1
2

(
min

(
μ2

J (ui ), μ
2
L(ui )

) + min
(
μ2

K (ui ), μ2
L(ui )

))
))

≤
(∣∣μ2

J (ui ) − μ2
K (ui )

∣∣ exp
( ∣∣μ2

J (ui ) − μ2
K (ui )

∣∣
1
2

(
μ2

J (ui ) + μ2
K (ui )

)
))

,

(∣∣min
(
ν2
J (ui ), ν

2
L(ui )

) − min
(
ν2
K (ui ), ν

2
L(ui )

)∣∣

exp

( ∣∣min
(
ν2
J (ui ), ν

2
L(ui )

) − min
(
ν2
K (ui ), ν2

L(ui )
)∣∣

1
2

(
min

(
ν2
J (ui ), ν

2
L(ui )

) + min
(
ν2
K (ui ), ν2

L(ui )
))

))

≤
(∣∣ν2

J (ui ) − ν2
K (ui )

∣∣ exp
( ∣∣ν2

J (ui ) − ν2
K (ui )

∣∣
1
2

(
ν2
J (ui ) + ν2

K (ui )
)
))

,

and

(∣∣min
(
π2
J (ui ), π

2
L(ui )

) − min
(
π2
K (ui ), π

2
L(ui )

)∣∣

exp

( ∣∣min
(
π2
J (ui ), π

2
L(ui )

) − min
(
π2
K (ui ), π2

L(ui )
)∣∣

1
2

(
min

(
π2
J (ui ), π

2
L(ui )

) + min
(
π2
K (ui ), π2

L(ui )
))

))

≤
(∣∣π2

J (ui ) − π2
K (ui )

∣∣. exp
( ∣∣π2

J (ui ) − π2
K (ui )

∣∣
1
2

(
π2
J (ui ) + π2

K (ui )
)
))

, ∀ui ∈ �

This implies that D(J ∩ L , K ∩ L) ≤ D(J, K ) for every L ∈ PFS(�).
(A4). In a similar way, we can prove D(J ∪ L , K ∪ L) ≤ D(J, K ) for every

L ∈ PFS(�).
Hence, the given measure D(J, K ) is a valid PF-divergence measure.

Example 1 To illustrate the effectiveness of the proposed divergence measure, we
have compared the performances of the proposed and existing distance and diver-
gence measures, given by Chen [5], Rani et al. [42, 45] on two common datasets,
and results are presented in Table 1.
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From Table 1, we can see that J1 = J2, but K1 �= K2 and now, when we compare
the outcomes under Case I and Case II, we obtain the distance measures given by
Chen [5], Rani et al. [42, 45] generate counter-intuitive results which are highlighted
in Table 4. However, the proposed divergence measure is free from counter-intuitive
results, which shows its effectiveness over the existing measures.

On the basis of proposed divergence measure, we have developed a relation
between PF-DM and PF-entropy measure as follows:

E(J ) = 1 − 1

2 exp(2)
D

(
J, J c

)
, (3)

where

E(J ) = 1 − 1

2n exp(2)

n∑
i=1

(∣∣μ2
J (ui ) − ν2

J (ui )
∣∣ exp

( ∣∣μ2
J (ui ) − ν2

J (ui )
∣∣

1
2

(
μ2

J (ui ) + ν2
J (ui )

)
))

.

(4)

Theorem 2 The function Eq. (4) is a valid PFE.

Proof: In order to verify this theorem, the expression Eq. (4) must hold the require-
ments (p1)–(p5) of Definition 5. The proof is obvious; hence, we omitted this
proof.

4 Pythagorean Fuzzy-CRITIC–VIKOR
(PF-CRITIC–VIKOR) Methodology

This section integrates the CRITIC and the VIKOR approaches under PFSs envi-
ronment. The CRITIC method is extended with PFSs and employed to assess the
attribute weights. In addition, the VIKORmodel is extended with PF-DM and PFE to
rank the alternatives. Now, the calculation steps for combined PF-CRITIC–VIKOR
methodology are presented as follows (Fig. 1):

Step 1: Initiate the alternative and attribute

The doctrine of MCDM model is to select the most desirable choice among the p
options C = {C1,C2, . . . ,Cp} under the criterion set R = {

R1, R2, . . . , Rq
}
. It is

assumed that a committee of l experts A = {A1, A2, . . . , Al} is created to obtain

the ideal option(s). Suppose Z =
(
z(k)
i j

)
, i = 1(1)p, j = 1(1)q be the PF-decision

matrix obtained by decision-makers (DMs), where z(k)
i j describes the assessment of

an option Ci over attribute R j in the form of PFNs, expressed by kth DM.
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Fig. 1 Flowchart of developed PF-CRITIC–VIKOR method

Step 2: Determine the weights of the DMs

Let λ = (λ1, λ2, . . . , λl)
T be the weights of l DMs such that

∑l
k=1 λk = 1. Let the

DMs’ weights are assumed as Linguistic variables (LVs) that are articulated in PFNs.
Let Ak = (μk, νk) be a PFN for the evaluation of the kth DM. Based on PFE, the
weight of expert is estimated by

λk = 1 − E(Ak)

k − ∑�
j=1 E(Ak)

. (5)

Step 3: Build the aggregated PF- decision matrix (APF-DM)

To construct the APF-DM, combining each individual one into a group decision
matrix based on DMs judgments is required. To accomplish this, PF-weighted
averaging operator (PFWAO) is employed and then R = (

εi j
)
p×q where
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εi j = (
μ̃i j , ν̃i j

) = PFW Aλ

(
z(1)
i j , z(2)

i j , . . . , z(�)
i j

)

=
⎛
⎝

√√√√1 −
�∏

k= 1

(
1 − μ2

i jk

)λk

,

�∏
k=1

(
νi jk

)λk

⎞
⎠. (6)

Step 4: Utilize the CRITIC approach for the evaluation of criteria weights

Firstly, assume that each criterion has different importance. Let ω =(
ω1, ω2, . . . , ωq

)T
be the attribute weight vector such that ω j ∈ [0, 1] and∑q

j=1 ω j = 1. Thismethod unites the intensity contrast of every attribute and conflict
among the attributes. Intensity contrast of attribute is assessed by the standard devi-
ation (SD) and conflict among the attributes is calculated by using the correlation
coefficient (CRC). The steps for CRITIC method under PFSs context are given as

Step 4-A: Estimate the score matrix S = (
εi j

)
p×q , i = 1(1)p, j = 1(1)q, where

εi j = μ̃2
i j − ν̃2

i j , (7)

Step 4-B: Construct the standard PF-matrix S̃ = (
χ̃i j

)
p×q , where

χ̃i j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εi j − ε−
j

ε+
j − ε−

j

, j ∈ Rb

ε+
j − εi j

ε+
j − ε−

j

, j ∈ Rn

(8)

wherein ε+
j = max

i
εi j and ε−

j = min
i

εi j .

Step 4-C: Compute the attributes SDs with the following expression:

σ j =
√∑p

i=1

(
χ̃i j − χ j

)2
p

, wherein χ j =
∑p

i=1
χ̃i j/p. (9)

Step 4-D: Assess the CRC between the criteria pairs:

r jt =
∑p

i=1

(
χ̃i j − χ j

)
(χ̃i t − χ̃t )√∑p

i=1

(
χ̃i j − χ j

)2 ∑p
i=1

(
χ̃i t − χ t

)2 . (10)

Step 4-E: Determine the amount of information of attribute and is presented as
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c j = σ j

q∑
t=1

(
1 − r jt

)
. (11)

Step 4-F: Evaluate the objective attribute weight and is defined by

ω j = c j∑q
j=1 c j

. (12)

Step 5: Find the best and worst ratings.

In the proposed approach, the PF-ideal solution (PF-IS) and the PF-anti-ideal solution
(PF-AIS) are considered as best and worst values. The formulae for the computation
of PF-IS and PF-AIS are given by

φ+
j =

⎧
⎨
⎩

max
i

μ̃i j , for benefit criterion R j

min
i

ν̃i j , for cost criterion R j
for j = 1(1)q, (13)

φ−
j =

⎧
⎨
⎩

min
i

μ̃i j , for benefit criterion R j

max
i

ν̃i j , for cost criterion R j
for j = 1(1)q. (14)

Step 6: Calculate the utility score (US), worst group score (WGS), and compromise
score (CS) to the PF-IS for each option.

Corresponding to the proposed PF-DM, we calculate the US Si and the WGS Ii over
each option Ci (i = 1(1)p) and are given by

Si = L1,i =
n∑

j =1

ω j

D
(
φ+
j , εi j

)

D
(
φ+
j , φ−

j

) (15)

Ii = L∞,i = max
1≤ j≤q

⎛
⎝ω j

D
(
φ+
j , εi j

)

D
(
φ+
j , φ−

j

)
⎞
⎠. (16)

For each option Ci , the CS Qi is assessed as follows:

Qi = τ

(
Si − S+)

(S− − S+)
+ (1 − τ)

(
Ii − I+)

(I− − I+)
, (17)

where S+ = min
i

Si , S− = max
i

Si , I+ = min
i

Ii , I− = max
i

Ii , and τ ∈ [0, 1] is

the coefficient of the decision mechanism.
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Step 7: Rank the options.

The preference order of the options is assessed by sorting each value of Si , Ii , and
Qi .

Step 8: Determine the compromise solution.

Propose the option Ci as a CS analogous to Q1 (the least among Qi values) if

(C1): Option Ci has an acceptable improvement, i.e., Q2 − Q1 ≥ 1
(p−1) , where p

denotes the number of options.
(C2): The option Ci is stable in the MCDM procedure; that is, it is also the best
ranked in Si or Ii .

If any one condition is not fulfilled, then a group of CSs is proposed, which
consists of

(i) Options C1 and C2 if only the condition (C2) is not satisfied.
(ii) Options C1, C2, C3,…, Ck if condition (C1) is not pleased; and Ck is assessed

by the expression Qk − Q1 < 1
(p−1) .

5 Case Study: Agriculture Crop Selection Problem

The region for the development of decision-making framework is Satna district in
Madhya Pradesh (MP), India. Satna district is situated in the northern part of MP,
having a geographical region of 7,424 Sq km. The Satna district lies between the
latitudes 23°05’N and 25°12’N and longitudes 80°21’E and 81°23’E, which is shown
in Fig. 2. The district is customarily and agriculturally rich. Approximately 79.4%
of population is rural-based and agriculture practices are the main economic activity.
Agriculture is the prime source of income for the people. Satna is considered for the
present case study because the crops such as Paddy, Soybean, Blackgram, and Pigeon
pea are major economic Kharif crops in this region. To illustrate the application of
the developed PF-CRITIC–VIKOR methodology, an empirical study is conducted
with agriculture crops in Kharif season, Satna District, Madhya Pradesh, India. For
this case study, we have considered four Kharif crops Pigeonpea (C1), Paddy (C2),
Soybean (C3) and Blackgram (C4 ) in accordance with sustainable agricultural prac-
tices. To select the ideal crop, a team of four DMs (A1, A2, A3, A4) has been formed
which comprises of one professor from the agriculture department, one postdoctoral
researcher, and two officers of the district agriculture department having at least 5–
8 years of experience in the agriculture development. All DMs are proficient in the
decision-making process and having durable expertise in several agricultural events.
These Kharif season crops are evaluated based on seven criteria, given in Table 2 and
Fig. 3. The criteria R3, R4, and R7 are cost-type and rest of all are benefit-type. The
procedure of PF-CRITIC–VIKOR methodology for the evaluation of best Kharif
season crop is given as follows:
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District Satna

Fig. 2 Study area location map

First, we assume the significance degrees of the DMs in the form of PFNs and
are given as {(0.85, 0.25, 0.4637), (0.80, 0.30, 0.5196), (0.70, 0.45, 0.5545), (0.75,

0.40, 0.5268)}. Let Z =
(
z(k)
i j

)
, i = 1(1)p, j = 1(1)q be the PF-decision matrix,

articulated by DMs and is depicted in Table 3.
Since DMs weights are first presented in the terms of PFNs, now, the

DMs weights are calculated with the use of Eqs. (4)–(5) and given as
{λ1 = 0.3127, λ2 = 0.2746, λ3 = 0.1866, λ4 = 0.2261}.

By applying Eq. (6), the four individual decision opinions are aggregated, and
now, the APF-DM R = (

εi j
)
p×q is offered in Table 4.

To determine the criteria weights, the CRITIC method is extended under PFSs
environment. With the use of Eq. (7) and Table 4, first we have calculated the score
matrix S = (

εi j
)
p×q . Then, computed the standard PF-matrix S̃ = (

χ̃i j
)
p×q by

employing Eq. (8). Further, by Eqs. (9)–(11), the SD, CRC, and amount of informa-
tion of each criterion are evaluated. At last, the attribute weights are estimated by
using Eq. (12) and mentioned in Table 5.

By employing Eqs. (13)–(14), the best andworst ratings of theKharif crop options
are calculated as below:

φ+
j = {(0.749, 0.166, 0.641), (0.705, 0.387, 0.595), (0.456, 0.620, 0.638),

(0.614, 0.619, 0.490), (0.741, 0.561, 0.370)
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Table 2 Detail description of the considered criteria in sustainable agriculture crop selection

Goal Criteria Type Description Crop option

Agriculture
crop selection

Soil quality (R1) Benefit Initial process to
enhance soil quality is
very expensive, but a
constant subsequent of
organic farming can
contribute to increase
the production, and
also conserves the soil
for cultivation

Pigeonpea (C1)

Water quality (R2) Benefit Studies the competence
of crop-type in
accumulative water
quality and dipping
water usage

Paddy (C2)

Input fertilizers (R3) Cost It considers Nitrogen,
Urea, P2O5, SSP, K2O,
and MOP

Risk (R4) Cost Flood, winter rain,
drought, and other
natural disasters

Soybean (C3)

Facilities/Infrastructure
(R5)

Benefit Distance from roads,
markets, seed, and
processing plants

Agricultural
management policies
(R6)

Benefit Refers all the
procedures from
sowing seeds until the
harvesting

Blackgram (C4)

Environmental impact
(R7)

Cost Soil erosion,
acidification potential,
abiotic depletion
potential,freshwater
and marine water
ecotoxicity and
polluted water, and
others

(0.723, 0.545, 0.425), (0.545, 0.677, 0.495)} (18)

φ−
j = {(0.604, 0.304, 0.736), (0.596, 0.400, 0.696), (0.543, 0.620, 0.567),

(0.624, 0.565, 0.540), (0.616, 0.627, 0.478),

(0.680, 0.581, 0.447), (0.590, 0.677, 0.440)}. (19)

Applying (15)–(17), the values of Si, I i and Qi are estimated and presented in
Table 6. According to the given values, the preferences of the agriculture crops are



182 A. R. Mishra et al.

Fig. 3 A comprehensive perspective of the proposed framework

obtained in Table 6. Least value of CS(Qi) determines the best agriculture crop C2,
i.e., Paddy is the desirable choice.

5.1 Sensitivity Analysis (SA)

Here, we conduct a SA to measure the impact of change in parameter τ on the final
preferences of the crop alternatives. As the τ varies from 0.0 to 0.2, the ranking of
the options is C2 � C1 � C3 � C4, from 0.3 to 0.5, the preference ordering is
C2 � C3 � C1 � C4, and from 0.6 to 1.0, the preference ordering is C2 � C3 �
C4 � C1, i.e., the ranking of given four agriculture crop options is similar in each
case. Thus, we can say that the results attained by PF-CRITIC–VIKOR approach are
more valuable and well-consistent.

It is clear from Table 7 and Fig. 4 that as the value of τ increases, the compromise
measure Qi of C2 remains same, while C3 and C4 decreases and C1 increases, i.e.,
the crop optionC2 is the best choice in each set. And, hence, it is observed that Paddy
crop C2 is supreme than other options.
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Table 3 Assessment ratings of agriculture crop selection

Criteria C1 C2 C3 C4

R1 A1: (0.68, 0.30) A1: (0.80, 0.15) A1: (0.68, 0.25) A1: (0.60, 0.30)

A2: (0.60, 0.35) A2: (0.70, 0.15) A2: (0.65, 0.30) A2: (0.55, 0.35)

A3: (0.65, 0.30) A3: (0.75, 0.20) A3: (0.70, 0.25) A3: (0.70, 0.20)

A4: (0.75, 0.20) A4: (0.65, 0.25) A4: (0.65, 0.40) A4: (0.65, 0.30)

R2 A1: (0.60, 0.25) A1: (0.62, 0.35) A1: (0.70, 0.38) A1: (0.62, 0.43)

A2: (0.70, 0.20) A2: (0.55, 0.45) A2: (0.74, 0.40) A2: (0.75, 0.38)

A3: (0.50, 0.45) A3: (0.65, 0.38) A3: (0.68, 0.35) A3: (0.70, 0.34)

A4: (0.45, 0.52) A4: (0.58, 0.48) A4: (0.65, 0.40) A4: (0.65, 0.42)

R3 A1: (0.55, 0.65) A1: (0.40, 0.65) A1: (0.50, 0.55) A1: (0.57, 0.60)

A2: (0.50, 0.60) A2: (0.50, 0.55) A2: (0.50, 0.65) A2: (0.54, 0.65)

A3: (0.58, 0.70) A3: (0.55, 0.60) A3: (0.55, 0.60) A3: (0.50, 0.58)

A4: (0.50, 0.70) A4: (0.45, 0.70) A4: (0.40, 0.55) A4: (0.48, 0.64)

R4 A1: (0.60, 0.70) A1: (0.68, 0.55) A1: (0.62, 0.50) A1: (0.58, 0.65)

A2: (0.65, 0.55) A2: (0.60, 0.58) A2: (0.65, 0.58) A2: (0.52, 0.60)

A3: (0.60, 0.50) A3: (0.58, 0.62) A3: (0.58, 0.67) A3: (0.50, 0.60)

A4: (0.58, 0.62) A4: (0.56, 0.63) A4: (0.60, 0.70) A4: (0.45, 0.58)

R5 A1: (0.60, 0.65) A1: (0.72, 0.50) A1: (0.73, 0.58) A1: (0.77, 0.58)

A2: (0.65, 0.60) A2: (0.70, 0.55) A2: (0.78, 0.50) A2: (0.72, 0.67)

A3: (0.64, 0.52) A3: (0.75, 0.52) A3: (0.70, 0.60) A3: (0.64, 0.52)

A4: (0.57, 0.68) A4: (0.68, 0.56) A4: (0.70, 0.62) A4: (0.68, 0.56)

R6 A1: (0.72, 0.55) A1: (0.72, 0.58) A1: (0.75, 0.52) A1: (0.68, 0.56)

A2: (0.63, 0.68) A2: (0.65, 0.52) A2: (0.70, 0.56) A2: (0.72, 0.54)

A3: (0.67, 0.53) A3: (0.64, 0.55) A3: (0.72, 0.58) A3: (0.70, 0.66)

A4: (0.65, 0.52) A4: (0.58, 0.50) A4: (0.68, 0.57) A4: (0.68, 0.58)

R7 A1: (0.58, 0.70) A1: (0.55, 0.70) A1: (0.55, 0.72) A1: (0.56, 0.65)

A2: (0.60, 0.72) A2: (0.60, 0.65) A2: (0.62, 0.70) A2: (0.55, 0.70)

A3: (0.59, 0.68) A3: (0.50, 0.68) A3: (0.64, 0.69) A3: (0.52, 0.66)

A4: (0.60, 0.54) A4: (0.62, 0.72) A4: (0.60, 0.70) A4: (0.50, 0.72)

5.2 Comparative Study

In the current section, we perform a comparison between the developed framework
and the existingmodel to explore the robustness of the proposed PF-CRITIC–VIKOR
model. For this, we have selected an existing method, namely, PF-TOPSIS, given by
Zhang and Xu [58].

From Table 4 and Eqs. (13)–(14), the PF-IS and PF-AIS are evaluated. The
discrimination measures of each crop alternative with PF-IS and PF-AIS are esti-
mated by Eq. (2). The relative closeness coefficient W (Ci ) of each crop option
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Table 4 APF-DM for agriculture crop selection

C1 C2 C3 C4

R1 (0.668, 0.296, 0.683) (0.749, 0.166, 0.641) (0.668, 0.285, 0.687) (0.604, 0.304, 0.736)

R2 (0.612, 0.286, 0.737) (0.596, 0.400, 0.696) (0.705, 0.387, 0.595) (0.679, 0.404, 0.613)

R3 (0.530, 0.645, 0.550) (0.456, 0.620, 0.638) (0.491, 0.584, 0.646) (0.543, 0.620, 0.567)

R4 (0.614, 0.619, 0.490) (0.632, 0.577, 0.517) (0.624, 0.565, 0.540) (0.538, 0.619, 0.573)

R5 (0.616, 0.627, 0.478) (0.711, 0.526, 0.467) (0.741, 0.561, 0.370) (0.733, 0.598, 0.323)

R6 (0.680, 0.581, 0.447) (0.675, 0.545, 0.498) (0.723, 0.545, 0.425) (0.695, 0.564, 0.446)

R7 (0.590, 0.677, 0.440) (0.574, 0.685, 0.448) (0.589, 0.708, 0.389) (0.545, 0.677, 0.495)

Table 5 The standard PF-matrix S̃ = (
χ̃i j

)
p×q , SD, amount of information and attribute weight

Criteria C1 C2 C3 C4 σ j c j ω j

R1 0.333 1.000 0.357 0.000 0.362 2.417 0.1428

R2 0.643 0.000 1.000 0.671 0.362 2.481 0.1466

R3 0.524 1.000 0.115 0.000 0.393 2.963 0.1751

R4 0.468 0.014 0.000 1.000 0.409 3.152 0.1862

R5 0.000 0.978 1.000 0.782 0.407 1.891 0.1117

R6 0.000 0.326 1.000 0.393 0.361 1.798 0.1062

R7 0.000 0.584 0.865 1.000 0.458 2.224 0.1314

Table 6 The values of Si, I i and Qi for the evaluation of agriculture crops

Crop option Si I i Qi

C1 0.857 0.216 0.751

C2 0.576 0.146 0.000

C3 0.607 0.269 0.494

C4 0.724 0.286 0.765

Ranking order S2 � S3 � S4 � S1 I2 � I1 � I3 � I4 Q2 � Q3 � Q1 � Q4

Table 7 Variation of CS over different parameter τ values

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C1 0.502 0.551 0.601 0.651 0.701 0.751 0.801 0.850 0.900 0.950 1.000

C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C3 0.878 0.801 0.725 0.648 0.571 0.494 0.418 0.341 0.264 0.187 0.111

C4 1.000 0.953 0.906 0.859 0.812 0.765 0.718 0.671 0.624 0.577 0.530
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is assessed as W (C1) = 0.2753, W (C2) = 0.5991, W (C3) = 0.6162, and
W (C2) = 0.4431.Hence, thefinal preference order of given agriculture crop option is
C3 � C2 � C4 � C1. Therefore, the most suitable agriculture crop alternative is C3,
that is, Soybean crop, which is quite different from the proposed method. Further, the
rank CRC values with compromisemeasure are calculated as (0.80, 0.80, 1.00, 0.60).
The rank CRC is employed to rank the values for the determination of consistency
of the proposed methodology. From Fig. 5, it is found that proposed methodology is
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well consistent than the existing one. Further, the PF-CRITIC–VIKOR framework
has the following benefits:

(a) As the DMs weight is taken into account, we have utilized an approach based
on PF-entropy which gives the more exact decisions for MCDM problems.

(b) Another benefit of the PF-CRITIC–VIKORmodel comparingwith PF-TOPSIS
[58] model is that it originates the CS(s) which assume not only maximizing
US(s) for the majority but minimizingWGS(s) for the opponent as well, while
in PF-TOPSIS model, it assumes discrimination from the PF-IS and from the
PF-AIS, without considering their relative importance.

(c) The CRITIC is a more straightforward method with less computational effort.
Besides, in the case of PCA (Principal component analysis) crisp values of
inter-criteria correlation coefficients should be defined, in order to distinguish
those criteria considered to be highly correlated. This subjective intervention
is avoided by using the CRITIC method, which makes the developed PF-
CRITIC–VIKOR approach more sensible, flexible and efficient.

Furthermore, we illustrate a thorough comparison of the proposed approach with
further MCDMmethods based on different vital parameters applied in the decision-
making process (see Table 8). It can be observed that the developed method is defi-
nitely a novel contribution as it integrates all major parameters of theMCDMprocess
into comparison with existing methods to solve the MCDM problems under PFS
environment.

6 Conclusions

This work presents a novel MCDM framework to rank the Kharif crop alterna-
tives in Satna district. For this, firstly, new divergence and entropy measures have
been developed within PFSs context. Secondly, an integrated PF-CRITIC–VIKOR
methodology has been proposedwith the combination of the CRITIC and theVIKOR
methods under PFSs environment. In this methodology, the CRITIC model has been
utilized to derive the criteria weights and the proposed entropy measure has been
applied to compute theDMs’weights. In addition, the average andworst group scores
have been calculated with the help of proposed divergence measure. Additionally, a
case study of Kharif crop alternative assessment has been presented to validate the
potentiality and strength of the PF-CRITIC–VIKOR methodology. The PF-CRITIC
approach determines the weights of the considered seven criteria, which as Risk
(0.1862), Input fertilizers (0.1751), Water quality (0.1466), Soil quality (0.1428),
Environmental impact (0.1314), Facilities/Infrastructure (0.1117), and Agricultural
management policies (0.1062). By employing the PF-CRITIC-VIKOR method, the
Kharif crop pattern is obtained as Paddy � Soybean � Pigeonpea � Blackgram.
Next, we have demonstrated a sensitivity analysis with parameter values to analyze
the stability of proposed PF-CRITIC–VIKOR approach. Afterward, a comparison
has been carried out between the proposed and corresponding related model which
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validates the robustness. The final outcomes verify that the proposed model is more
effective, reliable, and stable and has less complicated mathematical steps than
existing approaches within PFSs context. In addition, it provides a new weight-
determining procedure to assess more accurate criteria and decision-weights that
improves the permanence of introduced model. As a result, the present PF-CRITIC–
VIKOR method will be very useful for agricultural stakeholders in the selection
of Kharif crop pattern selection process. However, this method has limitations in
dealing with a large number of criteria set.

In future, we will develop new methods like DNMA (Double Normalization-
based Multiple Aggregation), GLDS (Gained and Lost Dominance Score ),
MARCOS (Measurement Alternatives and Ranking according to the Compromise
Solution) and others under PFSs environment and employ to choose Kharif season
crop selection with adaption and mitigation options resulting from climate change
issues for better sustainable agricultural perspectives. In addition, further studiesmay
include subjective and objective weights of the criteria to improve the accuracy of
the proposed method.
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Choquet Integral Under Pythagorean
Fuzzy Environment and Their
Application in Decision Making

Lazim Abdullah , Pinxin Goh, Mahmod Othman,
and Ku Muhammad Na’im Ku Khalif

1 Introduction

Recent developments in information processing have heightened the need for a highly
efficient information aggregation operators. The Choquet integral is one of the aggre-
gation operators in which it is used to aggregate information and calculate the global
score. It was introduced byChoquet [10] as an aggregation operator to solve the inter-
relationship among criteria of decision problems where ordering of the individual
criteria is the ultimate result. Ordering of criteria is more challenging particularly
when there exists some uncertainty regarding the criteria. In light of this difficulty, the
concept of fuzzy measure is used in Choquet integral where interaction phenomena
among the decision criteria can be modeled [40]. The Choquet integral uses the
concept of fuzzy measure to indicate the weights or the importance of multiple inter-
dependent criteria in decision making [12]. The main idea of Choquet integral is
that the interrelationship between criteria can be modeled through a fuzzy measure
where assigning a weight is not only to each criterion but also to each subset of
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criteria [11, 36]. In other words, information about criteria is expressed via a fuzzy
measure. It is a non-additive fuzzy integral or a numerical-based approach where
interactivity of subjective judgment experts can be eliminated. The Choquet integral
encompasses the property of non-additive capacity and corresponds to a large class
of aggregation functions [8, 34]. Sub additive or super additive operators are used to
integrate functions with respect to the fuzzy measures where many extensions and
generalizations of fuzzy sets could be inserted into fuzzy measures.

One of the generalizations of fuzzy sets is intuitionistic fuzzy sets (IFS).Atanassov
[5] generalized fuzzy sets to IFS. Element in IFS is expressed by an ordered pair,
and each ordered pair is characterized by a membership degree and non-membership
degree. The sum of the two degrees must be less than or equal to one [5]. The
IFS has been received much attention since its inception and broadly applied as
an aggregation operator. In the context of fuzzy measures, instead of using fuzzy
sets, Tan and Chen [42] used IFS to propose IFS Choquet integral based on t-norms
and t-conorms. Murofushi and Sugeno [33] used the Choquet integral to propose
the interval-valued IFS correlated averaging operator and interval-valued IFS corre-
lated geometric operator to aggregate interval-valued IFS information and applied
them to a practical decision making problem. Wang et al. [49] proposed a method
based on intuitionistic fuzzy dependent aggregation operators and applied them to
supplier selection. Recently, Liang et al. [31] proposed arithmetical average operator
and geometric average operator based on IFS to aggregate the intuitionistic fuzzy
information. Abdullah et al. [4] propose a combination of interval-valued IFS and
Choquet integral to allow a strong interrelationship between criteria of a decision
making model. In a case of personnel matching management, very recently Yu and
Xu [51] proposed novel IFS Choquet integral aggregation. This aggregation operator
is integrated with multi-objective decision-making model to find optimal personnel
matching results.

It can be seen that these aggregation operators are built using the dual member-
ships of IFS where the sum of these two memberships is less than or equal to
one. However, in some circumstances, the sum of membership and non-membership
degree of criteria could be greater than one. This situation could not be described
by the IFS. In order to address this problem, Yager [50] introduced another gener-
alization of fuzzy set which is called as Pythagorean fuzzy set (PFS). Unlike IFS,
the sum squares of PFS memberships is less than or equal to one. The PFS has
emerged as an effective tool compared to IFS in depicting uncertainty of criteria in
decision problems. For example, Chen [9] proposed Chebyshev distance measures in
the ELimination Et Choice Translating REality (ELECTRE) method for addressing
multiple criteria decision-making problems under uncertainty of PFS. Very recently,
the author developed operational laws and their corresponding weighted aggregation
operators based on PFS then proposed an algorithm to solve the multiple attribute
group decision making problems [18–23]. Some other publications that related to
PFS and its applications can be retrieved from Ejegwa [14, 16, 17], Wan Mohd et al.
[46], Abdullah andMohd [3],WanMohd andAbdullah [45] and Ejegwa andAwolola
[15].
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In relation to application of Choquet integral under PFS environment, Khan
[30] used the Choquet integral to develop a very comprehensive Pythagorean fuzzy
aggregation operator. With no specific application, the author developed a specific
aggregation operator and illustrated the proposed method with a group decision
making problem. Wang et al. [48] developed the concept of interval-valued hesitant
Pythagorean fuzzy sets. To ease the application in selecting project private partner,
the authors supported the concept with technique for order preference by similarity
to ideal solution and Choquet integral. Khan et al. [29] proposed several aggrega-
tion operators based on Pythagorean hesitant fuzzy Choquet integral and applied the
developed operators to multi-attribute decision making problem. It can be seen that
these literature do not provide any specific real-life applications. It is also noticed
that these literature tend to focus on hesitant PFS and various types of aggregator
operators instead of real decision making applications. Far too little attention has
been paid to introduce PFS in the aggregation operator of Choquet integral. In other
words, the two memberships of PFS are not fully utilized in aggregating information
through the Choquet integral operator. To bridge this knowledge gap, this chapter
proposes PFS-Choquet integral where the concept of fuzzy measures is extended
to PFS. The proposed PFS-Choquet is expected to provide better tool in handling
uncertain and incomplete information of a case study of sustainable solid waste
management (SWM). The rest of this paper is organized as follows. In Sect. 2, we
describe the concepts of PFS and Pythagorean fuzzy measures, and some knowl-
edge about the Choquet integral. The proposed PFS-Choquet integral is presented
in Sect. 3. In Sect. 4, a case study of SWM is presented to illustrate the proposed
method. Finally, conclusion is made in Sect. 5.

2 Preliminaries

This section recalls the definitions of fuzzy measures, PFS, and Choquet integral.
These definitions are fully utilized in proposing the PFS-Choquet integral.

Definition 1 (Yager [50]) A Pythagorean Fuzzy Sets P in a finite universe of
discourse is

P = {< x, μP(x), vP(x) >|x ∈ X } >

where μp, vP : X → [0, 1][0, 1] with the condition that the square sum of its
membership degree and non-membership degree is less than or equal to 1.

(μP(x))2 + (vP(x))2 ≤ 1

It is clearly seen that sum of squares of its memberships is less than or equal to
one.
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Definition 2 (Grabisch [24]; Sugeno [41]) A fuzzy measure on X is a set function
μ : 2x → [0, 1] satisfying the following axioms.

(1) μ(φ) = 0, μ(X ) = 1 (boundary conditions)
(2) A ⊆ B ⇒ μ(A) ≤ μ(B) (monotonicity)

Definition 3 (Murofushi and Sugeno [33]) A fuzzy density function of a fuzzy
measure μ on a finite set X is a function s : X → [0, 1] satisfying,

s(x) = μ({x}), x ∈ X

s(x) is called the fuzzy density of singleton x.

Definition 4 (Tan and Chen [42]) Let f be a real-valued function on X, and μ be
a non-additive measure (fuzzy measure) on X. Then, the Choquet integral of f with
respect to non-additive μ is represented as,

Cμ(f )
) =

n∑

i=1

μ
(
x(i)

) − μ(x(i+1))

]

f (i) (1)

where (.) is finite order of permutation f (1) ≤ · · · ≤ f (n),A(i) = {i, . . . , n}, and
A(n+1) = φ.

It shows that Choquet integral is also called Lebesgue integral up to reordering
of the indices. In other words, when the fuzzy measure is additive, it shows that the
Choquet integral reduces to Lebesgue integral.

Conditions of fuzzy measures are given in Definition 5.

Definition 5 (Sugeno [40]) A fuzzy measure on X is a set function μ : P(X ) →
[0, 1], satisfying:
i. Boundary condition: μ(φ) = 0 and μ(X ) = 1;
ii. Monotonicity: If A,B ∈ P(X ) and A ⊆ B, then μ(A) ≤ μ(B).

For A,B ∈ P(X ) with A ∩ B ∈ ϕ, the fuzzy measure is said to be:

i. an additive measure, if μ(A ∪ B) = μ(A) + μ(B);
ii. a super additive measure, if μ(A ∪ B) > μ(A) + μ(B);
iii. a sub additive measure if μ(A ∪ B) < μ(A) + μ(B).

and,

μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B), λ ∈ [−1, ∞), ∀A,B ∈ P(X ) and A ∩ B = ϕ

(2)

This equation is required to find fuzzy measure.
If X is finite, then the parameter λ of a fuzzy measure satisfies
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μ(X ) = 1

λ

(
n∏

i=1

(1 + λμ(xi)) − 1

)

, λ �= 0 (3)

The parameter λ can be determined with the boundary condition μ(x) = 1, i.e.,

λ + 1 =
n∏

i=1

(1 + λμ(xi)) (4)

Definition 6 (Choquet [10]) Let μ be a fuzzy measure on N. The Choquet integral
of x = (x1, . . . , xn) ∈ [0, 1]n with respect to μ is defined as

Cμ(x1, . . . , xn) =
n∑

i=1

[
μ

(
A(i)

) − μ
(
A(i+1)

)]
xi (5)

where (.) indicates a finite order of permutation onN such that x(1) ≤ x(2) ≤ . . . ≤ xn,
and A(i) = {(i), . . . (n)}, A(n+1) = φ

Definition 7 (Tan and Chen [42]) Let xi = (txi, f xi) (i = 1,2. …..n) be a collection
of intuitionistic fuzzy values on X, and μ be a fuzzy measure on X. The (discrete)
intuitionistic fuzzy Choquet integral of xi with respect to μ is defined by

IF Cμ(x1, . . . , xn) =
∑n

i=1

[
μ

(
A(i)

) − μ
(
A(i+1)

)]
xi

where (·) indicates a permutation on X such that x(1) ≤ x(2) ≤ . . . ≤ xn and A(i) =
{(i), . . . (n)}, A(n+1) = φ

These definitions are generally used in the proposed method in which the ultimate
decision of Choquet value could bemade based onDefinition 6. Detailed explanation
of the proposed method is presented in the following section.

3 Pythagorean Fuzzy Choquet Integral

It is known that the characteristics of PFSs are closely related to IFSs despite its
differences in the condition of dual memberships. Similar to IFSs where arithmetic
operations, aggregation operators have been widely discussed in literature, several
attempts have been made to understand the algebraic operations of PFS. Peng and
Yang [37] for example, proposed division and subtraction operations of PFS and
discuss their properties. The properties of aggregation operators (see Definition 5)
such as boundedness, idempotency, and monotonicity were also investigated. They
developed a Pythagorean fuzzy superiority and inferiority ranking method to solve
multi-criteria decision making (MCDM) problem instead of a special aggregation
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operator. In this paper, we used the knowledge of aggregations operator properties
and extended it to propose PFS-Choquet integral. In this paper, the PFS-Choquet
integral is defined as follows.

Let xi = (txi, f xi) (i = 1,2. …..n) be a collection of Pythagorean intuitionistic
fuzzy values on X, and μ be a fuzzy measure on X. The (discrete) Pythagorean fuzzy
Choquet integral of xi with respect to μ is defined by

PICIμ(x1, ..., xn) =
∑n

i=1

[
μ

(
A(i)

) − μ
(
A(i+1)

)]
xi

where (·) indicates a permutation on X such that x(1) ≤ x(2) ≤ . . . ≤ xn and A(i) =
{(i), . . . (n)}, A(n+1) = φ.

Differently from the method of Peng and Yang [37] where membership and non-
membership are calculated separately at the end of the computational procedures,
this proposed method substitutes the separation method with the score functions.
This proposed method is not fitted with the separation of membership and non-
membership as it is undermined the concept of interrelationship of dual memberships
of PFS. In response to this limitation, the score function proposed by Zhang and Xu
[53] is substituted to the newly PFS-Choquet integral. In this proposed method, the
membership and non-membership are combined to get the score of all criteria of
MCDM problems. In addition, linguistic terms used in evaluation are defined in PFS
in which the sum of squares of two memberships for linguistic terms is less than or
equal to one. The computational procedure of the proposed PFS-Choquet integral
method is given as follows.

Step 1: Construct a function Xm where X = {x1, x2, · · · , xn}. Identify input n value
(number of evaluation items) and m value (number of inputs).

Step 2: Construct decision matrix using the linguistic variable defined in PFS.

Step 3: Calculated weighted Pythagorean fuzzy set using Eq. (6).

λmPi,m =
〈√

1 − (
1 − μ2

i,m

)λ
,
(
vi,m

)λ

〉
(6)

Step 4: Calculate the aggregation for each input using Eq. 7

λm1Pi,m1 ⊕ λm2Pi,m2 =
〈√

μ2
λm1Pi,m1

+ μ2
λm2Pi,m2

− μ2
λm1Zm1Pi,m1

μ2
λm2Pi,m2

, vλm1Pi,m1
vλm2Pi,m2

〉

(7)

Step 5: Calculate the score function using Eq. (8)

si = μ2
Pi

− v2Pi
(8)
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Step 6: Obtain relative weight for each criteria using Eq. (9)

λmPi,m
n∑

i=1
λmPi,m

(9)

The relativeweight of criteria is obtained usingEq. (9) inwhich the defuzzification
is already implemented beforehand using the score function equation.

Step 7: Obtain v(i) using Eq. (10)

v(i, i + 1) = wCi + wCi+1 (10)

Step 8: Calculate value of the Pythagorean Choquet integral.

PICIμ(x1, ..., xn) =
∑n

i=1

[
μ

(
A(i)

) − μ
(
A(i+1)

)]
xi (11)

where t is a permutation satisfying xt(1) ≤ . . . ≤ xt(n).
The ultimate output of the proposed method is the Choquet value in which the

strength of aggregated criteria is measured.

4 Application to Sustainable Solid Waste Management

The Choquet integral is one of the aggregation operators that has been used to aggre-
gate information. It has been applied with great success to many different informa-
tion aggregation cases where vast majority of information in real-world applications
is characterized by high level of uncertainties. The success of Choquet integral in
information aggregation can be witnessed in economics, insurance, finance, quality
of life, and social welfare [27]. It is mainly owing to the non-additive characteris-
tics of Choquet integral in which it can play a key role or provide a capacity for
recent advances in decision theory [25]. Moreover, the role of fuzzy measures in
dealing uncertainties, and the role of operator integrals in computational aspects are
the vital component in Choquet integral that guarantee success in real applications.
Several real application research using Choquet integral are supply chain manage-
ment strategy measurements [47], job-shop scheduling problem [38], selection of
optimal supplier in supply chain management [44]. Zhang [52], used Choquet inte-
gral for screening geological CO2 storage sites. Very recently, Olawumi and Chan
[35] used generalized Choquet fuzzy integral method to determine the importance
weights of the sustainability assessment criteria. The sustainable solidwastemanage-
ment problem and methods used in solving the problems are also discussed by many
authors. Very recently, Sharma, et al. [39] applied the clustering method k-means
algorithms framework for municipal solid waste management. In another recently
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published work, Tascione et al. [43], used a linear programming model to identify
the best scenario of managing solid waste. With about a similar model, Batur et al.
[7] used a mixed integer linear programming model for solid waste management by
developing a long term system. This paper adds another application of the proposed
Choquet integral to the case of sustainable SWM. Specifically, this chapter presents
an evaluation of sustainable SWMof twomajor cities inMalaysia using the proposed
method. The two cities are Kuala Lumpur and Johor Bahru. Kuala Lumpur is the
capital of Malaysia where it is located at the west coast of Peninsular Malaysia.
Johor Bahru is located at the southern part of Peninsular Malaysia and separated by
a causeway with Singapore. The evaluation includes the selection of the best city in
Malaysia in the context of managing solid waste. The ultimate goal of this applica-
tion is to obtain the optimized value of Choquet integral in which the better city in
managing solid waste could be suggested. Detailed descriptions of the evaluation are
given as follows.

4.1 Experts and Criteria

The evaluation begins with the identification of experts and criteria. The evaluation
criteria that influence sustainable SWMare retrieved from literature while the weight
and priority of the criteria are provided by a group of experts in the field that related
to sustainable SWM. This group of four experts comprises several important key
personnel at number of sustainable SWM companies and some are academicians
that are attached to environmental studies academic program at a public university in
Malaysia. Personal communicationswith expertswere conducted to collect linguistic
evaluation. These verbal communications mainly aimed at obtaining the weight of
importance of criteria of sustainable SWM. Table 1 shows the linguistic terms and
rating scale used in this study.

The criteria for this study are retrieved from several literature in sustainable SWM
(see Herva and Roca [1, 28] In this study, the selected criteria are Relative Cost
(C1), Environmental Health (C2), Socio-culture (C3), Public Awareness(C4), Insti-
tutional(C5), Technical (C6), Operation&Maintenance Challenges (C7), Population

Table 1 Importance of
criteria and PFS rating scale

Linguistic terms of “Importance” Pythagorean Fuzzy Sets

Very low 〈0, 0〉
Low 〈0.1, 0.9〉
Medium low 〈0.2, 0.9〉
Medium 〈0.4, 0.6〉
Medium high 〈0.5, 0.7〉
High 〈0.7, 0.2〉
Very high 〈0.9, 0.1〉
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Size (C8), Human Health (C9), and Consumption Habits (C10). Detailed description
of the criteria can be retrieved from Abdullah and Goh [2]. The collected linguistic
evaluations with respect to criteria are then computed using the proposed method.
Detailed computations are described as follows.

4.2 Computation

Step 1: Construct evaluation matrix.

Based on the defined linguistic in Table 1, the evaluation matrix of Expert 1, Expert
2, Expert 3, Expert 4 are summarized in Table 2.

Step 2: Calculate weighted PFS matrix.

Prior to calculating weighted PFS, the weight of each expert is obtained based on
their working experience, knowledge, and also seniority in their company. Table 3
presents the weight and relative weight of experts.

The next step is to calculate the weighted rating. It is calculated using Eq. (6).

The weighted rating of Expert 1, Expert 2, Expert 3, and Expert 4 are summarized
in Table 4.

Table 2 Rating of importance of criteria from experts

Criteria Expert 1 Expert 2 Expert 3 Expert 4

C1 〈0.7, 0.2〉 〈0.9, 0.1〉 〈0.4, 0.6〉 〈0.2, 0.9〉
C2 〈0.9, 0.1〉 〈0.9, 0.1〉 〈0.9, 0.1〉 〈0.9, 0.1〉
C3 〈0.4, 0.6〉 〈0.2, 0.9〉 〈0.4, 0.6〉 〈0.5, 0.5〉
C4 〈0.5, 0.5〉 〈0.7, 0.2〉 〈0.5, 0.5〉 〈0.7, 0.2〉
C5 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0.4, 0.6〉 〈0.5, 0.5〉
C6 〈0.2, 0.9〉 〈0.2, 0.9〉 〈0.4, 0.6〉 〈0.4, 0.6〉
C7 〈0.2, 0.9〉 〈0.1, 0.9〉 〈0.4, 0.6〉 〈0.4, 0.6〉
C8 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.1, 0.9〉 〈0.2, 0.9〉
C9 〈0.2, 0.9〉 〈0.4, 0.6〉 〈0.2, 0.9〉 〈0.4, 0.6〉
C10 〈0.4, 0.6〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0.5, 0.5〉

Table 3 Weight score and
relative weight of experts

Experts Weight score Relative weight, λm

1 0.80 0.2540

2 0.75 0.2381

3 0.75 0.2381

4 0.85 0.2698
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Table 4 Weighted rating for criteria

Criteria Expert 1 Expert 2 Expert 3 Expert 4

C1 〈0.3965, 0.6645〉 〈0.5715, 0.5780〉 〈0.2017, 0.8855〉 〈0.1047, 0.9720〉
C2 〈0.5866, 0.5572〉 〈0.5715, 0.5780〉 〈0.5715, 0.5780〉 〈0.6010, 0.5372〉
C3 〈0.2801, 0.8783〉 〈0.0983, 0.9752〉 〈0.2017, 0.8855〉 〈0.2733, 0.8294〉
C4 〈0.2654, 0.8386〉 〈0.3849, 0.6817〉 〈0.2573, 0.8479〉 〈0.4076, 0.6477〉
C5 〈0.2654, 0.8386〉 〈0.2573, 0.8479〉 〈0.2017, 0.8855〉 〈0.2733, 0.8294〉
C6 〈0.1016, 0.9736〉 〈0.0983, 0.9752〉 〈0.2017, 0.8855〉 〈0.2144, 0.8712〉
C7 〈0.1016, 0.9736〉 〈0.0489, 0.9752〉 〈0.2017, 0.8855〉 〈0.2144, 0.8712〉
C8 〈0.3965, 0.6645〉 〈0.3849, 0.6817〉 〈0.0489, 0.9752〉 〈0.1047, 0.9720〉
C9 〈0.2654, 0.8386〉 〈0.2017, 0.8855〉 〈0.0983, 0.9752〉 〈0.2144, 0.8712〉
C10 〈0.5866, 0.5572〉 〈0.3849, 0.6817〉 〈0.2573, 0.8479〉 〈0.2733, 0.8294〉

Step 3: Calculate the aggregated matrix.

The aggregated matrix for Kuala Lumpur, for example, is calculated using Eq. (7).

λ1P1 ⊕ λ2P1 =
〈√

0.39652 + 0.57152 − 0.39652 × 0.57152, 0.6645 × 0.5780
〉

= 〈0.6576, 0.3841〉
λ1P2 ⊕ λ2P2 =

〈√
0.58662 + 0.57152 − 0.58662 × 0.57152, 0.5572 × 0.5780

〉

= 〈0.7472, 0.3221〉

The remaining calculation for aggregated rating is computed similarly. Table 5
presents aggregated rating for Kuala Lumpur and Johor Bahru.

Table 5 Aggregated
weighted rating of cities

Criteria Aggregated rating of
Kuala Lumpur

Aggregated rating of
Johor Bharu

C1 〈0.6576, 0.3841〉 〈0.2262, 0.8607〉
C2 〈0.7472, 0.3221〉 〈0.7549, 0.3105〉
C3 〈0.2293, 0.8566〉 〈0.3351, 0.7344〉
C4 〈0.4562, 0.5716〉 〈0.4705, 0.5492〉
C5 〈0.3633, 0.7110〉 〈0.3351, 0.7344〉
C6 〈0.1410, 0.9495〉 〈0.2911, 0.7715〉
C7 〈0.1126, 0.9495〉 〈0.2911, 0.7715〉
C8 〈0.5311, 0.4530〉 〈0.1154, 0.9479〉
C9 〈0.2248, 0.8621〉 〈0.2349, 0.8497〉
C10 〈0.3633, 0.7110〉 〈0.3687, 0.7032〉
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Table 6 Score function of
criteria for cities

Criteria Kuala Lumpur Johor Bahru

C1 0.2850 −0.6896

C2 0.4546 0.4734

C3 −0.6811 −0.4271

C4 −0.1186 −0.0803

C5 −0.3735 −0.4271

C6 −0.8816 −0.5104

C7 −0.8888 −0.5104

C8 0.0769 −0.8852

C9 −0.6927 −0.6667

C10 −0.3735 −0.3586

Table 6 Aggregated weighted rating of Kuala Lumpur and Johor Bahru.

Step 4: Calculate the score function.

Equation (8) is used to calculate score function for the cities.

For example, the score function for Kuala Lumpur is calculated as,

s1,1 = 0.65762 − 0.38412 = 0.2850 s2,1 = 0.74722 − 0.32212 = 0.4546

The remaining calculation for score functions are executed similarly. Summarily, the
score functions of Kuala Lumpur and Johor Bahru are presented in Table 6.

Step 5: Obtain the relative weight of criteria using Eq. (9) and total weight of criteria
using Eq. (10). The relative weights are presented in Table 7.

Step 6: Obtain the total weight of criteria v(i) using Eq. (10)

Table 7 Relative weight and
total weight of criteria

Criteria Relative weight Total Weight v(i)

C1 0.0007 1.0000

C2 0.1492 0.9993

C3 0.0064 0.8501

C4 0.0495 0.8436

C5 0.0859 0.7941

C6 0.1151 0.7083

C7 0.1683 0.5932

C8 0.1332 0.4248

C9 0.1485 0.2917

C10 0.1431 0.1431
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For example,

v(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = 0.0007 + 0.1492 + 0.0064 + 0.0495 + 0.0859

+0.1151 + 0.1683 + 0.1332 + 0.1485 + 0.1431

= 1.0000

v(2, 3, 4, 5, 6, 7, 8, 9, 10) = 0.1492 + 0.0064 + 0.0495 + 0.0859

+0.1151 + 0.1683 + 0.1332 + 0.1485 + 0.1431

= 0.9993

The total weight v(i) of all criteria is presented in Table 7.

Step 7: Calculate the value of Choquet integral using Eq. (11).

For example,

x1[v(1, . . . , n) − v(2, . . . , n)] = 0.2850[1.0000 − 0.9993] = 0.0002

x2[v(2, . . . , n) − v(3, . . . , n)] = 0.4546[0.9993 − 0.8501] = −0.0044

The remaining calculation for xi[v(i, . . . , n) − v(i + 1, . . . , n)] are implemented
similarly.

From the calculation, it is found that the Choquet integral for Kuala Lumpur
and Johor Bahru are Cv(1,...,10),1(x) = −0.3715 and Cv(1,...,10),2(x) = −0.3867,
respectively.

The values of Choquet integral for Kuala Lumpur and Johor Bahru are very close
to each other which indicates that the two major cities in Malaysia are not much
different in managing solid waste. However, on close inspection, the values show
that Kuala Lumpur provides is slightly better than Johor Bharu in managing solid
waste.

5 Conclusions

In recent years, there has been an increasing interest in developing various types of
aggregation operators based on many sets including PFS. These developments have
led to a renewed interest in developing Choquet integral operations under PFS envi-
ronment. In this chapter, we developed Choquet integral based on PFS by combining
relative weight of criteria and a score function. In this aggregation, the Choquet
integral has been considered to model the interaction between criteria. This new
amalgamation has successfully overcome the issues of independence among criteria
of decision problems under PFS environment. The proposedmethod has been applied
to a case of sustainable SWMwhere establishing total weights of criteria andChoquet
integral value are the ultimate decision. The proposed eight-step aggregation operator
was implemented in the evaluation of two big cities in Malaysia pertaining to criteria
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of sustainable SWM. Kuala Lumpur is suggested as the better city in managing
solid waste based on the values of Choquet integrals. This study has proved that the
Choquet integral under PFS environment is one of the potent tools in aggregating
incomplete and vague information. Nevertheless, this study has some recommen-
dations for future research. The proposed aggregation operators can be extended
by considering the other methods that directly deal with interrelationships among
criteria. The Bonferroni mean [26] and the Shapley value [6, 32] are two aggrega-
tors that possibly could be utilized to deal with independence and interrelationship
among criteria of decision problems. Another possible future research is developing
linguistic interval-valued under Pythagorean fuzzy environment [20, 21].
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On Developing Pythagorean Fuzzy
Dombi Geometric Bonferroni Mean
Operators with Their Application
to Multicriteria Decision Making

Nayana Deb and Animesh Biswas

1 Introduction

In recent days, multicriteria decisionmaking (MCDM) has appeared as an active area
of research for its capability to find best alternative from a given set of alternatives
by evaluating them on the basis of satisfying criteria. Due to the presence of inherent
vagueness in human perceptions as well as information collected from the sources,
several kinds of imprecisions are involved with the decision values in the process of
evaluation. Thus, it becomes difficult to put the decision values in the form of crisp
numbers. In such situations, fuzzy sets [56] appeared as a successful tool for dealing
with complex and imprecise circumstances. As an extension of fuzzy set [26, 29],
intuitionistic fuzzy (IF) set (IFS) was introduced by Atanassov [3] with simultaneous
consideration of membership degree as well as non-membership degree satisfying
the condition that the sum of membership and non-membership degrees is less than
or equals to 1.

More recently, Yager [53] extended the concept of IFS [6, 27, 28] to Pythagorean
fuzzy (PF) set (PFS) by extending the domain of membership and non-membership
degrees with the consideration that the square sum of membership and non-
membership degrees might be less than or equals to 1. Considering this advan-
tage, plenty of applications are made on PFSs. Some of them related to MCDM are
described in the next paragraph.

In the context of MCDM the decision makers (DMs) put their decision values by
evaluating the alternatives with respect to some criteria. In the process of evaluation,
the DMs prefer to put their judgment values in the form of linguistic terms. Those
linguistic terms are quantified using PF numbers (PFNs) for its capability to capture
uncertainties inMCDM than any other variants of fuzzy sets. Considering this aspect,
Cui et al. [11] introduced PF-based VIKOR method for the selection of construction
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site for establishing electric vehicle charging station. He also proposed a general-
ized PF-orderedweighted standardized distance operator for ranking the alternatives.
Introducing Hamymean, Li et al. [33] generated some new PF aggregation operators
to apply them in supplier selection problemswith PFNs. Büyüközkan andGöçer [10]
developed a novel approach for the purpose of selecting digital supply chain partners,
combining analytic hierarchy process with complex proportional assessment under
PF environment. Kumar et al. [30] introduced a new technique for solving transporta-
tion problems using PFNs. Based on PF VIKOR method, Gul et al. [21] proposed
an approach for safety risk assessment in the mine industry. Using PF MULTI-
MOORA, a process to evaluate passenger satisfaction of public transportation has
recently been developed by Li et al. [32]. For information security risk analysis,
Ak and Gul [1] presented an approach based on AHP-TOPSIS integration under PF
environment. Mete et al. [38] applied a decision-support system for occupational
risk assessment of a natural gas pipeline construction project based on PF-VIKOR
method. A study relating to risk assessment was conducted by Muhammet [39] in
the field of occupational health and safety using AHP and VIKORmethods under PF
environment. Aycan et al. [4] presented an approach to investigate the problems of
selecting the location of WEEE recycling plant based on PF AHP. Apart from those,
there are several MCDMmethods, viz., TOPSIS [8, 58], VIKOR [44], TODIM [45],
ELECTRE [2], etc., for solving problems under PF environments.

Aggregation operators [17, 19, 31] play an important role in solvingMCDMprob-
lemsbydepicting the ranking results in a betterwaybyproducing aggregated decision
values of the alternatives; whereas, the traditional methods [7] can only reveal the
ranking results. Under this perspective, Yager [54] proposed a range of aggregation
operators for PFSs to solveMCDMproblems. Peng andYang [40] andGou et al. [20]
put forward the PF information aggregation process by introducing subtraction and
division operations on PFNs. Based on Einstein t-conorm and t-norm, Garg [13, 14]
proposed some generalized PF aggregation operators. Choquet integral was intro-
duced by Peng and Yang [42] into PF data. Based on confidence levels, Garg [15]
proposed some new PF averaging and geometric operators. Xu et al. [52] developed
an induced generalized ordered weighted averaging (WA) operator to aggregate PF
information. Rahman et al. [43] proposed PF Einstein weighted geometric aggrega-
tion operator and applied it to solve multi-attribute decision making (MADM) prob-
lems. Utilizing Hamacher operations, Wu andWei [50] proposed anMADMmethod
underPFenvironment. Zeng et al. [57] proposed an approach to solveMADMmethod
by developing PF induced ordered weighted averaging-weighted average operator. A
new logarithmic operational law for PFNs was introduced by Garg [16]. Further, Wei
and Lu [48] developed PF power aggregation operators for solving MADM prob-
lems. Recently, some PF weighted, ordered weighted, and hybrid neutral averaging
aggregation operators are introduced by Garg [18].

It is worthy to mention here that most of the aggregation operators cited in the
above discussions consider independent arguments. But, in solving MCDM prob-
lems, interrelationship among input arguments is frequently observed. To tackle
such situations, Bonferroni mean (BM) [9] is successfully applied to capture the
interrelationship among aggregated arguments.
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UsingBM,Wei et al. [49] introduced anMCDMmethod.He et al. [23] proposed IF
interaction BM operators and applied them in solvingMADMproblems. Combining
geometric mean with BM, Xia et al. [51] proposed geometric BM (GBM) operator
and applied it for solving MCDM problems under IF environments. Extending the
concept of BM operator, Beliakova et al. [5] presented generalized BM operators in
multicriteria aggregation processes. Later on, Liang et al. [34] developed a projection
model based on GBM in the context of multicriteria group decision making under
PF environment. Furthermore, Liang et al. [35] introduced BM operator to combine
PFSs and proposed PF BM (PFBM) operator and its weighted variant.

