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Preface

Over the past century, humankind has seen tremendous growth in all aspects, be it
socioeconomic or scientific, and thus providing much comfortable life, and made it
virtually possible to live in a “world without border.” However, we achieved it at a
cost, and our environment suffered the most! Better life expectancy and
opportunities lead to increased population and extensive industrialization, urbaniza-
tion, cutting forests, overexploitation of agricultural lands, soil erosion, increased
salinities and scarcity of potable-clean water, frequent uncontrolled use and release/
accumulation of recalcitrant toxic chemicals, pollution of three spheres of life (air,
water, and land), and other catastrophes. Although at a slower pace, mother nature
takes care of recycling those resources (such as agricultural resources) and also
remediating and rejuvenating the environment. However, currently environmental
pollution beyond natural healing is a matter of grave concern! Efficient and effective
environmentally friendly approaches are the need of the hour, which can be
implemented for sustainable environmental bioremediation. Plant- or
microorganism-based biotechnological processes are some of the promising
environmentally friendly techniques which can benefit humanity by either utilizing
it as such, or their metabolites enabling the degradation of toxic chemicals and/or
biotransformation to harmless or useful intermediates and end products. It could play
a significant role in bioremediation of such contaminated sites with persistent toxic
compounds, heavy metals, pesticides, PCBs, PAHs, and different types of industrial
waste in an environmentally friendly manner. The bioconversion of such agro-
industrial solid or liquid wastes to industrially useful products is already being
exploited as an attractive option, for both environmental remediation and economy.

This book ‘Biotechnology for Sustainable Environment’ highlights recent
advancements in such a vast topic, through contribution from experts demonstrating
different applications in day-to-day life, both existing and newly emerging
technologies, and thought provoking approaches from different parts of the world,
potential future prospects associated with some frontier development of biotechno-
logical research related to the environment. Experts from India, Serbia, Algeria,
Tunisia, China, Egypt, France, Poland, Iran, Spain, The Netherlands, Norway, and
Oman, authored chapters in the current book. Introductory chapters cover the role of
environmental biotechnology for sustainable future, a possible role of methanogenic
archaea, and chitosan coatings for sustainable development of the environment. Two
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chapters covered the possible bacterial degradation of bisphenol-A, and current state
and future prospects of microbial degradation of marine plastics. Issues associated
with heavy metal and mine deposits are covered by chapters on the mechanism and
pretreatment effect of fungal biomass on the removal of heavy metals; metal
bioremediation, mechanisms, kinetics, and the role of marine bacteria in the biore-
mediation; biofilm-associated metal bioremediation; phytoremediation of mine
waste disposal sites; metallicolous plants associated with amendments and selected
bacterial consortia, to stabilize highly polymetallic contaminated mine deposits; and
bioindication of heavy metal contamination by mushrooms and mosses in a highly
industrialized environment. Two chapters covered issues of polycyclic aromatic
hydrocarbons toxicity and bioremediation approaches, including biogenic
nanoparticles-based strategies of “Nano-Bioremediation.” The remaining chapters
covered value-added products from agroindustry by-product: bagasse;
bio-prospecting of fruits waste for exopolysaccharide production by bacteria; plant
growth-promoting rhizobacteria as bioinoculants for plant growth; and microbial
and enzymatic bioconversion of tannery wastes: progress toward a circular economy
in the leather industry. With the stated objective of our book, we believe that it will
be able to address potential applications and challenges in this particular area. We
hope the chapters of this book will be novel to readers and can be readily adopted as
references for newer and further research. Moreover, since this book contains
information related to different applications, we assume that international readers,
especially students and researchers, will also find this book valuable for reference
purposes.

Last but not least, the editors are thankful to all the researchers, expert
academicians, and leading scientists whose contributions as authors and reviewers
have enriched this book. We also express our deep sense of gratitude to our family
members, for their kind understanding and unconditional support during the course
of such scholarly academic activities. We all strived to make sure that this book is
free from any misleading or erroneous information, and any such mistakes are
completely unintentional, and pardon us. We are also thankful to Springer Nature
for giving us this opportunity, and especially the editorial support team members,
Ms. Aakanksha Tyagi and Ms. Vaishnavi Venkatesh, for their relentless support
throughout the publishing process. We would also like to sincerely thank our
universities for extending the facilities and encouragement for such activities. We
thank them from the core of our heart.

Muscat, Oman Sanket J. Joshi
Aurangabad, Maharashtra, India Arvind Deshmukh
Titabar, Assam, India Hemen Sarma
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Environmental Biotechnology: Toward
a Sustainable Future 1
Sajjad Ghahari, Somayeh Ghahari, Saeid Ghahari,
Ghorban Ali Nematzadeh, and Hemen Sarma

Abstract

The environment is vital to human life, and organisms require it to survive. The
sustainability of the physical environment indicates to what extent a society is
prosperous and whether everyone is well off. The disposal of hazardous
substances is a major challenge every day. The best way to sustain the environ-
ment is to minimize waste generation and maintain a harmonious balance
between esthetics and health. Biological aspects of environmental sustainability
are explored through a review of available biotechnological tools. Environmental
biotechnology is enabling major advances in remediation technologies that will
assist in minimizing the potential release of waste from industrial facilities. This
technology will also produce products useful in efforts to prevent the release of
waste. Biotechnology offers tremendous potential to transform harmful waste and
pollutants into useful by-products using microbial communities or just by
allowing microbes and plants to degrade these wastes as harmless metabolites.
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1.1 Introduction to Environmental Biotechnology

Environment can be defined as a combination of biological and physical factors that
interact with each other. Environmental science is the study of all things on Earth
and the various substances that exist within them (Fig. 1.1). Changes to an environ-
mental attribute will result in human health being negatively affected indirectly, that
is, not just suffering the effects, but indirectly experiencing the results (Singh 2017).
In 1991, the term “biotechnology” was used by Karl Rekey to describe this concept
of development (Fahmideh et al. 2014). Environmental biotechnology is concerned
with the creation of products and services that benefit people through the use of
biological systems or that provide technical support for them. Furthermore, it has a
significant impact on a number of technologies, including manufacturing, food
products, protection of the environment, agriculture, pharmaceuticals, and resource
protection.

Air

Herbivores
Carnivores
Omnivores 

Producer

Consumer
Scavengers

Fig. 1.1 The surrounding environment and its constituents
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At the beginning of the twenty-first century, scientists viewed environmental
biotechnology as the most important technology for sustainable environmental
conservation. Environmental biotechnology, such as the use of living organisms to
clean up polluted environments, can be used for long-term environmental conserva-
tion and management. Environmental biotechnology involves the recycling and
reuse of products, the development of renewable energy plants, the collection of
recycled materials and other ways of preserving the environment. Biotechnology is
used in many different aspects of our everyday lives, including environmental
protection, conservation of energy, agriculture, waste management, and environ-
mental monitoring. Biotechnology, as shown in Fig. 1.2, can serve as one of many
reasons for integrating environmental protection into sustainable development.

Environmental biotechnology brings significant improvements to new solutions
for soil and water restoration that are contaminated with persistent chemicals. This
technology also plays an immense role in the monitoring, detection, and prevention
of pollution. The conservation of resources by recycling hazardous waste into
beneficial by-products is one of the primary objectives of environmental biotechnol-
ogy. Potential microbial and plant species have been involved in the management of
these environmental crises. As a recommendation, researchers suggest the use of
bio-cleaning agents, plant microbes, especially where we need to remove unwanted
contaminants from soil, drains, and surfaces. In addition, environmental

Fig. 1.2 Environmental biotechnology’s role in the sustainable future
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biotechnology has been used in various industries for the production of high-value
chemicals and products, resulting in high economic and environmental profits. This
technology not only helps to improve the product, but is also environmentally
sustainable compared to traditional processes (Singh 2017).

1.2 Worldwide Environmental Problems

The environment in which we live is essential to our well-being, because everything
that surrounds us in the course of our lives is collectively referred to as our
environment. Both living things and nonliving substances are included in
ecosystems. The human race has literally transformed and expanded its food sources
in a very short time. As a result, entire ecosystems have changed. Global environ-
mental problems include pollution, global warming, ozone depletion, acid rain,
depletion of natural resources, overpopulation, waste disposal, deforestation, and
loss of biodiversity. Many of these processes are the result of unsustainable con-
sumption of natural resources. These processes are slowly but extremely damaging
our environment. One of the main impacts of the burning of fossil fuels is the release
of large amounts of carbon dioxide and other greenhouse gasses into the atmosphere.
The result is global pollution problems, the changing climate of the earth, and the
potential for ozone holes to change. Environmental problems, including the loss of
forests, damage water bodies and their ecosystems due to acid rain, over-exploitation
of natural resources, and the mass extinction of animal species due to habitat
destruction, are linked to environmental problems worldwide. Furthermore, as
demographic changes, industrialization, deforestation, and loss of agricultural land
continue to increase, environmental concerns are growing. Urbanization is
expanding and the global economy is rising dramatically. This has negative
consequences. The health impact of the environment is profound and deteriorates
due to contaminated food and hazardous water; it can lead to disease if it is not
properly managed. Poor sanitation and pollution, as well as global climate change,
pose serious health risks as well (Sarma et al. 2019a). With the global environmental
issues mentioned above, our planet is likely to face a serious environmental crisis.
Future disasters are expected to occur as a result of the current environmental
degradation. This will also require the competent authorities and/or nations, as a
matter of urgency, to lay down appropriate legislation to help find appropriate
solutions to the problems and to make people aware of the safe use of natural
resources (Singh and Singh 2017).

1.2.1 Environmental Contamination

Environmental pollution is a global issue identified by Singh and Singh (2017). This
happens in unsustainable activities, resulting in an excessive loss of life. Anthropo-
genic activity is believed to be the main causes of contamination. Pollutions are also
classified into different classes (see Table 1.1).

4 S. Ghahari et al.



1.2.2 Global Warming

Global warming refers to the gradual rise in the earth’s average temperature. A rise in
global climate change refers to a steady increase in the earth’s average temperature.
Global warming is a worldwide phenomenon caused by the increase of the amount
of greenhouse gasses in the atmosphere, such as carbon monoxide, carbon dioxide,
and methane. As a result, the average temperature of the earth is increasing. In the
last 10 years, the temperature of the earth has increased, and this is not the case in the
last 8000 years, which has become relatively stable. In the past 10 years,
temperatures have increased by around 0.3� per year (Singh 2017). The Ministry
of Earth Science reports that the mean Indian temperature rose to around 0.7 �C
during 1901–2018, mainly due to greenhouse gases.

1.2.3 The Depletion of the Ozone Layer

Present in the atmosphere, the ozone layer protects us against harmful ultraviolet
rays. It is becoming depleted by human activities, which lead to a growing global
concern. By reaching the whole amount of the ultraviolet radiation, the sky will be
destroyed, and life on earth will end. The most broadly recognized as the ozone layer
is the stratospheric ozone because of absorbing more than 99% of the UV light
(Sivasakthivel and Reddy 2011).

Table 1.1 Different sources of environmental pollutants

Pollutants Type Effects on health

Dust, chlorofluorocarbons (CFCs),
ozone, peroxy acyl nitrates (PANs),
oxidant (NO, NO2, N2O4, SO, SO2),
smoke

Air Individuals with diseases like chronic
and acute respiratory failures, heart
problems

Significant quantities of pollutants have
been released by airplanes, motor
vehicles, and transport systems

Noise Heart disorders, depression, cognitive
diseases (developmental disabilities),
kidney problems, nausea, vision loss,
and rashes

Radioactive isotopes (210Ро, 210Pb,
230Th, 232Th, 226Ra, 232U, 238Pu, 237Np,
241Am, and others)

Radioactive Cancer, cardiovascular disease,
damage to certain types of DNA

Pesticides, petroleum, and polynuclear
aromatic hydrocarbons, heavy metals,
and metalloids

Soil Cancers, kidney disease, lower
intelligence, neurological damage,
bone and skeletal health problems are
caused by pollution

Detergents, industrial and domestic
wastewater, pesticides, pathogens,
synthetic fertilizers, wastewater, etc.

Water Diseases caused by microbes,
cardiovascular disease, cancer,
gastrointestinal disease, neurological
disease, and respiratory disease

1 Environmental Biotechnology: Toward a Sustainable Future 5



1.2.4 Acid Rain

Acid rain has been a threat to the environment since the nineteenth century. “Acid
rain” is the atmospheric deposition of acidic components that affect the environment,
such as rain, snow, particulate matter, vapor, and gases. Acid rain was first observed
and described by Robert Angus Smith, an English chemist (1852). Smith’s
pioneering observations have linked industrial emissions to a number of harmful
environmental effects. Acid rain caused by the emission of sulfur dioxide and
nitrogen dioxide from various sources to the atmosphere and dissolved in atmo-
spheric water, forming acids when rain falls (Burns et al. 2016).

1.2.5 Depletion of Natural Resources

Natural resources that exist in the environment, such as minerals, energy, water, air,
and soil, are considered vital or beneficial to human beings. All products come from
natural resources for human use (Aquilas et al. 2019). By taking steps to reduce the
usage of natural resources to the minimal possible, one can help preserve the earth’s
climate and mitigate the problems of climate change. With a little bit of knowledge
about the usage of natural resources, people will be able to make a reduction on their
carbon footprint. Problems such as a decline in natural resources, insecurity in the
world, and a troublesome situation are the most pressing issues for this period.

1.2.6 Overpopulation

Human overpopulation has become an issue as it impacts the environment. Some of
the impacts we have today are global warming as well as habitat loss, environmental
pollution, intensive agriculture practices, along with the utilization of limited natural
resources such as arable land, fresh water, and fossil fuels. Population has become an
unintended liability for India. India will surpass China as the most populated country
in the world by as early as 2024. Population growth also causes negative economic
and environmental effects ranging from over-farming, deforestation, water contami-
nation, and global climate change.

1.2.7 Waste Disposal

Waste refers to goods that are not main products, according to the United Nations
Statistics Division (UNSD) report; and the original customer no longer requires it for
processing, production, or the purposes of consumption hoping to throw it away.
Several processes may be brought to an end when raw supplies are processed or
extracted into products (intermediate or final). Once the final products have been
used, human activities can produce a wide range of waste, including solid waste
(home waste) generated in urban areas, radioactive waste, wastewater in the form of
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industrial sewage, effluent, and surface run-off (Farraji et al. 2020). Littering
adversely affects the environment and damages the ecosystems. Waste in many
urban areas is often buried in holes in the ground, sometimes in old quarries or
specially dug quarries. Some waste will eventually rot, but not all, and may become
smelly or release gasses that contribute to the greenhouse effect.

1.2.8 Deforestation

Tree species absorb carbon dioxide and release oxygen during photosynthesis.
Carbon dioxide emitted by plants is also used in photosynthesis. The plant stores
the carbon, helping it grow. The cutting and burning of trees releases the carbon they
store. Deforestation and degradation of forests are therefore the main source of
global warming. Global warming is caused by deforestation, which is a major threat
to people around the world (Chakravarty et al. 2012).

1.2.9 Loss of Biodiversity

Our natural environment contains numerous species, from aquatic species to riverine
species, and to the forest areas that surround us. The term ecological niche refers to
how species interact with their environment and how they adapt over time (Cardinale
et al. 2012). An ecological niche describes the range of conditions necessary for the
species to thrive, as well as describing how it fits into the ecosystem. Extinction of
various species, a population, an area, etc. has a direct connection to the
consequences of environmental damage and habitat degradation. The theory behind
biodiversity understanding is a dynamic linkage between millions of lifeforms on
earth. The UN report warned that over one million species could be extinct world-
wide in the next few decades. This mass extinction of all life on earth puts the planet
at risk. These mass extinctions were responsible for losses of between 60 and 95% of
all species. This takes millions of years to recover from the disaster.

1.3 Bioremediation

In contrast to using costly synthetic processes to remove contaminants, bioremedia-
tion is an attractive alternative. This uses biological organisms that naturally exist on
toxic compounds to convert them into less toxic or nontoxic compounds (Sarma
et al. 2017). In particular, many natural organisms, plants, and earthworms are
required to do work, such as removing or detoxifying various chemicals and waste
in a manner that is environmentally friendly. Scientists have identified a specific
native microbe present in a polluted environment that can solve the problem at hand
and restore the area (Mishra et al. 2019). The environmental factors influence the
bioremediation process. For example, the change in soil type, pH, temperature,
nutrients, and oxygen may affect the bioremediation process. Inspired by microbes,

1 Environmental Biotechnology: Toward a Sustainable Future 7



it can be said that they are able to transform inorganic compounds into inert materials
via gut transfer or adsorption (Sarma et al. 2016; Sarma and Prasad 2018). According
to Chandra et al. (2011) it is impossible to dispose metals unlike natural organic
contaminants. Therefore, they must be eliminated or conversed into other stable
products. Microorganisms can be used to bioremediate heavy metals through a
variety of processes, including sorption, accumulation, leaching, mineralization,
and transformation (Lloyd and Lovley 2001).

Some metal-resistant bacteria are capable of tolerating metal exposure by
accumulating metal ions in a less toxic state (Ramírez-Díaz et al. 2008). Additional
mechanisms have been evolved by microorganisms to protect themselves from
heavy metal toxicity, including the oxidation of heavy metals, the uptake of heavy
metals, and methylation. Many bacteria are reported to have the ability to detoxify
harmful metals, such as Arthrobacter sp., Pseudomonas sp., Alcaligenes sp., Bacil-
lus sp., Flavobacterium sp., Azotobacter sp., Microbacterium sp., Corynebacterium
sp., Rhodococcus sp., Nocardia sp., Methylosinus sp., Ganoderma applanatum,
Aspergillus niger, Stereum hirsutum, Rhizopus arrhizus, and Pleurotus ostreatus
(Megharaj et al. 2003).

1.3.1 Nano-Bioremediation Technologies for Sustainable
Environment

The use of nanoparticles to accelerate the process of bioremediation is known as
“nano-bioremediation.” Nanoparticles (NPs) may be metallic or nonmetallic and
may have different forms. Previous researchers have already used iron NPs to clean
the environment (Tratnyek and Johnson 2006; Sarma et al. 2018). As a
photocatalyst, Zn NPs are capable of degrading various dye (El-Kemary et al.
2010). Silver and gold NPs are used in many different industries. Researchers
have recently studied the ability of gold and copper nanoparticles to degrade organic
dye molecules (Davis et al. 2017). In bioremediation, biologically synthesised
nanoparticles derived from plant extracts, fungi, and bacteria are used. When applied
to environmental contaminants, these biogenic nanoparticles produced very
promising results. Thus according various studies, bioremediation of pollutants
using biosynthetic nanoparticles is promising and sustainable method of environ-
mental cleanup.

1.4 Biotechnology to Control and Clear Air Pollution

The expansion of industrial centers has negative social effects in urban areas as they
have brought about many air pollution concerns (Grommen and Verstraete 2002).
Now, odor dispersal is a problem that is serious and has a large environmental impact
far beyond that of the immediate area (Brooks 1998). The disposal of contaminants
in the environment leads to a variety of issues including the ozone accumulation in
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the environment, the depletion of ozone layer, formation of greenhouse gasses, and
photochemical reactions, which threaten ecosystems, plants, as well as humans and
animal life. Absorption (surface or deep), oxidation (both catalytic and thermal),
condensation, and incineration are common procedures taken for controlling gas-
eous pollutants (Bidar et al. 2007). The techniques are expensive and have some-
times led to some undesired consequences, such as when a primary contaminant
creates a secondary contaminant (Kümmerer 2004). In recent years, biological
approaches have become very popular because they consume less energy while
not generating toxic by-products. As the biological treatment methods used to
remediate the contaminants vary, biofilters and trickling filters have become the
most common (Lezcano et al. 2011). Biofilters can generally function in the appro-
priate temperature and pressure conditions. Historically, filters have been reported to
be the best for removing gaseous pollutants (Marchiol et al. 2004). Biofilters are
typically successful only at low levels of organic contaminants. They are classified
as column reactors and filled with absorbent material (Marchand et al. 2010).
Materials with pores in them can absorb gasses. Activated carbon, wood chips,
compost, coal, and a blend of organic nutrients are the most widely used “filler”
ingredients (Macek et al. 2000).

1.4.1 Control Methods of Odor and Volatile Organic Compounds
(VOCs)

To develop an appropriate controlling technique for odors and VOCs, a physical,
chemical, and thermodynamic approach is required. Figure 1.3 describes primary
technologies used to regulate VOC, H2S, and odor. The approaches are described
based on the nature of each control technology and the various physical, chemical, or
biological characteristics of each method (Revah and Morgan-Sagastume 2005).

Control 
Technologies

Absorption

Bio filtration Bio trickling filterBio scrubbers Membrane bioreactor

Photochemical 
bioreactor

Rotating Biological 
contactors

Suspended cell 
bioreactor Others

Biological

Physical

Dilution Masking Membranes

Silica gel

Others

AluminaAdsorption

Condensation

Activated Carbon Zeolite

Chemical Combustion Chemical 
precipitation

Plasma 
Technology Oxidation Others

Fig. 1.3 Three primary technologies used to regulate odor and VOC
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1.5 Soil Management and Contamination

Over the last two decades, the increase in soil contamination has caused damage to
the environment and to living organisms. Soil pollution is caused by both natural
processes and human activities. The former includes floods, tsunamis, and volcanic
eruptions, and the latter includes organic chemicals, metals (trace and heavy metals),
and radioactive waste. Numerous chemicals, including pesticides, crude oil, and its
derivatives and polymers, can be categorized in this list. Radioactive waste genera-
tion involves the generation of electricity from radioactive sources and from other
nuclear technologies used in research and medicines. These are dangerous additives
that remain in the environment for a long time after they accumulate to
concentrations that are potentially harmful to plants and animals at higher levels of
the food chain. Many of these compounds are believed to cause cancer, premature
births, and mutations. It is necessary to develop tools to assess the potential risks of
human contact with chemicals and to identify the levels of contaminants needed to
protect the environment (Koul and Taak 2018). Soil quality monitoring is a compli-
cated and expensive operation, as there are no readily available indicators. The
alarming environmental degradation situation necessitates that researchers develop
quick, low-cost methods for treating polluted soil (Koul and Taak 2018). As of now,
there is no single soil restoration process capable of restoring and remediating
environmental degradation without any residual effects (Koul and Taak 2018).

1.5.1 Sources of Soil Pollution

There are various sources of pollution in the soil, and they are originates many
different places are shown in Table 1.2.

1.5.2 The Available Options for the Integrated Management
of Contaminated Soils

Today, environmental scientists have used a range of solutions available for the
remediation or cleaning of contaminated areas. Measurements of concentrations of
pollutants, field experiments, and GIS-based technologies are very common, for
example. Using this tool, the concentration of heavy metals can be measured
(Shankar 2017). Chemical, physical, and biological methods are proposed to remove
heavy metals from the environment. But the price difference and the rate of failure
are problems across all technologies. Integrated processes are therefore becoming
increasingly popular due to their effectiveness in the various environmental matrices.
Integrated process is a fusion of two strategies aimed at achieving a synergistic effort
to eliminate pollutants.
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1.5.2.1 Controlling Pollutant Entry into the Soil
Paper, plastics, metals, glassware, organic material, oil products, and sewage sludge
can be recycled to prevent unnecessary soil pollution. Industrial waste needs to be
properly treated at source. Integrated waste management methods should be
implemented (Saha et al. 2010). The soil is the largest “global sink” of environmen-
tal pollution. There are several factors that contaminate the soil. There is an urgent
need to stop soil pollution in such a way that the soil remains healthy and productive.
Risk assessment associated with pesticide application, contaminated soil, sewage
sludge amendment, and other human actions that cause soil contamination is a
complex issue that needs to be carefully addressed for a sustainable future.

1.5.2.2 Use of Physical and Chemical Means to Decontaminate Soil
Different physical treatments include soil substitution and thermal desorption (von
Lindern et al. 2016; Koul and Taak 2018). Soil spading, soil substitution, and import
are the three kinds of soil substitution. The efficiency of different physical processes
varies according to soil properties such as soil form, size, soil particle dispersal,
moisture, clay, humus content, hydrophobic and magnetic characteristics of the soil
particles.

• When the soil-clay or slit content is greater than 30–50%.
• When heavily bound metals are present in the soil.
• When humus levels are high.
• When soil or rock particles have similar properties to those of metal bearing

particles.

Chemical methods involve the addition of many chemicals to water, soil, and
sludge to eliminate the pollutants from them. There are a number of different soil
remediation methods, including chemical leaching, electro-kinetics, vitrification,
and some others. These methods have been tested on site and are quick and efficient.

Table 1.2 Various sources of soil pollution and their examples

Various source of
soil pollution Examples Reference

Coal ash Coal ash, found in residential, commercial, and industrial
areas, as well as in industrial procedures (e.g., ore
smelting), is at high risk for environmental impact

Shankar
(2017)

Sewage Various pollutants also enter waterways like industrial
effluents and domestic sewage illegally discharged directly
into rivers

Snyder
(2005)

Pesticides and
herbicides

Perhaps the most well-known compounds found in
pesticides are 2,4,5-T, 2,4-D, Paraquat, DDT, and Aldrin

Apitz
(2008)

Heavy metals Cobalt, cadmium, chromium, iron, copper, mercury,
molybdenum, manganese, nickel, tin, lead, zinc

Ashraf
et al.
(2014)

War agents Mustard gas and anthrax are deadly biological agents used
as a bioweapon

Shankar
(2017)
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The efficacy of a chemical process determines how well it works. Physical separa-
tion methods are less beneficial than chemical treatments. A wide range of heavy
metals can be treated in chemical methods; adsorbed heavy metals can be extracted;
very fine-grained soil can also be treated; and extracted heavy metals can be
recovered by various other techniques. Soil washing with nontoxic or degradable
chemicals may be the most effective soil remediation technique due to lesser
hazards. There are, however, drawbacks to the use of chemical analysis. In addition
to their large-scale application, the cost of treatment may be affected by chemical
agents; by-products of chemical reagents could be harmful to soil microbes as well
as soil constituents; the extraction of contaminants from highly polluted sludge is
difficult to operate; the treated soil may be used for re-vegetation in different
instances due to its modified chemical, physical, and bi-vegetation. The chemicals
used in these tests also affect other environmental chemicals that may affect the
ecosystem. Physical and chemical treatment options should be used in an integrated
manner to compensate for limitations, establish a sustainable, cost-effective, and
eco-friendly strategic plan for soil remediation (Koul and Taak 2018).

1.5.2.3 Soil Contaminants Bioremediation
As a comprehensive method for addressing soils contaminated with substances,
bioremediation has attracted more attention from researchers due to its potential
improvement as an eco-friendly and sustainable method to decontaminate soil
structure using microorganisms and plant species (Mulligan et al. 2001; Sarma and
Prasad 2015, 2016, 2018; Sarma et al. 2019a). The bioremediation strategies
evaluated are shown in Table 1.3.

1.6 Effective Treatment of Wastewater

There are no more fundamental and essential natural resources than water on earth
(Min et al. 2012). Despite various efforts to prevent the destruction of water
resources, human impacts on the natural water cycle are catastrophic and require
novel approaches to avoid pollution of water resources (Delplanque et al. 2013).
When liquid- or water-based waste is disposed of from home, industry, public, and
industrial facilities, wastewater is formed. The main objectives of wastewater treat-
ment methods may include: the reduction of biodegradable organic content (Sarma
et al. 2019c; Sarma and Lee 2018), the elimination of heavy metals, the elimination
or reduction of phosphorus and nitrogen compounds, the elimination or inactivation
of microorganisms and pathogenic particles (Ghosh and Singh 2005).

1.6.1 Choice of Methods for Wastewater Treatment

The treatment process occurs at a wastewater treatment plant (WWTP) or sewage
treatment plant (STP), also known as a water resource recovery facility (WRRF) or
sewage treatment plant (STP). During the treatment process, the wastewater
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Table 1.3 Bioremediation strategies and their significance

Bioremediation
strategies Significance Reference

Earthworm-assisted
bioremediation

Earthworms can be used for
bioremediation as they use organic
contaminants in a more efficient
manner. Earthworms have been shown
to improve the soil quality and fertility
of field crops by aerating and enriching
bioturbed soils. Earthworms are able to
delay the binding of organic pollutants
to soil, initially release soil bound
pollutants for subsequent degradation,
and encourage and disperse organic
degrading contaminants

Hickman and Reid
(2008)

Mycorrhiza-assisted
bioremediation

Mycorrhiza is a symbiosis between the
plant and the fungus. This helps the
plant to remove toxins from its soil.
Thus, along with mycorrhizae,
phytoremediation is a viable alternative
remediation technique and should be
further studied

Chibuike (2013)

Enzyme-assisted
bioremediation

Enzyme-assisted biodegradation uses
enzymes to reduce or eliminate
hazardous substances at contaminated
sites

Rao et al. (2010)

Plant growth promoting
rhizobacteria-assisted
bioremediation

Bioremediation through plant growth
promoting rhizobacteria is shown to be
more eco-friendly and cost-effective
than physical and chemical remediation
to prevent heavy metal toxicity

Zhuang et al. (2007)

Biosurfactant-assisted
biodegradation of
organic compounds

Microorganisms break down oil by
dissolving and emulsifying it, while its
solubility rate is the limiting factor for
the biodegradation of organic
compounds. Biosurfactants improve the
degradability of oil by improving the
solubility of oil

Bustamante et al. (2012)

Biochar-assisted
bioremediation

Biochar improves the efficiency of
removing pollutants and increasing
carbon sequestration. It also improves
the quality of soil management, lowers
greenhouse gas emissions, and limits
soil erosion

Oni et al. (2019) and
Sarma et al. (2019b)

Nanomaterial-assisted
bioremediation

Nanotechnology is a particular focus
area, as studies have shown that it can
be used in the remediation of toxic
environmental contaminants.
Nanoparticles derived from biological
sources have been shown to be
promising against a variety of

Kumar and Gopinath
(2017) and Rizwan and
Ahmed (2018)

(continued)
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pollutants are removed, converted, or broken down. The selection of the treatment
method reflects the capacity of the treatment plant, the quality of the wastewater
treatment plant, the costs of the treatment plant, and the proximity of the treatment
plant. Water treatment facilities fall into a number of categories based on capacity
(Islam et al. 2019; Asthana et al. 2017).

1.6.1.1 Small-Scale Wastewater Treatment
Wastewater from communities and households is treated in small wastewater treat-
ment units, which are in the form of disposal units on-site treatment and others.

1.6.1.2 Large-Scale Wastewater Treatment
Water treatment from large sectors of our society is carried out in big water plant that
is established for the treatment of human household waste. Wastewater is collected
from various sources, and by being sent to a central treatment facility, it is processed.

1.6.2 Biological Approach to Wastewater Treatment

Biological treatment involves the treatment of waste water via the use of
microorganisms such as fungi, algae, or bacteria to treat the water, following the
degradation of contaminants by microorganisms such as fungi, algae, or bacteria. In
order to convert the dissolved organic matter into a dense biomass that can be kept
separate from the treated waste water by sedimentation. In fact, dissolved organic
matter is used as food by microorganisms themselves. Among the biological
methods of wastewater treatment are: (1) Aerobic wastewater bioremediation (aera-
tion lagoons, oxidation ponds, aerobic bioreactors, percolation or filtration filters,
activated sludge, biological filters, biological nutrient removal, rotating biological
contactors) and anaerobic treatment (anaerobic lagoons, anaerobic bioreactors);
(2) phytoremediation processes (Sumner et al. 2015).

Table 1.3 (continued)

Bioremediation
strategies Significance Reference

environmental pollutants. Research has
shown that bioremediation with
biosynthetic nanoparticles can be a
sustainable approach

Plant-assisted
bioremediation

Plant-assisted bioremediation or phyto-
assisted bioremediation has a
synergistic effect between plant root
systems and natural microbes (fungi and
bacteria) on the remediation of
environmentally contaminated soil,
sediment, or water. It can be used
efficiently in a contaminated
environment

Ancona et al. (2017)
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1.7 Biotechnology Application to Industrial Sustainability

Human activities, such as urbanization, crude oil, coal mining, agriculture and
fisheries, timber harvesting, food production, urban growth, and habitat restoration,
have a profound impact on the environment and quality of life (Sharma et al. 2018).
These natural resources are prone to depletion. Sustainable natural resource conser-
vation is a process that involves the rational use, skilled management, and preserva-
tion of the natural environment in its entirety. Integrated environmental education
can provide knowledge about natural resource management that is applicable to
sustainable resource management. Moreover, it is essential that the volume of
man-made garbage be reduced where possible. Green technology development
appears to be a viable option for reducing the environmental effects of industrial
byproducts while also improving quality of life (Rogers et al. 2005). The previous
study provides information on how biotechnology was used by different industrial
companies to reduce the costs and the ecological consequences of their
manufacturing activities. The following section is a summary of some of the current
research (Rogers et al. 2005).

1.7.1 Fine Chemicals

Biochemie (Austria/Germany), a subsidiary of Novartis, has developed an enzyme-
catalyzed procedure for producing antibiotic cephalosporin, which has been
enhanced by the genetic modification of the microorganisms that produce it. In
contrast to the normal chemical method, the waste solvent generated by the enzy-
matic process that needs to be incinerated is 100 times less, which reduces both the
cost of production and ecological impact. Hoffmann La-Roche (Germany) is cur-
rently developing the metabolism of a microorganism to produce vitamin B2 in just
one-step method instead of the conventional six-step methods. Consequently, the use
of nonrenewable raw materials decreased by 75%, the release of volatile organic
compounds to water and air decreased by 50%, and operating costs decreased
by 50%.

1.7.2 Intermediate Chemicals

Numerous biotechnological methods have been established at considerable cost and
been introduced in the chemical industry, especially in the fine medicinal and
petrochemical segments. However, they can be used and modified more economi-
cally to produce less valuable products, such as intermediate chemicals used to
synthesize other or chemicals or plastics. For example, S-chloropropionic acid is
being used to synthesize specific herbicides. Pseudomonas sp. was used to generate
pure S-chloropropionic acid by the British company Mitia Limited. Productivity is
fourfold increased by the use of advanced fermentation methods. Similarly, the
optimization of performance through genetic modification has resulted in a fivefold
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increase in efficiency. The use of this technology lowers the cost of production, with
less waste by-products.

The Japanese company, Mitsubishi Rayon, produces acrylamide used to generate
acrylic polymers. Here, sulfuric acid and copper catalysts in high temperatures are
used in the conventional chemical process for the production of acrylonitrile acryl-
amide. Also, the company launched a bioprocess using nitrile hydratase, a natural
enzyme, to catalyze acrylonitrile into acrylamide. The yield and efficiency of this
enzyme have been increased by the genetic modification of the microorganism that
naturally produces the enzyme. This enzyme-catalyzed method uses 80% less energy
and produces more acrylamide compared to traditional chemical processes.

1.7.3 Polymers

Titanium- or tin-based catalysts are conventionally used with inorganic acid and
solvents for the production of special polyesters at high temperatures (200 �C). In a
bioprocess developed by the British company Baxenden Chemicals, the enzyme
lipase extracted from the yeast Candida antarctica was used to catalyze polymeri-
zation at a significantly lower temperature (60 �C). Subsequently, the costs related to
enzyme production were reduced through genetic engineering by transferring the
lipase gene to the E. coli bacterium. In the enzyme-catalyzed polymerization
technique, the use of inorganic acids and organic solvents is not required in compar-
ison with the conventional method, which saves at least 2000 megawatts of energy.
In addition, the polymer chain length of the bioprocessed polymer is more uniform,
implying that it can melt at a lower temperature than conventional polyester, adding
to its advantage as a hot-melt adhesive. Consequently, the use of enzyme-based
biotechnology is economically and environmentally beneficial.

1.7.4 Food Processing

In food processing, large amounts of water are often used, generating large amounts
of organic waste. Bioprocessing methods may reduce wastewater and the production
of organic waste. For instance, Pasfrost (the Netherlands) has established a
biological treatment plant for vegetable processing, which has reduced water use
by 50%, resulting in significant cost savings. In addition, Cereol, a German com-
pany, has developed a new technique based on an enzyme for the purification of
vegetable oil after extraction. Biotechnology is now being used to produce more
cost-effective and environment-friendly food constituents, flavours, aromas, and
food additives.
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1.7.5 Fiber Processing

Large amounts of water, energy, and chemicals are used for the whitening and
treatment of natural fibers for textiles and paper processing. Some of associated
environmental effects and such input-related costs may be reduced by the use of
enzymes. As an example, the Windel Company (the Netherlands) used an enzymatic
technique to reduce the energy and the time required to wash H2O2 bleach from
textiles prior to dyeing. Due to the use of the enzyme, both the temperature and the
amount of the second wash were reduced from 80–95 �C to 30–40 �C, resulting in
9–14% more energy savings, 17–18% more water savings. This technique is very
much taken into account in the current textile industry. Canadian company (Domtar)
used the enzyme xylanase produced by another Canadian company (Iogen Corpora-
tion) as an assisting agent for wood pulp in the production of paper. This new
method of whitening is called biobleaching. Because of enzyme utilization, wood
pulp lignin is degraded, which has led to a saving of 10–15% in the consumption of
chlorine dioxide in order to achieve an optimum level of brightness.

1.7.6 Biotechnology Can Create a Source of Renewable Energy

Instances of biotechnological uses in energy relate to two main energy parts:
(1) fossil fuels and (2) renewable energy. Iogen Corporation (Canada) has developed
a method that uses cellulose enzymes to optimize the transformation of cellulose into
fermentable sugar. In addition, the yield and action of cellulose enzymes have been
optimized by the use of biotechnological approaches.

The microbial fuel cell (MFC) system makes use of an active microorganism as a
biocatalyst in an anaerobic anode section for producing bioelectricity (Rahimnejad
et al. 2015). The MFC has several advantages, including low cost, simple compact
design, and renewable energy production, all of which are considered promising in
environmental management technology. MFCs can convert the waste to electricity,
providing an environmentally friendly and sustainable solution to the degradation of
pollutants (Zhang et al. 2016). MFCs may be used in the wastewater treatment
section to treat domestic sewage, livestock wastewater, industrial wastewater, metal
ion removal and recovery, and antibiotic removal. Sediment microbial fuel cells
(SMFCs) can degrade organic pollutants in sediments, immobilize phosphorus in
sediments, remove nitrogen from sediments, and remove heavy metal from
sediments. In addition to that MFCs can be used to remove organic compounds
(Polyaromatic compounds and chlorinated hydrocarbons), metals, and nonmetallic
inorganic pollutants for groundwater (such as nitrate). MFCs are also a promising
method for sludge treatment and solid waste management (Wu et al. 2020).
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1.8 Microorganisms in the Environment

Microbial communities have played a key role in balancing ecosystem work, biotic
and abiotic stress mitigation, earth’s environmental balance, nutrient cycles, biocon-
version of complex animal and plant residues, and bioremediation and mineraliza-
tion of soil contaminants. They lead to soil fertility and development as well as plant
growth through complex and critical, yet ongoing and extraordinary processes. The
microbiome is holistically important for the biogenesis of the earth. Microbial
abilities related to the reuse of carbon, nitrogen, greenhouse gasses, and minerals
are important to environmental processes. They sequester, solubilize, fix, mobilize,
mineralize, transform, neutralize, accumulate, recycle minerals and nutrients to
improve agroecosystems and improve plant health and soil fertility. Microbial
communities have a vital role to play in reducing diseases, promoting plant growth,
and inducing resistance due to their outstanding function (Singh et al. 2019).

1.8.1 Bio-Inputs for Global Sustainability

Bio-inputs, such as plants, bacteria, and fungi, can be modified using recombinant
technology and genetic engineering and can be used as biostimulants, biofertilizers,
biocontrollers, biostabilizers, contaminant biodegraders, crop protection, and soil
fertility enhancers (de Salamone et al. 2019). Furthermore, bio-inputs are generally
referred to as biotechnological inputs, which are used for both widespread organic
farming and agriculture. Bio-inputs are categorized by the Food and Agriculture
Organization (FAO) as bio-insecticide, biorepellent, biostimulant, biofungicide,
biofertilizer, or inoculant according to their performance and functions. Their use
as an alternative to the use of conventional agrochemicals in agriculture is increasing
globally (de Salamone et al. 2019).

1.8.2 Antibiotics Are Used to Protect Plants

Antibiotics are drugs used to treat bacterial infections in humans and animals, but
they are also widely used in plant protection. According to Duffy et al. (2003), they
inhibit the growth of microorganisms at low concentrations through blockage or
suppression of several metabolic activities. Antibiotics have been manufactured
using PGPRs due to the beneficial biocontrol mechanism demonstrated by these
PGPRs for a variety of phytopathogens (Glick et al. 2007). Antibiotic agents can be
categorized into six groups based on the results of a study carried out by Haas and
Défago (2005), considering their ability to control plants root diseases:
phloroglucinols, phenazines, lipopeptides, pyoluteorin cyclic pyrrolnitrin, and
hydrogen cyanide (volatile anti-toxin). For example, wheat plant disease caused by
Gaeumannomyces graminis, can be controlled by 2,4-diacetylphloroglucinol pro-
duced by Pseudomonas sp. (de Souza et al. 2003). Furthermore, pseudomonads
produce phenazines antibiotics that are active against phytopathogens such as
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Gaeumannomyces graminis and Fusarium oxysporum (Chin-A-Woeng et al. 2003).
Since the 1950s, antibiotics have been used to control a variety of bacterial diseases
that affect fruit, vegetable, and ornamental plants. Today, the most frequently used
antibiotics on plants are oxytetracycline and streptomycin.

1.9 Further Biotechnological Aspects

1.9.1 Eco-Friendly Fuels

Global energy consumption is gradually increasing, necessitating the exploration of
alternative ecofriendly and less expensive energy resources such as bioethanol,
biodiesel, biogas, synthetic fuel, and hydrogen. Generally energy is of two types:
(1) renewable resources, which are the naturally discovered, meeting about 16% of
the universal energy demand (Obama 2017); (2) nonrenewable resources, such
as petroleum, coal, and fossil fuels, all satisfying more than 80% of universal energy
demand (Agarwal 2007). Due to growing needs and usage, the capacity of the
nonrenewable resources is retreating since they are basically used in industrial
sectors, transportation, and energy generation sections, which are the main reasons
the environment gets contaminated. As a result, biofuels are gaining public and
scientific attention as having less of an impact on the environment (Lund 2007). Coal
and other fossil fuels contain significant amounts of polyaromatic hydrocarbons.
These toxic compounds are emitted by combustions and pollute the environment
(Fattah et al. 2013). Alternatively, biofuels have a positive effect on people helath
and environment (Arshad et al. 2018). The aim of introducing various biofuels is to
reduce the fossil energy consumption and lowering the outflow of ozone-depleting
substances in the environment.