Moreover, Dombi t-conorm and t-norm, defined by Dombi [12], possess the
properties of Archimedean t-conorms and t-norms. Dombi operations are found to
be superior than the other existing operations, viz., algebraic, Einstein, Hamacher,
Frank, etc., for its ability to change preferences of the DMs by varying parame-
ters associated with t-norm, t-conorm. So, it helps to make the information aggre-
gation process more agile. From this viewpoint, Jana et al. [24] proposed bipolar
fuzzy Dombi aggregation operators in MCDM. He [22] introduced Dombi opera-
tions to hesitant fuzzy sets and applied it to the process of aggregation in typhoon
disaster assessment. Liu et al. [37] developed amulti-attribute group decisionmaking
method using Dombi BM operator under IF environment. Further, Peng and Smaran-
dache [41] integrated Dombi operations with BM operators in single-valued neutro-
sophic sets. Recently, based on Dombi operations, [25] investigated some PF Dombi
aggregation operators.

It is worthy to note here that, the characteristic of BMoperator to capture the inter-
relationship among input arguments can overcome the limitation of many existing
aggregation operators, which fail to consider the correlation of the arguments. Addi-
tionally, Dombi operations can successfully make aggregation processes more flex-
ible. Thus, combination of BM aggregation operator with Dombi operations is a
demanding area of research. As per authors’ knowledge, up to now, this combination
of BM operator with Dombi operations has not been developed for aggregating PF
arguments. From this motivation, in this chapter two new PF aggregation operators
are proposed utilizing the concept of GBM operator with Dombi operations. The
objectives of this chapter are presented below:

• Two new PF aggregation operators, viz., PF Dombi GBM (PFDGBM) and PF
weighted Dombi GBM (PFWDGBM) operators have been proposed.

• Some special cases and the properties of the proposed operators are discussed.
• An MCDM approach using the proposed operators has been developed.
• A numerical example is solved to show the validity and utility of the proposed

approach.
• A comparative analysis is performed to describe the advantages of the newly

described approach.

To fulfill the objectives, the rest of the chapter is organized in such a manner
that in Sect. 2, some basic concepts and definitions are briefly reviewed. PF GBM
operators based on Dombi t-conorm and t-norm, including PFDGBM operator and
PFWDGBM operator are proposed in Sect. 3. In Sect. 4, a methodology for solving
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MCDMproblems using the proposed PFDGBM and PFWDGBMoperators is devel-
oped under PF environment. Section 5 presents an illustrative example to show the
effectiveness of the proposed methodology. In Sect. 6, some concluding remarks are
included.

2 Preliminaries

Some concepts related to PFS [53, 55], BM operator [36], Dombi t-conorm, and
t-norm [12] which are required to develop the proposed PFDGBM and PFWDGBM
operators are briefly reviewed in this section.

2.1 Pythagorean Fuzzy Set

Definition 1. [53, 55] Let X be a fixed set. A PFS ˜P on X is defined as: ˜P =
{

x, μ
˜P(x), ν

˜P(x)|x ∈ X
}

, where μ
˜P(x) denotes the degree of membership and

ν
˜P(x) denotes the degree of non-membership of the element x ∈ X to the set ˜P ,

satisfying the condition that 0 ≤ (

μ
˜P(x)

)2 + (

ν
˜P(x)

)2 ≤ 1.

The degree of indeterminacy is given by π
˜P(x) =

√

1 − (

μ
˜P(x)

)2 − (

ν
˜P(x)

)2
.

For given x ∈ X ,
(

μ
˜P(x), ν

˜P(x)
)

is said to be a PFN [58], and for convenience,
a PFN is denoted by p̃ = (

μ p̃, ν p̃
)

.

Definition 2. [47] For any PFN, p̃ = (

μ p̃, ν p̃
)

, the score function of p̃ is defined
by.

S( p̃) = 1

2

(

1 + (

μ p̃
)2 − (

ν p̃
)2

)

, (1)

where, S( p̃) ∈ [0, 1].
For a PFN, p̃ = (

μ p̃, ν p̃
)

, the accuracy function of p̃ is defined as

A( p̃) = (

μ p̃
)2 + (

ν p̃
)2

, (2)

where, A( p̃) ∈ [0, 1].

Definition 3. [58] Let p̃1 and p̃2 be any two PFNs, then the ordering of those PFNs
is done by the following principles:

• If S( p̃1) > S( p̃2), then p̃1 � p̃2;
• If S( p̃1) = S( p̃2), then



On Developing Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operators ... 213

• if A( p̃1) > A( p̃2), then p̃1 � p̃2;
• if A( p̃1) = A( p̃2), then p̃1 ≈ p̃2.

Definition 4. [53, 55] Let p̃ = (μ, ν), p̃1 = (μ1, ν1) and p̃2 = (μ2, ν2) be three
PFNs, and λ > 0, then some basic operations are defined as follows:

(1) p̃1 ⊕ p̃2 =
(

√

μ2
1 + μ2

2 − μ2
1μ

2
2, ν1ν2

)

;

(2) p̃1 ⊗ p̃2 =
(

μ1μ2,

√

ν2
1 + ν2

2 − ν2
1ν

2
2

)

;

(3) λ p̃ =
(

√

1 − (

1 − μ2
)λ

, νλ

)

, λ > 0;

(4) p̃λ =
(

μλ,

√

1 − (

1 − ν2
)λ

)

, λ > 0.

2.2 Geometric Bonferroni Mean Operator

The BM was originally introduced by Bonferroni [9], which is defined as follows:

Definition 5. [9] Let p, q ≥ 0 and ai , (i = 1, 2, . . . , n) be a collection of non-
negative numbers. Then the operation

BMp,q(a1, a2, . . . , an) =
⎛

⎜

⎝

1

n(n − 1)

∑n

i, j = 1
i 	= j

a p
i a

q
j

⎞

⎟

⎠

1
p+q

(3)

is called BM.

BM possesses the following properties:

(i) BMp,q(0, 0, . . . , 0) = 0;
(ii) BMp,q(a, a, . . . , a) = a;
(iii) BMp,q(a1, a2, . . . , an) ≥ BMp,q(h1, h2, . . . , hn) if ai ≥ hi for all i;
(iv) min{ai } ≤ BMp,q(a1, a2, . . . , an) ≤ max{ai } for all i.

Based on geometric mean and BM, Xia et al. [51] introduced GBM as follows:

Definition 6. [51] Let p, q > 0 and {ai }, (i = 1, 2, . . . , n) be a collection of non-
negative numbers, then GBM of the collection {ai }, (i = 1, 2, . . . , n) is defined
as:

GBMp,q(a1, a2, . . . , an) = 1

p + q

⎛

⎜

⎝

∏n

i, j = 1
i 	= j

(

(pai ) + (

qa j
))

⎞

⎟

⎠

1
n(n−1)

. (4)
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2.3 Dombi t-Conorm and t-Norm

Dombi operations, viz.,Dombi sumandDombi product are generated throughDombi
t-conorm and t-norm [12], which are, respectively, shown as follows:

SD(μ, ν) = 1 − 1

1 +
((

μ

1−μ

)r + (

ν
1−ν

)r
)1/r ,

TD(μ, ν) = 1

1 +
((

1−μ

μ

)r + (

1−ν
ν

)r
)1/r , (5)

where r > 0 and μ, ν ∈ [0, 1]

2.4 Operations of PFNs Based on Dombi t-Conorm
and t-Norm

Based on Dombi t-conorm and t-norm, the operational rules of PFNs [25] are defined
as follows:

Suppose κi = (γi , δi ), (i = 1, 2) and κ = (γ, δ), are any three PFNs and consider
r > 0. Then the operational laws of PFNs based on Dombi t-conorm and t-norm can
be defined as.

(1) κ1 ⊕D κ2 =

⎛

⎜

⎜

⎝

√

√

√

√

√

1 − 1

1 +
((

(γ1)
2

1−(γ1)
2

)r +
(

(γ2)
2

1−(γ2)
2

)r) 1
r

,
1

√

1 +
((

1−(δ1)
2

(δ1)
2

)r +
(

1−(δ2)
2

(δ2)
2

)r) 1
r

⎞

⎟

⎟

⎠

; (6)

(2) κ1 ⊗D κ2 =

⎛

⎜

⎜

⎝

1
√

1 +
((

1−(γ1)
2

(γ1)
2

)r +
(

1−(γ2)
2

(γ2)
2

)r) 1
r

,

√

√

√

√

√

1 − 1

1 +
((

(δ1)
2

1−(δ1)
2

)r +
(

(δ2)
2

1−(δ2)
2

)r) 1
r

⎞

⎟

⎟

⎠

; (7)

(3) λκ =

⎛

⎜

⎜

⎝

√

√

√

√

√

1 − 1

1 +
(

λ
(

(γ)2

1−(γ)2

)r) 1
r

,
1

√

1 +
(

λ
(

1−(δ)2

(δ)2

)r) 1
r

⎞

⎟

⎟

⎠

, λ > 0; (8)

(4) κλ =

⎛

⎜

⎜

⎝

1
√

1 +
(

λ
(

1−(γ)2

(γ)2

)r) 1
r

,

√

√

√

√

√

1 − 1

1 +
(

λ
(

(δ)2

1−(δ)2

)r) 1
r

⎞

⎟

⎟

⎠

, λ > 0; (9)
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3 Pythagorean Fuzzy Geometric Bonferroni Mean
Operators Based on Dombi Operations

In this section, GBM is combined with Dombi operations under PF environment to
generate PFDGBM and PFWDGBM operators. Several properties and special cases
of those newly defined operators are also discussed.

3.1 Pythagorean Fuzzy Dombi Geometric Bonferroni Mean
Operator

Definition 7. Let κi = (γi , δi ), (i = 1, 2, . . . , n) be a collection of PFNs. Also let
p, q > 0 be any two numbers. Then PFDGBM operator is given by.

PFDGBMp,q(κ1, κ2, . . . , κn) = 1

p + q

⎛

⎜

⎜

⎝

⊗D
n

i, j = 1
i 	= j

(

(pκi ) ⊗D
(

qκ j
)) 1

n(n−1)

⎞

⎟

⎟

⎠

.

(10)

Theorem 1. Let κi = (γi , δi ), (i = 1, 2, . . . , n) be a collection of PFNs and p, q >

0, then the aggregated value using PFDGBM operator is also a PFN and can be
given as.

PFDGBMp,q (κ1, κ2, . . . , κn) = 1

p + q

⎛

⎜

⎜

⎜

⎝

⊗D
n

i, j = 1

i 	= j

(
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⎟

⎟
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(
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⎠
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⎠
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⎠
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⎠

. (11)

Proof: From Eq. (8),

pκi =
⎛

⎜
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⎛
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⎛
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⎠
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⎠, 1/

√

√

√
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⎞
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⎠
and
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⎜
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⎛
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⎛
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√
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Let (γi )
2

1−(γi )
2 = ui ,

(γ j)
2

1−(γ j)
2 = u j ,,

1−(δi )
2

(δi )
2 = vi , and

1−(δ j)
2

(δ j)
2 = v j , then

pκi =
(

√
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(

1 + p1/r ui
))

, 1/
√
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)

,

qκ j =
(

√

1 − (
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(

1 + q1/r u j
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, 1/
√

1 + q1/rv j

)

.

And then

(pκi ) ⊕D
(
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) =

⎛
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(
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(
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√
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(
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) 1
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⎞

⎠.

So,

(
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)) 1
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⎛
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√

√
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√
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(12)

Further,

⊗D
n
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Then

1
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⎜
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⎜
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⎛
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⎛

⎜

⎝
1/

∑n

i, j = 1
i 	= j

(

1/
(

puri + qurj

))

⎞

⎟

⎠

⎞

⎟

⎠

1/r⎞

⎟

⎠

⎞

⎟

⎠
,
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⎜
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⎜
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. (13)

Now, putting the values of ui , u j , vi , and v j in Eq. (13), the required expression
follows.

Note 1. It is interesting to note here that if one expert provides evaluation value
as (γt , δt ) = (1, 0), for some t, then in the process of aggregating the input data by
PFDGBM operator, the corresponding effect of that evaluation value on the summa-
tion related to the calculations of γ and δ would be zero. Thus there would be no
effect for that attribute value. But, if all the input decision values are considered as
(1,0), the aggregated value, (γ, δ)would also be (1,0). Further, for considering (0, 1),
as an input evaluation value given by one expert, the aggregated preference value
would be calculated as usual maintaining Eq. (11).

Example: Suppose k1 = (0.7, 0.5), k2 = (0.6, 0.5), k3 = (0.5, 0.8) are three
PFNs. Then if PFDGBM operator is used to aggregate those three PFNs, considering
p = q = 1 and r = 2, the aggregated PFN, (γ, δ), is obtained as follows:

Here,
∑n

i, j = 1
i 	= j

1
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(
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⎠

= 8.2254.
Thus
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= 0.3765.

.
Similarly,

δ =

√

√

√

√

√

√

√

√

1/

⎛

⎜

⎜

⎜

⎝

1 +

⎛

⎜

⎜

⎝

3(3 − 1)

1 + 1

⎛

⎜

⎜

⎝

1/

⎛

⎜

⎜

⎝

∑3

i, j = 1

i 	= j

(

1/

((

1 − (δi )
2

(δi )
2

)r

+
(

1 − (

δ j
)2

(

δ j
)2

)r))

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
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= 0.5459.

Thus, PFDGBM1,1(k1, k2, k3) = (0.3765, 0.5459).
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3.2 Properties of Pythagorean Fuzzy Dombi Geometric
Bonferroni Mean Operator

In this section, some desirable properties of the proposed PFDGBM operator are
presented.

Property 1. (Idempotency). Let κi = (γi , δi ), (i = 1, 2, . . . , n) be a collection
of PFNs. If all κi ,(i = 1, 2, . . . , n) be equal to κ = (γ, δ), i.e., κi = κ, for all
i = 1, 2, . . . , n, then

PFDGBMp,q(κ1, κ2, . . . , κn) = κ. (14)

Proof. From the given definition,
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=
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Since κi = κ , (i = 1, 2, . . . , n),

PFDGBMp,q(κ1, κ2, . . . , κn)

=
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√
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Property 2. (Monotonicity). Let κi = (γi , δi ) and κ ′
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, (i = 1, 2, . . . , n)
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Proof: From the given definition,
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Since ki ≤ k ′
i , then γi ≤ γ ′

i , for all i = 1, 2, . . . , n,
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Similarly, q

(
(

γ j
)2

1 − (

γ j
)2

)r

≤ q

⎛

⎜

⎝

(

γ ′
j

)2

1 −
(

γ ′
j

)2

⎞

⎟

⎠

r

, for all j = 1, 2, . . . , n. (17)

From Eqs. (16) and (17) it is clear that
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i.e.,
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In a similar manner, the following relationship is obtained, since ki ≤ k ′
i ; and so,

δi ≥ δ′
i for all i = 1, 2, . . . , n,
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By Definition 3 and Eq. (18) and Eq. (19), the theorem is proved.

Property 3. (Boundary). Let κi = (γi , δi ), (i = 1, 2, . . . , n) be a collection of
PFNs. Also, let

γ+ = maxni=1{γi }, γ− = minni=1{γi }, δ+ = maxni=1{δi }, δ− = minni=1{δi }. Now, if κ− = (γ−, δ+) and
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κ+ = (γ+, δ−), then κ− ≤ PFDGBMp,q (κ1, κ2, . . . , κn) ≤ κ+. (20)

Proof. Since γ− ≤ γi ≤ γ+ and δ− ≤ δi ≤ δ+, for all i = 1, 2, . . . , n, then.
κ− ≤ κi for i = 1, 2, . . . , n; and, therefore, from monotonicity,

PFDGBMp,q(κ−, κ−, . . . , κ−) ≤ PFDGBMp,q(κ1, κ2, . . . , κn).

Also, by idempotency, κ− ≤ PFDGBMp,q(κ1, κ2, . . . , κn). (21)

Similarly,PFDGBMp,q(κ1, κ2, . . . , κn) ≤ κ+. (22)

Combining Eqs. (21) and (22), κ− ≤ PFDGBMp,q(κ1, κ2, . . . , κn) ≤ κ+.

3.3 Some Special Cases of Pythagorean Fuzzy Dombi
Geometric Bonferroni Mean Operator

In this section, some special cases of the proposed PFDGBM operator are studied
with respect to the parameters p and q as follows:

(i) For q → 0, r > 0,
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. (23)

(ii) For p = 1, q → 0, r > 0,

PFDGBM1,0(κ1, κ2, . . . , κn) =
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(iii) For p → 0, r > 0,

PFDGBM0,q (κ1, κ2, . . . , κn) =
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(iv) For p = q = 1, r > 0,
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3.4 Pythagorean Fuzzy Weighted Dombi Geometric
Bonferroni Mean Operator

Definition 5. Let κi , (i = 1, 2, . . . , n) be a collection of PFNs and let ω =
(ω1, ω2, . . . , ωn)

t be the weight vector with ωi ∈ [0, 1],
∑n

i=1 ωi = 1 and p, q > 0
be any numbers. If.

PFWDGBMp,q
ω (κ1, κ2, . . . , κn) = 1

p + q
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, (27)

then PFWDGBMp,q
ω (κ1, κ2, . . . , κn) is called PF weighted Dombi GBM

(PFWDGBM) operator.

Theorem 2. Let κi = (γi , δi ), (i = 1, 2, . . . , n) be a collection of PFNs, whose
corresponding weights are given through the vector, ω = (ω1, ω2, . . . , ωn)

t , where,
ωi ∈ [0, 1] and

∑n
i=1 ωi = 1.Let p, q > 0 be any two numbers. Then the aggregated

value using PFWDGBM operator is also a PFN and is given by

PFWDGBMp,q
ω (κ1, κ2, . . . , κn) =
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Proof: The proof is similar as Theorem 1.

Note 2. The proposed PFWDGBM operator also satisfies the following properties:

• Monotonicity,
• Boundedness.

4 An Approach to MCDM with Pythagorean Fuzzy
Information

In the process of decision making, MCDM plays an important role for finding best
alternative. For evaluating the alternatives DMs prefer to express decision values
using PFNs. It is frequently observed that the input arguments provided by the DMs
are dependent on each other. Sometimes, it is also found that the preferences of the
DMs may be involved with the decision making processes. Considering all these
aspects, in this section, a methodology for solving MCDM problems under PF envi-
ronment is presented based on the developed PFWDGBM operator which possesses
the capability to capture all of the above-mentioned characteristics. An MCDM
problem under PF environment is described below:

Let X = {x1, x2, . . . ., xm} be a set of alternatives and C = {C1,C2, . . . .,Cn}
be a set of criteria with the weight vector representing weights corresponding to
each criterion, ω = (ω1, ω2, . . . , ωn)

t , where ωi ∈ [0, 1], (i = 1, 2, . . . ,m) and
∑n

i=1 ωi = 1. After evaluating the alternatives with respect to criteria, DM provides

the PF decision matrix (PFDM) as ˜D =
[

d̃i j
]

m×n
, whose elements are represented

by PFNswith the form d̃i j = (

γi j , δi j
)

. Each d̃i j indicates the decision value provided
by DM corresponding to the alternative xi ∈ X evaluated on the basis of criterion
C j ∈ C. γi j represents the degree for which the alternative xi satisfies the criterion
C j ; and δi j represents the degree for which the alternative xi does not satisfy the
criterion C j , according to the DM. Here, γi j , δi j ∈ [0, 1], with γ 2

i j + δ2i j ≤ 1, for
i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

The proposed methodology using the developed PFWDGBM operator is
described through the following steps:

Step 1: Criteria are classified into two types, viz., benefit criteria and cost criteria.
If the PFDM contains cost criteria along with benefit criteria, the cost criteria are
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converted into benefit criteria through normalization. Thus, the decision matrix
˜D =

[

d̃i j
]

m×n
, is converted into the normalized form, R = (

r̃i j
)

m×n in the

following way,

r̃i j =
{

d̃i j for benefit criteria C j

d̃c
i j for cost criteria C j

, (29)

where d̃c
i j is the complement of d̃i j ; i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2: Using PFWDGBMoperator, the collective evaluation value corresponding
to the alternative xi with respect to the set of criteria C given in the normalized
matrix R in the form of PFNs are aggregated considering criteria weight vector ω.
The aggregation process is performed using some specific values ofBMparameter
p, q and Dombi parameter r as follows:
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Step 3: Calculate the score values Sti corresponding to the aggregated PFNs, ti
(i = 1, 2, . . . .,m) based on Eq. (1). Compute the accuracy values using Eq. (2),
if required.
Step 4: Rank all the alternatives xi , (i = 1, 2, . . . .,m) on the basis Definition 3
and find the best alternative.

5 An Illustrative Example

In this section, themethodology developed for solvingMCDMproblems is illustrated
by solving the following case example.

5.1 Description of the MCDM Problem

The evaluation and selection processes of suppliers have become more and more
complicated in recent days due to the imprecision associated with the evaluation
of attributes as well as inherent fuzziness associated with the available data. Thus,
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decision making processes need to be advanced to tackle these situations. In supplier
selection processes, DMs often deal with attributes having interrelationships among
themselves. It has already been mentioned that the proposed PFWDGBM operator
not only possesses the characteristics of capturing interrelationship among input
arguments, but it can also make decision making process more general and feasible
due to presence of the Dombi parameter r . Considering these aspects, a decision
making problem adapted from an article presented by Wang et al. [46] has been
considered and solved using the proposed methodology.

Amanufacturer plans to choose appropriate supplier from four available suppliers,
Xi , i = 1, 2, 3, 4. The selection process is performed on the basis of four criteria
of the suppliers, viz., price of raw materials (U1), quality of raw materials (U2),
reliability of each supplier (U3) and quality of service (U4). The weight vector
corresponding to the weights of criteria is given by ω = (0.2, 0.3, 0.3, 0.2)t .

It is to be noted here that the criterion U1 represents cost criterion; whereas, all
other criteria represent benefit criteria.

After evaluating the attributes of each supplier, the following Pythagorean fuzzy
decision matrix is presented in Table 1.

Regarding the formulation of the above table, it is important to mention here that
DMs generally express their judgment values using linguistic terms. Those linguistic
terms are converted into PFNs using some linguistic scale. Thus each PFN in the
above table represents some linguistic hedges corresponding to the evaluation criteria.
Although, same PFN designates same linguistic hedge, but the characteristic of eval-
uation may be different, i.e., one of them may represent benefit criterion, whereas,
the other may signify cost criterion.

The above problem is executed step by step using the proposedmethod as follows:

Step 1: Since the criterion U1, represents cost criterion, it is required to be
converted to benefit criterion Thus, using Eq. (29) the following decision matrix
is obtained after normalization as (Table 2).

Step 2: On utilizing PFWDGBMoperator as presented in Eq. (28), all the attribute
values for each supplier are aggregated. Varying the parameters p and q in between
(0, 10], different aggregated attribute values for each supplier are obtained. In
particular, if p = q = 1 and r = 2 are considered, the following aggregated
attribute value of each supplier is achieved as:

t1 = (0.4764, 0.2310), t2 = (0.5870, 0.2321), t3 = (0.6596, 0.1832),

t4 = (0.7340, 0.2141).

Step 3: The score values of each ti , (i = 1, 2, 3, 4) using Eq. (1) are obtained as
follows:

St1 = 0.1735, St2 = 0.2907, St3 = 0.4014, St4 = 0.4928.

Step 4: The alternatives are ranked using the achieved score values as.
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X4〉X3〉X2〉X1.

Therefore, the best supplier is identified as X4.

5.2 Results and Discussions

Consequences of the parameters p, q, and r on the decision making outcomes.

Assigning different values of BM parameters, p and q in the proposed PFWDGBM
operator, the effects on decision making process are observed. At first, varying the
parameters p, q in (0, 10] and considering Dombi parameter, r = 2, the achieved
results are presented via the following Figs. 1, 2, 3, and 4.

It is seen that using different values of p andq, the ranking results remain consistent
and the best alternative is found as X4. Thus the best alternative does not change for
the presence of different aggregation parameters. It is worthy to mention here that
for equal values of p and q, the highest score value corresponding to each alternative
is achieved. Whereas, decreasing trends in score values are found with the increase
of p or q having unequal values using the proposed PFWDGBM operator.

In the following, it has been shown that the preferences of the DMs highly depend
on the Dombi parameter, r. So, keeping the BM parameter p and q fixed (taking
p = q = 1, for convenience) and varying theDombi parameter r for 0 < r ≤ 15, the
changes in score values of the alternatives using PFWDGBM operator are visualized
through Fig. 5.

Appropriate value of the parameter r can be chosen by the DMs according to their
choice of preferences. From Fig. 5, it is evidenced that the ranking results remain the
same for different values of the parameter r The figure depicts that the score values
of the alternatives decrease when r increases. Thus for taking pessimistic decision,
higher value of the parameter r is chosen; while, smaller value of the parameter r is
chosen for taking optimistic decision by the DM.

5.3 Comparative Analysis

In this section, the proposed method is compared with existing methods [13, 46, 59].
Utilizing the decision information as presented in Table 1 [46], the aggregated results
using PFWA operator [59], PFEWA operator [13], PFWBM operator [46], and the
proposed PFWDGBM operator are presented in the following Table 3:



On Developing Pythagorean Fuzzy Dombi Geometric Bonferroni Mean Operators ... 227

Table 1 Pythagorean fuzzy decision matrix given by the DM [46]

U1 U2 U3 U4

X1 (0.3, 0.4) (0.5, 0.3) (0.2, 0.3) (0.3, 0.4)

X2 (0.2, 0.5) (0.6, 0.4) (0.2, 0.4) (0.4, 0.3)

X3 (0.2, 0.6) (0.5, 0.5) (0.3, 0.2) (0.6, 0.3)

X4 (0.3, 0.6) (0.7, 0.2) (0.6, 0.3) (0.5, 0.5)

Table 2 Transformed Pythagorean fuzzy decision matrix

U1 U2 U3 U4

X1 (0.4, 0.3) (0.5, 0.3) (0.2, 0.3) (0.3, 0.4)

X2 (0.5, 0.2) (0.6, 0.4) (0.2, 0.4) (0.4, 0.3)

X3 (0.6, 0.2) (0.5, 0.5) (0.3, 0.2) (0.6, 0.3)

X4 (0.6, 0.3) (0.7, 0.2) (0.6, 0.3) (0.5, 0.5)

Fig. 1 Score of the
alternative X1 for p, q in (0,
10] using PFWDGBM
operator
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From Table 3, it signifies that the rankings of the alternatives are consistent and
the best alternative X4 remains the same for each case. This indicates the consistency
of the proposed method.

It is to be noted here that themethod developed byZhang [13, 59] using their devel-
oped PFWA and PFEWA operators, respectively, could not capture interrelationship
among the input arguments. Whereas, the proposed PFWDGBM operator has the
capability to do so, due to the presence of BM operator in the developed aggregation
function. Furthermore, having the flexible Dombi parameter, the proposed method
provides more choices to the DM, for choosing different values of the parameter
according to their needs. But, the other operators [13, 46, 59], under consideration
fail to do so.
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Fig. 2 Score of the
alternative X2 for p, q in (0,
10] using PFWDGBM
operator

0

5

10

0

5

10
0.05

0.1

0.15

0.2

0.25

0.3

pq

sc
or
e

0.1

0.15

0.2

0.25

Fig. 3 Score of the
alternative X3 for p, q in (0,
10] using PFWDGBM
operator
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Further, it is interesting to note here that the method developed byWang et al. [46]
and the proposed method, both of them consider interrelationship of the attributes in
the decision making process through BM. But the advantage of using the proposed
operator is that it further includes the attitude of the DMs toward the decision options
due to the appearance of Dombi parameter r.

It is the fact that larger differences in score values of consecutively ranked alterna-
tives provide better ranking. From that viewpoint, in the following Fig. 6, the differ-
ences of score values between two consecutively ranked alternatives using proposed
PFWDGBM operator and the other operators [13, 46, 59] under consideration is
presented.

From Fig. 6 it is clear that using the proposed method, the differences of
score values between two consecutively ranked alternatives are higher than other
approaches [13, 46, 59]. This shows that the proposed method is more beneficial to
rank the alternatives than the other techniques [13, 46, 59] in the process of MCDM.
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Fig. 4 Score of the
alternative X4 for p, q in (0,
10] using PFWDGBM
operator
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Fig. 5 Score values of the alternatives based on PFWDGBM operator for r ∈ (0, 15].

6 Conclusions

In this chapter based on Dombi operations PFDGBM operator is defined for aggre-
gating PF arguments and examined their special cases with properties. Further,
introducing the weight vector of the attributes, PFWDGBM operator is developed.
A method to deal with MCDM problems under PF environment is discussed. The
novelty of the proposedPFWDGBMoperator is that it canmodel the interrelationship
among the input arguments in the decision making process for having BM parame-
ters. Also, the newly defined operators possess the advantage tomake the aggregation
processes more flexible due to the presence of Dombi parameter r. Apart from those,
the proposed method has the ability to depict DM’s optismistic or pessimistic views



230 N. Deb and A. Biswas

Table 3 Ranking results by different methods

Aggregation operators Score values Ranking

PFW A operator [59] St1 = 0.5201, St2 = 0.5521, St3 =
0.5863, St4 = 0.6482.

X4〉X3〉X2〉X1

PFEW A operator [13] St1 = 0.5185, St2 = 0.5483, St3 =
0.5831, St4 = 0.6464.

X4〉X3〉X2〉X1

PFW BM operator [46] St1 = 0.4617, St2 = 0.4948, St3 =
0.5377, St4 = 0.5734.

X4〉X3〉X2〉X1

The proposed PFWDGBM operator St1 = 0.1735, St2 = 0.2907, St3 =
0.4014, St4 = 0.4928.

X4〉X3〉X2〉X1
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Fig. 6 Difference between two score values of the consecutively ranked alternatives

by choosing different values of the parameter. Furthermore, through the figures and
achieved results, it has been established that the proposedmethod possesses the capa-
bility of ranking the alternatives in a better way than the existing ones. It is to be noted
here that the proposed approach has some limitations in the sense that BM parameter
involved with the proposedmethod considers interrelationship of each input attribute
with all the remaining attributes. But, sometimes, it may happen, when some of the
attributesmay not be related to some other attributes. In such situations the developed
operator does not work well.

In future research it would be significant to apply the Dombi Bonferroni mean
operator into different imprecise domains, viz., hesitant fuzzy, interval-valued PF,
and other variants. Moreover, it would be interesting to consider other types of
interrelationship patterns among input attributes and thus new type of aggregation
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operators would be generated for solving real-life decision making problems, e.g.,
pattern recognition, cluster analysis, risk analysis, and others. However, it is hoped
that the developed operatorsmay be beneficial to future researchers to explore various
emerging areas of research in MCDM arena.
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1 Introduction

MADM is a proficient technique that can provide the ranking results for the finite
alternatives according to the attribute values of different alternatives and it is the
important aspect of decision sciences. In recent years, the development of enterprises
and social decision-making in all aspects are related to the issue of MADM. In real
decision process, an important problem is how to express the attribute value more
efficiently and accurately. In the real world, because of the complexity of decision-
makingproblems and the fuzziness of decision-making environments, it is not enough
to express attribute values of alternatives by exact values. For this the notion of fuzzy
set (FS)was exploredbyZadeh [1]. FS composes of the grade of supporting belonging
to the unit interval, as a proficient technique to cope with unreliable and awkward
information in realistic decision issues. At the point when a decision-maker gives
the data as pair (0.5, 0.4) for truth and falsity grades, the notion of FS is not able
to resolve it. For coping with such kind of issues, Atanassove [2] introduced the
notion of intuitionistic FS (IFS) with the condition that the total of supporting and
supporting against grades isn’t surpassed from unit interval. IFS has gotten more
consideration from researchers and a huge number of researchers have investigated
their speculations [3–5].

There are some practical cases if the decision-maker gives 0.9 for positive grade
and 0.3 for negative so their summust be greater than 1, unlike the problem captured
in IFS. Therefore, the work of Yager [6] called Pythagorean FS (PFS) can be success-
fully applied in different awkward fields because the sum of the square of positive
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grade and square of negative grade is restricted to [0,1]. Due to its constraint, PFS
becomes an essential tool to copewith awkward anddifficult fuzzy information. Since
it was established, it has received the attention of many researchers and it is utilized
in the environment of aggregation operators, similarity measures, hybrid aggrega-
tion operators, and so on. The various existing works based on PFS are elaborated
as follow as:

1. Operators-based Approaches: Based on the aggregation operators, many
scholars have successfully utilized in the environment of PFS. For instance,
Mohagheghi et al. [7] explored the new last aggregation evaluation based on
PFSs, Ma and Xu [8] presented weighted averaging/geometric aggregation
operators based on PFSs, Wei [9] discovered interaction aggregation operators
based on PFSs, Garg [10] introduced information aggregation using Einstein
operations based on PFSs, Garg [11] examined the confidential levels based
on Pythagorean fuzzy aggregation operators, new logarithmic and aggregation
operators based on PFSs were presented by Garg [12, 13] discovered the novel
neutrality operation based on PFSs and their aggregation operators.

2. Measures-based Approaches: Similarity measure (SM) is a proficient tech-
nique to accurately examine the degree between any two objects. Many scholars
have applied SM in different notions. For example, Wei and Wei [14] explored
similarity measures based on PFSs, Garg [15] presented correlation coefficient
based on PFSs, Biswas and Sarkar [16] discovered the similarity measures
based on point operators by using PFSs, Li and Zeng [17] introduced distance
measures based on PFSs and Zhang [18] examined similarity measures based
on PFSs.

3. Hybrid Operators-based Approaches: To find the interrelationships between
two objects, the hybrid aggregation operators play an essential role in the envi-
ronment of realistic decision theory. Various scholars using the PFSs, explored
different hybrid aggregation operators. For example, Liang et al. [19] discovered
geometric Bonferroni mean operators based on PFSs, Prioritized aggregation
operators [20], Bonferronimean aggregation operators [21], Dombi aggregation
operators [22], power aggregation operators [23], etc. [24–26].

After that, a more generalized operator was presented, that is, the Muirhead mean
[26], which was added an alterable parametric vector P on the basis of considering
interrelationships among multiple input parameters, and some existing operators
are its special cases, for instance, arithmetic and geometric mean (GM) operators
(not considering the correlations), Bonferroni mean (BM) operator, and Maclaurin
symmetric mean (MSM). When dealing with MCDM problems, some aggregation
operators cannot consider the relationship between any input parameters, whileMuir-
head mean (MM) operator can take into account the correlation between inputs by a
variable parameter. Therefore, the MM operator is more superior when dealing with
MCDM problems.

Multi-criteria decision-making refers to the use of existing decision information,
in the case of multi-criteria that are in conflict with each other and cannot coexist, and
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in which the limited alternatives are ranked or selected in a certain way. Schweizer–
Sklar operation uses a variable parameter to make their operations more effective and
flexible. MCDM alludes to the utilization of existing choice data, for the situation of
multi-models that are in strife with one another and can’t exist together, and in which
the constrained options are positioned or chosen with a specific goal in mind. SS
activity utilizes a variable boundary to make their tasks increasingly successful and
adaptable. What’s more, PFS can deal with inadequate, uncertain, and conflicting
data under fuzzy conditions. Subsequently, we directed further examination on SS
tasks for PFS and applied SS activities to MCDM issues. Besides, in light of the fact
that theMMoperator thinks about interrelationships among different info boundaries
by the alterable parametric vector, subsequently consolidating theMM operator with
the SS activity gives some collection operators, and it was progressively significant
to build up some new way to comprehend the MCDM issues in the Pythagorean
fuzzy environment. As indicated by this, the reason furthermore, noteworthiness of
this article are.

1. To build up various new MM operators by consolidating MM operators, SS
activities, and PFS.

2. To talk about some significant properties and various instances of these operators
set forward.

3. To manage a MCDM strategy for PFS data more adequately dependent on the
operators set forward.

4. To show the feasibility and prevalence of the recently evolved strategy.

The aims of this manuscript are summarized as follow: In Sect. 2, we briefly state
the fundamental conceptions of PFS, SS T-norm (SSTN), SS T-conorm (SSCTN),
andMM operators. In Sect. 3, we explore the SS operators based on PFS and studied
their score function, accuracy function, and their relationships. Further, based on
these operators, the MM operators based on PFS are called Pythagorean fuzzy MM
(PFMM) operator, Pythagorean fuzzy weighted MM (PFWMM) operator, and their
special cases are presented. In Sect. 4, multi-attribute decision-making (MADM)
problem is solved by using the explored operators based on PFS to observe the consis-
tency and efficiency of the produced approach. Finally, the advantages, comparative
analysis, and their geometrical representation are also discussed. The conclusion of
this manuscript is discussed in Sect. 5.

2 Preliminaries

In this study we review some basic notions of PFSs and their fundamental laws.
Throughout this manuscript, the universal set is expressed by .
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2.1 Pythagorean Fuzzy Sets

Definition 1: [6] A PFS RP is initiated by

RP = {(
μRP (x), ηRP (x)

) : x ∈ X }
(1)

whereμP and ηP are the grades of supporting and supporting against, with a condition
such that 0 ≤ μ2

Rp(x) + η2
Rp(x) ≤ 1. The refusal grade is of the form ξRp(x) = 1 −

(
μ2

Rp(x) + η2
Rp(x)

) 1
2
. The Pythagorean fuzzy number (PFN) is denoted byRP−i =

(
μRP−i , ηRP−i

)
. Further, the score function and accuracy function for PFS RP−1 =(

μRP−1 , ηRP−1

)
are initiated by

SSF (RP−1) = μ2
RP−1

− η2
RP−1

(2)

HAF (RP−1) = μ2
RP−1

+ η2
RP−1

(3)

where SSF (RP−1) ∈ [−1, 1] and HAF (RP−1) ∈ [0, 1].
To examine the interrelationships between any two PFSsRP−1 = (

μRP−1 , ηRP−1

)

and RP−2 = (
μRP−2 , ηRP−2

)
, then

If SSF (RP−1) > SSF (RP−2) ⇒ RP−1 > RP−2; (4)

If SSF (RP−1) = SSF (RP−2) ⇒, (5)

If HAF (RP−1) > HAF (RP−2) ⇒ RP−1 > RP−2; (6)

If HAF (RP−1) = HAF (RP−2) ⇒ RP−1 = RP−2. (7)

Further, we discussed the existing operator based on PFSs, which is discussed
below. For any two PFSs RP−1 = (

μRP−1 , ηRP−1

)
and RP−2 = (

μRP−2 , ηRP−2

)
,

then.

1. RP−1 ⊕ RP−2 =
((

μ2
RP−1

+ μ2
RP−2

− μ2
RP−1

μ2
RP−2

) 1
2
, ηRP−1ηRP−2

)
;

2. RP−1 ⊗ RP−2 =
(

μRP−1μRP−2 ,
(
η2
RP−1

+ η2
RP−2

− η2
RP−1

η2
RP−2

) 1
2

)
;

3. δRP−1 =
((

1 −
(
1 − μ2

RP−1

)δ
) 1

2

, ηδ
RP−1

)

;

4. δRP−1 =
(

μδ
RP−1

,

(
1 −

(
1 − η2

RP−1

)δ
) 1

2

)

.
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2.2 Muirhead Mean Operator

Definition 2: [26] For any positive real numbers RP−i (i = 1, 2, 3, . . . , ξ ), with
their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the MM operator is initiated by

MMP(RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPi

P−σ(i)

) 1
∑ξ

i=1 Pi (8)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and Sξ

expressed the family of permutations (i = 1, 2, .., ξ ). Additionally, Eq. (8), holds
the following axioms.

1. If P = (1, 0, 0, . . . , 0), then the MM convert to
MM (1,0,0,...,0)

(RP−1,RP−2, . . . ,RP−ξ

) = 1
ξ

∑ξ

i=1 RP−i , which is expressed
the arithmetic averaging operator.

2. If P =
(
1
ξ
, 1

ξ
, . . . ., 1

ξ

)
, then the MM convert to

MM
(

1
ξ
, 1

ξ
,...., 1

ξ

)(RP−1,RP−2, . . . ,RP−ξ

) = ∏ξ

i=1 R
1
ξ

P−σ(i), which is expressed
the geometric mean operator.

3. If P = (1, 1, 0, . . . , 0), then the MM convert to

MM (1,1,0,...,0)
(RP−1,RP−2, . . . ,RP−ξ

) =
(

1
ξ(ξ−1)

∑ξ

i �= j=1 RP−iRP− j

) 1
2
,

which is expressed the Bonferroni mean operator.

4. If P =
⎛

⎝
k

︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k
︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎠, then the MM convert

to MM

⎛

⎜⎜
⎝

k︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎟⎟
⎠(RP−1,RP−2, . . . ,RP−ξ

) =
(⊕1≤i1≤....≤ik≤ξ ⊗k

j=1RP−i j

Ck
ξ

) 1
k

, which is expressed the Maclaurin symmetric mean

operator.

From Def. (2) and the exceptional instances of the MM operator referenced
above, we realize that the favorable position of the MM operator is that it can
catch the general interrelationships among the numerous input boundaries and it
is a speculation of some current total operators.

2.3 Schweizer–Sklar Operations

In this study, we review the basic notions of SS operations, which contain the SS
sum and product based on T-norm and T-conorm.
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Definition 3: [27] For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then.

RP−1 ∩T ,T ∗ RP−2 = (T (
μRP−1 , μRP−2

)
, T ∗(ηRP−1 , ηRP−2

))
(9)

RP−1 ∪T ,T ∗ RP−2 = (T ∗(μRP−1 , μRP−2

)
, T (

ηRP−1 , ηRP−2

))
(10)

where T and T ∗ are expressed the T-norm (TN) and T-conorm (TCN). Additionally,
the SSTN and SSTCN are discussed below:

TSS,γ (x, y) = (xγ + yγ − 1)
1
γ (11)

T ∗
SS,γ (x, y) = 1 − ((1 − x)γ + (1 − y)γ − 1)

1
γ (12)

where γ < 0, x, y , ∈ [0, 1]. If γ = 0, then Tγ ( x, y ) = and T ∗
γ (x, y ) = x + y

− xy, which are expressed the algebraic TN and TCN. Further, we have defined the
SSTN and SSTCN for PFS, which are stated below:

Definition 4: For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then the generalized union and intersection using SS operational

laws, such that

RP−1 ⊗T ,T ∗ RP−2 = (T (
μ2
RP−1

, μ2
RP−2

)
, T ∗(η2

RP−1
, η2

RP−2

))
(13)

RP−1 ⊕T ,T ∗ RP−2 = (T ∗(μ2
RP−1

, μ2
RP−2

)
, T (

η2
RP−1

, η2
RP−2

))
. (14)

Based on Eqs. (11) and (12), we present SS operations based on PFSs, such that

RP−1 ⊗SS RP−2 =

⎛

⎜⎜
⎝

(
μ
2γ
RP−1

+ μ
2γ
RP−2

− 1
) 1

2γ
,

(
1 −

((
1 − η2

RP−1

)γ +
(
1 − η2

RP−2

)γ − 1
) 1

γ

) 1
2

⎞

⎟⎟
⎠ (15)

RP−1 ⊕SS RP−2 =

⎛

⎜⎜
⎝

(
1 −

((
1 − μ2

RP−1

)γ +
(
1 − μ2

RP−2

)γ − 1
) 1

γ

) 1
2

,

(
η
2γ
RP−1

+ η
2γ
RP−2

− 1
) 1

2γ

⎞

⎟⎟
⎠ (16)

�RP−1 =

⎛

⎜⎜
⎝

(
1 −

(
�

(
1 − μ2

RP−1

)γ − (� − 1)
) 1

γ

) 1
2

,

(
�η

2γ
RP−1

− (� − 1)
) 1

2γ

⎞

⎟⎟
⎠ (17)
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R�
P−1 =

⎛

⎜⎜
⎝

(
�μ

2γ
RP−1

− (� − 1)
) 1

2γ
,

(
1 −

(
�

(
1 − η2

RP−1

)γ − (� − 1)
) 1

γ

) 1
2

⎞

⎟⎟
⎠. (18)

Theorem 1: For any two PFSs RP−1 = (
μRP−1 , ηRP−1

)
and RP−2 =(

μRP−2 , ηRP−2

)
, then

1. RP−1 ⊕SS RP−2 = RP−2 ⊕SS RP−1;
2. RP−1 ⊗SS RP−2 = RP−2 ⊗SS RP−1;
3. �(RP−1 ⊕SS RP−2) = �RP−1 ⊕SS �RP−2;
4. R�1+�2

P−1 = �1RP−1 ⊗SS �2RP−1

Proof: Straightforward.

3 Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Aggregation Operations

The aim of this study is to present the MM operators based on PFS are called
Pythagorean fuzzy MM (PFMM) operator, Pythagorean fuzzy weighted MM
(PFWMM) operator, and their special cases are presented.

After that, a more generalized operator was presented, that is, the Muirhead mean
[26], which was added an alterable parametric vector P on the basis of considering
interrelationships among multiple input parameters, and some existing operators
are its special cases, for instance, arithmetic and geometric mean (GM) operators
(not considering the correlations), Bonferroni mean (BM) operator, and Maclaurin
symmetric mean (MSM). When dealing with MCDM problems, some aggregation
operators cannot consider the relationship between any input parameters, whileMuir-
head mean (MM) operator can take into account the correlation between inputs by a
variable parameter. Therefore, the MM operator is more superior when dealing with
MCDM problems.

Multi-criteria decision-making refers to the use of existing decision information,
in the case of multi-criteria that are in conflict with each other and cannot coexist, and
in which the limited alternatives are ranked or selected in a certain way. Schweizer–
Sklar operation uses a variable parameter to make their operations more effective and
flexible. MCDM alludes to the utilization of existing choice data, for the situation of
multi-models that are in strife with one another and can’t exist together, and in which
the constrained options are positioned or chosen with a specific goal in mind. SS
activity utilizes a variable boundary to make their tasks increasingly successful and
adaptable. What’s more, PFS can deal with inadequate, uncertain, and conflicting
data under fuzzy conditions.
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3.1 Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Operator

The aims of this study are to explore the idea of PFSSMM operator and their results
to improve the quality of the explored work. The special cases of the explored work
are also explored in this sub-section.

Definition 5: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ), with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the PFSSMM operator is initiated by

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPi

P−σ(i)

) 1
∑ξ

i=1 Pi
,

(19)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and Sξ

expressed the family of permutations (i = 1, 2, .., ξ ).
By using Eq. (19) and the novel operational laws of SS, which are stated in the

form of Def. (4), we get Theorem 2.

Theorem 2: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ ),with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , then by using Eq. (19) and Def. (4), we get
Pythagorean fuzzy Schweizer–Sklar MM operator, such that

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜
⎝

∑
σ∈Sξ

⎛

⎜⎜
⎝

1−
(

1+
∑ξ

i=1 Pi

(
μ
2γ
P−σ(i) − 1

)
) 1

γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑
σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
∑ξ

i=1 Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(20)

Proof: By using the Def. (4), we get

RPi
P−σ(i) =

⎛

⎜
⎝

(
Piμ

2γ
RP−σ(i)

− (Pi − 1)
) 1

γ

,
(
1 −

(
Pi

(
1 − η2

RP−σ(i)

)γ − (Pi − 1)
) 1

γ

)

⎞

⎟
⎠
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ξ∏

i=1

RPi
P−σ(i) =

⎛

⎜⎜⎜⎜⎜
⎝

(
ξ∑

i=1
Piμ

2γ
RP−σ(i)

−
ξ∑

i=1
Pi + 1

) 1
γ

,
⎛

⎝1 −
(

ξ∑

i=1
Pi

(
1 − η2

RP−σ(i)

)γ −
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

⎞

⎟⎟⎟⎟⎟
⎠

∑

σ∈Sξ

ξ∏

i=1

RPi
P−σ(i) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 −
⎛

⎝ ∑

σ∈Sξ

⎛

⎝1 −
(

ξ∑

i=1
Piμ

2γ
RP−σ(i)

−
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

γ

− 1

⎞

⎠

1
γ

,

⎛

⎝ ∑

σ∈Sξ

⎛

⎝1 −
(

ξ∑

i=1
Pi

(
1 − η2RP−σ(i)

)γ −
ξ∑

i=1
Pi + 1

) 1
γ

⎞

⎠

γ

− 1

⎞

⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ !
∑

σ∈Sξ

ξ∏

i=1

RPi
P−σ(i)

⎞

⎠

1
∑ξ

i=1 Pi

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Hence complete the proof.
Additionally, we have proved some properties like Monotonicity, Commutativity,

and some special cases of the explored operators.

Theorem 3: For any two families of PFSs RP−i (i = 1, 2, 3, . . . , ξ ) and R′
P−i ,

with their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if μRP−i ≥ μ′
RP−i

and
ηRP−i ≤ η′

RP−i
, then

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
. (21)

Proof: Let PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) = (T, I ) and

PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
= (

T ′, I ′), where
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T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1

+ 1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

T ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ′ 2γ

P−σ(i) − 1
)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

and

I =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

I ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

((
1−

η′ 2
P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

.

By hypothesis it’s given that μRP−i ≥ μ′
RP−i

and ηRP−i ≤ η′
RP−i

, then

(

1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)) 1
γ

≥
(

1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)) 1

γ

⇒ 1 −
(

1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)) 1
γ

≤ 1 −
(

1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)) 1

γ

⇒
⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

≥
⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

⇒
⎛

⎜
⎝1 + 1

ξ !

⎛

⎜
⎝

∑

σ∈Sξ

⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ
2γ
P−σ(i) − 1

)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

− 2

⎞

⎟
⎠

⎞

⎟
⎠

1
γ

≤
⎛

⎜
⎝1 + 1

ξ !

⎛

⎜
⎝

∑

σ∈Sξ

⎛

⎜
⎝1 −

⎛

⎝1 +
ξ∑

i=1

Pi

(
μ′ 2γ

P−σ(i) − 1
)
⎞

⎠

1
γ

⎞

⎟
⎠

γ

− 2

⎞

⎟
⎠

⎞

⎟
⎠

1
γ
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⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ
2γ
P−σ(i) − 1

)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

≥

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1∑ξ
i=1 Pi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ !

⎛

⎜⎜⎜⎜
⎝

∑

σ∈Sξ

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
ξ∑

i=1
Pi

(
μ′ 2γ

P−σ(i) − 1
)

⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1∑ξ
i=1 Pi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

.

Similarly, we examine the ηRP−i ≤ η′
RP−i

, then by combining the above both, we
get

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
.

Theorem 4: For any two families of PFSsRP−i (i = 1, 2, 3, . . . , ξ) andR′
P−i ,with

their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if R′
P−i is a permutations of

RP−i , then

PFSSMMP(RP−1,RP−2, . . . ,RP−ξ

) = PFSSMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
. (22)

Proof: Omitted.
Additionally, we will examine the special cases of the explored operators based

on PFSs.

1. If P = (1, 0, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar arithmetic averaging operator

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) = 1

ξ

ξ∑

i=1

RP−i

=
⎛

⎜
⎝

(
1 −

(
1 + 1

ξ

(∑ξ

i=1

(
μ2
P−σ(i) − 1

)γ − 2

))) 1
2γ

,

(

1 + 1

ξ

(∑

σ∈Sξ

η
2γ
P−σ(i) − 2

) 1
γ

) 1
2

⎞

⎟
⎠

. (23)

2. If P = (δ, 0, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar generalized arithmetic averaging operator
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PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ

ξ∑

i=1

Rδ
P−i

⎞

⎠

1
δ

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1
δ

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ

⎛

⎜⎜
⎝

∑ξ
i=1

⎛

⎜⎜
⎝

1−
(

1+
δ
(
μ
2γ
P−σ(i) − 1

)
) 1

γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+

1
δ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜
⎝

1+

1
ξ

⎛

⎜⎜⎜⎜
⎝

∑ξ
i=1

⎛

⎜⎜⎜⎜
⎝

1−
⎛

⎜
⎝

1+
δ

((
1−

η2P−σ(i)

)γ

− 1

)
⎞

⎟
⎠

1
γ

⎞

⎟⎟⎟⎟
⎠

γ

− 2

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ

− 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (24)

3. If P = (1, 1, 0, . . . , 0), then the MM convert to Pythagorean fuzzy Schweizer–
Sklar Bonferroni mean operator

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
⎛

⎝ 1

ξ(ξ − 1)

ξ∑

i �= j=1

RP−iRP− j

⎞

⎠

1
2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ(ξ−1)

⎛

⎜⎜
⎝

∑ξ
i �= j=1

⎛

⎜⎜
⎝

1−
(

μ
2γ
P−σ(i)+

μ
2γ
P−σ( j) − 1

) 1
γ

⎞

⎟⎟
⎠

γ

− 2

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

1
γ

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2γ

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1−
⎛

⎜⎜⎜⎜
⎝

1+

1
ξ(ξ−1)

⎛

⎜⎜
⎝

∑ξ
i �= j=1

⎛

⎜⎜
⎝

1−
(

μ
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4. IfP =
⎛

⎝
k

︷ ︸︸ ︷
1, 1, . . . , 1, 1

ξ−k
︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0

⎞

⎠, then the MM convert to Pythagorean

fuzzy Schweizer–Sklar Maclaurin symmetric mean operator
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PFSSMMP (
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5. If P =
(
1
ξ
, 1

ξ
, . . . ., 1

ξ

)
, then the MM convert to Pythagorean fuzzy Schweizer–

Sklar geometric mean operator

PFSSMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
ξ∏
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3.2 Pythagorean Fuzzy Schweizer–Sklar Weighted Muirhead
Mean Operator

The aim of this study is to explore the idea of PFSSWMM operator and their results
to improve the quality of the explored work. The special cases of the explored work
are also explored in this sub-section.

Definition 6: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ), with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , the WMM operator is initiated by

PFSSWMMP(RP−1,RP−2, . . . ,RP−ξ

) =
(
1

ξ !
∑

σ∈Sξ

∏ξ

i=1
RPiωW−i

P−σ(i)

) 1
∑ξ

i=1 Pi
,

(28)

where σ(i), (i = 1, 2, .., ξ ) expressed any permutations of (i = 1, 2, .., ξ ) and
Sξ expressed the family of permutations (i = 1, 2, .., ξ ). The weight vector is

denoted and defined by: ωW = (
ωW−1, ωW−2, .., ωW−ξ

)T
with a condition that is

∑ξ

i=1 ωW−i = 1, ωW−i ∈ [0, 1], i = 1, 2, 3, . . . , ξ .
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By using Eq. (28) and the novel operational laws of SS, which are stated in the
form of Def. (4), we get Theorem 5.

Theorem 5: For any family of PFSsRP−i (i = 1, 2, 3, . . . , ξ ),with their parameter
vectors P = (P1,P2, . . . ,Pl) ∈ Rl , then by using Eq. (28) and Def. (4), we get
Pythagorean fuzzy Schweizer–Sklar MM operator, such that

PFSSWMMP (
RP−1,RP−2, . . . ,RP−ξ

) =
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(29)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 2).

Theorem 6: For any two families of PFSs RP−i (i = 1, 2, 3, . . . , ξ ) and R′
P−i ,

with their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if μRP−i ≥ μ′
RP−i

and
ηRP−i ≤ η′

RP−i
, then

PFSSWMMP(RP−1,RP−2, . . . ,RP−ξ

) ≥ PFSSWMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)
.

(30)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 3).

Theorem 7: For any two families of PFSsRP−i (i = 1, 2, 3, . . . , ξ) andR′
P−i ,with

their parameter vectors P = (P1,P2, . . . ,Pl) ∈ Rl , if R′
P−i is a permutations of

RP−i , then

PFSSWMMP(RP−1,RP−2, . . . ,RP−ξ

) = PFSSWMMP
(
R′

P−1,R′
P−2, . . . ,R′

P−ξ

)

(31)

Proof: Straightforward. (The proof of this theorem id similar to the proof of
Theorem 4).
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4 Multi-criteria Decision-Making Problems Based
on Pythagorean Fuzzy Schweizer–Sklar Muirhead Mean
Aggregation Operations

To examine the proficiency of the explored operators in thismanuscript, we presented
the MCDM technique based on weighted MM operators by using Pythagorean
fuzzy information’s. To addressed effectively such kind of issues, we choose the
family of alternatives and their criteria with weight vectors, whose expressions
are summarized in the following ways: AAL = {AAL−1,AAL−2, . . . ,AAL−m}
and CCR = {CCR−1, CCR−2, . . . , CCR−ξ

}
with their weight vector ωW =

(
ωW−1, ωW−2, . . . , ωW−ξ

)T
with a condition that is

∑ξ

i=1 ωW−i = 1, ωW−i ∈ [0, 1].
For resolving such kind of issues, we construct the decision matrix, whose repre-
sentation is of the form R = (RP−i j

)
m×ξ

, whose every entries in the form of

Pythagorean fuzzy numbers that areRP−i j = (
μRP−i j , ηRP−i j

)
. Then the steps of the

decision-making technique is summarized in the following ways:

Step 1: By using Eq. (32), we normalized the decision matrix, if needed.

R =
{(

μRP−i j , ηRP−i j

)
f or beξe f i t(

ηRP−i j , μRP−i j

)
f or cost

(32)

Step 2: By using Eq. (29), we aggregated the normalized decision matrix.
Step 3: By using Eq. (2), examine the score values of the aggregated values.
Step 4: Rank to all alternatives, and examine the best one.
Step 5: The end.

Example 1: We allude to a case of MCDM to demonstrate the plausibility and
legitimacy of the introduced technique. We allude to the decision-making issue in
Ref. [28]. There is a speculation organization, which plans to pick the most ideal
interest in the other options. There are four potential alternatives for the speculation
organization to browse: (1) a vehicle organization AAL−1; (2) a food organization
AAL−2; (3) a PC organization AAL−3; (4) an arms organization AAL−4. The venture
organization will think about the accompanying three assessment records to settle
on decisions: (1) the hazard investigation CCR−1; (2) the development examination
CCR−2; and (3) the natural impact investigation. Among CCR−1 and CCR−2 are the
advantage standards and CCR−3 is the cost basis. The weight vector of the standards
is w = (0.5, 0.3, 0.2)T. The four potential options are assessed regarding the over
three rules by the type of SVNSs, and single-esteemed neutrosophic choice network
R is developed as recorded in Table 1.

Then the steps of the decision-making technique are summarized in the following
ways:

Step 1: By using Eq. (32), we normalized the decision matrix, if needed, but it’s
not needed, see Table 2.
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Table 1 Original decision
matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.4, 0.3) (0.4, 0.3) (0.2, 0.5)

AAL−2 (0.6, 0.2) (0.6, 0.2) (0.5, 0.2)

AAL−3 (0.3, 0.3) (0.5, 0.3) (0.5, 0.2)

AAL−4 (0.7, 0.1) (0.6, 0.2) (0.4, 0.2)

Table 2 Normalized
decision matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.4, 0.3) (0.4, 0.3) (0.2, 0.5)

AAL−2 (0.6, 0.2) (0.6, 0.2) (0.5, 0.2)

AAL−3 (0.3, 0.3) (0.5, 0.3) (0.5, 0.2)

AAL−4 (0.7, 0.1) (0.6, 0.2) (0.4, 0.2)

Step 2: By using Eq. (29), we aggregated the normalized decision matrix for
P = (1, 1, 1), γ = −1.

AAL−1 = (0.5547, 0.4462),AAL−2 = (0.4492, 0.4308),AAL−3 = (0.5455, 0.4382),AAL−4 = (0.4559, 0.4258)

Step 3: By using Eq. (2), examine the score values of the aggregated values.

SSF (AAL−1) = 0.1086,SSF (AAL−2) = 0.01613,SSF (AAL−3) = 0.1056,SSF (AAL−4) = 0.0265

Step 4: Rank to all alternatives, and examine the best one.

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

The best alternative is AAL−1.

Step 5: The end.

To check the effect of the boundaries vectors P and γ on the decision-making
of the case, we select assorted boundaries vectors P and γ and give the arranging
aftereffects of the other options. We can see the outcomes in Tables 3.

From the above analysis it is clear that for the different values of parameter the
same ranking results are given, the best option is AAL−1.

4.1 Advantages of the Explored Operators

Additionally, to examine the reliability and proficiency of the explored operators,
we choose the Pythagorean fuzzy kind of information’s to find the accuracy and
superiority of the explored operators.
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Table 3 Examine the fluency of the parameter for γ = −0.1

Parameter P Score values Ranking values

(1, 1, 1) SSF (AAL−1) =
0.1086,SSF (AAL−2) = 0.0161,

SSF (AAL−3) =
0.1056,SSF (AAL−4) = 0.0265

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(1, 2, 1) SSF (AAL−1) =
0.219,SSF (AAL−2) = 0.110,

SSF (AAL−3) =
0.214,SSF (AAL−4) = 0.121

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(1, 1, 3) SSF (AAL−1) =
0.304,SSF (AAL−2) = 0.185,

SSF (AAL−3) =
0.297,SSF (AAL−4) = 0.196

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(4, 1, 1) SSF (AAL−1) =
0.404,SSF (AAL−2) = 0.380,

SSF (AAL−3) =
0.402,SSF (AAL−4) = 0.382

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(3, 4, 5) SSF (AAL−1) =
0.662,SSF (AAL−2) = 0.591,

SSF (AAL−3) =
0.619,SSF (AAL−4) = 0.593

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

(4, 5, 6) SSF (AAL−1) =
0.683,SSF (AAL−2) = 0.662,

SSF (AAL−3) =
0.681,SSF (AAL−4) = 0.663

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

Example 2: We allude to a case of MCDM to demonstrate the plausibility and
legitimacy of the introduced technique. We allude to the decision-making issue in
Ref. [28]. There is a speculation organization, which plans to pick the most ideal
interest in the other options. There are four potential alternatives for the speculation
organization to browse: (1) a vehicle organization AAL−1; (2) a food organization
AAL−2; (3) a PC organization AAL−3; (4) an arms organization AAL−4. The venture
organization will think about the accompanying three assessment records to settle
on decisions: (1) the hazard investigation CCR−1; (2) the development examination
CCR−2; and (3) the natural impact investigation. Among CCR−1 and CCR−2 are the
advantage standards and CCR−3 is the cost basis. The weight vector of the standards
is w = (0.5, 0.3, 0.2)T. The four potential options are assessed regarding the over
three rules by the type of SVNSs, and single-esteemed neutrosophic choice network
R is developed as recorded in Table 4.

Then the steps of the decision-making technique are summarized in the following
ways:
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Table 4 Original decision
matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.9, 0.3) (0.91, 0.3) (0.92, 0.3)

AAL−2 (0.8, 0.4) (0.81, 0.4) (0.82, 0.4)

AAL−3 (0.7, 0.5) (0.71, 0.5) (0.72, 0.5)

AAL−4 (0.85, 0.35) (0.86, 0.35) (0.87, 0.35)

Table 5 Normalized
decision matrix

Symbols CCR−1 CCR−2 CCR−3

AAL−1 (0.9, 0.3) (0.91, 0.3) (0.92, 0.3)

AAL−2 (0.8, 0.4) (0.81, 0.4) (0.82, 0.4)

AAL−3 (0.7, 0.5) (0.71, 0.5) (0.72, 0.5)

AAL−4 (0.85, 0.35) (0.86, 0.35) (0.87, 0.35)

Step 1: By using Eq. (32), we normalized the decision matrix, if needed, but it’s
not needed, see Table 5.

Step 2: By using Eq. (29), we aggregated the normalized decision matrix for
P = (1, 1, 1), γ = −0.1.

AAL−1 = (0.9458, 0.0402),AAL−2 = (0.9225, 0.0408),AAL−3 = (0.9555, 0.0416),AAL−4 = (0.9499, 0.0405)

Step 3: By using Eq. (2), examine the score values of the aggregated values.

SSF (AAL−1) = 0.8930,SSF (AAL−2) = 0.9056,SSF (AAL−3) = 0.9112,SSF (AAL−4) = 0.9008

Step 4: Rank to all alternatives, and examine the best one.

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

The best alternative is AAL−3.

Step 5: The end.

To check the effect of the boundaries vectors P and γ on the decision-making
of the case, we select assorted boundaries vectors P and γ and give the arranging
aftereffects of the other options. We can see the outcomes in Tables 6.

From the above analysis it is clear that for the different values of parameter the
same ranking results are given, the best option is AAL−3.
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Table 6 Examine the fluency of the parameter for γ = –0.1

Parameter P Score values Ranking values

(1, 1, 1) SSF (AAL−1) = 0.893,SSF (AAL−2) =
0.905,

SSF (AAL−3) = 0.911,SSF (AAL−4) =
0.900

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(1, 2, 1) SSF (AAL−1) = 0.918,SSF (AAL−2) =
0.928,

SSF (AAL−3) = 0.932,SSF (AAL−4) =
0.924

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(1, 1, 3) SSF (AAL−1) = 0.936,SSF (AAL−2) =
0.942,

SSF (AAL−3) = 0.946,SSF (AAL−4) =
0.939

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(4, 1, 1) SSF (AAL−1) = 0.955,SSF (AAL−2) =
0.958,

SSF (AAL−3) = 0.959,SSF (AAL−4) =
0.957

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(3, 4, 5) SSF (AAL−1) = 0.976,SSF (AAL−2) =
0.978,

SSF (AAL−3) = 0.979,SSF (AAL−4) =
0.977

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

(4, 5, 6) SSF (AAL−1) = 0.982,SSF (AAL−2) =
0.983,

SSF (AAL−3) = 0.983,SSF (AAL−4) =
0.982

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

4.2 Comparative Analysis of the Explored Operators

The comparison of the explored approach with some existing approaches evaluates
the reliability and effectiveness of the explored operators. The information of the
existing operators are discussed below, for instance, Pythagorean fuzzy Schweizer–
Sklar arithmetic averaging (PFSSAA) operator, Pythagorean fuzzy Schweizer–
Sklar Bonferroni mean (PFSSBM) operator, Pythagorean fuzzy Schweizer–Sklar
Maclaurin symmetric mean (PFSSMSM) operator, intuitionistic fuzzy Schweizer–
Sklar arithmetic averaging (IFSSAA) operator, intuitionistic fuzzy Schweizer–Sklar
Bonferroni mean (IFSSBM) operator, and intuitionistic fuzzy Schweizer–Sklar
Maclaurin symmetric mean (IFSSMSM) operator. The comparative analysis of the
explored work with some existing works is discussed in the form of Table 7, for
Example 1.

From the above analysis it is clear that the explored operator and existing operators
give the different ranking values, and the best one is AAL−2 and AAL−1.
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Table 7 Comparative analysis for the information of Example 1

Method Score values Ranking values

IFSSAA operator SSF (AAL−1) =
−0.844,SSF (AAL−2) = −0.95,

SSF (AAL−3) =
−0.843,SSF (AAL−4) =
−0.948

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

IFSSBM operator SSF (AAL−1) =
−0.71,SSF (AAL−2) = −0.93,

SSF (AAL−3) =
−0.70,SSF (AAL−4) = −0.93

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

IFSSMSM operator SSF (AAL−1) =
−0.71,SSF (AAL−2) = −0.93,

SSF (AAL−3) =
−0.70,SSF (AAL−4) = −0.93

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

Ma and Xu [8] SSF (AAL−1) =
−0.271,SSF (AAL−2) = −0.29,

SSF (AAL−3) =
−0.23,SSF (AAL−4) = −0.31

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

PFSSAA operator SSF (AAL−1) =
−0.282,SSF (AAL−2) = −0.32,

SSF (AAL−3) =
−0.28,SSF (AAL−4) = −0.31

AAL−3 ≥ AAL−1 ≥ AAL−4 ≥ AAL−2

PFSSBM operator SSF (AAL−1) =
−0.044,SSF (AAL−2) = −0.11,

SSF (AAL−3) =
−0.045,SSF (AAL−4) = −0.10

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

PFSSMSM operator SSF (AAL−1) =
−0.044,SSF (AAL−2) = −0.11,

SSF (AAL−3) =
−0.045,SSF (AAL−4) = −0.10

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

Proposed operator SSF (AAL−1) =
0.108,SSF (AAL−2) = 0.0161,

SSF (AAL−3) =
0.1056,SSF (AAL−4) = 0.0256

AAL−1 ≥ AAL−3 ≥ AAL−4 ≥ AAL−2

The comparative analysis of the explored work with some existing works is
discussed in the form of Table 8, for Example 2.

From the above analysis it is clear that the explored operator and existing operators
give the same ranking values, and the best one is AAL−3.
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Table 8 Comparative analysis for the information’s of Example 2

Method Score values Ranking values

IFSSAA operator Failed −
IFSSBM operator Failed −
IFSSMSM operator Failed −
Ma and Xu [8] SSF (AAL−1) =

0.71,SSF (AAL−2) = 0.732,

SSF (AAL−3) =
0.75,SSF (AAL−4) = 0.721

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSAA operator SSF (AAL−1) =
0.7053,SSF (AAL−2) = 0.7352,

SSF (AAL−3) =
0.7486,SSF (AAL−4) = 0.7239

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSBM operator SSF (AAL−1) =
0.8430,SSF (AAL−2) = 0.8608,

SSF (AAL−3) =
0.8687,SSF (AAL−4) = 0.8541

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

PFSSMSM operator SSF (AAL−1) =
0.8430,SSF (AAL−2) = 0.8608,

SSF (AAL−3) =
0.8687,SSF (AAL−4) = 0.8541

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

Proposed operator SSF (AAL−1) =
0.8930,SSF (AAL−2) = 0.9055,

SSF (AAL−3) =
0.9112,SSF (AAL−4) = 0.9008

AAL−3 ≥ AAL−2 ≥ AAL−4 ≥ AAL−1

4.3 Graphical Representations of the Explored Operators

The graphical interpretation of the explored work with some existing approaches
is discussed in the form of figures, to improve the quality of the research work,
to examine the reliability and effectiveness of the explored work. The comparative
analysis of the explored work with some existing works, which are discussed in the
form of Table 7, is summarized with the help of Fig. 1.

From the above figure, it is clear that Fig. 1 contains five series which show
different colors representing by the family of alternatives. There are many places
which show the values are called the score function.Byusing these valueswe examine
the best alternative from the family of alternatives.

The comparative analysis of the explored work with some existing works, which
are discussed in the form of Table 8, is summarized with the help of Fig. 2.
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Fig. 1 Geometrical interpretation of the explored work for Table 5

Fig. 2 Geometrical interpretation of the explored work for Table 6

From the above figure, it is clear that Fig. 2 contains five series which show
different colors representing by the family of alternatives. There are many places
which show the values are called the score function.Byusing these valueswe examine
the best alternative from the family of alternatives.

From the above analysis, it is clear that the explored operators based on PFSs are
more proficient and more valuable than existing methods.
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5 Conclusion

SS activity can make data conglomeration progressively adaptable, and the MM
operator can consider the relationship among contributions by a variable parameter.
Since customary MM is just accessible for genuine numbers and PFS can all the
more likely express deficient and dubious data in choice frameworks. The objectives
of this manuscript, first we explore the SS operators based on PFS and studied their
score function, accuracy function, and their relationships. The limitation of the SS
operators is discussed below:

1. Multi-criteria decision-making refers to the use of existing decision information,
in the case ofmulti-criteria that are in conflictwith each other and cannot coexist,
and in which the limited alternatives are ranked or selected in a certain way.
Schweizer–Sklar operation uses a variable parameter to make their operations
more effective and flexible. In addition, PFS can handle incomplete, indeter-
minate, and inconsistent information under fuzzy environments. Therefore, we
conducted further research on SS operations for PFS and applied SS operations
to MCDM problems. Furthermore, because the MM operator considers interre-
lationships among multiple input parameters by the alterable parametric vector,
hence combining the MM operator with the SS operation gives some aggrega-
tion operators, and it was more meaningful to develop some newmeans to solve
the MCDM problems in the Pythagorean fuzzy environment. According to this,
the purpose and significance of this article are

2. To develop a number of new MM operators by combining MM operators, SS
operations, and PFS;

3. To discuss somemeaningful properties and a number of cases of these operators
put forward;

4. To deal with an MCDMmethod for PFS information more effectively based on
the operators put forward;

5. To demonstrate the viability and superiority of the newly developed method.

Further, based on these operators, the MM operators based on PFS are called
PFMM operator, PFWMM operator, and their special cases are presented. Addi-
tionally, MADM problem is solved by using the explored operators based on PFS
to observe the consistency and efficiency of the produced approach. Finally, the
advantages, comparative analysis, and their geometrical representation are also
discussed.

In future, we will extend these ideas into complex fuzzy sets [29], picture hesitant
fuzzy sets [30, 31], complex q-rung orthopair fuzzy sets [32–34], etc. [35–40]. By
considering the superiority of new PFS, we can also extend them to some other
aggregation operators, such as power mean aggregation operators, Bonferroni mean
operators, Heronian mean operators, and so on.
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Pythagorean Fuzzy MCDMMethod
Based on CODAS

Xindong Peng

1 Introduction

Intuitionistic fuzzy sets (IFS) is an extension of fuzzy sets (FS) [1], explored by
Atanassov [2]. Because IFS is described bymembership and non-membership, it can
describe the characteristics of uncertain data in a more comprehensive and detailed
manner. The main feature of IFS is that it assigns members and non-members to each
element, and its sum is ≤1. However, in some practical problems, the sum of the
membership and non-membership of a given alternative that meets the criteria of an
expert or decision-maker (DM) can be ≥1, and the sum of their squares ≤1.

Therefore, Yager [3] developed the Pythagorean fuzzy set (PFS) character-
ized by membership and non-membership, and it satisfies the corresponding non-
membership and membership square sum ≤1. Yager and Abbasov [4] offered an
example to state this situation: the alternative method for DMs or experts to provide
approval for members is

√
3
2 and he opposed joining 1

2 , because its sum is >1, which
is not a workable IFS although it can be adapted from PFS. Obviously, compared
with IFS, PFS can simulate the uncertainty in real multi-criteria decision-making
(MCDM) problems.

People have studied PFS from diverse angles [5], including decision-making
techniques [6–23], aggregation operations [24–42], information measure [43–47].
Specifically, a brief literature review of the first two aspects is as follows:

(1) Decision-making technologies. Inspired by the modified TOPSIS (Technique
for Order Preference by Similarity to an Ideal Solution) approach [48], Zhang
and Xu [6] employed it in the MCDM problem in the Pythagorean fuzzy envi-
ronment. A Pythagorean fuzzy-weighted average operator for dealing MCDM
issue is proposed by Yager [7]. Peng and Yang [8] researched its relationship and
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proposed a multi-criteria group decision-making (MCGDM) method based on
SIR (superiority and inferiority ranking). Zhang [9] proposed the QUALIFLEX
(qualitative flexible) approach, which uses a ranking method based on proximity
index for PF decision analysis. Peng and Dai [10] presented stochastic MCDM
methods under Pythagorean fuzzy environment with prospect theory and regret
theory. Ren et al. [11] generalized the TODIM (an acronym in Portuguese for
InteractiveMulti-Criteria DecisionMaking) method to handleMCDMproblems
in the PF environment. Peng andYang [12] proposed a new PFMCGDMmethod
based on Choquet integral andMABAC (multi-attributive border approximation
area comparison).Wan et al. [13] proposed amathematical programmingmethod
for dealing MCGDM problems under the PF environment.

(2) Aggregation operators. Yager [4] introduced a large number of aggregation oper-
ators (AOs) and used them to solve MCDM issues. Garg [26, 27] developed
a generalized Pythagorean fuzzy AOs through Einstein and geometric oper-
ations. Zeng et al. [28] studied mixed Pythagorean fuzzy aggregation infor-
mation. Ma and Xu [29] discussed the Pythagorean fuzzy symmetric weighted
average/geometric operator. Zeng [30] introduced Pythagorean fuzzy AOs based
ordered weighted average and probability information. Peng and Yang [31] pro-
posed some fundamental theories of interval-valued PF AOs. Pythagorean fuzzy
MSMoperators are given byWei and Lu [32]. Zhang et al. [33] developed certain
extended Pythagorean fuzzy BM AOs. Liu et al. [34] proposed PF interaction
AOs and explored some properties.

Ghorabaee et al. [49] developed theCODAS (Combinative distance-basedAssess-
ment), which starts from the ideal-negative point and obtains the overall expression
of an object through the Taxicab distance and the Euclidean distance. It uses discrim-
inant Euclidean distance as an important scale for evaluation. When the Euclidean
distances of two objects are not adjacent, the Taxicab distance is applied. The close-
ness of the Euclidean distance is adjusted by a threshold parameter. The Taxicab
distance and Euclidean distance of l1-norm and l2-norm non-differential spaces are
given [50]. Therefore, the algorithm is first evaluated in a l2-norm non-differential
space.When the given objects are not comparable, the l1-norm non-differential space
needs to be processed. In order to achieve the above process, each pair of objects
should be compared. CODAS approach has been applied to market segmentation
evaluation [51].

Due to the drawbacks of some existing PF MCDM methods [7, 26, 27, 29, 34,
45], it may be disadvantageous for DMs to obtain optimal alternative. Therefore, the
objective of this article is to solve the above-mentioned shortcomings by proposing
theMCDMmethod for processing preference information. This method can not only
be sorted without complicated processes, but also without counterintuition to get the
best choice.

For better discussion, the rest of the paper is as follows: In the second section, a
brief review of the basic concepts of PFS is given. In the third section, we propose a
new PF MCDM algorithm based on CODAS. A example is presented in the fourth
section. The fifth part is the conclusion.
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2 Preliminaries

Some basic definitions of PFS are shown below.

Definition 1 [3] Let X be a domain of discourse. The PFS P in X is shown as
follows:

P = {< x, μP(x), νP(x) >| x ∈ X}, (1)

where μP : X → [0,1] signifies membership degree and νP : X → [0,1] signifies
non-membership degree of the element x ∈ X to such set P , respectively. It should
be fulfilled with the condition that 0 ≤ (μP(x))2 + (νP(x))2 ≤ 1. The hesitation
degree πP(x) = √

1 − (μP(x))2 − (νP(x))2. For short, Zhang and Xu [6] named
p = (μP , νP) as PFN.

Definition 2 [3, 6] For three PFNs p = (μp, νp), p1 = (μp1 , νp1), p2 = (μp2 , νp2),
the related operations are presented as follows:

(1) p1 ∪ p2 = (max{μp1 , μp2},min{νp1 , νp2});
(2) p1 ∩ p2 = (min{μp1 , μp2},max{νp1 , νp2});
(3) pc = (νp, μp);

(4) p1 ⊕ p2 =
(√

μ2
p1 + μ2

p2 − μ2
p1μ

2
p2 , νp1νp2

)
;

(5) p1 ⊗ p2 =
(

μp1μp2 ,
√

ν2
p1 + ν2

p2 − ν2
p1ν

2
p2

)
;

(6) λp =
(√

1 − (1 − μ2
p)

λ, νλ
p

)
, λ > 0;

(7) pλ =
(

μλ
p,

√
1 − (1 − ν2

p)
λ

)
, λ > 0.

Definition 3 [6] For a PFN p = (μp, νp), the score function of p is denoted as
follows:

s(p) = μ2
p − ν2

p, (2)

where s(p) ∈ [−1, 1].
For two PFNs p1 and p2,

(1) if s(p1) > s(p2), then p1 � p2;
(2) if s(p1) = s(p2), then p1 ∼ p2.

3 Approach to PF MCDM Based on CODAS

For solving complicated real-life problems,we developed a PFMCDMmethod based
on CODAS.
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Table 1 The PF decision matrix P = (pij)m×n

C1 C2 · · · Cn

A1 p11 p12 · · · p1n
A2 p21 p22 · · · p2n
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Am pm1 pm2 · · · pmn

3.1 The Description Issue

In the next, we will discuss how to use the CODAS method to deal with the MCDM
problemwith thePF information.To illustrate this point, a brief descriptionof existing
issues will now be made.

The key to the MCDM problem of the PF information is to obtain the optimal
alternative among a large number of alternatives, which are assessed by a set of
criteria, where the assessed value is PFN. Then such problems can be described
using mathematical symbols as follows:

Let A = {A1, A2, . . . , Am} be a finite set of alternatives and C = {C1,C2, . . . ,

Cn} be a finite set of criteria.w = {w1, w2, . . . , wn} is theweight vector of the criteria
with w j ∈ [0, 1]( j = 1, 2, . . . , n) and

∑n
j=1 w j = 1. The evaluation value over the

alternative Ai along with the criterion C j is denoted as PFN pij = (μij, νij), where
μij signifies the degree that alternative Ai agrees the criterion C j , and νij signifies
the degree that the alternative Ai disagrees the criterionC j . Hence, the MCDM issue
can be denoted in PF decision matrix P = (pij)m×n , which is shown in Table 1.

3.2 PF MCDMMethod Based on CODAS

In order to solve the MCDM problem based on PF information, an improved PF-
CODAS method is proposed. This algorithm is a new and efficient algorithm devel-
oped by Ghorabaee et al. [49]. The optimal choice is calculated through two indistin-
guishable spaces (l1-norm and l2). The combined model of Euclidean distance and
taxi distance is used to calculate the evaluation scores of the alternatives based on the
above non-difference space. However, some existing Euclidean distances and taxi
distances depend on brittle or vague environments and fail to solve the problem of
ambiguity in the Pythagorean theorem. To solve this problem,we use fuzzy-weighted
Hamming distance and fuzzy-weighted Euclidean distance instead of brittle distance
[49]. The focus of the research is to propose an improved PF-CODAS method.

Firstly, because of the existence of benefit standard and cost standard, the evalu-
ation information is standardized. Such criteria react in reverse, that is, larger values
indicate better performance for the benefit criteria but poorer performance for the cost
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criteria. Therefore, in order to ensure that all standards are compatible, we continue
to convert the cost criteria into the revenue criteria through the following formula.

p′
ij = (μ′

ij, ν
′
ij) =

{
(μij, νij), C j is benefit criterion,

(νij, μij), C j is cost criterion.
(3)

According to Eq. (3), we have the standard PF decision matrix P ′ = (p′
ij)m×n .

Then, we calculate score function tij(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of p′
ij by

Eq. (4),
tij = μ′

ij
2 − ν ′

ij
2
. (4)

In order to calculate the weighted standard decision matrix R = (r ij)m×n , we use
weighted normalized values to define it.

rij = w j tij, (5)

where w j (0 < w j < 1) denotes the weight of j th criterion, and
∑n

j=1 w j = 1.
The basic concept of the developed CODAS algorithm is the negative-ideal solu-

tion (NIS). Therefore, the negative-ideal solution is expressed as follows:

NIS = (nis j )1×n, (6)

nis j = min
i

rij, i = 1, 2, . . . ,m. (7)

Later, the Euclidean distance E = (Ei )1×m and Taxicab distance T = (Ti )1×m of
alternative Ai (i = 1, 2, . . . ,m) from negative-ideal solution are calculated as fol-
lows:

Ei =
√√√√

n∑

j=1

(rij − nis j )2, (8)

Ti =
n∑

j=1

| rij − nis j | . (9)

According to the Euclidean distance and Taxicab distance, the relative assess-
ment (RA) matrix is constructed in the following. Based on Euclid distance and taxi
distance, the relative assessment (RA) matrix is established.

RA = (raik)m×m, (10)

raik = (Ei − Ek) + (ψ(Ei − Ek) × (Ti − Tk)), i, k ∈ 1, 2, . . . ,m (11)
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whereψ represents a threshold function that identifies two different alternatives with
equal Euclidean distance, as shown below.

ψ(x) =
{
1, if | x |≥ �,

0, if | x |< �.
(12)

In the above function,� is a threshold parameter, which can be determined and set
by DMs. It is recommended to set this parameter between 0.01 and 0.05. When the
difference between the two alternatives based on the Euclidean distance exceeds the
given�, the taxi distance between the two alternatives will continue to be calculated.
In this article, we set � = 0.02 for subsequent calculations.

Next, the evaluation score of i alternative Ai is as follows:

RAi =
m∑

k=1

raik. (13)

Algorithm 1 : PF-CODAS
1: Set the Pythagorean fuzzy decision matrix P = (Pi j )m×n(i = 1, 2, . . . ,m; j = 1, 2, . . . , n).
2: Transform matrix P = (Pi j )m×n into the standard matrix P ′ = (P ′

i j )m×n by Eq. (3).
3: Compute score matrix T = (ti j )m×n of P ′ = (P ′

i j )m×n by Eq. (4).
4:Determine the weighted normalized decision matrix ri j by Eq. (5).
5: Calculate the N I S by Eq. (6).
6: Calculate Euclidean distance E and Taxicab distance T from the N I S by Eqs. (8) and (9).
7: Determine the matrix RA by Eq. (10).
8: Calculate the assessment score of i th alternative RAi by Eq. (13).
9: Rank the alternatives by assessment score.

Remark 1 It should be pointed out that in the Pythagorean theorem, the evalua-
tion information of the fuzzy CODAS method is expressed by PFNs. Expressed
in terms of membership and non-membership, PFN is effective for the uncertainty
of DMs in MCDM issues. Moreover, PF-CODAS method is an inestimable tool to
manage MCDM problems with PFNs and has a strong ability to distinguish the best
alternatives and obtain the best alternatives without counter-intuitive phenomenon.
However, when using Pythagorean fuzzy information to solve MCDM problems,
other methods do not have such ideal characteristics.
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4 An Illustrative Example

Example 1 A university hope to use a teaching software for assisting the teach-
ing. The software company provides six diverse potential softwares A = {Ai | (i =
1, 2, 3, 4, 5, 6)}, which maybe chose by the teachers. Assume that four criteria C1

(operational),C2 (functional),C3 (security), andC4 (economic), the weight vector of
the criteria C j ( j = 1, 2, 3, 4) is w = (0.2, 0.4, 0.3, 0.1). Moreover, the C1,C2, and
C3 are benefit criteria, C4 is cost criterion. Suppose that the TES Ai along with the
criterion C j is denoted by the PF matrix P = (pij)6×4, which is presented in Table 2.

As we have discussed above, the PF-CODAS method is valid in dealing such
MCDM issues. Next, wewill takemerit of the proposedmethod tomodel theMCDM
process.

Step 1. Construct the PF decision matrix P = (Pij)6×4, shown in Table 2.

Step 2. Shift PF decisionmatrix P = (Pij)6×4 into a normalizedmatrix P ′ = (P ′
ij)6×4

by Eq. (3), presented in Table 3.

Step 3. Calculate the score matrix T = (tij)6×4 of P ′ = (P ′
ij)6×4 by Eq. (4), shown

as follows:

Table 2 The PF decision matrix P = (pij)6×4

C1 C2 C3 C4

A1 (0.6, 0.2) (0.6, 0.1) (0.6, 0.4) (0.7, 0.1)

A2 (0.6, 0.2) (0.7, 0.2) (0.7, 0.2) (0.4, 0.5)

A3 (0.4, 0.4) (0.6, 0.2) (0.5, 0.7) (0.3, 0.3)

A4 (0.3, 0.4) (0.7, 0.3) (0.8, 0.2) (0.5, 0.3)

A5 (0.3, 0.2) (0.6, 0.3) (0.6, 0.2) (0.4, 0.2)

A6 (0.2, 0.3) (0.6, 0.2) (0.5, 0.2) (0.5, 0.2)

Table 3 The normalized PF decision matrix P ′

C1 C2 C3 C4

A1 (0.6, 0.2) (0.6, 0.1) (0.6, 0.4) (0.1, 0.7)

A2 (0.6, 0.2) (0.7, 0.2) (0.7, 0.2) (0.5, 0.4)

A3 (0.4, 0.4) (0.6, 0.2) (0.5, 0.7) (0.3, 0.3)

A4 (0.3, 0.4) (0.7, 0.3) (0.8, 0.2) (0.3, 0.5)

A5 (0.3, 0.2) (0.6, 0.3) (0.6, 0.2) (0.2, 0.4)

A6 (0.2, 0.3) (0.6, 0.2) (0.5, 0.2) (0.2, 0.5)
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T =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.5120 0.5705 0.2960 −0.7200
0.5120 0.6615 0.6615 0.1431
0.0000 0.5120 −0.3024 0.0000

−0.1225 0.5680 0.7920 −0.2656
0.0935 0.4185 0.5120 −0.2160

−0.0935 0.5120 0.3591 −0.3591

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Step 4. Compute the rij by Eq. (5), shown as follows:

R =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.1024 0.2282 0.0888 −0.0720
0.1024 0.2646 0.1984 0.0143
0.0000 0.2048 −0.0907 0.0000

−0.0245 0.2272 0.2376 −0.0266
0.0187 0.1674 0.1536 −0.0216

−0.0187 0.2048 0.1077 −0.0359

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Step 5. Compute the NIS by Eq. (6), shown as follows: NIS = (−0.0245, 0.1674,
−0.0907,−0.0720).

Step 6. Determine the Euclidean distance E and Taxicab distance T from the NIS by
Eqs. (8) and (9), shown as follows: E = (0.2281, 0.3415, 0.0848, 0.3368, 0.2532,
0.2052), T = (0.3672, 0.5996, 0.1339, 0.4336, 0.3379, 0.2777).

Step 7. Construct the relative evaluation matrix RA by Eq. (10), shown as follows:

RA =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.0000 −0.2970 0.2782 −0.1277 −0.0121 0.0099
0.2970 0.0000 0.5751 0.0032 0.3142 0.3963

−0.2782 −0.5751 0.0000 −0.4059 −0.2609 −0.1788
0.1277 −0.0032 0.4059 0.0000 0.1450 0.2271
0.0121 −0.3142 0.2609 −0.1450 0.0000 0.0822

−0.0099 −0.3963 0.1788 −0.2271 −0.0822 0.0000

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Step 8. Compute the assessment score of i th teaching software RAi by Eq. (13),
presented as follows:

RA1 = −0.1487,RA2 = 1.5858,RA3 = −1.6989,
RA4 = 0.9026,RA5 = −0.1040,RA6 = −0.5368.

Step 9. The ordering of the TES is A2 � A4 � A5 � A1 � A6 � A3. Hence, A2 is
optimal teaching software.

Compared with the most advanced CODASmethods [49–51], the main advantage
of this method is that it can not only process PF decision information, but also obtain
the best alternative from counter-intuitive phenomena and has a strong ability.
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Moreover, if we take a comparison with some PF decision-making methods
(employing Examples 2 and 3 in Ref. [23]), we will find that the optimal alternative
will result in major difference (counter-intuitive phenomena) due to the drawback of
aggregation operators [24–27, 29, 32–35, 37, 38, 40]. Meanwhile, we will find that
the proposed method has a strong ability [24–27, 29, 34, 35, 37, 38, 40] in obtaining
a credible and discrepant ordering when decision-makers need.

5 Conclusion

CODAS is a very effective method for dealing with complex MCDM problems. It
uses many criteria to evaluate many alternatives. In this paper, we developed PF
MCDM method based on CODAS. Compared with the most advanced CODAS
methods [49–51], the main advantage of this method is that it can not only process
PF decision information, but also obtain the best alternative from counter-intuitive
phenomena and has a strong ability. In the future, we will take other uncertain tool
with CODAS for dealing more complex and special domain issues [52–60].
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A Novel Pythagorean Fuzzy
MULTIMOORA Applied
to the Evaluation of Energy Storage
Technologies

Iman Mohamad Sharaf

1 Introduction

Nowadays, the decision-making process in organizations confronts many challenges
due to the extensive changes and increasing complexity of issues faced in a rapidly
developing business environment. In recent decades, researchers introduced several
methods for multi-criteria decision-making (MCDM). These methods deal with the
complexities faced in decision-making and facilitate this process. They also increase
efficiency and improve the quality of the process [11].

Real-life decision-making problems are mainly composed of imprecise, and
uncertain data together with the subjective evaluations of the decision-makers (DMs)
which is based on their perceptions which is sure to differ from one person to another.
To face the unrealistic supposition that exact numerical values are proper to model
and handle real-life decision-making problems, Zadeh [65] introduced the notion of
fuzzy sets, later named type-1 fuzzy sets (T1FSs).

Due to the deficiency of T1FSs to express the uncertainties and cognitive limi-
tations in decision-making, different types of fuzzy sets were proposed by various
researchers to model diverse situations of vagueness and ambiguity. For example,
type-2 fuzzy sets (T2FSs) [66], neutrosophic sets (NFSs) [53], hesitant fuzzy sets
(HFSs) [56, 57], and spherical fuzzy sets (SFSs) [26].

Atanassov [2] defined intuitionistic fuzzy sets (IFSs) as a more general form of
fuzzy sets by adding the non-membership degree under the constraint that the sum
of the membership degree and the non-membership degree is less than or equal to
one. The indeterminacy degree is treated as a residual term such that the sum of the
three degrees is equal to one. Although IFSs are proficient at imprecise treatment
and inexact data, still, there are certain difficulties IFSs cannot handle. Atanassov [3]
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pointed out the possibility of changing the condition on the sum of the membership
degree and the non-membership degree by increasing the power.

Yager and Abbasov [63] and Yager [62] discussed the model of Pythagorean
fuzzy sets (PFSs) for a more human consistent reasoning under imperfect and impre-
cise data. In PFSs, the sum of the squares of the membership degree and the non-
membership degree is less than or equal to one, and still, the indeterminacy degree is
the square root of the residual term. The space of all PFSs includes IFSs. Thus, PFSs
can be used more widely than IFSs in handling practical problems with imprecision
and uncertainty.

Brauers and Zavadskas [5] proposed the MULTIMOORA (Multi-Objective Opti-
mization by Ratio Analysis plus full multiplicative form) for MCDM. The MULTI-
MOORA method proved to be one of the most practical MCDM methods that have
been applied in solving complex decision-making problems. It is a completely effec-
tive method for the evaluation and ranking of alternatives without subjective orien-
tation in various phenomena [11]. It satisfies all the necessary robustness’ condi-
tions proposed by Brauers and Zavadskas [5] to become the most robust system
of multi-objective optimization under the condition of support from the Amelio-
rated Nominal Group Technique and Delphi [5]. Due to its robustness and flexibility,
MULTIMOORAwas extended using different types of fuzzy sets and was applied to
various practical fields. Throughout its application, it provided high efficiency and
effectiveness in problem-solving [11].

The output of the MULTIMOORA results from ternary ranking techniques: ratio
analysis, reference point theory, and full multiplicative form. Based on the scores
of the three techniques, the alternatives are individually ranked in each technique.
Then, using these individual rankings the rules of the dominance theory are applied
to find the final ranking. However, the dominance theory has some limitations, e.g.,
multiple comparisons and circular reasoning [11].

As the ranking process using the dominance theory can be in some cases complex
and challenging, it is not preferred in large-scale applications and the scores of the
three techniques are aggregated instead [11, 68].

Up till now, when applying the reference point approach in the MULTIMOORA
method, only the best solution is taken into consideration. Utilizing the two reference
points, i.e., the best and worst solutions, was not previously studied.

When extended in the intuitionistic and Pythagorean fuzzy environment, the IF-
MULTIMOORA and the PF-MULTIMOORA might have two main drawbacks. In
the ratio analysis techniquewhich exploits the additive utility, theweighted averaging
operators play the main role. Most of these aggregation operators have a flaw that
might result in a biased treatment and false ranking. For an alternative, a single crite-
rion with the perfect rating (1, 0) will dominate regardless of its weight and abolish
the effect of all the other criteria, which is not fair in the assessment process. Simi-
larly, for the full multiplicative form in which the weighted geometric operators play
the main role a single criterion with the worst rating (0, 1) will dominate regardless
of its weight and abolish the effect of all the other criteria for an alternative, which
is also not fair in an evaluation process.
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In the last few decades, energy consumption increased and additional energy
supplies are needed to balance the increasing demand. It was found that renew-
able energies are the best approach for the provision of energy due to their sustain-
able nature and broad utilization due to their diverse presence such as wind, solar,
geothermal, bioenergy and hydropower. Yet, renewable sources usually cannot stand
alone in power plants because of their intermittent nature and significant fluctua-
tions, e.g., wind and solar energies. Energy storage technologies (ESTs) can solve
this problem when coupled with renewable energy resources. ESTs improve the
system’s performance and increase the penetration of renewable energy sources.
ESTs are continuously developed and different storage systems are established due
to the multiple utilization of energy and the different types of applications [42].
The choice of a suitable EST is an MCDM problem since multiple technologies are
defined for multiple conflicting criteria.

This chapter develops a new version MULTIMOORA in the Pythagorean fuzzy
environment that eliminates the shortcomings of the previous versions. So far, when
using the aggregation approach the result of each utility function is defuzzified using
the score function before the aggregation for ranking. This can be mainly attributed
to using the reference point approach which relies on the distance from the ideal
situation that is always employed as a crisp value. In fact, being a distance between
two fuzzy values it cannot be definitely determined. Hence, it is more appropriate
to define distance on a fuzzy basis rather than a crisp basis. Consequently, this
study will adopt the aggregation approach in which distances are utilized on a fuzzy
basis. As a result, defuzzification is employed only in the final step for ranking.
At this point, the accuracy function is also employed with the score function to
make the comparison more discriminatory and to overcome any drawbacks that may
be associated with the defuzzification using the score function solely. In addition,
newly proposed aggregation operators are exploited. These operators guarantee fair
treatment among the evaluation criteria since most of the aggregation operators have
a flaw that might result in a biased treatment and false ranking in certain situations.
A practical example that considers the evaluation of energy storage technologies is
provided to illustrate the developed method and to make a comparative analysis.

From the previous discussion, the contribution of the study encompasses twomain
features. In the reference point approach, fuzzy distance is employed. This allows
examining two reference points instead of one. The study also exploits aggregation
operators that make the decision results more precise and exact.

The chapter is organized as follows. In Sect. 2, the literature is reviewed. Section 3
includes the basic concepts, definitions, and operators of PFSs together with the
conventionalMULTIMOORA. Section 4 explains the proposed PF-MULTIMOORA
in detail. In Sect. 5, a practical example in the evaluation of energy storage technolo-
gies is provided to illustrate the newly developed method. Finally, the conclusion is
given in Sect. 6.
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2 Review of the Literature

2.1 The MULTIMOORA Method

Brauers and Zavadskas [4] proposed the MOORA method that combines two tech-
niques, the ratio analysis, and the reference point methods. In the ratio analysis, the
rating of each alternative to a criterion is compared to a denominator which is repre-
sentative of all the alternatives concerning that criterion. While the reference point
method measures the distance between the rating of an alternative for a criterion
and a reference point. This reference point has the highest rating for maximization
and the lowest for minimization. They applied the method to optimize privatization
processes, especially for transition economies.

Brauers and Zavadskas [5] clarified that using two different methods of multi-
objective optimization is more robust than using a single method. Also, using three
methods is more robust than using two methods. Accordingly, they proposed the
MULTIMOORA which is composed of the MOORA method and the full multi-
plicative form. In the full multiplicative form, the utility function is themultiplication
the ratings of an alternative for the evaluation criteria. They applied the method for
project management in a transition economy.

Since the introduction ofMULTIMOORA, it has been applied in various practical
sectors including industries, economics, civil services, and environmental policy-
making, healthcare management, and information and communications technologies
[28]. Several versions were also developed to handle uncertainty using different
types of data. For a comprehensive review of the MULTIMOORA different versions
applied to diverse practical problemsuntil 2018, the reader is referred toHafezalkotob
et al. [28]. The most recent articles about MULTIMOORA are summarized by the
type of data used as follows.

Using crisp data, Asante et al. [1] integrated MULTIMOORA with the Evalua-
tion based on Distance from Average Solution (EDAS) method for the evaluation of
renewable energy barriers in developing countries. Dizdar and Ünver [14] applied
MULTIMOORA method for the assessment procedure of occupational safety and
health based on the counts of occupational accidents and diseases. Fedajev et al. [17]
used MULTIMOORA and the Shannon Entropy Index to rank and classify the Euro-
pean Union (EU) countries according to the progress achieved in the implementation
of the “Europe 2020” strategy. Omrani et al. [45] proposed a new approach based on
the Best–Worst Method (BWM) and MULTIMOORA methods to calculate semi-
human development index (HDI). HDI is a useful tool for policymakers to understand
the degree of development in their societies and establish new policies to improve it.
Souzangarzadeh et al. [54] used the response surfacemethodology (RSM)D-optimal
Design along with MULTIMOORA to find the optimum design of segmented tubes
as energy absorbers in terms of various vehicles collision scenarios. Yörükoğlu and
Aydın [64] applied MULTIMOORA for wind turbine selection problem according
to qualitative and quantitative criteria.
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As for type-1 fuzzy sets, Chen et al. [8] proposed an extended MULTIMOORA
method using the ordered weighted geometric averaging (OWGA) operator and
Choquet integral for failure mode and effects analysis (FMEA). Dai et al. [12]
proposed a novel MULTIMOORA into the triangular fuzzy environment in which
the period weights and attribute weights are completely unknown. Rahimi et al. [49]
introduced a framework comprising Geographic Information System (GIS) tech-
niques and fuzzy MCDM methods to select sustainable landfill site. The criteria
weights were obtained using the fuzzy BWM. The suitability maps were generated
based on the GIS analysis. The selected sites were then analyzed and ranked using
the MULTIMOORAmethod. Tavana et al. [55] proposed an integrated approach for
supply chain risk–benefit assessment and supplier selection that combines the fuzzy
analytic hierarchy process (AHP) and the fuzzyMULTIMOORA. Dahooie et al. [11]
applied an objective weight determination method called CCSD (Correlation Coef-
ficient and Standard Deviation) to eliminate the limitations of the dominance theory
and increase the robustness of the MULTIMOORA and enhance its performance by
considering the importance level of the three different techniques (i.e., ratio system,
reference point, and full multiplicative form).

In the context of probabilistic linguistic information (PLI), Chen et al. [7] proposed
a MULTIMOORA and introduced an innovative two-step comparative method to
evaluate cloud-based enterprise resource planning (ERP) systems. Liu and Li [39]
established the prospect theory-basedMULTIMOORAmethod. They used the prob-
abilistic linguistic terms set (PLTS) to describe qualitative information not only to
provide every possible evaluation value but also to give the weight of these values.

MULTIMOORA was also extended using the hesitant fuzzy linguistic term set
(HFLTS). Liang et al. [34] designed a MULTIMOORA method using a dual hesi-
tant fuzzy extended Bonferroni mean (DHFEBM) to select a renewable energy tech-
nology. Liao et al. [37] improved theMULTIMOORAmethod by integratingwith the
ORESTE (organísation, rangement et Synthèse de données relationnelles) method,
and extended the method to the unbalanced hesitant fuzzy linguistic context based on
an introduced score function to eliminate the defects of the subscript-based operations
on HFLTSs.

Regarding picture fuzzy numbers (PFNs), Lin et al. [38] proposed a novel picture
fuzzy MULTIMOORA to solve the site selection problem for car-sharing stations
based on a novel score function and Borda rule.

In the intuitionistic fuzzy environment, Luo et al. [40] developed a distance-based
IF-MULTIMOORAmethod integrating a novel weight-determiningmethod to select
medical equipment. Zhang et al. [68] proposed an IF-MULTIMOORA method for
MCDM that involves information fusion to allow processing both crisp and fuzzy
information.

On the subject of PFSs, Li et al. [33] proposed a newMULTIMOORA method to
evaluate the passenger satisfaction level of the public transportation system under a
large group environment. Xian et al. [60] developed aMULTIMOORAmethod using
interval 2-tuple Pythagorean fuzzy linguistic sets to evaluate financial management
performance in universities. Liang et al. [35] presented a MULTIMOORA method
with interval-valued Pythagorean fuzzy sets (IVPFSs) to solve the selection problem
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of hospital open-source electronic health records (EHRs) systems for MedLab in
Ghana.

Concerning the neutrosophic fuzzy environment, Liang et al. [36] proposed a
MULTIMOORA approach based on linguistic neutrosophic numbers (LNNs) and
applied this new approach to select the optimal mining method. Based on a neutro-
sophicMULTIMOORA technique, Siksnelyte et al. [52] presented an original frame-
work for sustainable energy development indicators. They analyzed the trends of
energy development across the Baltic Sea Region (BSR) countries from 2008 to
2015.

Lately, Gündoğdu [25] developed a MULTIMOORA method using spherical
fuzzy sets (SFSs) to increase its efficiency at solving complex problems that require
evaluation and estimation under unreliable data environment.

2.2 Pythagorean Fuzzy Operators

Various scholars have paid attention to MCDM problems under PF environment. To
develop effective and efficient methods to solve these problems, PF operational laws
and aggregation operators are crucial. Yager [61] developed the Pythagorean fuzzy
weighted averaging (PFWA) operator and Pythagorean fuzzy weighted geometric
(PFWG) operator to handle multiple attribute decision making (MADM) problems.
Ma and Xu [41] defined some novel PFWG and PFWA operators for PF infor-
mation which can treat the membership degree and the non-membership degree
neutrally. Garg [19, 20] developed some generalized PF Einstein weighted and
ordered weighted averaging operators. Zhang [69] presented a new PFWA operator
and PF-ordered weighted averaging (PFOWA) operator to aggregate PFSs. Garg [18]
presented the averaging and the geometric aggregation operators under the interval-
valued PF environment. Peng and Yang [47] developed a PF Choquet integral oper-
ator for multiple attribute group decision-making (MAGDM) problems. Wei and Lu
[59] proposed some PFMaclaurin symmetric mean operators for MADM. Garg [19]
defined two new exponential operational laws for interval-valued Pythagorean fuzzy
sets (IVPFSs) and their corresponding aggregation operators. Garg [22] developed
some new logarithm operational laws (LOL)with a real number base for PFSs. Based
on the properties of these LOL, various weighted averaging and geometric operators
were developed and a decision-making method was introduced under PF informa-
tion using the proposed operators. Garg [23] developed some new operational laws
and their corresponding PFWGA operators by including the feature of the proba-
bility sum and the interaction coefficient into the analysis to get a neutral or a fair
treatment to the membership and non-membership functions of PFSs. Later, Garg
[24] defined some new PF weighted, ordered weighted, and hybrid neutral aver-
aging aggregation operators for PF information. He utilized these operators that can
neutrally treat the membership and non-membership degrees to present an algorithm
to solve theMAGDMproblems under the PF environment.Wang et al. [58] presented
some PF interactive Hamacher power aggregation operators such as PF interactive
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Hamacher power average, weighted average, ordered weighted average, PF interac-
tive Hamacher power geometric, weighted geometric, and ordered geometric oper-
ators, respectively. In addition, they defined a PF entropy measure and established
a method to determine the attribute weights. They explored a novel approach for
MADM problems and assessed express service quality.

Shahzadi et al. [51] introduced six families of aggregation operators namely,
PF Yager weighted averaging aggregation, PF Yager ordered weighted averaging
aggregation, PF Yager hybrid weighted averaging aggregation, PF Yager weighted
geometric aggregation, PF Yager ordered weighted geometric aggregation and PF
Yager hybridweightedgeometric aggregation.These operators inherit the operational
advantages of Yager parametric families.

2.3 Energy Storage Technologies

With the development of renewable energy, energy storage is becoming increasingly
important; hence, finding and implementing cost-effective and sustainable energy
storage and conversion systems is vital [13].

ESTs not only store the excess of energy but also increase renewable energy
penetration and decrease its limitations as a power plant cannot depend solely on a
renewable energy source without EST. This results in decreasing fuel consumption
and CO2 emissions. ESTs balance between the energy supply and demand while
reducing renewable energy fluctuations due to its intermittent nature. They improve
the overall efficiency of a power plant, thus reducing the operating cost in the long
run. They also reduce the peak energy loads which will, in turn, decrease the risk
of load shedding especially when the large capacity of storage is considered. The
flexibility of ESTs makes it convenient and suitable to cover distant areas that suffer
from the lack of electricity [42]. The major problem with ESTs is their investment
cost and operational cost that should bewithin acceptable limits. Finding the possible
low cost, efficient, and long term ESTs that don’t harm the environment is a subject
of extensive research [30].

The only way of storing electrical energy is by converting it to other forms of
energy such as thermal energy, chemical energy, electrochemical energy, mechanical
energy, and electromagnetic energy [31].

Thermal energy storage (TES): it is a technology that stores thermal energy by
heating or cooling a storagemediumand then utilizes this stored energywhen needed.
The stored energy can be used at a later time for heating and cooling applications
and power generation [50]. Power is generated from this stored energy by applying
a Rankine cycle turbine with the system. TES systems are applicable in diverse
industrial and residential purposes, e.g., space heating or cooling, process heating
and cooling, hot water production, and electricity generation. TES can be classified
into three types: latent heat, sensible heat, and thermochemical heat storage. Sensible
heat storage stores heat energy in any material depending on its heat capacity and the
change of the material’s temperature during the process of charging and discharging.
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The main advantage of this type is that charging and discharging is completely
reversible and have unlimited life cycles [30]. Latent heat storage is based on the
amount of heat released or absorbed during the phase change of any material. Heat
is stored in phase change materials which could be both organics and inorganics and
can change their phase with varying heat [31]. The materials for storing the heat can
be both liquid and solid. They are successfully integrated with solar energy systems
[68].

Chemical energy storage (CES): Chemical energy is stored in the chemical
bonds of atoms and molecules that can be only observed when released in a chemical
reaction in the form of heat. After the release of chemical energy, the substance is
often changed into a completely different substance. Chemical fuels are the dominant
form of energy storage regarding electrical generation and energy transportation.
Chemical energy storage is suitable for storing large amounts of energy and for
longer durations [27]. CES includes hydrogen storage and biofuels [30]. Biofuels
are produced by a biological process instead of geological processes. Biomass is an
organic matter derived from the biodegradable fraction of energy crops, the waste
matter of plants and animals. This biomass is used to produce biogas which can be
converted through a generator to electricity. Biofuels include ethanol, biodiesel, bio-
alcohols, bio-ether, green diesel, biofuel gasoline, vegetable oils, syngas, and solid
biomass [30]. Hydrogen energy storage technology is one of the most prominent
types. The process involves two steps: producing and storing hydrogen when there
is excess power available, and then producing electricity from the stored hydrogen
using fuel cells in case of power shortage [31].

Electrochemical energy storage (EcES): this storage technology converts elec-
tric energy into chemical energy and vice versa during energy storage and recovery.
There are two main branches of EcES: electrochemical batteries and electrochem-
ical capacitors. The type of the EcES differs according to the nature of the chemical
reaction, structural features, and design. Electrochemical cells and batteries are clas-
sified according to three features. The first classification depends on the operation
principle and contains 4 categories; primary cell or battery, secondary cell or battery,
reserve cell, and fuel cell. In the primary batteries, the chemical once consumed
cannot be recharged, while the secondary batteries can be charged and discharged
many times. In power system applications, only secondary batteries are utilized [31].
The second classification is based on discharge depth, either shallow or deep cycle
batteries. Deep cycle batteries are suitable for renewable applications. The third
classification depends on the characteristic of the electrolyte in the battery, either
flooded or wet and sealed. Flooded or wet batteries are vastly utilized in renewable
applications [27]. EcES plays a vital role in our daily life since they are applied
in small devices, e.g., laptops, tablets, and cell phones, and in larger devices, e.g.,
electric cars, to provide efficient and reliable use of energy. Battery energy storage
is the most widespread storage method. It is available in different sizes ranging from
tens of watts to megawatts [31]. Batteries have two main disadvantages. First, the
long charging time since they have an intrinsically low power handling capability
(<1 kW/kg, normalized by the device mass). Second, the short device cycle life. The
specific power ofmodern batteries has been increased; yet, the cost of these advanced
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batteries is high, and they still do not fulfill the power demands of many applications,
e.g., electric vehicles [32].

Electrical energy storage (EES): in this technology electrical energy is converted
from a power network or source via an energy conversionmodule into another energy
storagemedium. This intermediate energy is stored for a limited time, then converted
back into electrical energy when needed [43]. ESS is most suitable for any specific
application in power systems. EES includes capacitors, supercapacitors, and super-
conducting magnetic energy storage (SMES). In supercapacitors the electric energy
is stored in the form of the electrostatic field created in-between the two porous elec-
trodes, separated by a separator. On the other hand, SMES stores electric energy in
the electromagnetic field generated by a current following through a superconducting
conductor [31]. The capacitors can be used for high currents, but for extremely short
periods due to their relatively low capacitance generation. A Supercapacitor can
replace a regular capacitor, but it offers very high capacitance in a small package.
Superconducting magnetic energy storage systems are preferred on the outlet of
power plants to stabilize the output or on industrial sites to accommodate peaks in
energy consumption [27].

Mechanical energy storage (MES): this technology takes advantage of kinetic
or gravitational forces to store energy. MES is easily adaptable to convert and store
energy from water current, wave, and tidal sources [27]. Mechanical energy storage
offers several advantages compared to other ESTs especially in terms of environ-
mental impact, cost, and sustainability. In MES the energy is stored by doing some
mechanical work, and then energy from mechanical work is exploited upon its
requirement [30]. MES can be found in two forms according to the utilization of
stored energy. The first form is pure mechanical if the system is directly used. The
second form is mechanical–electrical when energy is transmitted via an electric
motor-generator. The pure mechanical systems can provide mechanical work such
as smoothing the rotation of a rotating mass; mechanical–electric systems are used
to supply the grid with electricity. MES is classified by the working principle as
follows: pressurized gas, forced springs, kinetic energy, and potential energy. The
main types of MES are pumped hydroelectric storage (PHS), compressed air energy
storage (CAES), and flywheel energy storage (FES) [42].

The wide range of ESTs, with each EST being different in terms of the scale of
power, response time, energy/power density, discharge duration, and cost coupled
with the complex characteristics matrices, makes it difficult to choose a particular
EST for a specific application.
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3 Preliminaries

3.1 Pythagorean Fuzzy Sets

In this section, the basic definitions, operations, and aggregation operators of PFSs
are reviewed.

Definition 1 ([63]). A Pythagorean fuzzy set Ã in a finite universe of discourse X
is defined by

Ã = {
x, μ Ã(x), υ Ã(x) : x ∈ X

}
, (1)

where μ Ã(x) : X → [0, 1] denotes the membership degree,
υ Ã(x) : X → [0, 1] denotes the non-membership degree,
satisfying the constraint

0 ≤ μ2
Ã
(x) + υ2

Ã
(x) ≤ 1. (2)

The hesitation margin, i.e., the degree of uncertainty, is represented by

π Ã(x) =
√

1 −
(
μ2

Ã
(x) + υ2

Ã
(x)

)
. (3)

Definition 2 ([62]). For the PFSs
{
Ã1, Ã2, . . . , Ãn

}
having weights

(w1,w2, . . . ,wn), with wi ∈ [0, 1] and
∑n

i=1 wi = 1, the Pythagorean fuzzy
weighted averaging operator (PFWAY ) and the Pythagorean fuzzy weighted
geometric operator (PFWGY ) are defined as follows:

(i)

PFWAY =
(

n∑

i=1

wiμ Ãi
,

n∑

i=1

wiυ Ãi

)

, (4)

(ii)

PFWGY =
(

n∏

i=1

μ
wi

Ãi
,

n∏

i=1

υ
wi

Ãi

)

. (5)

Definition 3 ([41]). For any two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
the

operational laws are given by
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(i)

Ã ⊕ B̃ =
(√

μ2
Ã

+ μ2
B̃

− μ2
Ã
μ2

B̃
, υ ÃυB̃

)
, (6)

(ii)

Ã ⊗ B̃ =
(
μ ÃμB̃,

√
υ2
Ã

+ υ2
B̃

− υ2
Ã
υ2
B̃

)
, (7)

(iii)

λ � Ã =
(√

1 −
(
1 − μ2

Ã

)λ

, υλ

Ã

)

, (8)

(iv)

Ãλ =
(

μλ

Ã
,

√

1 −
(
1 − υ2

Ã

)λ

)

,where λ > 0 is a scalar. (9)

Based on the operational laws given in Definition 3, the PFWAMX and the
PFWGMX are defined as follows:

Definition 4 ([41]). Consider the PFSs
{
Ã1, Ã2, . . . , Ãn

}
with weights

(w1,w2, . . . ,wn), where wi ∈ [0, 1] and
∑n

i=1 wi = 1, the PFWAMX and the
PFWGMX are defined as follows.

(i)

PFWAMX

(
Ã1, Ã2, . . . , Ãn

)
=

(
w1 � Ã1

)
⊕

(
w2 � Ã2

)
⊕ . . . ⊕

(
wn � Ãn

)

=
([

1 −
n∏

i=1

(
1 − μ2

Ãi

)wi
] 1

2

,
n∏

i=1
υ
wi

Ãi

)

,

(10)

(ii)

PFWGMX

(
Ã1, Ã2, . . . , Ãn

)
= Ãw1

1 ⊗ Ãw2
2 ⊗ . . . ⊗ Ãwn

n .

=
(

n∏

i=1
μ
wi

Ãi
,

[
1 −

n∏

i=1

(
1 − υ2

Ãi

)wi
] 1

2

)
(11)

Definition 5 ([51]). For any two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
, θ >

0 and λ > 0, Yager’s t-norm and t-conorm operations are defined as follows:
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(i)

Ã� B̃ =
⎛

⎜
⎝

√√√√min

(

1,
(
μ2θ
Ã

+ μ2θ
B̃

) 1
θ

)

,

√√√√√1 − min

⎛

⎝1,
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1 − υ2

Ã

)θ +
(
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B̃

)θ
) 1

θ

⎞

⎠

⎞

⎟
⎠,

(12)

(ii)

Ã� B̃ =
⎛

⎜
⎝

√√√√√1 − min

⎛

⎝1,
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1 − μ2

Ã

)θ +
(
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B̃

)θ
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θ

⎞

⎠,

√√√√min
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(
υ2θ
Ã

+ υ2θ
B̃

) 1
θ

)⎞

⎟
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(13)

(iii)

λ � Ã =
⎛

⎝

√

min

(
1,

(
λμ2θ

Ã

) 1
θ

)
,
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λ
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Ã

)θ
) 1
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(14)

(iv)

Ãλ =
⎛

⎝

√√√√1 − min

(
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(
λ
(
1 − μ2

Ã

)θ
) 1

θ

)

,

√

min

(
1,

(
λυ2θ

Ã

) 1
θ

)⎞

⎠. (15)

Based on the operational laws given in Definition 5, the PFYWA and the PFYWG
are defined as follows.