1.9.1.1 Biofuel Sources
Given the growing demand for energy, the restrictions on the use of fossil fuels, and
the reduced environmental effects of fossil fuels, various attempts were made to
produce renewable energy sources, such as biofuel. Biofuels generated from bio-
mass sources are the main supply to replace fossil fuels and now account for 11–14%
of the total globally consumed energy (Megharaj et al. 2011; Sivrikaya et al. 2011).
Maize, wood waste, agricultural waste, sugar cane, oil residues (for example,
cooking oil and chicken fat), vegetable and herbal oil, non-food products (e.g.,
algal oil), and fresh vegetable oil (e.g., soya oil) are typically the best biofuel
resources. Wood chips or grass can produce fuel from remaining products, such as
ethanol or kitchen oil, since they are environmentally compatible. Biofuels are
characterized based on economic, social, and environmental considerations.
According to Tahir et al. (2019), modern biofuels are recognized as second-
generation (2G), third-generation (3G), and fourth-generation (4G) eco-fuels. Mod-
ern eco-fuels and examples of them are shown in Table 1.4.
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1.10 Biopesticides

Excessive use of synthetic pesticides in plant protection (fungicides, herbicides,
insecticides) leads to pollution of agro-ecosystems. Pesticides cause genetic
alterations in bird and animal populations and are harmful due to their persistence
in nature, contamination of water, soil and food chains. They have been present in
the environment for many years as recalcitrant xenobiotics (Sarma and Joshi 2020).
For example, DDT (1,1,1-trichloro-2,2 bis [P chlorophenyl] ethane), widely used for
nearly 50 years since the 1930s, and extremely persistent in the environment. DDT
residue has been detected in all life support systems. Therefore, the development of
eco-friendly alternatives should be seriously considered to reduce the environmental
impact of chemical pesticides. The use of biopesticides was one of the promising
alternatives.

Biopesticides are effective tools for the production of crops for sustainable
agriculture. Typically, they are less average environmental impacts compared to
the deadly, conventional chemical pesticides. Biopesticides solve a variety of
problems, such as pest resistance, environmental and human health effects.

1.10.1 Microbial Pesticides

The active component of a microbial pesticide is a natural or genetically engineered
microorganism. Fungi, bacteria, and nematodes are among the most significant types
of microorganisms identified. Whereas each active individual microbial component
has specific target pests, microbial pesticides can control different types of pests.
Some fungi, for example, can kill certain insects, while others can control certain
weeds. Trichoderma (biofungicides), the strains Bacillus thuringiensis
(bioinsecticides), and Phytophthora are the most commonly used microbial
pesticides (bioherbicides).

Table 1.4 Modern eco-fuels and examples

Modern
eco-fuels Examples Reference

2G
eco-fuel

Urban solid waste, lignocellulose feedstocks, lesquerella oil,
Jatropha curcas, Pongamia glabra, timber, grass, and plant
residues.

Azad et al. (2016)
and Tahir et al.
(2019)

3G
eco-fuel

Algal biomass Tahir et al. (2019)

4G
eco-fuels

Fuels derived from the air through new methods like
biochemistry, geosynthetic, as well as petroleum
hydroprocessing

Tahir et al. (2019)
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1.10.2 Biochemical Pesticides

Compounds such as pheromones or plant extracts, and fatty acids, naturally present
and capable of killing pests non-toxically, can be considered as biochemical
pesticides (Ghahari et al. 2015, 2017, 2018; Hadadi et al. 2020).

1.10.2.1 Benefits of Biochemical Pesticides
Biopesticides are nonpathogenic and nontoxic to nontarget organisms, not directly
affecting animals, parasitoids and predators. Biopesticide residues are safe and
nonhazardous all the time, even close to the time of harvesting. No risky residues
remain in food, feed, and fiber. They have short shelf-life and limited field persis-
tence and are quickly decomposed because of their biodegradability, making them
safer for humans and the environment. Biopesticides are usually products and
by-products of organisms that occur naturally, such as animals, plants, and
microorganisms (bacteria, viruses, and fungi). Biopesticides are effective in lower
or smaller concentrations or quantities. It is assumed that pests will not develop
resistance to biopesticides. The international market for biopesticides is on the rise
(Essiedu et al. 2020).

1.10.2.2 Limitations of Biochemical Pesticides
Even though research proves that the use of biopesticides is effective against a wide
variety of crop pests, biopesticides are not yet well established on the market. The
commercialization of botanical pesticides highly depends on the availability of large
quantities of plant resources and the cultivation of the plants. To date, the source
plants are cultivated for other purposes, such as food or medicine. In addition, the
cultivation of plants for the production of botanical pesticides need a vast land,
which is therefore highly competitive with arable land for the production of food.
Besides, given the high rate of biodegradability, biological pesticides have a short
shelf-life. As far as the specificity of a microbial pesticide is concerned, only a
portion of the pests available in the field can be controlled by microbes. Other types
of pests present in treated areas may not be controlled by them, which may result in
continuous damage. The efficiency of microbial pesticides is reduced by UV light,
heat, and desiccation; the delivery system of such pesticides needs attention. In
addition, the need for specific formulations and storage processes results in a short
shelf-life, which in turn increases the cost of production. The discovery of active
substances and scientific research on formulation and delivery will improve the
commercialization and use of biopesticides. It seems necessary to promote the
commercialization of biopesticides by making available biological pesticides to
farmers, particularly in developing countries. However, regulating processes to
improve the registration of low-risk substances can develop the exploitation and
market accessibility of biopesticides (Essiedu et al. 2020).
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1.11 Biofertilizers

Biofertilizers play a crucial role in refining crop quality and productivity in modern
agriculture (Mahanty et al. 2017). Generally believed as biostimulants, any or all of
the biological mixtures added to seeds, soil, or plants are intended to improve the
efficiency of nutrient absorption and crop quality and activate stress tolerance
(du Jardin 2015). They are, in fact, colonizing the rhizosphere of plants to support
plant development (Malusá and Vassilev 2014; Vessey 2003). Bioinoculants based
in Rhizobia have been actively used in agriculture for the last decades, as reported by
Arora et al. (2017). According to the estimated results of the BBC (2014) study,
more than 150 microbes based products have been used for agricultural purposes,
while the total share of biofertilizers in the global fertilizer market is 5%. Various
types of biofertilizers are currently used in agriculture: nitrogen fixers, phosphate
solubilizers, potash solubilizers, etc. Together with nitrogen fixers (Azotobacter,
Cyanobacteria, Rhizobium, and Azospirillum), phosphate solubilizers (Bacillus
megaterium and Pseudomonas sp.), have been widely used in agriculture (Mishra
and Dash 2014) among all biofertilizers. In addition, biofertilizers rich in K, S, and
Zn are being developed as major bio-inoculants to correct plant deficiency diseases
(Khatibi 2011; Shaikh and Saraf 2017). Biofertilizers increase crop yields by up to
10–40% by improving the intake of various nutrients, such as amino acids, proteins,
nitrogen, and vitamins (Bhardwaj et al. 2014).

1.11.1 Microbial Biofertilizers

Microbial biofertilizers are substances containing the living or dormant cells of
microorganisms. When applied to the seeds, plant surface, or soil of a host plant,
biofertilizers increase the nutrients available to the plant by colonising the plant’s
rhizosphere. Unlike chemical fertilizers, microbial biofertilizers are also more acces-
sible to small-scale farmers. The main classes of microbes used for the preparation of
microbial biofertilizers are fungi, bacteria, and cyanobacteria, most of which have an
interactive relation with plants (Thomas and Singh 2019).

1.12 Bioleaching

Minerals are a vital part of the country’s economic development and therefore need
to be extracted and recovered. Bioleaching has become an increasing and effective
biotechnology field, a method by which microorganisms are used to extract and
recover precious and fundamental metals from primary ores and concentrates
(Rawlings and Johnson 2007). The discovery of bacterium Thiobacillus
ferrooxidans (now Acidithiobacillus ferrooxidans) in the mid-1940s and later its
findings in the role of bacteria of bioleaching (of copper) set the stage for systematic
investigation of bioleaching.
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1.12.1 Bioleaching Uses

Bioleaching is primarily used to mine metals from electronic waste (Hoque and
Philip 2011), metal waste (Hoque and Philip 2011), fly ashes (Mahajan et al. 2017),
waste from mines (Mahajan et al. 2017), polluted sediments (Mahajan et al. 2017),
and waste from batteries (Kang et al. 2010).

1.12.2 Mechanism of Bioleaching

Bioleaching is based on the solubilization of metals by biological oxidation or on a
complex reaction from various sources (Borja et al. 2016). A model that involved
two mechanisms was proposed in explaining the microbial metal solubilization of
sulfide minerals. Metal sulfides can be oxidized by microorganisms through a direct
mechanism in which electrons are directly obtained from the reduced minerals. Here,
the cells must be attached to the mineral surface where close contact is required. The
adsorption of cells to suspended mineral particles occurs within a few minutes or
hours. The oxidation of the reduced metals is mediated by ferric (III) ions, another
mechanism called the “indirect”mechanism, which is formed by microbial oxidation
of ferrous iron present in the minerals. Ferric iron acts as an oxidant and can oxidize
metal sulfides and is reduced to ferrous iron, which in turn can be microbially
oxidized. In this case, iron acts as an electron carrier. It has been suggested that
iron oxidation does not require direct physical contact. In many instances, it has been
concluded that the “direct” mechanism dominates the “indirect” mechanism, mostly
because the direct mechanism involves direct physical contact with the mineral
surfaces of the bacteria. It has been proven that T. ferrooxidans is easily attached
to the surface of the metal sulfide-S. In the case of Cu2S, the electron transfer from
sulfide-S or cuprous copper involves Fe (II) bound in the envelope and the cell
exopolymer. It has been noted that there appear to be limited sites on a metal sulfide
particle for bacterial attachment. As a result, once maximum attachment has been
achieved, further multiplication of the attached cells should result in the transfer of
one of the two daughter cells of each dividing bacterium to the bulk phase. However,
the attachment of microorganisms to surfaces does not constitute an indication of the
existence of a direct mechanism. In order to indicate the significance of bacterial
adhesion to mineral surfaces, the term contact leaching has been formed. The
following equations describe the direct and indirect mechanisms of pyrite oxidation
(Mishra et al. 2005).

Direct:

2FeS2 þ 3:5O2 þ H2O !Thiobacillus
Fe2þ þ 2Hþ þ 2SO2�

4

2Fe2þ þ 0:5O2 þ 2Hþ ! 2Fe3þ þ H2O
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Indirect:

FeS2 þ 14Fe3þ þ 8H2O !Thiobacillus
15Fe2þ þ 16Hþ þ 2SO2�

4

MSþ 2Fe3þ ! M2þ þ S0 þ 2Fe2þ

S0 þ 1:5O2 þ H2O ! 2Hþ þ SO2�
4

The model of direct and indirect leaching of metals is, however, still under
discussion.

1.13 Bioplastic

The generation of plastics from synthetic polymers has created several biological
issues because they are nonbiodegradable (Kikuchi and Tanaka 2012). The produc-
tion of new materials such as biomaterials using fats, proteins, sugars, fibers, and
other natural ingredients extracted from plants would prevent the use of synthetic
polymers for plastic generation. Bioplastics are plastics made from renewable
biomass, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust,
and recycled food waste.

1.13.1 Merits of Bioplastics Over Conventional Plastics

1.13.1.1 Biodegradable
Bioplastics require a shorter time to degrade when thrown as rubbish in comparison
with conventional plastics. It does not, therefore, require any recycling (Sinan 2020).
Bioplastics are usually made from sugar derivatives such as starch, cellulose, and
lactic acid. Common plastics, such as fossil-fuel plastics (also known as petrobased
polymers), are derived from petroleum or natural gas and thus easily degraded.

1.13.1.2 Eco-Friendly
In the production and burning process of bioplastics, less emissions of carbon and
greenhouse gases are observed compared with conventional plastics (Sinan 2020).
Compared to conventional plastics, bioplastics are completely safe because they are
constructed using natural sources, so they have no chemicals or poisons (Sinan
2020). Bioplastics require less than half of the energy needed for production as
compared to conventional plastics (Sinan 2020). Bioplastics are produced from
agricultural raw materials compared to conventional plastics, so there is no shortage
of raw materials (Sinan 2020). Plastic is the main contaminant of the environment
(Windsor et al. 2019). The accumulation of petroleum-based plastics is a chief
source of environmental contamination, and its harmful effects destroy the ecosys-
tem balance. Thus, bioplastics are an eco sustainable solution to this problem. These
biopolymers may degraded aerobically or anaerobically into water, biomass, and
carbon dioxide (Sinan 2020). In the process of biodegradation, microorganisms
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convert plastics into carbon dioxide, compost, and water. These biodegradable
polymers can be utilized in numerous fields, such as automotive, medicine, agricul-
ture, packaging, and controlled release of drugs. Researchers are working globally
to develop bio-based polymers from different waste materials (Sinan 2020).

1.14 Conclusion

Technological progress is often seen as a challenge to sustainable development. That
is because it creates a high level of uncertainty and a need for more government
regulation. Indeed, we may face an even greater challenge to sustainability in the
coming years. For example, the technologies that we are currently using may not be
able to solve our sustainability problems in the near future. It is clear that all
advancements in biotechnology depend on sufficient laboratory and institutional
support. It is hoped that this new material production technique can be environmen-
tally friendly without damaging the environment.
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Abstract

Methanogenic archaea are an environmentally enthralling proposed candidate. It
has created an innovative thrust in the research world. In recent times,
methanogens have been a striking paradigm and significant present-day
representatives among the Archael kingdom. It has unique physical, ecological
attributes with microbiological credits, which contrast from other microbial
groups. In the present situation, it works viably on the carbon dioxide sequestra-
tion; it plays a pivotal part in the overall management of the carbon cycle.
Principally, the emergence of methane from water muds was recorded by
Alessandro Volta (1776). This discovery created an elegant and widespread
interest among methanogens. Besides, it laid the sound framework for
methanogenic study and the potential production of methane-based fuel. This
chapter revealed out a broader understanding of the microbiological and applied
aspects of methanogens. Compared to all the others, the in-depth study of
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methanogenic archaea provides tremendous opportunities in various fields, and
those contents are also summed up in this chapter. It also centers on the recent
advances of methanogenic biogas, focusing on viable and sustainable biofuel
production.

Keywords

Archaebacteria · Methanogens · Carbon cycle · Biofuel

2.1 Introduction

Methanogenic archaea produce valuable biofuel through the anaerobic digestion-
based renewable energy technology. In nature, the biogas (CH4 + CO2) is produced
by anaerobic degradation of organic substances or the biomass by microbial
communities. The biogas system of anaerobic digestion recycles bio-solids, live-
stock manure, and solid waste organic materials. Methanogens recycle almost all
organic material through anaerobic digestion and hence into the valuable biogas
typically. However, the pure culture of methanogen was obtained only during 1947
by Schnellen. Methanogens have a position in the Euryarchaeota kingdom under the
Archaeal domain (Woese et al. 1990; Ferry 2010). The methanogenic pathway
seized the researcher’s curiosity for several decades. They are in the limelight
among anaerobes since they developed a range of molecular strategies for survival
under anoxic, harsh, and seemingly drastic surroundings. In the past decades,
methanogens have been considered candidates of selection among archaea because
of their bizarre biochemical and genetic properties (Claus and Konig 2010). Since
they are the eccentric group of communities that produces a significant measure of
methane in the earth, the search for sustainable biofuel production and the green-
house gas abatement approaches makes them most attractive. Moreover, the
methanogenic archaea’s active participation in biofuel production and global carbon
cycle neutralization leads to the wide acknowledgment and recognition of them as
economically and environmentally viable organisms. They are the sole biogenic
methane-producing organisms on earth through anaerobic digestion or biogas fer-
mentation. They are the best models for better understanding and forecasts of climate
change, extreme environments, and nitrogen fixation.

This chapter attempts to briefly address the general microbial and technical
aspects of methanogens in this present contest. Ultimately, this chapter aims to
discuss the cutting-edge science behind the exploration of methanogens by refresh-
ing and updating their microbiological, taxonomical, and ecological traits. More-
over, the methanogenic sequestration, biofuel production, and the scientific
community’s new environmental and economic demands are also reviewed. Besides,
methanogens’ superiority over other sequestration candidates in resolving sound
environmental issues due to their different metabolic activities have also discoursed.
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2.2 Microbiological Facets of Methanogens

2.2.1 Archaebacteria

Archaebacteria are an extraordinary fraction of organisms that are distinct from all
others at the elevated level. These organisms are positioned at the Archaeal kingdom
of cellular living forms (Woese and Fox 1977; Woese et al. 1990), which scientists
missed for quite a long time. They are a well diverse and abundant group of
prokaryotes that can survive in extreme environments. The name archaebacteria
mirrors their delightful status of being the oldest known bacteria. Moreover, they
evolved the get-go throughout the entire existence of the globe. There is no much
change since that time (Woese and Fox 1977). Bergey’s manual categorizes
the archaebacteria in Division IV of prokaryotes. Though intricate, a large part of
the cultivable and very much reviewed types of Archaea have been identified. The
Archaeal domain presently has the following taxonomic phyla based on 16S rDNA
analysis like Crenarchaeota, Euryarchaeota, Thaumarchaeota, Nanoarchaeota,
Aigarchaeota, Parvarchaeota, and Bathyarchaeota (Zuo et al. 2015). However,
most methanogens cultivated are successfully placed in the kingdom of
Euryarchaeota (Angel et al. 2011). Conversely, some of them are located within
the Crenarchaeota (Nicol et al. 2003), Bathyarchaeota (Evans et al. 2015), and
Verstraetearchaeota kingdoms (Vanwonterghem et al. 2016).

2.2.2 Definitive Characteristics of Methanogenic Archaea

Carl Woese and Ralph Wolfe both initially revealed that the methanogens were only
abstractedly related candidates other than bacteria. In the carbon cycle-based anaer-
obic ecosystem, these methanogens are considered a decisive part; hence, their
characterization is fundamental for the comprehensible understanding of anaerobic
ecology (Jablonski et al. 2015). Methanogenic archaea are ancient primeval bacterial
forms of the earth. They are very slow-growing, obligate anaerobic (Garcia 1990;
Liu and Whitman 2008), chemolithoautotrophic, or chemolithoheterotrophic, and
methane offering unicarbonotrophic (Woese et al. 1990; Boone et al. 1993) unicel-
lular, prokaryotic forms. They are one of the most significant, distinct,
phylogenetically unusual, and well-analyzed groups within the domain archaea.
All methanogens are obligate lithotrophs. As their name implies, methanogens
make energy and generate methane as a by-product of their united catabolic special-
ization pathway of methanogenesis, a unifying hallmark of all of them. They
contribute nearly all biogenic methane on earth (Balch et al. 1979; Ferry and Kastead
2007; Meeres 2009). Notably, methanogens are called the thermodynamic edge of
life (Buan 2018).
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2.2.3 Anaerobiosis

The methanogens are strict anaerobes. They are compassionate toward oxygen. They
are killed by the presence of minute levels of oxygen concentration as 0.18 mg/L of
soluble oxygen. They are growing at redox potentials below �300 mV (Vance
1997). Hungate (1969) expressed that the oxygen concentration potential of
methanogens is 10–56 mol/L. Interestingly, recent research studies delivered evi-
dence of the methane paradox that is the active methanogens present in oxic
environments (Angle et al. 2017).

Before the 1970s, the researchers believed that the cytochromes are not signifi-
cant for methanogenesis. After examining cytochromes in methanogens (Kuhn et al.
1979), they were divided into two metabolic assemblies based on their presence
(Thauer et al. 2008; Mayer and Muller 2014). The Methanosarcinales,
Methanobacteriales, Methanococcales, and Methanomicrobiales are the cytochrome
possessing orders. They can utilize H2/H2 with formate/secondary alcohols as an
electron donor and CO2 as the electron acceptor, which got reduced to methane. The
orders such as Methanobacteriales, Methanococcales, Methanomicrobiales, and
Methanopyralles lack cytochromes (Thauer et al. 2008) and methanophenazine.
They can use H2

+CO2 or formate as an electron donor. However, some of them
possess membrane-bound cytochromes. They have the ability to use electron donors
such as acetate, methanol, or methylamines. During ATP synthesis, the cytochrome-
free methanogens use Na+ current over the membrane. However, the cytochromes
possessing methanogens have additional coupling sections. They can translocate
protons. Concurrently, they use Na+ and H+ for ATP synthesis (Schlegel and Muller
2013). Recently,Methanosarcina acetivorans became a dynamic model microbe for
the cytochrome-based improvement study on extracellular electron transfer in
Archaea (Holmes et al. 2019). These findings are directly linked pieces of evidence
for the progress of various environmental adaptation criteria among methanogenic
communities.

2.2.4 A Diminutive Historical View of Methanogenic Archaea

Methanogens are the most primordial and ancient organisms on the earth. During the
Archaean era, they would have involved in regulating climate through the transfor-
mation mechanism of greenhouse gas such as carbon dioxide into methane by way of
their natural absorption mechanism (Ueno et al. 2006). The Volta’s experiment was
conducted by Italian physicist Alessandro Volta (1776) on Lago Maggiore which
lead to the exploration and isolation of methane. Later, many scientists ignite
findings and making light on the methanogenesis pathway. It makes milestones on
the germination of methanogenic archaeal research. Later Hungate (1950) exten-
sively developed many anaerobic techniques, which were subsequently modified by
many forthcoming intellectuals.
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2.2.5 Habitat

Methanogens exhibit extensive distribution in nature. The significant division of the
earth’s biosphere holds large and numerous oxygen-free anoxic habitats (Ferry
1992). Although the metabolically limited group, it shows extreme diversity of
conditions. Methanogens are found in almost every conceivable anoxic habitat.
Abundantly, they were found in electron acceptors (O2, SO4

2�, NO3
�, and Fe3

+)
confining habitats like sediments (pond, lake, river, and sea) (Issazadeh et al. 2013),
flooded and waterlogged soils, wetlands (bogs, peatlands, swamps, and marshes),
landfills, anaerobic digesters, sewage, activated sludge, and hydrocarbon-
contaminated soil (Watanabe et al. 2002). In addition, they were also isolated from
Tundra areas, geothermal springs/hydrothermal vents (Jeanthon et al. 1999), hyper-
saline environment, certain groundwater aquifers, terrestrial arthropods gut
(Hackstein and Stumm 1994), gastrointestinal tracts of human, rumen, and insects
(Parmar et al. 2015), avian species (chicken, goose, turkey feces) (Saengkerdsub
et al. 2007), arctic tundra, permafrost soil (Wagner et al. 2013), submerged soils, rice
paddies (Sakai et al. 2007), the heartwood of trees (Liu and Whitman 2008), living
trees wet wood region (Zeikus and Ward 1974), and other places where organic
material is decomposing under strongly anaerobic conditions. Diverse methanogens
in boreal peatlands (Sizova et al. 2003) and permafrost sediments were also reported.
However, recent research studies also report their existence in many aerated upland
soils, including desert soils. These mentioned habitats directly accentuate the
methanogen’s ability of metabolic adaptation to diverse anoxic ecosystems.

2.2.6 Methanogenic Phylogeny

Methanogens arranged in the Archaeal domain are phylogenetically mixed fractions
(Liu and Whitman 2008). Freshly, the methanogens are branched into seven orders
(Ferry and Kastead 2007) viz. Methanobacteriales, Methanococcales,
Methanomicrobiales, Methanosarcinales, Methanopyrales, Methanocellales, and
Methanoplasmatales (Thermoplasmatales) (Paul et al. 2012). It encompasses
150 characterized species. Still, the list extends as new species discovery work
proceeds (Jablonski et al. 2015). Currently, 120 species of methanogens are
described. Among them, hydrogenotrophs, acetotrophs, and methylotrophs make
up 77%, 14%, and 28%, respectively. In methylotrophs, ten species are strict
methylotrophs. Just 3% of the species employ H2 to diminish methanol to methane
(Garcia 1990). These phylogenetic, evolutionary signals such as unique complex
energy metabolism-based positioning of methanogens among extreme taxonomic
branches create exciting avenues for the ecologists and phylogenists toward an
in-depth branching study on the ecological profile of methanogens.

Based on the phylogenetic search, all the orders are labeled as class I, class II, and
class III (Fig. 2.1). Chiefly, class I and II methanogens were bestowing prevailing
physiological and metabolic traits. Methanopyrales, Methanococcales, and
Methanobacteriales are placed under class I, and Methanomicrobiales come under
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class II. Methanosarcinales and Methanocellales are placed under class III (Bapteste
et al. 2005; Sakai et al. 2008; Anderson et al. 2009). Class II methanogens expose
strong adaptation than class I methanogens in oxic habitats (Lyu and Lu 2018).

2.2.6.1 Methanobacteriales
The order Methanobacteriales is very short lancet-shaped cocci to long filamentous
rods and non-motile. Their rigid cell wall has pseudomurein with C20 and C40
isopranyl ethers. The pseudomurein makes Gram stain to be positive, and some as
Gram variable. Mostly they are hydrogenotrophs. It can utilize hydrogen, formate,
CO, or secondary alcohol as electron donors for its methanogenesis except for the
Methanosphaera. The cell membrane contains caldarchaeol and myo-inositol lipids.
It includes the two families Methanobacteriaceae and Methanothermaceae, based on
16S rDNA sequence (Whitman et al. 2001; Karakashev et al. 2005; Bonin and
Boone 2006).

2.2.6.2 Methanococcales
Methanococcales are holding a high fraction of genetic diversity. They are Gram-
negative coccoid/ irregular cocci. Most of them are motile. All are autotrophs and
require sea salts for their culture. They are halophilic, and most are
chemolithotrophic. It can utilize hydrogen or formate as electron donors for its
metabolism. Cell envelopes are covered with a protein cell wall or S-layer. The
cellular lipids range from archaeol, caldarchaeol, and macrocyclic archaeol. Their
most optimum growth temperature ranges from 35 to 88 �C (Whitman et al. 2001;
Whitman and Jeanthon 2006). It is composed of two families, the
Methanocaldococcaceae as well as Methanococcaceae, and four genera. The
Methanocaldococcaceae covers two hyperthermophilic genera,
Methanocaldococcus and Methanotorris. The Methanococcaceae embraces the
Methanococcus (mesophiles) and the Methanothermococcus (extreme thermophiles)
(Karakashev et al. 2005; Bonin and Boone 2006; Liu 2010).

Fig. 2.1 Schematic depiction of classification of methanogens based on comparative genome
analysis
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2.2.6.3 Methanomicrobiales
These slightly studied Methanomicrobiales comprise morphologically varied shapes
such as cocci, rod, plate, or spiral organisms. They may be Gram-positive or Gram-
negative, and motile or non-motile. They are widely distributed in many
environments. They utilize H2/CO2 for metabolism, whereas some of them also
use formate or secondary alcohols. However, they cannot use acetate or methylated
C-1 compounds. Their cell walls have a glycoprotein S-layer with an exterior sheath.
It includes three families and 11 genera. Family Methanomicrobiaceae are Gram-
negative cocci or slightly curved straight rods. Family Methanosarcinales are large,
Gram-positive, and spherical-to-pleomorphic. It can frequently form packets of
various sizes, non-motile, and mesophiles to thermophiles (Whitman et al. 2001;
Karakashev et al. 2005; Bonin and Boone 2006).

2.2.6.4 Methanosarcinales
Methanosarcinales have a distinct morphological appearance like cocci,
pseudosarcinae, and sheathed rods with an S-layer. It consists of three families,
Methanosarcinaceae, Methanosaetaceae, and Methermicoccaceae.
Methanosarcinaceae contains six genera, and Methanosaetaceae includes some
genus of obligate acetotrophs (Boone et al. 1993; Galand et al. 2004; Karakashev
et al. 2005). In this order, all methanogens can use methylated compounds without
hydrogen and formate (Whitman et al. 2001). Methanosaeta (Methanothrix)
members use only acetate for methanogenesis. The Methanobacteriales and
Methanosarcinales orders were mostly accounted for by the planktonic
methanogenic community. The substrate versatility of this order can support diverse
metabolic adaptations (Crevecoeur et al. 2016).

2.2.6.5 Methanopyrales
Methanopyrales are the most profoundly branching methanogen. Currently, it
comprises only a single species, viz. Methanopyrus kandleri (Euzeby 2011). It is
classified under the family of Methanopyraceae. They are hyperthermophilic, obli-
gate hydrogenotrophic, rod-shaped organisms having a protein S-layer surrounded
pseudomurein cell wall. They can survive 84–110 �C, a temperature found in marine
hydrothermal systems. It uses H2/CO2 for its metabolism (Whitman et al. 2001;
Karakashev et al. 2005). 2,3-Di-O-phytanyl-sn-glycerol and 2,3-di-O-
geranylgeranyl-sn-glycerol lipids are present in them (Oren 2014).

2.2.6.6 Methanocellales
Methanocellales (methane-producing cell) was first identified in the soil of the rice
field. It plays a pivotal part in paddy field methane emanations (Sakai et al. 2008; Lu
and Lu 2012). It was primarily proposed and isolated from Italian rice crop soil. Its
pure culture was first obtained from Japanese rice field soil (Sakai et al. 2010). They
are unique for their slow growth, fastidious culture conditions, tolerance of oxygen
stress (Angel et al. 2011; Yuan et al. 2011; Lu and Lu 2012), and adjustment to low
H2 partial pressure (Sakai et al. 2009). It includes the species Methanocella
paludicola (Sakai et al. 2007). Beforehand, this order was acknowledged as Rice
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Cluster 1 (RC-1). Cells are rod-shaped, Gram-negative, mesophilic, non-motile, and
hydrogenotrophic. Methanocella arvoryzae species was a recent addition (Sakai
et al. 2010). In the year 2012, Lu and Lu identified a Methanocella conradii from
Chinese rice field soil. It has an optimum growth temperature of 50–55 �C. It uses
H2/CO2 for CH4 production.

2.2.6.7 Methanoplasmatales (Thermoplasmatales)
Methanoplasmatales was first proposed by Paul et al. (2012), which are currently
known as Methanomassiliicoccales. They use methylamines or methylamines +H2

(or di- and mono-methylamines) for methanogenesis. Owing to this, they are
perceived as obligate methyl respiring methylotrophic methanogens (Buan 2018).
Many strains are identified, such as Methanomassiliicoccus luminyensis,
“Candidatus Methanomethylophilus alvus.” Both are strict hydrogen-dependent
methylotrophs of human feces (Borrel et al. 2012; Dridi et al. 2012). Amazingly,
the largest methanogenic euryarchaeon genome from M. luminyensis (Gorlas et al.
2012) was identified and classified.

2.3 Morphological, Ecological, and Biological View
of Methanogenic Archaea

Methane-forming archaea have a phylogenetically distinctive 16S rDNA gene
sequence than others. They also have peculiar characteristic cell wall components,
cell walls, and unique membrane lipids. The ecological aspect highlights their
combined interplay of other anaerobes with the controllability of physical and
chemical factors for their function.

2.3.1 Cell Shape, Motility, and Gas Vesicles

The microscopic wet mount preparations generally reveal the morphological
characteristics of methanogens. Methanogens show diverse cell morphology, includ-
ing size and shapes like rods (individual/pairs/narrow, curved rods/spirillum-shaped/
short/very short/long filamentous rods), regular and irregular cocci, coccoid, highly
irregular coccoid, spirilla, sarcina, lancet, plate, angular plate, rounded shape and
long thin chains, long thicker filaments, clusters of rounded cells, spheres, filaments,
long unusual flattened shaped, multiple forms, irregular, unusual flattened plates,
and aggregate as clusters (Zeikus 1977; Cuzin et al. 2001; Wagner et al. 2013; Weng
et al. 2015; Gunsalus et al. 2016). Owing to the presence of flagella, methanogens
are motile. The Methanococcales and Methanomicrobiales and the genera
Methanospirillum, Methanogenium, Methanolobus, and Methanomicrobium (Jones
et al. 1987; Gunsalus et al. 2016) exhibit motility. Moreover, methanogens are used
to improve their positions in flotation habitats with the aid of gas vesicles. In
addition, gas vesicles were explored in some mesophilic Methanosarcina strains
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and some thermophilic Methanothrix strains (Mah et al. 1977; Zinder et al. 1987;
Kamagata and Mikami 1991).

2.3.2 Gram Reaction

Supreme methanogen strains are Gram-negative based on their broader sections of
cell wall structural pattern. They lack the peptidoglycan layer. It has been disrupted
during the staining regimen. Based on the investigation, if Gram stain preparation of
a mixed microbial population containing methanogen and bacteria were analyzed,
the methanogens exhibit Gram-negative reaction whereas the bacteria exhibit Gram-
positive nature. Some of the limitations have occurred owing to the appearance of a
type of peptidoglycan known as pseudomurein. It can make them Gram-positive
(Todar 2009; Cuzin et al. 2001; Dridi et al. 2012; Gunsalus et al. 2016).

2.3.3 Methanogens as Syntrophs

Methanogens are commonly free-living. However, few cases act as syntrophs in the
intestine of the rumen, arthropods, and vertebrates during interspecies hydrogen
transfer. However, it is widespread among rumen protozoa and anaerobic ciliates.
Besides, it can be associated intracellularly and extracellularly (Stams and Plugge
2009). Nevertheless, occasionally, it can also relate to anaerobic bacteria, fungi, and
protozoa (Sharp et al. 1998; Joblin et al. 2002; Thauer et al. 2008). The protozoa
harbor methanogens based on the fermentative type of Clostridium-type metabo-
lism. They were reported in a few amoebaean flagellate species (Fenchel and Finlay
2010). The potential symbiotic betterment of methanogens with other species is used
to understand methanogens’ useful functional analysis.

2.3.4 Cell Envelope, Lipid Composition, and Antibiotic Resistance

Methanogens maintain a distinctive range of cell envelope formats. It is always
simple and rigid, seldom nonflexible, with a lack of peptidoglycan (Albers and
Meyer 2011). The methanogenic cell envelope was separated into three layers
based on their cell wall components, viz. pseudomurein, protein or glycoprotein,
and heteropolysaccharide layers (Sirohi et al. 2010). The pseudomurein is analogous
to the peptidoglycan layer of bacteria. Some of them have a glycoprotein S-layer for
their cell wall. It can provide support to the cell (Whitman et al. 2006). The
Methanobrevibacter and Methanosphaera lack S-layer. Besides, some of the
methanogen cell envelopes consist of various layers of polymers. The
Methanobrevibacter and Methanobacterium have L-talosaminuronic acid, and the
Methanosarcina has methanochondroitin. The Methanosarcina can produce cell
aggregates. It can synthesize a cell wall polymer, methanochondroitin (Kreisl and
Kandler 1986; Todar 2009; Albers and Meyer 2011). TheMethanosarcina possesses
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a heteropolysaccharide, and Methanomicrobium holds a protein layer (Balch et al.
1979).

Methanogens hold unique biochemical structures. It has a diverse class of core
lipids by distinct polar associations (Garcia et al. 2000). However, it is chiefly
glycerol ethers. The membrane lipids connect the alkyl chains to the glycerol
using phytane or biphytate. Archaeal polar lipids consist of a core lipid added to
the polar head group. The archaeal core lipids are saturated isopranoid chains
attached via ether bonds to the glycerol 2,3-Sn carbon states (Sprott 2011). Novel
core lipids identified from many methanogens such as caldarchaeol, allyl ether-type
core lipids, digeranylgeranylglycerol, unsaturated archaeol, unsaturated hydroxy
archaeol-based phospholipids, and polar lipids (Hafenbradl et al. 1993; Grather
and Arigoni 1995; Sprott et al. 1997; Morii et al. 1998; Nicol et al. 2003). Ether
lipids of methanogens act as a chemotaxonomic biomarker. In addition, they are also
used in environmental research.

Methanogens are commonly insensitive to antibiotics such as penicillin G, D-
cycloserine, cephalosporin C, vancomycin, and its derivatives. The deviations in the
transformation between archaea and bacteria also cause antibiotics sensitivity for
kanamycin (Whitman et al. 2006). Rifampicin influences the level of RNA polymer-
ase and affects some methanogens. However, it inhibits all the tested eubacteria.
This unusual trait has been used to isolate and purify methanogenic populations
(Garcia et al. 2000).

2.4 Growth Parameters

The methanogens are found to extremely diverse in nature and are found well-
habituated in all habitats. They present many unusual niches, and hence, their
metabolism alters consequently. They survive at all temperatures and differ from
freezing and boiling; pH varies from acidic to alkaline, and salinities cover from
freshwater to saturated brine. The study of their growth parameters exhibits a
versatile platform for the generation of functionally amplified methanogenic
counterparts.

2.4.1 Temperature, pH, Pressure, and Salinity

Methanogens adopt them and survive in extreme conditions. It allows exploration of
them as workhorses in many multifactorial stress conditions. The methanogens are
incredibly diverse, ranging from psychrophilic, mesophilic, thermophilic, and even
hyperthermophilic species (Lu and Lu 2012; Wagner et al. 2013). They are able to
grow from 0 to 122 �C (Jablonski et al. 2015). They also comprise distinct acido-
philic to alkaliphilic and halophilic to nonhalophilic organisms. They are found at
temperature ranges from 20 �C to 98 �C (Boone et al. 1993). However,
methanogenic pathways are operating in extensive temperature ranges from 0 to
122 �C (Cavicchioli 2006; Takai et al. 2008). Thermophilic habitats, including hot
springs, hydrothermal vents, and solfatara, are also major parts of vibrant
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methanogenesis. In the total population, thermophiles cover 25% only. The
methanogens too thrive energy from cold Antarctic lakes, marine sediments, inside
rocks, located miles below located subsurfaces, and in extreme pH, salinity, and
nutrient limitation areas. Based on the temperature tolerance range, like narrow or
wide, the psychrophilic methanogens are classified as stenopsychrophiles (thrive
only in a narrow temperature range) and eurypsychrophiles (thrive at elevated level)
(Taubner et al. 2015). Many of them grow better within pH from 6 to 8 (Jones et al.
1987). Besides, they can exist in extreme pH environments.

Methanogens are enthralling candidates using their capability to tolerate and to
grow in pressurized environments. Generally, the methanogens survive at a pressure
range from below 20 MPa to above 300 KPa (Taubner et al. 2015). Based on this
adaptation criterion, methanogens are cultivated under multifactorial stress
conditions. They display enormous diversity in their growth salinity requirement.
They are found in the salinities ranging from freshwater to hypersaline. They need a
minimum of 1 mM Na+ for active bioenergetics of its metabolism (Muller et al.
1987; Kaesler and Schonheit 1989). Some methanogens grow well up to 3 M salt
concentrations (Zhilina and Zawarzin 1990). Recent research studies focus on their
adaptations, which caused metabolic changes since they directly link microbial
ecological studies of interspecies competition or symbiosis.

2.4.2 Substrate Range

Methanogens always depend on others for their substrates, which they convert into
methane. Generally, methanogens utilize one or two substrates. TheMethanosarcina
showed limitations for their substrate utility. They show the ability to use seven
substrates (Garcia 1990; Ferry 1993). Methanosaeta, the strict acetoclastic
methanogen, uses only acetate (Smith and Mah 1980; Hedderich and Whitman
2006). Many different kinds of substrates are utilized during methane production,
such as carbon dioxide, acetate, formate, and methyl substrates. Overall, 70% of the
total global methane is from acetic acid, whereas the leftover 30% is derived from
hydrogen and carbon dioxide (Conrad et al. 2011). The following equations depict
the methanogenic methane generation from carbon dioxide, acetate, and methyl
group substrates.

CO2 + 4H2O
CH4 + 2H2O (from carbon dioxide)

4CH3OH!3CH4 + CO2 + 2H2O (from acetate)

CH3COO
� + H2O!CH4+ HCO3

�

CH3OH + H2!CH4 + H2O (from methyl group)

Methanogens produce methane by three different pathways, such as aceticlastic,
carbon dioxide reducing, and methylotrophic methanogenesis. It can diversify in the
range of substrate, carbon compound used, and the source of reducing potential
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(Bapteste et al. 2005). Based on their substrate requirement, methanogens were
placed into three main nutritional categories (Liu and Whitman 2008).

2.4.2.1 Acetoclastic Methanogens
They are acetotrophic/acetate-splitting or acetate-fermenting methanogens, which
use acetate as the dominant substrate for their 70–75% biogas formation (Zinder
1993; Garcia et al. 2000). These methanogens produce methane through the
aceticlastic methanogenesis pathway, by which they cleave acetate into two parts:
one carbon is used for methane formation, whereas the other is used during CO2

formation. Nearly nine species of these methanogens generate methane utilizing the
acetate’s methyl group as their carbon source. Acetate’s carboxyl carbon oxidation
produces electrons of acetate reduction (Hedderich and Whitman 2006). The order
Methanosarcinales is called acetoclastic methanogens since it uses acetate as the
substrate for its methanogenesis. Methanosaetaceae uses only acetate as their sub-
strate, but the other member Methanosarcinaceae is a versatile one, which can use
other than acetates like CO2, carbon monoxide, and methylated C1 compounds
(Kendall and Boone 2006). Among the members of this order, the Methanothrix
sp. displays a higher attraction of acetate than Methanosarcina sp. (Smith and Mah
1980). Besides, it performs an effective part in the digestion process of low concen-
tration acetate sludge.

2.4.2.2 Hydrogenotrophic Methanogens
These methanogens are non-aceticlastic/CO2-reducing/H2-oxidizing/H2

gas-consuming methanogens. Hydrogenotrophs are the earth’s common inhabitants,
found in all methanogenic orders except Methanomassiliicoccales (Vanwonterghem
et al. 2016). These methanogens produce methane through the carbon dioxide
reducing methanogenesis pathway. It uses hydrogen and CO2 as the primary carbon
source for methane production. Some of them use formate for methane formation
(Garcia et al. 2000; Liu and Whitman 2008). Some of them also utilize secondary
alcohols like 2-propanols, 2-butanol, cyclopentanol, and ethanol (Hedderich and
Whitman 2006). However, hydrogen oxidation acts as powerful energy generating
and terminal electron removing mechanism (Balch et al. 1979). These use an
electron as an energy-conserving step in its metabolism that is distinct from other
methylotrophic methanogens.