Definition 6 ([51]). For the PFSs
{
Ã1, Ã2, . . . , Ãn

}
having weights

(w1,w2, . . . ,wn), with wi ∈ [0, 1] and
∑n

i=1 wi = 1, the PFYWA and the
PFYWG are given as follows:

PFYWA
(
Ã1, Ã2, . . . , Ãn

)
=
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�
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Ãi

)θ
)) 1

θ

⎞

⎠

⎞

⎟
⎠,

(16)

PFYWG
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(17)
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For a PFS Ã = (
μ Ã, υ Ã

)
, Zhang andXu [70] proposed a score function to evaluate

and compare PFSs and it is defined as follows:

S
(
Ã
)

= μ2
Ã

− υ2
Ã
,where S

(
Ã
)

∈ [−1, 1]. (18)

In addition, Peng and Yang [46] proposed an accuracy function to help in
discrimination whenever a tie occurs. The accuracy function is defined as follows:

A
(
Ã
)

= μ2
Ã

+ υ2
Ã
,where A

(
Ã
)

∈ [0, 1]. (19)

Definition 7 ([48]). The complement or the negation pf a PFS Ã = (
μ Ã, υ Ã

)
is

denoted by

Ãc = (
υ Ã, μ Ã

)
. (20)

Definition 8 ([46]). Two PFSs Ã = (
μ Ã, υ Ã

)
and B̃ = (

μB̃, υB̃

)
are compared as

follows:

(a) If S
(
Ã
)

< S
(
B̃

)
, then Ã < B̃;

(b) If S
(
Ã
)

> S
(
B̃

)
, then Ã > B̃;

(c) If S
(
Ã
)

= S
(
B̃

)
, the accuracy function is employed

(i) If A
(
Ã
)

< A
(
B̃

)
, then Ã < B̃;

(ii) If A
(
Ã
)

> A
(
B̃

)
, then Ã > B̃;

(iii) If A
(
Ã
)

= A
(
B̃

)
, then Ã ≈ B̃.

Distance and similarity measures are important topics and have been extensively
used in diverse fields such as pattern recognition, machine learning, and market
prediction [68]. Some common metrics, e.g., Hamming distance and Euclidean
distance, arewidely used tofind the distance between twoPFSs. Initially, themember-
ship degree and the non-membership degree were only considered in the distance
formulas. Later, these formulas were modified to include the degree of hesitation as
well. The distance formulas in a Pythagorean fuzzy environment are given as follows
[29].

i. Hamming distance

dHm

(
Ã, B̃

)
= 1

2

n∑

i=1

{∣∣∣μ2
Ã
(xi ) − μ2

B̃
(xi )

∣∣∣ +
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣ +
∣∣∣π2

Ã
(xi ) − π2

B̃
(xi )

∣∣∣
}
.

(21)



286 I. M. Sharaf

ii. Normalized Hamming distance

dNHm

(
Ã, B̃

)
= 1

2n

n∑

i=1

{∣∣∣μ2
Ã
(xi ) − μ2
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Ã
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(xi )

∣∣∣
}
.

(22)

iii. Euclidean distance

dE
(
Ã, B̃

)
=

√√√√ 1

2
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(xi ) − π2

B̃
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(23)

iv. Normalized Euclidean distance

dNE

(
Ã, B̃

)
=

√√√√ 1
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Ã
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(24)

v. Hausdorff distance

dHs

(
Ã, B̃

)
=

n∑

i=1

max
{∣∣∣μ2

Ã
(xi ) − μ2

B̃
(xi )

∣∣∣,
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣
}
. (25)

vi. Normalized Hausdorff distance

dNHs

(
Ã, B̃

)
= 1

n

n∑

i=1

max
{∣∣∣μ2

Ã
(xi ) − μ2

B̃
(xi )

∣∣∣ +
∣∣∣υ2

Ã
(xi ) − υ2

B̃
(xi )

∣∣∣
}
. (26)

The concepts of distance measure and similarity measure are dual concepts.
Hence, the distance between two PFSs is used to define the similarity between two
PFSs.

Proposition 1 ([16]). Let d
(
Ã, B̃

)
be the distance between two PFSs Ã and B̃, then

the similarity measure between the two PFSs is given as

S
(
Ã, B̃

)
= 1 − d

(
Ã, B̃

)
. (27)

Hussian and Yang [29] defined other similarity measures based on the Hausdorff
metric beside the simple linear function (27). These similaritymeasures use a rational
function and an exponential function as follows:
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S
(
Ã, B̃

)
=

1 − dHs

(
Ã, B̃

)

1 + dHs

(
Ã, B̃

) , (28)

and

S
(
Ã, B̃

)
= edHs( Ã,B̃) − e−1

1 − e−1
. (29)

3.2 The Classical MULTIMOORA Method

The MULTIMOORA method is an extension of the multi-objective optimization by
ratio analysis (MOORA) method by incorporating the full multiplicative form of
multiple objectives [5]. The MULTIMOORAmethod can be summarized as follows
[5, 35]:

Suppose the general decision matrix of an MCDM problem is given by

D = [
Xi j

] =

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢
⎣

X11 X12

X21 X22
· · · X1m

X2m
...

. . .
...

Xn1 Xn2 · · · Xnm

⎤

⎥⎥⎥
⎦

,

where its element Xi j is the rating of the alternative Xi ; i = 1, 2, . . . , n for the crite-
rion C j ; j = 1, 2, . . . ,m. First, the data of the general decision matrix is normalized
by dividing the rating of an alternative for a criterion by the square root of the sum
of squares of the ratings of the entire alternatives for that criterion,

XN
i j = Xi j√∑n

i=1 X
2
i j

. (30)

Hence, the normalized general decision matrix DN =
[
XN
i j

]
is formed.

In the ratio system technique, the elements XN
i j are added in case of maximization

and subtracted in case of minimization. Let g be the number of benefit criteria to be
maximized and m − g be the number of cost criteria to be minimized, the overall
index of each alternative is:
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Ri =
g∑

j=1

XN
i j −

m∑

j=g+1

XN
i j . (31)

Using (31), the alternatives are ranked. The higher the value of Ri , the higher the
rank.

In the reference point technique, the Reference Point Theory is applied with the
Min–Max Metric of Chebyshev. The jth criterion reference point is defined by

X∗
j =

{
maxi X N

i j , for benefit criteria,
mini X N

i j , for cost criteria.
(32)

The deviation of the normalized rating of each alternative from the reference point
is calculated by

di = min
i

{
max

j

∣∣X∗
j − XN

i j

∣∣
}
. (33)

Using (33), the alternatives are ranked. The lower the value of di , the higher the
rank.

The full multiplicative form combines both maximization and minimization of
the multiplicative utility function. The overall utility of each alternative is given by
the dimensionless number

Ui = Ub
i

Uc
i

, (34)

where Ub
i = ∏g

j=1 Xi j denotes the product of an alternative’s ratings of benefit
criteria, andUb

i = ∏m
j=g+1 Xi j denotes the product of an alternative’s ratings of cost

criteria. Using (34), the alternatives are ranked. The higher the value ofUi , the higher
the rank.

Utilizing the dominance theory, the alternatives are ranked based on the previous
three ranking lists and the final decision is made, i.e., the alternative with the highest
appearance in the first place on all the ranking lists is the best.

4 The Proposed PF-MULTIMOORA

In this section, the MULTIMOORA method is utilized in PF environment due to
its appealing features. The MULTIMOORA is one of the most practical MCDM
methods. It is an effective, efficient, flexible, and robust method. It was successfully
applied to various practical fields.
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Consider anMCDM problem with n alternatives {X1, X2, . . . , Xn} andm criteria
{C1,C2, . . . ,Cm}, with weights (w1,w2, . . . ,wm) satisfying

∑m
i=1 wi = 1. The

Pythagorean fuzzy general decision matrix is represented as

∼
D=

[∼
Xi j

]
=

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢⎢⎢
⎣

∼
X11

∼
X12∼

X21
∼
X22

· · ·
∼
X1m∼
X2m

...
. . .

...
∼
Xn1

∼
Xn2 · · · ∼

Xnm

⎤

⎥⎥⎥⎥⎥
⎦

,

where
∼
Xi j = (

μi j , υi j
)
indicates the ratings of the alternatives for the assessment

criteria expressed by PFSs. The value “μij” indicates the degree to which an alterna-
tive Xi satisfies a criterion C j , and the value “υi j” indicates the degree to which Xi

fails to satisfy this criterion. In constructing the decision matrix, the complement of
the PFS is used for the ratings of the cost criteria. Hence, the decision matrix needs
no further processing and the three techniques are directly applied.

The three techniques are expressed in detail in the following subsections.

4.1 The Ratio System Technique

The ratio system is based on the additive utility function. As the ratings are already
expressed by PFSs they do not need normalization. In addition, since the complement
is used in case of cost criteria, all the criteria are treated as benefit ones and subtraction
operation (31) is not required. A Pythagorean fuzzy weighted averaging aggregation
operator is applied.

Most of the proposed weighted average aggregation operators cannot be applied
in a certain situation that is illustrated by the following example. Consider a simple
MCDM problem with two alternatives and three criteria. The criteria weights are
0.2, 0.3, and 0.5, respectively. The ratings of the alternatives for the criteria are given
by the following decision matrix.

C1 C2 C3
∼
D= A1

A2

[
(1, 0)

(0.9, 0.1)
(0.1, 0.9)
(0.8, 0.2)

(0.1, 0.9)
(0.9, 0.1)

]

From the decision matrix, the performance of A2 far exceeds that of A1 for the
second and third criteria that have larger weights, while the performance of A1 is
slightly better than that of A2 for the first criterion that has the smallest weight.
Therefore, it is obvious that A2 is better than A1 by intuition.
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Using the PFWAMX (10) and the score function (18), we get PFWAMX
(
A1|C j

) =
(1, 0) with S(A1) = 1, while PFWAMX

(
A2|C j

) = (0.8774, 0.1231) with S(A2) =
0.7547. This result leads to the selection of A1 despite being not the better choice
by logic. Accordingly, it can be concluded that a single criterion with the perfect
rating (1, 0) will dominate regardless of its weight and abolish the effect of the rest
of the evaluation criteria, which is not fair in the assessment process. In this case,
the selection is biased to the alternative having a single perfect rating regardless of
its ratings for the other criteria. Therefore, false ranking is obtained.

On the other hand, using the PFYWA (16) and the score function (18),
we get PFYWA

(
A1|C j

) = (0.6688, 0.7222) with S(A1) = −0.0743, while
PFYWA

(
A2|C j

) = (0.8735, 0.1375) with S(A2) = 0.7441. This result leads to
the selection of A2, which is the better alternative by intuition. Here, the obtained
ranking is rational.

From the previous illustration, the PFYWA (16) is chosen for aggregation. Hence,
the additive utility U A

i of each alternative Xi is given by

Ũ A
i = PFYWA

(
X̃i j | j = 1, 2, . . . ,m;w

)
=

(
w1 � X̃i1

)
�

(
w2 � X̃i2

)
� . . . �

(
wn � X̃im

)

=

⎛

⎜⎜
⎝

√√√√√√min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(
wiμ

2θ
X̃i j

)⎞

⎠

1
θ

⎞

⎟
⎠,

√√√√√√1 − min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(

w j

(
1 − υ2

X̃i j

)θ
)⎞

⎠

1
θ

⎞

⎟
⎠

⎞

⎟⎟
⎠.

4.2 The Reference Point Technique

So far, the reference point technique proceeds by identifying a reference point for each
criterion; this reference point indicates the best rating obtained by an alternative for a
criterion. Then, the distance between the rating of each alternative for a criterion and
the reference point is calculated using a distance formula. Therefore, the reference
point approach yields a crisp value.

The reference point can be the theoretical reference point defined by (1, 0, 0).
Otherwise, it can be an empirical reference point, i.e., defined from the data of the
problem. In this case, it is given by

R̃ j =
(
μ

′
j , υ

′
j

)
,whereμ

′
j = max

i
μi j , υ

′
j = min

i
υi j , j = 1, 2, . . . ,m. (35)

Actually, a distance between two fuzzy values cannot be definitely and uniquely
defined. It is closer to be a fuzzy value rather than a crisp value. Therefore, it is more
proper to define the distance between two PFSs with a PFS.

In this proposed PF-MULTIMOORA two reference points are considered, the best
rating and the worst rating. We are in favor of an alternative according to its degree
of similarity to the best rating and oppose this alternative according to its degree
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of similarity to the worst rating, and the degree of indeterminacy can be calculated
residually. The reference point utility value is estimated as follows:

The weighted general decision matrix is calculated first. It is given by

D̃w =
[
X̃i j

]
=

C1 C2 Cm

X1

X2
...

Xn

⎡

⎢⎢⎢
⎣

X̃11 X̃12

X̃21 X̃22
· · · X̃1m

X̃2m
...

. . .
...

X̃n1 X̃n2 · · · X̃nm

⎤

⎥⎥⎥
⎦

, where X̃i j = wj � X̃i j .

The theoretical reference point is employed to guarantee that the resulting value
is a PFS. Let R̃+

j be the best rating (1, 0, 0) and R̃−
j be the worst rating (0, 1, 0).

Applying the normalized Euclidean distance (24) to find the distance between the
ratings of an alternative for the criteria and the best rating

d+
i

( ∼
X i j , R̃

+
j

)
=

√√√√ 1

2m

m∑

j=1

{(
μ2

∼
X i j

− 1

)2

+ υ4
∼
X i j

+ π4
∼
X i j

}

. (36)

Similarly, the normalized Euclidean distance (24) is applied to find the distance
between the ratings of an alternative for the criteria and the worst rating

d−
i

( ∼
X i j , R̃

−
j

)
=

√√√√ 1

2m

m∑

j=1

{

μ4
∼
X i j

+
(

υ2
∼
X i j

− 1

)2

+ π4
∼
X i j

}

. (37)

Then, the utility value based on the reference point approach is expressed by

Ũ R
i = (μi , υi ) (38)

where

μi = S+
i

( ∼
X i j , R̃

+
j

)
= 1 − d+

i

( ∼
X i j , R̃

+
j

)
(39)

represents the degree of agreement on an alternative for the assessment criteria
regarding its closeness to the best rating,

υi = S−
i

( ∼
X i j , R̃

−
j

)
= 1 − d−

i

( ∼
X i j , R̃

−
j

)
(40)

represents the degree of disagreement on an alternative for the assessment criteria
regarding its closeness to the worst rating.
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4.3 The Full Multiplicative Form Technique

The full multiplicative technique is based on the multiplicative utility function. Since
all the criteria are treated as benefit criteria after using the complement of the ratings
of the cost criteria, the division operation (34) is no longer required. A Pythagorean
fuzzy weighted geometric aggregation operator is applied.

For an MCDM problem with two alternatives and three criteria with weights 0.2,
0.3, and 0.5, respectively, the ratings of the alternatives for the criteria are given by
the following decision matrix.

C1 C2 C3
∼
D= A1

A2

[
(0, 1)

(0.1, 0.9)
(0.9, 0.1)
(0.2, 0.8)

(0.9, 0.1)
(0.1, 0.9)

]
.

From the decision matrix, the ratings of A1 exceeds that of A2 for the second and
third criteria that have larger weights, and the rating of A2 is slightly better than that
of A1 for the first criteria that has the smallest weight. Therefore, it is obvious that
A1 is better than A2.

Using the PFWGMX (11) and the score function (18) we get PFWGMX
(
A1|C j

) =
(0, 1) with S(A1) = −1, while PFWGMX

(
A2|C j

) = (0.1231, 0.4637) with
S(A2) = −0.1999. This result leads to the selection of A2 although it is not the
better choice by intuition. Therefore, it can be concluded that a single criterion with
the worst performance (0, 1) will dominate regardless of its weight and abolish the
effect of the rest of the evaluation criteria, which is also not fair in evaluation. In this
case, the selection is biased against the alternative having this worst performance
regardless of its performance for the other criteria. This leads to false ranking.

On the other hand, using the PFYWG (17) and the score function (18)
we get PFYWG

(
A1|C j

) = (0.7222, 0.6688) with S(A1) = 0.0743, while
PFYWG

(
A2|C j

) = (0.1375, 0.8735) with S(A2) = −0.7441. This result leads
to the selection of A1, which is actually the better alternative by intuition.

From the previous illustration, the PFYWG (17) is chosen for aggregation. Hence,
the multiplicative utility UM

i of each alternative Xi is given by

Ũ M
i = PFYWG

(
X̃i j | j = 1, 2, . . . ,m;w

)
= X̃

w1
i1 � X̃

w2
i2 � . . . � X̃wn

in

=

⎛

⎜⎜
⎝

√√√√√√1 − min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(

wi

(
1 − μ2

X̃i j

)θ
)⎞

⎠

1
θ

⎞

⎟
⎠,

√√√√√√min

⎛

⎜
⎝1,

⎛

⎝
m∑

j=1

(
wiυ

2θ
X̃i j

)⎞

⎠

1
θ

⎞

⎟
⎠

⎞

⎟⎟
⎠.
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4.4 The Overall Utility Score

Finally, the results of the three techniques are combined to get the overall utility
value. In the early versions of the MULTIMOORA, the dominance theory was
applied to rank the alternatives. When using the dominance theory several rules
are utilized for discrimination: absolute dominance, general dominance, transitive-
ness, overall dominance, absolute equability, and partial equability [6]. In spite of
all these rules, circular reasoning is possible. For example, consider the following
alternatives in an MCDM problem with their ranking by the three techniques
X1(11 − 20 − 14), X2(14 − 6 − 15), and X3(15 − 19 − 12). When applying the
dominance rules we have: X1 generally dominates X2, X2 generally dominates X3,
and X3 generally dominates X1. Accordingly, the same ranking is given to the three
objects [6]. Therefore, the dominance theory in large scale applications has twomain
drawbacks: multiple comparisons and circular reasoning.

To overcome these drawbacks, recent researches proposed the aggregation of
the three techniques to enhance the accuracy and efficiency of the MULTIMOORA
method [11, 68].

Therefore, the three utility values are aggregated into the overall utility value.
Here, the common trend is to defuzzify the utility values and then aggregate. This is
accomplished by

Ui = ωAU
A
i + ωRU

R
i + ωMU

M

i , (41)

where ωA, ωR , and ωM are the coefficient of importance of the utility scores, and
their sum is equal to one.

The main disadvantage of this trend is having equal scores for different PFSs
which will surely affect the overall utility. For example, the PFSs (0.6, 0.6) and
(0.3, 0.3) have the same score. Therefore, it is preferable to use a weighted average
aggregation operator first, and then use the score function (18) for defuzzification. In
this case, whenever we have equal scores the accuracy function (19) can be applied
for discrimination.

The overall utility is computed byusing theweighted average aggregation operator
(4) for similar treatment of the membership and non-membership information for
the three utility values:

Ũ T
i = PFWAY

(
Ũ A

i , Ũ R
i , Ũ M

i |ωA,ωR, ωM

)

=
(
ωAμŨ A

i
+ ωRμŨ R

i
+ ωMμŨ M

i
, ωAυŨ A

i
+ ωRυŨ R

i
+ ωMυŨ M

i

)
,

ωA = ωR = ωM , and ωA + ωR + ωM = 1. (42)

Then, the score function (18) and the accuracy function (19) are used for ranking.
The alternative with the highest overall utility score is the best.

The steps of the PF-MUTIMOORA are shown in Fig. 1.
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Set the fuzzy distance 

The full multiplicative 
form technique

The ratio system 
technique

The reference point technique

Apply the Pythagorean 
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averaging aggregation 

operator

Apply the Pythagorean 

fuzzy Yager weighted 

geometric aggregation 

Form the weighted general decision

matrix.

Define the best and worst ratings

Find the degree of similarity between 

the ratings of each alternative and the 

best and worst ratings

Calculate the overall fuzzy utility scores

using Yager’s Pythagorean fuzzy 

weighted averaging operator

Apply the score function, and the accuracy function if required 

Formation of the 

Pythagorean fuzzy general 

decision matrix

Rank and select the best alternative

Fig. 1 The proposed PF-MULTIMOORA

5 Evaluation of Energy Storage Technologies

5.1 An Overview

As a result of industrialization and the growing population, energy demand has been
increasing in the world. Renewable energy sources (RESs) are seen as effective
alternatives to fulfill these increasing requirements. Since RESs are fluctuating and
intermittent, energy storage technologies (ESTs) enable the storage of excess energy
and utilize it when needed to secure energy supply [9]. ESTs provide a wide range of
approaches to create a more resilient energy infrastructure and bring cost savings to
utilities and consumers. Energy storage devices are charged when they absorb energy
and discharged when they deliver the stored energy back into the grid. Charging and
discharging processes normally require power conversion devices to transform elec-
trical energy into a different energy form, e.g., chemical, electrochemical, electrical,
mechanical, and thermal. In other words, energy storage enables supply and demand
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to be balanced even when the generation and consumption of energy do not happen
at the same time [44].

Finding better ways to store energy is critical to becoming more energy effi-
cient. Advances in energy storage can be achieved by finding new materials and
understanding how current and new materials function. ESTs can be used in diverse
applications. While some of them can be properly selected for specific applications,
some others are applicable in wider frames. The key factor to success lies inmatching
the application to technology [27].

ESTs can be classified into five main categories thermal energy, chemical energy,
electrochemical energy, mechanical energy, and electromagnetic energy storage as
previouslymentioned in Sect. 2. The formof converted energy determines the class of
the EST. The power storing capacity, energy and power densities, response time, cost
and economy scale, operating life, monitoring and control mechanisms, efficiency,
and operating constraints are the critical parameters that govern the choice as to
which type of technology.

The selection of an EST is an MCDM problem since the evaluation of ESTs is
based on multiple conflicting criteria. The main criteria in the assessment of the
performance of EST to achieve sustainability and energy security are technological,
economic, and environmental criteria. Technological criteria allow assessing the reli-
ability of the used technology and its ability to ensure safe energy supply. Economic
criteria take into account competitiveness and affordability issues through the asso-
ciated costs of installation and their impact on energy prices. Environmental criteria
allow addressing environmental sustainability [68].

5.2 A Practical Example

The proposed PF-MULTIMOORA is utilized to rank a set of different ESTs. Four-
teen alternatives are evaluated by using eleven criteria. The alternatives are given in
Table 1. The criteria from one to eight are technological; the ninth and tenth criteria
are economical, the eleventh criteria are environmental. The assessment criteria are
defined as follows.

(C1) The power rating: indicates the size of the power conversion subsys-
tems resulting from the maximum power requirements of the electrical load on the
discharging part (generation side) and the appearing excess power on the charging
part (input side) [67]. The power rating is measured in megawatt (MW). High power
rating indicates better EST [68].

(C2) The energy rating: measured in hours, is the duration of discharge, i.e., the
duration needed to empty the reservoir initially full at maximum outflow capacity
[10]. It indicates how long a storage device can maintain output. Long discharge
period is preferred since operating flexibility is required to manage variations in
renewable energy generation and load to match demand. A Long duration EST refers
to an EST with durations of 10 or more hours [15].
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Table 1 The evaluated ESTs

Alternative Name Technology

X1 Hydrogen Chemical storage

X2 Pumped hydroelectric storage (PHS) Mechanical storage

X3 Compressed air energy storage (CAES) Mechanical storage

X4 Flywheel Mechanical storage

X5 Superconducting magnetic energy storage (SMES) Electrical storage

X6 Supercapacitors (Supercap) Electrical storage

X7 Lead-acid (Pb-acid) Electrochemical storage

X8 Nickel–cadmium (NiCd) Electrochemical storage

X9 Lithium-ion (Li-ion) Electrochemical storage

X10 Sodium–Sulphur (NaS) Electrochemical storage

X11 Sodium–nickel chloride (NaNiCl) Electrochemical storage

X12 Vanadium redox (VRB) Electrochemical storage

X13 Zinc–bromine (ZnBr) Electrochemical storage

X14 Molten Salt Thermal storage

(C3) The response time: indicates the required time to activate the system, i.e.,
howquickly a storage technology can be brought into operation and discharge energy.
ESTs with short response time provide electricity instantly, while ESTs with long
response time provide electricity after a time interval [67]. It is measured on a
linguistic scale. The lower this value the better the EST, since the rapid response
is preferred [68].

(C4) The energy density: the ratio of energy storage capacity to the system
volume or mass [67]. It is measured in Wh/kg. High energy density indicates better
EST [68].

(C5) The self-discharge time: also known as idling losses, it is the losses occur-
ring during the time inwhich energy remains stored [67]. It is measured in percentage
per day, the lower the losses the better the EST [68].

(C6) The round-trip efficiency: it is the ratio of input energy (in MWh) to the
energy retrieved fromstorage (inMWh). It ismeasured in percentage.High round-trip
efficiency is required [68].

(C7) The lifetime: also known as the service period, it is expressed in years for a
certain cycling rate, or in the total number of cycles, where a cycle is the time during
which the system is fully charged and discharged. Long lifetime is required [68].

(C8) The number of cycles of operation: the charge/discharge performance that
represents the demands associated with a specific application placed on an EST.

(C9) The power cost: it is the total costs of installation. It is measured in Eur/kW.
Lower costs are desired [68].

(C10)The energy cost: it is the costs of energy supply. It is measured in Eur/kWh.
Lower costs are desired [68].
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(C11) The environmental impact: this encompasses the impacts of the construc-
tion, disposal/end of life, and usage of ESTs on the environment. For example, wastes
from batteries manufacturing and recycling are a crucial and growing challenge for
public health due to their toxicity, abundance and durability in the environment [13].
It is measured on a qualitative scale, and of course, the minimum impact must be
attained.

From the previous illustration of the criteria, it is clear that they not only have
quantitative and qualitative data but also the quantitative data have different units
of measurement. Moreover, they differ in the objective. It is required to maximize
{C1,C2,C4,C6,C7, andC8}, and minimize {C3,C5,C9,C10, andC11}. Zhang et al.
[68] transformed all the data into IFSs. In addition, the IFSs representing the criteria
to be minimized was negated using (20). Therefore, the data given and used in this
chapter is the data in its final form ready to be processed. The main difference is
in the residual term, i.e., the hesitation margin, which is calculated under the PF
condition. The problem data is given in Table 2. For detailed information about data
transformation and fusion, the reader is referred to Zhang et al. [68].

Several weighting strategies were proposed by Zhang et al. [68] to test the effect
of the different priorities on the selection of energy storage technologies. Each of the
three strategies: technological, economic, and environmental is assigned a weight.
Then, the weight of each strategy is equally distributed among its criteria.

First, they treated the main three strategies as equally important (balanced
strategy). Hence, the weight of each dimension is (1/3). Therefore the weights of
the criteria are

(0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.042, 0.167, 0.167, 0.333).

Second, they gave a high priority to the technological strategy (0.5) and (0.25)
for the other two strategies. Then the weights of the criteria are given as follows:

(0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.063, 0.125, 0.125, 0.25).

Third, they gave a high priority to the economic strategy (0.5) and (0.25) for the
other two strategies. Then the weights of the criteria are given as follows

(0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.25, 0.25, 0.25).

Fourth, they gave a high priority to the environmental strategy (0.5) and (0.25)
for the other two strategies. Then the weights of the criteria are given as follows:

(0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031, 0.125, 0.125, 0.5).

The proposed PF-MULTIMOORA is applied to solve this problem for the differ-
ently proposed weights. The value of θ = 2. The solution steps are demonstrated as
follows:
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Step 1. Form the Pythagorean fuzzy general decision matrix and determine the
weights of the criteria.

The general decision matrix is given in Table 2.
Step 2. Apply the ratio system technique using (16).

Ũ A
i = PFYWA

(
X̃i j | j = 1, 2, . . . ,m;w

)
.

Step 3. Apply the reference point technique.

(i) Form the weighted general decision matrix.
(ii) Define the best rating (1, 0, 0) and the worst rating (0, 1, 0).
(iii) Find the degree of similarity between the ratings of each alternative for the

evaluation criteria and the best rating.

μi = S+
i

( ∼
X i j , R̃

+
j

)
= 1 − d+

i

( ∼
X i j , R̃

+
j

)
,

where d+
i

( ∼
X i j , R̃

+
j

)
is the normalized Euclidean distance (36).

(iv) Find the degree of similarity between the ratings of each alternative for the
evaluation criteria and the worst rating.

υi = S−
i

( ∼
X i j , R̃

−
j

)
= 1 − d−

i

( ∼
X i j , R̃

−
j

)
,

where d−
i

( ∼
X i j , R̃

−
j

)
is the normalized Euclidean distance (37).

(v) Set the fuzzy distance from the reference point.

Ũ R
i = (μi , υi ).

Step 4. Apply the full multiplicative form approach using (17).

Ũ M
i = PFYWG

(
X̃i j | j = 1, 2, . . . ,m;w

)
.

Step 5. Calculate the overall fuzzy utility scores using (4).

Ũ T
i = PFW AY

(
Ũ A

i , Ũ
R

i , Ũ
M

i |ωA, ωR, ωM

)
,
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where ωA = ωR = ωM , andωA + ωR + ωM = 1.
Step 6. Rank the alternatives by the overall fuzzy utility scores using the score

function (18) and the accuracy function (19).
The results of the three techniques, the overall fuzzy scores, and the ranking are

summarized in Table 3.
The best ESTs obtained by the proposed PF-MULTIMOORA are NaNiCl, Ni–

Cd, and ZnBr. Meanwhile, the worst ESTs are Pb-acid, VRB, and SMES. The best
ESTs obtained by the IF-MULTIMOORA [68] is Molten salt, NaNiCl, and ZnBr.
The worst three technologies coincide in the two methods.

The problem is resolved using the normalized Hausdorff and the normalized
Hamming distances in the reference point approach to compare the ranking results.
The rankings obtained by the PF-MULTIMOORA using these distance measures
are given in Table 4. The results reveal that the ranking remains unchanged using
different normalized distance measures.

Table 3 Results using the normalized Euclidean distance in the reference point approach

AU RPU (Euclidean) MU Total Score Rank

Hydrogen (0.7189,
0.5219)

(0.2089, 0.7024) (0.4667,
0.7039)

(0.4879,
0.6802)

−0.2247 9

PHS (0.6773,
0.5314)

(0.2252, 0.6218) (0.4121,
0.7553)

(0.4698,
0.6878)

−0.2523 10

CAES (0.7291,
0.5866)

(0.2179, 0.6303) (0.4551,
0.7882)

(0.5048,
0.7265)

−0.2729 11

Flywheel (0.7880,
0.3809)

(0.1984, 0.7124) (0.6129,
0.6607)

(0.5582,
0.6250)

−0.0790 4

SMES (0.6351,
0.5884)

(0.1680, 0.7605) (0.3724,
0.8070)

(0.4164,
0.7570)

−0.3997 14

Super cap (0.6738,
0.3919)

(0.1977, 0.6978) (0.5459,
0.6377)

(0.4907,
0.6113)

−0.1329 6

Pb-acid (0.7573,
0.5816)

(0.2015, 0.7245) (0.4856,
0.8034)

(0.5064,
0.7408)

−0.2922 12

Ni–Cd (0.8339,
0.3646)

(0.2221, 0.6908) (0.6852,
0.6696)

(0.6034,
0.6116)

−0.0099 2

Li-ion (0.6695,
0.4192)

(0.1975, 0.7241) (0.5530,
0.6742)

(0.4934,
0.6396)

−0.1656 8

NaS (0.7039,
0.4217)

(0.1911, 0.7483) (0.5832,
0.6721)

(0.5146,
0.6470)

−0.1538 7

NaNiCl (0.8710,
0.3662)

(0.2282, 0.6812) (0.6970,
0.6740)

(0.6261,
0.6148)

0.01399 1

VRB (0.6418,
0.6096)

(0.1633, 0.7636) (0.4352,
0.7970)

(0.4399,
0.7472)

−0.3649 13

ZnBr (0.8135,
0.3711)

(0.2119, 0.6946) (0.6621,
0.6628)

(0.5866,
0.6152)

−0.0345 3

Molten salt (0.7887,
0.4279)

(0.2202, 0.6948) (0.5887,
0.6592)

(0.5575,
0.6323)

−0.0890 5
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The effect of the different strategies: technical, economic, and environmental
strategies, on the ranking of the ESTs is also studied. The three distance measures
are also used to rank the alternatives. The ranking using the environmental strategy
is the same as the balanced strategy utilizing the three distance measures. Regarding
the technical and economic strategies, the top-ranked three technologies and the
worst-ranked three technologies are the same for the three distance measures. Slight
differences are observed in the results from the balanced strategy in the moderately
performing technologies. From four to six alternatives exchange rankings, within
one or two places forward and backwards according to the used distance measure.

The ranking of the ESTs for the different strategies using the three distance
measures is quite consistent. In the economic and environmental strategies, the
ranking of the three distance measures is the same. In the technical strategy, only the
8th and 9th alternatives exchanged ranks. PHS is ranked the 8th andNaS is ranked the
9th using the normalized Euclidean and normalized Hamming distance. Meanwhile,
PHS is ranked the 9th and NaS is ranked the 8th using the normalized Hausdorff
distance. The results are summarized in Tables 5, 6, and 7.

The ranking of the proposed PF-MULTIMOORA and the IF-MULTIMOORA
[68] for the different strategies are given in Table 8.

The results of the three approaches in Table 3 are defuzzified as given in Table
9, and then the alternatives are ranked using the dominance theory. From Table 10,
the generally dominating rule is applied to rank the alternatives. The ranking is the

Table 5 Results using technical strategy

Technical

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hamming
distance

Score Rank Score Rank Score Rank

Hydrogen −0.2662 10 −0.2371 10 −0.2164 10

PHS −0.2649 9 −0.2258 8 −0.2126 8

CAES −0.3246 11 −0.2777 11 −0.2694 11

Flywheel −0.2107 5 −0.1889 5 −0.1716 5

SMES −0.4378 14 −0.4080 14 −0.3932 14

Super cap −0.2179 6 −0.1919 6 −0.1731 6

Pb-acid −0.3315 12 −0.3033 12 −0.2815 12

Ni–Cd −0.1250 2 −0.1074 2 −0.0869 2

Li-ion −0.2424 7 −0.2207 7 −0.2028 7

NaS −0.2469 8 −0.2308 9 −0.2133 9

NaNiCl −0.1148 1 −0.0982 1 −0.0774 1

VRB −0.4014 13 −0.3470 13 −0.3239 13

ZnBr −0.1535 3 −0.1337 3 −0.1137 3

Molten salt −0.1968 4 −0.1743 4 −0.1548 4
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Table 6 Results using economic strategy

Economic

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hausdorff
distance

Score Rank Score Rank Score Rank

Hydrogen −0.1146 9 −0.0887 9 −0.0704 9

PHS −0.1470 11 −0.1118 11 −0.0943 11

CAES −0.1357 10 −0.0998 10 −0.0824 10

Flywheel −0.0154 5 0.0052 5 0.0268 5

SMES −0.2878 14 −0.2455 14 −0.2251 14

Super cap −0.0609 6 −0.0360 6 −0.0124 6

Pb-acid −0.1610 12 −0.1321 12 −0.1066 12

Ni–Cd 0.0526 2 0.0677 2 0.0924 2

Li-ion −0.1048 8 −0.0799 8 −0.0574 8

NaS −0.0733 7 −0.0520 7 −0.0300 7

NaNiCl 0.0937 1 0.1060 1 0.1269 1

VRB −0.2519 13 −0.2013 13 −0.1733 13

ZnBr 0.0260 3 0.0439 3 0.0691 3

Molten salt 0.0120 4 0.0288 4 0.0468 4

Table 7 Results using environmental strategy

Environmental

Normalized Hamming
distance

Normalized Euclidean
distance

Normalized Hausdorff
distance

Score Rank Score Rank Score Rank

Hydrogen −0.3009 9 −0.2729 9 −0.2538 9

PHS −0.3537 10 −0.3081 10 −0.2970 10

CAES −0.3669 11 −0.3160 11 −0.3031 11

Flywheel −0.0066 4 0.0107 4 0.0283 4

SMES −0.4814 14 −0.4483 14 −0.4335 14

Super cap −0.1203 6 −0.0988 6 −0.0801 6

Pb-acid −0.3942 12 −0.3654 12 −0.3438 12

Ni–Cd 0.0465 2 0.0594 2 0.0788 2

Li-ion −0.1481 8 −0.1280 8 −0.1096 8

NaS −0.1388 7 −0.1204 7 −0.1024 7

NaNiCl 0.0667 1 0.0788 1 0.0980 1

VRB −0.4470 13 −0.3862 13 −0.3650 13

ZnBr 0.0281 3 0.0434 3 0.0636 3

Molten salt −0.0836 5 −0.0656 5 −0.0477 5
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Table 8 Ranking results for different strategies using PF-MULTIMOORAand IF-MULTIMOORA

Technology Balanced Technical Economic Environmental

PF IF PF IF PF IF PF IF

Hydrogen 9 6 10 6 9 5 9 9

PHS 10 9 8 5 11 9 10 11

CAES 11 8 11 4 10 7 11 10

Flywheel 4 5 5 10 5 6 4 5

SMES 14 14 14 14 14 14 14 14

Super cap 6 11 6 11 6 11 6 8

Pb-acid 12 12 12 9 12 10 12 12

Ni–Cd 2 4 2 2 2 4 2 4

Li-ion 8 10 7 8 8 12 8 7

NaS 7 7 9 12 7 8 7 6

NaNiCl 1 2 1 7 1 2 1 1

VRB 13 13 13 13 13 13 13 13

ZnBr 3 3 3 3 3 3 3 2

Molten salt 5 1 4 1 4 1 5 3

Table 9 The scores of the
three approaches using the
Euclidean distance

Technology AU score RPU score MU score

Hydrogen 0.2444 −0.4497 −0.2777

PHS 0.1763 −0.3360 −0.4007

CAES 0.1875 −0.3498 −0.4141

Flywheel 0.4759 −0.4682 −0.0609

SMES 0.0571 −0.5501 −0.5126

Super cap 0.3004 −0.4478 −0.1087

Pb-acid 0.2352 −0.4843 −0.4096

Ni–Cd 0.5625 −0.4284 −0.0211

Li-ion 0.2725 −0.4853 −0.1487

NaS 0.3176 −0.5234 −0.1116

NaNiCl 0.6245 −0.4120 0.0315

VRB 0.0403 −0.5564 −0.4458

ZnBr 0.5241 −0.4376 0

Molten salt 0.4389 −0.4343 −0.0880

same till the ninth place. A slight change is observed in the least ranked ESTs. PHS
and Pb-acid exchange the 10th and 12th place, and SMES and VRB exchange the
13th and 14th place.
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Table 10 The solution using the dominance theory

Rank AU ranking RPU ranking MU ranking Total rank

1 NaNiCl PHS NaNiCl NaNiCl

2 Ni–Cd CAES Ni–Cd Ni–Cd

3 ZnBr NaNiCl ZnBr ZnBr

4 Flywheel Ni–Cd Flywheel Flywheel

5 Molten salt Molten salt Molten salt Molten salt

6 NaS ZnBr Super cap Super cap

7 Super cap Super cap NaS NaS

8 Li-ion Hydrogen Li-ion Li-ion

9 Hydrogen Flywheel Hydrogen Hydrogen

10 Pb-acid Pb-acid PHS Pb-acid

11 CAES Li-ion Pb-acid PHS

12 PHS NaS CAES CAES

13 SMES SMES VRB SMES

14 VRB VRB SMES VRB

6 Conclusion

The MULTIMOORA method is one of the most practical MCDM methods that
has been used to solve complicated decision-making problems. In this chapter, a
new version of MULTIMOORA is developed to increase its efficiency and accuracy
for solving large scale MCDM applications in the Pythagorean fuzzy environment.
The proposed PF-MULTIMOORA exploits newly proposed aggregation operators
that guarantee fair treatment among the evaluation criteria. Therefore, the proposed
method avoids any biased treatment and false ranking that might occur in certain situ-
ations.When applying the reference point technique the distance is defined on a fuzzy
basis rather than a crisp basis. Hence, instead of utilizing one reference point, i.e., the
best rating, two reference points are utilized: the best and worst ratings. To avoid the
complications of the dominance theory, the aggregation approach is applied. So, the
aggregation approach is carried out using the fuzzy results of the three techniques.
Thus, defuzzification is employed only in the final step for ranking in which the accu-
racy function can be also utilized with the score function to make the comparison
more discriminatory.

Energy storage technologies were evaluated using the developed PF-
MULTIMOORA. Sodium-nickel chloride, nickel–cadmium, and zinc–brominewere
the top-ranked energy storage technologies. Meanwhile, lead-acid, vanadium redox,
and superconducting magnetic energy storage were the worst-ranked technologies.

The dominance theory was applied to rank the alternatives instead of aggregating
the three approaches. The result revealed that the alternatives till the ninth place
are unchanged. A slight change is observed in the least ranked ESTs. It was clear
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that ranking by aggregating the three approaches is more direct and simpler than the
dominance theory.

Besides the balanced weighting strategy, the effect of technical, economic, and
environmental strategies on the ranking of the ESTs was studied. Only slight
differences were observed in the results from the balanced strategy in the moder-
ately performing technologies, while the three top technologies and three worst
technologies remain unchanged.

In addition to the normalized Euclidean distance, another two distance measures
were examined in the reference point technique, the normalized Hausdorff and the
normalized Hamming distances. The ranking of the ESTs for the different weighting
strategies using the two distance measures was quite similar to the ranking using the
normalized Euclidean distance.

The contribution of the study can be summarized as follows. First, in the reference
point technique, two reference points are used instead of one. Hence, the distance
can be expressed using PFSs. Second, the study exploits aggregation operators in
the ratio system approach and the full multiplicative form approach that prevent
erroneous decisions.

The proposed PF-MULTIMOORA is restricted to using the theoretical reference
point to guarantee that the resulting fuzzy distance is a PFS. The Empirical reference
point cannot be utilized,which is a limitation in the proposedmethod. Future research
will focus on expressing fuzzy distances using both theoretical and empirical refer-
ence points. Also, reference point techniques namely, PF-TOPSIS and PF-VIKOR
will be implemented using fuzzy distances to study its performance compared with
using crisp distances.
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Extensions of the Pythagorean Fuzzy Sets



Application of Linear Programming
in Diet Problem Under Pythagorean
Fuzzy Environment

Sapan Kumar Das and Seyyed Ahmad Edalatpanah

1 Introduction

The main significance of LP problems applied in real-world application such as
management fields, engineering fields, economics sector, health sector, and trans-
portation sector, etc. For decision-makers, it always happens that an individual,
a group or a community faces the problem of maintaining good ratios among
some crucial parameters. Due to rapid application in real-world application, many
researchers showing interest and proposedmanymethods for solving the classical LP
problem. In classical LP problem, all the parameters and variables are considered on
exact values. However, when we applied in practical application, in that situation the
information is undetermined. Due to uncertainty in real-life problems, the manager
cannot always formulate the problem in a well-defined manner and exact. While
addressing some real-world problems, the parameters and variables are imprecise
and change rapidly due to several factors like labor, timing factor, innovation of new
technology, etc. Therefore, uncertainty is an inborn part in decision making prob-
lems. Due to some drawbacks in classical LP problems, Zadeh [1] pioneered the idea
of fuzzy set (F.S) in 1965, since then, researchers established a model of uncertainty
arising in practical decision making problems. Bellman and Zadeh [2] proposed the
definition of fuzzy decision. Since then many researchers have worked on fuzzy
mathematical programming [3–16]. Many authors have introduced fuzzy program-
ming approach to solve crisp linear programming problem [4, 6–8]. Some of them
reduced fuzzy multi-objective linear programming to crisp programming problem
using ranking functions [3, 10, 12]. Here, if the LP problem considers all the param-
eters were defined as fuzzy numbers. This type of problem is called fuzzy LP (FLP)
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problems. So many researchers have considered [9, 17–20] the FLP problem and
introduced several methods. Nassseri and Attari [10] introduced a method to solve
FLP problem by using crisp LP problem and solved by classical technique. In that
article, the authors introduced a new type of arithmetic for the symmetric trapezoidal
fuzzy number. Lai and Hwang [18] considered FLP problem having triangular fuzzy
numbers and they converted such problems to a multi-objective formulation to solve
it. Lotfi et al. [21] applied lexicography and fuzzy approximate approaches to tackle
linear programming with TFNs. Das et al. [3] proposed a new lexicographic method
for solving FLP problem having TFNs. Das et al. [4] considered the same problem
and solved it by using ranking function. Second, we deal with parameters taking
TrFNs. Liu [9] introduced a method to measure the satisfaction of the constraints in
linear programming with TrFNs. Maleki and Mashinchi [20] solved linear program-
ming with TrFNs by a probabilistic approach. Allahviranloo et al. [22] proposed a
ranking function-based approach for linear programming with TrFNs. Ebrahimnejad
[52] proposed a revised fuzzy simplex method for linear programming with TrFNs
and obtained some new results. Still, there exist a number of limitations for decision-
maker to take decision while addressing in real-world problems and it requires all the
parameters and variables are fuzzy numbers. Such types of problems are called as
fully fuzzy LP (FFLP) problem. Das et al. [3] introduced a lexicographic method for
solving fully fuzzy LP problem. In this article, the authors convert to multi-objective
LP problem by using lexicographic technique and solved it. Recently, Das et al.
[4] proposed a new method for solving fully fuzzy LP problem by using ranking
function. Kumar et al. [19] also proposed another method for solving FFLP problem
utilizing the ranking function.

After successful implication of LP problem under fuzzy environment, the math-
ematicians had found some drawbacks when applied in real-life problem. The main
drawbacks in fuzzy sets are the decision-makers consider only the membership func-
tion and ignore non-membership function.Here, the degree of non-membership func-
tion is just a compliment of the degree ofmembership function. Therefore, a newnon-
standard fuzzy subset is introduced by Yager [23] and called as Pythagorean fuzzy
sets (PFS). Somany researchers, [23–37] consider the PFNs for interval numbers and
solved it. The main dominance of PFS comparing to fuzzy set is that the square sum
of membership degree and non-membership degree is less than or equal to 1. There
are various methods of PFS to solve decision making problem. Garg [38] proposed
an interval-valued PF sets and using score function to solve it. Garg [39] considers
PF systems with the help of aggregation Einstein operations and its application in
decision making.

Motivation: Based on the above study on LP problem, there are no methods
for solving LP problem under PF environment. Therefore, a deep study is required
to establish a new method for Pythagorean fuzzy LP problem. To the best of our
knowledge, there are no optimization models in literature for LP under Pythagorean
fuzzy environment. This complete scenario has motivated us to come up with a new
method for solving LP with the Pythagorean fuzzy range which are formulated and
solved with the use of the proposed algorithm for the first time. Pythagorean set
theory is documented technique to manage uncertainty in the optimization problem.
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The main contributions of this paper are as follows:

1. New method helps to resolve a new set of problem with the use of PF number.
2. We characterize the LP issue under typical PF environmental factors and suggest

an effective solution to find the relating crisp esteemed.
3. Inside the literature of PF set, we tend to present a scoring approach related to

the proposed technique.

1.1 The remainder of the paper is orchestrated in an accompanying way.

Sec on 1
• Introduc on

Sec on 2
• Preliminaries

Sec on 3.

• Proposed Method

Sec on 4
• Numerical Examples

Sec on 5
• Result Analysis 

Sec on 6
• Conclusion

2 Preliminaries

In this section, we present some definitions and key concepts that are very useful to
the awareness of this paper. Most of all are well defined by [40, 41] and also used by
many researchers.

Definition 1 [41] Let Z be a Pythagorean fuzzy (PF) sets defined on a universal set
S is given by:

Z = {〈s, σZ (s),ηZ (s)〉|s ∈ S }, (1)

where the function σZ (s) : Z → [0, 1] and ηZ (s) : Z → [0, 1] are the degree of
both membership function and non-membership function. Also for every s ∈ S, it
holds that
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(σZ (s))2 + (ηZ (s))2 ≤ 1 (2)

Definition 2 [42] Let ũ Z
1 = (σ Z

r , ηZ
t ) and ṽZ1 = (σ Z

b , ηZ
c ) be two Pythagorean fuzzy

numbers. Then the arithmetic operations are as follows:

(i) ũ Z
1 ⊕ ṽZ1 = (

√
(σ Z

r )2 + (σ Z
b )2 − (σ Z

r )2 · (σ Z
b )2, (ηZ

t ) · (ηZ
c )

(ii) ũ Z
1 ⊗ ṽZ1 = (σ Z

r · σ Z
b ,

√
(ηZ

t )2 + (ηZ
c )2 − (ηZ

t )2 · (ηZ
c )2)

(iii) h · ũ Z
1 =

(√
1 − (1 − σ Z

r )h, (ηZ
t )h

)
, where h is a scalar product and non-

negative, i.e., h > 0.

(iv) (ũ Z
1 )h =

(
(σ Z

r )h,
√
1 − (1 − (ηZ

t )h
)
, where h is a scalar product and non-

negative, i.e., h > 0.

Definition 3 [41] Let ũ Z
1 = (σ Z

r , ηZ
t ) and ṽZ1 = (σ Z

b , ηZ
c ) be two Pythagorean fuzzy

numbers. Then we define the score and accuracy functions are as follows:

(i) Score function: Sr(ũ Z
1 ) = 1

2 (1 − (σ Z
r )2 − (ηZ

t )2)

(ii) Accuracy function: Acr(ũ Z
1 ) = (σ Z

r )2 + (ηZ
t )2)

Based on the score and accuracy function of PFNs, a comparison method for two
PFNs is defined as follows:

Situation 1: ũ Z
1 > ṽZ1 iff Sr(ũ Z

1 ) > Sr(ṽZ1 )

Situation 2: ũ Z
1 < ṽZ1 iff Sr(ũ Z

1 ) < Sr(ṽZ1 )

Situation 3: if Sr(ũ Z
1 ) = Sr(ṽZ1 ) and Acr(ũ Z

1 ) < Acr(ṽZ1 ) then ũ Z
1 < ṽZ1

Situation 4: if Sr(ũ Z
1 ) = Sr(ṽZ1 ) and Acr(ũ Z

1 ) > Acr(ṽZ1 ) then ũ Z
1 > ṽZ1

Situation 5: if Sr(ũ Z
1 ) = Sr(ṽZ1 ) and Acr(ũ Z

1 ) = Acr(ṽZ1 ) then ũ Z
1 = ṽZ1

Definition 4 [23] Let ũ Z
1 = (σ Z

r , ηZ
t ) and ṽZ1 = (σ Z

b , ηZ
c ) be two Pythagorean fuzzy

numbers, a nature quasi-ordering on the PF numbers is defined as follows: ũ Z
1 ≥ ṽZ1

if and only if σ Z
r ≥ σ Z

b and ηZ
t ≤ ηZ

c .

3 Proposed Method

Let us consider the standard form of linear programming (LP) problem with m
constraints and n variables having all coefficients and resources are represented crisp
numbers. In the LP problem, the objective functions are to either maximize the profit
or minimize the cost of product from the source of destinations.

Here, we present the crisp LP model as follows:

maximize (minimize) (ct y)

s. t

Dy ≤ h,
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y ≥ 0. (3)

After all D = [
di j

]
m×n is the coefficient matrix, h = [h1, h2, h3, . . . , hm]t is the

available resource vector, c = [c1, c2, c3, . . . , cn]t is the target coefficient and y is
the selection variable vector.

Furthermore, if we replaced the parameter ct from Eq. (3) into PF parameters,
i.e., (ct )Z , then the new LP model obtained is called as Type-1 Pythagorean fuzzy
LP (T1PFLP) problem, and we represent the model as follows:

maximize (minimize) ((ct )Z y)

s. t

Dy ≤ h,

y ≥ 0. (4)

After all D = [
di j

]
m×n is the coefficient matrix, h = [h1, h2, h3, . . . , hm]t is the

available resource vector, cZ = [
cZ1 , cZ2 , cZ3 , . . . , cZn

]t
is the target coefficient and y

is the selection variable vector.
Again, if the decision-maker will not be sure about the unit of coefficient matrix

and resource vector, then we replace the parameters ofD and h into PF numbers, i.e.,
(D)Z and (h)Z , then the new LP model obtained is called as Type-2 Pythagorean
fuzzy LP (T2PFLP) problem, and we represent the model as follows:

maximize (minimize) ((ct )y)

s. t

(D)Z y ≤ (h)Z ,

y ≥ 0. (5)

After all (D)Z = [
(di j )Z

]
m×n is the coefficient matrix, (h)Z =[

hZ
1 , hZ

2 , hZ
3 , . . . , hZ

m

]t
is the available resource vector, cZ = [c1, c2, c3, . . . , cn]t

is the target coefficient and y is the selection variable vector.
Finally, if the decision maker will not be sure about the coefficient matrix, param-

eters and resource vectors, we replace the parameter (ct ), D and h into PF numbers,
i.e., (ct )Z , (D)Z and (h)Z , then the new LP model obtained is called as Type-3
Pythagorean fuzzy LP (T3PFLP) problem, and we represent the model as follows:

maximize (minimize) ((ct )Z y)

s. t

(D)Z y ≤ (h)Z ,

y ≥ 0. (6)
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After all (D)Z = [
(di j )Z

]
m×n is the coefficient matrix, (h)Z =[

hZ
1 , hZ

2 , hZ
3 , . . . , hZ

m

]t
is the available resource vector, cZ = [

cZ1 , cZ2 , cZ3 , . . . , cZn
]t

is the target coefficient and y is the selection variable vector.
From the above three type of problem, i.e., Type-1, Type-2, and Type-3 PFLP

problem,wepropose a singlemain algorithm to solve all three types ofPFLPproblem.
Now the steps are as follows:

Step 1: Firstly, we choose any of the models to solve the PFLP problem.

Step 2.1: If we consider the Type-1 PF numbers, then we can transform
the model Eq. (3) into the model of PFLP of Eq. (4).

Step 2.1: If we consider the Type-2 PF numbers, then we can transform
the model Eq. (3) into model Eq. (5).

Step 2.2: If we consider the Type-3 PF numbers, then we can transform
the model Eq. (3) into model Eq. (6).

Step 2: After choosing the model in Step 1, we utilizing the score function of each
PF numbers.

Step 3: Replace all PFNs cost by its score function to obtain crisp LP problem.
Step 4: From Step 3, we use LINGO to take care of the fresh LP issue and get the

ideal arrangement.

4 Numerical Example

In this section,we solved three types of examples to illustrate the potential application
of the proposed method.

To best of our mind, still there is no direct method to solve PFNLP problem, there-
fore, in this section we consider a newmethod to solve PFNLP problem and compare
it with fuzzy LP problem. The main drawback in fuzzy numbers is the manager only
considers the membership degree; however, the PF numbers are considering both
membership and non-membership degree.

Example 1 (T1PFN model) Consider the following PFLP problem:

max = (0.4, 0.7)x1 + (0.5, 0.4)x2

Subject to

5x1 + 3x2 ≤ 12
2x1 + 4x2 ≤ 7
x1, x2 ≥ 0

Now the problem is Type-1 PF number. As per our algorithm, we utilizing our
step-2, new score function, the issue of T1PFN LP problem is converting into crisp
LP problem and the problem will be as follows:
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max = 0.335x1 + 0.545x2

Subject to

5x1 + 3x2 ≤ 12
2x1 + 4x2 ≤ 7
x1, x2 ≥ 0

Here, we can solve the crisp LP problem by using LINGO 18.0 we get the optimal
solution.

The solution is: x1 = 1.98, x2 = 0.78 and Z = 1.07. Let us see in the following
comparison table with existing method [4] and its very crystal clear that our method
is always maximizing the result as the decision maker wanted (Table 1).

Example 2: (T2PFN) Consider the following type 2 PFNs of LP problems, where
the objective functions are crisp, but in constraints part (except variables) are PFNs.
We also remarked that the PFNs represent both membership and non-membership
function, respectively. Additionally, they also satisfy all the conditions of PF, i.e.,
0 ≤ σ Z ≤ 1, 0 ≤ ηZ ≤ 1, 0 ≤ (σ Z )2 + (ηZ )2 ≤ 1.

max = 0.0335x1 + 0.0545x2

Subject to

(0.4, 0.7)x1 + (0.7, 0.3)x2 ≤ (0.7, 0.1)
(0.3, 0.8)x1 + (0.1, 0.7)x2 ≤ (0.8, 0.1)

x1, x2 ≥ 0

Now the problem is T2PFN. As per our algorithm, we utilizing our step-2, new
core function, the issue of T2PFN LP problem is converting into crisp LP problem
and the problem will be as follows:

max = 0.0335x1 + 0.0545x2

Subject to

0.335x1 + 0.7x2 ≤ 0.74
0.775x1 + 0.74x2 ≤ 0.815

x1, x2 ≥ 0

Table 1 Comparison with
classical fuzzy LP

Solution Proposed method Fuzzy LP [4]

Optimal value x1 = 1.98, x2 = 0.78 x1 = 1.85, x2 = 0.52

Optimal solution Z = 1.07 Z = 0.98
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Table 2 Comparison with
classical fuzzy LP

Solution Proposed method Fuzzy LP [4]

Optimal value x1 = 2.209, x2 = 0 x1 = 2.209, x2 = 0

Optimal solution Z = 0.74 Z = 0.74

Here, we can solve the crisp LP problem by using LINGO 18.0 we get the optimal
solution.

The solution is: x1 = 2.209, x2 = 2.1229 and Z = 0.74. Let us see in the
following comparison table with existing method [4] and its very crystal clear that
our method is always maximizing the result as the decision maker wanted (Table 2).

4.1 Diet Problem (T3PFN)

Currently, the whole world is suffering from pandemic Covid-19. It is very chal-
lenging for our scientists and doctors, to prevent this virus. They have suggested
people to improve human immunity. To improve immunity, diet chat is very impor-
tant to us. Diet chart not only improves our immunity but also helps many factors in
our day-to-day basis. Therefore, we solved a real-life diet chart problem.

Below there is a diet chart that gives protein and carbohydrate content for 02 food
items with two products like milk, roasted chicken. The Manager wants a diet with
minimumcost. Likewise during the entire process, themanager falters in expectations
of parameter values due to some uncontrollable factors. The diet chart is as follows:

Nutrition Milk Roasted chicken Minimum nutrition required

Protein (0.4, 0.7) (0.7, 0.3) (0.7, 0.1)

Carbohydrate (0.3, 0.8) (0.1, 0.7) (0.8, 0.1)

Minimum product required (0.4, 0.7) (0.5, 0.4)

Here, we consider the objective functions, constraints, and cost values are PFNs.
Now the problem is T3PFN. As per our algorithm, we utilizing our step-2, new

core function, the issue of T3PFN LP problem is converting into crisp LP problem
and the problem will be as follows:

min = (0.4, 0.7)x1 + (0.5, 0.4)x2

Subject to,

(0.4, 0.7)x1 + (0.7, 0.3)x2 ≤ (0.7, 0.1)
(0.3, 0.8)x1 + (0.1, 0.7)x2 ≤ (0.8, 0.1)

x1, x2 ≥ 0
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By utilizing our step-2, new ranking function, the issue of the PYFLP problem is
converting into a crisp LP problem and the problem will be as follows:

min = 0.335x1 + 0.545x2

Subject to,

0.335x1 + 0.7x2 ≤ 0.74
0.775x1 + 0.74x2 ≤ 0.815

x1, x2 ≥ 0

Here, we can solve the crisp LP problem by using LINGO 18.0 we get the optimal
solution.

The solution is: x1 = 0, x2 = 0.2 and Z = 0.109.

5 Result Analysis

It is seen that fuzzy linear programming does not ensure DM to give exact solu-
tions. Because the fuzzy LP problems always concentrate the membership function
and ignorance the non-membership function. Therefore, we proposed a solution
technique to solve PFLP problem, which is considered both membership and non-
membership functions. From the above three types of examples, we observed that
PFLP is better than the fuzzy LP problem.

1. Our proposed model results are better than existing result [4]. As pers Table 1,
the objective function is 1.07 and the existing result [4] is 0.98. As the problem
is maximization taken by decision makers and our proposed objective solution
results are also maximized.

2. In Example 1, our Type-2 of PFLP problem, we can see in Table 2 that our
proposed results are equal to existing results, i.e., 0.74.

3. In ourExample 2,we applied inDiet problemand solved it. Since inwriting there
is no immediate strategy for taking care of PFLP issue. In this way, we contrast
our proposed outcome and fuzzy LP issue [4]. The consistent examination for
all over three sorts of models, talked about models appears in the table.

4. In this table, we can see that the ideal estimation of PFLP issue is either
equivalent or higher than the fluffy LP issue.

5. After above conversation, wemay induce that our proposed technique is another
approach to deal with the vulnerability in the fresh condition.
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6 Conclusion

In this article, we consider a Pythagorean fuzzy LP and solved it. We proposed
new arithmetic operations on Pythagorean fuzzy numbers and a score func-
tion is employed to get optimum solutions. We discussed three types of models
of Pythagorean fuzzy LP problems. We use score function for converting into
Pythagorean fuzzy numbers to its equivalent crisp numbers. After using this score
function we solve the problem by using any standard method. We also illustrated
solving a simple diet optimization problem with Pythagorean fuzzy linear program-
ming problem. By comparing our proposed model with other existing fuzzy models,
we concluded that our proposed model is simpler, efficient, and achieves better
results than other researchers. In future, the proposed strategy can be applied in
real-life applications like transportation problem, shortest path problem, assignment
problem, job scheduling, etc. Additionally, our method can also extend to solve PF
linear fractional programming problem.
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Maclaurin Symmetric Mean-Based
Archimedean Aggregation Operators
for Aggregating Hesitant Pythagorean
Fuzzy Elements and Their Applications
to Multicriteria Decision Making

Arun Sarkar and Animesh Biswas

1 Introduction

In real life decision making environments, multicriteria decision making (MCDM)
processes play important roles to determine most suitable one from a limited number
of alternatives. In this process, the alternatives are ranked by integrating evaluation
information provided by the decision makers (DMs). In the process of evaluation of
the alternatives with respect to criteria, DMs often utilize real numbers to express
their judgment values. However, to capture uncertainties in MCDM problems, DMs
gradually started to use fuzzy numbers for expressing their opinion after the initiation
of fuzzy set [1]. Several methods for solving MCDM problems have already been
developed [2–5].

Apart from wide advantages of using fuzzy sets, DMs sometimes face difficulties
in assigning decision values in the form of fuzzy numbers due to increasing complex-
ities and uncertainties in modern decision making processes. To overcome this situ-
ation, Atanassov [6] introduced the concept of intuitionistic fuzzy (IF) set (IFS)
by incorporating non-membership grade with membership value. Many researchers
studied decision making problems, extensively, in IF environments [7–12], after its
inception.

Sometimes, the situation might go beyond the scope of IFSs, when the most perti-
nent feature of IFSs is violated, i.e., the sum of membership and non-membership
grades exceeds 1. To tackle this issue, Yager [13, 14] introduced Pythagorean fuzzy
(PF) set (PFS) by extending the concept of IFS. In PFS, the square sum of member-
ship and non-membership grades does not exceed 1. After the introduction of PFS,
theoretical as well as practical advancement on this subject area has been rapidly
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progressed. For instance, Zhang and Xu [15] introduced elaborated mathematical
notations for PFS, and proposed PF number (PFN). In aggregating PFNs, aggrega-
tion operators (AOs) are frequently used. Yager [14] developed some novel fuzzy
weighted averaging (WA) and weighted geometric (WG) operators using PFSs. Peng
and Yuan [16] used generalized mean [17] operator in PF environment to define
generalized weighted AOs. For developing AOs, the operations are defined based on
several t-conorms and t-norms. As an alternative presentation of algebraic t-conorms
and t-norms, Garg [18] utilized the concept of Einstein operations and generalized
mean to present Einstein operation-based geometric AOs under PF environment,
viz., WG, Einstein ordered WG, generalized Einstein WG, and generalized Einstein
ordered WG operators. Various properties and applications in MCDM problems
using those operators are also discussed. For considering the relationship among the
fused arguments, Wei and Lu [19] utilized power AOs to develop some PF power
AOs, such as PF power averaging, WA, ordered WA, hybrid averaging operators,
and correspondingly their geometric variants. Apart from those developed opera-
tors, many researchers presented different AOs [20–28] under PF contexts. Based on
Einstein operations, Rahman et al. [29] introduced PF Einstein WG operator. Garg
[30] further extendedEinstein operations to developweighted, orderedweighted, and
hybrid geometric interactive AOs. Zeng et al. [31] presented PF orderedWA distance
operator. Based on several concepts of aggregation operations,Garg, togetherwith his
co-researchers, explored different AOs [32–36] to enrich the area of PF information
processing.

Sometimes, DMs prefer to express their decision values toward the alternatives
with respect to some criteria in terms of a set of possible membership values, rather
than to express decision values in terms of a single value. From that viewpoint, Torra
andNarukawa [37] andTorra [38] introduced an effective concept, viz., hesitant fuzzy
(HF) sets (HFSs), by considering a set of possible membership values within [0, 1].
Extending the concept of HFS in PF context, Liang and Xu [39] proposed hesitant
Pythagorean fuzzy (HPF) sets (HPFSs), and defined operations on HPF elements
(HPFEs). In HPFS, the degrees of membership and non-membership corresponding
to an element to a given set are represented by two sets of numbers satisfying the
condition that the square sumof the greatestmembership and non-membership values
is less than or equal to 1. InHPF environments, Lu et al. [40] proposedHPFHamacher
WA (HPFHWA), HPF Hamacher ordered WA (HPFHOWA) operators, and their
corresponding geometric operators. Garg [41] developed HPFWA andWG, ordered
WA and WG, and hybrid WA and WG operators. Under HPF context, Oztaysi et al.
[42] presented a multi-expert and multicriteria HPF decision analysis to select best
fit water treatment technology.

Further, it is to be noted here that the aboveAOs are almost based on the hypothesis
that input arguments are independent. In some real-life situations, there may be inter-
actions among different attributes. Considering this aspect, Maclaurin symmetric
mean (MSM) [43] was proposed by Maclaurin. The main advantage of this opera-
tion is that it can capture interrelationship among several input arguments than the
Bonferroni mean (BM), which can only consider interrelationship between only two
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arguments. Wei and Lu [44] established Maclaurin symmetric mean (MSM) oper-
ator to PF environment and proposed PF MSM (PFMSM) and PF weighted MSM
(PFWMSM) operators. Garg [45, 46] extended MSM operator to HPF environment
and developed HPF MSM (HPFMSM) operator for aggregating HPF information.

It is well known that Archimedean t-conorms and t-norms (At-CN&t-Ns) [47,
48] possess greater capability of generating various aggregation operators. Recently,
Sarkar andBiswas [49] introducedAt-CN&t-Noperations onPythagoreanHF (PHF)
sets and defined At-CN&t-N-based PHFWA and WG AOs. Inspired by the work of
Sarkar andBiswas [49], this chapter proposesAt-CN&t-N-basedoperational rules on
HPFSs and investigates their properties. Utilizing these operational laws and taking
the advantage of MSM operator, At-CN&t-N-based HPF MSM (AHPFMSM) and
weighted MSM (AHPFWMSM) AOs are proposed for dealing with the aggregation
of HPFEs. A methodology has been developed for solving MCDM problems with
HPF information based on the proposed operators to capture correlation between
input arguments provided by the DMs.

The rest of this chapter is organized as follows: in Sect. 2, a brief review on basic
concepts of PFSs, HPFSs, MSM operator, and At-CN&t-Ns are presented. Section 3
provides some operations of HPFEs based on At-CN&t-Ns. Utilizing those oper-
ations, MSM-based AOs, viz., AHPFMSM and AHPFWMSM operators are intro-
duced and their desirable properties are investigated. Several forms of operators, viz.,
HPF weighted MSM (HPFWMSM), HPF Einstein weighted MSM (HPFEWMSM),
HPF Hamacher weighted MSM (HPFHWMSM), and HPF Frank weighted MSM
(HPFFWMSM) operators, which can be derived from the developed operators, are
also presented in this section. In Sect. 4, an MCDM method based on the proposed
HPFHWMSM and HPFFWMSM operators is developed. An example to illustrate
the effectiveness of the proposedMCDMmethod is presented in Sect. 5. Comparison
with the existing MCDM methods [44, 45] has been described in Sect. 6. Finally,
Sect. 7 discusses the conclusions and scope for future studies.

2 Preliminaries

2.1 PFS

The basic concepts of PFSs [13, 14] and their properties, which are required to
develop the proposed method, are briefly reviewed in this section.

Definition 1 ([13, 14]) Let X be a universe of discourse. A PFS P in X is given by

P = {< x, μp(x), νp(x)|x ∈ X >
}
, (1)
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where μp : X → [0, 1] denotes the degree of membership and νp : X → [0, 1]
denotes the degree of non-membership of the element x ∈ X to the set P , with the
condition that 0 ≤ (μp(x)

)2 + (νp(x)
)2 ≤ 1.

The degree of indeterminacy of the PFS P is given by πp(x) =√
1 − (μp(x)

)2 − (νp(x)
)2
. For convenience, Zhang and Xu [15] called

(
μp(x), νp(x)

)
as a PFN and denoted it by p = (μ, ν).

Definition 2 ([15]) For any PFN p = (μ, ν), the score function S(p) of p is defined
as

S(p) = (μ)2 − (ν)2,

where S(p) ∈ [−1, 1].
The accuracy function A(p) of p is defined as

A(p) = (μ)2 + (ν)2.

Definition 3 ([15]) Let p = (μ, ν), p1 = (μ1, ν1) and p2 = (μ2, ν2) be three PFNs,
and λ > 0. Then the operations on PFNs are defined as follows:

(1) p1 ⊕ p2 =
(√

μ1
2 + μ2

2 − μ1
2μ2

2, ν1ν2

)
,

(2) p1 ⊗ p2 =
(
μ1μ2,

√
ν12 + ν22 − ν12ν22

)
,

(3) λp =
(√

1 − (1 − μ2
)λ

, νλ

)
,

(4) pλ =
(

μλ,

√
1 − (1 − ν2

)λ
)
.

2.2 HPFSs

Extending the notion of PFSs by simultaneously considering several membership
and non-membership degrees for a PFN, the concept of HPFS [39, 45] is developed.
It is expressed by the following definition.

Definition 4 ([39, 45]) Let X be a fixed set. An HPFS, K̃ on X is described as

K̃ =
{
〈x, h̃K (x),

∼
g(x)〉|x ∈ X

}
, (2)

where h̃K (x) : X → [0, 1] and
∼
gK (x) : X → [0, 1], respectively, denote two sets

of possible membership and non-membership values of the element x ∈ X to the set
K̃ satisfying the condition that 0 ≤ (ξ+)2 + (η+)2 ≤ 1, where ξ+ = max

ξ∈h̃K (x)
{ξ}, and
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η+ = max
η∈∼

gK (x)

{η} for all x ∈ X . For convenience, the pair
(
h̃K (x),

∼
gK (x)

)
is called

an HPFE and is denoted by
∼
κ=

(
h̃,

∼
g
)
.

Definition 5 ([39, 45]) Let
∼
κ=

(
h̃,

∼
g
)
be an HPFE. Then the score function of

∼
κ is

defined as

S
(∼
κ
)

=
⎛

⎜
⎝

1
∣∣∣h̃
∣∣∣

∑

ξ∈h̃
(
ξ 2
)− 1

∣∣∣
∼
g
∣∣∣

∑

η∈∼
g

(
η2
)
⎞

⎟
⎠, (3)

and the accuracy function of
∼
κ is defined as

A
(∼
κ
)

=
⎛

⎜
⎝

1
∣∣∣h̃
∣∣∣

∑

ξ∈h̃
(
ξ 2)+ 1

∣∣∣
∼
g
∣∣∣

∑

η∈∼
g

(
η2)
⎞

⎟
⎠, (4)

where
∣∣∣h̃
∣∣∣ and

∣∣∣
∼
g
∣∣∣ denote the number of elements in h̃ and

∼
g, respectively.

Definition 6 ([39, 45]) Let
∼
κ1 and

∼
κ2 be any two HPFEs, then

(i) if S
(∼
κ1

)
> S

(∼
κ2

)
then

∼
κ1 >

∼
κ2,

(ii) if S
(∼
κ1

)
= S

(∼
κ2

)
then

if A
(∼
κ1

)
> A

(∼
κ2

)
then

∼
κ1 >

∼
κ2; if A

(∼
κ1

)
= A

(∼
κ2

)
then

∼
κ1 = ∼

κ2.

To establish the interrelationship among the arguments to be aggregated,
Maclaurin [43] proposed MSM operator which is presented as follows.

2.3 MSM Operator

Definition 7 ([43]) Let a j ≥ 0 ( j = 1, 2, . . . , n) be a set of n real numbers . If

MSM (r)(a1, a2, . . . , an) =
(∑

1≤i1<i2<...<ir≤n

∏r
j=1ai j

Cn
r

) 1
r

, (5)

then MSM (r) is called theMSM operator, where r = 1, 2, . . . , n; and (i1, i2, . . . , ir )
is a permutation of (1, 2, . . . , n), taking r number of ordered elements at a time
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maintaining the relationship 1 ≤ i1 < i2 < . . . < ir ≤ n, and Cn
r = n!

r !(n−r)!
indicates the binomial coefficient.

The MSM operator has the following characteristics [43]:

(i) If a ≥ 0 then MSM (r)(a, a, . . . , a) = a. (Idempotency)
(ii) MSM (r)(a1, a2, . . . , an) ≤ MSM (r)(b1, b2, . . . , bn), if ai ≤ bi for all i =

1, 2, . . . , n. (Monotonicity)
(iii) min

i
{ai } ≤ MSM (r)(a1, a2, . . . , an) ≤ max

i
{ai }. (Boundedness)

2.4 At-CN&t-Ns

Definition 8 ([47, 48]) An Archimedean t-conorm is generated by an increasing
generator, g such that

U (a, b) = g(−1)(g(a) + g(b))for all a, b ∈ [0, 1], (6)

and an Archimedean t-norm is constructed by a decreasing generator, f such that

I (a, b) = f (−1)( f (a) + f (b))with g(t) = f (1 − t)for all a, b, t ∈ [0, 1]. (7)

Considering some specific forms of the decreasing generator, f , Klement [50]
proposed some t-conorms and t-norms as presented in Table 1.

Now, if τ = 1 is considered, then Hamacher t-conorms and t-norms are reduced
to algebraic t-conorm and t-norm, respectively. Also if τ = 2 is considered, then

Table 1 t-conorms and t-norms generating from decreasing generator f

Generating
function

Classes of
t-conorms and
t-norms

t-conorms t-norms

f (t) = −logt Algebraic U A(a, b) = a + b − ab I A(a, b) = ab

f (t) =
−log

( 2−t
t

)
Einstein UE (a, b) = a+b

1+ab I E (a, b) = ab
1+(1−a)(1−b)

f (t) =
log
(

τ+(1−τ)t
t

)
,

τ > 0

Hamacher UH
τ (a, b) = a+b−ab−(1−τ)ab

1−(1−τ)ab I Hτ (a, b) =
ab

τ+(1−τ)(a+b−ab)

f (t) =
log
(

ρ−1
ρt−1

)
,

ρ > 1

Frank UF
ρ (a, b) = 1 −

logρ

(
1 +

(
ρ1−a−1

)(
ρ1−b−1

)

ρ−1

) I Fρ (a, b) =
logρ

(
1 + (ρa−1)

(
ρb−1

)

ρ−1

)
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Hamacher t-conorms and t-norms take the form of Einstein t-conorm and t-norm,
respectively.

3 Development of At-CN&t-N-Based MSM Operators
for HPFEs

To develop AOs more flexible, At-CN&t-Ns are used in HPF environment. The
advantage of introducing At-CN&t-Ns into HPFS is that it can produce various
operations between HPFEs to make operational rules for AOs suppler.

It is also important to consider interactive argument among the criteria in MCDM
contexts. To resolve this issue, MSM operation is merged with At-CN&t-Ns to
develop several numbers of AOs by considering interactive relationships among the
input arguments under HPF situation. The proposed AOs would be more flexible in
the sense that it is applicable in such situations when there is no interaction among
arguments, interaction between two arguments and also interaction among multiple
arguments.

Now, based on At-CN&t-Ns and MSM, AOs are developed, and their properties
are studied. Various operators which can be derived from those operators are also
discussed, subsequently.

Definition 9 Let
∼
κ i =

{
h̃i ,

∼
gi

}
(i = 1, 2) and

∼
κ=

{
h̃,

∼
g
}
be any three HPFEs. Now

some new operational laws for HPFEs based on At-CN&t-Ns by using Eqs. (6) and
(7) are defined as follows:

(1) k̃1 ⊕A k̃2 =
(

U
ξ1∈h̃1,ξ2∈h̃2

{√

U
(
ξ21 , ξ22

)}

,Uη1∈g̃1,η2∈g̃2

{√

I
(
η21, η

2
2

)})

=
⎛

⎜
⎝Uξ1∈h̃1,

ξ2∈h̃2

{√

g−1
(
g(γ 2

1 ) + g(γ 2
2 )
)}

,Uη1∈g̃1,
η2∈g̃2

{√

f −1
(
f (η21) + f ((η22))

)}
⎞

⎟
⎠,

(2) k̃1 ⊕A k̃2 =
(

U
ξ1∈h̃1,ξ2∈h̃2

{√

I
(
ξ21 , ξ22

)}

,Uη1∈g̃1,η2∈g̃2

{√

U
(
η21, η

2
2

)})

=
⎛

⎜
⎝Uξ1∈h̃1,

ξ2∈h̃2

{√

f −1
(
f (ξ21 ) + f (ξ22 )

)}

,Uη1∈g̃1,
η2∈g̃2

{√

g−1
(
g(η21) + g((η22))

)}
⎞

⎟
⎠,

(3) λ
∼
κ=

(⋃
ξ∈h̃
{√

g−1
(
λg
(
ξ 2
))}

,
⋃

η∈∼
g

{√
f −1
(
λ f
(
η2
))})

, λ > 0,

(4)
∼
κ

λ =
(⋃

ξ∈h̃
{√

f −1
(
λ f
(
ξ 2
))}

,
⋃

η∈∼
g

{√
g−1
(
λg
(
η2
))})

, λ > 0.

Using the above definition and by extending the concept of MSM operator
in HPF environment to aggregate all the possible arguments and to capture the
interrelationship between them, the AHPFMSM operator is developed as follows.
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Definition 10 Let
∼
κ i =

(
h̃i ,

∼
gi

)
(i = 1, 2, . . . , n) be a collection of HPFEs and

r = 1, 2, . . . , n be any number. If

AH PFMSM (r)
(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
=
⎛

⎝
⊕A1≤i1<i2<...<ir≤n⊗A

r
j=1

∼
κ i j

Cn
r

⎞

⎠

1
r

, (8)

then AH PFMSM (r)
(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
is called AHPFMSM operator.

Theorem 1 Let
∼
κ i =

(
h̃i ,

∼
gi

)
(i = 1, 2, . . . , n) be a set of HPFEs, and r =

1, 2, . . . , n be any number. Then the aggregated value using AHPFMSM is also an
HPFE and

AH PFMSM(r)(κ̃1, κ̃2, . . . , κ̃n
) =

⎛

⎝
⊕A1≤i1<i2<...<ir≤n ⊗r

A j=1 κ̃i j
Cn
r

⎞

⎠

1
r

⎛

⎜⎜⎜
⎝

U
ξi j

∈h̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝ f −1

⎛

⎜
⎝
1

r
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<i2<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

U
ηi j

∈g̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝g−1

⎛

⎜
⎝
1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<i2<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

(
η2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

.

(9)

Proof First, applying mathematical induction, it is necessary to prove that

⊗A
r
j=1

∼
κ i j

=
⎛

⎝
⋃

ξi j
∈h̃i j

⎧
⎨

⎩

(
f −1

(∑r
j=1

f

(
ξi j

2
))) 1

2

⎫
⎬

⎭
,
⋃

ηi j
∈∼
g i j

⎧
⎨

⎩

(
g−1

(∑r
j=1

g
(

ηi j
2
))) 1

2

⎫
⎬

⎭

⎞

⎠. (10)

Now, for

r = 2,⊗2
Aj=1κ̃i j =

(
h̃i1 , g̃i1

)
⊗A

(
h̃i2 , g̃i2

)

=

⎛

⎜⎜⎜⎜
⎝

U
ξ1 ∈ h̃1,
ξ2 ∈ h̃2

{(
f −1
(
f
(
ξ 2
1

)+ f
(
ξ 2
2

))) 1
2

}
, U
η1 ∈ g̃1,
η2 ∈ g̃2

{(
g−1
(
g
(
η2
1

)+ g
(
η2
2

))) 1
2

}

⎞

⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝ f −1

⎛

⎝
2∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
, U

ηi j ∈g̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝
2∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠.

Let Eq. (10) be true for r = p, i.e.,
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⊗A
p
j=1

∼
κ i j

=
⎛

⎝
⋃

ξi j
∈h̃i j

⎧
⎨

⎩

(
f −1

(∑p
j=1

f

(
ξi j

2
))) 1

2

⎫
⎬

⎭
,
⋃

ηi j
∈∼
g i j

⎧
⎨

⎩

(
g−1

(∑p
j=1

g

(
ηi j

2
))) 1

2

⎫
⎬

⎭

⎞

⎠.

Now, for r = p + 1,

⊗p+1
Aj=1 κ̃i j

=
(

⊗p
Aj=1 κ̃i j

)
⊗A κ̃i p+1

=

⎛

⎜⎜
⎝Uξi j

∈h̃i j

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝ f −1

⎛

⎝
p∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

1
2

⎫
⎪⎪⎬

⎪⎪⎭
,Uηi j

∈g̃i j

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝g−1

⎛

⎝
p∑

j=1

g

(
η2i j

)⎞

⎠

⎞

⎠

1
2

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

⊗A

(

U
ξi p+1

∈h̃i p+1

{
ξi p+1

}
,Uηi p+1

∈g̃i p+1

{
ηi p+1

})

=

⎛

⎜⎜
⎝Uξi j

∈h̃i j

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝ f −1

⎛

⎝
p∑

j=1

f

(
ξ2i j

)
+ f

(
ξ2i p+1

)⎞

⎠

⎞

⎠

1
2

⎫
⎪⎪⎬

⎪⎪⎭
,Uηi j∈g̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝
p∑

j=1

g

(
η2i j

)
+ g

(
η2i p+1

)⎞

⎠

⎞

⎠
2
⎫
⎪⎬

⎪⎭

⎞

⎟⎟
⎠

=

⎛

⎜⎜
⎝Uξi j

∈h̃i j

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝ f −1

⎛

⎝
p+1∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

1
2
⎫
⎪⎪⎬

⎪⎪⎭
,Uηi j

∈g̃i j

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝g−1

⎛

⎝
p+1∑

j=1

g

(
η2i j

)⎞

⎠

⎞

⎠

1
2
⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠.

Therefore, Eq. (10) is true for all r .
Now, using operational laws of HPFEs as defined in Definition 9, it can be easily

shown that

⊕A1≤i1<i2<...<ir≤n ⊗r
A j=1κ̃i j

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

U
ξi j ∈h̃i j

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜
⎝

g−1

⎛

⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝ n
r

⎞

⎠

∑

j=1

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

U
ηi j ∈g̃i j

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜
⎝

f −1

⎛

⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝n
r

⎞

⎠

∑

j=1

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (11)

Also, using Eqs. (10) and (11),

⊕A1≤i1<i2<...<ir≤n ⊗r
A j=1 κ̃i j

Cn
r

=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝ 1

Cn
r

g

⎛

⎝g−1

⎛

⎝
∑

1≤i1<i2<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,
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U
ηi j ∈g̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝ f −1

⎛

⎝ 1

Cn
r

f

⎛

⎝ f −1

⎛

⎝
∑

1≤i1<i2<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝ 1

Cn
r

∑

1≤i1<i2<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,

U
ηi j ∈g̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝ f −1

⎛

⎝ 1

Cn
r

∑

1≤i1<i2<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠.

Finally,

AH PFMSM(r)(κ̃1, κ̃2, . . . , κ̃n
) =

⎛

⎝
⊕A1≤i1<i2<...<ir≤n ⊗r

A j=1 κ̃i j
Cn
r

⎞

⎠

1
r

=

⎛

⎜⎜⎜
⎝

U
ξi j

∈h̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝ f −1

⎛

⎜
⎝
1

r
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<i2<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

U
ηi j

∈g̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝g−1

⎛

⎜
⎝
1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<i2<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

(
η2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

.

Hence, the theorem is proved.

Theorem 2 (Idempotency) If
∼
κ i =

(
h̃i ,

∼
gi

)
are all equal to

∼
κ=

(
h̃,

∼
g
)
, for i =

1, 2, . . . , n, then
AH PFMSM (r)

(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
=∼

κ .

Proof From Theorem 1,

AH PFMSM (r)(κ̃1, κ̃2, . . . , κ̃n)

=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝ f −1

⎛

⎝1

r
f

⎛

⎝g−1

⎛

⎝ 1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,

U
ηi j ∈g̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝1

r
g

⎛

⎝ f −1

⎛

⎝ 1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠.

Now, here
∼
κ i =∼

κ=
(
h̃,

∼
g
)
for all i = 1, 2, . . . , n; so, ξi j = ξ and ηi j = η for all

i = 1, 2, . . . , n. Therefore,
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AH PFMSM(r)(κ̃, κ̃, . . . , κ̃) =
⎛

⎝ U
ξ∈h̃

⎧
⎨

⎩

(
f −1

(
1

r
f

(
g−1

(
1

Cn
r
Cn
r g
(
f −1

(
r f
(
ξ2
))))))) 1

2

⎫
⎬

⎭
,

U
η∈g̃

⎧
⎨

⎩

(
g−1

(
1

r
g

(
f −1

(
1

Cn
r
Cn
r f
(
g−1

(
rg
(
η2
))))))) 1

2

⎫
⎬

⎭

⎞

⎠

=
⎛

⎝ U
ξ∈h̃

⎧
⎨

⎩

(
f −1

(
1

r
f
(
g−1

(
g
(
f −1

(
r f
(
ξ2
))))))) 1

2

⎫
⎬

⎭
, U

η∈g̃

⎧
⎨

⎩

(
g−1

(
1

r
g
(
f −1

(
f
(
g−1

(
rg
(
η2
))))))) 1

2

⎫
⎬

⎭

⎞

⎠

=
⎛

⎝ U
ξ∈h̃

{ξ}, U
η∈g̃

{η}
⎞

⎠ = κ̃ .

Hence the proof.

Theorem 3 (Monotonicity) Suppose {κ̃1, κ̃2, . . . , κ̃n} and
{
κ̃ ′
1, κ̃

′
2, . . . , κ̃

′
n

}
are two

collections of HPFEs where κ̃i =
(
h̃i , g̃i

)
, κ̃ ′

i =
(
h̃′
i , g̃

′
i

)
. If ξi ≤ ξ ′

i and ηi ≥ η′
i

for all i = 1, 2, . . . , n, where ξi ∈ h̃i , ξ ′
i ∈ h̃′

i , ηi ∈ g̃i , and η′
i ∈ g̃′

i represent the
possible degrees of membership and non-membership, respectively, then

AH PFMSM (r)(κ̃1, κ̃2, . . . , κ̃n) ≤ AH PFMSM (r)
(
κ̃ ′
1, κ̃

′
2, . . . , κ̃

′
n

)
. (12)

Proof Since f is a decreasing generator,

f −1

⎛

⎝
r∑

j=1

f
((

ξi j
)2)
⎞

⎠ ≤ f −1

⎛

⎝
r∑

j=1

f

((
ξ ′
i j

)2)
⎞

⎠.

Also, since g is an increasing generator,

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
((

ξi j
)2)
⎞

⎠

⎞

⎠ ≤ g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

((
ξ ′
i j

)2)
⎞

⎠

⎞

⎠,

i.e.,

g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

((
ξi j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠ ≤ g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

((
ξ ′
i j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠,

i.e.,

f −1

⎛

⎝1

r
f

⎛

⎝g−1

⎛

⎝ 1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f
((

ξi j
)2)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

≤ f −1

⎛

⎝1

r
f

⎛

⎝g−1

⎛

⎝ 1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

((
ξ ′
i j

)2)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠. (13)
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Again, since g is an increasing generator, from the given condition,

r∑

j=1

g
((

ηi j
)2) ≥

r∑

j=1

g

((
η′
i j

)2)
,

i.e.,

1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
ηi j

)2
)⎞

⎠

⎞

⎠ ≤ 1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
η′
i j

)2
)⎞

⎠

⎞

⎠,

i.e.,

1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
ηi j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

≥ 1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
η′
i j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠,

i.e.,

⎛

⎜
⎝g−1

⎛

⎜
⎝
1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
ηi j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

≥
⎛

⎜
⎝g−1

⎛

⎜
⎝
1

r
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

g

((
η′
i j

)2
)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

. (14)

From (13) and (14), the theorem follows.

Theorem 4 (Boundedness) Suppose {κ̃1, κ̃2, . . . , κ̃n} be any collection of HPFEs,

where κ̃i =
(
h̃i , g̃i

)
. Let ξ− = min

{
ξi j
}
, ξ+ = max

{
ξi j
}
, η− = min

{
ηi j
}
, and

η+ = max
{
ηi j
}
, where ξi ∈ h̃i , ξ ′

i ∈ h̃′
i , ηi ∈ g̃i , and η′

i ∈ g̃′
i represent the possible

degrees of membership and non-membership, respectively.
Then κ̃− ≤ AH PFMSM (r)(κ̃1, κ̃2, . . . , κ̃n) ≤ κ̃+, where κ̃− = (ξ−, η+) and

κ̃+ = (ξ+, η−).

Proof
Since ξ− ≤ ξi j ≤ ξ+ for all i = 1, 2, . . . , n, so

r∑

j=1

f
((

ξ−
)2
)

≥
r∑

j=1

f

(
ξ2i j

)
≥

r∑

j=1

f
((

ξ+
)2
)

i.e., g
(
f −1

(
r f
((

ξ−
)2
)))

≤ 1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠ ≤ g
(
f −1

(
r f
((

ξ+
)2
)))

i.e., f
((

ξ−
)2
)

≥ 1

r
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠ ≥ f

((
ξ+
)2
)
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i.e.,
(
ξ−
)2 ≤ f −1

⎛

⎜
⎝
1

r
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

Cn
r

∑

1≤i1<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ ≤ (ξ+

)2
. (15)

In a similar way, it can be proved that

(η−)2 ≤ g−1

(
1

r
g

(

f −1

(
1

Cn
r

∑

1≤i1<...<ir≤n

f
(
g−1
(∑r

j=1
g
(
ηi j

2
)))
)))

≤ (η+)2.

(16)

Using Definitions 5, 6 and following Eqs. (15) and (16), the theorem holds

Theorem 5 (Commutativity) Let
{∼
κ1,

∼
κ2, . . . ,

∼
κn

}
be a set of HPFEs and

(∼
κ

∗
1,

∼
κ

∗
2, . . . ,

∼
κ

∗
n

)
indicates any permutation of

(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
, then

AH PFMSM (r)
(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
= AH PFMSM (r)

(∼
κ

∗
1,

∼
κ

∗
2, . . . ,

∼
κ

∗
n

)
.

Proof As
(∼
κ

∗
1,

∼
κ

∗
2, . . . ,

∼
κ

∗
n

)
indicates any permutation of

{∼
κ1,

∼
κ2, . . . ,

∼
κn

}
, then

utilizing the definition of AHPFMSM, it is obtained that

AH PFMSM(r)(κ̃1, κ̃2, . . . , κ̃n
) =

⎛

⎝
⊕A1≤i1<i2<...<ir≤n ⊗r

A j=1 κ̃i j
Cn
r

⎞

⎠

1
r

=
⎛

⎝
⊕A1≤i1<i2<...<ir≤n ⊗r

A j=1 κ̃∗
i j

Cn
r

⎞

⎠

1
r

= AH PFMSM(r)
(
κ̃∗
1 , κ̃∗

2 , . . . , κ̃∗
n
)
.

Hence the theorem.
Now, some special cases of the AHPFMSM operator are discussed by varying the

parameter, r .

• When r = 1, the proposed AHPFMSM operator becomes Archimedean HPF
averaging (AHPFA) operator and is shown as follows:

AH PFMSM (1)(κ̃1, κ̃2, . . . , κ̃n) =
(⊕A1≤i1≤n ⊗1

Aj=1 κ̃i j

Cn
1

) 1
1

=
⎛

⎝ U
ξi j ∈h̃i j

⎧
⎨

⎩

(

f −1

(

f

(

g−1

(
1

n

n∑

i=1

g
(
ξ 2
i

)
)))) 1

2

⎫
⎬

⎭
,
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U
ηi j ∈g̃i j

⎧
⎨

⎩

(

g−1

(

g

(

f −1

(
1

n

n∑

i=1

f
((

η2
i

))
)))) 1

2

⎫
⎬

⎭

⎞

⎠.

(17)

• When r = 2, AHPFMSM operator reduces to Archimedean HPF BM

(AHPFBM) operator as follows:

AH PFMSM(2)(κ̃1, κ̃2, . . . , κ̃n
) =

⎛

⎝
⊕A1≤i1<i2≤n ⊗2

Aj=1 κ̃i j
Cn
2

⎞

⎠

1
2

=

⎛

⎜⎜⎜
⎝

U
ξi j

∈h̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

2
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

Cn
2

∑

1≤i1<i2≤n

g

⎛

⎝ f −1

⎛

⎝
2∑

j=1

f

(
ξ2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

U
ηi j

∈̃gi j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

2
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

Cn
2

∑

1≤i1<i2≤n

f

⎛

⎝g−1

⎛

⎝
2∑

j=1

g

(
η2i j

)⎞

⎠

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

U
ξi j

∈h̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝ f −1

⎛

⎜
⎝

1

2
f

⎛

⎜
⎝g−1

⎛

⎜
⎝

2

n(n − 1)

∑

1≤i1<i2≤n

g
(
f −1

(
f
(
ξ2i1

)
+ f

(
ξ2i2

)))
⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

U
ηi j

∈̃gi j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝g−1

⎛

⎜
⎝

1

2
g

⎛

⎜
⎝ f −1

⎛

⎜
⎝

2

n(n − 1)

∑

1≤i1<i2≤n

f
(
g−1

(
g
(
η2i1

)
+ g
(
η2i2

)))
⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

U
ξi j

∈h̃i j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

f −1

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1

2
f

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

g−1

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1

n(n − 1)

n∑

i1, i2 = 1

i1 
= i2

g
(
f −1

(
f
(
ξ2i1

)
+ f

(
ξ2i2

)))

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

1
2
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

U
ηi j

∈̃gi j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

g−1

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1

2
g

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

f −1

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1

n(n − 1)

n∑

i1, i2 = 1

i1 
= i2

f
(
g−1

(
g
(
η2i1

)
+ g
(
η2i2

)))

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

1
2
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(18)

= AH PFBM1,1
(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
.

• When r = n, AHPFMSM operator reduces to At-CN&t-N-based HPF geometric
mean (AHPFGM) operator and is presented as follows:

AH PFMSM (n)(κ̃1, κ̃2, . . . , κ̃n) =
(⊕A1≤i1<i2<...<in≤n ⊗n

Aj=1 κ̃i j

Cn
n

) 1
n

= (⊗n
Aj=1κ̃i j

) 1
n
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=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

⎛

⎝ f −1

⎛

⎝1

n
f

⎛

⎝g−1

⎛

⎝g

⎛

⎝ f −1

⎛

⎝
n∑

j=1

f
(
ξ 2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
,

U
ηi j ∈̃gi j

⎧
⎪⎨

⎪⎩

⎛

⎝g−1

⎛

⎝1

n
g

⎛

⎝ f −1

⎛

⎝ f

⎛

⎝g−1

⎛

⎝
n∑

j=1

g
(
η2
i j

)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

=
⎛

⎝ U
ξi∈h̃i

⎧
⎨

⎩

(

f −1

(
1

n
f

(

f −1

(
n∑

i=1

f
(
ξ 2
i

)
)))) 1

2

⎫
⎬

⎭
,

U
ηi ∈̃gi

⎧
⎨

⎩

(

g−1

(
1

n
g

(

g−1

(
n∑

i=1

g
(
η2
i

)
)))) 1

2

⎫
⎬

⎭

⎞

⎠ (considering i j = i)

=
⎛

⎝ U
ξi∈h̃i

⎧
⎨

⎩

(

f −1

(
1

n

n∑

i=1

f
(
ξ 2
i

)
)) 1

2

⎫
⎬

⎭
, U

ηi ∈̃gi

⎧
⎨

⎩

(

g−1

(
1

n

n∑

i=1

g
(
η2
i

)
)) 1

2

⎫
⎬

⎭

⎞

⎠. (19)

Now, AHPFWMSM operator is developed by considering the preferences of
the attributes toward the decision-making process to provide the importance of the
aggregated arguments.

Definition 11 Let
∼
κ i =

(
h̃i ,

∼
gi

)
(i = 1, 2, . . . , n) be a collection of HPFEs, and

ω = (ω1, ω2, . . . , ωn)
T be the weight vector such that ωi > 0,

∑n
i ωi = 1, and

r = 1, 2, . . . , n be any number. Now, if

AH PFWMSM (r)
ω

(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
=
⎛

⎝
⊕A1≤i1<i2<...<ir≤n⊗A

r
j=1

(
ωi j

∼
κ i j

)

Cn
r

⎞

⎠

1
r

,

(20)

then AH PFWMSM (r)
ω

(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
is called AHPFWMSM operator.

As like AHPFMSM operator, the following theorem holds for AHPFWMSM
operator also.

Theorem 6 Let
∼
κ i =

(
h̃i ,

∼
gi

)
(i = 1, 2, . . . , n) be a collection of HPFEs, and

r = 1, 2, . . . , n be any number. Then the aggregated value using AHPFWMSM
operator is also an HPFE and

AH PFWMSM (r)
ω (κ̃1, κ̃2, . . . , κ̃n) =

(⊕A1≤i1<i2<...<ir≤n ⊗r
A j=1

(
ωi j κ̃i j

)

Cn
r

) 1
r
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=
⎛

⎝ U
ξi j ∈h̃i j

⎧
⎨

⎩
f −1

⎛

⎝1

r
f

⎛

⎝g−1

⎛

⎝ 1

Cn
r

∑

1≤i1<i2<...<ir≤n

g

⎛

⎝ f −1

⎛

⎝
r∑

j=1

ωi j f
(
ξi j
)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎫
⎬

⎭
,

U
ηi j ∈g̃i j

⎧
⎨

⎩
g−1

⎛

⎝1

r
g

⎛

⎝ f −1

⎛

⎝ 1

Cn
r

∑

1≤i1<i2<...<ir≤n

f

⎛

⎝g−1

⎛

⎝
r∑

j=1

ωi j g
(
ηi j
)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠

⎫
⎬

⎭

⎞

⎠.

(21)

Proof The proof of Theorem 6 is analogous to the proof of Theorem 1.

By considering different forms of the decreasing generator, f , several forms of
AHPFWMSM operator are derived as follows.

Case 1 (Algebraic) If f (t) = −logt , then AHPFWMSM operator reduces to HPF
weighted MSM operator (HPFWMSM) [45] as follows:

HPFWMSM (r)
ω (κ̃1, κ̃2, . . . , κ̃n)

=

⎛

⎜⎜⎜
⎝

U
ξi j ∈h̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎝

⎛

⎜
⎝1 −

∏

1≤i1<i2<...<ir≤n

⎛

⎝1 −
r∏

j=1

(
ξi j
)ωi j

⎞

⎠

1
Cn
r

⎞

⎟
⎠

1
r

⎞

⎟⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

U
ηi j ∈g̃i j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎝1 −

⎛

⎜
⎝1 −

∏

1≤i1<i2<...<ir≤n

⎛

⎝1 −
r∏

j=1

(
1 − ηi j

)ωi j

⎞

⎠

1
Cn
r

⎞

⎟
⎠

1
r

⎞

⎟⎟
⎠

1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

. (22)

Case 2 (Einstein) If f (t) = log
(
2−t
t

)
, then AHPFWMSM operator takes the form

of Einstein t-conorm and t-norm-based HPFEWMSM operator as follows:

HPFEWMSM (r)
ω (κ̃1, κ̃2, . . . , κ̃n)

=
⎛

⎜
⎝ U

ξi j ∈h̃i j

⎧
⎪⎨

⎪⎩

√√√√√
2
(
Ai j + 3

) 1
r

(
Ai j − 1

) 1
r + (Ai j + 3

) 1
r

⎫
⎪⎬

⎪⎭
, U

ηi j ∈g̃i j

⎧
⎪⎨

⎪⎩

√√√√√

(
Bi j + 3

) 1
r − (Bi j − 1

) 1
r

(
Bi j + 3

) 1
r + (Bi j − 1

) 1
r

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠,

(23)

where Ai j and Bi j are defined as

Ai j =
∏

1≤i1<i2<...<ir≤n

⎛

⎜
⎝

∏r
j=1

(
2 − ξ 2

i j

)−ωi j + 3
∏r

j=1

(
ξ 2
i j

)−ωi j

∏r
j=1

(
2 − ξ 2

i j

)−ωi j −∏r
j=1

(
ξ 2
i j

)−ωi j

⎞

⎟
⎠

1
Cn
r
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and Bi j =
∏

1≤i1<i2<...<ir≤n

⎛

⎜
⎝

∏r
j=1

(
1 + η2

i j

)ωi j −∏r
j=1

(
1 − η2

i j

)ωi j

∏r
j=1

(
1 + η2

i j

)ωi j + 3
∏r

j=1

(
1 − η2

i j

)ωi j

⎞

⎟
⎠

1
Cn
r

.

Case 3 (Hamacher)

Now, if f (t) = log
(

τ+(1−τ)t
t

)
, τ > 0, then AHPFWMSM operator is converted into

Hamacher t-conorm and t-norm-based HPFHWMSM operator and is presented as
follows:

HPFHWMSM(r)
ω
(
κ̃1, κ̃2, . . . , κ̃n

)

=

⎛

⎜⎜
⎝ U

ξi j
∈h̃i j

⎧
⎨

⎩
τ (M)

1
r

(τ + (1 − τ)M)
1
r + (τ − 1)(M)

1
r

⎫
⎬

⎭
, U
ηi j

∈g̃i j

⎧
⎨

⎩
(τ + (1 − τ)(1 − N ))

1
r − (1 − N )

1
r

(τ + (1 − τ)(1 − N ))
1
r + (τ − 1)(1 − N )

1
r

⎫
⎬

⎭

⎞

⎟⎟
⎠, (24)

where M =
∏

1≤i1<i2<...<ir≤n (A+(τ 2−1)B)
1
Cn
r −∏1≤i1<i2<...<ir≤n (A−B)

1
Cn
r

∏
1≤i1<i2<...<ir≤n (A+(τ 2−1)B)

1
Cn
r +(τ−1)

∏
1≤i1<i2<...<ir≤n (A−B)

1
Cn
r

,

in which A =∏r
j=1

(
τ + (1 − τ)ξi j

)ωi j and B =∏r
j=1

(
ξi j
)ωi j ;

and = t F
G+(t−1)F ,

where

F =
∏

1≤i1<i2<...<ir≤n

(∏r

j=1

(
τ + (1 − τ)

(
1 − ηi j

))ωi j −
∏r

j=1

(
1 − ηi j

)ωi j

) 1
Cn
r

and

G =
∏

1≤i1<i2<...<ir≤n

(∏r

j=1

(
τ + (1 − τ)

(
1 − ηi j

))ωi j +
(
τ2 − 1

)∏r

j=1

(
1 − ηi j

)ωi j
) 1

Cn
r

Case 4 (Frank) If f (t) = log
(

ρ−1
ρt−1

)
, ρ > 1, then AHPFWMSM operator reduces

to HPFFWMSM operator and is defined as

HPFFWMSM (r)
ω

(∼
κ1,

∼
κ2, . . . ,

∼
κn

)
= (M, N ), (25)

where
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M =

log

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(ρ−1)+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ−1

ρ
1−

log

(
(ρ−1)+Ai j

Ai j

)

logρ −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
r

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ−1

ρ
1−

log

(
(ρ−1)+Ai j

Ai j

)

logρ −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

logρ
and N = 1 −

log

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(ρ−1)+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ−1

ρ
1−

log

(
(ρ−1)+Bi j

Bi j

)

logρ −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
r

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ−1

ρ
1−

log

(
(ρ−1)+Bi j

Bi j

)

logρ −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

logρ
,

in which

Ai j =
∏

1≤i1<i2<...<ir≤n

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ − 1

ρ
1−

log

⎛

⎜
⎜⎜⎜⎜⎜
⎝

(ρ−1)+∏r
j=1

⎛

⎝ ρ−1

ρ
ξi j −1

⎞

⎠
ωi j

∏r
j=1

⎛

⎝ ρ−1

ρ
ξi j −1

⎞

⎠
ωi j

⎞

⎟
⎟⎟⎟⎟⎟
⎠

log ρ − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
Cn
r

and

Bi j =
∏

1≤i1<i2<...<ir≤n

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ − 1

ρ
1−

log

⎛

⎜⎜⎜⎜⎜⎜
⎝

(ρ−1)+∏r
j=1

⎛

⎝ ρ−1

ρ
1−ηi j −1

⎞

⎠
ωi j

∏r
j=1

⎛

⎝ ρ−1

ρ
1−ηi j −1

⎞

⎠
ωi j

⎞

⎟⎟⎟⎟⎟⎟
⎠

log ρ − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
Cn
r

.

4 An Approach to MCDM with HPF Information

In this section, the developed HPFHWMSM and HPFFWMSM operators are used to
solve MCDM problems. An MCDM problem under HPF environment is described
below.

Let X = {x1, x2, . . . , xm} be a set of alternatives and C = {C1,C2, . . . ,Cn} be
a collection of criteria. Let D̃ =

[
d̃i j
]

m×n
be an HPF decision matrix (HPFDM),

whose elements are represented by HPFEs with the form d̃i j =
(
h̃i j ,

∼
gi j

)
, where h̃i j

represents the membership degree of the alternative xi that satisfies the attribute C j ;
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and
∼
gi j indicates the degree of the alternative xi that does not satisfy the attribute C j ,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
Then, the established HPFHWMSM (or HPFFWMSM) operators are used to

develop an approach for solving MCDM problems in an HPF environment. The
proposed methodology is described through the following steps:

Step 1: If the HPFDM contains some cost criteria, then the HPFDM is converted
into the normalized HPFDM, R̃ = [r̃i j

]
m×n by applying

r̃i j =
{
d̃i j f or bene f i t attr ibute C j

d̃c
i j f or cost attribute C j

, (26)

where i = 1, 2, . . . ,m; j = 1, 2, . . . , n; and d̃c
i j represent the complement of d̃i j .

Step 2: Utilize the decision information given in matrix R̃, to aggregate the HPFEs
r̃i j for each alternative xi using HPFHWMSM (or HPFFWMSM) operator which
has associated weight vector ω = (ω1, ω2, . . . , ωn)

T , as follows:

r̃i = HPFHWMSM (r)
ω (r̃i1, r̃i2, . . . , r̃in)

or

r̃ ′
i = HPFFWMSM (r)

ω (r̃i1, r̃i2, . . . , r̃in)

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Step 3: Calculate the score values S(r̃i ) (or S
(
r̃

′
i

)
) (i = 1, 2, . . . ,m) of the collective

overall HPF preference values of each alternative xi using Definition 11.

Step 4: Rank the alternatives based on the achieved score values.

5 Illustrative Examples

In this section, two examples are considered and solved to show the validity and
advantages of the developed MCDM method.

Example 1 This problem is aimed to find best emerging technology enterprise
from a set of five possible emerging technology enterprises, {A1, A2, A3, A4, A5},
which is adapted from [44]. There are four attributes for evaluating the alterna-
tives with the associated weight vector, ω = (0.2, 0.1, 0.3, 0.4)T . The attributes
are listed as technical advancement (C1), potential market and market risk (C2),
industrialization infrastructure, human resources, financial conditions (C3), employ-
ment creation, and development of science and technology (C4). After evaluating
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the alternatives, DM constructed the decision matrix R̃ = [
r̃i j
]
m×n using HPFEs

r̃i j (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4) and is presented by the following HPFDM as
described in Table 2.

The step-by-stepmethod for solving the example using the proposedmethodology
is presented as follows:

Step 1. Since all the criteria values represent benefit criteria, normalization is not
required here. Thus R̃ = D̃.

Step 2. UsingHPFHWMSMoperator displayed in Eq. (24), the collective preference
values, r̃i j , corresponding to the alternative, Ai (without loss of generality, taking
Hamacher parameter τ = 2, and MSM parameter r = 2), and the overall evaluation
values r̃i (i = 1, 2, 3, 4, 5) are shown as follows:

r̃1 = ({0.8155, 0.8277, 0.8404, 0.8516, 0.8256, 0.8375, 0.8499, 0.8608}, {0.1466, 0.1794, 0.1611, 0.1939,
0.1759, 0.2091, 0.1556, 0.1882, 0.1702, 0.2025, 0.1851, 0.2176, 0.1703, 0.2023, 0.1848, 0.2161, 0.1999,

0.2309, 0.1791, 0.2106, 0.1935, 0.2238, 0.2086, 0.2384}),

r̃2 = ({0.8647, 0.8736, 0.8823, 0.8780, 0.8867, 0.8953, 0.8713, 0.8801, 0.8887, 0.8849, 0.8934, 0.9018},
{0.2208, 0.2389, 0.2287, 0.2472, 0.2323, 0.2509, 0.2394, 0.2582}),

r̃3 = ({0.8570, 0.8679, 0.8929, 0.9023, 0.8846, 0.8948, 0.9172, 0.9255}, {0.1566, 0.1715, 0.1706, 0.1860}),

r̃4 = ({0.8319, 0.8660, 0.8371, 0.8711, 0.8516, 0.8838, 0.8566, 0.8886}, {0.1494, 0.1662, 0.1585, 0.1754 ,

0.1684, 0.1856}),

and

r̃5 = ({0.8742, 0.9030, 0.9006, 0.9257, 0.8780, 0.9065, 0.9044, 0.9290, 0.8953, 0.9216, 0.9207, 0.9426,
0.8999, 0.9254, 0.9248, 0.9458}, {0.1383, 0.1546, 0.1529, 0.1692}).

Step 3. Calculate the score value of r̃i (i = 1, 2, 3, 4, 5) as S(r̃1) = 0.6655, S(r̃2) =
0.7230, S(r̃3) = 0.7681, S(r̃4) = 0.7133, and S(r̃5) = 0.8090.

Step 4. Since, S(r̃5) � S(r̃3) � S(r̃2) � S(r̃4) � S(r̃1), based on the score values,
the ordering of the alternatives appears as A5 � A3 � A2 � A4 � A1. So, the best
alternative is found as A5.

Again, this problem is solved by utilizing HPFFWMSM operator, and the process
is presented step by step as follows:

Step. 1
′
Similar to Step 1 as described, previously.

Step. 2
′
Obtain the collective preference values by applying HPFFWMSM operator

taking ρ = 2, r = 2, in Eq. (25) as

r̃
′
1 = ({0.8829, 0.8912, 0.8997, 0.9073, 0.8896, 0.8978, 0.9061, 0.9135}, {0.1490, 0.1827, 0.1642, 0.1978,
0.1798, 0.2139, 0.1590, 0.1926, 0.1743, 0.2074, 0.1901, 0.2235, 0.1741, 0.2069, 0.1893, 0.2211, 0.2053,

0.2368, 0.1841, 0.2162, 0.1990, 0.2298, 0.2151, 0.2452}),

r̃
′
2 = ({0.9160, 0.9220, 0.9277, 0.9252, 0.9310, 0.9368, 0.9203, 0.9262, 0.9320, 0.9298, 0.9355, 0.9411},

{0.2260, 0.2453, 0.2347, 0.2544, 0.2381, 0.2579, 0.2458, 0.2659}),
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r̃
′
3 = ({0.8829, 0.8997, 0.8997, 0.9073, 0.8896, 0.8978, 0.9061, 0.9135}, {0.1589, 0.1746, 0.1734, 0.1897}),

r̃
′
4 = ({0.8942, 0.9161, 0.8976, 0.9196, 0.9073, 0.9280, 0.9107, 0.9314}, {0.1519, 0.1692, 0.1620, 0.1796 , 0.1733, 0.1912}),

and

r̃ ′5 = ({0.9225, 0.9417, 0.9399, 0.9563, 0.9252, 0.9440, 0.9426, 0.9585, 0.9358, 0.9532, 0.9527, 0.9667,
0.9390, 0.9558, 0.9556, 0.9690}, {0.1400, 0.1566, 0.1551, 0.1718}).

Step. 3
′
Calculate the score value of r̃

′
i (i = 1, 2, 3, 4, 5) as S

(
r̃

′
1

) = 0.7675, S
(
r̃

′
2

) =
0.8017, S

(
r̃

′
3

) = 0.7770, S
(
r̃

′
4

) = 0.8045, S
(
r̃

′
5

) = 0.8733.

Step. 4
′
. Based on the score values, the ranking is obtained as S

(
r̃

′
5

) � S
(
r̃

′
4

) �
S
(
r̃

′
2

) � S
(
r̃

′
3

) � S
(
r̃

′
1

)
. Thus, the ordering of the alternatives appears as A5 �

A4 � A2 � A3 � A1. Though this ranking result is slightly different compared to
HPFHWMSM operator, still the best alternative is the same as A5.

• Influence of different parameters on decision-making results.

Now, the influence of Hamacher parameter, τ , Frank parameter, ρ, andMSMparam-
eter, r ondecision-making results obtained throughHPFHWMSMandHPFFWMSM
AOs is investigated. Those parameters play vital roles in the ranking of alternatives.
Different score values are obtained by assigning different values of those parameters.
The ranking results are shown in Tables 3 and 4 by varying the values of τ , ρ, and r .

From Figs. 1, 2, 3, and 4, it is observed that the score values increase with the
increase of the parameter τ in 0 to 20, when Hamacher t-conorm and t-norm-based
HPFHWMSM AO is used. Whereas its reverse situation is found for changing the
MSMparameter, r . In such situation, if the value of theMSMparameter is considered
as r = 1, 2, 3, 4, the score values decrease. Though different ranking results are
derived using HPFHWMSM operator with changing parameters τ and r , the best
alternative A5 and the worst alternative A1 remain unchanged. This conveys that the
proposedHPFHWMSMoperator has an excellent capacity to adapt with the situation
with variation of the parameters τ and r .

A graphical interpretation of score values of the alternatives is presented in Fig. 1
by varying the Hamacher parameter τ in HPFHWMSM operator, keeping the value
r = 1 as fixed. The ranking result, in this case, is found as A5 � A3 � A2 � A4 � A1

for 0 < τ ≤ 20.
Again, from Fig. 2 it is observed that, when the same AO is utilized by keeping

the fixed value r = 2, some different orderings of the alternatives are found for
changing the value of τ in 0 to 20. The ranking result of the alternatives is found as
A5 � A3 � A2 � A4 � A1, when 0 < τ < 4.1911. Whereas when the value of τ

lies in (4.1911, 20], the ranking result slightly differs as A5 � A3 � A4 � A2 � A1.
But the best alternative remains the same as A5 for both the sub-intervals.

As like Figs. 1 and 3 also provide the same ranking result, i.e., A5 � A3 � A2 �
A4 � A1, for varying the Hamacher parameter τ with r = 3.
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Table 3 Scores and the rankings results using developed method for different values of τ and
different values of MSM parameter r using HPFHWMSM operator

Parameter
τ

S(A1) S(A2) S(A3) S(A4) S(A5) Ranking result

r =
1

τ = 1 0.6286 0.7370 0.7591 0.6789 0.8121 A5 � A3 � A2 � A4 � A1

τ = 2 0.6917 0.7760 0.7983 0.7365 0.8367 A5 � A3 � A2 � A4 � A1

τ = 3 0.7310 0.8018 0.8231 0.7714 0.8538 A5 � A3 � A2 � A4 � A1

τ = 4 0.7588 0.8206 0.8407 0.7955 0.8665 A5 � A3 � A2 � A4 � A1

r =
2

τ = 1 0.5934 0.6729 0.7221 0.6476 0.7764 A5 � A3 � A2 � A4 � A1

τ = 2 0.6655 0.7230 0.7681 0.7133 0.8090 A5 � A3 � A2 � A4 � A1

τ = 3 0.7085 0.7550 0.7962 0.7515 0.8302 A5 � A3 � A2 � A4 � A1

τ = 4 0.7384 0.7781 0.8159 0.7777 0.8455 A5 � A3 � A2 � A4 � A1

r =
3

τ = 1 0.5801 0.6478 0.7080 0.7274 0.7607 A5 � A4 � A3 � A2 � A1

τ = 2 0.6572 0.7064 0.7583 0.7749 0.7991 A5 � A4 � A3 � A2 � A1

τ = 3 0.7025 0.7424 0.7883 0.8033 0.8228 A5 � A4 � A3 � A2 � A1

τ = 4 0.7337 0.7677 0.8092 0.8229 0.8395 A5 � A4 � A3 � A2 � A1

r =
4

τ = 1 0.5716 0.6285 0.7003 0.6335 0.7497 A5 � A3 � A4 � A2 � A1

τ = 2 0.6508 0.6944 0.7535 0.7044 0.7927 A5 � A3 � A4 � A2 � A1

τ = 3 0.6974 0.7338 0.7848 0.7450 0.8183 A5 � A3 � A4 � A2 � A1

τ = 4 0.7295 0.7611 0.8063 0.7725 0.8361 A5 � A3 � A4 � A2 � A1

Further, from Fig. 4, it is clear that the ranking result is obtained as A5 � A3 �
A2 � A4 � A1 for 0 < τ < 0.6416 and the value r = 4 is considered when
HPFHWMSMoperator is used.Whereas if the value of the parameter lies in 0.6416 <

τ ≤ 20, the ordering becomes A5 � A3 � A4 � A2 � A1.
On the other side, when the problem is solved by Frank t-conorm and t-norm-

based HPFFWMSM AO, different ranking results are found which are represented
in Figs. 5, 6, 7, and 8. Considering the value of the MSM parameter r = 1, 2, 3, 4
with varying the Frank parameter ρ in 1.001 to 20, the score values of the alternatives
are calculated and graphically displayed in Figs. 5, 6, 7, and 8.