2.4.2.3 Methylotrophic Methanogens
These methanogens apply the disproportionation of methanol and methylamine for
methane production. It is one of the relatively versatile nutritional groups. The
substrates like H2 and CO2, acetate, methyl-group containing compounds such as
methanol, methylamines (monomethyl amines, dimethylamine, trimethylamine,
tetramethylammonium), methyl sulfide, dimethyl sulfides, methanethiol, and carbon
monoxide are used for methane production. H2 is utilized as an outside electron
donor (Garcia et al. 2000). Besides, electrons are used for reducing these substrates
rising from the oxidation of another methyl group (Hedderich and Whitman 2006).
The orders Methanosarcinales, Methanobacteriales, and Methanomassiliicoccales
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are classified under these levels. It can also be categorized based on cytochromes’
presence or need (Vanwonterghem et al. 2016).

Despite this, several additional criteria are also used for their classification. They
include morphology, motility, nutritional spectrum, growth rates, growth conditions,
metabolic end-products, Gram staining, susceptibility to lysis, antigenic fingerprint-
ing, lipid analysis, distribution of polyamines, nucleic acid hybridization, G + C
content of the DNA, 16S rRNA sequencing, and sequence analysis (Boone and
Whitman 1988). According to these standards, significant orders, families, genera,
and many species have been defined (Boone et al. 1993).

The proper understanding of the answers for following long-lasting fundamental
questions about CH4 biocatalysts, viz. (1) source of electrons, (2) natural community
or synthetic co-culture controlling strategies, (3) genetic traceability, (4) CH4-con-
version potential with other processes like nitrogen fixation will address the indus-
trial application as well as innovation challenges of methanogens (Kalyuzhnaya
et al. 2020).

2.5 Bioeconomy-Based Technologies for Environmental
Sustainability

Methanogens are the best bio-inspired economists, which plays a significant bio-
economy-based ecological role globally. This is believed to be the most appropriate
time for methanogenic research to maintain the carbon cycle and reduce global
warming. It acts as the environmental signaling engineer for climate change. More-
over, it will give a unique view of bioeconomy development in developed as well as
developing countries. However, it has been an attractive, unique, unusual
metabolism-performing candidate, which helps to understand better the thermody-
namics and bioenergetics, evolution and biodiversity, and microbial interactions.
Also, it gives wings to our sustainability through bioeconomy-based ecofriendly
environmental approaches. The methanogenic archaea give tremendous applications
for our environmental sustainability, as shown in Fig. 2.2.

2.5.1 Bio-Based Carbon Dioxide Capture, Sequestration,
Utilization, and Conversion (CCSUC) Technology

The continuous emission of greenhouse gas (GHG), predominantly CO2 in
the atmosphere, becomes a significant concern and also gaining much attention on
the environmental agenda nowadays. So many lines of evidence clearly show the
tragical emission of atmospheric CO2 into the environment. The emission of CO2 in
the environment is a primary reason for global warming (Singh and Dhar 2019). It
also causes human nutrition threats (Myers et al. 2014), ocean acidification (Caldeira
and Wickett 2003), sea level increase, modification of earth ecology, and global
weather patterns. They result from mainly anthropogenic activities (Mistry et al.
2018) and pollutions of the fossil fuel burning, thermal power plants flue gases,
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various industrial applications, and vehicle emissions. Now, the world is facing an
intrinsic environmental responsibility with a view first to control and reduce global
warming. Hence, CO2 emissions from anthropogenic activity reduction are neces-
sary. The concentration of atmospheric CO2 has been rising to a great extent since
record-keeping began. A recent survey indicates that human activities’ CO2 genera-
tion level increases up to 20 Gt/year. With status-quo, this concentration will rise to
1020 ppmv by the turn of 2100 at an average.

The IPCC (intergovernmental panel on climate change) assessed that the global
mean surface temperature would go up by 1.5–50 �C. It leads to unexpected
vegetation changes, melting of ice in North Pole and mountains, global warming
and warning, modification of overall weather and rainfall patterns, alteration of
earth-atmosphere ecological balance, ocean acidification, and rising water level in
the sea all over the world. It also steers to a loss of food production by up to 15% due
to climate change. The effects are realized and have forced us to reduce the

Fig. 2.2 Schematic description of applications of methanogens for environmental sustainability
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greenhouse gases in the environment (Van DeWal et al. 2011). It is equally essential
to undertake CO2 sequestration. CCSUC of CO2 is a powerful new, safe, and
environmental managing method developed to balance our environment’s carbon
cycle (Lackner 2003). Different options are being thought of for CO2 capture. These
include mostly the chemical and physical processes. Developed countries have
initiated some programs in this direction. However, a breakthrough approach does
not yet come. Physical, chemical, and biological methods need to be developed,
tested, and applied for the sequestration of CO2. Now, biological means are also
being considered to find out the technological options for CO2 sequestration. In
biological processes, photosynthesis, autotrophic metabolism, and methane forma-
tion are possible. Higher plants’ photosynthesis is one beneficial route. However, it
has constraints like time and space.

The most promising route seeks the use of beneficial microbes. Microorganisms
have a tremendous capacity to convert CO2 to other useful metabolites in the absence
or the presence of negligible oxygen. The biological sequestration employing
methanogenesis is applicable in a variety of CO2 emitting sources. It is the most
promising emerging technology. In this process, carbonic anhydrase (CA) plays a
vital role in having the atmospheric CO2 into carbonate, a soluble source of carbon
for microorganisms, further metabolized to produce useful carbon compounds
(Smith and Ferry 2000). The formation of methane from CO2 is one such process
that produces valuable biofuel-methane and finds use in electricity generation. This
is an environment-friendly approach with sustainability. In this process, formate
dehydrogenase performs a vital part in hydrogen formation, which is needed for
converting CO2 into methane. One opening is to employ carbon dioxide-reducing
methanogens for biological methane production (BMP), an intriguing group of an
archaeal candidate for the effective conversion of carbon dioxide (Mayumi et al.
2013; Rittmann et al. 2013).

Bacterial methanogens are bio-inspired innate CO2 encounters of effective
sequestration. They have the power to be called bioremediator and CO2 sequesters
(Mistry et al. 2018). It uses non-photosynthetic CO2 fixation pathways. Mainly use a
3-hydroxypropionate and 4-hydroxypropionate cycle (Mistry et al. 2018). These
archaea can fix and convert around 70–80% of CO2 to methane, while the leftover
20% is utilized for cell-mass build-up. Acetyl CoA/propionyl CoA carboxylase and
carbonic anhydrase (CA) enzyme play a most critical role. Among them, CA is
imperative at the industrial level. Using this kind of efficient microbial system, it
may be possible to develop a sustainable process for the sequestration of CO2.
Furthermore, it contributes more to the global carbon cycle for organic matter
degradation at the final step by supporting many aerobic methanotrophic
communities (Zeikus 1977; Zeman and Lackner 2004).

2.5.2 Anaerobic Digestion

In various anoxic natural systems, anaerobic digestion (AD) occurs. It is an anoxic
multistep, microbiological process. The complex molecules are converted into
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simple molecules like CH4 and CO2 by orderly play of following hydrolysis,
acidogenesis, acetogenesis, and methanogenesis (Qiao et al. 2015). It was carried
out by the various groups of microbes, viz. fermentative, syntrophic, acetogenic, and
methanogenic bacteria (Shah et al. 2014). Among them, methanogens perform an
energetic function in the last step of AD (Rosenzweig and Ragsdale 2011) (Fig. 2.3).
Though it is the oldest method, it is now one of the latest ways to produce methane
successfully. It is a reliable fourth-generation biofuel production technology involv-
ing direct sequestration of CO2 into CH4. Increasing energy demands and rigorous
environmental and public wellness concern ensures the rising popularity of
AD. Mainly, it has been exploring for waste treatment and resource recovery. It
results in the production of potent biogas energy, nitrogen-rich digestate/effluent
(Bolzonella et al. 2005), and wastewater treatment.

Fig. 2.3 Schematic representation of anaerobic digestion with methanogenesis
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2.5.2.1 Microbial Food Chains of Anaerobic Digestion
There are five microbial candidates involved in anaerobic digestion, which decrease
the biometabolic burden of individuals. The hydrolytic fermentative, obligate
hydrogen-producing acetogenic, hydrogen-oxidizing acetogenic, carbon dioxide-
reducing methanogenic, and methanogenic bacteria. It endures vitally within all
the stages that interpolates hydrolysis (heterogeneous reaction), acidogenesis,
acetogenesis, and methanogenesis (Chandrasekar 2006; Anukam et al. 2019). Dur-
ing biomethanation, complex polymers are converted into simple, soluble
compounds using fermentative bacterial enzymes. It can metabolize the substrate
to short-chain fatty acids, hydrogen, and carbon dioxide. Fatty acids, longer than
acetate, are converted into acetate using obligate hydrogen-producing acetogenic
bacteria. The principal outcomes after digestion of the substrate by these are
hydrogen, carbon dioxide, and acetate. Hydrogen and carbon dioxide can be
metabolized by hydrogen-oxidizing acetogens or carbon dioxide reducing, hydrogen
oxidizing methanogens. These are produced metabolites, viz. acetate or methane,
respectively. Besides, acetate is changed into methane by aceticlastic methanogens
(Chandrasekar 2006; Anukam et al. 2019).

2.5.2.2 Methanogenesis
Methanogenesis, the biological production of methane by methanogenic archaea
through the biological pathway, is a well-known natural, oldest bioactive anaerobic
respiration mechanism and has little reducing potential than others (Gilmore et al.
2017). It occupies the terminal part in AD (Fig. 2.3). It has engrossed a high
concentration of CO2 and hence methane fuel production. It is a boon for developed
and developing countries toward global warming mitigation and biofuel production
through useful biotechnological applications (Zhu et al. 2020). Well-controlled
methanogenesis is used for effective energy creation (Angelidaki et al. 2011).
Methanogen’s genomes display a paradigm shift toward energy creation and conser-
vation (Gilmore et al. 2017). They are accountable for methane production by
substrate-specific different methanogenic pathways (Singh 2009). The
methanogenesis pathways include aceticlastic, hydrogenotrophic (Conrad et al.
2006), and methylotrophic pathways (Conrad 2007). Methane is mostly obtained
from the aceticlastic methanogenesis pathway (Zinder 1990). However, the study of
the metabolic background of methanogenesis can give the best key for energy lock.

Predominantly, methanogens possess two sets of specific unusual
methanogenesis-involved coenzymes. C1 unit carrier coenzymes embrace
methanofuran (MF/MFR), tetrahydromethanopterin (H4MPT), factor III (modified
B12), coenzyme M (CoM), F430, and the electron transferring coenzymes. It can
transfer the electrons to the C1-intermediates, which includes coenzymes of F420,
F430, and N-7-mercaptoheptanoyl-O-phospho-L-threonine (McBride and Wolfe
1971; Cheeseman et al. 1972; Gunsalus and Wolfe 1980; Noll et al. 1986). High
concentrations of cofactor F420 act as a distinctive biochemical pointer, which is
used to detect methanogens. The methanogens were observed as a bluish-green or
greenish-yellow fluorescent cell under an epifluorescent microscope for UV at
440 nm. The F420 level differs in methanogenic populations based on its growth
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conditions (Gorris and Van der Drift 1994). The terminating part of methanogenesis
is induced by MCR (methyl–coenzyme M reductase), which also induces the first
step of methanotrophy. Its friendly anaerobic methane conversion depends on the
coenzyme F430 (Zheng et al. 2016). The MCR alpha subunit has an mcrA gene,
which acts as the molecular marker for methanogen detection (Lueders et al. 2001).
Other than these, there are other coenzymes involved in improved methanogenesis,
viz. FMN, FAD, and Coα-[α-(5-hydroxybenzimidazolyl]-cobamide. Moreover, var-
ious transition metals such as iron, nickel, cobalt, molybdenum, and tungsten are
also required for active methanogenesis (Schonheit et al. 1979). In addition,
methanogens also have many hydrogenases for vital methanogenesis (Fox et al.
1987).

2.5.3 Energy Pool: Biofuel

Almost all countries, including India, need alternatives to fossil fuels. The escalating
energy demand worldwide, volatile and decreasing petroleum sources, and climate
change concerns created a particular interest in super low carbon fuels, including
biofuel, biogas, etc. Methanogens are called as the master of methane on earth (Hofer
2016). Methanogenic methane is one of the better options for future fuel due to its
calorific value. The producer methanogens are the group of hydrocarbon-based
methane gas producing anaerobic prokaryotes (Barker and Buswell 1956; Garcia
et al. 2000; Enzmann et al. 2018). It is an energy-efficient and highly diffusible fuel.
Most developing countries like India show interest and investment in biogas due to
its fuel potential. It can be a suitable replacement for firewood, dung, kerosene,
agricultural residue, diesel, and petroleum. Besides electricity, it can be utilized for
local supply and price constraints. Also, the biogas system affords energy, fertilizer,
and waste.

While it acts as a biofuel, methane production also reduces and probably meets
the net accumulation of CO2 in the environment. According to Lackner (2009), the
burning of methane fuel converts into carbon dioxide, which re-backs the carbon
dioxide in our environment and net gathering reduction. Hence, biogas is a
technology-based environment-neutral energy resource with influential applications
(Ravichandran et al. 2015). It is predicted that after 2020, the availability of fossil
fuel would be depleted, and the emerging fuels replace only 30–35%. However,
biofuel from methane is one of the potential alternates for economic energy demand
(Haynes and Gonzalez 2014). It would accomplish 90–95% of global energy
demand.

2.5.4 MEOR: A Combining Hand of Biodegradation
and Biotransformation

The ever-increasing oil demand warrants an efficient oil recovery process since, even
after primary and secondary treatments, most of the oil remains in the oil reservoir
zone unrecovered. So, we need a potent tertiary treatment for an efficient recovery
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mechanism. Even though numerous studies have been conducted in this area focus-
ing on the identification of suitable technology, several possible routes are seen,
among them, microbial enhanced oil recovery (MEOR) is one of the viable energy
changing equational approach (Brown 2010; Wawrik et al. 2012), which becomes
the best holder of economic energy. The methanogenic archaeal community actively
offers a most excellent route for MEOR mechanisms. Here, metabolizing oil through
methanogenic biodegradation (methanogenesis) is carried out, producing methane
by biotransformation of oil with great economic significance globally (Yernazarova
et al. 2016; Nikolova and Gutierrez 2020). It is the most influential driving force for
the growing energy-based economy. Methanogenic biodegradation is one of the
emerging and impressing arrays for our energy sustainability. Methanogenic con-
sortia biologically transfer the methane from the degradation of hydrocarbons under
anoxic environments. In this biological treatment, no need for the replacement of an
exogenous electron acceptor. So, it is a better viable bio-option compared with other
anoxic treatment. It is also a critical biodegrading engineer for the hydrocarbon-
contaminated sites and a potent energy creator through methanogenesis (Gray et al.
2010).

The proper hydrocarbon-consuming, non-pathogenic indigenous, or microbial
methanogenic archaeal populations were injected along with nutrients at the oil
reservoir area. It influences in situ microbial growth and produces microbial
metabolites (methane) through its effective biodegradative methanogenic mecha-
nism. It directly metabolizes, which influences the oil, its productivity enhancement,
and reservoir life span. Commonly hydrogenotrophic methanogenic communities
such asMethanothermococcus, Methanobacterium, andMethanoculleuswere found
in high-temperature oil recoveries (Yernazarova et al. 2016; Nikolova and Gutierrez
2020). Many field trials and best action strategies designed and developed for deep
analysis of inoculums type, supporting nutrients, microbial communities, well injec-
tion methods, and microbial metabolites for enhanced oil recovery applications are
conducted in developed countries.

2.5.5 Microbially Enhanced Coal Bed Methane (MECoM)

The energy and climate crisis has been paid an underlined special attention in current
to-do lists. So we need to urge to develop innovative and environmentally welcom-
ing technology. Diversified research work is going on for the identification and
utilization of the new route. Coal is the key energy basis worldwide. The CO2

emission reduction is actively made by CO2 geological utilization and storage
(CGUS) in coal beds (Talapatra 2020). Coal bed methane (COM) or biogastification,
or coal bioconversion, is a growing research option landing in coal seams, which
reduces the gap between energy demand and supply with a continuous sustainable
future fuel cycle.

Nowadays, many potent approaches are followed to enhance the potential of
Microbially Enhanced Coal Bed Methane (MECoM). It includes microbial stimula-
tion and augmentation, physically enhancing microbial access to coal and the
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bioavailability improvement for coal organics. Among them, stimulation of
methanogenic communities by injecting climate-changing nutrients such as carbon
dioxide and inducing methanogenesis by indigenous methanogenic archaea for coal
bed sequestration of carbon dioxide and effective methane recovery are environ-
mentally preferred sound technologies. It is acknowledged as carbon dioxide
enhanced coal bed methane (CO2-EMBM) fills the sequestration and energy gap
simultaneously (Budwill 2003; Gale and Freund 2008; Li and Fang 2014; Rathi et al.
2015; Ritter et al. 2015). It also expands the coal bed life and value with effective
carbon dioxide sequestration. Nevertheless, it is also challenged by many qualms
that make it very difficult. However, research in this area is still the initial phase and
should learn about the microbiology-based technology for the future productivity of
CBM. It acts as the potential storage of carbon dioxide and controls climate change.

2.5.6 Electromethanogenesis

The use of electric current directly induces microbial methane synthesis, an endow-
ment technology for our economic growth. Potent conversion of electrical power
into methane by electroactive microbes (methanogens) through the electrochemical
system or microbial electrolysis is known as electromethanogenesis (Cheng et al.
2009) or microbial electrosynthesis (MES) (Enzmann et al. 2018). Cheng and his
coworkers first described electromethanogenesis in the year 2009 (Cheng et al.
2009). BEP2G (bioelectrical power-to-gas) is a novel method for storing superfluous
electricity through CH4 (Geppert et al. 2016). However, several research studies are
still going on electroactive microorganisms. Among them, an ecological and eco-
nomical friendly worker is methanogenic archaea. It can uptake extracellular
electrons from a stable donor directly (Yee et al. 2019). Methane forms by direct
electromethanogenesis (direct uptake of an electron from the electrode) or mediated
electromethanogenesis. It is effectively involved in treating waste, CO2 fixation, and
renewable energy storage (Cheng et al. 2009; Enzmann et al. 2018). Many studies
investigated electromethanogenesis for better economic growth. Among all
methanogenic communities, the thermophilic methanogens act as potent biocatalyst
(Fu et al. 2015). Electromethanogenic activity would be enhanced for improved
electromethanogenesis toward future fuel-making processes.

2.5.7 Corrosion Prevention

Generally, iron corrosion leads to significant economic damage. Interestingly, the
recent finding figures out that the profusion of Methanobacteriales acts as the
potential fighter against iron corrosion by its underlying mechanisms (Zandt et al.
2019). Recently, microbially induced corrosion (MIC) inhibition by
microbiologically influenced corrosion inhibition (MICI) is an eco-friendly
emerging corrosion controlling technology with socio-economic outputs. Remark-
ably, Kip et al. (2017) in the Netherland documented the high abundance of the
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Methanobacterium population and their role in MIC andMICI technology. It paves a
new path for developing novel technology of rust-fighting, which creates a better in
situ screening for sustainable alternate methods. Commonly, it is used in protection
against floods, dike contractions, and reinforcement of riverbank (Zandt et al. 2019).
We need deep research attempts for a more beneficial perception of the ecological
and biochemical alignment of methanogenesis. However, these low-cost biological
complements from methanogens hold many promises.

2.5.8 Waste Management

Biomethanation is an effective waste treatment technology for a sustainable green
environment (Qiao et al. 2015). An interdependent microbial community and
methanogens carry out the degradation of waste. The methanogens complete the
final step through methanogenesis, which is producing methane. The methanogenic
consortium is commonly used to treat agricultural and toxic waste (Taherzadeh and
Karimi 2007; Venkata et al. 2008). Anaerobic wastewater treatment is an
established, environmentally, and economically beneficial process. The industrial
and municipal solid waste (MSW) organic compound degradation produces meth-
ane, which finds use as alternative energy. Methanomicrobiales are the most abun-
dant community in MSW treatment (Bareither et al. 2013). Methanogens are
prominent members of communities within the engineered environment of anaerobic
wastewater treatment. Currently, Methanosaeta is a strong candidate for effective
wastewater treatment (Pyzik et al. 2018). It is a cost-effective treatment
(Dhakephalkar et al. 2019). Besides, Tabatabaei et al. (2010) reviewed the
methanogenic community’s importance and characteristic features in wastewater
treatment and revealed their possible applications.

2.5.9 Bio-Hydrogen Production

Some recent studies bracket that few methanogens produce potentially and econom-
ically supportable biohydrogen (Valentine et al. 2000; Goyal et al. 2016). As the
condition of limited ambient hydrogen availability, some methanogenic species
produce hyper, reducing equivalents and convert them into hydrogen (Valentine
et al. 2000). Methane was excluded from electron sources, and organic metals were
added for its active growth. It is the temperature-dependent mechanism. Lupa et al.
(2008) strongly reported that the formate consuming Methanococcus maripaludis
produced an increased amount of hydrogen in the mesophilic environment. Now, the
research demand shows a much-increasing trend toward biohydrogen production
through anaerobic digestion. Many exciting research studies are going on hydrogen
consuming and hydrogen-producing methanogens, which open the window toward
sustainability.
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2.5.10 Other Active Applications

Methanogens are also dynamically involved in the biological nitrogen-fixing mech-
anism. The biochemical analysis of nitrogen-fixation is well studied in methanogens
(Leigh 2000). Methanogens are also produced as effective biofertilizers through
anaerobic digestion (Abdulkarim et al. 2019). In 2016, Goyal and his colleagues
recorded that the manipulated Methanococcus maripaludis produced terpenoids,
methanol, and other value-added products. Rother (2020) reported that metabolically
modified methanogens also synthesizes valuable by-products such as isoprenoids,
mainly used for medical, food, cosmetics, and other industries. In Lyu et al. (2016)
produced geraniol instead of biofuel using genetically modified Methanococcus
maripaludis. The metabolically engineeredMethanosarcina acetivorans used meth-
ane for lactate production (McAnulty et al. 2017). Methanogenic archaea could exist
in subsurface environments, and it is one of the ideal organisms for the Martian
surface (Formisano et al. 2004; Koffmar 2014), which produces biogenic methane
on Mars. It also acts as the model microbe for habitability assessment (Maus et al.
2020). The detailed study of the methanogenic microbiome also creates a new
lightening path for microbial ecological studies with interspecies hydrogen transfer
mechanism (Zhu et al. 2020). The detailed knowledge and its application process of
bio-inspired candidate methanogenic archaea are not still fully understood. It is a
“black box process” up to the present day. So, a fundamental understanding of
methanogenic microbial populations would result in future sustainable, effective
environmental solutions.

2.6 Conclusion and Future Perspectives

In conclusion, this chapter efficiently brackets that the in-depth study of mysterious
methanogenic archaea offering a great scientific platform for sustainable revolution
and solution for our economic and eco-friendly environment. Also, sharing knowl-
edge about primary characters and workhorse applications of methanogens would
lead to their full promised exploration. Nevertheless, this chapter also contributes to
the most extensive evaluation of methanogenic activities, particularly for enhanced
biofuel production and effective carbon dioxide sequestration. Additionally, it
involves other activities like anaerobic digestion, waste management, nitrogen
fixation, and improved bioproducts production. Eventually, it gives an outlook on
the feasibility studies on Mars.

A different perspective is to develop a broader study for building up a potent
electroactive methanogenic consortium for effective electromethanogenesis, which
would create a robust biomethanogenic research and methanoeconomy-based
bioresource management foundation system for our future. It would lay the founda-
tion for the development of small-scale-level electromethanogenesis-based
eco-factories. Genetic manipulation study is needed to develop an effective
bioeconomy. So, a study on methanogenic archaea would formulate a touch of
excitement in our environmental research realm. The methanogenic pathway itself
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has captured the curiosity of many for decades. Today methanogens have improved
standards of living through energy crisis and paradigm shift. It will be a need for
future enhancement.
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Chitosan Coating Biotechnology
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Abstract

Chitosan biotechnology has received more attention in the past years owing to its
potential usages in successful implementations attributed to eco-friendly modifi-
cation and improvement of life. This chapter reports that chitosan (CHI) as a
natural polysaccharide polymer can be integrated well with long-chain synthetic
polymers such as polyester (PE), polyurethane (PU), polyvinyl acetate (PVA),
and carboxymethylcellulose (CMC) throughout standard blending procedures.
These polymeric resins are miscible with CHI to produce chitosan-based systems.
The experimental results revealed that the integration of CHI with the polymeric
blends improved its physicochemical characteristics and microbial activity. From
the obtained investigations, the CHI polymeric composites can be used in several
technologies such as coating, hydrogel, membrane separation, food preservation,
and medical engineering.
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CMC Carboxymethyl cellulose
EW Ethanol–water
FCl Fumaryl chloride
FTIR Fourier transform infrared spectroscopic
IW Isopropanol–water
MA Maleic anhydride
MW Methanol–water
PBS Polybutylene succinate
PE Polyester
PECs Polyelectrolyte complexes
PEG Polyethylene glycol
PEGF Polyethylene glycol fumarate
PEGM Polyethylene glycol maleate
PHA Polyhydroxyalkanoate
PLA Polylactic acid
PU Polyurethane
PVA Polyvinyl acetate
RT Room temperature
SD Swelling degree
SEM Scanning electron microscopy
TDI Toluene diisocyanate
UPECMs Uniform polyelectrolyte complex membranes
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3.1 Introduction

Several valued research techniques have been operated by the scientific institutions
to produce new generations of biopolymers. The technological attention raised
dramatically for composites containing natural constituents as feed stocks require
more evolution, to be more efficient (Agarwal 2020). The fabrication of
bio-polymeric composites based on modified materials and components are reported
(Fig. 3.1) (Vasconez et al. 2009; Avérous and Pollet 2012).

Green trends are employed in several implementations like seafood waste
processing, polysaccharides investigation and crude amino acid production
(Vasconez et al. 2009; Ismail and Farag 2020; Farag et al. 2018, 2019; Ismail
et al. 2019). The accelerating attention in a clean and safe ecosystem plays a
significant part in utilizing significant components. These eco-friendly composites
have the ability to biodegrade throughout the bioremediation of microorganisms
which in terms provides significant environmental impacts (Vasconez et al. 2009;
Avérous and Pollet 2012; Agarwal 2020; Lucas et al. 2008).

Enormous requests for obtaining bio-composites based on polymeric materials
are raised significantly. Based on high potential attempts, kinetic energy and
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temperature control are studied (Andrew et al. 2020; Okada 2002). The present
chapter discusses the characterization of chitosan as a substantial eco-meable con-
stituent and its effective part in modern life.

3.2 Coating Technology

A broad coverage is employed under the name of coating for exterior improvement
and modification. Global technologies and strategies have currently added new
bio-component series according to market needs. Several utilizations for more
comfortable lifestyle have been reported (Joanna 2020; Fristad 2000). The large-
scale manufacturing of the coating (Fig. 3.2) reveals the modification rate.

There are several continual scientific challenges to enhance and modify the
current trends. Part of these methods has been employed for many years such as
physicochemical vapor deposition techniques for thin films (Mureşan et al. 2015),
magnetron sputtering (Wang et al. 2016), ion beam (Hino et al. 2015), and laser
deposition (Grigoriev et al. 2015) because they avoid the complexities and costs of
vacuum processing. Modern researches have been published to deal with the elec-
trodeposition of metals and alloys using multi-generations of ionic liquids (Farag
et al. 2009; Ismail 2016a, b). The usage of coatings includes mechanical
implementations such as hardness, wear resistance, and protective coatings with
very wide industrial implementations (Tracton 2007).

Fig. 3.1 Classification of the main biodegradable polymers
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For decorative fields, the coating process is applied using several advanced
components employed to modify the decoration performance (Binyamini et al.
2015). The large-scale utilization of coatings in the preservation of fresh food
(Sousa et al. 2016) and catalysis (Essakhi et al. 2011) was studied. New types of
composites are being developed and modified, based on green biodegradable poly-
meric substances, which provide significant properties and implementations. Several
biopolymers have achieved great success in various implementations such as medi-
cal, chemical, and food technology. These biosystems offer the availability to get
healthy life (Vasconez et al. 2009; Avérous and Pollet 2012; Agarwal 2020).

Biodegradables show a lot of properties like nontoxicity, nonpollution, biocom-
patibility, good performance, gas barrier, and low cost (Agarwal 2020; Lucas et al.
2008). For food preservative technology, crude protein of seafood group is more
perishable than animal flesh (Venugopa 2011). The rising demand for preserving
seafood using new processes and techniques is dependent on modified edible
coatings (Kafrani et al. 2016). An increasing concern in the formation of antimicro-
bial edible chitosan-based coatings has been reported (Vásconez et al. 2009). Also,
edible chitin and chitosan composites are employed nowadays in medicine as
surgical sutures and artificial skin (Dutta et al. 2004).

3.3 Chitosan

Recently, chitosan as an abundant basic biopolymer has been utilized during the last
period. Chitosan is prepared by chitin processing method in a basic system (Fig. 3.3).
Chitin is a naturally occurring biopolymer derived from the exoskeleton of
crustaceans and fungi (Farag et al. 2018; Dutta et al. 2004; Marguerite 2006;
Kumar et al. 2004). CHI with an average molecular weight of 110,000 and
deacetylation degree of 84.7% was prepared locally from brown shrimp
(Metapenaeus monoceros) shell wastes (Ismail 2015; Methacanon et al. 2003;
Yaghobi and Hormozi 2010; Feng et al. 2012). Chitosan has a lot of

Fig. 3.2 The global coating market size
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implementations owing to its nontoxicity, toughness, gas permeability, and simple
production method (Choi et al. 2016; Anirudhan et al. 2016; Chen et al. 2011;
Baldrick 2010; Davis 2006).

Due to its polycationic nature, CHI was used in some biomedical applications
(Fig. 3.4) such as anti-oxidant (Hafsa et al. 2016), anti-microbial (Hafsa et al. 2016;
Chien et al. 2016), anti-tumor (Chien et al. 2016; Jiang et al. 2016), hydrogels (Jiang
et al. 2016), anti-bacterial (Huang and Peng 2015), anti-fungal (Huang and Peng
2015), analgesic effects (Okamoto et al. 2002), and nanoparticles (Madureira et al.
2016).

Fig. 3.3 Schematic diagram of the chitosan processing method

Fig. 3.4 Some biomedical applications of chitosan
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Owing to its high hydrophilicity (Clasen et al. 2006), CHI gained special attention
in gas separation technology (Liu et al. 2008a; Xiao et al. 2007), reverse osmosis
(Musale et al. 1999), and pervaporative dehydration (Ismail 2015; Liu et al. 2008b;
Tsai et al. 2008; Rao et al. 2007; Kittur et al. 2005). Moreover, a lot of separation
methods were used for azeotropic mixtures throughout pervaporation techniques
(Ulbricht 2006). Separation of alcohol from water is vital in organic synthesis.

Among the several methods, pervaporation gives high separation results and low
cost (Chapman et al. 2008; Shao and Huang 2007). For this technique, the prepara-
tion of specific membranes with high hydrophilicity achieved high swelling degree
and good permeation flux. For improving the CHI membranes, several methods were
applied such as polymeric blends (Ismail et al. 2016; Veerapur et al. 2007; Devi et al.
2006; Zeng et al. 2014; Ariyaskul et al. 2006; Dubey et al. 2005), hybrid polymer
(Lu et al. 2006; Hu et al. 2007; Liu et al. 2005), and crosslinking (Fiamingo and
Filho 2016; Zhang et al. 2007; Choudhari et al. 2007).

3.4 Chitosan-Based Coatings

In the last few years, the chitosan-based polymers and their derivatives find great
concerns in coating technology due to their unique characterizations. The following
sections discuss the investigation of chitosan crosslinking with some selective
polymers such as PE, PU, PVA, and CMC.

3.4.1 Chitosan-Based Polyester (CHI-PE)

Polyesters are commonly referred to as high molecular weight compounds
containing ester links in the main structure of the molecules. These compounds
incorporate acidic and alcoholic entities bonded alternately to one other. The poly-
ester molecules may have a linear structure, from functional alcohols and acids, or a
branched structure, if the constituents are greater than two. The polyester resin
molecules may be terminated by other groupings besides hydroxyl and carboxyl
groups, depending on the polycondensation reaction conditions and the starting
compounds (Fig. 3.5). However, even for the alcohol to acid ratio of 1:1, the
numbers of terminal groups of each kind may not be equal owing to side reactions
that occur during synthesis (McKeen 2015).

Owing to the large spectrum of characteristics and applications of polyester
compounds, thermoplastic, or thermosetting, it is mostly used in molding, films,
coatings, composites, fibers, rubbers, and plasticizers (Kandelbauer et al. 2014). PEs
are produced by a variety of manufacturing techniques such as direct polycondensa-
tion esterification, melt transesterification, acylation, interfacial polycondensation,
and ring-opening polymerization (Rosato et al. 2004). Currently, essential bio-based
polyesters have been widely used in the biological industry (Zia et al. 2016).
Additionally, many thermoplastic polyesters based on renewable biomaterials are
produced from bio-based diols with dioic acids like PET, PBT, and PTT (Oulame
et al. 2015; Fuessl et al. 2012).
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3.4.1.1 Synthesis
CHI-PEGMmacromeres were prepared over stepwise pathway. First, the interaction
between the anhydride (MA) and the glycol (PEG) with benzoyl peroxide (catalyst)
to obtain the polymer resin (Fig. 3.6) which is detected by GPC analysis. The second
step is the casting method by the addition of CHI (dissolved in acidic media). After
several standard procedures, the CHI-based polyester resin is obtained (Doulabi
et al. 2008a, b, 2013).

3.4.1.2 Fourier Transform Infrared Spectroscopy (FTIR)
The investigated FTIR analysis (Fig. 3.7) of the obtained polyester with and without
CHI are illustrated based on the following sequence: 3500–3200 cm�1 (OH) and
(NH) for both CHI and CHI-PE, 2910 cm�1 (CH), 1724 cm�1 (C¼O), 1100 cm�1

(C-O), and 810 cm�1 (CH). The current performance assured that CHI and PE
interacted well to form new materials (Feng et al. 2012; Fuessl et al. 2012; Doulabi
et al. 2008a, b).

Fig. 3.5 The schematic reaction of dioic and diol for preparing polyester

Fig. 3.6 A schematic pathway for preparing CHI-PEGM and CHI-PEGF
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3.4.1.3 X-Ray Diffraction (XRD)
Diffraction analysis (Fig. 3.8) exhibits patchy manner for both the systems (Lucas
et al. 2008; Feng et al. 2012). Strong peak appeared at 2 h ¼ 20� for polyester resin
and two significant peaks revealed at 2 h ¼ 12.2� for chitosan in which this value
reduced after modification (Doulabi et al. 2008a, b).

3.4.1.4 Scanning Electron Microscope (SEM)
The morphological style was illustrated (Fig. 3.9). The obtained film was reduced
with phase separation to some extent. The surface of CHI-PEGM was rougher than
the CHI film (Baimark and Srihanam 2010).

3.4.1.5 Swelling Performance
The performance of the swelling effect of CHI-PEGF films (Fig. 3.10) was
investigated based on equilibrium water uptake (EWu %) using Eq. (3.1). The values
of EWu showed that all systems had the capability for water retention. Moreover, the
blend films with 60% and 80% CHI content ratio yielded 258% and 305% of EWu,
respectively, than the others. This may be correlated to the existence of the

Fig. 3.7 FTIR of PEGM, CHI, and CHI-PEGM
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functional OH in the films. This trend reduced in the case of 40% CHI content ratio
may be due to the interactive effects between CHI and PEGF (Doulabi et al. 2013;
Correlo et al. 2007).

Fig. 3.8 XRD of PEGM, CHI, and CHI-PEGM

Fig. 3.9 SEM images of CHI, PEGM, and CHI-PEGM
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Wu %ð Þ ¼ W t �Woð Þ=Wo � 100 ð3:1Þ

3.4.1.6 Antibacterial Activity
Bio-activity of CHI and CHI-PEGF is reported in Fig. 3.11. All samples of CHI and
CHI-PEGF affected on Pseudomonas and Staphylococcus bacteria. CHI composites
exposed significant antibacterial resistance against Pseudomonas aeruginosa except
for 80% CHI content films. By increasing PEGF, the interaction of CHI with bacteria
may be decreased because CHI reduces the bacterial growth as well as the hydro-
philicity of the film (Li et al. 2011a, b).

3.4.2 Chitosan-Based Polyurethane (CHI-PU)

PU has significant characterizations such as flexibility and abrasion resistance that
finds a large scale of applications for various purposes. Currently, polyurethanes are
used in various industries and biomedical implementations such as synthetic resin,
coatings, vehicles, fibers, foams, paints, adhesives, elastomers, and artificial skin
(Hepburn 1992; Lucas et al. 2008).

3.4.2.1 Synthesis
Polyurethane elastomers are mainly prepared from hard isocyanate portion with soft
diol portion like PEG. Many research works studied the influence of chemical
structures of diisocyanate compounds on crystallinity degree, surface morphology,
and thermal stability of polyurethane films. Soft polyurethanes accept plasticizers

Fig. 3.10 Swelling based on water uptake (EWu) of CHI-PEGF films
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with almost predictable changes in physical characterizations, meanwhile hard
polyurethanes which a large increase in elasticity and decreasing of Tg would be
undesirable. Small additions of plasticizers or other liquids can produce valuable
foam. Polyurethane prepared from polyols and diisocyanates by a prepolymer
method gives good mechanical properties (Zia et al. 2014; Alves et al. 2009). In
the present section, polyurethane (PU) elastomers were prepared from TDI and PEG.
First, PU with molar ratio NCO/OH ¼ 4 was prepared by the addition of TDI to a
solution PEG and CCl4 under stirring and heating. CHI-PU was prepared by the
addition of CHI (5 mg/mL chitosan in 1% ethanoic acid) giving an amorphous layer
(Lucas et al. 2008).

Fig. 3.11 Antibacterial
activity of CHI-PEGF films
for different blend ratios
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The obtained products of PU and CHI-PU were characterized for comparison.
Thus, chemical modification has led to opportunities for new compositions with
significant properties for many end-user applications (78). The preparation pathway
of CHI-PU composites is illustrated in Fig. 3.12.

3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR)
CHI-PU structure was detected by FTIR analysis (Fig. 3.13) and compared with the
unmodified PU sample in the absence of CHI. CHI-PU spectra were appeared at
3300–3500 cm�1 (OH and NH), 2910 cm�1 and 2880 cm�1 (CH2), 1720 cm�1

(C¼O), 1440 cm�1 (CH2), 1260 cm�1 (C-O), and 1173 cm�1 (C-O-C). The behav-
ior of the CH2 revealed owing to the glycol portion as shown for CHI-PU as
compared with PU.

The FTIR spectra of PU exposed a spectrum at 3223 cm�1 due to the OH at
2277 cm�1 attributed to the N-C¼O group attached to TDI. The spectra also show
sharp peaks at the range 1500–1600 cm�1 due to the C-C of the aryl group. Other
spectra at 1445 cm�1 (CH2 bending) show that te peak intensity of the OH group is
increased and the NCO group is decreased slightly (Zia et al. 2014; Murugan et al.
1998).

3.4.2.3 X-Ray Diffraction (XRD)
Figure 3.14 for CHI and PU were generally amorphous, as described in the previous
report (Murugan et al. 1998; Feng et al. 2012). For CHI-PU composition, it showed
strong peaks at 2 h¼ 19.2� and 2 h¼ 22.6�, meanwhile, this performance is reduced
at 2 h ¼ 14.7�, 2 h ¼ 23.5�, and 2 h ¼ 25.7�, as a result of the PU segments. The
peaks associated with their crystalline structure were also observed. Similar behavior

Fig. 3.12 A schematic pathway for preparing CHI-PU elastomers
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was observed for CHI-PU but yielded residue that was difficult to handle. The
segment exposure was also verified (Zia et al. 2014; Alves et al. 2009).

3.4.2.4 Scanning Electron Microscope (SEM)
The PU matrix, CHI segments, and CHI-PU composite were studied (Fig. 3.15). PU
revealed a bad surface film. These formations are commonly due to the employed
condition of O2 and temperature, and under high energy beam of the electron, the
macroparticles are decomposed into gases like CO or CO2. CHI-based PU appears as
small particles and micro-holes which might be physical crosslinking occurred. This
appearance may be due to tri-functional CHI molecules which were impeded into the
matrix to obtain a 3D structure, which assured the formation of CH-PU composites
(Zia et al. 2014; Murugan et al. 1998).

3.4.2.5 Wettability
The surface hydrophilicity of CHI-PU films based on the measured water contact
angles (θ) was investigated (Table 3.1). PU values are decreased by increasing
polarity. It is reduced significantly for CHI-PU films. Moreover, CHI contains

Fig. 3.13 FTIR of PU, CHI, and CHI-PU
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hydrophilic OH and NH2 groups which increased the hydrophilicity. The dropping
of angle values depends on the functional groups of both CHI and PU. The results
expose enhanced hydrophilicity and reduced contact angle of about 57� and 41� for
PU-CH-0.5 and PU-CH-2.0, respectively (Alves et al. 2009).

Fig. 3.14 XRD of PE, PU, and EDA-CHI-PEU

Fig. 3.15 SEM image of PU, CHI, and CHI-PU
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3.4.2.6 Antibacterial Activity
The microbial activity of all CHI-PU films was investigated using strains of bacteria
(Fig. 3.16). For the Pseudomonas aeruginosa control sample, bacteria contents were
reduced significantly in all PU films. With Staphylococcus aureus bacteria, there is
no change in control or PU films, but the values were reduced in the case of CHI-PU
films. For both the bacteria species, CHI films have strong antibacterial efficiency
parallel to the CHI content (Kara et al. 2014).

3.4.3 Chitosan-Based Polyvinyl Acetate (CHI-PVA)

PVA is a polymeric material with a rubbery style mainly utilized in several industrial
coating methods and valued medical implementations. The aqueous emulsion of the
PVA has been employed in the adhesion industry for many substances like paper,
leather, textile, plastics, and wood (Misra et al. 2015). Although PVA polymer has
many significant utilizations, it can easily degrade by the action of microorganisms

Table 3.1 Wettability measurements of PU and CHI-PU

Sample

Water
contact
angle (o)

Total SFEγs
(mJ m�2)

Dispersive component
SFEγsd (mJ m�2)

Polar component
SFE γsp (mJ m�2)

Rq
(nm)

PU 91 � 3 38.43 37.54 0.89 2.8

PU-
CHI-
0.5

57 � 3 49.66 35.01 14.64 15.5

PU-
CHI-
2.0

41 � 3 54.68 29.81 24.87 19.6

Fig. 3.16 Antibacterial
activity of CHI-PEGF films
for different blend ratios
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(Cappitelli and Sorlini 2008). The characterizations of PVA films can be improved
and enhanced by the action of biodegradable polymers like CHI. In this way, the
obtained CH-PVA copolymer film has more stability, hydrophobicity, and mechan-
ical properties than pure CHI (Radhakumary et al. 2007).