From Fig. 5, it is observed that the ranking appears as A5 � A3 � A2 � A4 � A1

when ρ ∈ [1.001, 20], whereas, when r = 2 is considered, different ranking results
of the alternatives are obtained and is shown in Fig. 6. The ranking result A5 � A2 �
A4 � A3 � A1 is found for varying ρ in [1.001, 1.2471], and when ρ is considered
in 1.2471 < ρ ≤ 20, the ordering is found as A5 � A4 � A2 � A3 � A1.

Again, from Figs. 7 and 8, it is noticed that the achieved ranking results are the
same, i.e., A5 � A3 � A4 � A2 � A1, for taking r = 3 and 4. However, for other
values, the ordering may slightly differ, but the best alternative is fixed as A5.

To compare the proposed method with the other method developed in HPF envi-
ronment, the following example, considered previously byGarg [45], is solved, using
the developed method in this chapter.
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Table 4 Scores and the ranking results using developed method for different values of ρ and
different values of MSM parameter r using HPFHWMSM operator

Parameter
ρ

S(A1) S(A2) S(A3) S(A4) S(A5) Ordering

r =
1

ρ = 1.001 0.7748 0.8227 0.8619 0.8067 0.8863 A5 � A3 � A2 � A4 � A1

ρ = 2 0.7871 0.8294 0.8682 0.8178 0.8898 A5 � A3 � A2 � A4 � A1

ρ = 3 0.7931 0.8326 0.8713 0.8232 0.8914 A5 � A3 � A2 � A4 � A1

ρ = 4 0.7968 0.8345 0.8731 0.8266 0.8925 A5 � A3 � A2 � A4 � A1

r =
2

ρ = 1.001 0.7529 0.7930 0.7629 0.7916 0.8684 A5 � A2 � A4 � A3 � A1

ρ = 2 0.7675 0.8017 0.7770 0.8045 0.8733 A5 � A4 � A2 � A3 � A1

ρ = 3 0.7746 0.8059 0.7838 0.8107 0.8756 A5 � A4 � A2 � A3 � A1

ρ = 4 0.7791 0.8084 0.7880 0.8145 0.8771 A5 � A4 � A2 � A3 � A1

r =
3

ρ = 1.001 0.7452 0.7753 0.8253 0.7861 0.8598 A5 � A3 � A4 � A2 � A1

ρ = 2 0.7611 0.7863 0.8342 0.7999 0.8659 A5 � A3 � A4 � A2 � A1

ρ = 3 0.7689 0.7915 0.8385 0.8065 0.8687 A5 � A3 � A4 � A2 � A1

ρ = 4 0.7737 0.7948 0.8411 0.8106 0.8705 A5 � A3 � A4 � A2 � A1

r =
4

ρ = 1.001 0.7409 0.7623 0.8208 0.8083 0.8544 A5 � A3 � A4 � A2 � A1

ρ = 2 0.7576 0.7757 0.8305 0.8157 0.8614 A5 � A3 � A4 � A2 � A1

ρ = 3 0.7657 0.7821 0.8351 0.8192 0.8648 A5 � A3 � A4 � A2 � A1

ρ = 4 0.7708 0.7860 0.8379 0.8214 0.8668 A5 � A3 � A4 � A2 � A1

Fig. 1 Score values of
alternative Ai for variation in
parameter τ by considering
r = 1, using HPFHWMSM
operator
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Fig. 2 Score values of
alternative Ai for variation in
parameter τ by considering
r = 2, using HPFHWMSM
operator

Fig. 3 Score values of
alternative Ai for variation in
parameter τ by considering
r = 3, using HPFHWMSM
operator

Example 2 This problem is related to find most profitable market for investment by
an investor in India under HPF environment. In this respect, five markets, viz., A1,
A2, A3, A4, and A5 are evaluated by an expert with respect to four criteria, viz., C1,
C2, C3, C4, with the corresponding weight vector, ω = (0.20, 0.15, 0.35, 0.30)T . It
is to be mentioned here that C1 and C3 are benefit criteria, whereas C2 and C4 are
cost criteria.

After evaluation, decision values in the formofHPFEs are provided by the experts,
which are displayed in Table 5.

This problem is solved using the aforementioned steps as shown in Example 1.
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Fig. 4 Score values of alternative Ai for variation in parameter τ by considering r = 4, using
HPFHWMSM operator

Fig. 5 Score values of
alternative Ai for variation in
parameter ρ by considering
r = 1, using HPFFWMSM
operator
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Using HPFHWMSM and HPFFWMSM operators, the achieved results for
different values corresponding to MSM parameter, r , Hamacher parameter, τ , and
Frank parameter, ρ, are presented in Table 6.
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Fig. 6 Score values of alternative Ai for variation in parameter ρ by considering r = 2, using
HPFFWMSM operator

Fig. 7 Score values of
alternative Ai for variation in
parameter ρ by considering
r = 3, using HPFFWMSM
operator
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From Table 6, it is observed that the influence of different parameters involved
with the developed method based on HPFHWMSM and HPFFWMSM operators
cannot be ignored as like the previous example, Example 1.

The influence of those parameters on the ranking order of the alternatives is
discussed by varying those parameters, continuously, in some specified intervals,
and is shown in Figs. 9, 10, 11, 12, 13, 14, 15, and 16.

If the problem is solved using HPFHWMSM operator, by varying the Hamacher
parameter, τ , between 0 and 20, several ranking results are obtained. Figures 9, 10,
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Fig. 8 Score values of
alternative Ai for variation in
parameter ρ by considering
r = 4, using HPFFWMSM
operator
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Table 5 HPFDM [45]

C1 C2 C3 C4

A1 ({0.3, 0.4}, {0.6}) ({0.3, 0.4}, {0.4, 0.5}) ({0.2, 0.3}, {0.7}) ({0.5}, {0.4, 0.5})
A2 ({0.6}, {0.4}) ({0.4}, {0.2, 0.4, 0.5}) ({0.2}, {0.6, 0.7, 0.8}) ({0.4, 0.5}, {0.5})
A3 ({0.5, 0.7}, {0.2}) ({0.7, 0.8}, {0.2}) ({0.2, 0.3, 0.4}, {0.6}) ({0.3}, {0.5, 0.6, 0.7})
A4 ({0.7}, {0.3}) ({0.2}, {0.6, 0.7, 0.8}) ({0.1, 0.2}, {0.3}) ({0.6, 0.7, 0.8}, {0.1})
A5 ({0.6, 0.7}, {0.2}) ({0.5}, {0.2, 0.3, 0.4}) ({0.0.4, 0.5}, {0.2}) ({0.5}, {0.2, 0.3, 0.4})

11, and 12 represent the graphical interpretation of score values of the alternatives
for choosing the values of MSM parameter, r = 1, 2, 3, 4, respectively.

From Fig. 9, it is noticed that, for r = 1, several ranking results are found, as τ

changes from 0 to 20. When τ ∈ (0, 1.3361), the ordering of alternatives is obtained
as A4 � A3 � A5 � A2 � A1, and when τ ∈ (1.3361, 1.3741) best alternative is
changed to A3 from A4, with the ordering A3 � A4 � A5 � A2 � A1. For τ =
1.3361, score value of alternatives A3 and A4 remains the same as S(A3) = S(A4) =
0.6947, and the ranking is found as A3 ≈ A4 � A5 � A2 � A1. If the problem is
solved using Einstein operation-based HPFEWMSM operator, i.e., by considering
the value of τ = 2 in the developed HPFHWMSM operator, ordering of alternatives
is found as A3 � A5 � A4 � A2 � A1, i.e., the best alternative is A3. Again, for
τ ∈ (1.3741, 3.3316), the ordering is obtained as A3 � A5 � A4 � A2 � A1 and
the ordering, A3 � A5 � A2 � A4 � A1, is found for τ ∈ (3.3316, 20].

Now, considering r = 2, Fig. 10 indicates that several ranking results are found
for different span of τ as A4 � A5 � A3 � A2 � A1 for τ ∈ (0, 0.1865);
A5 � A4 � A3 � A2 � A1 for τ ∈ (0.1865, 0.3877); A5 � A3 � A4 � A2 � A1
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Table 6 Ranking results by the proposed method with the variation of different parameters

Parameter τ By HPFHWMSM operator Parameter ρ By HPFFWMSM operator

r = 1 τ = 0.001 A4 � A3 � A5 � A2 � A1 ρ = 1.001 A4 � A5 � A3 � A2 � A1

τ = 5 A5 � A3 � A2 � A1 � A4 ρ = 5 A5 � A4 � A3 � A2 � A1

τ = 10 A5 � A3 � A2 � A1 � A4 ρ = 10 A5 � A4 � A3 � A2 � A1

τ = 15 A5 � A3 � A2 � A1 � A4 ρ = 15 A5 � A4 � A3 � A2 � A1

τ = 20 A5 � A3 � A2 � A1 � A4 ρ = 20 A5 � A4 � A3 � A2 � A1

r = 2 τ = 0.001 A4 � A5 � A2 � A3 � A1 ρ = 1.001 A4 � A5 � A3 � A2 � A1

τ = 5 A5 � A3 � A2 � A1 � A4 ρ = 5 A5 � A4 � A3 � A2 � A1

τ = 10 A5 � A3 � A2 � A1 � A4 ρ = 10 A5 � A4 � A3 � A2 � A1

τ = 15 A5 � A3 � A2 � A1 � A4 ρ = 15 A5 � A4 � A3 � A2 � A1

τ = 20 A5 � A3 � A2 � A1 � A4 ρ = 20 A5 � A4 � A3 � A2 � A1

r = 3 τ = 0.001 A5 � A2 � A3 � A1 � A4 ρ = 1.001 A4 � A5 � A3 � A2 � A1

τ = 5 A5 � A3 � A2 � A1 � A4 ρ = 5 A5 � A4 � A3 � A2 � A1

τ = 10 A5 � A3 � A2 � A1 � A4 ρ = 10 A5 � A4 � A3 � A2 � A1

τ = 15 A5 � A3 � A2 � A1 � A4 ρ = 15 A5 � A4 � A3 � A2 � A1

τ = 20 A5 � A3 � A2 � A1 � A4 ρ = 20 A5 � A4 � A3 � A2 � A1

r = 4 τ = 0.001 A4 � A5 � A2 � A3 � A1 ρ = 1.001 A5 � A3 � A2 � A1 � A4

τ = 5 A5 � A3 � A2 � A1 � A4 ρ = 5 A5 � A3 � A2 � A1 � A4

τ = 10 A5 � A3 � A2 � A1 � A4 ρ = 10 A5 � A3 � A2 � A1 � A4

τ = 15 A5 � A3 � A2 � A1 � A4 ρ = 15 A5 � A3 � A2 � A1 � A4

τ = 20 A5 � A3 � A2 � A1 � A4 ρ = 20 A5 � A3 � A2 � A1 � A4

Fig. 9 Score values of
alternatives for variation in ρ

when r = 1 using
HPFHWMSM operator
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Fig. 10 Score values of
alternatives for variation in ρ

when r = 2 using
HPFHWMSM operator

Fig. 11 Score values of
alternatives for variation in ρ

when r = 3 using
HPFHWMSM operator

for τ ∈ (0.3877, 0.5541); A5 � A3 � A2 � A4 � A1 for τ ∈ (0.5541, 2.9418);
A5 � A3 � A2 � A1 � A4 for τ ∈ (2.9418, 20].

Corresponding to r = 3 and 4, ranking results remain stable over τ ∈ (0.001, 20],
with the ranking A5 � A3 � A2 � A1 � A4, as displayed in Figs. 11 and 12.

Again, if the problem under consideration is solved by HPFFWMSM operator,
keeping MSM parameter r = 1, 2, 3, 4, several ranking results are obtained which
are presented in Figs. 13, 14, 15, 16, respectively.

When HPFFWMSM operator is used taking r = 1, ranking result is found as
A4 � A5 � A3 � A2 � A1 for Frank parameter ρ ∈ (1.001, 1.4875), but ordering
place of A4 and A5 interchanges when ρ varying from 1.4875 to 20, which is realized
fromFig. 13. But, ranking result still remains the same as A5 � A3 � A2 � A4 � A1

(as displayed in Fig. 14) for using HPFFWMSM operator along with r = 2.
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Fig. 12 Score values of
alternatives for variation in ρ

when r = 4 using
HPFHWMSM operator

Fig. 13 Score values of
alternatives for variation in ρ

when r = 1 using
HPFFWMSM operator

Fig. 14 Score values of
alternatives for variation in ρ

when r = 2 using
HPFFWMSM operator
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Fig. 15 Score values of
alternatives for variation in ρ

when r = 3 using
HPFFWMSM operator

Fig. 16 Score values of
alternatives for variation in ρ

when r = 4 using
HPFFWMSM operator

Further according to Fig. 15, if r = 3 is taken as the value of MSM parameter,
ordering of the alternatives is found as A5 � A3 � A2 � A1 � A4 and A5 � A3 �
A2 � A4 � A1 for ρ ∈ (1.001, 7.9174) and ρ ∈ (7.9174, 20], respectively.

Figure 16 indicates that only one ordering, A5 � A3 � A2 � A1 � A4 is obtained
by varying ρ from 1.001 to 20.

6 Comparison and Discussions

From the above results, it is evidenced that the developed AOs have the higher
capability, not only to cover the concepts of different existing operators, but also a
large number of AOs can be developed based on those operators.
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• Compared with PFWMSM operator [44]

It is worthy to mention here that different ranking results of alternatives are found
using the proposed method and which also covers the result of Wei and Lu [44]. The
technique developed by Wei and Lu [44] is based on algebraic operation under PF
environment, whereas the proposed approach is based on At-CN&t-Ns using HPF
information. So, it is claimed that the approach of Wei and Lu [44] is a particular
case of the proposed method. Thus, the proposed methodology is more consistent
than the technique developed by Wei and Lu [44].

• Compared with WHPFMSM operator [45]

In comparison toWHPFMSMAO [45], it is found that the solution achieved through
the developed HPFHWMSMoperator, by considering the value of Hamacher param-
eter, τ = 1, the ranking results of the alternatives are found as the same as achieved
by Garg [45], as shown in Table 7. Therefore, the method introduced by Garg [45]
now appeared as a special case of the proposed method. Again, if the Hamacher

Table 7 Comparison of the ordering of alternatives with the existing operator [45]

Methods MSM parameter Ordering

WHPFMSM [45] operator r = 1 A4 � A5 � A3 � A2 � A1

r = 2 A5 � A4 � A3 � A2 � A1

r = 3, 4 A5 � A3 � A2 � A1 � A4

Proposed HPFHWMSM operator r = 1 A4 � A5 � A3 � A2 � A1

A3 � A4 � A5 � A2 � A1

A3 � A5 � A4 � A2 � A1

A3 � A5 � A2 � A4 � A1

r = 2 A4 � A5 � A3 � A2 � A1

A5 � A4 � A3 � A2 � A1

A5 � A3 � A4 � A2 � A1

A5 � A3 � A2 � A4 � A1

A5 � A3 � A2 � A1 � A4

r = 3, 4 A5 � A3 � A2 � A1 � A4

Proposed HPFFWMSM operator r = 1 A4 � A5 � A3 � A2 � A1

A5 � A4 � A3 � A2 � A1

r = 2 A5 � A3 � A2 � A4 � A1

r = 3 A5 � A3 � A2 � A1 � A4

A5 � A3 � A2 � A4 � A1

r = 4 A5 � A3 � A2 � A4 � A1

A5 � A3 � A2 � A1 � A4
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parameter, τ = 1, is considered together with MSM parameter, r = 2, the developed
HPFHWMSM operator is converted into weighted PF BM operator [51].

Apart from that, several number ofAOs, viz., dualHPFBM[52], dualHFweighted
MSM[53], and others can be constructed from the developedHPFHWMSMoperator.
The score values of alternatives are also evaluated for different values of the parameter
τ in the range (0,20] and different ranking orders of alternatives are found.

Moreover, when this problem is solved using HPFFWMSM AO, several ranking
orders of the alternatives are found as like as the ordering achieved using Hamacher
class of AOs.

Thus, the proposed method is flexible enough to capture the concept of a large
number of AOs by varying different parameters associated with it.

7 Conclusions

The concept of MSM is extended in this article under HPF environment to construct
AHPFMSMandAHPFWMSMAOsbased onAt-CN&t-Ns. Several properties of the
developed operators have also been studied. The developed AOs possess the capacity
of acquiring concepts of interrelationships between input arguments. It has already
been shown in Sect. 6 that the developed operators are efficient enough to capture the
concepts of other types of AOs in different variants of fuzzy environments.Many new
types of AOs can be generated from the developed AOs, viz., AHPFA, AHPFBM,
and AHPFGM operators by changing the value of MSM parameter. Again consid-
ering different decreasing generators in AHPFMSM, several AOs, viz., HPFWMSM,
HPFEWMSM, HPFHWMSM, and HPFFWMSM operators can be derived. Using
the developed operators, several methods for solving MCDM problems with HPF
information are presented. The developed approaches can capture the preferences of
the DMs using different parameters involved with the methods.

Two illustrative examples have been solved to establish potentiality of the
proposed approaches in the contexts of the selection of emerging technology enter-
prise and profitable market for investment by an investor. Solving those it has been
proved that several existing operators now appeared as special cases of the developed
operators by keeping the same ranking results orwith slight variations. The developed
approaches for solving MCDM problems can be applied to solve various real-life
decision-making problems, like uncertain programming, pattern recognition, cluster
analysis, etc. under HPF environments. Further, the concept of the developed oper-
ators may also be extended to other fuzzy contexts, like q-rung, hesitant q-rung
orthopair fuzzy, and other variants. However, it is hoped that the developed methods
may open up new direction of AOs under different variants of fuzzy environments
by integrating a large number of AOs in the context of solving MCDM problems.
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Extensions of Linguistic Pythagorean
Fuzzy Sets and Their Applications
in Multi-attribute Group
Decision-Making

Jun Wang, Xiaopu Shang, Wuhuan Xu, Chunliang Ji, and Xue Feng

1 Introduction

In modern decision-making sciences, multi-attribute group decision-making
(MAGDM) refers to a series of decision issues where domain decision experts (DEs)
are required to provide their evaluations over feasible alternatives under multiple
attributes [1–5]. Some techniques or methods are then applied to help DEs to obtain
the ranking order of candidate alternatives so that the optimal one(s) is obtained
accordingly. However, it is quite difficult to deal with the inherent fuzziness and
uncertainties in practical MAGDM problems. Numerous scholars and scientists
devoted themselves to discover tools that can effectively handle fuzzy information in
data. Intuitionistic fuzzy sets (IFSs) [6], originally generated by Atanassov have the
capability of representing uncertain information and they depict fuzzy phenomenon
from both positive and negative perspectives. In other words, by simultaneously
incorporating membership degree (MD) and non-membership degree (NMD), IFSs
canmore comprehensively and accurately describe fuzzy and vague decision-making
information. Due to this characteristic, IFSs-based MAGDM theory and methods
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have been active fields, and quite a few new achievements have been made in the
past couple of years. For example, in [7] Xu originated the theory of aggregation
operators (AOs) for intuitionistic fuzzy numbers (IFNs). After it, some other AOs for
IFNs, such as intuitionistic fuzzyBonferronimean [8], intuitionistic fuzzy point oper-
ators [9], intuitionistic fuzzy Maclaurin symmetric mean [10], intuitionistic fuzzy
Muirhead mean [11], intuitionistic fuzzy power average operators [12], intuitionistic
fuzzy power Bonferroni mean [13], etc., have been proposed one after another.

MDs and NMDs of IFSs are denoted by crisp numbers, however, which is some-
times difficult to be determined by DEs. As MAGDM problems in practice are
becoming more and more complicated, rather than crisp numbers, DEs would like
to employ linguistic terms to denote MDs and NMDs to express their assessments.
Motivated by this fact, Chen et al. [14] generalized IFSs and proposed linguistic
intuitionistic fuzzy sets (LIFSs), which use linguistic terms to denote MD and NMD.
Linguistic terms are quite similar to natural language and so that it is more convenient
for DEs to use LIFSs to provide their evaluation values. After the appearance of LIFS,
Ou et al. [15] introduced the LIFS-TOPSIS method to deal with MAGDM problems.
Yuan et al. [16] proposed a series of linguistic intuitionistic fuzzy (LIF) Shapely AOs
to handle decision-making issueswith LIF numbers (LIFNs).Meng et al. [17] studied
preference relations under LIFSs and applied them in decision-making problems. Liu
and You [18] proposed a collection of novel LIF Heronian mean AOs under Einstein
t-norm and t-conorm. Liu and Qin [19] put forward LIF power average operator
in order to reduce the negative influence of unduly high or low aggregated LIFNs
on the final results. Liu and Qin [20], and Liu and Liu [21] further presented LIF
Maclaurin symmetric mean operators and LIF Hamy mean operators to capture the
interrelationship among multiple aggregated LIFNs. To effectively handle hetero-
geneous interrelationship among LIFNs, Liu and his colleagues [22] defined LIF
partitioned Heronian mean operators. Garg and Kumar [23] further introduced novel
LIF power average operators and the corresponding decision-making method based
on set pair analysis. Zhang et al. [24] proposed the LIF-ELECTRE decision-making
method and applied in coal mine safety evaluation problems. Peng and Wang [25]
introduced a LIFMAGDMmethod based on cloud model and studied its application
in selecting sustainable energy crop. For more studies on LIFSs-based MAGDM
methods, readers are suggested to refer [26–30].

Aforementioned literatures reveal that LIFSs are capable to depict fuzzy eval-
uation values provided by DEs effectively, however, they still have drawbacks
when dealing with some practical decision-making situations. The definition of
LIFS is as follows: let S̃ = {sα|s0 ≤ sα ≤ st , α ∈ [0, t] } be a predefined contin-
uous linguistic term set, then a LIFS defined on S̃ can be expressed as A =
{(x, sθ (x), sσ (x))|x ∈ X }. As is known,A should satisfy the constraint that θ+σ ≤ t ,
which cannot be always strictly satisfied in some practical MAGDM problems. For
example, an ordered pair (s3, s4) is used to depict a DE’s evaluation value, where
sl is a linguistic term and l ∈ [0, 6]. As 3 + 4 ≤ 6, the evaluation value (s3, s4)
cannot be handled by LIFSs, which illustrates the weakness of LIFSs. In order to
more accurately capture DEs’ complicated and uncertain decision information and
handle more difficult decision situations, Garg [31] proposed a new tool, called
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linguistic Pythagorean fuzzy sets (LPFSs), which are motivated by Pythagorean
fuzzy sets (PFSs) that introduced by Yager [32]. As is widely known, the constraint
of PFSs is that the square sum of MD and NMD is not greater than one and this
characteristic makes PFSs more powerful and flexible than IFSs, gaining great inter-
ests from scholars [33–42]. In LPFSs, MDs and NMDs are denoted by linguistic
terms, satisfying the constraint that θ2 + σ 2 ≤ t2 (sθ and sσ denote the MD and
NMD, respectively, and st is the largest linguistic term of the predefined linguistic
term set), and due to this reason, LPFSs can describe lager information span than
LIFSs. In [31], Garg proposed basic operational linguistic Pythagorean fuzzy (LPF)
values, presented their fundamental AOs, and applied in MAGDM problems. After
it, Liu et al. [43] studied LPF operational rules, AOs, and MAGDM method based
on Archimedean t-norm and t-conorm. Han et al. [44] introduced distance and
entropy measures of LPFSs and based on which, an LPF-TOPSIS decision-making
method was originated. To felicitously handle MAGDM issues where interrelation-
ship among attributes is heterogeneous, Lin et al. [45] put forward theLPFpartitioned
Bonferroni mean operators.

There exists high indeterminacy and hesitancywhen providingMDs andNMDs of
evaluation values in the most practical MAGDM processes. Hence, the key problem
is to effectively deal with the inherent fuzziness and uncertainties of data and DEs’
hesitancy. For instance, Torra [46] proposed the concept of hesitant fuzzy sets (HFSs)
by considering multiple possible MDs in an evaluation element. Compared with the
classical fuzzy set theory [47], HFSs can better depict DEs’ hesitancy. Similarly, Zhu
et al. [48] introduced the dual HFSs (DHFSs) by taking not only multiple MDs but
also NMDs into account. DHFSs are regarded as an extension of IFS, as they empha-
size multiple values of degrees instead single ones. Another example is dual hesitant
Pythagorean fuzzy sets introduced by Wei et al. [49], which consider more than
one Pythagorean fuzzy MDs and NMDs in the traditional PFSs. These publications
remind scholars and DEs an extensively existing phenomenon that most decisions
are made in a hesitant fuzzy environment and DEs’ hesitancy should be taken into
consideration before determining the rank of feasible alternatives. In LPF, decision-
making environment, we always encounter MAGDM situations wherein DEs are
hesitant among a set of linguistic terms when giving the MDs and NMDs an eval-
uation value. Motivated by DHFSs which allow the existence of multiple MDs and
NMDs in a decision evaluation value, this paper extends the traditional LPFSs to a
hesitant fuzzy environment and propose dual hesitant linguistic Pythagorean fuzzy
sets (DHLPFSs), which permit MDs and NMDs to be denoted by a set of linguistic
terms. Compared with LPFSs, DHLPFSs are more flexible and can depict attribute
values more accurately. In this chapter. We first give the definition, operational rules,
comparison method, and AOs of DHLPFSs and propose a novel MAGDM method
with DHLPFSs. We also show the performance of the proposed newmethod through
illustrative examples.

Additionally, to more accurately capture DEs’ evaluation value in hesitant fuzzy
decision-making environment, not only each member in an evaluation element but
also its probabilistic information should be considered. For example, Zhang et al.
[50] capture the probability of each member in HFSs and proposed the probabilistic
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HFSs (PHFSs). Compared with HFSs, the PHFSs not only depict the hesitant fuzzy
MDs but also the corresponding probabilistic information. Afterward, PHFSs have
been successfully applied in various fields, such as public company efficiency eval-
uation [51], hospital evaluation [52], virtual reality project declaration evaluation
[53], selection of the most influential teacher [54], etc. Similarly, Hao et al. [55]
extended DHFSs to probabilistic DHFSs by taking the probabilities of possible MDs
and NMDs into account. The ability of efficiency of probabilistic DHFSs to depict
DEs’ evaluation values is further studied in [56–58]. Additionally, some other new
information representation tools were also proposed, such as probabilistic linguistic
terms set [59], probabilistic linguistic dual hesitant fuzzy sets [60], and probabilistic
single-valued neutrosophic hesitant fuzzy sets [61]. These publications motivate us
to further extend DHLPFSs to a more generalized form, i.e., probabilistic DHLPFSs
(PDHLPFSs). The advantages of PDHLPFSs are outstanding. First, they allow the
MDandNMDtobedenoted by two collections of possible linguistic terms,which can
comprehensively describe DEs’ high hesitancy. Second, they also consider the corre-
sponding probabilistic information of each linguistic term, which can more effec-
tively depict group’s evaluation values. For the sake of applications of PDHLPFSs in
MAGDM, the basic operational laws, comparison method, and AOs of PDHLPFSs
are studied. Finally, the main steps of solving aMAGDMproblem under PDHLPFSs
are presented.

The main motivations of our works are to propose novel MAGDM methods, that
only not more accurately depict DEs’ evaluation information but also help them
to appropriately determine the optimal alternatives. The main contributions of this
chapter are four-fold. First, two information expression tools were proposed, namely
DHLPFSs and PDHLPFSs. These two fuzzy set theories have obvious advantages
and superiorities in depicting DEs’ evaluations. Second, we proposed a series of
AOs to fuse DHLPFSs and PDHLPFSs, which are potential for introducing novel
decision-making methods. Third, we proposed two newMAGDMmethods. Finally,
real MAGDM problems were employed to prove the validity of our methods. The
rest of this chapter is organized as follows. Section 2 recalls basic notions which
will be used in the following sections. Section 3 introduces DHLPFSs and the corre-
sponding MAGDM method. Section 4 further proposes DHLPFSs and studies their
applications in MAGDM. Conclusion remarks can be found in Sect. 5.

2 Basic Concepts

This section briefly reviews basic notions that will be used in the following sections.

Definition 1 ([31]) Let X be a fixed set and S̃ = {s0, s1, s2 . . . , sl} be a continuous
linguistic term set with odd cardinality. A linguistic Pythagorean fuzzy set (LPFS)
defined in X is given as

γ = {(
x, sα(x), sβ(x)

)|x ∈ X
}
, (1)
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where sα(x), sβ(x) ∈ S[0,l], sα , and sβ represent the linguistic MD and linguistic
NMD, respectively, such that 0 ≤ α2 + β2 ≤ l2. For convenience, the ordered pair
γ = (

sα, sβ
)
is called a linguistic Pythagorean fuzzy value (LPFV). The linguistic

indeterminacy degree of γ is expressed as π(x) = s
(l2−α2−β2)

1/2 .
The basic operational rules of LPFVs are presented as follows.

Definition 2 ([31]) Let γ1 = (
sα1 , sβ1

)
, γ2 = (

sα2 , sβ2

)
, and γ = (

sα, sβ
)
be LPFVs

and λ be a positive real number, then

(1) γ1 ⊕ γ2 =
(
s
(α2

1+α2
2−α2

1α
2
2/ l

2)
1/2 , s(β1β2/ l)

)
;

(2) γ1 ⊗ γ2 =
(
s(α1α2/ l), s(β2

1+β2
2−β2

1β
2
2 / l

2)
1/2

)
;

(3) λγ =
(
s
l
(
1−(1−α2/ l2)

λ
)1/2 , sl(β/ l)λ

)
;

(4) γ λ =
(
sl(α/ l)λ , sl

(
1−(1−β2/ l2)

λ
)1/2

)
.

Garg [31] proposed a method to compare any two LPFVs.

Definition 3 ([31]) Let γ = (
sα, sβ

) ∈ �[0,l] be a LPFV, then the score function
S(γ ) of γ is expressed as

S(γ ) = s√
(l2+α2−β2)/2

, (2)

and the accuracy function H(γ ) is defined as

H(γ ) = s√
α2+β2 , (3)

where S(γ ), H(γ ) ∈ S. Let γ1 = (
sα1 , sβ1

)
and γ2 = (

sα2 , sβ2

)
be any two LPFVs,

then

(1) If S(γ1) > S(γ2), then γ1 > γ2;
(2) If S(γ1) = S(γ2), then

If H(γ1) > H(γ2), then γ1 > γ2;
If H(γ1) = H(γ2), then γ1 = γ2.

3 Dual Hesitant Linguistic Pythagorean Fuzzy Sets
and Their Applications in MAGDM

In this section, we introduce the notion of DHLPFSs and study their application in
MAGDM problems. For this purpose, we first introduce the motivations to explain
why we propose DHLPFSs and why we need them. Afterward, some related notions,
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such as operational rules, comparison method, and AOs are proposed. Finally, we
employ DHLPFSs as well as their AOs to solve MAGDM problems.

3.1 Motivations and Necessity of Proposing DHLPFSs

In LPFSs, MD and NMD are denoted by two linguistic terms. As is known, linguistic
terms set and linguistic terms are similar to natural language so that LPFSs provide
DEs a convenient and natural manner to express their evaluation values. Due to this
reason, LPFSs aremore suitable than PFSs to depict DEs’ fuzzy and complex evalua-
tion information. However, the traditional LPFSs still have limitations in some prac-
tical MAGDM problems. As real decision-making problems are very complicated,
sometimes it is difficult for DEs to provide single linguistic terms for MD and NMD.
Actually, DEs are always hesitant among a collection of possible linguistic terms
when determining MDs and NMDs of their evaluation values. To better demonstrate
this phenomenon, we provide the following example.

Example 1 Suppose there are three professors and they are invited to evaluate the
innovativeness of a doctoral student’s research proposal. To more accurately and
effectively evaluate the quality and innovation, DEs are permitted to use multiple
values to denoteMDs andNMDs of their evaluation values. Let S be a given linguistic
term set, where S = {s0 = very poor, s1 = poor, s2 = slightly poor, s3 = fair, s4
= slightly good, s5 = good, s6 = slightly good}. the three professors use multiple
linguistic terms to express their evaluation information and DEs’ evaluation opinions
are listed in Table 1.

Take the first professor as an example, as seen inTable 1, he/she is hesitant between
s4 and s5 when giving MD and s1, s2 and s3 when providing MD. It is obvious that in
the framework of LPFSs, the overall evaluation values of the decision group cannot
be denoted. This is because LPFS theory only allows single MD and NMD, and so
that it is insufficient to handle Example 1. In practical MAGDM problems, due to
many reasons, such as lacking prior knowledge or time, DEs often hesitate among
several values when providing MDs and NMDs and obviously LPFSs are incapable
to handle these situations. Therefore, it is necessary to study LPFSs under hesitant
fuzzy decision environment.

Table 1 The evaluation
information provided by DEs
in Example 1

Possible MDs Possible NMDs

The first professor {s4, s5} {s1, s2, s3}
The second professor {s2, s3, s4} {s0, s3}
The third professor {s1, s2, s4} {s0, s2, s3}
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3.2 Definition of DHLPFSs

Definition 4 Let X be a fixed set and S̃ = {sα|0 ≤ α ≤ l } be continuous linguistic
term set with odd cardinality. A dual hesitant linguistic Pythagorean fuzzy set
(DHLPFSs) defined on X is expressed as

D = {〈x, hD(x), gA(x)〉|x ∈ X}, (4)

where hA(x), gA(x) ⊆ S̃ are two sets of some linguistic terms, denoting the possible
linguisticMDs and linguistic NMDs of element x ∈ X to the setD, respectively, such
that σ 2+η2 ≤ l2, where sσ ∈ hD(x), and sη ∈ gD(x) for x ∈ X . For convenience, we
call the ordered pair d(x) = (hD(x), gD(x)) a dual hesitant linguistic Pythagorean
fuzzy element (DHLPFE), which can be denoted as d = (h, g), where sσ ∈ h, sη ∈ g
and σ 2 + η2 ≤ l2.

Definition 4 reveals that DHLPFSs can be regarded as a generalized form of
LPFSs, by considering situations of the existence of multiple MDs and NMDs. In
other words, LPFS is a special case of DHLPFSs. Hence, the proposed DHLPFSs
are more suitable to deal with decision-making cases wherein DEs have different
opinions and they cannot reach an agreement. In Example 1, if we use DHLPFSs to
denote the overall evaluation value, then it should be d = {{s1, s2, s3, s4, s5}, {s0,
s1, s2, s3}}, which is obviously a DHLPFE.

3.3 Operations of DHLPFEs

Based on the definition of DHLPFEs and the operations principle of DHFEs, we
propose some basic operational rules of DHLPFEs.

Definition5 Letd1 = (h1, g1),d2 = (h1, g2), andd = (h, g)be any threeDHLPFEs
and λ be a positive real number, then

(1) d1 ⊕ d2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s
(σ 2

1 +σ 2
2 −σ 2

1 σ 2
2 / l2)

1/2

}
,
{
s(η1η2/ l)

}}
;

(2) d1 ⊗ d2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s(σ1σ2/ l)

}
,
{
s
(η2

1+η2
2−η2

1η
2
2/ l

2)
1/2

}}
;

(3) λd = ⋃
σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ
)1/2

}
,
{
sl(η/ l)λ

}}
;

(4) dλ = ⋃
σ∈h,η∈g

{{
sl(σ/ l)λ

}
,

{
s
l
(
1−(1−η2/ l2)

λ
)1/2

}}
.

Example 2 Letd1 = {{s3, s4, s5}, {s2, s3}} andd2 = {{s2, s4}, {s4}}be twoDHLPFEs
derived from a pre-defined linguistic term set S̃ = {sα|0 ≤ α ≤ 6 }, then
d1 ⊕ d2 = {{s3.4641, s4.5826, s4.2687, s4.9889, s5.1208, s5.4671}, {s1.3333, s2.0000}};
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d1 ⊗ d2 = {{s1.0000, s1.333, s2.6667, s3.3333}, {s4.2687, , s4.5826}};
3d1 = {{s4.5621, , s5.4614, s5.9138}, {s0.2222, s0.7500}};
d3
1 = {{s0.7500, s1.7778, s3.4722}, {s3.2735, s4.5621}}.

Theorem 1 Let d1 = (h1, g1), d2 = (h1, g2), and d = (h, g) be any three
DHLPFEs, then

(1) d1 ⊕ d2 = d2 ⊕ d2;
(2) d1 ⊗ d2 = d2 ⊗ d1;
(3) λ(d1 ⊕ d2) = λd1 ⊕ λd2;
(4) λ1d ⊕ λ2d = (λ1 + λ2)d, (λ1, λ2 ≥ 0);
(5) dλ1 ⊗ dλ2 = dλ1+λ2 , (λ1, λ2 ≥ 0);
(6) dλ

1 ⊗ dλ
2 = (d1 ⊗ d2)

λ, (λ ≥ 0).

Proof It is easy to prove that (1) and (2) hold, in the following we attempt to prove
other formulas. According to Definition 5, we have

λ(d1 ⊕ d2) =
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(
1−
((

1−σ21 / l2
)(

1−σ22 / l2
))λ

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
(
η1η2/ l2

)λ

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,

and

λd1 ⊕ λd2 =
⋃

σ1∈h1,η1∈g1

{{

s
l
(
1−(1−σ 2

1 / l2
)λ)1/2

}

,
{
sl(η1/ l)λ

}}

⊕
⋃

σ2∈h2,η2∈g2

{{

s
l
(
1−(1−σ 2

2 / l2
)λ)1/2

}

,
{
sl(η2/ l)λ

}}

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2

}

,
{
sl(η1η2/ l2)λ

}}

= λ(d1 ⊕ d2),

which proves the correctness of (3).
Meanwhile, we can obtain that

λ1d ⊕ λ2d

=
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ1
)1/2

}

,
{
sl(η/ l)λ1

}}

⊕
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ2
)1/2

}

,
{
sl(η/ l)λ2

}}

=
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ2+λ1
)1/2

}

,
{
s(l(η/ l)λ1+λ2

)
}}

,

and

(λ1 + λ2)d =
⋃

σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ1+λ2
)1/2

}
,
{
sl(η/ l)λ1+λ2

}} = λ1d ⊕ λ2d,
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which proves the validity of (4).
Moreover,

dλ1 ⊗ dλ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1

}
,

{
s
l
(
1−(1−η2/ l2)

λ1
)1/2

}}

⊗
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ2
)1/2

}}
,

=
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2

}}

dλ1+λ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2

}}
= dλ1 ⊗ dλ2 ,

which proves the rightness of (5).
Besides,

dλ
1 ⊗ dλ

2 =
⋃

σ1∈h1,η1∈g1

{{
sl(σ1/ l)

λ

}
,

{
s
l
(
1−(1−η2

1/ l
2)

λ
)1/2

}}

⊗
⋃

σ2∈h2,η2∈g2

{{
sl(σ2/ l)

λ

}
,

{
s
l
(
1−(1−η2

2/ l
2)

λ
)1/2

}}
,

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)

λ

}
,

{
s
l
(
1−((1−η2

1/ l
2)(1−η2

2/ l
2))

λ
)1/2

}}
.

In addition,

(d1 ⊗ d2)
λ =

⎛

⎝
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎨

⎩

{
sσ1σ2/ l

}
,

⎧
⎨

⎩
s(

η21+η22−η21η22/ l2
)1/2

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎠

λ

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎪⎨

⎪⎩

⎧
⎨

⎩
s
l
(
σ1σ2/ l2

)λ

⎫
⎬

⎭
,

⎧
⎪⎨

⎪⎩
s
l

(
1−
((

1−η21/ l2
)(

1−η22/ l2
))λ

)1/2

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
= dλ

1 ⊗ dλ
2 ,

which demonstrates (6) holds.

3.4 Comparison Method of DHLPFEs

To rank DHLPFEs, we provide the following comparison method.

Definition 6 Let d = (h, g) be a DHLPFEs, the score function τ(d) of d is
expressed as

τ(d) = s√√√√
(

l2+
(

#h∑

i=1,σ∈h
σ 2
i

)

/#h−
(

#g∑

j=1,η∈g
η2
j

)

/#g

)

/2

, (5)
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and the accuracy function ϕ(d) is defined as

ϕ(d) = s√√√√
((

#h∑

i=1,σ∈h
σ 2
i

)

/#h+
(

#g∑

j=1,η∈g
η2
j

)

/#g

)

/2

. (6)

where #h and #g denote the numbers of elements in h and g. For any two DHLPFEs
d1 and d2,

(3) If τ(d1) > τ(d2), then d1 > d2;
(4) If τ(d1) = τ(d2), then

If ϕ(d1) > ϕ(d2), then d1 > d2;
If ϕ(d1) = ϕ(d2), then d1 = d2.

Example 3 Let S̃ = {sα|0 ≤ α ≤ 6} be a pre-defined continuous linguistic term set,
and d1 = {{s0, s2, s3}, {s4, s5}} and d2 = {{s1, s3}, {s2, s3, s5}} be two DHLPFEs
defined on S̃, then we have

τ(d1) = s√(
62+

(
02+22+32

)
/3−

(
42+52

)
/2
)
/2

= s3.1491, ϕ(d1) = s√((
02+22+32

)
/3+

(
42+52

)
/2
)
/2

= s3.5237

τ(d2) = s√(
62+

(
12+32

)
/2−

(
22+32+52

)
/3
)
/2

= s3.7639, ϕ(d2) = s√((
12+32

)
/2+

(
22+32+52

)
/3
)
/2

= s2.9721

According to Definition 6, we can get d2 > d1.

3.5 Some Basic Aggregation Operators of DHLPFEs

To aggregate attribute values under DHLPFSs, we propose a series of weighted AOs
for DHLPFEs and discuss their properties.

Definition 7 Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of DHLPFEs, and let
w = (w1,w2, . . . ,wn)

T be the weight vector, such that 0 ≤ wi ≤ 1 and
∑n

i=1 wi =
1. The dual hesitant linguistic Pythagorean fuzzy weighted average (DHLPFWA)
operator is defined as

DHLPFW A(d1, d2, . . . , dn) = ⊕n
i=1widi , (7)

Based on the operations of DHLPFEs, the following aggregated value can be
obtained.
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Theorem 2 Let di = (hi , gi )(i = 1, 2, . . . , n) be collection of DHLPFEs, then the
aggregation result by using the DHLPFWA operator is also a DHLPFE and

DHLPFW A(d1, d2, . . . , dn ) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
n∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎨

⎪⎩
s
l

n∏

i=1

(
ηi / l

)wi

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (8)

Proof When n = 2, then

w1d1 =
⋃

σ1∈h1,η1∈g1

{{
s
l(1−(1−σ 2

1 / l2)
w1)

1/2

}
,
{
sl(η1/ l)w1

}}
,

and

w2d2 =
⋃

σ2∈h2,η2∈g2

{{
s
l(1−(1−σ 2

2 / l2)
w2)

1/2

}
,
{
sl(η2/ l)w2

}}
.

Then

DHLPFW A(d1, d2) = w1d1 ⊕ w2d2

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

⎧
⎨

⎩

⎧
⎨

⎩
s
l
(
1−
(
1−σ21 / l2

)w1
(
1−σ22 / l2

)w2
)1/2

⎫
⎬

⎭
,

{

s(
l
(
η1/ l

)w1
(
η2/ l

)w2
)

}}

,

which implies that Eq. (8) holds for n = 2.
In addition, we assume Eq. (8) holds for n = k, i.e.,

DHLPFW A
(
d1, d2, . . . , dk

) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

l

(

1−
k∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎨

⎪⎪⎩
s
l

k∏

i=1

(
ηi / l

)wi

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

then when n = k + 1, we can obtain

DHLPFW A(d1, d2, . . . , dk , dk+1) = ⊕k
i=1wi di

⊕ wk+1dk+1

⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k∏

i=1

(
1−σ 2

i / l2
)wi

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi / l)wi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭

⊕
⋃

σk+1∈hk+1,ηk+1∈gk+1

{{

s
l
(
1−(1−σ 2

k+1/ l
2
)λ)1/2

}

,

{
s
l
(
η2k+1/ l

)λ

}}

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k+1∏

i=1

(
1−σ 2

i / l2
)wi

)1/2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
k+1∏

i=1
(ηi / l)wi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,
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i.e., Eq. (8) holds for n= k+ 1. Therefore, (12) holds for all n. The proof of Theorem2
is completed.

In the following, we investigate some properties of DHLPFWA operator.

Theorem 3 (Monotonicity) Let di = (hi , gi ) and d∗
i = (

h∗
i , g

∗
i

)
(i = 1, 2, . . . , n)

be two collections of DHLPFEs, where sσi ∈ hi , sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
, then

DHLPFW A(d1, d2, . . . , dn) ≤ DHLPFW A
(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
. (9)

Proof For any i , there are sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
. For the terms in the aggregated

results, we have

s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 ≤ s
l

(
1−

n∏

i=1
(1−σ ∗2

i / l2)
wi

)1/2 and s
l

n∏

i=1
(ηi/ l)

wi
≥ s

l
n∏

i=1
(η∗

i / l)
wi

.

According to Definition 6, we can get DHLPFW A(d1, d2, . . . , dn) ≤
DHLPFW A

(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
with equality if and only if sσi = sσ ∗

i
and sηi = sη∗

i

for all i .

Theorem 4 (Boundedness) Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of
DHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let d− = (

smin{σi }, smax{ηi }
)
,

d+ = (
smax{σi }, smin{ηi }

)
. Then

DHLPFW A
(
d−, d−, . . . , d−) ≤ DHLPFW A(d1, d2, . . . , dn)

≤ DHLPFW A
(
d+, d+, . . . , d+). (10)

Proof For∀i = 1, 2, . . . , n, we have smin{σi } ≤ sσi ≤ smax{σi }, smin{ηi } ≤ sηi ≤ smax{ηi }.
Then

s
l

(
1−
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i=1

(
1−σ 2

i / l2
)wi

) 1
2

≥ s
l

(
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(
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)wi
) 1

2
= s

l

⎛

⎜
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)
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i=1
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⎞

⎟
⎠

1
2

= smin{σi },

⇒ s
l

n∏
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(ηi / l)wi

≤ s
l
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i=1
(max{ηi }/ l)wi

= smax{ηi },

⇒ s
l

(
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(
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)wi

) 1
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(
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2
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(min{ηi }/ l)wi

= smin{ηi }.

Further,
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(
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=
{
smin

{
σi
}, smax

{
ηi
}
}
;

DHLPFW A
(
d+, d+, . . . , d+) = ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎪⎪⎨
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s

l

(

1−
n∏

i=1

(
1−(max

{
σi
}
/ l
)2
)wi

)1/2

⎫
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,

⎧
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⎪⎩
s
l

n∏

i=1

(
min

{
ηi
}
/ l
)wi

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{
smax

{
σi
}, smin

{
ηi
}
}
;

According to Definition 6, we have DHLPFW A(d1, d2, . . . , dn) ≥
DHLPFW A

(
d−, d−, . . . , d−) with equality if and only if di is same as d−.

Similarly, DHLPFW A(d1, d2, . . . , dn) ≤ DHLPFW A
(
d+, d+, . . . , d+) with

equality if and only if di is same as d+ can be obtained. So, the proof of the theorem
is completed.

Definition 8 Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of DHLPFEs, and let

w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1 and

n∑

i=1
wi = 1.

The dual hesitant linguistic Pythagorean fuzzy weighted geometric (DHLPFWG)
operator is defined as

DHLPFWG(d1, d2, . . . , dn) = ⊗n
i=1d

wi
i , (11)

Theorem 5 Let di = (hi , gi )(i = 1, 2, . . . , n) be collection of DHLPFEs, then the
aggregation result by using the DHLPFWG operator is also a DHLPFE and

DHLPFWG(d1, d2, . . . , dn ) =
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
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⎪⎩
s
l

n∏

i=1

(
ηi / l

)wi

⎫
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⎪⎭
,

⎧
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s

l

(

1−
n∏

i=1

(
1−σ2i / l2

)wi
)1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (12)

The proof of Theorem 5 is similar to that of Theorem 2, which is omitted here.
In addition, DHLPFWG operator has the following properties and the proofs are
similar to those of Theorems 3 and 4.

Theorem 6 (Monotonicity) Let di = (hi , gi ) and d∗
i = (

h∗
i , g

∗
i

)
(i = 1, 2, . . . , n)

be two collections of DHLPFEs, where sσi ∈ hi , sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
, then

DHLPFWG(d1, d2, . . . , dn) ≤ DHLPFWG
(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
. (13)

Theorem 7 (Boundedness) Let di = (hi , gi )(i = 1, 2, . . . , n) be a collection of
DHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let d− = (

smin{σi }, smax{ηi }
)
,

d+ = (
smax{σi }|, smin{ηi }

)
. Then

d− ≤ DHLPFWG(d1, d2, . . . , dn) ≤ d+. (14)
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3.6 A MAGDMMethod Based on DHLPFSs

In this section, we study DHLPFSs and their AOs inMAGDMproblems and propose
a new MAGDM method. We further provide a real decision-making example to
illustrate the effectiveness of the new method.

3.6.1 Description of a Typical MAGDM Problem Under DHLPFSs

A typical MAGDM problem under DHLPFSs can be described as follows: Let
A = {A1, A2, . . . , Am} be a set of candidates and G = {G1,G2, . . . ,Gn} be
set of attributes. The weight vector of attributes is w = (w1,w2, . . . ,wn)

T , such
that

∑n
j=1 wj = 1 and 0 ≤ wj ≤ 1. A group of DEs D = {D1, D2, . . . , Dt }

is invited to assess the performance of all the alternatives. The weight vector
of DEs is λ = (λ1, λ2, . . . , λt )

T , such that 0 ≤ λe ≤ 1 and
∑t

e=1 λe =
1. Let S̃ = {sh|h ∈ [0, l] } be a pre-defined continuous linguistic term set. To
properly evaluate the feasible alternatives, for attribute G j ( j = 1, 2, . . . , n) of

Ai (i = 1, 2, . . . ,m), DE De(e = 1, 2, . . . , t) uses a DHLPFEs de
i j =

(
hei j , g

e
i j

)

defined on S̃ to express his/her evaluation information. Finally, a series of dual hesi-
tant linguistic Pythagorean fuzzy decision matrices are obtained. In the following,
based on the proposed AOs we further present a method to solve this problem.

3.6.2 The Steps of a Novel MAGDM Method Based on DHLPFEs

Step 1. Normalize the original decisionmatrix. Inmost practicalMAGDMproblems,
there are two types of attributes, i.e., benefit type and cost type. Hence, the original
decision matrices should be normalized according to the following formula:

de
i j =

⎧
⎨

⎩

(
hei j , g

e
i j

)
f or bene f i t attr ibute

(
gei j , h

e
i j

)
f or cost attribute

. (15)

Step 2. Compute the overall decision matrix. For alternative Xi (i = 1, 2, . . . ,m),
use DHLPFWA operator

di j = DHLPFW A
(
d1
i j , d

2
i j , . . . , d

t
i j

)
, (16)

or the DHLPWG operator

di j = DHLPFWG
(
d1
i j , d

2
i j , . . . , d

t
i j

)
, (17)
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to determine the comprehensive evaluation matrix.

Step 3. Compute the final overall evaluation values of alternatives. For alternative
Xi (i = 1, 2, . . . ,m), use DHLPFWA operator

di = DHLPFW A(di1, di2, . . . , din), (18)

or the DHLPWG operator

di = DHLPFWG(di1, di2, . . . , din), (19)

to compute its comprehensive evaluation value.

Step 4. Calculate the score value S(di ) and accuracy value H(di ) of di .

Step 5. Rank all the alternatives according to the score and accuracy values.

3.6.3 An Illustrative Example

Example 5 In order to improve the accommodation conditions of students, a univer-
sity plans to install air conditioners in student dormitories. After primary evaluation,
there are four suppliers to be select (A1, A2, A3, and A4). In order to choose the
optimal air conditioners supplier, the university arranges an expert group composed
of students and teachers to evaluate all candidate alternatives. All the five possible
candidates are evaluated under four attributes, namely reputation (G1), competitive
power (G2), quality of products (G3), and price advantage (G4). The weight vector of
attributes is w = (0.3, 0.1, 0.2, 0.4)T . We assume there are three DEs (D1, D2, and
D3) whose weight is δ = (0.243, 0.514, 0.243)T . Let S = {s0 = extremely poor, s1 =
very poor, s2 = poor, s3 = slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 =
very good, s8 = extremely good} be a linguistic term set, and DEs use DHLPFEs to
express their evaluation values. The original decision matrices are listed in Tables 2,
3, 4. In the following, we use the proposed MAGDM method to determine the most
suitable air conditioners supplier.

Table 2 The original decision matrix provided by D1 in Example 5

G1 G2 G3 G4

A1 {{s6, s7}, {s2, s8}} {{s7}, {s2, s4}} {{s5}, {s2}} {{s6, s7}, {s3}}

A2 {{s5}, {s4}} {{s1}, {s7, s6}} {{s6, s3}, {s3}} {{s3}, {s3}}

A3 {{s5, s8}, {s2}} {{s5}, {s2}} {{s1}, {s7}} {{s2, s4}, {s6}}

A4 {{s3}, {s8}} {{s2, s3}, {s6}} {{s1}, {s6}} {{s2}, {s6}}
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Table 3 The original decision matrix provided by D2 in Example 5

G1 G2 G3 G4

A1 {{s2, s3}, {s2}} {{s5, s7}, {s4}} {{s3}, {s2, s4}} {{s6}, {s2, s4}}

A2 {{s1, s2}, {s4}} {{s1, s2}, {s6}} {{s3}, {s1, s6}} {{s5}, {s3}}

A3 {{s8}, {s2, s4}} {{s5}, {s2}} {{s1}, {s5}} {{s4}, {s3, s6}}

A4 {{s2, s3}, {s5, s8}} {{s2}, {s5}} {{s4, s5}, {s1}} {{s2, s5}, {s8}}

Table 4 The original decision matrix provided by D3 in Example 5

G1 G2 G3 G4

A1 {{s3}, {s6}} {{s2, s7}, {s4}} {{s3}, {s2, s5}} {{s6}, {s3, s4}}

A2 {{s1, s5}, {s3, s4}} {{s1, s3}, {s6}} {{s3}, {s3}} {{s5, s7}, {s1}}

A3 {{s8}, {s2}} {{s5, s6}, {s1}} {{s4}, {s6}} {{s4}, {s4, s6}}

A4 {{s3, s5}, {s8}} {{s2}, {s4}} {{s1}, {s6}} {{s1}, {s8}}

Step 1. It is easy to find out that all attributes are benefit types and hence the original
decision matrices do not need to be normalized.

Step 2. Use the DHLPFWA operator to compute the comprehensive decision matrix,
which is shown in Table 5.

Step 3. Use the DHLPFWA to compute the comprehensive evaluation values of
alternatives. As the final overall evaluation values of all the feasible alternatives are
too complicated, we omit them here.

Table 5 The comprehensive decision matrix of Example 5 using the DHLPFWA operator

G1 G2

A1 {{s4.8878, s4.6964, s4.1619, s3.8970}, {s2.6120,
s3.6582}}

{{s7.0, s6.5568, s6.2839, s5.4469}, {s3.3799,
s4.0}}

A2 {{s3.7547, s2.8160, s3.9158, s3.0527}, {s4.0,
s3.7299}}

{{s1.0, s1.7450, s1.60, s2.1342}, {s5.9591,
s5.74}}

A3 {{s8.0}, {s2.0}} {{s5.0, s5.5291}, {s1.69}}

A4 {{s2.5464, s3.3307, s3.0, s0.36617}, {s8.0,
s6.2831}}

{{s2.2924, s2.0}, {s4.9506}}

G3 G4

A1 {{s3.6617}, {s2.0, s2.4988, s2.8560, s3.5683}} {{s6.3198, s6.0}, {s2.4356, s2.6120, s3.4781,
s3.7299}}

A2 {{s4.1619, s3.0}, {s1.7056, s4.284}} {{s3.6478, s5.5125}, {s2.2971}}

A3 {{s2.2424}, {s5.6718}} {{s3.6504, s4.0}, {s5.437, s6.0, s3.8074,
s4.2017}}

A4 {{s3.0361, s3.8423}, {s2.3888}} {{s1.8123, s3.9171}, {s7.4598}}
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Table 6 The comprehensive decision matrix of Example 5 using the DHLPFWG operator

G1 G2

A1 {{s3.6859, s2.9925, s3.5504, s2.8824}, {s3.7608,
s8.0}}

{{s7.0, s5.1628, s5.8883, s4.3429}, {s3.6504,
s4.0}}

A2 {{s2.1862, s1.4786, s3.1220, s2.1114}, {s4.0,
s3.7928}}

{{s1.0, s1.3060, s1.4280, s1.8650}, {s1.6582,
s5.8011}}

A3 {{s7.1368}, {s2.0}} {{s5.0, s5.2265}, {s1.8123}}

A4 {{s2.4356, s2.7575, s3.0, s3.3965}, {s8.0,
s6.2831}}

{{s2.2071, s2.0}, {s5.1142}}

G3 G4

A1 {{s3.3965}, {s2.0, s3.1565, s3.2406, s3.9773}} {{s6.2290, s6.0}, {s2.5464, s2.8906, s3.5561,
s3.7928}}

A2 {{s3.5504, s3.0}, {s2.2414, s5.0126}} {{s4.4163, s4.7926}, {s2.6748}}

A3 {{s1.4006}, {s5.9559}} {{s3.3799, s4.0}, {s5.6641, s6.0, s4.3406,
s4.9381}}

A4 {{s2.0392, s2.2870}, {s4.6390}} {{s1.6900, s2.7066}, {s8.0}}

Step 4. Compute score values of alternatives according to Definition 6 and we can
get the following results:

τ(d1) = 6.4920, τ (d2) = 6.0067, τ (d3) = 7.6187, τ (d4) = 4.5884

Step 5. Based on the score values presented in the afore step, we get the ranking
order of alternatives, i.e., A3 � A1 � A2 � A4, and A3 is the the best alternative.

In step 2, if the DHLPFWG operator is used to compute the comprehensive
decision matrix, then we can get the following results (see Table 6).

Then, we continue to use the DHLPFWG operator to compute the overall values
and calculate the score values according to Definition 6, we have

τ(d1) = 4.7904, τ (d2) = 5.3967, τ (d3) = 5.3515, τ (d4) = 1.6702

Therefore, the ranking order of alternatives is A2 � A3 � A1 � A4, and A2 is
best alternative.

3.6.4 Further Discussion

This section proposes a new MAGDMmethod wherein DHLPFSs are used to prop-
erty DEs’ evaluation values. The main advantages of our developed decision-making
method are two-fold. First, it allows attribute values or DEs’ evaluation values to be
denoted by linguistic terms, which provides DEs a flexible and reliable manner to
express their assessments. In actual decision-making situations, DEs usually would
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Table 7 Characteristics of different MAGDM methods

Whether it
depicts DEs’
qualitative
evaluation

Whether it
depicts DEs’
qualitative
evaluation

Whether it permits
multiple MDs and
NMDs

The degree of
flexibility it
provides for DEs

Gag’s [31] method
based on LPFSs

Yes Yes No Medium

Yu et al.’s [62]
method based on
DHFSs

Yes No Yes Medium

Our proposed
method

Yes Yes Yes High

like to use linguistic terms numbers to evaluate the performance of possible alter-
natives. Hence, our MAGDM method provides DEs, scientists, and practitioners
a practical approach to make reasonable decisions. Second, our method permits
the attribute values by several possible linguistic terms, which effectively handle
DEs’ hesitancy. Therefore, our method is more practical and powerful than some
existing decision-making methods. First, it is more useful than that proposed by
Garg [31] based on LPFSs. Garg’s [31] MAGDM method only allows the MD and
NMD of attribute values to be denoted by single linguistic terms, which overlooks
DEs’ high hesitancy in complicated MAGDM situations. In addition, our method
can solve decision-making problems in which attribute values are in the form of
LPFSs. However, the decision-making method introduced by Garg [31] is unable to
handle MAGDM problems in DHLPFSs. Additionally, our proposed method is also
more powerful than that put forward by Yu et al.’s [62] based on DHFSs. Similar
to DHLPFSs, DHFSs can also effectively deal with DEs’ high hesitancy in alterna-
tives’ performance evaluation process. However, in DHFSs the possible MDs and
NMDs are represented by crisp numbers while in DHLPFSs all MDs and NMDs
are denoted by linguistic terms. In other words, DHFSs can only describe DEs’
quantitative evaluation values, while DHLPFSs depict both DEs’ quantitative and
qualitative evaluation information. Hence, our method is also better than Yu et al.’s
[62] MAGDMmethod. We provide Table 7 to better illustrate the advantages of our
proposed method.

4 Probabilistic Dual Hesitant Linguistic Pythagorean
Fuzzy Sets and Their Applications

In this section, we introduce another new concept, called PDHLPFSs, for depicting
DEs’ evaluation information. We first introduce the motivations of proposing
PDHLPFSs. Then, the definition of PDHLPFSs, as well as some other notions,
such as operational rules, comparison method, and AOs are studied. Based on these
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notions, a new MAGDM method is proposed and its actual performance in realistic
decision-making problems is illustrated through numerical examples.

4.1 Motivations of Proposing PDHLPFSs

As discussed above, DHLPFSs permit multiple linguistic MDs and NMDs, which
canmore effectively describeDEs’ evaluation values. However, as realisticMAGDM
problems and very complicated, there are quite a few situations that cannot be handled
by DHLPFSs. In DHLPFSs, all possible values provided by DEs have importance,
which is not consistent with real decision-making situations. Actually, each member
inDHLPFEshas a different degree of importance.Weprovide the following examples
to better explain the drawbacks of DHLPFSs.

Example 6 A professor is invited to evaluate the innovation of a student’s thesis
(which can be denoted as A for convenience). Let S = {s0 = very poor, s1 = poor,
s2 = slightly poor, s3 = fair, s4 = slightly good, s5 = good, s6 = slightly good} be
a pre-defined linguistic term set. The professor may express that he/she is 30% sure
that the MD should be s4, and 70% sure that the MD should be s5. In addition, he/she
is 40% sure that the NMD should be s0, 40% and 20% sure that the NMD should be
s2 and s3, respectively. Then the evaluation value of the expert can be expressed as

Innovation (A) = {{s4(0.3), s5(0.7)}, {s0(0.4), s2(0.4), s3(0.4)}}

Example 7 There are a hundred teachers and students and they are required to express
how they feel about the satisfied degree of the design scheme of new campus (which
can be denoted as B convenience). Let S = {s0 = very poor, s1 = poor, s2 = slightly
poor, s3 = fair, s4 = slightly good, s5 = good, s6 = slightly good} be a pre-defined
linguistic term set. For the MDs, 28 of them state it should be s3, 34 of them argue
it should be s4, and the other 38insist it should be s5. For the NMDs, 57 of them
state it should be s1 and the other 42 of them insist it should be s3. Then the overall
evaluation value can be expressed as

Satisfied degree(B) = {{s3(0.28), s4(0.34), s5(0.38)}, {s1(0.57), s3(0.43)}}

The above examples reveal that in order to more accurately capture DEs’ evalu-
ation values, not only multiple MDs and NMDs but also their corresponding proba-
bilistic information should be taken into account. As a matter of fact, some scholars
have noticed this phenomenon and some effective information description tools have
been proposed, such as probabilistic linguistic sets, probabilistic hesitant fuzzy sets,
and probabilistic dual hesitant fuzzy sets. Motivated by these fuzzy set theories, we
genialize DHLPFSs into PDHLPFSs.
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4.2 Definition of PDHLPFSs

Definition 9 Let X be a fixed set and S̃ = {sα|0 ≤ α ≤ l } be continuous linguistic
term set with odd cardinality. A probabilistic dual hesitant linguistic Pythagorean
fuzzy set (PDHLPFSs) E is expressed as

E = {〈x, hE (x)|p(x), gE (x)|t(x)〉|x ∈ X}. (20)

The component hE (x)|p(x) and gE (x)|t(x) are two sets of some possible values,
where hE (x), gE (x) ⊆ S̃, denoting the possible linguistic MDs and NMDs of the
element x ∈ X to the set E, respectively, such that σ q + ηq ≤ lq(q ≥ 1), where
sσ ∈ hE (x), and sη ∈ gE (x) for x ∈ X . p(x) and t(x) are corresponding probabilistic
information of hE (x) and gE (x), respectively, such that 0 ≤ pi ≤ 1, 0 ≤ t j ≤ 1,
∑#h

i=1 pi = 1, and
∑#g

j=1 t j = 1. For convenience, we call the ordered paper e(x) =
(hE (x)|p(x), gE (x)|t(x)) a probabilistic dual hesitant linguistic Pythagorean fuzzy
element (PDHLPFE), which can be denoted as e = (h|p, g|t) for simplicity.

From Definition 9, it is seen that PDHLPFS is a generalized form of DHLPFS
and DHLPFS is a special case of PDHLPFS, where the importance degrees of all
members are equal. In the framework of PDHLPFSs, the overall evaluation value of
DEs’ in Example 1 can be express as d = {{s1 | 0.125, s2 | 0.250, s3 | 0.125, s4 | 0.375,
s5 | 0.125}, {s0 | 0.250, s1 | 0.125, s2 | 0.250, s3 | 0.375}}, which is a PDHLPFE.

4.3 Operation of PDHLPFEs

Definition 10 Let e1 = (
h1
∣∣ph1 , g1

∣∣tg1
)
, e2 = (

h2
∣∣ph2 , g2

∣∣tg2
)
, and e = (h|p, g|t)

be any three PDHLPFEs and λ be a positive real number,

(5) e1⊕e2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s
(σ 2

1 +σ 2
2 −σ 2

1 σ 2
2 / l2)

1/2 |pσ1 pσ2

}
,
{
s(η1η2/ l)|tη1 tη2

}}
;

(6) e1⊗e2 = ⋃
σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
s(σ1σ2/ l)|pσ1 pσ2

}
,
{
s
(η2

1+η2
2−η2

1η
2
2/ l

2)
1/2 |tη1 tη2

}}
;

(7) λe = ⋃
σ∈h,η∈g

{{
s
l
(
1−(1−σ 2/ l2)

λ
)1/2 |pσ

}
,
{
sl(η/ l)λ |tη

}}
;

(8) eλ = ⋃
σ∈h,η∈g

{{
sl(σ/ l)λ |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ
)1/2 |tη

}}
.

Example 8 Let e1 = {{s3|0.5, s4|0.2, s5|0.3}, {s2|0.6, s3|0.4}} and e2 =
{{s2|0.3, s4|0.7}, {s4|1}} be two PDHLPFEs defined on a pre-given continuous
linguistic set S̃ = {sα|0 ≤ α ≤ 6 }, then

e1 ⊕ e2

=
{ {

s3.4641
∣∣0.1500, s4.5826

∣∣0.3500, s4.2687|0.0600, s4.9889|0.1400, s5.1208
∣∣0.0900, s5.4671

∣∣0.2100
}
,

{s1.3333|0.6000, s2.0000|0.4000}

}

;
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e1 ⊗ e2

=
{

{s1.0000|0.1500, s1.333|0.0600, s1.6667|0.0900, s2.0000|0.3500, s2.6667|0.1400, s3.3333|0.2100},{
s4.2687

∣∣0.6000, s4.5826
∣∣0.4000

}

}

;

3e1 = {{s4.5621|0.5000, s5.4614|0.2000, s5.9138|0.3000}, {s0.2222|0.6000, s0.7500|0.4000}};

e32 = {{s0.2222|0.3000, s1.7778|0.7000}, {s5.4614|1}}

Theorem 8 Let e1 = (
h1
∣∣ph1 , g1

∣∣tg1
)
, e2 = (

h2
∣∣ph2 , g2

∣∣tg2
)
, and e = (h|p, g|t) be

any three PDHLPFEs, then

(1) e1 ⊕ e2 = e2 ⊕ e2;
(2) e1 ⊗ e2 = e2 ⊗ e1;
(3) λ(e1 ⊕ e2) = λe1 ⊕ λe2;
(4) λ1e ⊕ λ2e = (λ1 + λ2)e, (λ1, λ2 ≥ 0);
(5) eλ1 ⊗ eλ2 = eλ1+λ2 , (λ1, λ2 ≥ 0);
(6) eλ

1 ⊗ eλ
2 = (e1 ⊗ e2)

λ, (λ ≥ 0).

Proof It is easy to prove that (1) and (2) hold. In the following, we try to prove
the correctness of the following equations. According to the operational rules for
PDHLPFEs presented in Definition 10, we have

λ(e1 ⊕ e2) =
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2 |pσ1 pσ2

}

,
{
sl(η1η2/ l2)λ |tη1 tη2

}}

,

and

λe1 ⊕ λe2 =
⋃

σ1∈h1,η1∈g1

{{

s
l
(
1−(1−σ 2

1 / l2
)λ)1/2 |pσ1

}

,
{
sl(η1/ l)λ |tη1

}}

⊕
⋃

σ2∈h2,η2∈g2

{{

s
l
(
1−(1−σ 2

2 / l2
)λ)1/2 |pσ2

}

,
{
sl(η2/ l)λ |tη2

}}

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{

s
l
(
1−((1−σ 2

1 / l2
)(
1−σ 2

2 / l2
))λ)1/2 |pσ1 pσ2

}

,
{
sl(η1η2/ l2)λ |tη1 tη2

}}

= λ(e1 ⊕ e2).

which proves that (3) holds.
Meanwhile, we can obtain that

λ1e ⊕ λ2e

=
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ1
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

{
s
l(η/ l)λ1

|tη
}
⎫
⎪⎪⎬

⎪⎪⎭

⊕
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ2
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

{
s
l(η/ l)λ2

|tη
}
⎫
⎪⎪⎬

⎪⎪⎭
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=
⋃

σ∈h,η∈g

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩
s
l

(
1−
(
1−σ2/ l2

)λ2+λ1
)1/2 |pσ

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎨

⎩
s(
l(η/ l)λ1+λ2

)|tη
⎫
⎬

⎭

⎫
⎪⎪⎬

⎪⎪⎭
,

and

(λ1 + λ2)e =
⋃

σ∈h,η∈g

{{

s
l
(
1−(1−σ 2/ l2)

λ1+λ2
)1/2 |pσ

}

,
{
sl(η/ l)λ1+λ2 |tη

}}

= λ1e ⊕ λ2e,

which illustrates the validity of (4).
Moreover,

eλ1 ⊗ eλ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1
)1/2 |tη

}}

⊗
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ2
)1/2 |tη

}}
,

=
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2 |tη

}}
,

and

eλ1+λ2 =
⋃

σ∈h,η∈g

{{
sl(σ/ l)λ1+λ2 |pσ

}
,

{
s
l
(
1−(1−η2/ l2)

λ1+λ2
)1/2 |tη

}}
= eλ1 ⊗ eλ2 .

Hence, (5) holds.
Finally,

eλ
1 ⊗ eλ

2 =
⋃

σ1∈h1,η1∈g1

{{
sl(σ1/ l)λ |pσ1

}
,

{

s
l
(
1−(1−η21/ l

2
)λ)1/2 |tη1

}}

⊗
⋃

σ2∈h2,η2∈g2

{{
sl(σ2/ l)λ |pσ2

}
,

{

s
l
(
1−(1−η22/ l

2
)λ)1/2 |tη2

}}

,

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)λ |pσ1 pσ2

}
,

{

s
l
(
1−((1−η21/ l

2
)(
1−η22/ l

2
))λ)1/2 |tη1 tη2

}}

,

and

(e1 ⊗ e2)
λ =

(⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sσ1σ2/ l |pσ1 pσ2

}
,
{
s(

η21+η22−η21η
2
2/ l

2
)1/2 |tη1 tη2

}})λ

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2

{{
sl(σ1σ2/ l2)λ |pσ1 pσ2

}
,

{

s
l
(
1−((1−η21/ l

2
)(
1−η22/ l

2
))λ)1/2 |tη1 tη2

}}

= eλ
1 ⊗ eλ

2 ,

which demonstrates the correctness of (6).
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4.4 Comparison Method of PDHLPFEs

Definition 11 Let e = (h|p, g|t) be a PDHLPFEs, the score function �(e) of e is
expressed as

�(e) = s√√√√
(

l2+
#h∑

i=1,σ∈h
σ 2
i pσi −

#g∑

j=1,η∈g
η2
j tη j

)

/2

, (21)

and the accuracy function 
(e) is defined as


(e) = s√√√√
(

#h∑

i=1,σ∈h
σ 2
i pσi +

#g∑

j=1,η∈g
η2
j tη j

)

/2

, (22)

where #h and #g denote the numbers of elements in h and g. For any two PDHLPFEs
e1 and e2, then

(1) If �(e1) > �(e2), then e1 > e2;
(2) If �(e1) = �(e2), then

If 
(e1) > 
(e2), then e1 > e2;
If 
(e1) = 
(e2), then e1 = e2.

Example 9 Let S̃ = {sα|0 ≤ α ≤ 6} be a pre-defined continuous linguistic
term set, and e1 = {{s0|0.2, s2|0.3, s3|0.5}, {s4|0.4, s5|0.6}} and e2 =
{{s1|0.5, s3|0.5}, {s2|0.2, s3|0.7, s5|0.1}} be two PDHLPFEs defined on S̃, then we
have

�(e1) = s√
(62+(02∗0.22+22∗0.32+32∗0.52)/3−(42∗0.42+52∗0.62)/2)/2 = s3.9427,


(e1) = s√
((02∗0.22+22∗0.32+32∗0.52)/3+(42∗0.42+52∗0.62)/2)/2 = s1.8235,

�(e2) = s√
(62+(12∗0.52+32∗0.52)/2−(22∗0.22+32∗0.72+52∗0.12)/3)/2 = s4.2216,


(e2) = s√
((12∗0.52+32∗0.52)/2+(22∗0.22+32∗0.72+52∗0.12)/3)/2 = s1.1951.

According to Definition 11, we can get e2 > e1.



390 J. Wang et al.

4.5 Aggregation Operators of PDHLPFEs

Definition 12 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collection of

PDHLPFEs and w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. The probabilistic dual hesitant linguistic Pythagorean fuzzy
weighted average (PDHLPFWA) operator is expressed as

PDHLPFW A(e1, e2, . . . , en) = ⊕n
i=1wiei , (23)

Theorem 9 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be collection of PDHLPFEs,

then the aggregation result by using the PDHLPFWA operator is also a PDHLPFEs
and

PDHLPFW A(e1, e2, . . . , en)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
n∏

i=1

pσi

⎫
⎬

⎭
,

{

s
l

n∏

i=1
(ηi/ l)

wi
|

n∏

i=1

tηi

}⎫⎬

⎭
, (24)

Proof We first prove that (24) holds for n = 2. Since

w1e1 =
⋃

σ1∈h1,η1∈g1

{{
s
l(1−(1−σ 2

1 / l2)
w1)

1/2 |pσ1

}
,
{
sl(η1/ l)w1 |tη1

}}
,

and

w2e2 =
⋃

σ2∈h2,η2∈g2

{{
s
l(1−(1−σ 2

2 / l2)
w2)

1/2 |pσ2

}
,
{
sl(η2/ l)w2 |tη2

}}
.

Then

PDHLPFW A
(
e1, e2

) = w1e1 ⊕ w2e2

=
⋃

σ1∈h1,σ2∈h2,η1∈g1,η2∈g2
⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l
(
1−
(
1−σ21 / l2

)w1
(
1−σ22 / l2

)w2
)1/2 |pσ1 pσ2

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s(
l
(
η1/ l

)w1
(
η2/ l

)w2
)|tη1 tη2

⎫
⎬

⎭

⎫
⎬

⎭
.

which demonstrates that Eq. (24) holds for n = 2.
If Eq. (24) holds for n = k, i.e.,

PDHLPFW A(e1, e2, . . . , ek)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

k∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
k∏

i=1

pσi

⎫
⎬

⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi/ l)

wi
|

k∏

i=1

tηi

⎫
⎬

⎭

⎫
⎬

⎭
,
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then when n = k + 1, we can obtain

PDHLPFW A(e1, e2, . . . , ek+1) = ⊕k
i=1wi ei ⊕ wk+1ek+1

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k∏

i=1

(
1−σ 2

i / l2
)wi

)1/2 |
k∏

i=1

pσi

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l

k∏

i=1
(ηi / l)wi

|
k∏

i=1

tηi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭

⊕
⋃

σk+1∈hk+1,ηk+1∈gk+1

{{

s
l
(
1−(1−σ 2

k+1/ l
2
)λ)1/2 |pσk+1

}

,

{
s
l
(
η2k+1/ l

)λ |tηk+1

}}

=
⋃

σi∈hi ,ηi∈gi

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
s
l

(

1−
k+1∏

i=1

(
1−σ 2

i / l2
)wi

)1/2 |
k+1∏

i=1

pσi

⎫
⎪⎬

⎪⎭
,

⎧
⎨

⎩
s
l
k+1∏

i=1
(ηi / l)wi

|
k+1∏

i=1

tηi

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
,

i.e., Eq. (24) holds for n = k + 1. Therefore, Eq. (24) holds for all n. The proof
of Theorem 9 is completed.

Theorem 10 (Monotonicity) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)

and e∗
i =(

h∗
i

∣∣ph∗
i
, g∗

i

∣∣tg∗
i

)
(i = 1, 2, . . . , n) be two collections of PDHLPFEs, where sσi ∈ hi ,

sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For ∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
,

while the probabilities are the same, i.e., pσi = pσ ∗
i
,tηi = tη∗

i
, then

PDHLPFW A(e1, e2, . . . , en) ≤ PDHLPFW A
(
e∗
1, e

∗
2, . . . , e

∗
n

)
. (25)

Proof For any i , there are sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
. For the terms in the aggregated

results, we have

s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 ≤ s
l

(
1−

n∏

i=1
(1−σ ∗2

i / l2)
wi

)1/2 and s
l

n∏

i=1
(ηi/ l)

wi
≥ s

l
n∏

i=1
(η∗

i / l)
wi

.

According to the score function in Definition 11, we can get
PDHLPFW A(e1, e2, . . . , en) ≤ PDHLPFW A

(
e∗
1, e

∗
2, . . . , e

∗
n

)
with equality if

and only if sσi = sσ ∗
i
and sηi = sη∗

i
for all i .

Theorem 11 (Boundedness) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collec-

tion of PDHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let e− =(
smin{σi }

∣∣pmin{σi }, smax{ηi }
∣∣tmax{ηi }

)
, e+ = (

smax{σi }
∣∣pmax{σi }, smin{ηi }

∣∣tmin{ηi }
)
. Then

PDHLPFW A
(
e−, e−, . . . , e−

)
≤ PDHLPFW A

(
e1, e2, . . . , en

) ≤ PDHLPFW A
(
e+, e+, . . . , e+

)
. (26)

Proof For∀i = 1, 2, . . . , n, we have smin{σi } ≤ sσi ≤ smax{σi }, smin{ηi } ≤ sηi ≤ smax{ηi },
pmin{σi } ≤ pσi ≤ pmax{σi }, tmin{ηi } ≤ tηi ≤ tmax{ηi }. Then

s
l

(
1−

n∏

i=1

(
1−σ 2

i / l2
)wi

) 1
2

≥ s
l

(
1−

n∏

i=1

(
1−(min{σi }/ l)2

)wi
) 1

2
= s

l

⎛

⎜
⎝1−(1−(min{σi }/ l)2

)
n∑

i=1
wi

⎞

⎟
⎠

1
2

= smin{σi },
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s
l

n∏

i=1
(ηi / l)wi

≤ s
l

n∏

i=1
(max{ηi }/ l)wi

= smax{ηi },

s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

) 1
2

≤ s
l

(
1−

n∏

i=1
(1−(max{σi }/ l)2)wi

) 1
2

= smax{σi },

s
l

n∏

i=1
(ηi/ l)

wi
≥ s

l
n∏

i=1
(min{ηi }/ l)wi

= smin{ηi }.

For the probabilities:

n∏

i=1

pσi ≥
n∏

i=1

pmin{σi },
n∏

i=1

tσi ≥
n∏

i=1

tmin{σi }

and

n∏

i=1

pσi ≤
n∏

i=1

pmax{σi },
n∏

i=1

tσi ≤
n∏

i=1

tmax{σi }.

And,

PDHLPFW A
(
e−, e−, . . . , e−)

=
⋃

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−(min{σi }/ l)2)wi

)1/2 |
n∏

i=1

pmin{σi }

⎫
⎬

⎭
,

{

s
l

n∏

i=1
(max{ηi }/ l)wi

|
n∏

i=1

tmax{ηi }

}⎫⎬

⎭

=
{

smin{σi }

∣∣∣∣∣

n∏

i=1

pmin{σi }, smax{ηi }

∣∣∣∣∣

n∏

i=1

tmax{ηi }

}

PDHLPFW A
(
e+, e+, . . . , e+)

=
⋃

⎧
⎨

⎩

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−(max{σi }/ l)2)wi

)1/2 |
n∏

i=1

pmin{σi }

⎫
⎬

⎭
,

{

s
l

n∏

i=1
(min{ηi }/ l)wi

|
n∏

i=1

tmax{ηi }

}⎫⎬

⎭

=
{

smax{σi }

∣∣∣∣∣

n∏

i=1

pmin{σi }, smin{ηi }

∣∣∣∣∣

n∏

i=1

tmax{ηi }

}

According to the score function in Definition 11, we have
PDHLPFW A(e1, e2, . . . , en) ≥ PDHLPFW A

(
e−, e−, . . . , e−) with equality

if and only if ei is same as e−. Similarly, PDHLPFW A(e1, e2, . . . , en) ≤
PDHLPFW A

(
e+, e+, . . . , e+) with equality if and only if ei is same as e+ can

be obtained. So, the proof of the theorem is completed.
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Definition 13 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collection of

PDHLPFEs and w = (w1,w2, . . . ,wn)
T be the weight vector, such that 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. The probabilistic dual hesitant linguistic Pythagorean fuzzy
weighted geometric (PDHLPFWG) operator is expressed as

PDHLPFWG(e1, e2, . . . , en) = ⊗n
i=1e

wi
i , (27)

Theorem 12 Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be collection of PDHLPFEs,

then the aggregation result by using the PDHLPFWG operator is also a PDHLPFEs
and

PDHLPFWG(e1, e2, . . . , en)

=
⋃

σi∈hi ,ηi∈gi

⎧
⎨

⎩

{

s
l

n∏

i=1
(ηi/ l)

wi
|

n∏

i=1

pσi

}

,

⎧
⎨

⎩
s
l

(
1−

n∏

i=1
(1−σ 2

i / l2)
wi

)1/2 |
n∏

i=1

tηi

⎫
⎬

⎭

⎫
⎬

⎭
, (28)

The proof of Theorem 12 is similar to that of Theorem, which is omitted here. In
addition, it is easy to prove that PDHLPFWG operator has the following properties.

Theorem 13 (Monotonicity) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)

and e∗
i =(

h∗
i

∣∣ph∗
i
, g∗

i

∣∣tg∗
i

)
(i = 1, 2, . . . , n) be two collections of PDHLPFEs, where sσi ∈ hi ,

sηi ∈ gi and sσ ∗
i

∈ h∗
i , sη∗

i
∈ g∗

i . For ∀i = 1, 2, . . . , n, if sσi ≤ sσ ∗
i
and sηi ≥ sη∗

i
,

while the probabilities are the same, i.e., pσi = pσ ∗
i
,tηi = tη∗

i
, then

PDHLPFWG(e1, e2, . . . , en) ≤ PDHLPFWG
(
e∗
1, e

∗
2, . . . , e

∗
n

)
. (29)

Theorem 14 (Boundedness) Let ei = (
hi
∣∣phi , gi

∣∣tgi
)
(i = 1, 2, . . . , n) be a collec-

tion of PDHLPFEs. For each sσi ∈ hi , sηi ∈ gi (i = 1, 2, . . . , n), let e− =(
smin{σi }

∣∣pmin{σi }, smax{ηi }
∣∣tmax{ηi }

)
, e+ = (

smax{σi }
∣∣pmax{σi }, smin{ηi }

∣∣tmin{ηi }
)
. Then,

e− ≤ PDHLPFWG(e1, e2, . . . , en) ≤ e+. (30)

4.6 MAGDM Based on PDHLPFEs

In this section, we introduce a newMAGDMmethod under PDHLPFSs based on the
proposed AOs. Further, a numerical example is presented to show the effectiveness
of our proposed method.
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4.6.1 The Main Steps of a MAGDM Approach Under PDHLPFSs

A representative probabilistic dual hesitant linguistic Pythagorean fuzzy MAGDM
problem is described as follows: Let A = {A1, A2, . . . , Am} be a set of candidates
and G = {G1,G2, . . . ,Gn} be set of attributes. The weight vector of attributes is
w = (w1,w2, . . . ,wn)

T , such that
∑n

j=1 wj = 1 and 0 ≤ wj ≤ 1. Several DEs
D = {D1, D2, . . . , Dt } are invited to form a group to evaluate the efficiency of
all the feasible alternatives. The weight vector of DEs is λ = (λ1, λ2, . . . , λt )

T ,
such that 0 ≤ λe ≤ 1 and

∑t
e=1 λe = 1. Let S̃ = {sh |h ∈ [0, l] } be a pre-

defined continuous linguistic term set. For attribute G j ( j = 1, 2, . . . , n) of alter-
native Ai (i = 1, 2, . . . ,m), the DE Dk(k = 1, 2, . . . , t) uses a PDHLPFE eki j =(
hki j

∣∣∣phki j , g
k
i j

∣∣∣tgki j

)
to express his/her evaluation. Finally, a set of probabilistic dual

hesitant linguistic Pythagorean fuzzy decision matrices are gotten. In the following,
we use the proposed AOs to introduce a novel MAGDM method.

4.6.2 The Steps of a Novel MAGDM Method Based on PDHLPFEs

Step 1. Normalize the original decisionmatrix. Inmost practicalMAGDMproblems,
there are two types of attributes, i.e., benefit type and cost type. Hence, the original
decision matrices should be normalized according to the following formula:

eki j =
⎧
⎨

⎩

(
hki j

∣∣∣phki j , g
k
i j

∣∣∣tgki j

)
f or bene f i t attr ibute

(
gki j

∣∣∣tgki j , h
k
i j

∣∣∣phki j

)
f or cost attribute

. (31)

Step 2. Compute the overall decision matrix. For alternative Ai (i = 1, 2, . . . ,m),
use the PDHLPFWA operator

ei j = PDHLPFW A
(
e1i j , e

2
i j , . . . , e

f
i j

)
, (32)

or the PDHLPFWG operator

ei j = PDHLPFWG
(
e1i j , e

2
i j , . . . , e

f
i j

)
, (33)

to determine the comprehensive evaluation matrix.

Step 3. Compute the final overall evaluation values of alternatives. For alternative
Ai (i = 1, 2, . . . ,m), use the PDHLPFWA operator

ei = PDHLPFW A(ei1, ei2, . . . , ein), (34)
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or the PDHLPWG operator

ei = PDHLPFWG(ei1, ei2, . . . , ein), (35)

to compute its comprehensive evaluation value.

Step 4. Calculate the score value S(ei ) and accuracy value H(ei ) of ei .

Step 5. Rank all the alternatives according to the score and accuracy values.

4.6.3 A Real Application of the Proposed Method

Example 10 In order to stimulate the enthusiasm for research of doctoral students, a
college plans to evaluate the quality of doctoral students’ theses and selects the best
one and gives the author scholarship. After primary selection, there are five theses
authored by five students, and three professors are required to evaluate the five theses.
The weight vector of the three professors is λ = (0.243, 0.514, 0.243)T . The five
theses are assessed under four attributes, i.e., the significant degree of the study
(G1), the degree of innovation (G2), the degree of compliance with academic norms
(G3), and the significant degree methodology (G4). The weight vector of attributes
is w = (0.3, 0.1, 0.2, 0.4)T . Let S = {s0 = extremely poor, s1 = very poor, s2 =
poor, s3 = slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8
= extremely good} be a linguistic term set, and DEs use PDHLPFEs to express their
evaluation values. The original decision matrices are presented in Tables 8, 9, 10.

Step 1. As the original decision matrices are benefit types, the original decision
matrices do not need to be normalized.

Step 2. Use the PDHLPFWA operator to determine the comprehensive decision
matrix, and the result is listed in Table 11.

Step 3. Use the PDHLPFWA operator to calculate the overall evaluation values of
alternatives. As the comprehensive evaluations are too complicated, we omit them
here.

Step 4. Calculate the score values of alternatives, we can obtain

�(e1) = s5.6466, �(e2) = s5.6735, �(e3) = s5.5948, �(e4) = s5.6687

Step 5. Rank the alternatives and we can get A2 � A4 � A1 � A3, which implies
A2 is the optimal alternative.

Ifwe calculate the comprehensive decisionmatrix and overall evaluation values by
the PDHLPFWG operator, then the score values of alternatives are �(e1) = s5.6266,
�(e2) = s5.6583, �(e3) = s5.5646, and �(e4) = s5.6453, and the ranking order is
A2 � A4 � A1 � A3, which indicates A2 is the best alternative.



396 J. Wang et al.

Ta
bl
e
8

T
he

or
ig
in
al
de
ci
si
on

m
at
ri
x
pr
ov
id
ed

by
D
1
in

E
xa
m
pl
e
10

G
1

G
2

G
3

G
4

A
1

{{ s
7
| 0.

3
,
s 6

| 0.
3
,
s 5

| 0.
4
} ,{

s 2
| 1}

}
{{ s

7
| 1}

,
{ s 2

| 1
}}

{{ s
2
| 1

} ,{
s 2

| 1}
}

{{ s
7
| 0.

5
,
s 6

| 0.
5
} ,{

s 3
| 1}

}
A
2

{{ s
1
| 1}

,
{ s 4

| 1
}}

{{ s
3
| 1}

,
{ s 7

| 1}
}

{{ s
7
| 1}

,
{ s 3

| 0.
5
,
s 2

| 0.
5
}}

{{ s
3
| 1

} ,{
s 3

| 1
}}

A
3

{{ s
6
| 1}

,
{ s 3

| 1}
}

{{ s
5
| 1}

,
{ s 2

| 1
}}

{{ s
1
| 1}

,
{ s 7

| 1}
}

{{ s
4
| 0.

4
,
s 2

| 0.
6
} ,{

s 4
| 1}

}
A
4

{{ s
5
| 0.

7
,
s 2

| 0.
3
} ,{

s 5
| 1}

}
{{ s

3
| 0.

5,
s 2

| 0.
5

} ,{
s 6

| 1}
}

{{ s
8
| 1}

,
{ s 1

| 1}
}

{{ s
2
| 1}

,
{ s 6

| 1}
}



Extensions of Linguistic Pythagorean Fuzzy Sets and Their Applications … 397

Ta
bl
e
9

T
he

or
ig
in
al
de
ci
si
on

m
at
ri
x
pr
ov
id
ed

by
D
2
in

E
xa
m
pl
e
10

G
1

G
2

G
3

G
4

A
1

{{ s
7
| 1

} ,{
s 2

| 0.
1
,
s 5
0.
9}}

{{ s
3
| 1}

,
{ s 2

| 0.
4
,
s 6
0.
6}}

{{ s
3
| 1}

,
{ s 5

| 1}
}

{{ s
8
| 1}

,
{ s 5

| 0.
3
,
s 7

| 0.
7
}}

A
2

{{ s
8
| 1

} ,{
s 7

| 0.
3
,
s 8

| 0.
7
}}

{{ s
6
| 1}

,
{ s 2

| 0.
5
,
s 6
0.
5}}

{{ s
6
| 0.

7
,
s 4

| 0.
3
} ,{

s 4
| 1}

}
{{ s

4
| 0.

4
,
s 6
0.
6} ,

{ s 8
| 0.

1
,
s 6

| 0.
9
}}

A
3

{{ s
7
| 0.

6
,
s 1

| 0.
4
} ,{

s 3
| 1

}}
{{ s

2
| 0.

5
,
s 6

| 0.
3
,
s 5

| 0.
2
} ,{

s 1
| 0.

2
,
s 6
0.
8}}

{{ s
2
| 1}

,
{ s 5

| 1
}}

{{ s
7
| 1}

,
{ s 5

| 0.
4
,
s 6

| 0.
6
}}

A
4

{{ s
5
| 0.

6
,
s 3

| 0.
4
} ,{

s 6
| 0.

4
,
s 2

| 0.
6
}}

{{ s
3
| 1}

,
{ s 1

| 0.
3
,
s 8
0.
7}}

{{ s
7
| 1}

,
{ s 3

| 1}
}

{{ s
5
| 1}

,
{ s 5

| 1}
}



398 J. Wang et al.

Ta
bl
e
10

T
he

or
ig
in
al
de
ci
si
on

m
at
ri
x
pr
ov
id
ed

by
D
3
in

E
xa
m
pl
e
10

G
1

G
2

G
3

G
4

A
1

{{ s
4
| 1}

,
{ s 3

| 1}
}

{{ s
3
| 1}

,
{ s 4

| 1}
}

{{ s
5
| 0.

3
,
s 6

| 0.
1
,
s 3

| 0.
6
} ,{

s 4
| 1}

}
{{ s

3
| 1

} ,{
s 4

| 1
}}

A
2

{{ s
3
| 0.

4
,
s 6

| 0.
6
} ,{

s 5
| 1

}}
{{ s

2
| 1

} ,{
s 4

| 0.
4,
s 7

| 0.
6

}}
{{ s

5
| 1}

,
{ s 6

| 1}
}

{{ s
3
| 0.

2
,
s 6

| 0.
8
} ,{

s 6
| 1}

}
A
3

{{ s
7
| 1

} ,{
s 2

| 1}
}

{{ s
1
| 1}

,
{ s 5

| 1
}}

{{ s
1
| 1}

,
{ s 7

| 1}
}

{{ s
2
| 0.

6
,
s 4

| 0.
4
} ,{

s 4
| 1}

}
A
4

{{ s
6
| 1

} ,{
s 5

| 1
}}

{{ s
2
| 0.

3
,
s 1

| 0.
7
} ,{

s 3
| 0.

3
,
s 7

| 0.
7
}}

{{ s
5
| 1}

,
{ s 3

| 0.
3
,
s 5

| 0.
7
}}

{{ s
4
| 1}

,
{ s 1

| 1
}}



Extensions of Linguistic Pythagorean Fuzzy Sets and Their Applications … 399

Ta
bl
e
11

T
he

co
m
pr
eh
en
si
ve

ev
al
ua
tio

n
m
at
ri
x
of

E
xa
m
pl
e
10

by
us
in
g
th
e
PD

H
L
PF

W
A
op
er
at
or

G
1

G
2

A
1

{{ s
6.
64

08
| 0.

3
,
s 6

.3
90

7
| 0.

3
,
s 6

.2
37

0
| 0.

4
} ,{

s 2
.2
07

1
| 0.

1
,
s 3

.5
34

8
| 0.

9
}}

{{ s
4.
88

78
| 1

} ,{
s 2

.3
66

9
| 0.

4
,
s 4

.1
63

1
6}}

A
2

{{ s
8
| 1

} ,{
s 5

.6
30

3
| 0.

3
,
s 6

.0
30

3
| 0.

7
}}

{{ s
8
| 1

} ,{
s 5

.6
30

3
| 0.

3
,
s 6

.0
30

3
| 0.

7
}}

A
3

{{ s
6.
82

23
| 0.

6
,
s 5

.2
43

9
| 0.

4
} ,{

s 2
.7
18

5
| 1

}}
{{ s

4.
92

91
| 1

} ,{
s 3

.2
09

1
| 0.

2
,
s 3

.6
76

6
| 0.

3,
s 5

.6
44

5
| 0.

2
,
s 6

.4
66

8
| 0.

3
}}

A
4

{{ s
5.
29

31
| 0.

42
,
s 4

.5
89

4
| 0.

28
,
s 4

.9
88

2
| 0.

18
,
s 4

.1
61

9
| 0.

12
} ,{

s 5
.4
91

2
| 0.

4
,
s 3

.1
22

0
| 0.

6
}}

{{ s
2.
79

73
| 0.

15
,
s 2

.6
74

8
| 0.

35
,
s 2

.5
73

8
| 0.

15
,
s 2

.4
37

1
| 0.

35
} ,{

s 2
.0
18

5
| 0.

09
,
s 2

.4
8
| 0.

21
,
s 5

.8
77

9
| 0.

21
,
s 7

.2
21

7
| 0.

49
}}

G
3

G
4

A
1

{{ s
3.
51

09
| 0.

3
,
s 4

.0
40

3
| 0.

1
,
s 2

.7
79

7
| 0.

6
} ,{

s 3
.7
90

7
| 1

}}
{{ s

8
| 1

} ,{
s 4

.1
83

2
| 0.

3
,
s 4

.9
73

0
| 0.

7
}}

A
2

{{ s
6.
15

82
| 0.

7
,
s 5

.4
40

5
| 0.

3
} ,{

s 4
.1
66

1
| 0.

5
,
s 3

.7
29

9
0.
5}}

{{ s
3.
56

61
| 0.

08
,
s 4

.5
25

1
| 0.

32
,
s 5

.0
12

6
| 0.

12
,
s 5

.5
68

5
| 0.

48
} ,{

s 5
.8
77

9
| 0.

1
,
s 5

.0
66

9
| 0.

9
}}

A
3

{{ s
1.
6
| 1

} ,{
s 5

.8
88

3
| 1

}}
{{ s

5.
88

02
| 0.

36
,
s 6

.0
10

8
| 0.

48
,
s 6

.1
31

9
| 0.

16
} ,{

s 4
.4
86

1
| 0.

4
,
s 4

.9
26

9
| 0.

6
}}

A
4

{{ s
8
| 1

} ,{
s 2

.2
97

1
| 0.

3
,
s 2

.6
00

7
| 0.

7
}}

{{ s
4.
29

59
| 1

} ,{
s 3

.5
34

8
| 1

}}



400 J. Wang et al.

4.6.4 Further Discussion

This section proposes a novelMAGDMmethodwhereinDEs’ evaluation information
or attribute values are expressed by PDHLPFSs. To sum up, the main advantages of
our proposed decision-making method have three aspects. First, it employs linguistic
terms to denote the possible MDs and NMDs, which makes it easy to denote DEs’
assessment information both quantificationally and qualitatively. Second, it allows
the existence of multiple MDs and NMDs, which is more capable of describing
DEs’ high hesitancy in realistic complex decision-making problems. Third, it can
also describe probabilistic information of each linguistic term, making it smoother
to describe a decision-making group’s overall evaluation information. These three
merits make our decision-making method more flexible and powerful. In addition,
our MAGDM method is also more powerful than some existing decision-making
approaches. First, compared with aforementioned decision-making method based
on DHLPFSs, the newly developed MAGDM method under PDHLPFSs can more
accurately depict DEs’ evaluation information, as it not only considers multiple
MDs and NMDs but also take the probabilistic values of MDs and NMDs into
consideration. Second, it is also more powerful than the method introduced by Hao
et al. [55]. It is noted that the method proposed by Hao et al. [55] is based on
PDHFSs, which use crisp numbers to denote the possible MDs and NMDs. Hence,
Hao et al.’s [55] method only consider DEs’ quantitative evaluation values. In our
proposed PDHLPFSs, the possible MDs and NMDs are denoted by linguistic terms,
and hence our method can describe DEs’ evaluation values both quantificationally
and qualitatively. We provide Table 12 to better demonstrate the advantages of our
developed MAGDM method.

Table 12 Characteristics of some MAGDM methods

Whether it considers
the probabilistic
information of MDs
and NMDs

Whether it considers
DEs’ quantitative and
qualitative evaluation
values simultaneously

Its degree of flexibility
when dealing with
practical MAGDM
problems

The aforementioned
decision-making
method based on
DHLPFSs

No Yes Medium

Hao et al.’s [55]
decision-making
method based on
PDHFSs

Yes No Medium

Our developed
method based on
PDHLPFSs

Yes Yes High
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5 Conclusion Remarks

The LPFSs can effectively describe DEs’ evaluation values in complicated decision-
making situations.However, themain drawbacks ofLPFSs are they overlookmultiple
MDs and NMDs as well as their corresponding probabilistic information. The aim
is to overcome the two shortcomings by probing extensions of LPFSs. We first
proposed the DHLPFSs, which have the ability of effectively dealing with multiple
MDs and NMDs. After it, we proposed AOs for DHLPFSs and applied in MAGDM
method. we continued to consider the fact that members in DHLPFSs may have
different frequencies, occurrences, and degrees of importance, we further generalize
DHLPFSs to PDHLPFSs by considering not multiple MDs and NMDs but also
their probabilities. We further showed how to use to PDHLPFSs to solve practical
MAGDM problems. Numerical examples have demonstrated the effectiveness of
our proposed novel MAGDM methods. In future research, we shall continue our
study from two aspects. First, we are studying applications of our methods in more
actual-life MAGDM methods. Second, we will study more extensions of LPFSs,
such as cubic LPFSs, hesitant LPFSs, uncertain LPFSs, etc., to accommodate more
complex decision-making environments and propose novel MAGDMmethods to aid
practitioners to make wise decisions.
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Pythagorean Fuzzy Soft Sets-Based
MADM

Khalid Naeem and Muhammad Riaz

1 Introduction

The fuzzy morphological methodology delivers promising yields in quite a lot of
areas, whose narrative is pretty qualitative. The inspiration for the use of words or
sentences in preference to numbers is that philological descriptions or cataloging
are frequently fewer absolute than arithmetical or algebraic ones. Problems that are
equipped with unreliable conditions commonly occur in taking decisions, nonethe-
less are challenging due to perplexing condition of modeling and handling that arises
with such uncertainties. To tackle multifarious and complicated problems in day-to-
day life situations, the modus operandi customarily utilized as discussed in literature
of classical mathematics is not of assistance each time because of the presence of
uncertainties and indistinctness. There are abundant procedures that can be believed
as mathematical models for coping with imprecision, inexactness, and uncertain-
ties. Inauspiciously, all these simulations are fitted out with technical hitches and
complications. To get control on these sorts of insufficiencies, Zadeh [64] brought
together the notion of fuzzy sets (FSs). An FS is a substantial mathematical model
for stamping an assembling of articles having unintelligible boundary. Atanassov
[3–5] moved one step ahead by proposing intuitionistic fuzzy sets (IFSs). Atanassov
[6] presented geometrical version of the components of intuitionistic fuzzy objects.
Yager [60], by altering the condition on parameters, unveiled Pythagorean fuzzy sub-
sets. Yager and Abbasov [61] studied Pythagorean membership grades. Later, Yager
[62] employed these grades in decision-making.Molodtsov [41] patented the percep-
tion of a novel sort of model for sorting out uncertainties, traditionally acknowledged
as soft sets (SSs).
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FSs, SSs, and their further expansions are resilient mathematical models for solv-
ing many real-world problems. The researchers have coined various mathematical
models to deal with real-world problems. Çağman et al. [7] explored fuzzy soft
sets with applications. Feng et al. [15] presented an adjustable approach to fuzzy
soft set-based decision-making. Majumdar and Samanta [39] presented generalized
fuzzy soft sets. Feng et al. [16] promote the study of SSs pooled with FSs and rough
sets. Davvaz and Sadrabadi [11] presented usage of IFSs in medicine. Maji et al.
[38] acquainted with the notion of intuitionistic fuzzy soft sets (IFSSs). Feng et al.
[17] presented an additional outlook on generalized IFSSs and associated multi-
attribute decision-making methods. Li and Cui [36] studied topological structure of
IFSSs. Osmanoglu and Tokat [48] also presented IFS topology independently. Garg
and Arora [20] devised a nonlinear-programming methodology for multi-attribute
decision-making problem with interval-valued IFSSs information. Guleria and Bajaj
[25] used matrices to represent Pythagorean fuzzy soft sets. Naz et al. [45] extended
the notion of PFSs to PF graphs. Akram and Naz [2] presented energy of PF graphs
with applications. Peng and Yang [49] deliberated some results for PFSs. Peng et al.
[50] familiarized some PF information measures with their useful implementations.
Peng et al. [51] globalized PFSs to corresponding SSs and solidified their uses. Peng
and Selvachandran summed up the notions of Pythagorean fuzzy sets in [52]. Riaz
and Naeem [55, 56] obtained some indispensable philosophies of SSs organized
with soft σ -algebra and put on show some employments of soft mappings. Fei et al.
[14] discussed Pythagorean fuzzy decision-making using soft likelihood functions.
Fei and Deng [13], recently, studied multi-criteria decision-making in Pythagorean
fuzzy environment.

The decision-taking techniques of TOPSIS and VIKOR have been deliberated by
voluminous researchers includingHwang andYoon [28], Adeel et al. [1], Eraslan and
Karaaslan [12], Naeem et al. [44], Liu et al. [37], Kumar andGarg [33], Riaz et al. [54,
57], Li andNan [34], Opricovic and Tzeng [46, 47],Mohd andAbdullah [40], Naeem
et al. [43], Kalkan et al. [30], and Zhang and Xu [65]. Garg and Arora [18] presented
generalized IFS power aggregation operator along with its practical usage. Garg and
Arora [19] explored dual hesitant fuzzy soft aggregation operators with applications.
Garg and Arora [23] explored TOPSIS method based on correlation coefficient for
solving decision-making problems with IFSS information. Garg [22] presented, for
the purpose of multiple attribute group decision analysis, novel neutrality operations
based-Pythagorean fuzzy geometric aggregation operators. Li et al. [35] studied
some novel Pythagorean hybrid weighted aggregation operators using Pythagorean
fuzzy numbers along with their applications to decision-making. Recently, Garg [21]
unveiled Pythagorean fuzzy aggregation operators based upon neutrality operations
and rendered its utilizations in the process of multiple attribute group decision-
making. Garg and Arora [24] presented Maclaurin symmetric mean aggregation
operators based on t-norm operations for the dual hesitant fuzzy soft set.

The notion of similarity measure is indispensably significant in nearly every arena
of science and technology. It is ordinarily forged for testing the validity of an object,
situation, or document. Similarity measure serves as a substantial tool to decide the
level of alikeness between two or more data sets. The similarity measures established
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by means of the notions of FSs, SSs, IFSs, and PFSs are broadly and efficiently
applied inmedical diagnosis, pattern recognition, signal detection, image processing,
security verification systems, artificial intelligence, machine learning, etc. Similarity
measures on variousmodels are explored byHong andKim [26],Kharal [32],Kamaci
[31], Hung and Yang [27], Hyung et al. [29], Ye [63], Chen [8, 9], Chen et al. [10],
Wang et al. [58], andMuthukumar and Krishnan [42]. In recent times, Peng and Garg
[53] made public multiparametric similarity measures on PFSs with applications to
pattern recognition.

The goal of this chapter is to study Pythagorean fuzzy soft sets (PFSSs) and their
practical implementations. We make use of different techniques including choice
value method PFS-TOPSIS, VIKOR, and similarity measures for modeling uncer-
tainties in decision-making problems. PFSSs offer a plenty of uses in decision-taking
problems of daily life situations ranging from micro to high-level decisions. The
chapter is organized as follows: Sect. 2 gives access to essential operations and fun-
damental characteristics of PFSSs. We devote Sect. 3 for an application of multi-
criteria group decision-making (MCGDM) utilizing PFS matrices. In the very next
section,we propose PFS-TOPSIS algorithm accompanied by its application in choos-
ing appropriate persons for key ministries in a government. In Sect. 5, we propose
PFS-VIKOR and utilize it on the selection of brand ambassadors for a multi-national
company. In Sect. 6, we devise a similarity measure (SM) and weighted similarity
measure for PFSSs. Based on this SM, we present an application in life sciences. In
conclusion, we summarize our work in Sect. 7.

For better understanding of this unit, the reader is suggested to see [5, 7, 38, 41,
60–62, 64] for preliminary notions.

2 Structure of Pythagorean Fuzzy Soft Sets

Peng et al. [51] floated the notion ofPythagorean fuzzy soft set (PFSSs) and presented
some of their applications. Later, Guleria and Bajaj [25] made use of matrices to
represent PFSSs. The matrices used are known as Pythagorean fuzzy soft matrices
(PFS matrices).

In this segment, we study some fundamental concepts, basic properties, and alge-
braic operations on PFSSs. X will represent the universe of discourse and E the
aggregate of attributes with A, A1, A2, A3 ⊆ E , in this section.

Definition 2.1 A Pythagorean fuzzy soft set (PFSS) on X is a family of the form

(�, A) =
{(
e, {∂, σ�A(∂), ��A(∂)}) : e ∈ A, ∂ ∈ X

}

=
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

=
{(

e,

{
(σ�A(∂), ��A(∂))

∂

})
: e ∈ A, ∂ ∈ X

}
,
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Table 1 Tabulatory representation of PFSS �A

�A e1 e2 · · · en

∂1 (σ11, �11) (σ12, �12) · · · (σ1n, �1n)

∂2 (σ21, �21) (σ22, �22) · · · (σ2n, �2n)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

∂m (σm1, �m1) (σm2, �m2) · · · (σmn, �mn)

where σ�A and ��A are mappings dragging members of X to [0, 1], obeying the
requirement

0 ≤ σ 2
�A

(∂) + �2
�A

(∂) ≤ 1

.
Ifwewriteσi j = σ�A(e j )(∂i ) and�i j = ��A(e j )(∂i ), i = 1, . . . ,m; j = 1, . . . , n,

then the PFSS �A may be expressed in tabular array as in Table1.
The matrix representing PFSS �A is termed as Pythagorean fuzzy soft matrix

(PFS matrix), and has form

�A = [(σi j , �i j )]m×n

=

⎛
⎜⎜⎜⎝

(σ11, �11) (σ12, �12) · · · (σ1n, �1n)

(σ21, �21) (σ22, �22) · · · (σ2n, �2n)
...

...
. . .

...

(σm1, �m1) (σm2, �m2) · · · (σmn, �mn)

⎞
⎟⎟⎟⎠

Example 2.2 Let X = {∂i : i = 1, · · · , 4} and E = {ei : i = 1, 2, . . . , 5}. Take A =
{e2, e5}. Then,
�A =

{(
e2,

{( ∂1

(0.13, 0.91)

)
,
( ∂3

(0.25, 0.62)

)
,
( ∂4

(0.24, 0.89)

)})
,
(
e5,

{( ∂1

(0.71, 0.29)

)
,
( ∂2

(0.41, 0.06)

)})}

is a PFSS over X . The tabular representation of �A is given in Table2.

Table 2 Tabular representation of �A

�A e1 e2 e3 e4 e5

∂1 (0,1) (0.13,0.91) (0,1) (0,1) (0.71,0.29)

∂2 (0,1) (0,1) (0,1) (0,1) (0.41,0.06)

∂3 (0,1) (0.25,0.62) (0,1) (0,1) (0,1)

∂4 (0,1) (0.24,0.89) (0,1) (0,1) (0,1)
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The corresponding PFS matrix is

�A = [σi j , �i j ]4×5

=

⎛
⎜⎜⎝

(0, 1) (0.13, 0.91) (0, 1) (0, 1) (0.71, 0.29)
(0, 1) (0, 1) (0, 1) (0, 1) (0.41, 0.06)
(0, 1) (0.25, 0.62) (0, 1) (0, 1) (0, 1)
(0, 1) (0.24, 0.89) (0, 1) (0, 1) (0, 1)

⎞
⎟⎟⎠

Definition 2.3 A PFSS �(1)
A1

is called PFS subset of �(2)
A2
, i.e., �(1)

A1
⊆̃�(2)

A2
, if

(i) A1 ⊆ A2, and
(ii) �(1)(e) is PFS subset of �(2)(e), for all e ∈ A1.

It is remarkable to notice that �A⊆̃GB by no means requires that each member of
�(1)

A must also present in �(1)
B , contrary to classical set theory.

Definition 2.4 The union of two PFSSs (�1, A1) and (�2, A2) defined over X is
given as (�, A1 ∪ A2) = (�1, A1) ∪̃ (�2, A2), and for all e ∈ A,

� (e) =
⎧⎨
⎩

�1 (e) , if e ∈ A1 & e /∈ A2

�2 (e) , if e ∈ A2 & e /∈ A1

�1 (e) ∪ �2 (e) , if e ∈ A1 ∩ A2,

where �1 (e) ∪ �2 (e) is the union of two PFSSs.

Definition 2.5 The intersection of two PFSSs (�1, A1) and (�2, A2) is another
PFSS (�, A1 ∩ A2) = (�1, A1) ∩̃ (�2, A2), where � (e) = �1 (e) ∩ �2 (e) for all
e ∈ A1 ∩ A2.

Definition 2.6 The difference of two PFSSs (�1, A1) and (�2, A2) over X is defined
as

(�1, A1) \̃ (�2, A2) =
{(

e,
{
∂,min{σ�1(e)(∂), ��2(e)(∂)},max{��1(e)(∂), σ�2(e)(∂)}}

)
: ∂ ∈ X, e ∈ E

}
.

Definition 2.7 The complement of a PFSS (�, A) is a mapping �c : A → PFX

given by �c(e) = [�(e)]c, for all e ∈ A. It is represented as (�, A)c or sometimes
by (�c, A). Thus, if

�(e) = {(∂, σ�(e)(∂), ��(e)(∂)) : ∂ ∈ X}

then
�c(e) = {(∂, ��(e)(∂), σ�(e)(∂)) : ∂ ∈ X}

for all e ∈ A.
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Definition 2.8 A PFSS defined over X is termed as null PFSS if it is in the form

� =
{(

e,
{ ∂

(0, 1)

})
: e ∈ E, ∂ ∈ X

}
.

Definition 2.9 APFSS defined over X is termed as absolute PFSS if it is in the form

X̆ =
{(

e,
{ ∂

(1, 0)

})
: e ∈ E, ∂ ∈ X

}
.

Definition 2.10 If

�(1)
A1

=
{(

e,

{
∂

(σ�(1)
A1

(∂), ��(1)
A1

(∂))

})
: e ∈ A1, ∂ ∈ X

}

and

�(2)
A2

=
{(

e,

{
∂

(σ�(2)
A2

(∂), ��(2)
A2

(∂))

})
: e ∈ A2, ∂ ∈ X

}

are two PFSSs, then

�(1)
A1

⊕̃�(2)
A2

=
{(

e,

{
∂

(
√

(σ�(1)
A1

(∂))2+(σ�(2)
A2

(∂))2−(σ�(1)
A1

(∂)σ�(2)
A2

(∂))2, ��(1)
A1

(∂)��(2)
A2

(∂))

})
: e ∈ E, ∂ ∈ X

}

and

�(1)
A1

⊗̃�(2)
A2

=
{(

e,

{
∂

(σ�(1)
A1

(∂)σ�(2)
A2

(∂),
√

(��(1)
A1

(∂))2 + (��(2)
A2

(∂))2 − (��(1)
A1

(∂)��(2)
A2

(∂))2)

})
: e ∈ E, ∂ ∈ X

}

Definition 2.11 The necessity operator on the PFSS

�A =
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

is defined as

�̃�A =
{(

e,

{
∂

(σ�A(∂),

√
1 − σ 2

�A
(∂))

})
: e ∈ A, ∂ ∈ X

}
.

Definition 2.12 The possibility operator on the PFSS

�A =
{(

e,

{
∂

(σ�A(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}
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is defined as


̃�A =
{(

e,

{
∂

(

√
1 − �2

�A
(∂), ��A(∂))

})
: e ∈ A, ∂ ∈ X

}

Remark The modal operators presented in Definition 2.11 and 2.12 transform any
PFSS to the corresponding FSS.

We elaborate the notions presented above with the help of following example.

Example 2.13 Take X = {∂1, · · · , ∂4} and E = {e1, e2, · · · , e6}. Assume that A1 =
{e2, e4}, A2 = {e1, e4, e5} and A3 = {e2, e4, e6}. Consider the PFSSs

�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.11, 0.04) (0, 1) (0.73, 0.54) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.59, 0.51) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0, 1) (0, 1) (0.45, 0.58) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0, 1) (0, 1) (0.09, 0.28) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0, 1) (0, 1) (0.62, 0.67) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0, 1) (0, 1) (0.54, 0.82) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠

and

�(3)
A3

=

⎛
⎜⎜⎝

(0, 1) (0.31, 0.54) (0, 1) (0.39, 0.01) (0, 1) (0.22, 0.87)
(0, 1) (0.25, 0.04) (0, 1) (0.76, 0.21) (0, 1) (0.53, 0.16)
(0, 1) (0.49, 0.32) (0, 1) (0.62, 0.37) (0, 1) (0.42, 0.19)
(0, 1) (0.63, 0.45) (0, 1) (0.46, 0.54) (0, 1) (0.88, 0.32)

⎞
⎟⎟⎠ .

It may be observed that �(1)
A1

⊆̃�(3)
A3
, whereas neither �(1)

A1
⊆̃�(2)

A2
nor �(2)

A2
⊆̃�(3)

A3
.