3.4.3.1 Synthesis
CHI-PVA films were obtained by the addition of a definite ratio of CHI solution to
PVA emulsion (Fig. 3.17). By increasing the content of CHI, the rate of diffusion
raised, and the dispersion increased with more blending action (Ismail et al. 2016).

3.4.3.2 Fourier Transform Infrared Spectroscopy (FTIR)
From the PVA graph (Fig. 3.18), no functional OH appeared but a significant
spectrum of C¼O and C-O exposed at 1727 cm�1, 1370 cm�1, and 1220 cm�1,
due to the presence of COOCH3. In another view, CHI graph shows the popular
bands of OH and NH2 revealed at 3460 cm�1 with C¼O spectra. At the CHI-PVA
graph, the strong spectra of NH2 at 3450 cm�1 decreased strongly owing to the
blending process. New COO exhibited at 1725 cm�1, 1369 cm�1, and 1290 cm�1.
Moreover, two significant spectra were revealed at 2011 cm�1 and 2165 cm�1,
attributed to the different bonding action. This result is owing to some of the NH2

Fig. 3.17 A Schematic diagram for preparing CHI-PVA films
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converted to NH during the PVA-CHI blending. The intensity of bands varied due to
the CHI-PVA linking (Ismail et al. 2016; Maciel et al. 2005).

3.4.3.3 X-Ray Diffraction (XRD)
XRD (Fig. 3.19) shows the obtained peaks at diffraction angles of 10� and 20� for
CHI and CHI-PVA, respectively, revealing the partial crystallinity of CHI-PVA. The
crystalline structure of CHI exhibited the formation of two types of hydrogen
bonding. This bonding was carried out between NH2 and OH. The intensity of
bands at diffraction angles of 20� and 40� for CHI-PVA is reduced owing to the
crosslinking between CHI and PVA which breaks down H bonds and decreased
crystallinity degree. Also, the limitation of chain mobility decreased the content of
NH2 groups (Ismail et al. 2016).

3.4.3.4 Morphology
The microscopic structure is reported in Fig. 3.20. No investigated fractions
appeared in the case of pure PVA. At the CHI-PVA image, small CHI spots are
revealed. By increasing the CHI content to the PVA matrix, branched sites appeared
clearly. Dispersed porous compositions of CHI-PVA attributed to the blending
process. The degree of blending, the content of CHI, and the cured period play a
significant role in the molecular diffusion rate of CHI-PVA. For this purpose, several
methods are employed to investigate the action of CHI content such as the
box-counting method (De Souza et al. 2003).

Fig. 3.18 FTIR spectra of CHI, PVA, and CHI-PVA
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Fig. 3.19 XRD diagrams of CHI, PVA, and CHI-PVA

Fig. 3.20 Optical microscopic images of PVA and CHI-PVA
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3.4.3.5 Swelling Performance
Swelling behavior of these blends in definite alcohol–water ratio mixtures is shown
in Fig. 3.21. In pure H2O, these films obtained higher values than in pure alcohol due
to the flexibility degree of CHI (Ismail et al. 2016). The swollen systems reduce the
resistivity to permeate due to the relaxation and the diffusion of the hydrophilic
blends. By increasing the swelling degree with high water content, more alcohol is
permeating at the same time with the water owing to the sorption coupling process
(Das et al. 2008).

3.4.3.6 Conductivity
In the conductivity diagram of CHI-PVA blends (Fig. 3.22), the conductivity values
increased with elevating temperature, compatible with the common polyelectrolyte
performance, which attributed to the interaction of NH2 in the CHI matrix. The high
σ values of CHI-PVA are probably due to the potential interaction between CHI and
PVA. The variations in conductivity are related to the change of the ionization
method (Li and Tang 2016).

3.4.4 Chitosan-Based Carboxymethyl Cellulose (CHI-CMC)

Cellulose is the most abundant eco-friendly biodegradable polymer that exists in
nature (Ismail 2015). Hydrophilic cellulose derivatives such as CMC can be
prepared throughout the etherification reaction. Among all cellulose derivatives,
CMC is an anionic polyelectrolyte that shows significant physicochemical
characterizations in chemical reactions. CMC-based blend exposes high swelling
in water due to the existence of Na+ and also repulsion of its COO� groups (Ismail
2015; Mandal and Ray 2016).

Fig. 3.21 Swelling of CHI-PVA blends in methanol–water mixtures for 48 h at RT
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For modification, CMC was chemically blended and grafted with other synthetic
polymers. CMC-based hydrogels are used in water treatment for the removal of
pollutants such as heavy metal ions (Samandari et al. 2016) and dyes (Wang and
Wang 2013). Composites of CHI and CMC fibers have been modified and
investigated for biomaterial applications (Kawasaki et al. 2016).

3.4.4.1 Synthesis
For preparing CHI-CMC blends, the ionic bonding was carried out between the
cationic NH2 groups of CHI and the anionic COO groups of CMC (Fig. 3.23).
Complexes of CHI-CMC were prepared in an aqueous acidic medium, then the solid

Fig. 3.22 Conductivity diagrams of different ratios of CHI-PVA copolymer

Fig. 3.23 A Schematic diagram of preparing PECs from CHI and CMC
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complex was dissolved in aqueous NaOH to prepare uniform polyelectrolyte com-
plex membranes (UPECMs) (Ismail 2015).

UPECM films have an ionic-rich form which enhances their dehydration
behaviors over a series of binary contents of MW, EW, IW, and BW mixtures.
From the optical images, by adding CHI solution (Fig. 3.24a) to CMC solution
(Fig. 3.24b), the turbidity is shown in CMC solution (Fig. 3.24c) with the first
edition of CHI solution, correlating the production of insoluble PECs due to the ionic
crosslinking between CHI and CMC. With the high CHI content, the turbidity
increased (Fig. 3.24d), and two phases were obtained (Fig. 3.24e) at the crosslinking
endpoint. The PECs were accumulated, separated, and dried. PECs (Fig. 3.24f) and
its casting solution (Fig. 3.24g) which produces polyelectrolyte complex membranes
UPECMs (Fig. 3.24h) were obtained (Ismail 2015).

3.4.4.2 Fourier Transform Infrared Spectroscopy (FTIR)
FTIR diagrams of CHI, CMC, and PECs are given in Fig. 3.25. Absorption bands of
C¼O groups are at 1600 cm�1 and 1627 cm�1 for CMC and PECs, respectively,
attributed to the free COOH groups. Broadbands of OH groups appeared at
3500 cm�1, 3422 cm�1, and 3384 cm�1 for CHI, CMC, and PECs. For CMC, a
strong band was observed at 1600 cm�1 for the COOH groups of CMC. In PECs,
two bands appeared at 1736 cm�1 and 1627 cm�1 for both COOH and COO groups.
This is due to some COO groups in CMC converted to COOH. So, the variation

Fig. 3.24 Photographs of (a) CHI solution; (b) CMC solution; (c, d) addition of CHI solution to
CMC solution; (e) complexation; (f) PECs; (g) casting; and (h) UPECMs
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between the band intensities at 1736 cm�1 and 1627 cm�1 refers to the crosslinking
degree of PECs (Maciel et al. 2005).

3.4.4.3 X-Ray Diffraction (XRD)
XRD of CHI, CMC, and PECs is exhibited in Fig. 3.26. Peaks at 10� (CHI) and 20�

(CHI and CMC) phases are due to two types of hydrogen bonding (Ismail 2015).
However, PECs are decreased, correlating the interactions between the two systems.
Consequently, the ionic crosslinking reactions in turn reduce the crystallinity of
PECs (Wan et al. 2006).

3.4.4.4 Swelling Performance
The swelling of prepared UPECMs in alcohol–water mixtures was studied
(Fig. 3.27) based on the hydrophilic behavior of the films. SD of UPECMs in the
MWmixture rose with increasing water value. The flexibility of UPECMs in water is
higher than that in alcohol due to the outer particles of UPECMs (Samandari et al.
2016). In general, the high SD in all alcohol–water mixtures, except BW, was
observed in the range of 30–70%, especially in the case of the IW mixture. Up to
50%, water content ratio in both MW and EW, the penetration of alcohol and water
in UPECM films is the same.

Fig. 3.25 FTIR spectra of CHI, CMC, and PECs
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For IW binary feed mixture, high swelling was exposed at a range of 40–60%
more than in both MW and EW systems. The high swelling of the IWmixture at 50%
water content is due to the more permeation of water than alcohol. The membrane
degradation begins from 50% as correlating to the high relaxation. Besides, the low
polarity of isopropanol allows more water molecules to permeate through the
membrane. In BW mixture, degradation of membranes was observed clearly from
10% water concentration in the feed, indicating the poor stability of membranes in
butanol (Ismail 2015).

3.4.4.5 Antimicrobial Activity
An antimicrobial test is employed to check the antibacterial efficacy of films. The
activities of CHI and CHI-CMC films against Escherichia coli and Staphylococcus
aureus is shown in Table 3.2. The mechanism is the interaction of NH4

+ groups with
the negative bacterial cell membranes, causing membrane leakage and decompose of
intracellular components, which kill the bacteria. More inhibition activity of the

Fig. 3.26 XRD of CHI, CMC, and PECs
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Fig. 3.27 Swelling degree
(SD) of UPECMs in (a)
methanol–water, (b)ethanol–
water, (c) isopropanol–water,
and (d) butanol–water
mixtures at room temperature
for 48 h
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films is against Staphylococcus aureus than against Escherichia coli. The difference
is because Staphylococcus aureus is more receptive to antibiotics than is Escherichia
coli because the latter has a relatively less permeable, lipid-based outer membrane
(Hu et al. 2016; Yu et al. 2013).

3.5 Summary

Bio-based polymers have received much more interest in the last decades due to their
potential implementations in several fields correlated to environmental maintenance
and protection of physical health. The present review reported that CHI could be
incorporated into synthetic polymers such as PE, PU, PVA, and CMC by simple
blending techniques. These polymeric materials are completely miscible with CHI to
produce unique chitosan-based polymers. The results explained that incorporation of
CHI into the polymeric blends improved its strength, wettability, resistivity, and
antimicrobial activity ultimately. Based on the obtained investigations, polymeric
composites containing CHI can be used in several technologies such as coating,
painting, hydrogel, membrane separation, food preservation, vesicular drug delivery,
and tissue engineering.

3.6 Future Perspectives

The most dynamic development of CHI-based polymer production is foreseen. Thus,
the global market is expected to shift dramatically to new natural polymers derived
from animal and plant origins as the following:

• Bio-based monomers: using bacterial fermentation of biomass, and PBS.
• Eco-meable polymers: directly by bacteria PHA.
• Natural bio-based polymers: proteins, nucleic acids, collagen, starch, cellulose,

and chitosan.

Acknowledgments This chapter was supported by the Egyptian Petroleum Research Institute
(EPRI).

Table 3.2 Antibacterial activity of CHI and CHI-CMC films

Samples
Inhibition zone (cm)
E. coli

Inhibition zone (cm)
S. aureus

CHI 2.40 � 0.12a 3.00 � 0.20a

CHI 90/CMC 10 2.20 � 0.10a 2.60 � 0.10a

CHI 70/CMC 30 1.60 � 0.20a 2.20 � 0.15a

CHI 40/CMC 60 1.40 � 0.12a 1.60 � 0.20a
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Bacterial Biodegradation of Bisphenol A
(BPA) 4
Snehal Ingale, Kajal Patel, Hemen Sarma, and Sanket J. Joshi

Abstract

Microorganisms play a key role in saving the environment by metabolizing and
removing toxic harmful chemicals and wastes from the environment. Bisphenols
(BPA) are one such group of chemicals, which are widely used in the production
of plastic items, meant for day-to-day activities. It was popularized due to its
sturdy and clear appearance. However, over the years, it is identified as possibly
one of the key pollutants, which can leach in to soil and water bodies, and could
enter the food chain. Several studies reported it to be quite a harmful chemical at
different concentrations, leading to disruption of neuro-endocrine systems, repro-
ductive systems and more. Different techniques are currently utilized to degrade
and transform it to less harmful intermediates or complete degradation. Biodeg-
radation is one such environmentally friendly technique, where BPA is
metabolized and biotransformed into less toxic intermediates and non-toxic end
products. We isolated few bacteria strains that can degrade BPA, from Industrial
effluent contaminated soil. BPA degrading bacterial strains are isolated using
enrichment techniques in MSM medium containing BPA as a sole source of
carbon and energy. The current chapter aims to bring together the current state of
knowledge on the widespread applications, presence and occurrence in
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environment and harmful effects of BPA and to assemble updates about different
microbial groups involved in biodegradation.

Keywords

Xenobiotic · Bisphenol A · Endocrine disruptor · Biodegradation · Oxidative
enzymes

4.1 Introduction

Presence and recalcitrant nature of aromatic compounds are a matter of great concern
due to their toxicity and persistence in the environment, and the role it plays in
human health and environmental pollution (Sarma and Joshi 2020). Several of those
polycyclic aromatic compounds such as phenolic are ones among the most studied
chemical pollutants, since its widespread applications in synthesis of different types
of pigments (used for dyes, paints), varnishes, herbicides, pharmaceutical
intermediates, by-products of petroleum processing, steel industries and others
(Bui et al. 2012). Over decades, several of those chemical pollutants and their
degradation intermediate products are known as ‘xenobiotic’ and are toxic, muta-
genic, carcinogen and endocrine disrupters which have been released and
accumulated in the environment (Fouda 2015; Patel et al. 2021). Halocarbons,
alkylbenzene sulphonates, synthetic dyes and oil mixtures are some of those recalci-
trant xenobiotic compounds commonly encountered in the environment (Al Mujaini
et al. 2018; Patel and Chhaya 2019; Patel et al. 2021). Halogenated hydrocarbons,
also known as halocarbons, contain different numbers of halogen (e.g. Cl, Br, F, I)
atoms in the place of hydrogen atoms. Some common examples are:
1-bromopropane (C3H7Br), methylene chloride (CH2Cl2), chloroform (CHCl3),
tetrachloroethylene (C2Cl4), carbon tetrachloride (CCl4), chlorofluorocarbon
(freon, also known as trichlorofluoromethane, or CFC-11), insecticides/herbicides
like DDT (dichlorodiphenyltrichloroethane), chlordane (octachloro-4,7-
methanohydroindane), 2,4-D (2,4-dichlorophenoxyacetic acid) and 2,4,5-T (2,4,5-
trichlorophenoxyacetic acid). Polychlorinated biphenyls (PCB) have two covalently
linked benzene rings, where halogens substitute hydrogen, which are widely used as
in electrical equipment, hydraulic and heat exchange fluids, lubricants, plasticisers
and insulator coolants in transformers. As such, it is more or less inert to biological
or chemical actions, which further increases with the increase in number of chlorine
atoms in the molecule (Elangovan et al. 2019). Alkylbenzene sulphonates (ABS) are
chemical surfactants, containing sulphonate group and non-polar alkyl end (with
branching also), which makes it recalcitrant and difficult to biodegrade.
Non-branched ABSs could be biodegraded by oxidation from their alkyl ends.
Crude oil is quite a complex natural product, containing different types of toxic
constituents, hydrophobic nature, making it a bit difficult to biodegrade molecule
(Diana Anderson et al. 2001; Al Mujaini et al. 2018; Joshi et al. 2019). The
xenobiotics present several impending hazards to both flora and fauna. Many
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halogenated xenobiotics and PAHs are reported to be quite toxic to prokaryotes,
eukaryotes and humans. Even at low concentrations, it can lead to severe skin
problems and could reduce reproductive potential. It is also reported to be carcino-
genic and neurotoxic. Because of its recalcitrant nature, it can persist for longer
duration in the environment, leading to slow build-up, and concentration over a
period, also leading to bioaccumulation or biomagnifications (Omiecinski et al.
2011).

4.2 Xenobiotic Metabolism and Biodegradation

The metabolic process of converting hydrophobic chemicals to polar intermediates
or end products occurs in two distinctive stages (Anderson et al. 2001). Where, in the
first stage—functionalization, an oxygen atom is incorporated into the chemical, and
functional groups such as -OH and -COOH are generated, following the reduction.
Such metabolites are more polar than the parent compound, which could undergo the
second stage of metabolism—conjugation, where endogenous substrates such as
sulphate and glucuronic acid are incorporated, leading to highly hydrophilic
molecules, warranting its further removal. Generally, xenobiotic compounds
containing such functional group(s) directly participates in the second stage of
conjugation reactions. Stage I metabolic pathway includes aromatic hydroxylation,
epoxidation, aliphatic hydroxylation, dealkylation reaction, nitrogen and sulphur
oxidation, oxidative deamination, oxidative dehalogenation, nitroreduction,
azoreduction, reductive dehalogenation and hydrolysis. Whereas stage II metabolic
pathway includes glucuronide conjugation, sulphate conjugation, glutathione conju-
gation, amino acid conjugation, hydration, methylation and acetylation (Omiecinski
et al. 2011). Degradation of alkenes and aromatic hydrocarbons generally occurs as:
an oxygenase enzyme introduces a hydroxyl group making it reactive; the hydroxyl
group is further oxidized to a carboxyl group; for the cyclic compounds the ring
structure is opened making it easier to be further degraded; and the linear molecule is
degraded by β-oxidation to yield acetyl-CoA and further metabolized via normal
pathway (Jha et al. 2015).

4.2.1 Bisphenol A

Bisphenols (BPA: 2,2-bis(4-hydroxyphenyl) propane or 4,40-(propane-2,2-diyl)
diphenol) are a group of chemical compounds (bisphenol B (BPB), bisphenol F
(BPF) and bisphenol S) that consist of two phenolic rings joined together through
abridging carbon or other chemical structure (Spivacks et al. 1994). BPA is an
organic synthetic compound with chemical formula (CH3)2C(C6H4OH)2 belonging
to the group of diphenylmethane derivatives and bisphenols, with two
hydroxyphenyl groups. Physical and chemical properties of BPA (Fig. 4.1) are:
228.291 g/mol, molar weight; 155–159 �C, melting point; 360 �C, boiling point;
120–300 ppm, water solubility; 10.4, dissociation constant (Press-Kristensen 2007).
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4.2.1.1 Production and Uses of BPA
The projected global demand for BPA was expected to reach ~9618.7 kilo tons by
2020, with market size of ~20 billion USD (https://www.grandviewresearch.com/
press-release/global-bisphenol-a-bpa-market#:~:text¼The%20global%20demand%
20for%20BPA,USD%207.00%20billion%20in%202013; as accessed on January
2021). This compound is synthesized by the condensation of acetone with two
equivalents of phenol. The reaction is catalysed by a strong acid such as HCl.
Industrially, a large excess of phenol is used to ensure full condensation; the product
mixture of the cumene process (acetone and phenol) may also be used as starting
material. Other applications are: BPA is employed to make certain plastics, flame-
retardants, and different types of resins (polycarbonate, epoxy, unsaturated polyes-
ter). BPA-based plastic is clear and tough, and could be moulded into a variety of
consumer goods, including many common and household products such as water
bottles, sport equipment, computer accessories (Husain and Qayyum 2013;
Noszczyńska and Piotrowska-Seget 2018).

4.2.2 Hazards of BPA

Typically food grade plastic materials consisting of polycarbonate and epoxy resins
are the main route of entry for BPA, where sub ppm level BPA leaches into solid or
liquid food materials (Crain et al. 2007). Extensive usage of stronger, clear and
durable plastics made of polycarbonate and resins was mainly responsible for the
prevalence of BPA exposure (Neri et al. 2004). Several studies showed that on an
average the daily BPA intake per kilogram of body weight, among populations, was
~0.23μg/kg/day. Different concentrations of BPA have been measured in human
tissues, fluids (such as urine) in many countries (Richter et al. 2007). BPA is reported
to be an endocrine disruptor, and exposure to which has different effects, depending
on the developmental stage of the exposed animal. Where it significantly affects
during organ development stage, it may lead to irreversible changes (Richter et al.
2007). Humans exposed to BPA has been reported to suffer from different types of
adverse health issues (Schug et al. 2011; Noszczyńska and Piotrowska-Seget 2018),
which includes reproductive endocrine disorders (such as cancer, early puberty,
infertility, diabetes/metabolic syndrome, obesity), pulmonary and cardiovascular
complications during different stages of life. Most reproductive effects of such
compounds are exerted through the hormonal disturbances (especially oestrogen
and androgen). In laboratory studies using rodents, exposure to BPA during different
developmental stages is reported causing many changes in the male reproductive
system, including genitourinary abnormalities, decreased epididymal weight,
decreased sperm production and increased prostate weight (Knez 2013). BPA has

Fig. 4.1 Chemical structure
of bisphenol A
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also been reported to inhibit thyroid-receptor-mediated transcriptional activity by
binding to thyroid hormone receptor (Boas et al. 2012). BPA is a neuro-endocrine
disrupting compound, which is associated with a variety of adverse health effects in
the immune system, where a reduction in the amount of regulatory T lymphocytes
was observed, when mice were exposed to BPA either in prenatal stages or during
adulthood (Goto et al. 2007; Zielińska et al. 2019).

4.2.3 Microorganisms Involved in BPA Degradation

Various microorganisms capable of degrading BPA such as different bacterial
species, fungi, algae, planktons from soils, fresh water bodies and waste water
treatment plants have been reported (Kang et al. 2006), which are shown in
Table 4.1. Various enzymes are responsible for BPA degradation or metabolism.

Table 4.1 Biodegradation of BPA by different types of organisms

Microorganisms Strains References

Bacteria Pseudomonas paucimobilis;
Pseudomonas sp.; Pseudomonas
putida; Streptomyces sp.;
Sphingomonas sp.; Sphingomonas
sp. strain BP-7 and Sphingomonas
yanoikuyae BP-11R;
Staphylococcus sp.; Bacillus sp.;
Bacillus megaterium strain ISO-2;
Micrococcus sp.; Streptococcus sp.;
Lactococcus sp.; Lactobacillus
reuteri; Bacillus pumilus;
Enterobacter cloacae, Klebsiella
sp. and Pantoea sp.; Acinetobacter
sp. K1MN

Kamaraj et al. (2014), Kang and
Kondo (2002), Kang et al. (2004),
Endo et al. (2007), Yamanaka et al.
(2007, 2008), Telke et al. (2009),
Toyama et al. (2009), Suyamud et al.
(2018), Ju et al. (2019), Louati et al.
(2019), Sarma et al. (2019), Eltoukhy
et al. (2020), Jia et al. (2020) and
Noszczyńska et al. (2020)

Fungi Pleurotus ostreatus O-48;
Phanerochaete chrysosporium
ME-446; Pleurotus eryngii;
Schizophyllum commune; Trametes
versicolor IFO-7043; Trametes
villosa; Aspergillus fumigatus;
Fusarium sporotrichioides NFRI-
1012; Fusarium moniliforme 2–2;
Aspergillus terreus MT-13;
Emericella nidulans MT-98;
Stereum hirsutum; Heterobasidion
insulare

Fukuda et al. (2001), Tsutsumi et al.
(2001), Uchida et al. (2001), Shin
et al. (2007), Kim and Nicell (2006),
Kim et al. (2008), Mizuno et al.
(2009) Subramanian and Yadav
(2009) Mtibaà et al. (2018) and
Hongyan et al. (2019)

Algae/
planktons

Chlorella fusca var. vacuolata;
Nannochloropsis sp.;
Stephanodiscus hantzschii;
Chlorella sorokiniana;
Desmodesmus sp.WR1; Ulva
prolifera

Hirooka et al. (2003, 2005), Li et al.
(2009), Eio et al. (2015), Wang et al.
(2017) and Zhang et al. (2019)
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Different microorganisms are responsible for the production of variety of enzymes
for BPA degradation such as manganese peroxidase, laccase, peroxidase, polyphe-
nol oxidase, cytochrome P450, UDP-glucuronosyltransferase and sulfotransferase
(Hirano et al. 2000; Fukuda et al. 2001, 2004; Tsutsumi et al. 2001; Uchida et al.
2001; Kang et al. 2006; Kim et al. 2008; Subramanian and Yadav 2009; Husain and
Qayyum 2013; Im and Löffler 2016; Moussavi and Haddad 2019; Jia et al. 2020)

4.2.4 BPA Degradation Pathway and Intermediates

Different types of bacteria and fungi are reported to degrade BPA, and several types
of intermediates and end products were detected. Spivacks et al. (1994) reported
different oxidative intermediates of BPA degradation process: 2,2-bis
(4-hydroxyphenyl)-l-propanol, 1,2-bis(4-hydroxyphenyl) b2-propanol, 4,4-
0-dihydroxy-a-methylstilbene, 2,2-bis(4-hydroxypheny1) propanoic acid, 2,3-bis
(4-hydroxyphenyl)-l,2-propane-diol, 4-hydroxyphenacyl alcohol,
4-hydroxybenzaldehyde, 4-hydroxybenzoic acid and 4-hydroxyacetophenone. Han
et al. (2015) studied and reported intermediates of BPA oxidation by ‘ferrate(VI)’ as
analysed by GC/MS–MS: styrene, maleic acid, 1-(4-methyl phenyl) ethanone,
p-isopropenyl phenol, hydroquinone, α-methylstyrene and 2-phenyl propenal.
These metabolites are further oxidized to 2-phenyl propenal, 1,4-pentadien-3-
ketone, maleic acid, and CO2 and water. Peng et al. (2015) reported six compounds
as the intermediates of BPA biodegradation by Pseudomonas knackmussii isolate:
2,2-bis(4-hydroxyphenyl)-l-propanol, 1,2-bis(4-hydroxyphenyl)-2-propanol,
carbocationic isopropylphenol, 4-isopropenylphenol,4,4-
dihydroxy-α-methylstilbene and 2,2-bis(4-hydroxyphenyl) propanoic acid. Daâssi
et al. (2016) reported different types of carboxylic acid derivatives (such as
pyroglutamic acid, tartaric acid, hydrocinnamic acid, 3-phenyl-3-hydroxy propanoic
acid, β-hydroxybutyric acid) during BPA degradation by laccase from C. gallica. Ike
et al. (2000) reported different bacterial isolates from activated sludge and river
water samples, which showed degradation of BPA, with two major metabolites
reported were 2,3-bis(4-hydroxyphenyl)-1,2-propanediol and p-hydroxyphenacyl
alcohol. The exact mechanism of BPA degradation by manganese peroxidase and
laccases is not yet clear, but it is proposed that BPA is metabolized via oxidation
mechanism. Where BPA is initially converted to free radical, followed by random
cleavage of the free radical at aromatic rings and C–C linkages, leading to produc-
tion of 4-isopropenylphenol, 4-isopropylphenol and hexesterol (Chouhan et al.
2014). Different types of intermediary metabolites produced during the fungal
degradation are also reported, such as 2-hydroxy-3-phenyl propanoic acid,
1-ethenyl-4-methoxybenzene and phenylacetic acid, produced via dehydroxylation,
carboxylation and hydroxylation on the phenolic side chain of BPA, respectively.
Some bacterial isolates also showed intermediates such as 4-hydroxybenzoic acid
(HBA), 4-hydroxyacetophenone (HAP), 2,2-bis(4-hydroxyphenyl)-1-propanol and
2,3-bis(4-hydroxyphenyl)-1,2-propanediol (Chouhan et al. 2014). Laccase is
reported to be a better performing enzyme, as compared to manganese peroxidase,
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and is suggested to have a key role in BPA biodegradation (Tsutsumi et al. 2001).
Eio et al. (2014) proposed four BPA degradation pathways, as analysed by bacterial
action (Fig. 4.2). They also reported different types of intermediate products: 2,2-bis
(4-hydroxyphenyl)-1-propanol, 1,2-bis(4-hydroxyphenyl)-2-propanol,
4,4-dihydroxy-alpha-methylstilbene, 2,2-bis(4-hydroxyphenyl) propanoic acid,
2,3-bis(4-hydroxyphenyl)-1,2-propanediol, p-hydroxyphenacyl alcohol, p-
hydroxybenzaldehyde, p-hydroxyacetophenone, p-hydroxybenzoic acid, p-hydro-
quinone and hydroxy-BPA.

Hongyan et al. (2019) reported that T. versicolor laccase could transform and
degrade BPA to obtain 2-(4-hydroxyphenyl)propan-2-ylium, to isopropenylphenol
free radical and further oxidized to 1-methyl-4-isopropenyl-2-cyclohexene. They
also proposed that it might also be oxidized to p-xylene and toluene and transformed
to ethylbenzene and cyclohexanone. Lin et al. (2020) reported different types of
oxidation products during BPA degradation, such as monohydroxylated BPA,
quinone of dihydroxylated BPA, 1-methylbenzene, 2-glutaric acid
dimethylmethane, phenol, 2,4-bis(1,1-dimethyl ethyl), phenol, p-isopropenyl phenol
and p-benzoquinone. Im and Löffler (2016) have reported a summarized view of
possible pathways and intermediates of BPA degradation by different types of
microorganisms and plants (Fig. 4.3). They mentioned that major intermediates are
4-isopropenylphenol, 4-hydroxybenzaldehyde, 4-hydroxybenzoate,

Fig. 4.2 Metabolic pathway for bacterial biodegradation of BPA (Reprinted from Eio, E. J.,
Kawai, M., Tsuchiya, K., Yamamoto, S., & Toda, T. (2014). Biodegradation of bisphenol A by
bacterial consortia. International Biodeterioration & Biodegradation, 96, 166–173. Copyright
2014, with permission from Elsevier)
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4-hydroxyacetophenone, 4-hydroxycumyl alcohol, hydroquinone and monomethyl/
dimethyl ether.

4.3 Case Study

In this study, bacterial isolates capable to degrade BPA were assessed, and the
enzyme activity (laccase, MnP and LiP) was compared. Soil samples were collected
in sterile bags from industrial area of Anand and Nadiad, Gujarat, India, and were
transported to the laboratory. Following mineral salt medium (MSM) was used for
the enrichment and isolation of microorganisms (g/L): KH2PO4 (0.5), K2HPO4 (1.5),
NaCl (0.5), MgSO4�7H2O (0.5), NH4NO3 (1.0), FeSO4�7H2O (0.01), CaCl2�2H2O
(0.01) and NH4SO4 (0.5). One gram of each soil samples was added to a 100-mL
conical flask containing 50 mL of MSM medium containing 1000 ppm of BPA as a
sole source of carbon. After 5 days of incubation at 30 �C, 100 rpm, the enriched soil
samples were serially diluted and streaked onto MSM agar plate containing BPA as a
sole source of carbon, to obtain well-isolated bacterial colonies. Morphological
characterization of isolates showing BPA degradation capacity was performed
using colony morphology, Gram’s nature, and cell shape and size of the isolated

Fig. 4.3 Reported biotic and abiotic BPA degradation/transformation process pathways and
intermediates. (Reprinted with permission from Im, J., & Löffler, F. E. (2016). Fate of bisphenol
A in terrestrial and aquatic environments. Environmental Science & Technology, 50(16),
8403–8416. Copyright 2016, American Chemical Society)
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bacteria were studied using the microscope. Various biochemical tests were
performed such as carbohydrate hydrolysis test, IMViC test (indole production
test, methyl red test, Vogues–Proskauer test, citrate utilization test), triple sugar
iron agar test, urea test, H2S production test, nitrate reduction test, lactose fermenta-
tion test, catalase test.

Isolated bacterial colonies were inoculated into nutrient both media, to prepare
seed medium, and mineral salt media containing 1000 ppm BPA was used as a
degradation medium, and incubated on a shaking incubator at 37 �C and 100 rpm.
Samples were collected after every 24 h of incubation, the sample was estimated for
dry cell weight, and the supernatant was used for estimation of BPA. Standard
solution of BPA was prepared, and different aliquots were taken to achieve final
concentration of 10–100 ppm of BPA, to it added 3 mL of 15% Na2CO3 and 0.5 mL
of Folin–Ciocalteu Regent and incubated at 50 �C for 5 min, cooled to room
temperature. The absorbance values were recorded at 765 nm using spectrophotom-
eter. Similar steps are followed for the determination of BPA from the MSM
experimental flasks. Effects of BPA concentration, temperature, pH, and inoculum
size was also analysed.

4.3.1 Determination of Enzyme Activity

The activity of laccase was determined by spectrophotometric method using DMP
(2,6-dimethoxy phenol) as a substrate. The method was based on oxidation of DMP
at 420 nm. The reactive mixture consisted of 0.6 mL sodium acetate buffer, 0.2 mL
enzyme extract and 0.2 mL DMP. The activity of manganese peroxidase was
determined at 610 nm by spectrophotometric method using phenol red as a substrate.
The reactive mixture consisted of 0.25 mL enzyme extract, 0.05 mL phenol red
(0.1%), 0.1 mL sodium lactate (250 mM), 0.025 mL MgSO4 (2 mM), 0.1 mL BSA
(0.5%), 0.025 mL H2O2 (0.2 mM) and 0.5 mL citrate buffer (0.1 mM, pH 5). The
activity of lignin peroxidase was determined at 664 nm by spectrophotometric
method using methylene blue as a substrate. The reactive mixture consisted of
2.2 mL enzyme extract, 0.1 mL methylene blue (1.2 mM), 0.6 mL sodium acetate
buffer (0.5 M, pH 4) and 0.1 mL H2O2 (2.7 mM). Production of enzymes were
analysed in the presence of different BPA concentrations (500 ppm, 1000 ppm,
1500 ppm).

4.3.2 Observations

Totally 13 bacterial isolates were isolated from different soil samples and were
screened for the degradation of BPA as shown in Fig. 4.4. Two sets of experiments
were carried out for the isolation of bacteria, and the whole procedure was repeated
for each set of experiment. Then highest BPA degradation colony was further used
for optimization, enzyme production and degradation experiments. The highest BPA
degradation strain (S1) was examined for colony morphology, Gram strain
characters and biochemical tests. It was observed to be Gram-negative short rods,
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with smooth, colourless colony, and the bacteria was aerobic, with all biochemical
tests positive, except urea hydrolysis and lactose fermentation tests, which were
negative. From results of various tests in biochemical characterization and morpho-
logical characterization, and from the microscopic view of bacterial gram staining, it
was preliminarily identified as Pseudomonas sp.

4.3.3 Bisphenol A Degradation

The degradation of bisphenol A was investigated by using Folin–Ciocalteu method.
For that, calibration curve was prepared for quantification of BPA, and a linear
standard curve was obtained. Slope value obtained from the linear graph was used to
calculate the degraded bisphenol A concentrations in further experiments. The
influence of substrate concentration (500–1500 ppm) on the degradation rate of
BPA was investigated and percentage BPA removal and enzyme production were
studied. It was observed that the conversion was constant with the increase of
concentration in the selected range (Fig. 4.5). The effect of concentration on the
degradation of bisphenol A and production of enzyme (laccase, MnP, LiP) is
represented in Fig. 4.6. Flasks containing MSM medium with different

Fig. 4.4 BPA degrading bacterial isolates obtained after enrichment of the soil samples

Fig. 4.5 The effect of concentration on the percentage BPA degradation
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concentrations of BPA were incubated at 37 �C and bisphenol A estimation was
done at 24–24 h intervals. The reaction mixture containing 1000 ppm of BPA was
degraded up to 39% after 120 h by Pseudomonas sp. This degradation rate was
comparatively quite faster than the Pseudomonas sp. and Pseudomonas putida
isolated from the river water in an experiment, where ~52% degradation of BPA,
where concentration of BPA was 10 times lower (Kang and Kondo 2002).

Fig. 4.6 The effect of BPA
concentration on the enzyme
production: (a) Laccase
(IU/mL); (b) MnP (IU/mL)
and (c) LiP (IU/mL)
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The removal of BPA was carried out at 27 �C, 37 �C and ambient temperature for
120 h, and the highest BPA removal by Pseudomonas sp. was observed at ambient
temperature. Whereas, Klebsiella pneumoniae showed the highest degradation of
55% between 35 and 40 �C for the initial BPA concentration of 500 ppm. The
laccase, MnP and LiP production was found to be maximum at ambient temperature,
whereas Bacillus sp. showed that the maximum production was at 35 �C (Shukur
2015). The highest MnP production was by B. pumilus at 25 �C and by Paenibacillus
sp. was at 35 �C (Shukur 2015). The effect of pH on the removal of bisphenol A was
investigated at a range of pH from 5 to 9. The experiment was performed at 37 �C for
120 h, where the degradation rate of BPA was 67% by Pseudomonas sp. which was
observed highest at pH 7. Similar kind of result was reported for Bacillus sp. (Fouda
2015) and Aspergillus sp.

4.4 Conclusion and Future Prospects

Although widely criticized, BPA is still being used in several day-to-day appliances
and applications. Several studies showed a wide and varied amount of damaging
effects of BPA on flora and fauna. The environmental bioaccumulation and
biomagnifications of BPA due to excessive use and improper disposal lead to such
detrimental effects. Public awareness on such issues led to pressurizing
manufacturers to look for viable alternatives to BPA. However, it is not quite a
difficult task to completely ban its use, as it is widely employed in different types of
plastic items, and contradictory reports are published, both in favour and against its
usage. Thus, instead of immediate ban, it is a more favourable option to find suitable
strategies to degrade it in environmentally friendly manner. Among different
methods being suggested for the BPA removal or transformation of less toxic
by-products, biodegradation has been advocated to be a promising alternative.
Several types of microorganisms are reported to survive varied concentration of
BPA, both on land and in water, and utilize it as a carbon source for metabolism.
Both isolated strains and consortia isolated from different wastewater treatment
plants or fresh water bodies showed promising results. In our preliminary study,
we also successfully isolated BPA degrading bacterial isolates from soil samples
near industries, which also showed that production of different types of key enzymes
(laccase, MnP, LiP) reported to carry BPA oxidation/metabolism. Several studies
reported the presence of different types of intermediates, when metabolized by either
bacteria or fungi, and some of them are reported be toxic, but overall it was found
that most of those intermediates were utilized for growth and end products such as
CO2 and water. Even though encouraging reports of microbial degradation and
co-metabolism of BPA by microbes are available, we still need to search for strains
with better efficiency and capable to work under harsh environmental conditions.
Much research is still needed in this direction, also to utilize the wealth of knowledge
in ‘omics’ and metabolic engineering.
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Microbial Degradation of Marine Plastics:
Current State and Future Prospects 5
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Helge Niemann

Abstract

Millions of tons of plastics entering the sea each year are a substantial environ-
mental problem. It is expected that ocean plastic pollution will increase when
considering the rapidly rising rates in global plastic production, in contrast to the
relatively slow growth in plastic recycling rates, and future projections of increas-
ing population densities in coastal areas. However, a significant discrepancy
exists between the vast quantities of plastic entering the ocean and the orders of
magnitude lower amounts afloat at the sea surface, indicating a substantial sink
for ocean plastics. Plastics are probably degraded in a multi-step process
facilitated by abiotic and biotic factors. Abiotic factors, such as shear stress
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induced by wave action, solar ultraviolet radiation, and heat embrittle and frag-
ment plastics. Fragmentation of macroplastics results in micro and nanoscale
particles. Photooxidation causes the release of chain scission products from the
polymer matrix, e.g., nanoplastics, low-molecular-weight polymer fragments,
and hydrocarbon gases. Biodegradation of plastics is mediated by microbes that
have enzymes capable of inducing (1) chain scission and depolymerization, and
(2) assimilate and terminally oxidize the intermediate products of initial degrada-
tion. Plastic degradation products from UV radiation could be a useful carbon
source for microbes, while the role of marine microbes as initial degraders is not
well understood. Several terrestrial microorganisms (bacteria, fungi) are known
to degrade specific plastic polymers. For example, the bacterium Ideonella
sakaiensis hydrolyses polyethylene terephthalate (PET) with a novel cutinase
(termed PETase) and utilizes the degradation products as energy and carbon
source. In the marine environment, complex hydrocarbon-degrading bacteria
have repetitively been found in association with plastics. These bacteria have
genes encoding for monooxygenases, peroxidases, and dehydrogenases, enzymes
which can, in principle, facilitate the initial breakdown of plastics. Most com-
monly applied methods to investigate plastic biodegradation are based on moni-
toring weight loss of plastic over time, determining chemical changes of the
polymer, investigating colonization of plastics by microbes, and measuring CO2

production rates. However, these evaluation methods often lack rigor in
confirming initial depolymerization, assimilation, and mineralization. This chap-
ter provides an overview of plastic biodegradation in the marine realm. Identified
and potential microbial plastic degraders will be covered. Their metabolic and
enzymatic capabilities will be highlighted with respect to valorization their
potential in the future.

Keywords

Plastic pollution · Plastic polymers · Microbial plastic degradation

5.1 Introduction

5.1.1 Plastics: The Marvel and The Global Problem

The term ‘plastics’ is commonly used to refer to a diverse group of chemically
synthesized materials, long chains of repetitive monomers that have a unique
chemical structure and specific physicochemical characteristics (Cole et al. 2011;
Thompson 2015; PlasticsEurope 2019). Plastics can be subdivided into
thermoplastics, thermoset plastics and elastomers. Thermoplastics can be remolded
upon heating, in contrast to thermoset plastics and elastomers. Thermoplastics are
the most abundant plastic types and are the main subject of this chapter.

The invention of plastics dates back to the late nineteenth century when Alexan-
der Parkes synthesized the first plastic, termed ‘Parkesine’ from cellulose (Parkes
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1866). In 1907, Leo Baekeland produced one of the first fully synthetic plastic,
became ‘Bakelite’ (Baekeland 1909), but only in the mid-twentieth century, plastics
were more widely used in many industrial processes (Ryan 2015). The technological
advancements and increasing demand for durable and versatile products that were
effortless to manufacture at minimal costs created a niche for plastics to take over a
role that was traditionally occupied by natural materials such as wood, leather, stone
and glass. Nowadays, plastics are an essential part of human lives and even fulfil the
needs of short-lived products that became characteristic of our ‘throw-away’ culture.
Countless modifications of the virgin polymer structure, co-polymerizations and
mixture of additives such as fillers, plasticizers, colourants, stabilizers, flame
retardants and reinforcing fibres (among others) have enabled the development of
a vast diversity of plastic formulations. These additives affect the properties of the
polymer and serve the purpose to tailor polymer characteristics needed for the
intended application (Deanin 1975). Polymers are used for packaging, construction
and building, the automotive and electronic industry as well as agriculture and
fishing, household, sports, warfare or medical applications, among many others
(Fig. 5.1). Production of plastics has thus turned into a global multi-billion €

business in less than 100 years. Currently, the most produced plastic types are
polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane
(PU), polyethylene terephthalate (PET), polystyrene (PS) and polyamides
(PA) (Fig. 5.2). In addition to conventional plastics of petrochemical origin,
biobased plastics, i.e. plastics made from renewable sources such as cellulose, lactic
acid, caprolactone, proteins, food waste and starch offer an alternative to conven-
tional plastics. The market share of biobased plastics is rising but still comparably
minor with 2.11 million tonnes produced in 2019 (Bioplastics 2019) accounting for
about 1% of the global plastic production.