Moreover,

�(1)
A1

∪̃�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0.27, 0.78) (0, 1) (0.45, 0.48) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0.11, 0.04) (0, 1) (0.73, 0.28) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0.56, 0.60) (0, 1) (0.62, 0.51) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0.62, 0.62) (0, 1) (0.54, 0.56) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠ ,

�(1)
A1

∩̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.39, 0.58) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.09, 0.54) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.59, 0.67) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.37, 0.82) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,
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(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠ ,

�(1)
A1

\̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.28, 0.54) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.59, 0.62) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�̃�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.96) (0, 1) (0.39, 0.92) (0, 1) (0, 1)
(0, 1) (0.11, 0.99) (0, 1) (0.73, 0.68) (0, 1) (0, 1)
(0, 1) (0.56, 0.83) (0, 1) (0.59, 0.81) (0, 1) (0, 1)
(0, 1) (0.62, 0.78) (0, 1) (0.37, 0.93) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,


̃�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.62, 0.78) (0, 1) (0.88, 0.48) (0, 1) (0, 1)
(0, 1) (0.99, 0.04) (0, 1) (0.84, 0.54) (0, 1) (0, 1)
(0, 1) (0.80, 0.60) (0, 1) (0.86, 0.51) (0, 1) (0, 1)
(0, 1) (0.78, 0.62) (0, 1) (0.83, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠ ,

�(1)
A1

⊕̃�(2)
A2

=

⎛
⎜⎜⎝

(0.56, 0.27) (0.27, 0.78) (0, 1) (0.57, 0.28) (0.33, 0.78) (0, 1)
(0.11, 0.85) (0.11, 0.04) (0, 1) (0.73, 0.15) (0.42, 0.51) (0, 1)
(0.76, 0.49) (0.56, 0.60) (0, 1) (0.77, 0.34) (0.92, 0.21) (0, 1)
(0.54, 0.71) (0.62, 0.62) (0, 1) (0.62, 0.46) (0.87, 0.48) (0, 1)

⎞
⎟⎟⎠

and

�(1)
A1

⊗̃�(2)
A2

=

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.18, 0.70) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.06, 0.59) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.36, 0.77) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.20, 0.88) (0, 1) (0, 1)

⎞
⎟⎟⎠ .

Proposition 2.14 Every PFSS �A may be sandwiched between � and X̆ , i.e.,
�⊆̃ �A ⊆̃X̆ .

Proposition 2.15 If �(1)
A1
, �(2)

A2
and �(3)

A3
are three PFSSs over X, then

(i) �(1)
A1

∩̃�(1)
A1

= �(1)
A1
.

(ii) �(1)
A1

∪̃�(1)
A1

= �(1)
A1
.

(iii) �(1)
A1

∩̃�(2)
A2

= �(2)
A2

∩̃�(1)
A1
.
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(iv) �(1)
A1

∪̃�(2)
A2

= �(2)
A2

∪̃�(1)
A1
.

(v) �(1)
A1

∩̃(�(2)
A2

∩̃�(3)
A3

) = (�(1)
A1

∩̃�(2)
A2

)∩̃�(3)
A3
.

(vi) �(1)
A1

∪̃(�(2)
A2

∪̃�(3)
A3

) = (�(1)
A1

∪̃�(2)
A2

)∪̃�(3)
A3
.

(vii) �(1)
A1

∪̃(�(2)
A2

∩̃�(3)
A3

) = (�(1)
A1

∪̃�(2)
A2

)∩̃(�(1)
A1

∪̃�(3)
A3

).

(viii) �(1)
A1

∩̃(�(2)
A2

∪̃�(3)
A3

) = (�(1)
A1

∩̃�(2)
A2

)∪̃(�(1)
A1

∩̃�(3)
A3

).

Proposition 2.16 If �(1)
A1

and �(2)
A2

are two PFSSs over X, then

(i) �(1)
A1

∩̃ �(2)
A2

⊆̃ �(1)
A1

⊆̃ �(1)
A1

∪̃�(2)
A2

(ii) �(1)
A1

∩̃ �(2)
A2

⊆̃ �(2)
A2

⊆̃ �(1)
A1

∪̃�(2)
A2
.

The above propositions are easy consequences of definition.

Remark Consider the PFSSs �(1)
A1

and �(2)
A2

given in Example 2.13. We have

(
�(1)

A1
∪̃ �(2)

A2

)c =

⎛
⎜⎜⎝

(0.27, 0.56) (0.78, 0.27) (1, 0) (0.48, 0.45) (0.78, 0.33) (1, 0)
(0.85, 0.11) (0.04, 0.11) (1, 0) (0.28, 0.73) (0.51, 0.42) (1, 0)
(0.49, 0.76) (0.60, 0.56) (1, 0) (0.51, 0.62) (0.21, 0.92) (1, 0)
(0.71, 0.54) (0.62, 0.62) (1, 0) (0.56, 0.54) (0.48, 0.87) (1, 0)

⎞
⎟⎟⎠

(1)

(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠ ,

(�(2)
A2

)c =

⎛
⎜⎜⎝

(0.27, 0.56) (1, 0) (1, 0) (0.58, 0.45) (0.78, 0.33) (1, 0)
(0.85, 0.11) (1, 0) (1, 0) (0.28, 0.09) (0.51, 0.42) (1, 0)
(0.49, 0.76) (1, 0) (1, 0) (0.67, 0.62) (0.21, 0.92) (1, 0)
(0.71, 0.54) (1, 0) (1, 0) (0.82, 0.54) (0.48, 0.87) (1, 0)

⎞
⎟⎟⎠

Since A1 ∩ A2 = {e4}, so

(
�(1)

A1

)c∩̃(
�(2)

A2

)c =

⎛
⎜⎜⎝

(0, 1) (0, 1) (0, 1) (0.48, 0.45) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.28, 0.73) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.51, 0.62) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0.56, 0.54) (0, 1) (0, 1)

⎞
⎟⎟⎠ (2)

From (1) & (2), we conclude that De Morgan’s laws do not make sense in PFSS
theory.

Theorem 2.17 If (�1, A1) and (�2, A2) are two PFSSs over X, then

(a)
(
(�1, A1)∪̃(�2, A2)

)c �= (�1, A1)
c∩̃(�2, A2)

c, and
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(b)
(
(�1, A1)∩̃(�2, A2)

)c �= (�1, A1)
c∪̃(�2, A2)

c.

Remark Consider again the PFSS �(1)
A1

given in Example 2.13. We have

�(1)
A1

=

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.11, 0.04) (0, 1) (0.73, 0.54) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.59, 0.51) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠

∴
(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.04, 0.11) (1, 0) (0.54, 0.73) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.51, 0.59) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠

Now,

�(1)
A1

∪̃(
�(1)

A1

)c =

⎛
⎜⎜⎝

(1, 0) (0.78, 0.27) (1, 0) (0.48, 0.39) (1, 0) (1, 0)
(1, 0) (0.11, 0.04) (1, 0) (0.73, 0.54) (1, 0) (1, 0)
(1, 0) (0.60, 0.56) (1, 0) (0.59, 0.51) (1, 0) (1, 0)
(1, 0) (0.62, 0.62) (1, 0) (0.56, 0.37) (1, 0) (1, 0)

⎞
⎟⎟⎠

�= X̆

and

�(1)
A1

∩̃(
�(1)

A1

)c =

⎛
⎜⎜⎝

(0, 1) (0.27, 0.78) (0, 1) (0.39, 0.48) (0, 1) (0, 1)
(0, 1) (0.04, 0.11) (0, 1) (0.54, 0.73) (0, 1) (0, 1)
(0, 1) (0.56, 0.60) (0, 1) (0.51, 0.59) (0, 1) (0, 1)
(0, 1) (0.62, 0.62) (0, 1) (0.37, 0.56) (0, 1) (0, 1)

⎞
⎟⎟⎠

�= �

These observations lead to the following theorem.

Theorem 2.18 If (�, A) is any PFSS over X, then

(1) �A∪̃�c
A �= X̆ , and

(2) �A∩̃�c
A �= �.

Definition 2.19 We know that

�(1)
A1

⊗̃�(2)
A2

=
{(

e,

{
∂

(σ�(1)
A1

(∂)σ�(2)
A2

(∂),
√

(��(1)
A1

(∂))2+(��(2)
A2

(∂))2−(��(1)
A1

(∂)��(2)
A2

(∂))2)

})
: e ∈ E, ∂ ∈ X

}
.

If we substitute �(1)
A1

= �(2)
A2

= �A, then
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�A⊗̃�A =
{(

e,

{
∂

(σ 2
�A

(∂),

√
2�2

�A
(∂) − �4

�A
(∂))

})
: e ∈ E, ∂ ∈ X

}
.

That is,

(�A)
2 =

{(
e,

{
∂

(
σ 2

�A
(∂),

√
1 − (1 − �2

�A
)2

)
})

: e ∈ E, ∂ ∈ X

}
.

In general, if k is any non-negative real number, then

(�A)
k =

{(
e,

{
∂

(
σ k

�A
(∂),

√
1 − (1 − �2

�A
)k

)
})

: e ∈ E, ∂ ∈ X

}
.

In particular, for k = 1
2 , we have

(�A)
1
2 =

{(
e,

{
∂

(√
σ�A(∂),

√
1 −

√
1 − �2

�A

)
})

: e ∈ E, ∂ ∈ X

}

(�A)
2 is called concentration of �A, denoted as con(�A) whereas (�A)

1
2 is entitled

as dilation of �A, denoted as dil(�A).

Example 2.20 For PFSS�(1)
A1

= �A given in Example 2.13, concentration and dila-
tion are

con(�A) =

⎛
⎜⎜⎝

(0, 1) (0.07, 0.92) (0, 1) (0.15, 0.64) (0, 1) (0, 1)
(0, 1) (0.01, 0.06) (0, 1) (0.53, 0.71) (0, 1) (0, 1)
(0, 1) (0.31, 0.77) (0, 1) (0.35, 0.67) (0, 1) (0, 1)
(0, 1) (0.38, 0.79) (0, 1) (0.14, 0.73) (0, 1) (0, 1)

⎞
⎟⎟⎠

and

dil(�A) =

⎛
⎜⎜⎝

(0, 1) (0.52, 0.61) (0, 1) (0.62, 0.35) (0, 1) (0, 1)
(0, 1) (0.33, 0.03) (0, 1) (0.85, 0.40) (0, 1) (0, 1)
(0, 1) (0.75, 0.45) (0, 1) (0.77, 0.37) (0, 1) (0, 1)
(0, 1) (0.79, 0.46) (0, 1) (0.61, 0.41) (0, 1) (0, 1)

⎞
⎟⎟⎠

respectively.

We observe that in concentration of the PFSS, the value of membership function
is reduced and that of non-membership function exceeds the corresponding original
values. On the other hand, in case of dilation of the PFSS, the value of membership
function exceeds and that of non-membership function reduces as compared to the
corresponding original values.
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Keeping in mind this observation, we may link phonetic terms like “very”, “mod-
erate”, “highly”, and “not” with the PFSS �A by giving different non-negative real
values to k. For Example,

k = 1

2
⇒ “very”

k = 3

4
⇒ “moderate”

k = 1

5
⇒ “highly”

k = 4 ⇒ “not”

For conceiving these notions effectively, consider the following example.

Example 2.21 Choose X = {Angelica,Smith,Adina,Paul} as the class of students
and E = {e1, · · · , e5} as the collection of attributes, where

e1 = Sharp in Mathematics

e2 = Sharp in Physics

e3 = Sharp in Chemistry

e4 = Obedient

e5 = Active in physical games

Assume that the PFSS representing members of X and the value of trait e j in the
form of PFNs is

�A =

⎛
⎜⎜⎝

(0.83, 0.28) (0.54, 0.21) (0.37, 0.64) (0.59, 0.16) (0.86, 0.11)
(0.31, 0.26) (0.56, 0.57) (0.43, 0.32) (0.74, 0.25) (0.13, 0.05)
(0.52, 0.27) (0.64, 0.12) (0.45, 0.57) (0.61, 0.35) (0.29, 0.51)
(0.48, 0.59) (0.35, 0.21) (0.57, 0.13) (0.21, 0.21) (0.88, 0.41)

⎞
⎟⎟⎠

The entry at (1, 1) position, i.e., (0.83, 0.28) shows that Angelica’s tendency
towards sharpness in mathematics is 83% whereas against it is 28%.

Now,

very(�A) =

⎛
⎜⎜⎝

(0.91, 0.20) (0.73, 0.15) (0.61, 0.48) (0.77, 0.11) (0.93, 0.08)
(0.56, 0.19) (0.75, 0.42) (0.66, 0.23) (0.86, 0.18) (0.36, 0.04)
(0.72, 0.19) (0.80, 0.09) (0.67, 0.42) (0.78, 0.25) (0.54, 0.37)
(0.69, 0.44) (0.59, 0.15) (0.75, 0.09) (0.46, 0.15) (0.94, 0.30)

⎞
⎟⎟⎠ ,

moderate(�A) =

⎛
⎜⎜⎝

(0.87, 0.24) (0.63, 0.18) (0.47, 0.57) (0.67, 0.14) (0.89, 0.10)
(0.42, 0.23) (0.65, 0.51) (0.53, 0.28) (0.80, 0.22) (0.22, 0.04)
(0.61, 0.23) (0.72, 0.10) (0.55, 0.51) (0.69, 0.31) (0.40, 0.45)
(0.58, 0.52) (0.46, 0.18) (0.66, 0.11) (0.31, 0.18) (0.91, 0.36)

⎞
⎟⎟⎠ ,
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highly(�A) =

⎛
⎜⎜⎝

(0.96, 0.13) (0.88, 0.09) (0.82, 0.32) (0.90, 0.07) (0.97, 0.05)
(0.79, 0.12) (0.89, 0.27) (0.84, 0.15) (0.94, 0.11) (0.66, 0.02)
(0.88, 0.12) (0.91, 0.05) (0.85, 0.27) (0.91, 0.16) (0.78, 0.24)
(0.86, 0.29) (0.81, 0.09) (0.89, 0.06) (0.73, 0.09) (0.97, 0.19)

⎞
⎟⎟⎠

and

not (�A) =

⎛
⎜⎜⎝

(0.47, 0.53) (0.09, 0.41) (0.02, 0.94) (0.12, 0.31) (0.55, 0.22)
(0.01, 0.49) (0.10, 0.89) (0.03, 0.59) (0.30, 0.48) (0.00, 0.10)
(0.07, 0.51) (0.17, 0.24) (0.04, 0.89) (0.14, 0.64) (0.01, 0.84)
(0.05, 0.91) (0.02, 0.41) (0.11, 0.26) (0.00, 0.41) (0.60, 0.72)

⎞
⎟⎟⎠ .

Definition 2.22 A PFSS (�, A) is termed as a Pythagorean fuzzy soft point (PFS
point), denoted as ϑ�, if for the element ϑ ∈ A we have

(i) �(ϑ) �= �, and
(ii) �(ϑ ′) = X̆ , for all ϑ ′ ∈ A − {ϑ}.
Definition 2.23 A PFS point ϑ�∈̃(�, A) is said to be in PFSS (�1, A1), i.e.,
ϑ�∈̃(�1, A1) if ϑ ∈ A1 ⇒ �(ϑ) ⊆ �1(ϑ).

Example 2.24 Let X = {i, n, k} and E = {ϑ1, ϑ2}, then

ϑ�1 = {(ϑ1, {(i, 0.42, 0.57), (k, 0.43, 0.42)})},

and
ϑ�2 = {(ϑ2, {(n, 0.37, 0.56), (k, 0.68, 0.29)})}

are two distinct PFS points contained in the PFSS

�E = {
(ϑ1, {(i, 0.42, 0.57), (k, 0.43, 0.42)}), (ϑ2, {(n, 0.37, 0.56), (k, 0.68, 0.29)})}.

Notice that �E = ϑ�1∪̃ϑ�2 , i.e., a PFS is union of its PFS points.

3 Multi-criteria Group Decision-Making Using
Pythagorean Fuzzy Soft Information

There are lots of expressions that we casually use in daily life that have fuzzy struc-
ture. Usually we use numerical or, sometimes, verbal expressions to explain an event,
refer to something, evaluating expertise of someone, and in many other situations
include fuzziness. It is customary to use lingual expressions. These expressions gen-
erally do not express cast-iron certainty when deciding on a situation or elucidating
some event. For example, the words poor, middle class, lower middle class, upper
middle class, upper class and rich, etc. are used according to the income of an indi-
vidual. We use the word “fast” to express a speed of 80km/h while traveling on a
rough road but call it “slow” while moving on motorways. These examples illustrate
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how human brain works and decides in ambiguous and uncertain situations, and how
it recognizes, assesses, and commands events.

Science and technology have made tremendous developments with the advent of
FSs. The mathematics of FSs has gained a large number of practical implementa-
tions in both theoretical and applied studies ranging from life sciences to artificial
intelligence, and from physical sciences to engineering and humanities.

Often, we face problems in daily life situations which are not precise and clear.
This issue leads us to different sorts of decision-making mechanisms. We endeavor
to reach at some flawless and intellectual decision employing these mechanisms. For
that reason, it is the need of the hour to have improved mathematical models and
techniques for handling uncertainty and imprecision.

Shrewdly choice making is an energetic portion of trade, financial matters, social
sciences, and other real-world issues. It marks out from day-by-day moo level oper-
ational appraisals at low-ranking administration level to long-term key arranging
confronted by senior members of any organization. Conclusions that are delivered
at any level can cause genuine or awful results, but is there an unequivocal format
that choice producers ought to embrace in arrange to guarantee victory, or ought to
supersede the standard plans of tackling a problem?

The choice producers ought to contract numerous components into consideration
before reaching a unanimous and consistent choice. So it is basic to discover all
these components are taken before the assurance is finalized. In parliamentary law
to guarantee that all the vital realities and figures are scrutinized, it is irreplaceable
to arrange the choice making advancement with an ordered demeanor.

Above and beyond other colossal applications, the science of mathematics helps
us too in coming to conclusions on logical evidence. PFSSs take a broad view of
both of IFSs and SSs in the sense that all intuitionistic fuzzy numbers used to express
membership and non-membership degrees are part of Pythagorean fuzzy numbers.
In daily decision-taking problems, PFSSs cover a greater membership space than the
IFSS. As a consequence, PFSSs are more capable than IFSSs to model imprecision
and uncertainty in choice making problems.

In this segment, we present an algorithm for handling multiple criteria group
decision-making problem using choice value method under the umbrella of PFSSs
supported by an illustration.

Algorithm 1:

Step 1: Input X = {∂i : i = 1, 2, · · · ,m} as an aggregate of choices and E = {ei :
i = 1, 2, · · · , n} as a collection of attributes.

Step 2: Construct the PFS matrix with the assistance of experts.
Step 3: Compute relative importance, i.e., weight wi of each attribute such that

�n
i=1wi = 1.

Step 4: Compute the matrix of choice values using C = �E × Wt .
Step 5: Compute the score value s for each alternative using s j = nσ j − n� j , where

nσ j denotes number of times σ j goes beyond or equals other values of σk ,
k �= j .

Step 6: The alternative for which score value is highest is the requisite choice.
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Table 3 Tabular representation of �E

�E e1 e2 e3 e4 e5

∂1 (0.42,0.56) (0.37,0.54) (0.59,0.11) (0.23,0.59) (0.11,0.92)

∂2 (0.34,0.13) (0.52,0.41) (0.54,0.11) (0.33,0.02) (0.22,0.14)

∂3 (0.89,0.24) (0.77,0.31) (0.56,0.15) (0.50,0.13) (0.28,0.13)

∂4 (0.43,0.44) (0.56,0.67) (0.83,0.29) (0.47,0.58) (0.37,0.09)

∂5 (0.56,0.67) (0.49,0.52) (0.57,0.38) (0.21,0.34) (0.38,0.36)

∂6 (0.79,0.34) (0.44,0.43) (0.56,0.58) (0.91,0.39) (0.33,0.39)

∂7 (0.54,0.24) (0.51,0.42) (0.55,0.55) (0.11,0.09) (0.39,0.56)

As a case study, we employ Algorithm 1 in stock exchange investment problem using
hypothetical information.

Example 3.1 Suppose that an investor wishes to invest some money in some busi-
ness with least risk. Let X = {∂i : i = 1, · · · , 7} be the collection of choices under
consideration. For the purpose of reducing the risk factor, he decides to invest his
capital in the ratio 3:2 in accordance with the top ranked two businesses. After
getting advice from his four financial advisors, he chooses the set of attributes as
E = {ei : i = 1, · · · , 5}, where

e1 = Standing reputation of the business

e2 = Impact on market

e3 = Prospects

e4 = Product Viability

e5 = Investment Safety

Studying the history and trends of these businesses, the members of the technical
team of the investor arranges the gathered information in the form of Table3 of the
PFS-set �E .

This information may be put in the form of PFS matrix as

�E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.42, 0.56) (0.37, 0.54) (0.59, 0.11) (0.23, 0.59) (0.11, 0.92)
(0.34, 0.13) (0.52, 0.41) (0.54, 0.11) (0.33, 0.02) (0.22, 0.14)
(0.89, 0.24) (0.77, 0.31) (0.56, 0.15) (0.50, 0.13) (0.28, 0.13)
(0.43, 0.44) (0.56, 0.67) (0.83, 0.29) (0.47, 0.58) (0.37, 0.09)
(0.56, 0.67) (0.49, 0.52) (0.57, 0.38) (0.21, 0.34) (0.38, 0.36)
(0.79, 0.34) (0.44, 0.43) (0.56, 0.58) (0.91, 0.39) (0.33, 0.39)
(0.54, 0.24) (0.51, 0.42) (0.55, 0.55) (0.11, 0.09) (0.39, 0.56)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assume that the four financial advisors provide the relative importance, i.e.,
weights, which are fuzzified, to each attribute and are given in the form of following
matrix:
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M =

⎛
⎜⎜⎝
0.54 0.38 0.59 0.89 0.76
0.37 0.47 0.48 0.94 0.88
0.82 0.46 0.76 0.23 0.79
0.18 0.32 0.57 0.46 0.69

⎞
⎟⎟⎠

After normalizing the entries of M , the normalized matrix appears to be

M̂ =

⎛
⎜⎜⎝
0.507 0.461 0.485 0.639 0.485
0.348 0.570 0.394 0.675 0.562
0.770 0.558 0.625 0.165 0.504
0.169 0.388 0.468 0.330 0.441

⎞
⎟⎟⎠

Thus, the weighted values for the attributes are

W (e1) = 0.188,W (e2) = 0.207,W (e3) = 0.207,W (e4) = 0.190,W (e5) = 0.209.

Hence, the weight vector is

W = (
0.188 0.207 0.207 0.190 0.209

)

Thus, the PF-matrix for choice values is

C = �E × Wt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.42, 0.56) (0.37, 0.54) (0.59, 0.11) (0.23, 0.59) (0.11, 0.92)
(0.34, 0.13) (0.52, 0.41) (0.54, 0.11) (0.33, 0.02) (0.22, 0.14)
(0.89, 0.24) (0.77, 0.31) (0.56, 0.15) (0.50, 0.13) (0.28, 0.13)
(0.43, 0.44) (0.56, 0.67) (0.83, 0.29) (0.47, 0.58) (0.37, 0.09)
(0.56, 0.67) (0.49, 0.52) (0.57, 0.38) (0.21, 0.34) (0.38, 0.36)
(0.79, 0.34) (0.44, 0.43) (0.56, 0.58) (0.91, 0.39) (0.33, 0.39)
(0.54, 0.24) (0.51, 0.42) (0.55, 0.55) (0.11, 0.09) (0.39, 0.56)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0.188
0.207
0.207
0.190
0.209

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.3444, 0.5442)
(0.3920, 0.1651)
(0.5962, 0.1922)
(0.5352, 0.4105)
(0.4440, 0.4521)
(0.5974, 0.4286)
(0.4234, 0.3801)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The values of the score function along with ranking are given in Table4.
Table4 demonstrates that

∂3 � ∂6 � ∂2 = ∂4 � ∂7 � ∂5 � ∂1

This ranking is depicted in Fig. 1.
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Table 4 Values of score function and ranking

X s Ranking

∂1 0 − 6 = −6 6

∂2 1 − 0 = 1 3

∂3 5 − 1 = 4 1

∂4 4 − 3 = 1 3

∂5 3 − 5 = −2 5

∂6 6 − 4 = 2 2

∂7 2 − 2 = 0 4

Fig. 1 Ranking of companies

In view of this ranking, it may be concluded that the investor should invest 60%
of the capital on ∂3, and 40% on ∂6.

3.1 Comparison Analysis

We compare the results of our proposed Algorithm 1 with that of some existing
methods. The results obtained are shown in Table5.

The results portrayed in Table5 approve the validity of the proposed technique.

Table 5 Comparison of results of suggested algorithm 1 with some existing techniques

Method Ranking of choices

Algorithm 1 (Suggested) ∂3 � ∂6 � ∂2 = ∂4

Guleria and Bajaj (Case-I) [25] ∂3 � ∂6 � ∂2 � ∂4

Guleria and Bajaj (Case-II) [25] ∂3 � ∂6 � ∂2 � ∂4

Peng et al. [51] ∂3 � ∂6 � ∂4 � ∂2
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Table 6 Phonetic labels for assessing alternatives

Linguistic Terms Fuzzy Weights

Very Necessary (VN) (0.80, 1]

Mandatory (M) (0.50, 0.80]

More or Less Required (MLR) (0.20, 0.50]

Average Requirement (AR) (0.10, 0.20]

Of No Use (ONU) [0, 0.10]

4 TOPSIS Approach for Choice Making with Pythagorean
Fuzzy Soft Sets

In this section, we study the utilization of PFSSs in intelligent decision-taking. For
this purpose, we first extend TOPSIS to PFSS. The proposed version will be called
PFS-TOPSIS. Afterwards, we shall consider a problem of choosing suitable candi-
dates for key ministries of a country, where PFSSs may be used.

We launch by illuminating the offered modus operandi a step at a time. The
suggested PFS-TOPSIS is generality of fuzzy soft TOPSIS suggested in [12] by
Eraslan and Karaaslan.
Algorithm 2:

Step 1: Recognizing the problem: Suppose that DM = {Di : i = 1, · · · , n} is team
of decision experts, C = {c̈i = 1, · · · , l} is the assemblage of choices and
Q = {q j : j = 1, · · · ,m} is family of attributes.

Step 2: Picking the phonetic terms as given in Table6, prepare weighted parameter
matrix as [wi j ]n×m , where wi j is the weight allocated by the decision expert
Di to the attribute q j .

Step 3: Normalize the weighted matrix to get N̂ = [n̂i j ]n×m , where n̂i j = wi j√
�n

i=1w
2
i j

and obtaining the weight vector W = (w1,w2, · · · ,wm), where w j =∑n
i=1 n̂i j

m
∑m

k=1 n̂ik
.

Step 4: Construct PFS matrix

Di = [vi
jk]l×m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vi
11 vi

12 · · · vi
1m

vi
21 vi

22 · · · vi
2m

...
...

. . .
...

vi
j1 vi

j2 · · · vi
jm

...
...

. . .
...

vi
l1 vi

l2 · · · vi
lm,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where vi
jk is a PFS-element, provided by i th decision expert. Then obtain

the aggregated matrix

D = D1 + D2 + · · · + Dn

n
= [v̇ jk]l×m .
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Step 5: Achieve the weighted PFS matrix

Dw = [r̈ jk]l×m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̈11 r̈12 · · · r̈1m
r̈21 r̈22 · · · r̈2m
...

...
. . .

...

r̈ j1 r̈ j2 · · · r̈ jm
...

...
. . .

...

r̈l1 r̈l2 · · · r̈lm,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where r̈ jk = wk × v̇ jk .
Step 6: Track the PFS-valued positive ideal solution (PFSV-PIS) and PFS-valued

negative ideal solution (PFSV-NIS). For this purpose, we employ in order

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
m }

= {
(∨k r̈ jk,∧k r̈ jk); k = 1, · · · ,m

}

= {
(σ+

k , �+
k ) : k = 1, · · · ,m

}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
m }

= {
(∧k r̈ jk,∨k r̈ jk); k = 1, · · · ,m

}

= {
(σ−

k , �−
k ) : k = 1, · · · ,m

}
,

where ∨ stands for PFS union and ∧ represents PFS intersection.
Step 7: Compute distances of each alternative from PFSV-PIS and PFSV-NIS,

respectively, utilizing

Z+
j =

√
�m

k=1

{(
σ jk − σ+

k

)2 + (
� jk − �+

k

)2}

and

Z−
j =

√
�m

k=1

{(
σ jk − σ−

k

)2 + (
� jk − �−

k

)2}
.

Step 8: Attain the closeness coefficient of each alternative with ideal solution by
making use of

C∗
j = Z−

j

Z+
j + Z−

j

∈ [0, 1].

Step 9: Arrange the ranking of choices in decreasing (or increasing) for obtaining
the priority order of the choices.
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As an illustration ofAlgorithm 2,we discuss a statemanagerial problem following
the procedural steps given in Algorithm 2.

Example 4.1 Suppose that a political party clean sweeps in general elections in a
country. The party has got chance for the first time to make national government and
wishes to prove that it is the best. The party chairmanwants to deliver to the people of
the country his best. The partywants to fill the positions of keyministries by choosing
ministers, who should also be competent, well educated/trained and meritorious in
their respective fields. The party’s top leadership constitutes a committee of experts
to help him solve this riddle on scientific grounds. They also decide that no member
should be given more than one ministry. Assume that

C = {c1, c2, . . . , c6}

is the set of candidates who are to be deputed in different keyministries (ministries of
foreign affairs, defence, finance, and information & broadcasting in order). Further
suppose that

Q = {q1, q2, . . . , q5}

is the set of qualification/merit mandatory for filling a position. The committee inter-
views each candidate carefully to see who is appropriate for which ministry.

Picking the weights from Table6, the experts provide the following weighted
parameter matrix

P =

⎛
⎜⎜⎝

VN MLR MLR ONU VN
M AR AR AR VN
M M VN M M

MLR AR MLR AR VN

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
0.90 0.40 0.30 0.10 0.90
0.70 0.15 0.20 0.15 0.85
0.60 0.70 0.90 0.80 0.75
0.40 0.15 0.40 0.15 0.90

⎞
⎟⎟⎠

The normalized weighted matrix is

N̂ =

⎛
⎜⎜⎝
0.667 0.480 0.286 0.120 0.528
0.519 0.180 0.191 0.180 0.499
0.445 0.840 0.858 0.960 0.440
0.296 0.180 0.381 0.180 0.528

⎞
⎟⎟⎠

and hence the weight vector is W = (0.220, 0.192, 0.196, 0.164, 0.228).
Assume that the four experts provide the following PFS matrices in which the

PFN at (i, j)th position demarcated grades of candidates row-wise and the attribute
column-wise.
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D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.57, 0.39) (0.49, 0.74) (0.77, 0.38) (0.54, 0.21) (0.12, 0.48)
(0.66, 0.51) (0.54, 0.54) (0.32, 0.13) (0.99, 0.13) (0.54, 0.07)
(0.15, 0.68) (0.19, 0.32) (0.76, 0.41) (0.45, 0.15) (0.11, 0.49)
(0.67, 0.74) (0.09, 0.83) (0.59, 0.31) (0.84, 0.16) (0.37, 0.21)
(0.59, 0.17) (0.33, 0.67) (0.34, 0.68) (0.52, 0.19) (0.58, 0.61)
(0.27, 0.54) (0.49, 0.46) (0.48, 0.59) (0.55, 0.54) (0.38, 0.01)

⎞
⎟⎟⎟⎟⎟⎟⎠

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.34, 0.52) (0.58, 0.21) (0.47, 0.21) (0.70, 0.31) (0.11, 0.34)
(0.47, 0.33) (0.39, 0.32) (0.56, 0.20) (0.38, 0.11) (0.26, 0.18)
(0.59, 0.17) (0.33, 0.17) (0.19, 0.28) (0.59, 0.06) (0.78, 0.16)
(0.44, 0.17) (0.38, 0.23) (0.58, 0.27) (0.71, 0.24) (0.54, 0.02)
(0.32, 0.28) (0.56, 0.11) (0.44, 0.37) (0.49, 0.29) (0.55, 0.55)
(0.34, 0.47) (0.52, 0.37) (0.11, 0.18) (0.47, 0.13) (0.47, 0.27)

⎞
⎟⎟⎟⎟⎟⎟⎠

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.11, 0.58) (0.37, 0.22) (0.56, 0.11) (0.21, 0.69) (0.79, 0.32)
(0.13, 0.67) (0.46, 0.13) (0.36, 0.54) (0.56, 0.27) (0.46, 0.61)
(0.59, 0.13) (0.25, 0.11) (0.62, 0.33) (0.47, 0.28) (0.28, 0.47)
(0.11, 0.49) (0.23, 0.05) (0.50, 0.28) (0.34, 0.48) (0.61, 0.54)
(0.17, 0.29) (0.82, 0.34) (0.56, 0.51) (0.50, 0.28) (0.49, 0.12)
(0.33, 0.69) (0.57, 0.61) (0.48, 0.57) (0.33, 0.02) (0.46, 0.31)

⎞
⎟⎟⎟⎟⎟⎟⎠

D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.40, 0.59) (0.41, 0.32) (0.49, 0.12) (0.35, 0.65) (0.39, 0.12)
(0.25, 0.17) (0.38, 0.10) (0.85, 0.26) (0.44, 0.57) (0.92, 0.14)
(0.38, 0.51) (0.36, 0.11) (0.52, 0.29) (0.48, 0.38) (0.52, 0.35)
(0.56, 0.11) (0.73, 0.16) (0.35, 0.27) (0.58, 0.62) (0.62, 0.63)
(0.11, 0.01) (0.33, 0.37) (0.28, 0.38) (0.47, 0.32) (0.71, 0.19)
(0.58, 0.17) (0.44, 0.15) (0.56, 0.16) (0.33, 0.21) (0.88, 0.26)

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the aggregated matrix is

D =

⎛
⎜⎜⎜⎜⎜⎝

(0.355, 0.520) (0.463, 0.373) (0.573, 0.205) (0.450, 0.465) (0.353, 0.315)
(0.378, 0.420) (0.443, 0.273) (0.523, 0.283) (0.593, 0.270) (0.545, 0.250)
(0.428, 0.373) (0.373, 0.178) (0.523, 0.328) (0.498, 0.218) (0.423, 0.368)
(0.445, 0.378) (0.358, 0.318) (0.505, 0.283) (0.618, 0.375) (0.535, 0.350)
(0.298, 0.188) (0.510, 0.373) (0.405, 0.485) (0.495, 0.270) (0.583, 0.368)
(0.380, 0.468) (0.505, 0.398) (0.408, 0.375) (0.420, 0.225) (0.548, 0.213)

⎞
⎟⎟⎟⎟⎟⎠

and hence the weighted PFS matrix is
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Table 7 Distance & closeness coefficient of each candidate

Candidate Z+
j Z−

j C∗
j

c1 0.1137 0.0714 0.3857

c2 0.0620 0.0843 0.5762

c3 0.0774 0.0830 0.5175

c4 0.0741 0.0782 0.5135

c5 0.0909 0.0934 0.5068

c6 0.0953 0.0725 0.4321

Dw =

⎛
⎜⎜⎜⎜⎜⎝

(0.078, 0.114) (0.089, 0.072) (0.112, 0.040) (0.074, 0.076) (0.080, 0.072)
(0.083, 0.092) (0.085, 0.052) (0.103, 0.055) (0.097, 0.044) (0.124, 0.057)
(0.094, 0.082) (0.072, 0.034) (0.103, 0.064) (0.082, 0.036) (0.096, 0.084)
(0.098, 0.083) (0.069, 0.061) (0.099, 0.055) (0.101, 0.062) (0.122, 0.080)
(0.066, 0.041) (0.098, 0.072) (0.079, 0.095) (0.081, 0.044) (0.133, 0.084)
(0.084, 0.103) (0.097, 0.076) (0.080, 0.074) (0.069, 0.037) (0.125, 0.049)

⎞
⎟⎟⎟⎟⎟⎠

The positive and negative ideal solutions are

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
5 }

= {(0.098, 0.041), (0.098, 0.034), (0.112, 0.040), (0.101, 0.036), (0.133, 0.049)}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
5 }

= {(0.066, 0.114), (0.069, 0.076), (0.079, 0.095), (0.069, 0.076), (0.096, 0.084)}

respectively.
The distance of each candidate from PFSV-PIS and PFSV-NIS accompanied by

their relative closeness coefficients are displayed in Table7.
Hence, the ranking preference is

c2 � c3 � c4 � c5 � c6 � c1

. This preference order is depicted in Fig. 2.
The above priority order advocates that the ministry of foreign affairs should be

given to c2, defence to c3, finance to c4 and theministry of information&broadcasting
to c5.
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Fig. 2 Ranking of candidates

5 Multiple Criteria Group Decision-Making Using
PFS-VIKOR Method

The word VIKOR is abbreviated version of “Vlse Kriterijumska Optimizacija Kom-
promisno Resenje” from Serbian language to mean manifold-criteria analysis (or
optimization) and middle ground way out. This technique was devised by Ser-
afim Opricovic to handle choice making problems having dissenting and non-
commensurable principles, with the assumption that finding the middle grounds
is apt for resolving any clash. The team of experts rummages around for a solution
that neighbors the superlative idyllic solution, and the choices are evaluated fol-
lowing all recognized rules. VIKOR has transpired as a widely held multi-criteria
decision-making technique mainly because of its computational straightforwardness
and scrupulousness of solution.

We elucidate the suggested technique bit by bit as below. First six steps of PFS-
VIKOR are the same as of PFS-TOPSIS given in Algorithm 2, so we skip them.

Algorithm 3 (PFS-VIKOR):

Step 7: Use the formulae

Si = �m
j=1w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Ri = m
max
j=1

w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Qi = κ

(
Si − S−

S+ − S−

)
+ (1 − κ)

(
Ri − R−

R+ − R−

)
,

where S+ = maxi Si , S− = mini Si , R+ = maxi Ri , and R− = mini Ri , to
get the values of group utility Si , individual regret Ri , and compromise Qi .
The real number κ is termed as coefficient of decision mechanism. The
role of the coefficient κ is that if compromise solution is to be selected by
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majority, we choose κ > 0.5; for consensus we use κ = 0.5, and κ < 0.5
represents veto.w j represents the weight of the j th criteria, which expresses
its relative importance.

Step 8: Arrange Si , Ri , and Qi in ascending array. The choice r̈α would be announced
middle ground solution if it has theminimumvalue of Qi and further gratifies
the following two necessities in chorus:

(a) If r̈α1 and r̈α2 are two best choices regarding Qi , then

Q
(
r̈α2

) − Q
(
r̈α1

) ≥ 1

n − 1

n being the number of attributes.
(b) The choice r̈α1 must be best ranked by at least one of Ri and Si .

There will exist multiple compromise solutions otherwise, which may be
located as under:

(i) r̈α1 and α2 will be the compromise solutions in case merely (a) is gratified.
(ii) r̈α1 , r̈α2 , · · · , r̈αu would be the compromise solutions in case (a) is not ful-

filled, where r̈αu may be found employing

Q
(
r̈αu

) − Q
(
r̈α1) ≥ 1

n − 1
.

Example 5.1 Assume that a multi-national company wants to choose some brand
ambassadors for advertisement of its products. The CEO of that company constitutes
a committee of four experts to give recommendations about the selection of ambas-
sadors. The number of ambassadors may vary from one to any reasonable number.
The CEO needs a unanimous decision about their selection. The committee decides
to work on scientific grounds. Assume that

C = {a1, a2, · · · , a6}

is the set of persons under consideration as embassador. Further suppose that

Q = {q1, q2, · · · , q5}

is the set of qualities under consideration for the selection of any individual. The
committee ponders on the personalities and the effectiveness of those individuals on
the mob.

Picking the weights from Table6, the experts provide the following weighted
parameter matrix
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P =

⎛
⎜⎜⎝

VN MLR MLR ONU VN
M AR AR AR VN
M M VN M M

MLR AR MLR AR VN

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
0.90 0.40 0.30 0.10 0.90
0.70 0.15 0.20 0.15 0.85
0.60 0.70 0.90 0.80 0.75
0.40 0.15 0.40 0.15 0.90

⎞
⎟⎟⎠

The normalized weighted matrix is

N̂ =

⎛
⎜⎜⎝
0.667 0.480 0.286 0.120 0.528
0.519 0.180 0.191 0.180 0.499
0.445 0.840 0.858 0.960 0.440
0.296 0.180 0.381 0.180 0.528

⎞
⎟⎟⎠

and hence the weight vector is W = (0.220, 0.192, 0.196, 0.164, 0.228).
Assume that the four experts provide the following PFS matrices in which the

PFN at (i, j)th position demarcated grades of candidates row-wise and the attribute
column-wise.

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.57, 0.39) (0.49, 0.74) (0.77, 0.38) (0.54, 0.21) (0.12, 0.48)
(0.66, 0.51) (0.54, 0.54) (0.32, 0.13) (0.99, 0.13) (0.54, 0.07)
(0.15, 0.68) (0.19, 0.32) (0.76, 0.41) (0.45, 0.15) (0.11, 0.49)
(0.67, 0.74) (0.09, 0.83) (0.59, 0.31) (0.84, 0.16) (0.37, 0.21)
(0.59, 0.17) (0.33, 0.67) (0.34, 0.68) (0.52, 0.19) (0.58, 0.61)
(0.27, 0.54) (0.49, 0.46) (0.48, 0.59) (0.55, 0.54) (0.38, 0.01)

⎞
⎟⎟⎟⎟⎟⎟⎠

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.34, 0.52) (0.58, 0.21) (0.47, 0.21) (0.70, 0.31) (0.11, 0.34)
(0.47, 0.33) (0.39, 0.32) (0.56, 0.20) (0.38, 0.11) (0.26, 0.18)
(0.59, 0.17) (0.33, 0.17) (0.19, 0.28) (0.59, 0.06) (0.78, 0.16)
(0.44, 0.17) (0.38, 0.23) (0.58, 0.27) (0.71, 0.24) (0.54, 0.02)
(0.32, 0.28) (0.56, 0.11) (0.44, 0.37) (0.49, 0.29) (0.55, 0.55)
(0.34, 0.47) (0.52, 0.37) (0.11, 0.18) (0.47, 0.13) (0.47, 0.27)

⎞
⎟⎟⎟⎟⎟⎟⎠

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.11, 0.58) (0.37, 0.22) (0.56, 0.11) (0.21, 0.69) (0.79, 0.32)
(0.13, 0.67) (0.46, 0.13) (0.36, 0.54) (0.56, 0.27) (0.46, 0.61)
(0.59, 0.13) (0.25, 0.11) (0.62, 0.33) (0.47, 0.28) (0.28, 0.47)
(0.11, 0.49) (0.23, 0.05) (0.50, 0.28) (0.34, 0.48) (0.61, 0.54)
(0.17, 0.29) (0.82, 0.34) (0.56, 0.51) (0.50, 0.28) (0.49, 0.12)
(0.33, 0.69) (0.57, 0.61) (0.48, 0.57) (0.33, 0.02) (0.46, 0.31)

⎞
⎟⎟⎟⎟⎟⎟⎠
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D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.40, 0.59) (0.41, 0.32) (0.49, 0.12) (0.35, 0.65) (0.39, 0.12)
(0.25, 0.17) (0.38, 0.10) (0.85, 0.26) (0.44, 0.57) (0.92, 0.14)
(0.38, 0.51) (0.36, 0.11) (0.52, 0.29) (0.48, 0.38) (0.52, 0.35)
(0.56, 0.11) (0.73, 0.16) (0.35, 0.27) (0.58, 0.62) (0.62, 0.63)
(0.11, 0.01) (0.33, 0.37) (0.28, 0.38) (0.47, 0.32) (0.71, 0.19)
(0.58, 0.17) (0.44, 0.15) (0.56, 0.16) (0.33, 0.21) (0.88, 0.26)

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus, the aggregated matrix is

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.355, 0.520) (0.463, 0.373) (0.573, 0.205) (0.450, 0.465) (0.353, 0.315)
(0.378, 0.420) (0.443, 0.273) (0.523, 0.283) (0.593, 0.270) (0.545, 0.250)
(0.428, 0.373) (0.373, 0.178) (0.523, 0.328) (0.498, 0.218) (0.423, 0.368)
(0.445, 0.378) (0.358, 0.318) (0.505, 0.283) (0.618, 0.375) (0.535, 0.350)
(0.298, 0.188) (0.510, 0.373) (0.405, 0.485) (0.495, 0.270) (0.583, 0.368)
(0.380, 0.468) (0.505, 0.398) (0.408, 0.375) (0.420, 0.225) (0.548, 0.213)

⎞
⎟⎟⎟⎟⎟⎟⎠

and hence the weighted PFS matrix is

Dw =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0.078, 0.114) (0.089, 0.072) (0.112, 0.040) (0.074, 0.076) (0.080, 0.072)
(0.083, 0.092) (0.085, 0.052) (0.103, 0.055) (0.097, 0.044) (0.124, 0.057)
(0.094, 0.082) (0.072, 0.034) (0.103, 0.064) (0.082, 0.036) (0.096, 0.084)
(0.098, 0.083) (0.069, 0.061) (0.099, 0.055) (0.101, 0.062) (0.122, 0.080)
(0.066, 0.041) (0.098, 0.072) (0.079, 0.095) (0.081, 0.044) (0.133, 0.084)
(0.084, 0.103) (0.097, 0.076) (0.080, 0.074) (0.069, 0.037) (0.125, 0.049)

⎞
⎟⎟⎟⎟⎟⎟⎠

The positive and negative ideal solutions are

PFSV-PIS = {r̈+
1 , r̈+

2 , · · · , r̈+
5 }

= {(0.098, 0.041), (0.098, 0.034), (0.112, 0.040), (0.101, 0.036), (0.133, 0.049)}

and

PFSV-NIS = {r̈−
1 , r̈−

2 , · · · , r̈−
5 }

= {(0.066, 0.114), (0.069, 0.076), (0.079, 0.095), (0.069, 0.076), (0.096, 0.084)}

respectively.
Choosing κ = 0.5, the values of Si , Ri , and Qi for each choice r̈i are calculated

utilizing

Si = �5
j=1w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Ri = 5
max
j=1

w j

(
d
(
r̈+
j , r̈i j

)

d
(
r̈+
j , r̈−

j

)
)

Qi = κ

(
Si − S−

S+ − S−

)
+ (1 − κ)

(
Ri − R−

R+ − R−

)
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Table 8 Values of Si , Ri , and Qi for alternatives

Alternative Si Ri Qi

a1 0.7698 0.2589 1.0000

a2 0.3663 0.1469 0.0000

a3 0.5788 0.2280 0.6260

a4 0.5562 0.1491 0.2457

a5 0.6531 0.1025 0.5754

a6 0.6148 0.0358 0.4368

Fig. 3 3D column chart of
rankings

and are given in Table8 below:
The rank of choices is as under:

By Qi : a2 ≺ a4 ≺ a6 ≺ a5 ≺ a3 ≺ a1

By Si : a2 ≺ a4 ≺ a3 ≺ a6 ≺ a5 ≺ a1

By Ri : a6 ≺ a5 ≺ a2 ≺ a4 ≺ a3 ≺ a1

Since

Q(a4) − Q(a2) = 0.2457 �
1

4

so (a) is not gratified. Further,

Q(a6) − (a2) = 0.4368 ≥ 1

4

Thus, the committee recommends that the persons a2, a4, and a6 must be chosen
as brand ambassadors. These rankings are depicted in Fig. 3.
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6 A Similarity Measure for PFSSs

In this section, we propose a new similarity measure for PFSSs based on cosine
similarity measure and Frobenius inner product of matrices and render some of its
characteristics.

Definition 6.1 Let X={∂i : i=1, · · · ,m}be a crisp set and E = {e j : j = 1, · · · , n}
be the aggregate of attributes. If

�1 =

⎛
⎜⎜⎜⎝

(σ11, �11)�1 (σ12, �12)�1 · · · (σ1n, �1n)�1

(σ21, �21)�1 (σ22, �22)�1 · · · (σ2n, �2n)�1

...
...

. . .
...

(σm1, �m1)�1 (σm2, �m2)�1 · · · (σmn, �mn)�1

⎞
⎟⎟⎟⎠

and

�2 =

⎛
⎜⎜⎜⎝

(σ11, �11)�2 (σ12, �12)�2 · · · (σ1n, �1n)�2

(σ21, �21)�2 (σ22, �22)�2 · · · (σ2n, �2n)�2

...
...

. . .
...

(σm1, �m1)�2 (σm2, �m2)�2 · · · (σmn, �mn)�2

⎞
⎟⎟⎟⎠

are PFS matrices of PFSSs (�1, E) and (�2, E), then similarity measure between
(�1, E) and (�2, E) is given as

Sim(�1,�2) = < �1,�2 >

‖ �1 ‖‖ �2 ‖ ,

where

< �1,�2 > = tr(�T
1 �2)

‖ �1 ‖ =
√

< �1,�1 >.

Here tr(�T
1 �2) (known as trace of the matrix �T

1 �2) denotes the sum of ele-
ments at principal diagonal of the matrix �T

1 �2. The above definition holds good if
hesitation margin εi j is also taken into account. Moreover, this similarity measure
satisfies the following:

(1) 0 ≤ Sim(�1,�2) ≤ 1.
(2) Sim(�1,�2) = 1 ⇔ �1 = �2.
(3) Sim(�1,�2) = Sim(�2,�1).
(4) Sim(�,�c) = 1 iff � is a crisp set.
(5) If (�1, E)�̃(�2, E)�̃(�3, E), then Sim(�1,�3) ≤ Sim(�2,�3).

Example 6.2 Let X = {∂1, · · · , ∂4} be the universe and E = {ei | i = 1, 2, 3} be
the aggregate of attributes. Consider the PFS matrices
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�1 =

⎛
⎜⎜⎝

(0.95, 0.21) (0.73, 0.46) (0.53, 0.71)
(0.38, 0.82) (1, 0) (0.67, 0.52)
(0.28, 0.57) (0.58, 0.31) (0.62, 0.79)

(0, 1) (0.91, 0.19) (0.63, 0.74)

⎞
⎟⎟⎠

and

�2 =

⎛
⎜⎜⎝

(0.54, 0.29) (0.61, 0.67) (0.76, 0.02)
(0.07, 0.53) (0.56, 0.11) (0.39, 0.79)
(0.58, 0.17) (0.36, 0.34) (0.17, 0.58)
(0.21, 0.83) (0.49, 0.48) (0.21, 0.87)

⎞
⎟⎟⎠

representing PFSSs (�1, E) and (�2, E), respectively. Now,

< �1, �2 > = (0.95, 0.21).(0.54, 0.29) + (0.73, 0.46).(0.61, 0.67) + · · · + (0.63, 0.74).(0.21, 0.87)

= 6.7180,

‖ �1 ‖ =
√
0.952 + 0.212 + 0.732 + · · · + 0.742

= 3.1089,

‖ �2 ‖ =
√
0.542 + 0.292 + 0.612 + · · · + 0.872

= 2.4784.

∴ Sim(�1, �2) = < �1, �2 >

‖ �1 ‖‖ �2 ‖
= 6.7180

3.1089 × 2.4784
= 0.8719.

Example 6.3 Let X = {∂1, ∂2, ∂3} and E = {e1, e2, e3}. Let

�1 =
⎛
⎝

(0.52, 0.73, 0.44) (0.89, 0.15, 0.43) (0.62, 0.59, 0.52)
(0.46, 0.73, 0.50) (1, 0, 0) (0.51, 0.51, 0.69)
(0.32, 0.19, 0.93) (0.64, 0.27, 0.72) (0.87, 0.03, 0.49)

⎞
⎠

�2 =
⎛
⎝

(0.68, 0.52, 0.52) (0.31, 0.69, 0.65) (0.44, 0.02, 0.90)
(0.61, 0.50, 0.61) (0.33, 0.57, 0.75) (0.81, 0.16, 0.56)
(0.52, 0.28, 0.81) (0.29, 0.22, 0.93) (0.21, 0.39, 0.90)

⎞
⎠

be the PFS matrices representing the PFSSs (�1, E) and (�2, E), respectively.
Now,

< �1,�2 > = (0.52, 0.73, 0.44).(0.68, 0.52, 0.52) + · · · + (0.74, 0.63, 0.49).(0.35, 0.54, 0.90)

= 7.0581,

‖ �1 ‖ =
√
0.522 + 0.732 + 0.442 + · · · + 0.492

= 2.9987,

‖ �2 ‖ =
√
0.682 + 0.522 + 0.312 + · · · + 0.542

= 2.9994
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∴ Sim(�1, �2) = < �1, �2 >

‖ �1 ‖‖ �2 ‖
= 7.0581

2.9987 × 2.9994
= 0.7847.

Example 6.4 Let X = {∂1, ∂2, ∂3} and E = {e1, e2, e3}. Consider the PFS matrices

(�1, E) =
⎛
⎝

(0.27, 0.39) (0.42, 0.51) (0.61, 0.43)
(0.25, 0.56) (0.58, 0.49) (0.92, 0.36)
(0.76, 0.23) (0.46, 0.48) (0.54, 0.21)

⎞
⎠

(�2, E) =
⎛
⎝

(0.45, 0.21) (0.26, 0.89) (0.54, 0.39)
(0.29, 0.28) (0.46, 0.44) (0.64, 0.31)
(0.27, 0.54) (0.28, 0.33) (0.89, 0.16)

⎞
⎠

(�3, E) =
⎛
⎝

(0.93, 0.15) (0.45, 0.59) (0.33, 0.14)
(0.39, 0.28) (0.51, 0.55) (0.64, 0.27)
(0.71, 0.32) (0.33, 0.18) (0.09, 0.56)

⎞
⎠

Then Sim(�2,�1) = 0.8925 > 0.82 and Sim(�1,�3) = 0.8491 > 0.82 but
Sim(�2,�3) = 0.8027 ≯ 0.82. This advocates that the relation of being similar
is not transitive.

Definition 6.5 Two PFSSs (�1, E1) and (�2, E2) defined over (X, E) are called λ-
similar, denoted as (�1, E1) ≈λ (�2, E2), if Sim(�1,�2) ≥ λ for some 0 < λ < 1.

Proposition 6.6 The relation of being λ-similar is reflexive and symmetric, but not
transitive.

Corollary 6.7 The relation of being λ-similar is not an equivalence relation.

6.1 Weighted Similarity Measure for PFSSs

In this subsection, we present weighted similarity measure between two PFSSs and
give some of its peculiar characteristics.

Definition 6.8 Let �1 and �2 be as given in Definition 6.1. Assume that the weight
of e j is w j ∈ [0, 1] for j = 1, 2, · · · , n. The weighted similarity measure between
�1 and �2 is given as

SimW (�1,�2) = < �1,�2 >

‖ �1 ‖‖ �2 ‖ ,

where
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< �1,�2 > = �i, jw j (σi j , �i j )�1 .(σi j , �i j )�2

� jw j

‖ �1 ‖ =
√

< �1,�1 >.

This weighted similarity measure satisfies the same properties as given in Defini-
tion 6.1.

Example 6.9 Consider the PFSSs given by the PFS matrices

�1 =
⎛
⎝

(0.52, 0.73) (0.89, 0.15) (0.62, 0.59)
(0.46, 0.73) (1, 0) (0.51, 0.51)
(0.32, 0.19) (0.64, 0.27) (0.87, 0.03)

⎞
⎠

�2 =
⎛
⎝

(0.68, 0.52) (0.31, 0.69) (0.44, 0.02)
(0.61, 0.50) (0.33, 0.57) (0.81, 0.16)
(0.52, 0.28) (0.29, 0.22) (0.21, 0.39)

⎞
⎠

Assume that the weights of the attributes e1, e2, and e3 arew1 = 0.52,w2 = 0.31,
and w3 = 0.47, respectively. Then,

< �1,�2 > = 1.7672

‖ �1 ‖ = 1.7020

‖ �2 ‖ = 1.3479

∴ SimW (�1,�2) = 0.7703

6.2 Practical Implementation of Proposed Similarity
Measure in Life Sciences

As a model, in this subsection, we employ proposed similarity measure to diagnose
whether a person has hepatitis or not. As earlier, we first propose Algorithm 4 before
heading towards numerical example where proposed similarity measure may be suc-
cessfully employed as follows:

Algorithm 4

Step 1: Choose the set X = {η1 = hepatitis, η2 = no hepatitis}.
Step 2: Choose the set of symptoms E = {e1, e2, · · · , en}.
Step 3: Choose a model PFS matrix (�, E) with which similarity is to be com-

puted.
Step 4: Choose PFS matrix (�1, E) for the patient.
Step 5: Compute similarity between (�1, E) and (�, E).
Step 6: Decide the threshold value λ ∈]0, 1[.
Step 7: The patient is diseased if Sim(�,�1) ≥ λ.
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Example 6.10 Presume that X = {η1 = hepatitis, η2 = no hepatitis}. Let’s choose
the set of parameters containing the collection of some detectible symptoms, say,
E = {ei : i = 1, 2, · · · , 5}, where

e1 = vomiting,

e2 = jaundice,

e3 = light/clay-colored stool,

e4 = abdominal discomfort, and

e5 = dark urine.

The PFS matrix (�, E) over X for hepatitis is given as under, which may be
constructed with the aid of clinical/medical experts:

(�, E) =

⎛
⎜⎜⎜⎜⎝

(0.62, 0.47) (0.36, 0.57)
(0.89, 0.41) (0.27, 0.93)
(0.58, 0.25) (0.31, 0.54)
(0.51, 0.62) (0.49, 0.38)
(0.63, 0.45) (0.53, 0.41)

⎞
⎟⎟⎟⎟⎠

The PFS matrix (�1, E) over X for hepatitis based upon an ill person is given as
follows:

(�1, E) =

⎛
⎜⎜⎜⎜⎝

(0.11, 0.07) (0.92, 0.15)
(0.14, 0.05) (0.86, 0.26)
(0.08, 0.96) (0.57, 0.02)
(0.36, 0.69) (0.83, 0.19)
(0.46, 0.37) (0.29, 0.84)

⎞
⎟⎟⎟⎟⎠

Let’s decide the threshold valueλ = 0.75. The similaritymeasure between (�, E)

and (�1, E) is Sim(�,�1) = 0.6497 < λ, so we conclude that the person does not
seem to be victim of hepatitis.

7 Conclusion

We studied some elementary notions of Pythagorean fuzzy soft sets in this chapter.
Some fundamental operations and their prime characteristics are also examined with
the assistance of elaborative examples. We proposed four algorithms, i.e., choice
value method, PFS-TOPSIS, VIKOR, andmethod of similarity measures, for model-
ing uncertainties in MADM problems based upon PFSSs. The proposed Algorithms
have been efficaciously applied on ranking different alternatives. To comprehend
the final rankings, we have made use of statistical charts. The proposed models
have tremendous potential for further exploration in theoretical besides application
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perspective and may be efficiently applied in other hybrid structures of fuzzy sets
including Pythagorean m-polar fuzzy sets, Pythagorean m-polar fuzzy soft sets, q-
rung fuzzy soft sets, neutrosophic soft sets, and Pythagorean fuzzy parameterized
soft sets, etc. with slight amendments. The ideas may be efficiently employed in
handling uncertainties in different sectors of real-life situations including business,
artificial intelligence, marketing, shortest route problem, image processing, electoral
system, pattern recognition, machine learning, medical diagnosis, trade analysis,
game theory, forecasting, agri-business analysis, robotics, coding theory, recruitment
problems, and many other problems.
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