The invention of plastics created an unprecedented turning point in the evolution
of humankind. Plastics, initially considered as the marvel of materials, controver-
sially turned into a colossal and growing environmental hazard of the twenty-first
century. Plastic production increased exponentially since mass production began in
the 1950s. Solely in 2018, nearly 360 million tons were produced worldwide
(PlasticsEurope 2019). Out of the world’s plastics production, around 20% was
manufactured in Europe and 50% in Asia, with China alone producing 30%
(PlasticsEurope 2019). Unfortunately, the enormous increase in plastic production
has not been accompanied by efficient waste management strategies in many
countries. Since 2006, plastic waste recycling rates have only doubled, and about
25% of plastic post-consumer waste still ended up in landfills (PlasticsEurope 2019).
In many tropical countries, plastic with other waste is either directly discarded to the
environment or incinerated albeit in non-adequate infrastructures. While the latter
prevents plastic debris from entering the environment, it dramatically contributes to
other environmental problems because of the released greenhouse gases and proba-
bly more importantly, toxic fumes. These can also pose a direct hazard to human
health (Wright and Kelly 2017). The prevalent popularity of plastics, in contrast to
the failures of post-consumer waste management, makes plastics an indispensable
material with a negative reputation—from an environmental point of view.
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5.2 The Oceans Plastic Problem

Improperly managed plastic waste often gets transported to the ocean (Jambeck et al.
2015; Geyer et al. 2017; Lebreton et al. 2017). First reports of plastic pollution in the
marine environment date back to the early 1970s (Heyerdahl 1971; Carpenter et al.
1972; Carpenter and Smith 1972; Cundell 1973), and since about two decades, it has
become an even more relevant and intensely investigated research topic. The
quantity of plastic released into the marine realm is linked to the quantity of globally
produced plastics, but even closer related to the amount of plastic waste generated in
coastal areas, and the strategies enforced in those areas to manage plastic waste
(Jambeck et al. 2015). For 2010, it has been estimated that the 4.8–12.7 Mt of plastic

Fig. 5.1 Use of plastics by segments, based on 2018 data of 51.2 millions of tons as input for total
European plastics converters demand (PlasticsEurope 2019)
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waste generated in that year ended up in the oceans (Jambeck et al. 2015). Partially,
plastic waste is transported via rivers, which were found to contribute to 1.15 to 2.41
Mt of plastics to the oceans annually (Lebreton et al. 2017). Catastrophic events,
such as hurricanes or floods, can also transport substantial amounts of plastics into
the marine environment (Law 2017). Other pathways for plastic entering the oceans
include atmospheric transport, beach littering, maritime cargo loss, and loss of
commercial fishing gear. By now, no ocean habitat has remained untouched from
plastic pollution: plastics were found in as remote areas as Arctic Sea ice (Peeken
et al. 2018) and the deep sea (Van Cauwenberghe et al. 2013; Ramirez-Llodra et al.
2014; Peng et al. 2020). Considering the exponentially rising rates of global plastic
production in contrast to the relatively slow growth of plastic recycling rates, and

Fig. 5.2 Polymer molecules of plastic reoccurring in marine environments. These can be
categorized based on the chemical structure into carbon-carbon backbone based (PE, PP, PS,
PVC) or polymers with heteroatoms in the main chain (PET, PC, PA, PUR)
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considering future projections of increasing population densities in coastal areas, it
seems probable that the problem of oceans plastic pollution will increase.

However, in stark contrast to the expected, possibly hundreds of millions of
metric tons of plastic debris that should be present in the sea (Jambeck et al.
2015), field measurements and modelling data estimate that 0.09–0.25 Mt (van
Sebille et al. 2015) to 0.4–4 Mt (when considering an underestimation of
macroplastics in global budgets (Lebreton et al. 2018)) of plastics are afloat in the
ocean.

Several theories have been developed to explain the ‘missing plastic paradox’:
(1) polymers, with a higher density than water, are removed by vertical transport to
deeper depths/sediments. The overgrowth of floating particles with biofilms
(Andrady 2011; Tu et al. 2020; Zhao et al. 2020) as well as the entanglement of
plastic particles in marine snow (Porter et al. 2018) increases the density of the
initially floating polymer to a point where it sinks. As a result of these biofouling-
induced buoyancy changes, the amounts of plastics exported from the surface ocean
to deeper water layers or sediment could be substantial. Accumulation of up to
1.9 million (microplastics) particles per m2 sediment have been measured (Kane
et al. 2020). Based on modelling and observations, this removal mechanism could be
size-dependent, with smaller particles being less abundant at the surface or removed
faster (Cozar et al. 2014; Kooi et al. 2017). However, the number of studies on
plastic fallout as well as sedimentation is limited, and abundances of sinking/
sedimented plastic detected are variable and in some cases seem even to be insub-
stantial (Martin et al. 2017; Willis et al. 2017; Barrett et al. 2020; Egger et al. 2020).
Besides, vertical transport should not lead to disproportionation of polymer types
with PE and PP dominating surface waters and polyesters and PA deeper waters and
sediments (Erni-Casola et al. 2019). (2) Estimates of ocean plastic concentrations are
often based on observations of floating macroplastics (i.e. plastic pieces >5 mm) or
microplastics (i.e. plastic pieces 1μm to 5 mm) typically from surface trawls using
nets with a mesh size of typically >300μm. However, a considerable contribution to
ocean plastic pollution is attributed to smaller size classes of microplastic and
possibly also nano plastics (1–1000 nm). Using nets with a mesh size of 100μm
resulted in 2.5-fold and tenfold greater microplastic concentrations than with 333μm
and 500μm meshes, respectively (Lindeque et al. 2020). Besides, more plastic is
found in samples when improved detection methods and techniques are applied
(Anger et al. 2018). (3) Finally, plastics may also be degraded by physicochemical
processes, e.g. photooxidation through UV radiation, which leads to the
incorporation of oxygen atoms into the polymer as well as chain scission (Gewert
et al. 2018). Possibly, microbial degradation of polymers could also constitute a sink
for ocean plastic debris as several microbes have been shown to degrade plastics
(Yamada-Onodera et al. 2001; Gilan et al. 2004; Sheik et al. 2015; Yoshida et al.
2016; Paço et al. 2017). Nevertheless, ocean plastic degradation and the contribution
of the above-mentioned factors to the ‘missing plastic paradox’ have not been
enumerated (Fig. 5.3).
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5.2.1 Impacts of Plastic on Marine Life

Plastics in the oceans introduce various problems (Wayman and Niemann 2021).
This includes socio-economic losses caused by the visually repulsive littering of
shorelines, and physical and biochemical damage inflicted on marine mammals, fish,
seabirds and other eukaryotic and possibly prokaryotic life. The effects of plastic
interactions with marine life are largely dependent on the characteristics of the
debris, for example size, shape, type and concentration of additives added to the
basic polymer (Law 2017). First scientific records of plastics being ingested by
marine fauna date back to the late 1960s, when gastrointestinal tracts of Laysan
albatrosses Phoebastria immutabilis were inspected for plastic items in their body
cavities (Kenyon and Kridler 1969). Later, regurgitation of plastics from adult
specimens to chicks of Laysan albatrosses, causing intestinal obstruction and
ulcerations in the gastrointestinal tract, was reported (Pettit et al. 1981). Marine
animals can get entangled in ghost fishing gear or ingest plastic debris (Croxall et al.
1990; Cadée 2002; Gregory 2009; de Stephanis et al. 2013; Schuyler et al. 2014;
Thiel et al. 2018). Ingestion of plastic leads to nutritional deficiencies and reduction
of energy budgets in marine biota (Van Cauwenberghe et al. 2015; Watts et al.
2015). Dolphins (Hernandez-Gonzalez et al. 2018), other whales and turtles
(Mascarenhas et al. 2004; Campani et al. 2013; Clukey et al. 2018), seals (Bravo

Fig. 5.3 Pathways of plastic input into the ocean and the potential further fate of plastic marine
debris
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Rebolledo et al. 2013), various fish species (Boerger et al. 2010; Bucol et al. 2020),
squids (Braid et al. 2012) and jellyfish (Iliff et al. 2020), among others, have ingested
plastic either directly or possibly via trophic transfer. Furthermore, it has been
proposed that smaller plastic particles are more detrimental to many organisms
(Koelmans et al. 2015), which makes fragmentation and degradation of larger
plastics into smaller micro and nanometre-sized plastics as well as the immediate
release of such plastic size classes to the marine environment particularly problem-
atic (Mattsson et al. 2017). Small microplastic particles and nanoplastics were
enriched in filter feeders (von Moos et al. 2012; Van Cauwenberghe et al. 2015).
Nanoplastics can be transferred in the food chain from algae through zooplankton to
fish where these may cross the blood–brain barrier and cause behavioural disorders
(Mattsson et al. 2017).

Plastics often contain chemical additives such as plasticizers, for enhancing
polymer properties (Hahladakis et al. 2018). Some of these components act as
endocrine disruptors, even at extremely low concentrations (Gallo et al. 2018;
Galgani et al. 2019). Plastic additives can leach into the water, with the potential
to contaminate soils, groundwater, rivers and the marine environment. Phthalates get
released from PE bags and PVC cables, exposed to seawater (Paluselli et al. 2019).
Polymers are lipophilic and absorb persistent organic pollutants (POP) to their
surface where these compounds may become concentrated by a factor of 106

compared to the surrounding seawater (Mato et al. 2001). PE and PP, for example,
were found to absorb higher amounts of polyaromatic hydrocarbons (PAH) and
polychlorinated biphenyls (PCB) in comparison to PVC and PET (Rochman et al.
2013). As a result of microplastic ingestion in worms and mussels, bioaccumulation
of PAHs occurs, and adverse effects were reported (Browne et al. 2013; Avio et al.
2015). In addition, plastics can accumulate heavy metals (Holmes et al. 2012;
Rochman et al. 2014), which, if released, can cause a diversity of toxic effects.
PVC and PP particles absorbed more cadmium and lead than PE, PA and particulate
organic matter (Gao et al. 2019). Micro-and nanoplastics have a high surface to
volume ratio and, thus, can absorb relatively high amounts of hydrophobic
contaminants. These plastic size classes are readily ingested by many organisms
where the contaminants may be rereleased. However, the end effect depends on
microplastic particle concentration in nature, the chemical equilibrium between
water and plastics, species and microniches, such as gut systems (Diepens and
Koelmans 2018; Menéndez-Pedriza and Jaumot 2020). Although plastics function
as a potential transport vector for harmful compounds, it remains challenging to
quantify the amounts released into biota, accumulation in the marine food web and
their contribution in nature. In particular, if the same toxic compounds are present in
the food, surrounding water and sediment, these may be incorporated from these
compartments, too (Ziccardi et al. 2016).
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5.3 Plastic Degradation

Plastics are typically designed for durability, which makes them a valuable material.
However, the chemical structure of the primary polymer and admixture of additives
make plastics rather resistant to degradation in the environment where they persist
for elongated periods of time. This poses critical questions: How do plastics
degrade? What is the contribution of abiotic and biotic factors? What is the rate of
this process? What is the identity of degradation products? Plastic degradation is
considered a process resulting in changes of polymer properties due to chemical,
physical or biological forcing factors (Singh and Sharma 2008). It is generally
believed that recalcitrant plastics are not biodegradable and can persist from
10 years to hundreds or perhaps even thousands of years in nature, to the extent of
being the marker of ‘Anthropocene’ in the geological record (Corcoran et al. 2014;
Zalasiewicz et al. 2016; Geyer et al. 2017; Joly and Coulis 2018; Krause et al. 2020).
However, this argument is not substantially founded because hardly any data exists
on the kinetics of plastic degradation in the marine realm, neither physicochemical
nor biological. Laboratory simulations revealed HDPE to be more resistant to
fragmentation when exposed to seawater in comparison to samples on beach sand
in 6-month experiments (Kalogerakis et al. 2017). It thus seems that ocean plastic
degradation might be slower than terrestrial plastic degradation, where higher rates
of solar radiation and higher temperatures facilitate enhanced breakdown of plastics
(Andrady and Neal 2009).

5.3.1 Abiotic Factors Influencing the Degradation of Plastic

In the marine environment, plastic fragments into smaller particles due to mechani-
cal shear stress imposed by e.g. wave action, causing collision and embrittlement of
the polymer structure (Barnes et al. 2009). In addition, fragmentation is accelerated
by the weathering process (most notably, photooxidation, see below), which breaks
chemical bonds, allowing oxygen incorporation into the chemical structure
(Kalogerakis et al. 2017; Gewert et al. 2015; Wayman and Niemann 2021). Frag-
mentation of macroplastics results in large fragments as well as particles on the milli-
, micro- and nanometre scale. In the ocean, small microplastic particles dominate in
abundance, while nanoplastics have only been detected recently (Ter Halle et al.
2017), and their abundance and distribution in marine systems are unknown.

Plastic degradation is facilitated by UV radiation, causing photooxidation. Pho-
tooxidation is a multi-step process, resulting in changes in the chemical structure as
well as in the physical appearance of the polymer. UV radiation causes chemical
bonds to break, and the formation of free radicals, which may react further with the
polymer. This chain reaction proceeds until stable products have been formed and
typically involves incorporating oxygen in the carbon backbone. Moreover,
UV-induced photooxidation causes the release of chain scission products from the
polymer matrix, e.g. low-molecular-weight polymer fragments with carboxyl groups
(Gewert et al. 2018), and hydrocarbon gases such as methane, ethylene, ethane and
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propylene (Royer et al. 2018). Nanoparticle formation due to UV irradiation has
been reported from PS (Lambert and Wagner 2016). Furthermore, UV exposure
causes dissolved organic carbon to leach from the plastics (Zhu et al. 2020; Romera-
Castillo et al. 2018). Extrapolation to the global scale revealed that 23,600 metric
tons of DOC might leach annually to the marine environment (Romera-Castillo et al.
2018). Due to variations in chemical structure, polymers react to mechanical and
oxidative stress differently, with PE having higher dissociation energy in compari-
son to PP (Gewert et al. 2015; Min et al. 2020). PE is characterized as more
susceptible for oxidative stress, possibly due to additives it contains, as heavily
oxidized patches have been observed on otherwise intact plastics (Cooper and
Corcoran 2010). The number of factors affecting the fate of plastics in natural
environments can be considered ‘unlimited’, as the environment and the polymer
itself can vary. Besides UV exposure, variables such as temperature, mechanical
forces (wave action, wind), visible light and, potentially, microbial growth
(Gu 2003; Artham et al. 2009; Gewert et al. 2015; Klein et al. 2018; Pickett 2018;
Min et al. 2020) may affect the further fate of plastic in the environment.

5.3.2 The Potential for Microbially Mediated Plastic Degradation

Biodegradation is a biologically mediated process, whereby organisms convert
complex compounds into simpler and smaller molecules or environmentally less
hazardous ones.

In the marine environment, organic matter is both aerobic and anaerobically
degraded by microbes. Aerobic biodegradation occurs at the sea surface, in the
water column or oxic layers of sediments, while anaerobic biodegradation proceeds
in deeper sediments or other anoxic (micro)niches. Aerobic biodegradation requires
oxygen as an electron acceptor and commonly results in the production of the
terminal oxidation end product CO2. Anaerobic degradation processes, on the
other hand, utilize alternative electron acceptors and may oxidize, reduce or dispro-
portionate the organic matter substrate, yielding CO2 and/or CH4. Polymer biodeg-
radation involves depolymerization, yielding oligomers and/or monomers and
probably further degradation of such reaction intermediates to fuel catabolic and
anabolic processes. Biodegradation may be incomplete, which is often referred to as
‘biodeterioration’ (which may also occur due to the combination of biotic and abiotic
processes). However, both biodegradation and biodeterioration result in the loss of
structural integrity of the polymer, which supports fragmentation and eventual
breakdown.

Microorganisms can degrade, transform, convert and accumulate a wide variety
of organic compounds. Polymers of biological origin such as chitin, cellulose,
polyhydroxybutyrate and pullulan, for example, undergo rapid and complete miner-
alization in nature. Microbes and microbial consortia can also degrade complex
hydrocarbons, such as petroleum and polycyclic aromatic hydrocarbons (Yakimov
et al. 1998; Huy et al. 1999; McKew et al. 2007; Zhao et al. 2008; Zhou et al. 2008;
Joutey et al. 2013; Kim et al. 2015), which chemically resemble some
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polyolefin-type plastics. In principle, plastic polymers could thus be potential
substrates for microorganisms (Wayman and Niemann 2021). However, plastics
are synthetic and, on an evolutionary time scale, a new substrate for microorganisms.
Even though plastics hold chemical energy, it is unclear to which extent microbes
can make use of these. Plastic polymers are structurally large and complex
molecules. Microorganisms have developed strategies to break down large
molecules extracellularly, which also appears to be the case for some plastics. The
organisms secrete exoenzymes, which act on the plastic surface, releasing smaller
scission products. These smaller molecules may then be degraded further extracel-
lularly or taken up into the cells (see Sect. 5.5 for details).

Several microorganisms depolymerize/degrade specific plastics, for example
Rhodococcus ruber (Gilan et al. 2004; Sivan et al. 2006; Mor and Sivan 2008;
Yang et al. 2018), Ideonella Sakaiensis (Tanasupawat et al. 2016; Yoshida et al.
2016), Brevibacillus borstelensis (Hadad et al. 2005), several strains of Pseudomo-
nas sp. (Ward et al. 2006; Ronkvist et al. 2009; Kyaw et al. 2012; Pramila et al.
2012), several strains of Bacillus sp. (Sudhakar et al. 2008; Harshvardhan and Jha
2013; Yang et al. 2014; Syranidou et al. 2017; Ingavale and Raut 2018; Novotný
et al. 2018), Zalerion maritimum (Paço et al. 2017), Penicillium simplicissimum
(Sowmya et al. 2015), Penicillium citrinum (Liebminger et al. 2009), Fusarium
solani and Fusarium oxysporum (Nimchua et al. 2007) and also several strains of
Aspergillus sp. (Pramila and Ramesh 2011; Esmaeili et al. 2013). However, less is
known about the potential plastic biodegradation in the oceans, the involved
microorganisms and metabolic pathways. The following sections address the most
commonly applied techniques and methods to detect plastic degradation and identify
responsible microorganisms.

5.4 Methods and Techniques Applied in the Assessment
of Polymer Biodegradation

5.4.1 Methods to Evaluate Biodegradation

Monitoring alterations of polymers’ physicochemical properties, including changes
in crystallinity, molecular weight, the topography of samples and the functional
groups, during experiments, is a common way to evaluate the involvement
of microbes in plastic degradation. These may be specific strains or consortia of
cultured microbes as well as natural communities. In contrast, the genesis of
degradation products is less frequently measured. These are some of the most
frequently used physicochemical methods:

1. One of the most common methods to evaluate biodegradation is measuring the
gravimetric mass loss of plastics, i.e. monitoring plastic weight-changes exposed
to natural or laboratory (cultures, microbial consortia or environmental
communities) conditions. Marine isolated bacteria from pelagic coastal waters
of the Arabian Sea were assayed for the ability to utilize polyethylene as the sole
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carbon source (Harshvardhan and Jha 2013). Three of the strains identified as
Kocuria palustris M16, Bacillus pumilus M27 and Bacillus subtilis H1584
caused a weight loss of the tested PE film of 1%, 1.5% and 1.75% after 30 days
of incubation, respectively. Marine acclimated consortia (indigenous and bio
augmented consortia) reduced the weight of PS films more efficiently than
non-acclimated bacteria (Syranidou et al. 2017). Penicillium oxalicum NS4 and
Penicillium chrysogenum NS10 strains reduced the weight of PE films by ~60%
over 90 days period (Ojha et al. 2017). Environmental studies assessing gravi-
metric mass loss have been carried out in the water column, sand beds and
sediments (Kalogerakis et al. 2017; Syranidou et al. 2017; Welden and Cowie
2017). Gravimetric measurements do not require extensive resources, but they
lack accuracy to detect small mass changes (as is typically the case during
exposure experiments). Determination of the polymer weight is complicated
further by the fact that post-incubation treatment of plastic samples is necessary
to remove biofilms and residues of organic matter, which bears the risk of
accidentally altering the mass of the plastic itself. Finally, when this method is
applied in natural conditions, it is imprecise to distinguish between abiotic
(weathering, ageing and/or loss) and biotic (biofragmentation, biodegradation
and/or biomineralization) degradation.

2. An alternative method to gravimetric measurements in assessing microbial deg-
radation is to monitor weigh-average-molecular-weight (Mw) and weigh-num-
ber-molecular-weight (Mn). An increase in both Mw and Mn is related to the
consumption of the low Mw of the polymer (see Sect. 5.5) and might also be
related to crosslinking reactions of the carbon backbone. Shifts of the spectra
towards high Mw and Mn have been reported in several studies (Albertsson et al.
1995, 1998; Kawai 1995; Erlandsson et al. 1998; Hakkarainen and Albertsson
2004; Koutny et al. 2006b; Yoon et al. 2012), including marine-related strains.

3. Atomic force microscopy (AFM) (Binnig et al. 1983), measurements offer
quantitative and qualitative data on the surface topography and occurring
changes, with high spatial resolution. Exposure of silicone rubber, polyurethane,
polyester, syntactic foam, glass fibre reinforced polymer and carbon fibre
reinforced plastic for 1 year in the water column increased surface roughness
(Muthukumar et al. 2011). Similarly, an increase in roughness, development of
cracks and grooves were monitored on HDPE and LDPE films after exposure to
Penicillium oxalicum NS4 and Penicillium chrysogenum NS10 strains for
90 days (Ojha et al. 2017). Scanning electron microscopy (SEM) has been used
to visualize physical deterioration of polymer surface (pits, cracks, grooves or
other abnormalities on the plastic surface) as a function of exposure to the
environment and/or microbes. Simultaneously, SEM allows visualization of
adhering prokaryotes and eukaryotes (Zettler et al. 2013; Eich et al. 2015; Bryant
et al. 2016; Paço et al. 2017; Dussud et al. 2018b; Delacuvellerie et al. 2019)
(Fig. 5.4).

4. Fourier transformation infrared spectroscopy (FTIR) that can be coupled to
attenuated total reflectance (ATR) is one of the most widely used technique for
polymer identification and evaluation of degradation. FTIR allows molecular and
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structural characterization of the polymers, including plastics, copolymers and
rubbers and their products (Bhargava et al. 1970; Chalmers 2006; Mecozzi et al.
2016). FTIR is mostly applied to detect oxidative damages on plastic polymers
(Almond et al. 2020), by either abiotic or biotic factors. Degradation by
microorganisms is monitored by the detection of specific peaks in the IR spec-
trum. The changes of carbonyl groups (as a result of UV oxidation or biodegra-
dation) and the relative size of these peaks, described by the carbonyl index (peak
intensity at 1850–1650 cm�1 in relation to the reference peak) (Almond et al.
2020), is routinely taken as a measure to determine the magnitude of degradation.
It has become a standard method for identification of microplastics in sediments
and the water column (Veerasingam et al. 2020). Examples of FTIR applications
range from identification of polymers ingested by sea turtles (Jung et al. 2018) to
the formation of carbonyl groups on PE exposed to seawater (Da Costa et al.
2018) and evaluation of the degradation of PET bottles in seawater (Ioakeimidis
et al. 2016). Although FTIR can be applied to assess the biomass attachment to
the polymers, revealing the presence of nucleic acids, lipids and protein content of
the biomass (Paço et al. 2017), the same biomass signals may interfere with the
absorption spectra of the polymer (Bonhomme et al. 2003).

Besides the above-mentioned methods, several other methods are applied to
assess plastic degradation. Respirometric measurements evaluate the production of
excess CO2 and biomass variations when the polymer is the only available carbon
source for microorganisms. Mechanical properties, such as tensile strength,

Fig. 5.4 SEM image of photo-oxidized PE, colonized by a marine fungus
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crystallinity, hydrophobicity/hydrophilicity of the surface, are, as well, taken as a
measure of degradation (Pegram and Andrady 1989). Labelled polymers (14C) were
used already in the 1970s, to demonstrate PE and PS degradation by fungal strains
(Guillet et al. 1974; Albertsson 1978). Recently, isotopically labelled polymers were
applied in the terrestrial realm to evaluate plastic-derived carbon assimilation into
living cells (Zumstein et al. 2018). Similarly, labelled 13C-polyethylene has been
used to evaluate aquatic microbial biodegradation and eventually trace microbial-
animal trophically transfer (Taipale et al. 2019). The combination of isotopically
labelled polymers with molecular analyses to evaluate the mineralization
(incorporation of labelled carbon into cells, nucleic acids or lipids, for example)
are promising techniques to be explored.

Despite various evaluation methods to investigate plastic biodegradation, many
lack rigor in fully confirming the initial depolymerization, assimilation and mineral-
ization, and thus remain non-quantitative and inaccurate.

5.4.2 Colonization of Prokaryotes and Eukaryotes on Marine
Plastic

Cultivation-independent studies often investigate microbial community composition
by next-generation sequencing methodologies, mainly amplicon sequencing of the
16S rRNA (for prokaryotes) or the 18S rRNA gene (for eukaryotes). Only sparsely
have eukaryotes been targeted by sequencing of the Internal Transcribed Spacer
(ITS) region with specific primers (De Tender et al. 2017) or by metagenomic
sequencing (Bryant et al. 2016; Pinnell and Turner 2019), to unravel which
organisms adhere to the plastic surface. Applying next-generation sequencing for
detecting unknown plastic degraders involves the premiss for substrate-driven
selection of plastic degraders during colonization (i.e. that plastic surface will be
colonized preferentially by plastic degraders). However, attachment to surfaces is a
universal and fundamental trait of many microorganisms across the three domains of
life, because life in a biofilm offers critical advantages (De Tender et al. 2015; Dang
and Lovell 2016). In marine environments, any available surface will be colonized
rapidly by microbes since forming assemblages and biofilms on a surface protects
microbes from fluctuating environmental parameters such as UV radiation and
predation (Eich et al. 2015). Thus, caution has to be taken when interpreting
colonization data while trying to detect potential plastic degraders.

Biofouling is a multi-step process composed of priming the surface, attachment of
early settlers, secretion of extracellular polymeric substances and the formation of
mature biofilms (Flemming and Wingender 2010; Rummel et al. 2017). In a mature
biofilm, microorganisms have proliferated, and secondary settlers are incorporated
into the biofilm and may have replaced primary settlers. For plastic marine debris,
the surrounding seawater provides the initial inoculum of microbial assemblages
which can adhere to the polymer surface. Sequentially, the early colonizers influence
the mature biofilm composition and dynamics (Dang and Lovell 2000; Dang et al.
2008). Microorganisms colonize submerged surfaces rapidly, including plastics
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(Salta et al. 2013; Harrison et al. 2014). That raises the question if plastics host a
specific microbial community when compared to seawater and other hard surfaces?

For plastics, it has been shown that the community of settlers and the surrounding
seawater share a high degree of the same taxa; however, plastics harbour distinct and
significantly different microbial assemblages (Bryant et al. 2016; De Tender et al.
2017; Kettner et al. 2017; Dussud et al. 2018b; Frère et al. 2018; Vaksmaa et al.
2021). A recent review suggests to refrain from using seawater as a control because
free-living and biofilm communities differ (Wright et al. 2020a). Using hard/inert
surfaces (PET, PHA and ceramics) during benthic incubations revealed that the
degree of similarity between the settling communities is higher than the seawater
inoculum (Pinnell and Turner 2019). Indeed, microbial communities on PS, PP and
PE were different from the communities developed on glass and cellulose
(Ogonowski et al. 2018). A specific bacterial community was detected on PVC,
but communities were similar on glass, LDPE, HDPE and PP (Kirstein et al. 2019).
The approach by Kirstein et al. was novel as it focussed on the tightly adhered
community members, assuming that direct contact with plastic could indicate more
relevance in the potential role in biodegrading the plastic. Specific microbial com-
munity on ‘wild plastic’ was found on PS in comparison to PE and PP (Frère et al.
2018). In contrast, no difference was observed in the microbial communities, which
developed on PET bottles and glass slides exposed at different locations and during
different seasons (Oberbeckmann et al. 2016). Microbial communities on plastic
have been reported to be more distinct in the early stage of biofilm formation (Pinto
et al. 2019). However, currently, the hypothesis that plastics harbour a distinct
microbial community in comparison to other inert surfaces can be neither confirmed
nor rejected (Wright et al. 2020a) particularly in mature biofilms that are highly
diverse.

Another critical question is: what is the role of additives in polymers in structur-
ing the microbial communities? The majority of studies focus on the polymer type as
the determining factor for biofilm composition. However, plastics are rarely used in
their pure form. Consumer plastics usually contain additives, yet only a few studies
investigated the potential influence of additives on the microbial community com-
position. Differential microbial communities were observed on PVC compared to
other tested polymers (Kirstein et al. 2019); however, the authors hypothesized that
this might have been caused by PVC additives and not per se the polymer. To better
understand microbial colonization dynamics on plastics, future research endeavours
need to investigate early stage community succession, the role of polymer type and
additive admixture, and weathering in determining microbial community composi-
tion and succession.

5.4.2.1 Prokaryotic Colonizers on Marine Plastic
The core members of microbial assemblages on plastic are seemingly the same taxa
independent of geographical location and whether the sample has been in the water
column or sediments. For example, Flavobacteriaceae and Rhodobacteraceae were
detected on PET bottles (Oberbeckmann et al. 2016), on sheets and dolly ropes of PE
(De Tender et al. 2017), PVC (Dang et al. 2008), PE and PP (Zettler et al. 2013) and
on PE, PP and PS (Vaksmaa et al. 2021) based on 16S rRNA gene amplicon
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sequencing. Similar results for PE and PP were obtained by metagenomic sequenc-
ing (Bryant et al. 2016). Other commonly detected families are Alteromonadaceae
(Bryant et al. 2016; Xu et al. 2019) and Saprospiraceae (Bryant et al. 2016;
Oberbeckmann et al. 2018; Kirstein et al. 2019), Hyphomonadaceae (Zettler et al.
2013; Bryant et al. 2016; Dussud et al. 2018b; Oberbeckmann et al. 2018;
Ogonowski et al. 2018), Sphingomonadaceae (Debroas et al. 2017; Oberbeckmann
et al. 2018; Ogonowski et al. 2018) and Vibrionaceae (Zettler et al. 2013; De Tender
et al. 2015; Frère et al. 2018). Nevertheless, the functioning of these commonly
detected taxa (often termed the ‘core community of the plastisphere’) remains
unresolved, and it is unclear if and in how far these organisms play a role in potential
plastic degradation. Indeed, plastic can be colonized by opportunistic microbes for
which life in a biofilm is advantageous. It seems that general microbial colonizers are
often early colonizers, such as members of Rhodobacterales (Dang and Lovell 2000;
Dang et al. 2008; Elifantz et al. 2013; Schlundt et al. 2020; Tu et al. 2020). Other
commonly detected groups in biofilms such as Saprospiraceae and
Flavobacteriaceae have a preference for an adhered lifestyle (DeLong et al. 1993;
Fernández-Gómez et al. 2013).

Several studies have also detected hydrocarbon-degrading bacteria (HCB) in
plastic-associated biofilms (Zettler et al. 2013; Oberbeckmann et al. 2016; Debroas
et al. 2017; Dussud et al. 2018b; Pinto et al. 2019; Erni-Cassola et al. 2020; Vaksmaa
et al. 2021). A comparison of 2229 datasets of 35 independently published
investigations of biofilm communities on plastic polymers was conducted to reveal
common taxa in these biofilms (Wright et al. 2020b). This overview study
highlighted that often, a fraction of the plastic colonizers were hydrocarbon
degraders, specifically Oceanospirillales and Alteromonadales. Obligate
hydrocarbon-degrading bacteria were found on thermo-oxidatively weathered and
non-weathered polyethylene after 2 days of exposure to coastal waters and
constituted 5.8% and 3.7% of relative sequence abundance, which stands in stark
contrast to glass controls where they constituted only 0.6% (Erni-Cassola et al.
2020). Similarly, hydrocarbon degraders (mainly Erythrobacter) were found to
comprise 7.4% of amplicon reads of plastic-associated biofilms in comparison to
7.8% of organic particle-associated (>3μm), while a lower abundance of 4.7% was
found free-living (Dussud et al. 2018b). In a seawater flow-through reactor, where,
LDPE, PE with added pro-oxidant, thermally aged PE, polyester and poly
(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were exposed for 6 weeks,
HCBs constituted 34% of the biofilm community on the polymers. Especially
Alcanivorax sp., Alteromonas sp., Marinobacter sp. and Oleiphilus messinensis
were abundant, forming>5% of the total OTUs in one sample (Dussud et al. 2018a).

Genomes of hydrocarbon degraders encode for mono- and dioxidases, hydrolases
and peroxidases (Brzeszcz and Kaszycki 2018). These enzymes can break down
long chain or complex hydrocarbon molecules, which resemble some polyolefin-
type plastics. Hydrocarbon degraders are thus potential candidates to break down
plastic polymers (Dussud et al. 2018b; Basili et al. 2020; Erni-Cassola et al. 2020),
and they may rapidly colonize plastic surfaces, because they are common in marine
environments where hydrocarbon compounds (e.g. oil) are available (Kimes et al.
2013; Joye et al. 2014; Beckmann et al. 2019).
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The argument that a versatile hydrocarbon degrader might indeed be able to
degrade plastic is further underscored by the ability of the HCB Rhodococcus ruber
(strain C208), an actinomycete, to degrade PE, PP and PS. Rhodococcus ruber
possesses the ability to facilitate degradation of both linear, branched polymers
and PS, which contains aromatic styrenes (Mor and Sivan 2008). Upregulated
pathways during PE degradation by Rhodococcus ruber were those that are also
active during alkane degradation and β-oxidation of fatty acids (Gravouil et al.
2017). Santo et al. demonstrated the upregulation of laccase upon UV-treated PE
exposure in Rhodococcus ruber C208, indicating the possible role in the oxidation of
the PE. An extracellular isoform of the laccase of the copper-induced R. ruber C208
cells reduced 20% the Mw of the PE (Santo et al. 2013). Among Rhodococci, the
ability to degrade aliphatic, aromatic and polyaromatic hydrocarbons has been
shown. The genome of Rhodococcus ruber strain IEGM 231 harbours
45 dioxygenases, 73 monooxygenases, 22 cytochromes P450 oxygenases and
285 dehydrogenases (Ivshina et al. 2014). Rhodococcus ruber YC-YT1 strain,
isolated from plastic in coastal seawater, is able to degrade di-(2-ethylhexyl) phthal-
ate, a plasticizer of polyvinyl chloride, into phthalate (Yang et al. 2018).
Rhodococcus sp. was isolated from terrestrial and marine environments (Sorkhoh
et al. 1990; Hackbusch et al. 2020). Hydrocarbon degraders may also be fuelled
indirectly with plastic derived carbon. Photooxidation by UV radiation initiates
chain scission and the formation of carbonyl groups (Gewert et al. 2018). Hence,
HCB might utilize the released hydrocarbons or take advantage of partially oxidized
polymers. Indeed, it was recently found that DOM released during plastic photooxi-
dation can be utilized by microbes (Romera-Castillo et al. 2018; Zhu et al. 2020).

5.4.2.2 Eukaryotes as Plastic Colonizers and Degraders
Immersed plastic surfaces are subjected to biofouling, a process that entails that a
succession of microorganisms and multicellular organisms from different trophic
levels attach to plastic debris. Plastic polymers in the marine environment harbour a
diverse eukaryotic community as has been validated by visual observations, micros-
copy together with amplicon and metagenomic sequencing. Metagenomic sequenc-
ing revealed that in some cases, sequencing reads assigned to eukaryotes are more
abundant than those assigned to prokaryotes (Bryant et al. 2016). Twenty-seven
eukaryotic species were identified by Nanopore minION sequencing as plastic
specific on PE bags exposed for 1 month to the Mediterranean Sea (Davidov et al.
2020). Microscopy-based investigations found that diatoms are early plastic surface
colonizers, but they are also present in more mature biofilms (Carson et al. 2013;
Zettler et al. 2013; Eich et al. 2015). Algae were also found to adhere to marine
plastic surfaces (Zettler et al. 2013; Oberbeckmann et al. 2014; Bryant et al. 2016;
Dussud et al. 2018b). In brackish environments, different eukaryotes were found on
PE and PS: Ulva, Trebouxiophyceae, ciliates, rotifers Adinetida and Ploimida, the
nematodes Diplogasterida and Rhabditida, mollusk Caenogastropoda and crustacean
Podocopida (Kettner et al. 2019). Plastic debris offers for eukaryotic invasive
species a path to disperse (Kiessling et al. 2015).
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In the marine realm, fungi are understudied in general and in particular for fungi–
plastic interactions. Until now, more than 50 studies have investigated 16S rRNA
genes related to prokaryote–plastic interaction, but only less than ten have addressed
the fungal community in marine and brackish environments (Wright et al. 2020b).
The taxonomic composition of fungi in a seafloor PE biofilm community was
investigated in the harbour of Ostend in Belgium during long-term incubation over
44 weeks (De Tender et al. 2017). Biofilm formation occurred within a week of
exposure. In contrast to previous studies, this study could not detect bacteria that are
known to degrade plastics. On the other hand, it found the fungal strains
Cladosporium cladosporioides, Fusarium redolens and Mortierella alpine, which
were previously identified as PE degraders (Albertsson 1978; Bonhomme et al.
2003; Koutny et al. 2006b; Restrepo-Flórez et al. 2014). The fungal community
composition on PE and PS has also been investigated in the Baltic Sea, the River
Warnow and a wastewater treatment plant. The results revealed that fungal
communities on microplastics were different when compared to communities in
the surrounding water and on wood (Kettner et al. 2017). The taxonomic composi-
tion of plastic-associated fungi in surface waters of the Antarctic Peninsula and the
western South Atlantic was compared by using several molecular markers; ITS2 and
the V4 and V9 regions of the 18S rRNA gene. At both locations, PE, polyamide,
PUR, PP and PS were colonized by fungi. Besides identification of Aspergillus,
Cladosporium, Wallemia, Chytridiomycota and Aphelidomycota, as well as
Zoopagomycota and Mucoromycota were identified, taxa previously detected in
the marine environment, but so far not on plastics (Lacerda et al. 2020). Only a
few marine isolates of fungi have been evaluated for their ability to colonize and
degrade plastics. A marine fungus, Zalerion maritimum, was isolated and able to
utilize PE (250μm to 1 mm particles) in a minimal growth medium, already within
7 days (Paço et al. 2017). Concerning the generally diverse enzymatic potential of
fungi, it is valid to assume that there are more fungal species able to degrade plastics
in the marine environment than previously thought. This hypothesis is further
supported by the already diverse set of fungal strains retrieved from lacustrine and
terrestrial environments that are seemingly able to degrade plastic. From freshwater
environments, ~100 fungal isolates from floating plastic debris in Lake Zurich,
Switzerland were obtained and evaluated for their ability to degrade plastics. Differ-
ent species, including saprotrophic and plant pathogenic fungi, were isolated.
Although none of the strains isolated from plastic appeared to degrade PE,
Cladosporium cladosporioides, Xepiculopsis graminea, and Penicillium
griseofulvum (saprotrophic fungi) and the Leptosphaeria sp. (plant pathogen) were
able to degrade PUR (Brunner et al. 2018). Furthermore, P. simplicissimum YK, a
soil fungus, was capable of degrading previously irradiated PE and using it as a
carbon source (Yamada-Onodera et al. 2001). Aspergillus flavus, isolated from the
gut of the wax moth Galleria mellonella, is able to degrade HDPE. However, the
HDPE was UV irradiated for sterilization prior to the experiment (Zhang et al. 2020).
Fungal strains isolated from endemic plants Aspergillus sp., Paecilomyces lilacinus
and Lasiodiplodia theobromae were able to degrade gamma-irradiated LDPE as
shown by the decrease in intrinsic viscosity and average molecular weight. However,
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only Lasiodiplodia theobromaewas able to degrade irradiated polypropylene as well
(Sheik et al. 2015).

5.5 Enzymatic Potential of Microbes

5.5.1 General Considerations

Enzymes are large biomolecules acting as biological catalysts for the numerous
(bio)chemical reactions that sustain life (Gurung et al. 2013). They are present in
cells of all living organisms, including eukaryotes and prokaryotes, and are crucial to
maintaining the organism’s metabolism as most essential biochemical reactions
proceed very slowly or may not occur spontaneously when uncatalysed (Harris
and Hopkinson 1976; Berg 2002; Robinson 2015; Sheel and Pant 2018). Thus,
biochemical reactions and metabolic pathways depend upon enzymes to catalyse
each step by lowering the reaction’s activation energy or changing the mechanism
(Berg 2002; Lucas et al. 2008; Blanco and Blanco 2017). Structurally, the vast
majority of enzymes are proteins, often containing or requiring other components,
e.g. inorganic elements such as minerals or metal ions (Fe2+, Mn2+, Zn2+),
non-protein organic compounds (e.g. vitamins) and other cofactors (Kamerlin and
Warshel 2010). Microbial enzymes accomplish numerous functions, including
breaking down large molecules extracellularly. Microbes can excrete
depolymerizing exoenzymes, which produce smaller sub-products that can be
assimilated and further metabolized intracellularly. Microbes attach to the substrate
and form biofilms of commensal and/or syntrophic consortia to enhance extracellular
degradation. Although many microorganisms can break down natural complex
organic polymers, the enzymatic capability to catalyse depolymerization of synthetic
polymers such as plastics is rare (Albertsson 1978; Albertsson et al. 1995; Yoshida
et al. 2016). Debate persists whether microbial enzymes used to degrade complex
natural polymers (e.g. cutin, a waxy compound coating leaves, containing ester-
bonds as in PET) have had enough time to evolve and to adjust to equivalent
functions on synthetic polymers. Biodegradation of plastics is described as slow
and complex process (Albertsson 1980; Hakkarainen and Albertsson 2004).
Although several microbes have been shown to facilitate the breakdown of plastics,
the key enzymes and metabolic pathways involved in the degradation process are not
well understood, and little knowledge exists on the degradation intermediates and if
these are assimilated (Ru et al. 2020). Like other complex organic compounds,
plastic degrading microbes would need to attack plastics extracellularly and (par-
tially) depolymerize the complex and large molecule to compounds that could be
utilized as carbon and energy source (Gu 2003).

Research on microbial plastic degradation in terrestrial environments gained
momentum over the last decades (Gilan et al. 2004; Zhao et al. 2004; Hadad et al.
2005; Sabev et al. 2006; Matsumiya et al. 2010; Latorre et al. 2012; Rajandas et al.
2012; Ali et al. 2014; Yoshida et al. 2016; Gravouil et al. 2017; Wei and
Zimmermann 2017a, b; Austin et al. 2018). However, considerably fewer studies

5 Microbial Degradation of Marine Plastics: Current State and Future Prospects 129



have been carried out in marine environments (Pegram and Andrady 1989; Artham
et al. 2009; Balasubramanian et al. 2010; Lobelle and Cunliffe 2011; Yoon et al.
2012; Harshvardhan and Jha 2013). The next sections address extracellular and
intercellular biodegradation.

5.5.2 Extracellular Biodegradation

Early studies have shown that only molecules <600 Da can pass the cellular
membrane (Haines and Alexander 1974; Decad and Nikaido 1976). As prokaryotes
cannot perform exo- or endocytosis, molecular weight is a critical factor in biodeg-
radation (Albertsson et al. 1995, 1998; Kawai 1995; Erlandsson et al. 1998; Gu
2003; Hakkarainen and Albertsson 2004; Koutny et al. 2006b). High molecular
weight results in a sharp decrease in solubility, rendering plastics unfavourable for
the microbial attack, and a decrease in molecular weight increases the biodegrad-
ability (Gu 2003). Microorganisms apply extracellular enzymes to initiate degrada-
tion, and these bind to the plastic and catalyse bond cleavage in a single or a series of
reactions (Kopeček and Rejmanová 2019), such as oxidation, reduction, hydrolysis
and deesterification. In marine and aquatic environments, it is thus fundamental for
the organisms to attach to the plastic surface to use it most efficiently as a substrate,
although other free-living microorganisms might utilize intermediate products that
are released during the initial extracellular degradation steps.

Concurrent abiotic and biotic processes have been suggested to facilitate plastic
degradation (Albertsson et al. 1987; Hakkarainen and Albertsson 2004). An initial
step of e.g. photooxidation, introducing carbonyl groups to the polymer backbone
would quasi activate it for further enzymatic degradation (Gewert et al. 2015;
Romera-Castillo et al. 2018; Wayman and Niemann 2021). By weathering, mainly
the plastic surface gets initially affected; i.e. <100μm in photooxidation processes
(Ter Halle et al. 2016). Therefore, studies investigating microbial degradation of
pre-treated plastics need to be interpreted carefully, and additional information on
the pre-treatment process needs to be taken into account for the results to be
comparable and reproducible.

Plastics with functional groups, like esters, amides, carbonates and urethanes, are
more prone to microbial attack because equivalent functional groups are present in
other natural compounds. These heteroatoms and functional groups allow for a faster
bond cleavage via enzymatic hydrolysis (Min et al. 2020). While genes and enzymes
involved in the microbial degradation of such plastic types have been better
characterized (Ghosh et al. 2013; Wei and Zimmermann 2017b; Ru et al. 2020),
knowledge on the degradation of plastics with no hydrolysable chemical bonds in
their backbone such as PE, PP, PVC is scarce (Zheng et al. 2005; Singh and Sharma
2008; Wei and Zimmermann 2017b; Ru et al. 2020). The exoenzyme group of
depolymerases are able to degrade the substrate into smaller molecules. Neverthe-
less, the critical depolymerases involved in plastic degradation and the resulting
depolymerization products remain often unknown (Ru et al. 2020). For instance, in
the case of PE, past studies have identified enzymes related to peroxidases, laccase
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and homologous sequences related to laccases/multicopper oxidases as potential
candidates involved in biodegradation. Furthermore, a manganese peroxidase (MnP)
has been found to decrease the tensile strength and average molecular weight of PE
(Iiyoshi et al. 1998). Similarly, the combination of soybean peroxidase (SBP) and
hydrogen peroxide can oxidize and diminish the surface hydrophobicity of PE film
(Zhao et al. 2004). Generation of carbonyl groups in PE films by oxidation could be
mediated by a laccase exoenzyme (Santo et al. 2013). Three homologous sequences
related to laccases/multicopper oxidases were identified in the transcriptome of
Rhodococcus ruber, although the genes encoding for those sequences were neither
up- nor down-regulated in an experiment with PE as a sole carbon source (Gravouil
et al. 2017). In addition, recombinants from three alkane hydroxylase genes (alkB,
alkB1 and alkB2) of Pseudomonas aeruginosa E7 strain from a contaminated beach
soil were able to degrade low-molecular-weight PE (Yoon et al. 2012; Jeon and Kim
2015, 2016a). P. aeruginosa can use a wide range of substrates as a carbon and
energy source and is a common microbial community member in soil and water
(Jeon and Kim 2016a). P. aeruginosa strains PAO1 and RR1 contain enzymes
involved in the degradation of n-alkanes: 2 alkane monooxygenases, 2 rubredoxins
and 1 rubredoxin reductase (Marín et al. 2003; Jeon and Kim 2016a). In the case of
PS, only a hydroquinone peroxidase was able to depolymerize PS into low-
molecular-weight products in the presence of non-aqueous medium
(dichloromethane) (Nakamiya et al. 1997) (Table 5.1). To the best of our knowledge,
there are no reports on enzymes that degrade PP, and potential biodegradation
processes remain to be clarified (Arutchelvi et al. 2008; Ru et al. 2020). Biodegra-
dation of PP is expected to be more challenging than PE due to the stable methyl
group in every monomer (Arkatkar et al. 2009; Jeon and Kim 2016b). Biodegrada-
tion studies of PP have, therefore, mostly been carried out with pre-treated substrates
(UV irradiation, thermo-oxidation, γ-irradiation) under laboratory conditions
(Alariqi et al. 2006; Jeyakumar et al. 2013; Sheik et al. 2015). For instance, two
bacterial isolates of Bacillus sp. and Rhodococcus sp. (strain 27 and strain 36, respec-
tively) from mangrove environments were able to grow in aqueous synthetic media
containing UV-radiated PP microplastics (Auta et al. 2018). However, neither the
biodegradation of the untreated plastic nor the processes and metabolic enzymes
involved in the weight loss were studied. In the case of polypropylene blends
(Jeyakumar et al. 2013; Jain et al. 2018) and PP with prooxidants (Fontanella et al.
2013), it is difficult to discern if the recalcitrant plastic is degraded. To date, only a
few studies have shown biodegradation of untreated PP (Arkatkar et al. 2009; Jeon
and Kim 2016b). However, these promising reports of PP degradation were based on
weight loss or on the increase of the average molecular weight. It needs to be further
tested if this is the result of degradation of the long-chain PP polymer or other
shorter-chain molecules that might have been present in the plastic, too.

Regarding polyamides, few studies have shown biodegradation of different types
of nylons (Negoro et al. 1992; Gold and Alic 1993; Klun et al. 2003; Tomita et al.
2003a, b), but only one study investigated PA degradation by marine bacteria and
found the formation of new functional groups in the polymermatrix (i.e. NHCHO,
CH3, CONH2, CHO and COOH; Sudhakar et al. 2007). Interestingly, the authors
observed a greater extent of PA degradation by the marine bacteria when compared
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with soil microorganisms (Sudhakar et al. 2007). One study reported on a laccase-
mediator system (LMS) and showed that a fungal laccase, a multicopper-containing
enzyme, was able to degrade PA (Fujisawa et al. 2001).

In the case of PVC degradation, most studies have been performed with both PVC
and plasticizers (Moriyama et al. 1993; Gumargalieva et al. 1999; Sabev et al. 2006;
Latorre et al. 2012). PVC contains commonly high proportion of plasticizers (up to
50%). Two studies were carried out with PVC films in soil (Kırbaş et al. 1999; Ali
et al. 2014) and one in the marine environment (Kumari et al. 2019); however, the
degradation was evaluated based on weight loss. In the case of marine bacteria
Bacillus sp. AIIW2 PVC, only a weight loss of 0.26% was observed in the
pre-treated (UV radiated during 20 min) PVC films after 90 days (Kumari et al.
2019). Thus, the enzymes involved in the microbial degradation of this polymer are
still unknown (Ru et al. 2020).

Several enzymes contribute to the degradation of polyurethanes, both with
polyether and polyester backbones (Cregut et al. 2013; Peng et al. 2018; Magnin
et al. 2020; Ru et al. 2020). PUs are presumed to be the most susceptible types of
conventional plastics to biodegradation due to the presence of urethane bonds and
other hydrolysable groups in their carbon backbone (�2 functional groups per
monomer; Fig. 5.2). Seven fungal strains were found to grow on the surface of
solid polyester PU (Darby and Kaplan 1968). Two fungal strains, Aspergillus niger
and Cladosporium herbarium, were able to grow in cultures with polyether foam as
the sole nutrient source (Filip 1979). A Staphylococcus bacterial strain was able to
grow on polyether in the absence of organic nutrients (Jansen et al. 1991). An
esterase able to degrade polyester was purified from a fungal strain, Curvularia
senegalensis (Crabbe et al. 1994), a protease was purified from Pseudomonas
fluorescens (Howard and Blake 1998) and a lipase from Bacillus subtilis (Rowe
and Howard 2002). Since then, other enzymes with the capacity to degrade PU have
been reported (Akutsu et al. 1998; Allen et al. 1999; Matsumiya et al. 2010).
Cutinases, esterases and lipases are able to attack carboxylic linkage bonds, whereas
endopeptidase enzymes are able to cleavage amide bonds (Lucas et al. 2008).
However, these enzymes were not found to degrade solid polyester substrates,
such as PU film, foam, and elastomer (Schmidt et al. 2017; Ru et al. 2020). Although
it has been claimed that some enzymes possess depolymerization activity for
degrading (co)polyesters (Lucas et al. 2008), to date none have been reported to
be able to degrade and cleave the urethane bonds in both polyester and polyether PU
(Ru et al. 2020).

Several enzymes have been reported to degrade PET since reporting of the
hydrolase (cutinase-like TfH) which could degrade up to 50% of the polymer’s
weight at 55 �C in 3 weeks (Müller et al. 2005). Another three cutinases from three
different microorganisms were reported to degrade both low- and high-crystallinity
PET (Ronkvist et al. 2009). Nevertheless, two of them should be ascribed to PET
surface-modifying enzymes due to their low weight loss effect (Ru et al. 2020) and
only cutinase HiC from Humicola insolens was found as an efficient hydrolase,
causing a 97% reduction of the low-crystallinity PET film at 70 �C within 96 h. This
enzyme, recently renamed as Thermobifida fusca cutinase (TfCut2), has been shown
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to reduce similar amounts of weight in PET films than previously reported, and up to
56.6% in postconsumer PET packages at 70 �C within 120 h (Wei et al. 2019). PET
consists of repetitive units of polyethylene terephthalate and is mainly synthesized
from terephthalic acid and ethylene glycol. To date, Ideonella sakaiensis 201-F6 is
the most in-depth studied PET degrading organism along with Thermobifida sp. and
Thermomonospora sp. (Kleeberg et al. 1998; Müller et al. 2005). I. sakaiensis grows
on low crystalline PET as a major carbon and energy source by adhering to the
surface and releasing exo-enzymes (Yoshida et al. 2016). Two novel enzymes were
identified to catalyse the full reaction of degrading PET: PETase, a hydrolase
belonging to the α/β-hydrolase superfamily which converts PET into mono
(2-hydroxyethyl) terephthalic acid (MHET) and terephthalate (TPA). The second
enzyme MHETase, a tannase, hydrolyses MHET into TPA and ethylene glycol
(EG). PETase has features similar to cutinases and lipases (Austin et al. 2018).
Potential PETases were investigated by metagenomic mining, which revealed that
with respect to the utilized database, >500 candidates, divided over different
bacterial phyla exist that could express a PETase. The candidate genes coding for
PETase originating from marine environment belonged mainly to Bacteroidetes and
in the terrestrial environment to Actinobacteria. The database searches identified
possible PET hydrolase homologs in 31 marine metagenomes and 11 terrestrial ones.
The cloning of PETase and latter enzyme activity assays revealed that both PET and
polycaprolactone were hydrolysed (Danso et al. 2018). Based on the low occurrence
of PETase in the analysed metagenomes, they hypothesized that PET hydrolysing
enzymes evolved only recently. The bacterial strain Ideonella sakaiensis 201-F6 also
encodes another enzyme (IsPETase), able to degrade lcPET films but at an ambient
temperature (Yoshida et al. 2016). However, the efficiency of this IsPETase at
mesophilic temperatures is markedly lower than that of TfCut2 at a thermophilic
temperature (Wei and Zimmermann 2017a, b; Ru et al. 2020).

5.5.3 Intracellular Biodegradation

Once the plastic has been degraded to short-chain molecules, e.g. short oligomers,
dimers and monomers, these can be assimilated, and potentially further degraded and
finally mineralized to CO2, H2O or CH4 (Gu 2003). Concerning enzyme specificity,
polymer biodegradability probably depends on molecular physicochemical
characteristics such as density, crystallinity and structural complexity and the pres-
ence of functional groups (Kawai 1995; Gu 2003; Mohan and Srivastava 2010;
Alshehrei 2017). A fundamental aspect to consider in this biodegradation stage is the
assimilation sizes of the polymers. However, the upper size limit for plastic
molecules to undergo direct biodegradation is not well constrained. In the case of
PE, it is suggested that the polymer with the average molecular weight lower than
~1000 Da could be considered as biodegradable (Kawai 1995). Later, it was reported
that some microorganisms were able to degrade quite rapidly previously
photooxidized molecules with higher molecular weight, raising the upper limit to
~2000 Da (Kawai et al. 1999). Nevertheless, it is unclear whether those molecules
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were broken down extracellularly before being assimilated or not. Concerning
longer n-alkanes and saccharides, earlier studies indicated that most of the
microorganisms do not seem to be able to consume aliphatic chains displaying a
Mw over 600 Da (Haines and Alexander 1974). During an experiment with PE wax,
a consortium of bacteria could degrade molecules that were > 1000 Da (Kawai et al.
2004). Lower-molecular-weight PE (1700 Mw) was biodegraded ~6 times faster
than larger PE molecules (23,700 Mw) by Pseudomonas sp. E4, isolated from beach
soil (Yoon et al. 2012). A mesophilic polypropylene degrading strain,
Stenotrophomonas panacihumi PA3–2, was reported to degrade two low-molecular-
weight PP types containing molecules with a broad chain length spectrum and one
high-molecular-weight PP (Jeon and Kim 2016b). Increase in average molecular
weight was observed during incubations, and the authors concluded that the lightest
molecules were mostly degraded. A few isolated microorganisms have shown the
ability to utilize untreated PE as the sole carbon source (Gilan et al. 2004; Sivan et al.
2006), which points to the capacity of these organisms to utilize polymers with
higher molecular weights. It is not clear how large molecules might be directly
assimilated. Some authors suggest the possibility of a certain effect of biosurfactants
produced by microorganisms, being then able to enter the assimilation pathway
known for longer alkanes (Koutny et al. 2006a). In a gene expression experiment
with R. ruber growing on PE as a carbon source, the authors identified 19 putative
transporters upregulated in at least one of the treatments supplemented with PE. Of
them, nine belonged to the major facilitator superfamily (MFS) and five belonged to
the ATP binding cassette (ABC) family (Gravouil et al. 2017). They also reported a
gene encoding for a protein sharing a transport function and NADH dehydrogenase
activity, suggesting that this protein could be involved in both the oxidation and the
transport.

The controversy of the results from different studies reveals that probably the
assimilation size varies between different microorganisms and is polymer depen-
dent. However, to date, there are not sufficient studies on different polymers and
diversity of microorganisms to further constrain molecular weight cut-offs impeding
biodegradation, leaving several aspects of the biodegradation unclear. For instance,
regarding the biodegradation of PE, it is necessary to characterize the biochemical
functions of the oxidases or oxygenases, such as the enzymes encoded by the genes
alkB, alkB1 or alkB2. Future efforts are required to characterize specific
depolymerases degrading plastics and the assimilation process. In future screening
experiments, it is essential to characterize the ability of microbial strains to depoly-
merize the long-chain molecules of the different untreated polymer resins, as well as
to identify the genes encoding for membrane transporters and their regulations
through gene expression experiments.
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5.6 Valorization and Applications

Several bacterial and fungal strains can degrade plastic polymers, with varying
efficiency. Thus, utilization and marketing of microbial plastic degraders, purified
plastic-degrading enzymes, and further optimizing these for biotechnological and
possibly environmental (pollution mitigation) applications is a potential future
market sector. Nevertheless, with a few exceptions (Son et al. 2020), research in
this area is not advanced far enough and key organisms and enzymes firstly need to
be identified.

A promising candidate for future biotechnological applications is the Ideonella
sakaiensis 201-F6, able to degrade plastics and to grow on the plastic derived
carbon. The enzymes PETase and MHETase, mediating PET degradation and
resulting in the release of terephthalic acid and ethylene glycol (EG), have been
characterized; however, PET degradation is a very slow process (Tanasupawat et al.
2016; Yoshida et al. 2016). In order to achieve PET degradation at higher rates,
protein engineering of wild-type enzyme resulted in a PETase (IsPETaseS121E /
D186H/S242T/N246D) that outperformed the natural PETase by 58-fold (Son et al.
2020). In this process, it was also possible to recover the released terephthalic acid,
which could then serve as a base material for the new PET production. For the first
time, a biotechnological application for degrading waste of conventional plastics and
contributing to its recycling was demonstrated (Tournier et al. 2020). Convention-
ally recycled PET (i.e. remolded) has technical disadvantages such as loss of
mechanical properties, and for some applications, the quality of conventionally
recycled PET is too low. However, digesting PET and ‘mining’ for its monomer
thus offers, in principle, the possibility for a truly circular PET economy.

Furthermore, TPA and EG can serve to produce, polyhydroxyalkanoates (PHA),
which are useful compounds for biotechnological applications. In nature, a variety of
microorganisms ranging from general sugar fermenters to methanotrophs produce
PHAs as cellular carbon storage and energy source. PHAs can be produced by
Pseudomonas species from TPA, as well as EG (Kenny et al. 2008, 2012; Franden
et al. 2018). Pseudomonas putida has often been suggested as a candidate to serve
PHA production, not only from TPA and EG but also from the styrene degradation
product phenylacetic acid (PAA) (Ward et al. 2006; Nikodinovic-Runic et al. 2011).
The degradation products, TPA and EG, could serve as substrates for the bioplastic
industry, where PHAs, such as polyhydroxybutyrate, are produced. However, the
primary degradation of waste polymers needs to be initiated. While the discoveries
for PET are promising, similar knowledge of naturally occurring enzymes and the
further advancements of these enzymes has not been achieved for other polymer
types. Future research thus not only needs to determine if a particular polymer type is
biodegradable and which key players mediate this process, it also needs to include
in-depth investigations into gene expression in order to find potentially relevant
genes encoding for enzymes that mediate depolymerization which then could be
used for biotechnological applications.

To date, there is no applicability of plastic degraders to counteract plastic
pollution in nature. One of the reasons is our lack of understanding of naturally
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occurring plastic degraders and their functioning, which provides the basis for
creating biotechnological applications. Furthermore, both wild-type strains and
engineered enzymes are ideally associated with high degradation efficiencies to
serve industrial needs and yield utilizable compounds. In a second step, these
organisms/enzymes would need to be cultivated/produced in large quantities. As
tempting as it is to envision plastic bioremediation by microbes in nature (a quasi-
biochemical clean-up solution), in situ bioremediation might be applicable solely
where plastic pollution is highly concentrated and localized, e.g. in terrestrial
landfills or in local hot spots of pollution as have been found in some bays. There,
it appears possible to apply microbes/enzymes at sufficient quantities on a small
spatial scale. In contrast, the expanse of the ocean, both horizontally and vertically, is
genuinely enormous. Although plastics tend to accumulate in the subtropical gyres
and enclosed basins, it would thus require an massive quantity of microbes/enzymes
to reach all plastic pieces from the ocean surface to the (deep) sea bottom. Further-
more, the marine environment is in constant motion, which further complicates such
applications. Alternatively, using microbes to prevent/fight marine plastic pollution
could work ex situ by retrieving plastic from the ocean, and, e.g. to extract
monomers after enzymatic digestion. Though speculative, it might be plausible to
design large bioreactors with plastic degrading microbes that could degrade plastics
in a similar fashion as organic matter and nutrients are removed in biological
wastewater treatment systems at present.
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Mechanism and Pretreatment Effect
of Fungal Biomass on the Removal of Heavy
Metals

6

Aparna B. Gunjal

Abstract

Heavy metals cause pollution and have adverse impacts on the humans and
environment. The soil beneficial microorganisms and water bodies are polluted
due to the presence of heavy metals. This is a serious issue and needs immediate
solution. The physicochemical ways for the removal of toxic metals have some
disadvantages. The biological method includes bioremediation, which makes the
use of microorganisms for the removal of heavy metals from the aqueous
solutions. The fungal biomass is available easily and in abundant. The bioreme-
diation technology is very eco-friendly and economical. The review here
describes the effect of pretreatment of fungal biomass on the removal of heavy
metals. The mechanism of the removal of heavy metals by the fungal biomass is
also discussed. The passive and active biosorption, fungal cell wall structure,
advantages of fungi as biosorbents and factors affecting biosorption process are
also highlighted in this chapter. The change in the morphology of the biomass of
Aspergillus sp. pretreated with NaOH for the removal of heavy metals is also
studied by scanning electron microscopy. The physical and chemical methods of
pretreatment of fungal biomass for the removal of heavy metals are also taken into
consideration. The immobilization of fungal biomass for biosorption is also
discussed in this chapter. The pretreatment of fungal biomass enhances the
biosorption. The bioremediation technology is very easy, and also the fungal
biomass can be reused. This will be an excellent and fruitful solution to solve the
problem of soil and water pollution created by heavy metals.
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6.1 Introduction

Heavy metals are very toxic chemicals present in soil, water, etc. The heavy metals
include lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), cadmium (Cd), copper
(Cu), mercury (Hg), and nickel (Ni) (GWRTAC 1997). These heavy metals cause
soil and water pollution. In soil, there are varieties of beneficial microorganisms
called as plant growth-promoting rhizobacteria which enhance the yield of the crops
by direct as well as indirect ways. These heavy metals found in the ground affect the
population of these beneficial microorganisms. In water, these heavy metals affect
the food chain of the ecosystem and cause pollution. The water contaminated with
heavy metals can be used neither for agriculture nor for drinking purposes. All of
these heavy metals cause immense adverse effects on the biotic and abiotic systems.
The effect of toxic metals on humans is represented in Fig. 6.1. They mainly affect
the respiratory, reproductive, and central nervous systems of the humans.

There are physical, chemical, and biological ways for the elimination of heavy
metals from the polluted environment. But, physical method involves incomplete
removal of the heavy metals from various sources (Shishir et al. 2019). Chemical
methods are chemical oxidation, precipitation, flocculation, etc. (Wu et al. 2015).
The chemical methods include use of various harmful chemicals and are also costly.
These cause harmful effects on the humans and environment. Both physical and
chemical ways for the elimination of toxic metals require many hours.

Biological method includes bioremediation which is eco-friendly, easy and
economical and requires less time (Mani et al. 2017). The biomass of
microorganisms is available in large amount. Bioremediation involves the use of

Heavy metals

Arsenic -
respiratory system

Lead - nervous 
system

Cadmium -
reproductive and 
central nervous 

system

Mercury - impairs
the nervous system

Zinc - affects the 
reproductive and 
nervous system

Fig. 6.1 Effect of heavy metals on humans
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microorganisms, viz. bacteria, fungi, yeasts, algae, etc. for the removal of toxic
metals from various contaminated environment. The microorganisms have the
ability to degrade various organic compounds, heavy metals, etc. Removal of
heavy metals by biosorption technology can help to improve zero-wastes economic
policy in terms of reuse of biomass generated from food, pharmaceutical, and
various other industries and also from wastewater treatment. This is an attractive
technology for many industries to recover metals.

This chapter focuses on the mechanism and pretreatment effect of microbial
biomass (i.e., fungi) on the biosorption of heavy metals.

6.2 Natural and Anthropogenic Sources of Heavy Metals

The natural sources of toxic metals are disintegration, corrosion, use of pesticides
and fertilizers, and automobile batteries, while the anthropogenic sources include
mining, tannery, paint, electroplating, steel industries, and smelting (Singh et al.
2018).

6.3 Passive and Active Biosorption

There are two methods of biosorption, viz. passive and active. In passive biosorption
process, the dead biomass of fungi is used. The dead biomass interacts with the
presence of functional groups found on the cell wall of fungi. This is an easy and
rapid metabolism-independent process. In case of active biosorption, the live bio-
mass of fungi is used and involves metabolism-independent and metabolism-
dependent processes (Salam 2019). The major advantages of biosorption are very
easy, economical, eco-friendly, fast, and high efficiency. Also, the biomass of fungi
is easily available in large amount (Yahaya and Don 2014).

6.4 Fungal Biomass Generated from the Fermentation
Industries

Fermentation industries produce excess amount of unused biomass, which are used
as feed for animals, organic manure or burned. In 1 day, antibiotic fermentation
industries generate around 5000 tons of fungal biomass (Paknikar et al. 1993). The
fermentation industries generate about 790,000 tons of waste biomass every year,
about 41,000 tons comes from citric acid production by Aspergillus niger (Dhankhar
and Hooda 2011). The chemical and enzyme industries which produce array of
enzymes and pharmaceutical industries involved in steroid transformation generate
large amount of microbial biomass. The lysine fermentation industries generate huge
amount of biomass of Corynebacterium glutamicum (Choi and Yun 2004).
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6.5 Fungal Cell Wall Structure

The fungi produce spores, hyphae, and other reproductive structures. The fungal cell
wall is complex and is made up of chitin, a polymer of N-acetylglucosamine,
cellulose, and β(1,3) and β(1,6) glucan. In most fungi, chitin is the major component
present in cell wall. The fungal cell wall also contains polysaccharides and proteins.
The outer most layer of the fungal cell wall contains polysaccharide side chains
made of mannose (Dhankhar and Hooda 2011).

6.5.1 Advantages of Fungi as Biosorbents

• Degrade many lignocellulosic and other complex compounds.
• Very easy to cultivate on a large-scale on different media.
• Safe.
• Economical.
• More effective than bacteria and algae.

6.5.2 Fungi as Biosorbents

The cell wall of fungi enables to bind metals. Both live and dead biomass of fungi
can be used as biosorbents (Abbas et al. 2014). The fungi can uptake metals by two
processes, active uptake or bioaccumulation and passive uptake or biosorption where
the metal ions bind to the surface of the cell wall. The cell wall of fungi is made up of
chitin, mannans, glucans, lipids, and polysaccharides. The chitin content is more in
the cell wall of fungi (Mueler et al. 1992). The binding of heavy metal on chitin is
represented in Fig. 6.2. Functional groups are involved in metal binding, viz.

Heavy metal
binding

Fig. 6.2 Binding of heavy
metal on chitin present in the
cell wall of fungi
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carboxyl, phosphate, proteins, nitrogen, uranic acids, etc. (Abbas et al. 2014). The
live and dead fungal biomass in biosorption of heavy metals is shown in Fig. 6.3.
The live and dead fungal biomass can be used for the removal of heavy metals from
the waste water and industrial effluents. Studies have shown that fungi are cheaper
for the removal of toxic metals due to their filamentous morphology and cell wall
composition (Addour et al. 1999). Various filamentous fungi viz. Aspergillus niger,
A. fumigatus, A. clavatus, Penicillium simplicissimum, P. brevicompactum,
Termitomyces clypeatus, Trichoderma sp., Rhizopus sp., Rhizoctonia sp., etc. are
used in sequestration of toxic heavy metals (Rana et al. 2019a, b). The fungi in the
removal of heavy metals are shown in Fig. 6.4.

6.6 Factors Affecting Biosorption Process

The factors like temperature, pH, and biomass amount of the fungi affect the
biosorption process. At acidic pH, the metal-binding sites are saturated by H+ ions.
Due to more H+ ions, this minimizes the interaction between the fungal biomass and
metal cations. As the pH increases, the reaction between the fungal biomass and
metal cations increases and biosorption enhances. Increased temperature up to a
particular point maximizes enzyme activity of fungi, thereby enhancing biosorption
(Bandowe et al. 2014). Biosorption is not much affected in the temperature range
20–35 �C. If the biomass amount used is less, this increases the biosorption process.

Heavy metals bind to the fungal cell wall

Live fungal
biomass

Dead fungal
biomass

Heavy metals viz., Cd, Cr, Ni, Pb,
Hg, As, Zn, etc. present in soil, water, 
industrial effluents, etc.

Biosorption for the removal of heavy 
metals

Fig. 6.3 Live and dead fungal biomass in biosorption of heavy metals
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There will be more competition for the heavy metals to bind if the less biomass is
used and reverse if more biomass is used (Redha 2020).

6.7 Effect of Pretreatment of Fungal Biomass on the Removal
of Heavy Metals

The fungal biomass can be pretreated by physicochemical methods for the enhance-
ment of removal of heavy metals from soil, water, industrial effluents, etc. (Yan and
Viraraghavan 2000). The physical and chemical pretreatment methods of fungal
biomass for the enhancement of removal of heavy metals are represented in Fig. 6.5.
The physical and chemical methods cause surface modification which helps the
biomass of the fungi to sequester the heavy metals from the waste water or industrial
effluents. The toxic metal removal efficiency by fungal biomass through surface
modification is shown in Fig. 6.6. There is a report on effect of pretreatment on
biosorption of heavy metals by fungal biomass (Ilhan et al. 2004). Yan and
Viraraghavan (2000) have also studied that alkaline (caustic) pretreatment has
increased metal binding by fungal biomass. Biosorption of cadmium by Aspergillus
niger has been reported (Barros et al. 2003). The physical and chemical pretreatment
methods are reported to improve the biosorption efficiency by the fungi.
Pretreatment of biomass of Pleurotus florida with NaOH has found to enhance
cadmium biosorption (Das et al. 2007). Study is done on biosorption of cadmium
and nickel by pretreated biomass of Aspergillus spp. (Gunjal et al. 2019). There is a
report on where treatment with increasing concentration of NaOH from 0.002 to
5.0 g/L improved Ni (II) removal from 93.2 to 100.0%, while untreated biomass
showed 64.6% Ni (II) removal. Pretreatment with higher concentrations of NaOH,
5.0–80.0 g/L showed complete removal of nickel (Rouhollahi et al. 2014). Also,

Fungi in the
removal of

heavy metalsAspergillus

Rhizopus Trichoderma

Penicillium

Termitomyces
clypeatus

Rhizoctonia

Fig. 6.4 Fungi in the removal of heavy metals
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Physical pretreatment
methods

Chemical pretreatment
methods

Heating Autoclaving Freeze-drying Boiling Acids Alkali Organic chemicals
and detergents

Fig. 6.5 Physical and chemical pretreatment methods of fungal biomass for the enhancement of
removal of heavy metals
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Fig. 6.6 Toxic metal removal efficiency by fungal biomass through surface modification
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there is a study where biomass of Humicola sp. treated with NaOH showed maxi-
mum biosorption at pH 6.0 after 60 min (Netpae 2015). The pretreatment of
Aspergillus niger with NaOH has increased the biosorption of lead and nickel
from waste water and industrial effluents (Rao and Bhargavi 2013). The pretreatment
of biomass of Aspergillus nidulans using autoclaving and formaldehyde has reported
increase in the removal of cadmium compared to control (Nascimento et al. 2015).
Treatment of Mucor racemosus biomass with 0.1 M NaOH at 120 �C for 6 h is also
reported to improve biosorption (El-Morsy et al. 2013).

6.8 Physical and Chemical Methods of Pretreatment of Fungal
Biomass for the Removal of Heavy Metals

6.8.1 Physical Methods

In heating method, the fungal biomass is heated for 10 min and then used for the
removal of heavy metals.

In autoclaving method, the biomass in autoclave is directly kept for autoclaving at
121 �C for 20 min at 15 psi.

Freeze-drying process is also known as lyophilization. In this, the biomass is
subjected at low temperature and pressure, and water molecules are removed from
the biomass. The fungal biomass is kept in boiling water bath for 10 min.

6.8.2 Pretreatment Using Acids (Das et al. 2007)

In this, the fungal biomass is boiled for 15 min in 100 mL (10% v/v/) glacial acetic
acid or treat with 7 mL (0.1 M) oxalic acid and keep for drying at 60 �C overnight or
treat with 20 mL (10% v/v) ortho-phosphoric acid and placed on a shaker at 125 rpm
for 30 min.

6.8.3 Pretreatment Using Alkali (Das et al. 2007)

In this, the fungal biomass is boiled for 15 min in 50 mL (0.5 N) sodium hydroxide
or sodium bicarbonate or in 100 mL (0.5 N) sodium carbonate.

6.8.4 Pretreatment Using Organic Solvents (Das et al. 2007)

In this, the fungal biomass is given treatment with 10 mL (10% v/v) methanol or
100 mL (10% v/v) formaldehyde and placed on a shaker at 125 rpm for 3 h or boiled
for 15 min with 20 mL (50% v/v) dimethyl sulfoxide (DMSO).

162 A. B. Gunjal



The fungal biomass pretreated using either physical or chemical method is
represented in Fig. 6.7.

The amount of metal biosorbed per gram of the biomass is calculated as (Yan and
Viraraghavan 2000):

Q ¼ Ci � Cfð Þ=m½ � � V ð6:1Þ
where

Q ¼ metal biosorbed (mg/g)
Ci ¼ initial toxic metal amount (mg/L)
Cf ¼ final toxic metal amount (mg/L)
m ¼ amount of biomass used (g)
V ¼ amount of the reaction mixture (L)

The removal of toxic metals experiment using pretreated fungal biomass is shown
in Fig. 6.8.

Fungal biomass pretreat using either physical or chemical method

Pretreated biomass (5 g) and the sample (waste water / industrial effluents) (100 ml)

Keep it for 20 min to react and filter the mixture through Whatman filter paper No. 1

Analyze the solution through Atomic Absorption Spectrophotometer (AAS) for the removal 
of heavy metals by the pretreated fungal biomass

Determine the initial concentration of heavy metals in the sample

Fig. 6.7 Fungal biomass pretreated using either physical or chemical method
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6.9 Mechanism of the Removal of Heavy Metals by the Fungal
Biomass

6.9.1 Presence of Functional Groups on the Fungal Biomass

Polysaccharides and proteins on the cell surface of the fungi are the binding sites for
the heavy metals. The mechanisms for the removal of heavy metals by the fungal
biomass are potential for exchange of calcium and magnesium for the metals to bind,
which is reported in case of Penicillium sp. (Sun and Shao 2007), intracellular
mechanism, and complexation mechanism and redox reaction, which is seen in
case of Aspergillus niger (Ren et al. 2018). Another most essential factor in the
removal of heavy metals by the fungal biomass is the presence of different functional
groups on the cell wall of the fungi. The different functional groups present on the
fungal cell wall are shown in Table 6.1. These functional groups include ¼ C-H,
C¼O, C-O, -C-H, -C¼N, -O-H, C-C, -N-H, and -C¼C (amino, hydroxyl, carboxyl,
etc. groups). These functional groups expose and make available the sites for the
binding of heavy metals. The biomass of Aspergillus sp. without any pretreatment is
shown in Fig. 6.9a–c. The change in the morphology of the biomass of Aspergillus
sp. pretreated with NaOH for the removal of heavy metals Zn (Fig. 6.10a–c), Cd
(Fig. 6.11a–c), Pb (Fig. 6.12a–c), and Ni (Fig. 6.13a–c) is studied by scanning
electron microscope (SEM) (SEM; Jeol, Tokyo, Japan). The change in morphology
in the pretreated biomass due to the uptake of heavy metals Zn, Cd, Pb, and Ni
(Figs. 6.9, 6.10, 6.11, 6.12, and 6.13a–c, respectively) in comparison to biomass

+     Filter the mixture
through
Whatman filter
paper No. 1Pretreated fungal 

biomass
Sample Pretreated fungal

biomass + sample.
Allow to react 20 min.

Analyze removal of
heavy metals by pretreated 
fungal biomass using the

Clear filtrate is
obtained

Atomic Absorption Spectrophotometer

Fig. 6.8 Biosorption experiment using pretreated fungal biomass
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Table 6.1 Functional
groups present on the fun-
gal cell wall

S. no. Functional groups

1 ¼C-H

2 C¼O

3 C-O

4 -C-H

5 -C¼N

6 -O-H

7 C-C

8 -N-H

9 -C¼C

(a) (b)

(c)

Fig. 6.9 Aspergillus sp. biomass without any pretreatment. (SEM image taken at different magni-
fication, viz. �500, �2000, and �10,000)
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without any pretreatment was observed (Fig. 6.8a–c). The images are taken at
different magnification, viz. �500, �2000, and �10,000. The functional groups
present on the fungal cell wall interact with the metals.

6.9.2 Direct Adherence on the Fungal Cell Wall

The different heavy metals directly adhere on the cell wall of the fungi, and this is
one of the mechanisms for the removal of heavy metals from the waste waters,
industrial effluents, and other aqueous solutions. The negatively charged cell
surfaces (anions) of the fungi bind to the positively charged metal (cations). This

(a) (b)

(c)

Fig. 6.10 Aspergillus sp. biomass pretreated with NaOH for the removal of Zn. (SEM image taken
at different magnification, viz. �500, �2000, and �10,000)
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is called as stoichiometric interaction, where the metal interacts with the reactive
group on the fungal cell wall. There is another complex process which is known as
ion exchange. There are three types of metal interaction and sorption, viz. extracel-
lular uptake, accumulation on the inside of cells, and precipitation. Precipitation of
metals can take place on the microbial surface or in the aqueous solutions.

(a) (b)

(c)

Fig. 6.11 Aspergillus sp. biomass pretreated with NaOH for the removal of Cd. (SEM image taken
at different magnification, viz. �500, �2000, and �10,000)
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6.9.3 Functional Group on Chitosan

N-deacetylation process of chitin gives chitosan. This chitosan has more amine
groups (Taskila et al. 2015) which is the functional group. So, this amine functional
group makes available the binding site for heavy metal.

(a) (b)

(c)

Fig. 6.12 Aspergillus sp. biomass pretreated with NaOH for the removal of Pb. (SEM image taken
at different magnification, viz. �500, �2000, and �10,000)
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6.10 Immobilization of Fungal Biomass for Biosorption

The microbial biosorbents exhibit low physical and chemical stability and minimum
elasticity due to small size and less density. This can be resolved by immobilization
of microbial biomass on a suitable carrier (Velkova et al. 2018). The immobilization
methods viz. entrapment and cross linking have been studied to have applications in
biosorption. Immobilization of fungal biomass within a polymeric matrix has several
advantages. Various matrices used for immobilization process include sodium
alginate, polysulphone, polyacrylamide, and polyurethane (Bai and Abraham

(a) (b)

(c)

Fig. 6.13 Aspergillus sp. biomass pretreated with NaOH for the removal of Ni. (SEM image taken
at different magnification, viz. �500, �2000, and �10,000)
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2003). The matrix used plays important role in immobilization process. The biomass
will retain in internal part of the matrix, and therefore, mass transfer resistance
determines the biosorption rate and efficiency. Whole-cell immobilization within a
polyacrylamide gel has also been reported to have application in biosorption
(Dhankhar and Hooda 2011). There is a report where Rhizopus arrhizus biomass
immobilized on polyacrylamide gel has found application in biosorption of toxic
metals, viz. copper, cobalt, and cadmium from the waste water. There is a report
where Penicillium membrane-type biosorbent was used for Cu (II) removal from
wastewater in a plate column reactor (Xiao et al. 2013). The functional groups -NH
and -OH were found to play a role in biosorption of Cu (II) (Xiao et al. 2013).
Penicillium citrinum immobilized biomass has been reported for the removal of
25 mg/g Cu (II) from the aqueous solutions with concentration of copper ions range
from 20 to 90 mg/L (Verma et al. 2013).

6.11 Conclusions

The fungal biomass can be effectively used for the removal of heavy metals from
contaminated soil, water, industrial effluents, etc. The pretreatment of fungal bio-
mass with acids, alkali, organic solvents, heating, autoclaving, freeze-drying, boil-
ing, etc. can enhance the removal of heavy metals. The immobilization of microbial
biomass will also improve the efficiency of biosorption process. The biosorption
technology is very easy, eco-friendly, and cheap. The pollution problem due to
heavy metals will be solved due to biosorption technology. The biosorption for the
removal of heavy metals from waste water and industrial effluents is ‘green technol-
ogy’ which is definitely fruitful. As this is a biological approach, the use of physical
and chemical methods will be minimized.

6.12 Future Prospects

• The pretreatment of fungal biomass for the removal of heavy metals should be
studied on a large scale.

• The research on molecular mechanism involved in biosorption needs to be
carried out.

• New fungi should be isolated and studied for biosorption experiments.
• The exact mechanism behind the removal of heavy metals by microorganisms

needs to be studied in detail.
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Metal Bioremediation, Mechanisms,
Kinetics and Role of Marine Bacteria
in the Bioremediation Technology

7
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Abstract

Today, the heavy metal pollution has become a major and serious concern. Heavy
metals severely affect the ecosystem and also cause health hazard. Heavy metals
and metalloids such as Cd, Cu, Cr, Pb, Hg, Ag, As, Zn are considered as serious
systemic toxicants because they may induce toxicity even at the lower
concentrations. Most of them have the tendency to bio-accumulate and undergo
biomagnifications; moreover, metallic pollutants are not biodegradable. Thus, the
removal and recovery of heavy metals are indispensable for the safety of environ-
ment and human health. Biosorption is a potential alternative over conventional
methods for the removal of heavy metals. Biomass of microbes, agricultural waste,
industrial waste, sewage sludge, etc. has been used as biosorbents. Nowadays,
various marine bacteria draw a specific attention of scientists for heavy metal
removal due to their unique characteristic features of adaptation to the extreme
conditions. Hence, they can be better employed in bioremediation of heavy metals,
as compared to the bacteria found in other natural habitats. The process of
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biosorption can be made eco-friendly and cost-effective by regenerating and
reusing the biosorbents after performing desorption of metals from the biomass.

Keywords

Biosorption · Desorption · Isotherms · Kinetic · Marine bacteria

7.1 Introduction

Heavy metal pollution has emerged as one of the main issues throughout the globe in
recent decades. Mostly the metals are introduced in the environment from natural
sources like forest fires, volcanic emissions, deep sea vents and from anthropogenic
sources such as metal manufacturing plants, textile, electroplating, plastic, leather
industries, etc. (Bilal et al. 2018). Discharge of toxic metals and metalloids in the
environment poses a disastrous effect and also leads to human health issues around
the world. To reduce the hazards caused by heavy metal uptake and accumulation,
reduction of their bioavailability or mobility is essential. Various conventional
techniques that have been used for the removal of toxic metals are pyrolysis,
incineration, ion-exchange, precipitation, filtration, reverse osmosis, oxidation-
reduction, and membrane separation (Shirdam et al. 2006). But these methods are
costly, and can also lead to the formation of some secondary toxic substances.
Therefore, bioremediation methods are more suitable, as they are cost-effective,
eco-friendly and more efficient for the removal of toxic metals and other pollutants.
Bioremediation techniques that are used to remove heavy metals involve the use of
live or dead microorganisms such as algae, fungi, bacteria or their by-products,
plants, agricultural waste, and industrial waste. Bacteria have been used as
biosorbents due to their ubiquitous presence, large surface area per mass, growth
under controlled conditions and flexibility to the wide range of environmental
conditions (Wang and Chen 2009; Srivastava et al. 2015; Ojuederie and Babalola
2017). They show rapid adaptation towards environmental changes and hence play
significant role in the maintenance and sustainability of any ecosystem (Dash et al.
2013). Initially it was believed that metals only manifest toxic effects on microbes,
but later on it was proved that the microorganisms can develop various metal
resistance mechanisms when grown in the presence of metals. They develop some
protecting strategies to defend against the penetration of heavy metal ions into the
cell. Due to these metal–microbe interactions, the metals either get immobilized or
transformed into non-toxic or less toxic form, which prevent their further release into
the particular ecosystem. Nowadays, focus of researchers is on application of marine
bacteria in the field of bioremediation. Marine bacteria as well as their enzymes,
exopolysaccharides and other products can be used to remove the heavy metals. The
chapter reports the different sources of toxic heavy metals, their toxic effects,
mechanisms of metal removal in general and marine bacteria as biosorbents in
particular as well as various factors affecting biosorption, biosorption equilibrium
models, kinetics of sorption and desorption.
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7.2 Heavy Metals and Their Sources

Heavy metals are present in different concentrations in all ecosystems naturally.
They are defined as metallic elements owning a relatively high density compared to
water. Out of 106 identified elements, about 80 of them are called metals, of which
52 are considered as industrially important (Ilyin et al. 2004; Naja and Volesky
2009). Metals can be classified as essential, toxic and very toxic based on their
toxicity, solubility and chemical properties. Metals are not easily degradable, and
their accumulation in living tissues can lead to some serious health hazards or death.
Soil erosion of metal ions, metal corrosion, atmospheric deposition, metal evapora-
tion from water resources, leaching of heavy metals and sediment resuspension may
be responsible for environmental pollution of these metals. Natural processes like
weathering and volcanic eruptions are also responsible for heavy metal pollution.
The major industrial sources contribute to the metal pollution and may include
plastics, electroplating, fertilizer, textiles, leather, microelectronics, wood preserva-
tion and paper processing plants as well as nuclear power stations. Some industrial
procedures including metal processing in refineries, petroleum combustion, coal
burning in power plants, etc. may also release the hazardous metals to the environ-
ment (Tchounwou et al. 2012; Masindi and Muedi 2018). Heavy metals persist for a
long period of time in any ecosystem (terrestrial, aquatic or atmosphere). They tend
to bioaccumulate and further may lead to the biomagnification. Some serious health
hazards have been noted in human beings upon the consumption of metal-bearing
food and water. Heavy metals can cause some deadly diseases like cardiac arrest,
renal, nerve failure, etc. The sources and effect of certain toxic metal ions are listed in
Table 7.1. Considering the toxicity and their harmful effect on living beings, the
removal and recovery of heavy metals are essential for the protection of environment
and human health. Bioremediation of metals is possible by various ways and means,
so major mechanisms of the bioremediation are illustrated in the next section.

7.3 Mechanisms of Metal Bioremediation

Bio-removal of metals mainly crops up on two principles. The first one is the
extraction of metals from ores or metal containing waste. The process is known as
bioleaching. The second one is bioaccumulation and biosorption which includes
immobilization of metals from liquid waste. The details of metal–microbe interac-
tion for solubilization and immobilization are illustrated in Fig. 7.1.

7.3.1 Solubilization

7.3.1.1 Bioleaching
Bioleaching can be described as “the solubilization of metals from their solid sources
by selected groups of microorganisms or by their activities”. Mostly, bioleaching
refers to the conversion of insoluble metal (usually metal sulphides, e.g., CuS, NiS,
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Table 7.1 Major sources of heavy metals and metalloids and their toxic effects

Heavy
metal Major source Toxic effects on humans

Toxic effects on
microorganisms

Antimony Coal combustion,
mining, smelting,
soil erosion,
volcanic eruption

Cancer, cardiovascular
diseases, conjunctivitis,
dermatitis, liver diseases,
nasal ulceration,
respiratory diseases

Inhibits enzyme activities,
reduced growth rate

Arsenic Atmospheric
deposition, mining,
pesticides, rock
sedimentation,
smelting

Brain damage,
cardiovascular and
respiratory disorders,
conjunctivitis, dermatitis,
skin cancer

Deactivation of enzymes

Beryllium Coal and oil
combustion,
volcanic dust

Allergic reactions,
berylliosis, cancer, heart
diseases, lung diseases

Chromosomal aberration,
mutation

Cadmium Plastic, welding,
pesticide, fertilizer,
mining, refining

Kidney damage,
bronchitis, gastrointestinal
disorder, bone marrow,
cancer, lung insufficiency,
hypertension, Itai–Itai
disease, weight loss

Damages nucleic acid,
denatures protein, inhibits
cell division and
transcription, inhibits
carbon and nitrogen
mineralization

Chromium Textile, dyeing,
paints and pigments,
steel fabrication

Carcinogenic, mutagenic,
teratogenicity, epigastria
pain nausea, vomiting,
severe diarrhoea,
producing lung tumours

Elongation of lag phase,
growth inhibition,
inhibition of oxygen
uptake

Copper Plating, copper
polishing, paint,
printing operations

Neurotoxicity, and acute
toxicity, dizziness,
diarrhoea

Disrupts cellular function,
inhibits enzyme activities

Mercury Batteries, paper
industry, paint
industries, mining

Damage to nervous
system, protoplasm
poisoning, corrosive to
skin, eyes, muscles,
dermatitis, kidney damage

Decreases population size,
denatures protein, disrupts
cell membrane, inhibits
enzyme function

Nickel Porcelain
enamelling,
non-ferrous metal,
paint formulation,
electroplating

Chronic bronchitis,
reduced lung function,
lung and nasal cancer,
nausea

Disrupts cell membrane,
inhibits enzyme activities,
oxidative stress

Selenium Coal combustion,
mining

Dysfunction of the
endocrine system,
gastrointestinal
disturbances, impairment
of natural killer cell
activity, liver damage

Inhibits growth rate

Silver Battery manufacture,
mining,
photographic
processing, smelting

Argyria and argyrosis,
bronchitis,
cytopathological effects in
fibroblast and
keratinocytes, emphysema,

Cell lysis, inhibit cell
transduction and growth

(continued)
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Table 7.1 (continued)

Heavy
metal Major source Toxic effects on humans

Toxic effects on
microorganisms

knotting of cartilage,
mental fatigue, nose, throat
and chest irritation,
rheumatism

Thallium Cement production,
combustion of fossil
fuels, metal
smelting, oil refining

Alopecia, ataxia, burning
feet syndrome, coma,
convulsions, delirium,
fatigue, gastroenteritis,
hair fall, hallucinations,
headache, hypotension,
insomnia, nausea,
tachycardia, vomiting

Damages DNA, inhibits
enzyme activities and
growth

Zinc Mining, refineries,
brass manufacturing,
plumping

Ataxia, depression,
gastrointestinal irritation,
haematuria, icterus,
impotence, kidney and
liver failure, lethargy,
macular degeneration,
metal fume fever, prostate
cancer, seizures, vomiting

Death, decrease in
biomass, inhibits growth

Adapted and modified from Abbas et al. (2014) and Ayangbenro and Babalola (2017)

Biosorption
(Immobilization)

Intra-cellular accumulation

Cell surface adsorption/ 
Precipitation

Extracellular accumulation/ 
Precipitation

Transport across 
cell membrane

Ion exchange
Complexation
Physical adsorption
Precipitation

Precipitation

Bioleaching
(Solubilization)

Chemolithotrophic leaching 

Chemoorganotrophic leaching

Methylation 

H+,Fe(III), SO4
-2

Siderophores, 
Organic acids, 
metabolites

Mono, di and 
tri methyl  
compounds

Fig. 7.1 Major mechanisms of bioremediation
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ZnS) to soluble form (usually the metal sulphates, e.g., CuSO4, NiSO4, ZnSO4)
using chemolithoautotrophs or cyanogenic microorganisms. Dave et al. (2016)
reported that the metal extraction can be carried out using various acidophiles like
Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Leptospirillum
ferriphilum, Sulfolobus thermosulfidooxidans, etc. and a variety of other bacteria
viz. Bacillus megaterium, Chromobacterium violaceum, Pseudomonas aeruginosa,
Pseudomonas fluorescens and fungi viz. Maramiusoreades, Clitocybe sp.,
Polyporus sp., etc. Formation of sulphuric acid by Acidithiobacillus thiooxidans,
Fe3+ ion by Leptospirillium spp., production of organic acids by fungi and cyanide
production by cyanogenic organisms help in dissolving the metallic fraction and thus
help in bioleaching of metals like Cu, Zn, Fe, Ni, Pt, Au and Ag (Dave et al. 2016).
This process involves oxidation; it may also be termed as biooxidation. Biooxidation
involves the microbial decomposition of mineral which enhances the metal recovery,
but the recovered metal is not solubilized. An example is the recovery of gold from
arsenopyarite ores where the gold remains in the mineral after biooxidation and
extracted by cyanide in subsequent step (Rawlings 2011). Some other terms includ-
ing ‘biomining’, ‘bioextraction’ and ‘bio-recovery’ are also useful to represent the
mobilization processes facilitated by microorganisms or by other biological
materials. Biomining mainly focuses on the economical metal recovery and the
large-scale application of a microbial process in the mining industry (Mishra et al.
2005). Roy and Roy (2015) reported the bioleaching of pyrolusite ore by marine
bacteria like Bacillus, Micrococcus, Pseudomonas, Achromobacter, Enterobacter,
etc. through the enzymatic reduction.

7.3.2 Immobilization

Heavy metal ions either in particulate form or in soluble form can be immobilized on
intact bacterial cells (live or dead) and their by-products. Immobilization of metals
can be achieved through the biosorption or bioaccumulation process. Both the terms
are frequently used as synonyms but actually they are the different processes.

7.3.2.1 Bioaccumulation
Bioaccumulation is an energy-dependent active process which is mediated by
microbial metabolism. Unlike biosorption, it is a slow, irreversible and complex
process (Rossi 1990; Kanamarlapudi et al. 2018).

7.3.2.2 Biosorption
Biosorption is a reversible, rapid and metabolically passive process of metal uptake.
Biosorption is a physicochemical process, which includes various mechanisms
(Gadd 2010; Kanamarlapudi et al. 2018; Shamim 2018). Several mechanisms of
biosorption are discussed below.
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7.3.3 Mechanisms of Biosorption

7.3.3.1 Cell Surface Adsorption
It is the mechanism in which the metals bind to the cell walls and external surfaces of
non-living biomass. It mainly involves adsorption mechanisms like physicochemical
and ionic adsorption (Joo et al. 2010). The cell wall structure of microorganisms
plays an important role in the biosorption process. The cell surface of
microorganisms possesses anionic functional groups, which impart the negative
charge to cell surface and allow the binding of metal cations. The negatively charged
groups which involves in metal adsorption are mainly alcohols, amines, carboxyl,
hydroxyl, ester, sulfhydryl, phosphoryl, sulfonate, thioester, thiol, etc. (Kapahi and
Sachdeva 2019). The metal uptake phenomena of microorganisms can be assessed
by analysing cell wall components, which differ among the diverse microorganisms.
Among the microorganisms, bacteria exhibit the highest surface-to-volume ratio and
hence represent a better capacity of biosorption than any other microbes (Beveridge
1989; Shamim 2018). Functional groups located on the bacterial cell wall include
amine, carboxyl, hydroxyl, phosphate and sulfhydryl, which play important role in
metal biosorption. The active sites for metal binding processes in Gram-positive
bacteria generally include peptidoglycan layer which contains alanine, glutamic
acid, meso diaminopimelic acid, teichoic acid, polymer of glycerol, etc. and in
Gram-negative bacteria glycoproteins, lipopolysaccharides, lipoproteins and
phospholipids (Fomina and Gadd 2014; Lesmana et al. 2009; Gupta et al. 2015;
Shamim 2018). Metals and metalloids can bind to ligands on microbial cell surfaces
after which microbial cells decrease their toxicity by transforming them from one
oxidation state to another (Chaturvedi et al. 2015). The cell walls of bacteria have
polycations and polyanions, which interact with metal ions to maintain electro-
neutrality by mechanisms of redox interactions, covalent bonding, van der Waals
forces, extracellular precipitations, etc. (Gavrilescu 2004).

7.3.3.2 Extracellular Accumulation
Microorganisms also secrete various types of metal-binding metabolites such as
extracellular polymeric substances. They are made up of polysaccharides, proteins,
uronic acids, humic substances, lipids, capsules, slimes, sheaths and biofilms.
Biofilms act as a matrix for heavy metal binding (Ayangbenro and Babalola 2017;
Rehan and Alsohim 2019). Their most important component is exopolysaccharide or
extracellular polymeric substances (EPS) which has an ion sequestration capability.
Mainly it is composed of complex high molecular weight organic compounds such
as polysaccharides and proteins. Sometimes EPS also shows the presence of other
macro molecules like lipids, DNA, humic substances, etc. EPS contains abundance
of hydroxyl ions due to its hygroscopic nature, which tend to interact with metal
ions. The amino sugars of EPS possess the nitrogen-containing functional groups
which also react with some metals. The EPS secreted by different microbial species
represents varying degree of metal binding capacity (Gupta and Diwan 2017).
Upadhyay et al. (2017) observed the sorption of Hg by the dead cells of EPS
producing marine bacterium Bacillus licheniformis SR5. Igiri et al. (2018) reported
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the extracellular accumulation of heavy metals by the dead cells of Pseudomonas
putida, Brevibacterium sp. and Bacillus sp. They also discussed the role of EPS from
the biofilm produced by Pseudomonas aeruginosa in the accumulation of various
metal ions. Jarosławiecka and Piotrowska-Seget (2014) reported the accumulation of
lead on mycelia of a marine fungus Corollospora lacera. Priyalaxmi et al. (2014)
showed the biosorption of cadmium by Bacillus safensis (JX126862), a marine
bacterium isolated from mangrove sediments. Asksonthong et al. (2018) represented
the sorption of Hg, Pb and Cd by Halomonas elongata and Tetragenococcus
halophilus.

7.3.3.3 Intracellular Accumulation
The microorganisms can uptake the essential metals from the surrounding through
highly specific active transport mechanisms. Detailed studies have been done on the
transport system for the metals like Ca, K and Na, but less information is available
about the systems regulating intracellular concentration of other metal ions (Shumate
and Strandberg 1965; Kanamarlapudi et al. 2018). The intracellular uptake of metals
has been observed to occur in many microbes like bacteria, yeast and fungi. It has
been observed that the non-specificity of normal transport system and competitive
nature of metals to bind with substrate may be responsible for the intracellular
accumulation of metals (Trevors et al. 1985; Fang et al. 2016). Microbes develop
metal resistance in the initial stage of the process and this may happen due to the
presence of plasmid linked genes. The other mechanism accountable for metal
resistance is rapid energy-dependent efflux system (Nies 2003; Ianeva 2009). Metals
may be deposited in their elemental forms also. Sometimes the metals may be
accumulated with the help of some specific metal binding proteins produced by
the organisms. Production of low weight cystine-rich proteins and peptides called
metallothioneins by certain microbes like Cyanobacterium, Synechococcus, E. coli,
Pseudomonas putida and other class of proteins called phytochelatins (short peptides
rich in cysteine and glutamic acid) can accumulate the metal ions (Gupta and Diwan
2017; Kanamarlapudi et al. 2018). Jarosławiecka and Piotrowska-Seget (2014)
described the intracellular accumulation of lead (1.7–5.5%) inside the cells of a
marine fungus Corollospora lacera. They also reported the lead-resistant fungi
Penicillium sp. Psf-2, isolated from the Pacific sediment, which showed the lead
accumulation in the cytoplasm and vacuole as well as on the outer layer of the
cell wall.

7.3.3.4 Precipitation
The functional groups present on the surface of the microbial cells bind with the
metal ions and forms the insoluble metal precipitates. One mechanism of precipita-
tion is the metal complexation, which plays an important role in metal–ligand
interactions. Here, the metals form complex with microbial metabolites such as
sulphides and phosphates. For example, the sulphate reducing microorganisms
produce hydrogen sulphide, which reacts with metal ions and forms insoluble
metal sulphides. Moreover, phosphatase enzyme also participates in metal precipi-
tation (Ellwood et al. 1992; Jin et al. 2018). Igiri et al. (2018) reported that some iron
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reducing bacteria such as Geobacter spp. and sulphur reducing bacteria (SRB) like
Desulfuromonas spp. can precipitate the metals. SRBs produce large amounts of
hydrogen sulphide that causes precipitation of metal cations. The coastal marine
bacterium Vibrio harveyi has been reported to precipitate lead as a complex lead
phosphate salt (Mire et al. 2004). Jin et al. (2018) described the precipitation of Cu
(II) on the spore surface of marine Bacillus sp. strain SG-1.

7.3.3.5 Transformation of Metals
Metals and metalloids are transformed by microorganisms using different processes
like oxidation, reduction, methylation and demethylation. Generally, this phenome-
non has been observed in metabolically active microbial cells (Beveridge and
Murray 1976; Beveridge and Jack 1982; Timková et al. 2018). Metal reduction
can be achieved by metabolically active as well as inactive cells. Partial metal
reduction has been observed in many microbes by electron transport system (ETC)
also, which renders the concerned metal less mobile and less toxic in the environ-
ment (Baldi et al. 1993; Ray et al. 1992; Banerjee et al. 2018). An intracellular or
extracellular component of cell acts as reducing agent in passive reduction. For
example, Bacillus subtilis is reported for the reduction of Au3+ to Au� on its cell wall
(Beveridge and Murray 1976). Fungi like F. oxysporum and R. oryzae have been
reported to transform Au3+ to Au�. In this case, the Au3+ ions get diffused through
the cell membranes and finally are reduced by cytosolic redox mediators (Singla
et al. 2017).

Several microbes have the plasmid-coded specific enzyme systems for
methylation-demethylation reactions. Microorganisms can develop resistance
towards particular metal due to these enzymes. Metals may be volatilized during
methylation and may escape from the treatment site which can pollute the atmo-
sphere. During demethylation of mercury, the methylated mercury is cleaved by the
enzyme organomercurial lyase and releases inorganic Hg2+, which is further acted
upon by the mercury reductase reducing Hg2+ to Hg�. This Hg� being volatile in
nature can be removed from the system (Ray et al. 1992; Igiri et al. 2018). Specific
methods must be established to prevent the atmospheric contamination by volatile
mercury for the large-scale application of these processes. Several bacteria like
Bacillus spp., Escherichia spp., Clostridium spp., and Pseudomonas spp. have
been reported to methylate Hg (II) to gaseous methyl mercury (Igiri et al. 2018).
Scopulariopsis brevicaulis, A. glaucus, Aspergillus virens, Mucor ramosus,
Cephalothecium roseum, Sterigmatocystis ochracea, Aspergillus fischeri, and
Aspergillus sydowii, are reported as the ‘Arsenic fungi’ by Bentley and Chasteen
(2002). They observed volatilization of arsenic to a garlic aroma gaseous product by
these fungal species. Moreover, they also reported some gas producing fungal strains
like Fusarium, Paecilomyces, and a brown fungus isolated from the arsenic
contaminating soil but the volatile material was not identified. They also described
various faecal bacteria like B. mesentericus vulgatus, B. mesentericus ruber and
B. subtilis produced a garlic odour when grown in the presence of arsenate or
dimethylarsinate and Corynebacterium sp., E. coli, Flavobacterium sp., Proteus
sp., and Pseudomonas sp. transformed arsenate to arsenite and produced
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dimethylarsine. Jin et al. (2018) have reported the reduction of Hg2+ to Hg0 by
aerobic bacteria, Cr6+ to Cr3+by Corynebacterium and Pb2+ to Pb0 by dead cells of
Bacillus licheniformis R08. The application of marine bacteria in metal immobiliza-
tion is gradually increasing due to their great potential for environmental clean-up
processes (Amidei 1997). The arsenic amount in aquatic and terrestrial species is
mostly different. The arsenic amount is usually about 1 ppm (dry weight) in land
animals, but for marine species, the levels vary from a few parts per million to as
much as 100 ppm (Lunde 1977; Masuda et al. 2019). Many marine photosynthetic
organisms take up arsenic from seawater and accumulate it in their bodies, which
finally resulted in metabolic transformations of arsenic (Masuda et al. 2019). Bentley
and Chasteen (2002) described the conversion of arsenic to trimethylarsine by
marine bacteria like Clostridium collagenovorans, D. vulgaris and Desulfovibrio
gigas as well as conversion of arsenate to arsenite and methylarsonate by marine
bacterial strain of Serratia marinorubra. Furthermore, they reported the conversion
of arsenate to arsenite, methylarsonate, dimethylarsinate and unidentified volatile
arsines by a strain of marine yeast Rhodotorula rubra.

7.4 Marine Bacteria

Marine bacteria are highly abundant in nature. The overall a number of bacteria on
earth may be as high as 4–6 � 1030, with the largest proportion of bacterial cells
possibly residing in the oceanic and terrestrial subsurface which correspond to
3.5� 1030 and 0.25–2.5� 1030, respectively (Whitman et al. 1998). Marine bacteria
can grow in unique and extreme habitats and can be differentiated according to their
optimal growth conditions, including halophiles (saturated brine water/sea water),
thermophiles (hot water), alkalophiles (alkaline water), psychrophiles (cold water),
barophiles (pressurized conditions) and some more groups (Gontia-Mishra et al.
2017). They are distributed in natural saline areas which vary from aquatic
(e.g. oceans, salt marshes and lakes) to terrestrial (e.g. marine sediments and saline
lands) as well as in hypersaline environments. They are also found in artificial solar
salterns, saltpans, mangroves as well as an endosymbiont (Surve et al. 2012; Gontia-
Mishra et al. 2017). Totally 60 different marine bacterial species were studied more
than 75 years before by ZoBell and Upham (1944). They reported that the diversity,
abundance and count of marine bacteria vary at different depths of the ocean. The
abundance of heterotrophic and autotrophic bacteria in the marine environment is
noted by Stanley (2005). Dash et al. (2013) described that at all depths, α- and
γ-Proteobacteria are abundant, whereas β-Proteobacteria, Firmicutes,
Actinobacteria, Chloroflexi, Planktomycetaceae, Verrucomicrobia, and
Acidobacteria are common at 800–440-m depth. Piskorska et al. (2007) categorized
the bacterial communities of Indian Ocean into six major taxonomic groups such as
α-, β- and γ-Proteobacteria, Actinobacteria, Bacilli and Flavobacteria. Patel et al.
(2014) also reported β- and γ-Proteobacteria, Actinobacteria, Firmicutes as the most
common bacterial community in the coastal water and sediment samples of Alang–
Sosiya ship breaking yard, Bhavnagar, India. Different physiological groups of
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marine bacteria including Firmicutes, γ-Proteobacteria, Bacteroidates, and
Actinobacteria isolated from the coastal region of Alang, Bhavnagar, India have
been reported by Upadhyay et al. (2017). These different phyla contained different
genera of bacteria such as members of Firmicutes represented by genera Bacillus,
Planococcus, Exiguobacterium, Peanibacillus and Jeotgalibacillus.
Representative genus of phylum Bacteroidetes belonged to Pontibacter and
Dyadobacter. The class γ-Proteobacteria of Proteobacteria phylum is represented
by members of the Marinobacter, Pseudomonas, Enterobacter, Mesorhizobium,
Sinorhizobium, Halomonas, Salinicola and Xanthomonas. The Actinobacteria
phylum is represented by members of Micrococcus, Kocuria, Actinotalea,
Cellulosimicrobium, Arthrobacter and Nocardia (Upadhyay et al. 2016;
Upadhyay 2017). In cobalt-rich crust regions of the Pacific Ocean, the abundance
of γ-Proteobacteria was recorded by Liao et al. (2011). Matobole et al. (2017)
demonstrated the presence of Actinobacteria, Firmicutes, γ-Proteobacteria and
α-Proteobacteria, as major groups from the Marine Sponges; Isodictya compressa
and Higginsia bidentifera that were collected from Algoa Bay, South Africa. The
16S rRNA gene taxonomic affiliation of these 26 sponge-associated bacterial
isolates showed antibacterial activities against one or more indicator strains.
Phylogenetic identification of marine bacteria isolated from deep-sea sediments
of the eastern South Atlantic Ocean showed that 70 isolated bacteria were belong-
ing to three phylogenetic groups, γ-Proteobacteria, Firmicutes (Gram-positives
with low G + C percentage) and Actinobacteria (Gram-positives with high G + C
percentage) (da Silva et al. 2013).

Marine bacteria have established defensive mechanisms for their survival under
extreme conditions and also developed unusual metabolic processes which might
have resulted in the ability to produce novel enzymes, bioactive compounds,
exopolysaccharides (EPS), etc. than the organisms found in other habitats (Chi and
Fang 2005; Dave et al. 2020).

7.5 Marine Bacteria in Biosorption of Metals

Marine bacteria exert a number of mechanisms to remove toxic heavy metals like
precipitation, volatilization, physical exclusion in membranes and on EPS, intracel-
lular sequestration, etc. (Naik et al. 2012). Many researchers have reported the heavy
metal removal using marine bacteria (Canstein et al. 2002; Iyer et al. 2005; Das et al.
2007, 2009; El-Deeb 2009; Panwichian et al. 2011). Mohapatra et al. (2017)
reported several marine bacteria showing resistance to chromium (IV), lead
(II) and cadmium (II). They described several halophilic and halotolerant bacteria
such as Halomonas sp. TA-04, Vigribacillus sp., Planococcus maritimus VITP21,
Bacillus subtilis, Halomonas sp. CB5, Bacillus subtilis SHB13, Exiguobacterium
indicum MW-1, showing resistance to chromium (IV), whereas Alcaligenes sp.,
Enterobacteriaceae sp., Kurthia sp., Staphylococcus sp., Vibrio sp., Halomonas
elongate, Tetragenococcus halophilus, Bacillus sp. Pb15, Halomonas sp., Micro-
coccus luteus DE2008, Alcanivorax consortia, Klebsiella sp. 3S1 and Acinetobacter
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sp. THKPS16 showing resistance to lead (II). Furthermore, they discussed the role of
Pseudoalteromonas sp. SCSE709–6, Vibrio harveyi 5S-2, Pseudoalteromonas sp.
CD15, Alteromonas macleodii ASC1, Bacillus sp. NT-1, Enterobacter sp. NT-5,
Aeromonas sp. NT-10, Pseudomonas sp. TT-10, Pseudomonas stutzeri N-1, Pseu-
domonas mendocina C-1, Alcaligenes faecalis C-8, Acinetobacter baumannii C-10,
Bacillus licheniformis C-12 and Lysinibacillus fusiformis C-14 in resistance of
cadmium (II).

Metals in soluble form or in particulate form can be accumulated by live or dead
cells of bacteria and by their products such as EPS (Gupta and Diwan 2017). EPS
helps the organisms to grow and survive under adverse environmental conditions by
helping them in uptake of nutrients, by providing adherence capacity for the
attachment to various surfaces, in biofilms formation, in aggregation, etc. (Dave
et al. 2016; Poli et al. 2010; Shukla and Dave 2018). Various ionisable functional
groups and non-carbohydrate substituents such as carboxyl, hydroxyl, amine, phos-
phate, sulfhydryl and sulphate groups of EPS impart the negative charge to the
polymer due to which various heavy metals can bind to EPS (Gupta and Diwan
2017). Moreover, the presence of uronic acids in some marine bacterial EPS also
play important role in metal removal. The role of EPS-producing heavy metal-
resistant isolates from deep-sea hydrothermal vents and their purified EPS for metals
and toxic substances binding ability has been described by Loaec et al. (1998) and
Wuertz et al. (2000). Bhaskar and Bhosle (2006) have discussed the sorption of lead
and copper by EPS of Marinobacter sp. Gutierrez et al. (2012) have demonstrated
the chelation of calcium, aluminium, iron and magnesium by Halomonas
sp. associated with marine micro-alga. The sorption of cadmium (65%), copper
(20%) and hexavalent chromium (75%) was reported by the EPS of marine
Enterobacter cloacae (Iyer et al. 2004, 2005). Qin et al. (2007) have recorded the
sorption of Cu2+ (52.77%), Fe2+ (85.00%), Zn2+ (58.15%), Mg2+ (30.69%), Co2+

(48.88%), Cr6+ (5.15%) and Mn2+ (25.67%) by EPS of Pseudoalteromonas
sp. SM9913. Details about the EPS-producing marine bacteria and their metal
removal efficiency are enlisted in Table 7.2.

7.6 Use of Genetically Modified Microorganisms
in Biosorption

Genetic engineering is mainly used to develop more potent strains having necessary
selectivity and affinity for metal ions. Using recombinant DNA technology, the
interested genes of another organism of the same or different species have been
incorporated into the host genome. The genetically modified microbial strains have
enhanced capability to degrade organic and inorganic pollutants. Dixit et al. (2015)
and Dash et al. (2013) have described the genetic manipulation of marine bacteria by
transforming merA gene responsible for the conversion of toxic form of mercury to
nontoxic form. Furthermore, they also mentioned several genetically altered marine
bacteria like Vibrio harveyi, Synechococcus sp., Staphylococcus aureus,
Thalassospira lucentensis, Nocardia sp., E. coli, E. coli FM5/pKY287 and
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sulphate-reducing bacteria (SRB) for the enhanced bioremediation of heavy metals,
hydrocarbons, poly chlorinated biphenyls (PCB), trichloroethylene (TCE), toluene,
benzene, etc. In their review, Ojuederie and Babalola (2017) mentioned the use of
several genetically modified bacteria such as Deinococcus geothermalis,
Cupriavidus metallidurans strain MSR33 and Pseudomonas strains for the
bioremoval of Hg. They demonstrated the insertion of mer operon which codes for
Hg2+ reduction into Deinococcus geothermalis from Escherichia coli. The modified
organism showed enhanced ability to reduce mercury contamination at high
temperatures. Likewise, the pTP6 plasmid having merB and merG genes that
regulate mercury degradation and also have the ability to synthesize organomercurial
lyase protein (merB) and mercuric reductase (merA) enzymes was inserted into the
Cupriavidus metallidurans strain MSR33 and the modified strain showed Hg

Table 7.2 Use of marine bacteria and their EPS for metal remediation

Marine bacteria
Metal
ions

Sorption capacity
(mg/g) Reference

Idiomarina fontislapidosi F23T Cu2+ 16.30 Mata et al. (2008)

Pb2+ 40

Co2+ 8

Idiomarina ramblicola R22 T Cu2+ 26.25

Pb2+ 44.65

Co2+ 10

Pseudoalteromonas sp. strain TG12 Na+ 154.5 Gutierrez et al.
(2008)Mg2+ 31.0

K+ 10.6

Sr2+ 2.7

Fe2+/3+ 0.14

Salipiger mucosus A3T Cu2+ 15.7 Llamas et al.
(2010)Pb2+ 43.5

Co2+ 8.7

Desulfovibrio desulfuricans Cu2+ 98.2 Kim et al. (2015)

Ni2+ 90.1

Cr6+ 99.8

EPS M1 Cu2+ 400 Deschatre et al.
(2015)Ag+ 256

Alteromonas sp. JL2810 Cu2+ 140.8 � 8.2 Zhang et al. (2017)

Ni2+ 226.3 � 3.3

Cr6+ 251.2 � 5.1

Bacillus licheniformis SR5 Hg2+ 200 Upadhyay et al.
(2017)

Bacillus xiamenensis PbRPSD202
(live cells)

Pb2+ 216.75 Mohapatra et al.
(2019)

Bacillus xiamenensis PbRPSD202
(dead cells)

Pb2+ 207.4
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degradation. Several strains of Pseudomonas having resistance to Hg were devel-
oped by inserting the pMR68 plasmid into them.

Moreover, several metal-binding proteins such as metallothioneins (MTs) and
phytochelatins have been used to develop the microbial strains that can tolerate the
stressful environmental conditions as well as exhibit higher accumulation of metal
ions (Kanamarlapudi et al. 2018). Valls and De Lorenzo (2002) discussed that the
expression of MTs was found to be higher in the outer membrane compartments
(periplasmic space) as compared to the cytoplasm. Furthermore, they reported 15- to
20-fold increase in Cd2+ binding by the strain of E. coli expressing MT fused to the
Lam B (an outer membrane maltose protein) as compared to its wild-type counter-
part. Li et al. (2016) isolated a cDNA clone, encoding 74-a.a. metallothionein type
1 protein (ZjMT), from the cDNA library of Ziziphus jujube and incorporated it in
Escherichia coli cells. The cells of Escherichia coli expressing ZjMT showed
enhanced metal tolerance and higher accumulation of metal ions as compared to
control cells. In recent times, new transgenic and adapted S. cerevisiae strains are
reported to have an increased sorption capacity for Cu (II) (Farcasanu and Ruta
2017). Different strains of E. coli are modified to express phytochelatin 20, Hg2+

transporter, metalloregulatory protein and nixA genes. Such modified strains showed
the improved biosorption ability for the metals like mercury (Hg), arsenic (As) and
nickel (Ni) (Kanamarlapudi et al. 2018). Deng and Jia (2011) have constructed a
recombinant strain of a photosynthetic bacterium, Rhodopseudomonas palustris,
expressing the genes of (pSUTP+pGPMT) mercury transport system and
metallothionein for Hg2+ removal from heavy metal wastewater. Some
improvements have been done for the biological heavy metal uptake in several
microorganisms like Escherichia coli, Corynebacterium diptheriae,
PseudomonasK-62, Pseudomonas K-12, Serratia marcescens, Streptomyces
coelicolor, Saccharomyces cerevisiae with the use of recombinantly expressed
inner membrane importers from three major transporter classes such as channels,
secondary carriers and primary active transporters (Diep et al. 2018).

Although the genetically altered microbes are beneficial for environmental clean-
up processes, some preventive measures should be taken to minimize environment
risk before introducing them into the environment. One such potential risk of this is
the horizontal gene transfer (HGT), which occurs between the modified and indige-
nous microbes. It might result into the spread of the resistant strains in the environ-
ment and also cause ecological imbalance (Phillips 2008; Keese 2008). HGT can be
prevented by using suicidal gene systems and also with the use of anti-sense
technology which involves the insertion of antisense RNA-regulated plasmids and
protein plasmids into the microbe (Azad et al. 2014; Ojuederie and Babalola 2017).
Considering all these points, the genetically altered microbes should be used with
carefulness and in agreement with bio-safety regulations.

186 K. H. Upadhyay et al.



7.7 Factors Affecting Biosorption

Different microbial biomasses have different biosorption abilities, which also vary
considerably within each group. The biosorption ability of every single biosorbent
depends on several factors such as pH, temperature, initial metal ion concentration,
temperature, biosorbent concentration, biosorbent size, and contact time (Igiri et al.
2018; Timková et al. 2018). In biosorption process, pH seems to be the most
important parameter. It affects the metal ion solubility and total charge of biosorbent
(Friis and Myers-Keith 1986; Galun et al. 1987; Oyewole et al. 2018). The lower pH
favours the competition of hydrogen ions with metal ions for binding to active sites
of sorbent surface. In highly acidic system, the removal of metal ions is almost
negligible, and it increases with increase in solution pH up to a certain limit while
less amount of H+ and greater number of ligands with negative charges results in
greater metal ions biosorption at higher pH values (Feng et al. 2011; Bilal et al.
2018). The initial metal ion concentration also plays a key role in biosorption.
Sometimes the biosorption capacity increases with the increasing initial metal ion
concentration but it is also observed that at higher metal concentrations, more ions
are left un-adsorbed in the solution due to the saturation of the binding sites. The low
concentration of metal ions facilitates more sorption because more binding sites are
available and sometimes shows less sorption because the metal ions diffuse slowly to
the biomass surface due to their inadequate concentrations. This depends on the type
of the metal and biomass (Naiya et al. 2009; Oyewole et al. 2018; Shamim 2018).
The biomass concentration determines its potential to remove metal ions at a given
metal concentration. The increased adsorbent dose provides greater surface area and
availability of more active sites, and hence leads to the enhancement of metal ion
uptake for a fixed metal concentration. But the adsorption capacity is reduced when
the biomass dosage increases beyond some limits as a result of lower adsorbate to
binding site ratio where the ions are distributed onto more empty binding sites
(Kumar and Gaur 2011; Kanamarlapudi et al. 2018). Another important factor
which is studied in most of the batch biosorption experiments is the optimum contact
time required to attain the maximum metal removal. Due to a larger surface area of
the adsorbent, the rate of metal removal is higher in the beginning, and it gets slow
down afterwards as there would be a competition for binding to available active sites
by the remaining metal ions (Abdel-Ghani et al. 2007; Bilal et al. 2018). Tempera-
ture may exert positive or negative effect on the process of biosorption. Biosorption
capacity of the biosorbent may get changed due to increase or decrease in the
temperature. Mostly the chemical reaction rates increase at higher temperatures,
but it can be fatal for living microbial cells as it damages the cell membranes
(Timková et al. 2018). The optimum temperature for the sorption of heavy metals
may vary from microbes to microbes. Moreover, the same organism may also show
the sorption of various metals at different temperature (Goyal et al. 2003; Hu et al.
2010; Jin et al. 2018). Shamim (2018) demonstrated that the biosorption mostly
takes place between 20 and 35 �C, and at higher temperature (above 45 �C), the
process may get affected due to the protein damage.
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7.8 Biosorption Isotherm Models

Sorption isotherms can be best explained by studying the equilibrium relationships
between adsorbent and adsorbate. The biosorption isotherms describe the adsorption
capacity of sorbent for the removal of sorbet at constant condition. Biosorption
isotherms are characterized by definite parameters, which express the surface
properties and affinity of the biosorbent. The equilibrium parameters provide impor-
tant information for designing batch biosorption systems (Witek-Krowiak et al.
2011). To study the nature of adsorption process, several equilibrium isotherm
models are employed. These comprise one parameter isotherm like Henry’s iso-
therm, two parameter isotherms such as the Langmuir, Freundlich, Hill–Deboer
Model, Flory–Huggins, Dubinin–Radushkevich, Jovanovic and Temkin isotherms,
three parameter isotherms such as Toth, Sips, Koble–Carrigan and Redlich–
Peterson, etc. (Abdel-Ghani and El-Chaghaby 2014; Ayawei et al. 2017). The
solid–liquid absorption system can be studied by investigating the equilibrium
batch sorption tests and dynamic continuous flow sorption studies. The Langmuir
and Fruendlich equations are widely used to study the linearized equilibrium
adsorption isotherm models for single-solute system. The Langmuir isotherm
model accounts for the surface coverage with homogeneous binding sites by balanc-
ing the equivalent sorption energies (Gupta et al. 2010; Dave et al. 2012). According
to Langmuir model, no further sorption can take place at the site which is occupied
once. The surface will ultimately reach a saturation point where the maximum
adsorption will be achieved (Areco et al. 2013). The Langmuir equation is
represented by: qe ¼ qmaxbCe/(1 + bCe), where q is milligrams of metal accumulated
per gram of the biosorbent material; Ce is the residual metal concentration in
solution; qmax is the maximum specific uptake corresponding to the site saturation
and b is the ratio of adsorption and desorption rates (Langmuir 1918). This theoreti-
cal model is used to represent a monolayer adsorption. To study the multilayer
adsorption process, Freundlich model is used. The Freundlich isotherm model is
applicable to those adsorption processes which occur on heterogeneous surfaces.
The Freundlich equation is given as: qe ¼ KF.Ce

(1/n), where KF and n are Freundlich
constants (Freundlich 1907). The n value specifies the degree of nonlinearity
between solution concentration and adsorption as follows: if n ¼ 1, then adsorption
is linear; if n > 1, then adsorption is a physical process and if n < 1, then adsorption
is a chemical process. These models can be applied at a constant pH, and used for
modelling of biosorption equilibrium in the presence of one metal (Abdel-Ghani and
El-Chaghaby 2014; Upadhyay et al. 2017).

7.9 Biosorption Kinetics

The rate at which the metal ions or contaminants are removed from the aqueous
system can be determined by the kinetic study. The sorption kinetics describes the
mechanism through which the biosorption process takes place (Gupta et al. 2010).
The optimum operating conditions for batch biosorption processes can be
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determined by kinetic study (Tuzen and Sarı 2010). To study the biosorption data of
different metal ions sorbed by various biosorbents, several kinetic models such as
pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, etc. have
been applied (Jin et al. 2018). According to the pseudo-first-order kinetic model,
metal ion binds only to one sorption site on the surface of sorbent, and the rate of
occupied sites is proportional to the number of unoccupied sites (Ghaedi et al. 2013).
The model is represented by: dqt/dt ¼ k1(qe � qt), where qe is uptake of metal per
unit weight of biosorbent (mg/g), qt is the amount of metal sorbed at any time (mg/g),
and k1 is the rate constant (min�1). The values of k1 and the calculated qe can be
obtained respectively from the slope and intercept of the linear plot of ln (qe � qt)
versus (t) (Dave et al. 2012; Upadhyay et al. 2017). The second-order kinetic model
is based on the assumption that the reaction rate is dependent on the amount of solute
present on the adsorbent surface. Here, the rate limiting step involves chemisorption,
due to which metal ions bind to the surface by strong covalent bonding. The pseudo-
second-order equation based on equilibrium adsorption is expressed as: dqt/dt ¼ k2
(qe � qt)

2, where k2 is the equilibrium rate constant (mg/g/min). Plots of (t/qt) versus
(t) give the values of qe as the slope and k2 as the intercept. Elovich’s equation is used
to understand the chemisorption process of adsorption. In this model, interactions or
desorption between the adsorbed species could not affect the adsorption kinetics at
low surface coverage. Furthermore, as the amount of adsorbed solute increases, the
rate of adsorption of solute decreases exponentially (Gupta and Bhattacharyya
2011). Elovich’s equation is given as: q ¼ α ln (βα) + α ln (t); q ¼ α ln (βα) + α
ln (t); where a (initial sorption rate mg/g min) and b (loading capacity g/mg) are
related to the extent of surface coverage and activation energy for chemisorption
(Dave et al. 2012). The suitability of the model to fit the experiment data is mainly
determined by the correlation coefficient (R2) and the calculated qe value. The model
gives the best fit to the experimental data, when the model’s calculated qe is equal to
the experimental qe and R2 approaches unity. Detailed insights of biosorption
mechanism by the application of intra-particle diffusion model are studied by
many researchers. The Weber and Morris or intra-particle diffusion model
determines the adsorption rate in most of the liquid systems (Witek-Krowiak et al.
2011). This model assumes that the adsorption can occur through three successive
steps including film diffusion, intra-particle diffusion and sorption. Moreover, it
represents the proportionality between the adsorption capacity and the square root of
the time (Boparai et al. 2011; Abdel-Ghani and El-Chaghaby 2014). The model’s
equation is expressed by: q¼ Kt1/2, where intra-particle diffusion rate constant, K, is
deduced from a graph of qt vs. t1/2 (Dave et al. 2012). Biosorption mechanism can be
very well understood by studying the plots of qt against t0.5. These plots are
represented by single or multiple lines. When the Weber–Morris plot of qt vs. t0.5

gives a straight line, the adsorption process is believed to be controlled by intra-
particle diffusion only. If the regression of qt vs. t0.5 is linear and passes through the
origin, then intra-particle diffusion is the sole rate-limiting step. When the data show
multilinear plots, then it indicates two or more steps are influencing the sorption
processes. The intercept of these plots reflects also the boundary layer effect (Abdel-
Ghani and El-Chaghaby 2014; Upadhyay 2017).
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7.10 Analytical Techniques to Analyse Biosorption Process

The active sites of biomass involved in the binding of metals can be analysed
through a number of sophisticated analytical techniques (Mohapatra et al. 2017),
and some of them are enlisted in Table 7.3.

7.11 Living and Non-living Systems for Metal Sorption

Metabolically active as well as inactive cells and dead biomass can be used as
biosorbents for heavy metal removal as they all can accumulate metals. The main
advantages of live biomass are:

• The cellular ion transportation systems of the living cells transport metal ions
directly into cells.

• It can be self-renewing, resulting in an increase of cell mass, enabling biosorption
of more heavy metal ions.

• Some excreted metabolic products such as H2S, H2PO4
2�, metallothioneins can

contribute to the heavy metal removal.

Table 7.3 Techniques used to analyse biosorption process

No. Analytical techniques Remarks

1 Atomic absorption
spectroscopy (AAS)

Determines metal concentration in aqueous phase

2 Inductively coupled plasma
(ICP)

Determines metal concentration in aqueous phase

3 UV-vis spectrophotometer Determines metal or dye concentration in aqueous phase
by measuring its colour intensity

4 Scanning electron
microscope (SEM)

Visual confirmation of surface morphology of the
biosorbent

5 Transmission electron
microscope (TEM)

Visual confirmation of inner morphology of the
biosorbent

6 Energy dispersive X-ray
spectroscopy (EDS)

Elemental analysis and chemical characterization of
metal bound on the biosorbent

7 X-ray diffraction (XRD)
analysis

Crystallographic structure and chemical composition of
metal bound on the biosorbent

8 Fourier transform infrared
spectroscopy (FT-IR)

Determines active sites of the biosorbents

9 Nuclear magnetic resonance
(NMR)

Determines active sites of the biosorbents

10 Thermogravimetric analysis
(TGA)

Characterizes thermal stability of the biosorbent

11 Differential scanning
calorimetry (DSC)

Characterizes thermal stability of the biosorbent
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All these may lead to a higher level of metal ion uptake. Though the live cell
systems provide higher metal uptake, there are some disadvantages using them at
large scale. Maintaining the living systems is difficult because the waste streams are
mostly toxic, lacking nutrients and also have extremely varying conditions. Thus,
most of the biological metal removal systems make use of non-living or
non-metabolizing systems.

There are a number of advantages in using non-living cells as biosorbent for
heavy metal removal, and some of them are enlisted below:

• The non-living systems are growth-independent and do not require nutrients for
the cell growth.

• The sorption process is not limited by metal toxicity as there is no metabolic or
physiological activity.

• The non-living biomass represents more efficient metal uptake and higher metal
loading capacity.

• The operating conditions including pH, temperature, time and metal
concentrations can be controlled easily as compared to live systems, and no
sterile conditions are required.

• Non-living biomass can be stored for a longer period of time.
• Metal desorption from the used biomass is relatively easy allowing reuse of

biomass.
• The disposal problems do not arise, if the amount of metal recovered is insignifi-

cant. In such case, the biomass could be incinerated.
• Various industries may provide a cheap source for such biomass.
• Low operational cost as compared to live systems.

Disadvantages of Non-living Systems
• As the cells are not metabolizing, the biological process improvement potential

becomes limited.
• The biomass can get saturated at early stage of the process.
• There is no possibility for biological altering of the metal valency state.
• If the biomass contains some recovery chemicals, then it can affect the metal

sorption performance adversely (Junlian et al. 2010; Hassan et al. 2010;
Upadhyay 2017).

7.12 Desorption and Metal Recovery

Desorption of biosorbents is significantly important in biosorption process as eco-
nomical point of view. The selection of eluent used for metal recovery depends upon
the chemistry of metal and mechanism of its sorption. If the process of biosorption of
metal occurs through adsorption/cell surface accumulation which is metabolically
independent, then it could be considered similar to an ion exchange process. In that
case, metal could be recovered easily by mild and non-destructive methods. If the
sorption occurs by intracellular accumulation such as sequestration or binding with
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induced proteins and other metabolically depended mechanisms, then it requires
drastic methods for recovery. In this case, the biosorbent may be damaged to such
level that it cannot be reused. The metal recovery is achieved through incineration or
dissolution of biosorbents in acids, alkali and complexing agents. Dilute mineral
acids (HCl, HNO3 and H2SO4), organic acids (citric, acetic, lactic acid), alkali
(NaCl, KCl, NaOH, sodium bicarbonate) and complexing agents (EDTA,
thiosulphate, etc.) can be used for metal elution without affecting the biosorbent
(Faison et al. 1990; Dixit et al. 2015; Shamim 2018). Furthermore, the metals
showing pH-dependent sorption can be recovered by changing pH of the solution.
The metal sorption is generally maximum between pH 5 and 7, which can be eluted
using eluent at pH 2, whereas metals showing better sorption at low pH (i.e. pH� 2)
could be removed by increasing the pH. Metals showing relatively pH-independent
behaviour for biosorption process are difficult to remove that by changing the pH of
solution (Upadhyay 2017).

For effective desorption, the selected eluent should have the following
characteristics:

• The eluent should yield the metals in a concentrated form.
• It should not cause any physical changes or damages to the biomass and restore

the biosorbent close to the original state for effective reuse with maximum metal
uptake.

• It should not alter or block the sites for metal uptake.

Different metals from loaded biomass can be eluted out using appropriate eluents.
Dixit et al. (2015) reported desorption of Cd (II), Cr (VI), Pb (II) and Zn (II) from dry
biomass of E. crassipes and C. indica. They reported that the maximum sorption of
these metals is achieved in the range of 80–100% even after the four repeating cycles
of desorption by desorbing agents including HNO3 and KCl. Desorption of Au
(I) sorbed on eggshell membrane was successfully achieved using NaOH and NaCl;
the sorption capacity for Au (I) did not decrease after five continuous sorption–
desorption cycles (Niazi et al. 2016).

7.13 Future Work

As compared to the conventional techniques, biosorption is a more favourable
technique. Biosorption has been applied at laboratory, pilot and industrial scales to
treat industrial effluents using various biomass (Vijayaraghavan et al. 2009;
Vinodhini and Das 2010; Javaid et al. 2011; Rao and Ikram 2011; Singh et al.
2012). Actually, there is a dearth of instances of biosorption processes at highly
organized levels such as in pollution treatment centres, municipalities, large
industries, etc. This may be due to the presence of a variety of chemical and
biological contaminants at different concentrations in waste. For different types of
the effluents, some promising biosorption processes need to be established. Another
developing approach in the field of bioremediation is the use of genetically modified
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organisms and metal binding proteins with the use of genetic engineering. Only few
reports are available for molecular approach, and the technique is not yet
implemented for the wide range of microbial strains. Therefore, more detailed
research in this field is needed to enhance the metal remediation using microbes.

7.14 Conclusion

The microbial biosorption process is very efficient and economically viable. It offers
several advantages, including cost-effectiveness, high efficiency, minimization of
chemical/biological sludge and regeneration of biosorbent with possibility of metal
recovery. The selectivity of biosorbent for a particular metal may create difficulties
when applied to multimetal effluents. Moreover, the residual metal concentrations
after sorption process should be within the permissible limits. These hurdles could be
overcome by selecting appropriate biosorbent and/or appropriate recovery methods.
There is an urgent need for the development of an economical and eco-friendly
technology in countries having rapid industrial development. Bioremediation tech-
nology provides exciting prospects for metal recovery and environmental protection,
but more work is required in several areas in order to understand the complete
potential of biological systems.
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Biofilm-Associated Metal Bioremediation 8
Amrita Jasu, Dibyajit Lahiri, Moupriya Nag, and Rina Rani Ray

Abstract

One of the biggest challenges to the developing societies is metal pollution,
especially in the regions of mining and plating that is affecting people worldwide.
The use of conventional strategies in removing the waste is expensive and
generates a large amount of toxic wastes, thereby affecting the environment
adversely. This has resulted in the drift from the normal strategies to the use of
eco-friendly strategies for the removal of metallic wastes being present within the
soil. This technique of remediation uses the microbial organisms or microbial
biomass that helps in detoxifying the soil from the toxic effects of inorganic
metallic salts and heavy metals. Microbial biomass mainly comprises of extracel-
lular polymeric substances (EPS) which increases the efficiency of metal
sequestering for the purpose of field bioremediation. The EPS is released by the
microbial cells for the purpose of self-defense which mainly occurs during
various environmental stresses such as starvation, temperature, pH, and other
physiological or rheological stress conditions. It contains a large amount of
anionic charge hence it causes large sequestering of metallic ions. Thus this
chapter will focus on the biofilm-associated bioremediation of heavy metals,
and the mechanism which is helping the process to occur.
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8.1 Introduction

In order to maintain the standards of the environmental regulatory bodies, significant
strategies are to be undertaken to reduce the organic and inorganic pollutants that
contaminate ecosystems (Trapani et al. 2010). Heavy metals are natural high density
elements that are required in various biological processes in trace amounts. Recalci-
trant and toxic compounds containing heavy metals are a result of numerous urban
and enhanced industrial activities. Accounting to its ease in solubility, products from
pharmaceuticals, pesticides, plastics, rubbers, tanneries, and organic chemical
industries lead to the accumulation of metals like Pb2+, Cr2+/ Cr3+, Cd2+, Ni2+/
Ni4+, Zn2+, Cu2+, Hg2+, etc. that further triggers bio-magnifications (Lakherwal
2014). Metals tend to be toxic on accumulation, as they are nondegradable and
can only be altered to different valance states and transformed by sorption, methyla-
tion etc. So this nonbiodegradability and the rising accumulation of free forms of
heavy metals can lead to irreversible and indigenous health issues that affect bones,
kidney, heart, and even brain. They can pose mutagenic, cytotoxic, or even carcino-
genic effects (Ray and Ray 2009). The common physicochemical practices to reduce
the load of these heavy metal ions include coagulation, reverse osmosis, chemical
precipitation, nanofiltration, ultrafiltration, etc. But these procedures are not very
favorable due to high reagent demand, costing, operational effectiveness, high
energy demand, etc. Thus, for sustainable environmental detoxification, to reduce
heavy metal ions to a safer level of concentration, there is a need to undertake
environment friendly methods and strategies (Prasad and Prasad 2012). Here,
microbial communities of bacteria, microalgae, fungi, and yeast play a vital role in
degradation, neutralization, and mineralization as processes of remediation in order
to remove organic and inorganic terrestrial and aquatic pollution of heavy metal ions.
Efficient utilization of microbial metabolism in place of physicochemical procedures
is a safe and efficient approach (Pandey and Jain 2002). Sorption of metal ions is an
electrostatic or covalent interaction of the metal with peripherally available func-
tional group on the sorbent. When such sorbents are of biological origin of eukary-
otic or prokaryotic microbial biomass, such phenomenon is called biosorption
(Comte et al. 2008; Lau et al. 2005). An environment-friendly approach is thus
biofilm-mediated bioremediation. In order to thrive in stringent environmental
conditions like high temperature, pH, salinity, and heavy metal-contaminated site,
the microbial community produces extracellular polymeric substances (EPS)
(de Carvalho 2018). EPS are biosynthetic polymers made up of mainly
polysaccharides, proteins, and uronic acid that are produced in light of self-defense
against environmental stress. The EPS composition hinders the metal ion penetration
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into the cellular surface and thereby helps in sequestration of the metals. Biofilms are
formed by the association of single or various species of bacteria, algae, or fungi, and
its subsequent structure and composition of EPS produced can alter on the basis of
environmental conditions (Yin et al. 2019).

As biofilms are capable to absorb, sequester, and immobilize various environ-
mental pollutants (namely heavy metal ions), hence biofilm-mediated bioremedia-
tion is an effective approach. Thus, the attempt of this chapter is to focus on survival
strategy of the microorganisms in the impacted (heavy metal contaminated) envi-
ronment, the protective and beneficial approach of biofilms for the producing
community, the biosynthesis of the polymer, i.e., the biofilm’s life cycle and thereby
metal ion to the biofilm interaction. Finally, in order to understand the mechanisms
involved in metal ion uptake by the EPS, the interaction mechanism is also studied.
Lastly, the scope and miscellaneous uses of biofilm and possible adverse environ-
mental impacts have also been discussed.

8.2 Heavy Metals and Their Toxicity

As an important part of the global ecobiological system and vital component of
metabolic pathways, heavy metals are sufficient even in trace amount. Such are the
metals with atomic numbers more than 20 and of metallic density more than 5 g/cm3

with distinct chemical characteristics. Majority are present in all ecosystems in
varying concentrations along with trace quantities of essential metals like Mn, Ni,
Zn, Mg, Cu, etc. They tend to have prolonged half-lives and resist biodegradation,
thus are potent toxic to the ecosystem (Hussain et al. 2013). Environmental accumu-
lation of these metals as a result of overloaded byproducts and toxic sludges from
industries over long period of time is a serious matter of concern now.

When human body gets exposed to elevated amounts of these metals, they bind to
various biomolecules and exert toxicity via different mechanisms like disrupting
enzymatic functions, hinder in process of DNA formation and production of reactive
oxygen species (ROS) (Yu 2001; Gauthier et al. 2014). Metals like lead, cadmium,
and mercury are able to interact with cell membrane ligands, disrupt channels, and
confer metabolic disturbances and cytotoxicity (Tavares and Carvalho 1992). Meth-
ylation or harmful thiol formation by chromium and arsenic, binding of cadmium to
certain protein to render it dysfunctional, saturation and lipid peroxidation due to
iron, lead causing free radical imbalance are few of the toxicological manifestations
of heavy metal ions (Jaishankar et al. 2014).

Various plants and animal diseases have been reported due to metal toxicity. A
prominent and burning example is the Minamata Bay (Japan) tragedy, where due to
the Minamata disease, several people lost lives on consumption of shellfish that were
heavily mercury contaminated. Zinc plays a vital role in plant growth and its defense
mechanism. Upon accumulation, it reacts with oxygen and acids to produce potential
toxic compounds harming the plants (Fosmire 1990). According to WHO
recommended guidelines, arsenic concentration above 10μg/L might cause bronchi-
tis, liver cirrhosis, or even cancer. Dietary intake of cobalt above 6μg may cause
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chronic asthma or pneumonia. Renal and hepatic systems, and even the immune
system are affected on overexposure to lead or copper ions (Flora et al. 2012).

Taking into consideration the cost, effectiveness, and end products produced after
the physical treatments like flocculation, ion exchange, electrodialysis, etc. to reduce
these metal ion concentrations to safer limits in the environment, it urges for
imperative need to find environment-friendly and economic strategies (Alluri et al.
2007). Many microbes can thrive in metal contaminated sites and potentially accu-
mulate soluble or particulate metal ions. Microbial biomasses of fungi, yeasts, and
bacteria act as bioabsorbents of these heavy metal ions (Das et al. 2008). To survive
in stringent environment, these eukaryotic and prokaryotic biomasses produce
biosynthetic polymers that act as a shield and help in sequestering the metal ions
via bio-immobilization or biotransformation (Fig. 8.1).

8.3 Biofilm: Composition and Structure

8.3.1 Composition

Biofilm is a cluster of microorganisms of same or different species that organize to
attach themselves on living or nonliving surfaces while shielding themselves with a
protective EPS layer from antibiotic agents, predators, or environmental stress.

Fig. 8.1 Factors influencing bioremediation of heavy metals (HM)
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Mostly composed of water, the EPS is made of mostly homo or hetero
polysaccharides, proteins, nucleic acids, humic acid, lipids, as well as low molecular
weight non-polymeric substances. FTIR spectroscopic analysis shows predomi-
nantly polysaccharides and proteins as the components of biofilm (Mosharaf et al.
2018). This microbial mucoid polysaccharide helps in cell aggregation, maturation
of microcolonies, attachment to surface, and water-holding capacity and protects the
cell cluster from stringent environment (Czaczyk and Myszka 2007). They are best
differentiated not on the basis of origin but on the basis of separation, as soluble or
bound EPS (Pal and Paul 2008). Ionic bridges that interlink the polysaccharide
chains are due to uronic acid and other divalent metallic cations, which also entrusts
the acidic character of EPS (Majumdar et al. 2013; Dogan et al. 2015) .The
exopolysaccharide composition differs with diverse microbial aggregates, phase of
growth, and its extraction method, like production of capsular EPS during the log
phase of growth, whereas slime is formed during stationary phase (Wingender et al.
1999). EPS with polysaccharide backbone of repetitive units of same or different
monosaccharides are differentiated on the basis of monomer units and linkages. The
heteropolysaccharides are composed of units of N-acetylglucosamine or
N-acetylgalactoseamine, D-glucose, L-rhamnose with intermittent presence of glyc-
erol, phosphate, or acetyl groups, whereas homopolysaccharides are classified as
Fructan, polygalactan, α-D-glucan, and β-D-glucan (Sharon 1966). Variety of EPS
are produced upon alteration of the polysaccharide backbone by change in polymeric
length due to variations in side chains and functional groups (Whitfield 1988). Those
EPS with abundant anionic functional groups are reported to be better heavy metal
remediator and a suitable biosorber. Moreover, as a nonliving adsorbent, EPS is
considered more useful than living microorganisms to avoid pathogenecity concerns
(Gavrilescu 2004). Some of the anionic bacterial EPS reported are xanthan
(Xanthomonas campestris), galactopol (Pseudomonas oleovorans), hyaluronan
(Pseudomonas aeruginosa), gellan (Sphingomonas paucimobilis), alginate (Azoto-
bacter vinelandii) (Freitas et al. 2009, 2011). PsI polysaccharide produced by
Pseudomonas aeruginosa is reported to maintain biofilm architecture and is respon-
sible for intracellular and cell surface adhesion (Ma et al. 2012).

eDNA or extracellular DNA is a constituent of EPS that are formed from lysed
cells within the biofilm. Recent studies show that these eDNA are important
constituents of the EPS as they maintain the structural integrity of the biofilm,
enhance cell–cell communication, and act as nanofilaments for electron transfer
(Martins et al. 2010). These eDNA ranges in length of 1000–10,000 bp (Romero
et al. 2018).

8.3.2 EPS Synthesis

The EPS is synthesized intra- or extracellularly depending upon the type of polysac-
charide it produces. Precisely considering bacterial EPS biosynthesis, it is mostly
seen homopolysaccharides are produced extracellularly when responsible precursors
are transferred from substrate to the growing end of polysaccharide chain by suitable
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enzymes. The polysaccharide then matures and assembles itself with varying
branches (Boels et al. 2001).

Comparatively a complex sequence occurs during the intracellular synthesis and
transport of the polysaccharides. Regulatory molecules of interconnected metabolic
pathways and various enzymes are involved during such synthesis process. It
involves active or passive passage of substrate sugar into the cell which then gets
catabolized by phosphorylation or periplasmic oxidation (Freitas et al. 2011). Intra-
cellular synthesis involves the assembly of the high molecular weight, hydrophilic
polymer in the cytoplasm and its transport via the cell membrane. The Gram-
negative bacteria is studied to biosynthesize via the following pathways (Fig. 8.2).

(a) ABC transporter-dependent pathway: polymerization occurs at the inner cell
membrane, in the cytoplasm side (Cuthbertson et al. 2009) (i) the Wzx–Wzy-
dependent pathway, wherein the polymer monomeric units are accumulated at
the inner face of the cytoplasmic membrane and polymerized at the periplasm.

(b) Wzx–Wzy-dependent pathway: The monomer units are assembled in the inner
face of the cell membrane, whereas polymerization takes place in the cytoplasm.

Extracellular space

Intracellular space

ATP
ADP +pi

Monosaccharide sugar substrate

Ac�ve 
transport

Passive 
transport

Ce
ll 

w
al

l

Sugar 1-P

NDP sugar

Monosaccharide precursor (glucose, fructose etc.)

Cytoplasmic membrane

Periplasmic space

Pep�doglycan layer

Cytoplasmic membrane

Periplasmic space

Pep�doglycan layer
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Fig. 8.2 Biosynthesis of EPS in Gram-positive and Gram-negative bacteria. Initiating with
substrate diffusion, conversion within the cytoplasm, and thereby transport via polysaccharide
assembly for the growing chain in the cytoplasmic membrane, elongation of the assembled
polysaccharide in the peptidoglycan, maturation and transportation by ABC-dependent or Wzx–
Wzy pathway to the extracellular environment
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(c) Synthase-dependent pathway: Here the stand is secreted across the cell wall
membrane, where the homopolymers are translocated and polymerization takes
place with a single precursor of sugar and single synthase protein (Table 8.1).

8.3.3 Biofilm Structure and Its Formation

Unlike the planktonic growth, the development of biofilm has distinct and significant
mechanism. The biofilm formation and growth are ubiquitous to bacterial cells and
occur sometimes under diverse stringency. The biofilm formation, its attachment,
and maturation mostly requires a moist environment. Attachment surface may be
biotic or abiotic, and their interaction interface can be of any form of solid-liquid,
liquid-liquid, or solid-air. Different stages of microbial life cycle, is reported to
produce various forms of biofilm.

The overall process of formation involves four distinct steps initiating with the
attachment of the planktonic forms of microbes to a moist surface by Van der Waals
or electrostatic forces of attraction. Following it is the procedure of microcolony
formation, maturation, and development of biofilm and finally detachment from the
surfaces (Jamal et al. 2018).

• Initial surface attachment: Intricate study on biofilm formation reports the initial
attachment of the microbes on a moist surface. Their arrival instigates a formation
of conditioning layer with the organic matters within a short span of time (Qi and
Christopher 2019). The microbial population attaches itself to the surface with its
pili, fimbriae, by van der Waals force or via electrostatic forces of attraction. The
adhesion to the surface brings about cohesive forces among the cells to expand
the film formation.

• Colony formation: The intercellular signaling calls for rapid cell multiplication
and thus microcolony formation. The spatial arrangement of the clustered
microcolonies determine the architecture of the biofilm. The side chains of the
formed EPS by these colonies further strengthens the biofilm’s anchoring to the
surface. This confirms the further maturation at that surface (Randrianjatovo-
Gbalou et al. 2017).

• Architectural maturation: Intracellular signaling, replication, and nutrient transfer
increase the microbial population to the desired density (Vasudevan 2014).
Maturation-specific genes are expressed during this stage of development that is
facilitated by the phenomenon of Quorum Sensing. This three-dimensional bio-
film development can produce as thick as few inches of film by some bacteria.

• Microbial detachment: Biofilm detachment may be caused by physical forces of
shear strain like natural abrasion or hydrodynamic forces which erodes off biofilm
layers (Webb 2009). This passive dispersion of sloughing might occur due to
aged biofilm, deprivation of nutrients, natural erosion, etc. But regardless of the
detachment process, the conditioning layer tends to remain attached to the
substratum, chopping off the outer layer with saccharolytic enzymes produced
by the microorganisms (Fig. 8.3).
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8.4 Biofilm-Producing Microbiota

Biofilm producing microbial biomass have been widely reported for heavy metal
bioremediation. The microbial population predominantly includes bacteria along
with fungi, microalgae, and yeast. Mostly the metal sequestration takes place by
adsorption or bioaccumulation. These metal-resistant strains are efficient producers
of biosynthetic polymers (EPS), and their immobilized forms are better-off with
metal interaction and its reaction kinetics as reports suggest that production of EPS
enhances due to attachment to a substrate (Vandevivere and Kirchman 1993).

8.4.1 Bacteria in Bioremediation of Heavy Metals

The lab-scale efficiency of microbial biomass varies with the onsite physicochemical
and other environmental factors (Ayangbenro and Babalola 2017). Almost all
bacterial cells, due to varying size, cellular composition like teichoic acid,
N-acetylglucosamine, or N-acetyl muramic acid, their robust adaptivity, and meta-
bolic secretion are able to produce biofilms and thrive in harsh environments. This
helps the bacterial biomass to accomplish efficient removal of the nonbiodegradable
heavy metals (Hassan et al. 2010; Özer and Özer 2003). Numerous species have
been reported as important biosorbents like Listeria monocytogenes (Colagiorgi
et al. 2017), Pseudomonas fluorescens (Lopez et al. 2000), Pseudomonas putida,
Sphingomonas sp. (Douterelo et al. 2018), Micrococcus luteus (Puyen et al. 2012),
Staphylococcus xylosus (Aryal et al. 2010), and metabolically superior consortium
of Acinetobacter sp. and Arthrobacter sp. (De et al. 2008), Acinetobacter sp. IrC1
and Cupriavidus sp. IrC4 (Irawaiti et al. 2018). The teichoic acid on the bacterial cell
wall is the potential site for bacterial chemisorptions (Mosa et al. 2016). Upon
bacterial exposure to contaminants, enzymatic induction calls for remediation by
metal chelation or electrostatic interaction. Reports suggests that zeolite-
immobilizedDesulfovibrio desulfuricans used in a batch reactor showmetal removal
efficiency of 90.1% 98.2%, and 99.8%, of Ni, Cu, and Cr6+, respectively (Kim et al.
2015). Also efficient Pb reduction by Bacillus megaterium (2.13–0.03 mg/L), Cr
reduction (1.38–0.08 mg/L) by Aspergillus niger, and Cd reduction (0.4–0.03 mg/L)
by Bacillus subtilis has been reported by Abioye et al. (2018).

8.4.2 Fungi in Bioremediation of Heavy Metals: Mycoremediation

Fungi are the decomposers that are involved in vital nutrient cycling in the nature
and adapt to harsh conditions similar to that of bacteria. But the bacterial and fungal
glycan and other biosynthetic enzymes differ in sequence homology (Sheppard and
Howell 2016). Yet these organisms are capable of biofilm formation by clustering
and attaching to a surface or entrapping itself inside the EPS to shield from
environmental stringency. Reports suggest that in the course of biofilm formation,
the fungal ability of surface attachment is due to the presence of hydrophobin
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protein. This protein signals the adhesion of fungal spore on hydrophobic surfaces
(Pérez-Mendoza et al. 2011). Various members those are able to form biofilm are
species of Neocosmopora and Acremonium (Douterelo et al. 2018), Candida
albicans (Rajendran et al. 2016), and those with prominent metal removal efficacy
are Coprinopsis atramentaria reported to bioaccumulate 94.7% of 800 mg/L of Pb2+

(Luna et al. 2016), Candida sphaerica has removal efficiency of Pb, Zn, Fe of 79%,
90%, and 95%, respectively. Reduction of Cr (VI) to Cr (III) by yeast strains of
Rhodotorula mucilage, S. cerevisiae, Pichia guilliermondii, and Yarrowia lipolytica
has also been reported (Chatterjee et al. 2012). Fungi are studied to biosorp and
accumulate heavy metals by means of ion-exchange or complexation mainly in
their fruit bodies (Ogbo and Okhuoya 2011). Fructification, age of mycelia, and
metal exposure time-span determine the degree of removal efficacy (Floudas et al.
2012).

8.4.3 Algae in Bioremediation of Heavy Metals: Phycoremediation

Algae are the organisms that produce a large quantity of biomass, able to survive in
toxic environments with low nutrient availability. The most prominent members
with effective heavy metal bioremediative ability are those of microalgae. Their
various cell surface chemical moieties are the metal binding sites like with amide,
carboxyl, hydroxyl groups (Abbas et al. 2014). Algae like bacteria and fungi,
bioremediate heavy metals by adsorption, cellular integration of the toxicants or
by degradation (Chabukdhara et al. 2017). Among the various algal groups, heavy
metal phycoremediation by biosorption is best reported by Phaeophyta (brown
algae) (Brinza et al. 2007; Oyedepo 2011). Table 8.1 enlists the heavy metal
remediating bacteria, fungi, and algae (Table 8.2).

8.5 Metal–Microbe Interaction and EPS-Mediated Strategies
for Remediation

The physical methods involved to clean up the environment from metal accumula-
tion involve high-cost techniques and production of toxic byproducts. This calls for
cost-effective and environment-friendly biological methods. Exploiting the micro-
bial metabolism is a gentle approach to combat heavy metal toxicity. But not all the
time these metals pose to be toxic to the microbes. The concentration of metal and
microbes, mode of interaction with the metals as active or passive uptake and
subsequently develop metal tolerance or resistance. (Alluri et al. 2007). This micro-
bial metal tolerance can be specific or nonspecific. Mercury methylation is an
example of specific tolerance that produces volatile toxic methyl mercury, whereas
nonspecific tolerance may be constitutive or inducible. Production of cysteine-rich
metallothionine peptides by Pseudomonas putida or E. coli is an example of
nonspecific inducible resistance (Rajendran et al. 2003). On the other hand,
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exopolysaccharide production is a nonspecific tolerance. Adsorption, bioleaching,
bioaccumulation, and redox transformations are the modes of interaction among the
microorganisms to uptake metal ions.

Table 8.2 List of the heavy metal remediating bacteria, fungi, and algae

Metal Bacteria Fungi Algae

Fe Rhodobacter capsulatus Aspergillus flavus
(Bano et al. 2018)
Pleurotus ostreatus
(Arbanah et al.
2012)

Chlorella vulgaris
(Kwarciak-Kozlowska
et al. 2014)

Pb Methylobacterium organophylum
(Bharagava and Mishra 2018)
Pseudomonas putida (Chen et al.
2005)

Agaricus bisporus
(Frutos et al. 2016)
Pleurotus florida
(Prasad et al. 2013)

Nostoc sp. (Kumaran et al.
2011)
Corallina mediterranea
(Ibrahim 2011)

Zn Pseudomonas putida (Pardo et al.
2003)
Bacillus firmus (Salehizadeh and
Shojaosadati 2003)

Schizophyllum
commune (Javaid
and Bajwa 2008)
Pleurotus ostreatus
(Arbanah et al.
2012)

Sargassum sp., Ulva sp.,
Padina sp., Gracilaria sp.
(Sheng et al. 2004)
Scenedesmus
quadricauda
(Bayramoglu and Arica
2009)

Cr
(VI)

Bacillus laterosporous (Zouboulis
et al. 2004)
Bacillus cereus (Nayak et al. 2018)
Bacillus circulans MN1
(Chaturvedi 2011)

Rhizopus arrhizus
(Shoaib et al. 2013)
Pleurotus ostreatus
(Arbanah et al.
2012)

Isochrysis galbana
(Kadimpati et al. 2013)
Sargassum polycystum
(Senthilkumar et al. 2010)

Cd Bacillus laterosporous (Zouboulis
et al. 2004)
Pseudomonas aeruginosa,
Klebsiella pneumonia and Bacillus
cereus (Kafilzadeh et al. 2013)

Alternaria
alternata (Bahobil
et al. 2017)
Aspergillus flavus
(Cardenas-
Gonzalez et al.
2017)

Ceramium virgatum (Sari
and Tuzen 2008)
Caulerpa fastigiata
(Sarada et al. 2014)

Cu Desulfovibrio desulfuricans (Kim
et al. 2015)
Micrococcus luteus (Puyen et al.
2012)

Agaricus bisporus
(Frutos et al. 2016)
Termitomyces
clypeatus
(Ramrakhiani et al.
2011)

Chlorella kessleri
(Horvathova et al. 2009)
Caulerpa lentillifera
(Apiratikul and Pavasant
2008)

Ni Pantoea agglomerans and
Enterobacter asburiae (Bhagat
et al. 2016)
Desulfovibrio desulfuricans
KCTC5768 (Congeevaram et al.
2007)

Aspergillus
versicolor (Taştan
et al. 2010)
Schizophyllum
commune (Javaid
and Bajwa 2008)

Chlorella vulgaris
(Klimmek et al. 2001)
Spirogyra hyaline (Kumar
and Oommen 2012)
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8.5.1 EPS-Mediated Metal Biosorption: Mechanism, Advantages,
and Disadvantages

Among various biotransformation procedures, bioadsorption has been seen to be
more feasible due to its inherent advantages and applicability. Unlike
bioaccumulation or redox transformations, biosorption is a metabolism-independent
procedure which can be achieved by both live and dead biomass via different
physicochemical procedures (Vijayaraghavan and Yun 2008). While it is a challenge
for the live cells beyond lethal concentration of metals or in restricted nutrient
availability, to survive metabolically actively, dead cells on the other hand are
independent of such constrain to sequester metal by adsorption and its storage
(Aksu 2005). Moreover, since the dead biomass only accumulate the metals within,
without involving it in metabolic processes, so they can be profitably desorbed and
the metal ions can be utilized, acting as reversible ion exchanger. Even though these
microbial biomass (live or dead) are efficient and economical solution for metal
removal, but its efficiency of application on industrial scale is still a constraint which
needs to be worked upon further (Wang and Chen 2009).

8.5.2 Strategies of Heavy-Metal and EPS Interaction and Its
Remediation

The exopolysaccharides are made up of repetitive sugar units that are responsible for
metal chelation by interacting with their functional groups via ion exchange, physi-
cal sorption, or precipitation mechanisms. The charged metal ions interact with
anionic EPS for the presence of ionizable carboxylate, phosphate, and amine groups
on the EPS backbone (Liu and Fang 2002). The hydroxyl, carboxyl, and amino
functional groups aid in metal binding and stabilize the metal–polymer interaction
by forming co-ordination bonds (Cozzi et al. 1969).

8.5.3 Types of EPS and Its Remediation Strategies

8.5.3.1 Dead Biomass EPS
EPS of a dead biomass and favorable environmental condition gives maximum
metal uptake capacity as a biosorbent. An acidic pH is mostly favorable for metal
uptake as an overall positive charge is created due to lowered pH that protonates the
functional group which interacts well with the negatively charged EPS (Sultan et al.
2012). However, the adsorption capacity of immobilized EPS is head over dead
biomass EPS. Freundlich–Langmuir adsorption model in a research report suggested
that in acidic pH of 2, copper ions were maximally chelated by dead biomass EPS
with a concentration of 26 mg/g of EPS where the metal load was 91.66 ppm
(Ozdemir et al. 2005).
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8.5.3.2 Homogeneous EPS
Many single species microbiota are reported to thrive in multi-metal contaminated
sites, bind to or sequestrate metal specifically or nonspecifically, by either tolerance
or resistance. Cells along with their produced polysaccharide together are seen to be
more efficient in adsorption of heavy metals. Various microbes and specially
bacteria have been widely reported for such bioremediating activity like
Methylobacterium organophilum (copper and lead removal) (Kim et al. 1996),
Rhizobium radiobacter (biosorption of zinc and lead) (Wang et al. 2013), microalgae
Halomonas sp. (calcium, iron, magnesium, aluminum) (Gutierrez et al. 2012),
cyanobacteria Anabaena spiroids (manganese) (Freire-Nordi et al. 2005), etc.

8.5.3.3 Immobilized EPS
Studies on specificity and reaction kinetics have shown the excellency of the
immobilization techniques. Attachment of microbial cells on a surface enhances
not only EPS production but also metal binding ability without elevating the growth
rate (Vandevivere and Kirchman 1993). The EPS secreted by Paenibacillus
polymyxa immobilized on agar beads (Hassiba et al. 2014) and Chryseomonas
luteola immobilized on alginate beads (Ozdemir et al. 2005) are able to efficiently
adsorb various metals like cadmium, cobalt, nickel cobalt, etc.

The test microorganism and the metal concentration are more of a concern than
other factors of colony size, procedure of metal–microbe interaction, etc. (Cruz-
Vega et al. 2008). Hence for isolating a powerful bioremediating microbe, such
criteria must be essentially considered.

8.6 Challenges with Biofilm and Future Prospects

The aggregation of microbial population called biofilms, able to attach to various
surfaces, are explicitly studied for environmental pollution remediation. An eco-
nomical as well as sensitive application of the ubiquitous exopolysaccharide (EPS)
produced by the microbial biomass is an efficient approach to metal ion bioremedia-
tion. Along with the various environmental factors, the EPS matrix composed of
various polysaccharides, nucleic acids, humic acid, and proteins helps in formation
and stabilization of the biofilm, defining its 3D structure. These biofilm-forming
microbial population adapt to thrive in harsh conditions; hence, several dynamics
governs the EPS efficacy of metal removal. As discussed before, the charge compo-
sition of EPS, types, quantity, and charge distribution of the metal pollutants,
environmental factors of temperature, pH, and salinity are all, in combination,
determining factors of the onsite sorption efficacy of the biopolymer. Moreover,
the lab-based efficacy must also be replicated at the actual site of pollution which
needs to be monitored and checked for proper desorption of the metals from the
polymer for sustainable remediation. Desired modification of the polymer for
immobilization and improved selectivity for metals can be made of EPS hybrids
with ceramic, porous silica, etc. (Kariminiaae-Hamedaani et al. 2003; Shi et al.
2011). Selection of anionic EPS producers and mixed culture EPS gives better
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results in bioremediation, but scaling up the technology, out from laboratory as field
trials, needs more research for successful application (Kiliç et al. 2015).

Microbial biofilms are also utilized in several promising ways as in production of
microbial fuel cell (MFC) that oxidizes organic matter to produce electricity, as
bioemulsifier and biocapsule, as biofilm traps and microbial canaries (Moreno-
García et al. 2018). As an emerging scope, Biofilm-Integrated Nanofiber Display
(BIND) is a nano-biotechnological approach to develop programmable biomaterials
like adhesive biofilm that are able to bind various surfaces (Nguyen et al. 2014).

Uncontrolled growth of biofilms on suitable surfaces are nowadays a potent
matter of concern in the health sector. The growth of biofilm on medical instruments,
surface of catheters, and medical implants may cause nosocomial infections, on teeth
(plaque), it is also implicated in the otitis media (an acute ear infection). Even avid
growth of these biofilms are seen over household items like cutting board, toilet sink,
wash basin, etc., which need to be checked and sanitized. Biofilm formation is a
major concern in the food industry as they cause havoc product spoilage with growth
of pathogenic bacteria, mechanical blockage, and post processing contamination.
Hence, to combat with such biofilm problems, effective and systematic antibiofilm
strategies are to be undertaken for large-scale application.

The great versatility of the microflora helps in with proficient method of metal ion
sequestration and restoration of contaminated ecobiological systems. Thus, in order
to effectively use EPS for bioremediation, it must be studied properly from its
formation, maturation, EPS–metal binding, and therefore sustainably remove
heavy metals from the environment.
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Phytoremediation of Mine Waste Disposal
Sites: Current State of Knowledge
and Examples of Good Practice
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Abstract

Mining activities are considered to be one of the main sources of environmental
pollution, and lead to the production of vast amounts of waste materials. Mining
leads to soil degradation, loss of biodiversity, and pollution of soil, water, and air.
The disposal of mine waste is a global problem, and its composition depends on
ore characteristics. In addition to high concentrations of metal/metalloids, mine
tailings and spoils of abandoned mines are characterized by unfavorable physi-
cochemical characteristics, such as extremely low or high pH, low nutrient status,
and water retention capacity. Various remediation technologies could be applied
to improve the environmental characteristics of mine waste disposal sites, reduce
the amount of pollutants, and prevent their mobilization to the surrounding soil
and waterbodies. One of the most cost-effective, and environmentally friendly
technologies is phytoremediation, with phytostabilization, phytovolatization,
phytofiltration, and phytoextraction as main techniques. An overview of the
past experiences is discussed together with future trends in phytoremediation.
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9.1 Introduction

Mining activities are one of the bases for the economic development of many regions
worldwide. The mining industry generally extracts and processes three basic types of
minerals: energy minerals (such as coal, oil, gas, oil shale), metallic minerals (e.g.,
iron, aluminum, copper, lead, zinc, nickel, gold ores), and non-metallic minerals
(gravel, limestone, clay, salt, phosphate rock, etc.). Areas with mining activities are
usually with altered landscape, hydrological and ecological processes, hosting
anthropogenic constructions that follow the extraction and processing of minerals.
In addition, during mine operations, large areas of land become occupied with mine
waste deposits. It is known that mining activities have a deteriorating effect on the
surrounding environment, such as soil, surface or ground water, and air (Rocha-
Nicoleite et al. 2017). Furthermore, mining is considered one of human activities
with the most far-reaching environmental and social impacts, and one of the main
causes of the land degradation worldwide (Barkemeyer et al. 2015). For this reason,
mining companies in the countries in which they operate are obliged by different
regulations to reclaim the mined area once the mining process is complete. The
reclamation of the mine site is an integral part of the mine life cycle, especially its
closure phase.

As mining activities vary according to their nature, scale, and exploitation
techniques applied, they leave different ecological footprints in their surroundings
(Fig. 9.1). Compared by mining techniques, surface mining severely damages the
aboveground landscape while compared to underground mining, which has more
indirect and limited influence on the surface environment, it takes up large areas of
land resources. The negative impacts of surface mining include a considerable
change in soil structure, altered hydrology of the area, and the long-term leaching
of contaminants from excavated grounds and waste deposits (Lima et al. 2016). In
addition, surface exploitation of mineral resources leads to the production of larger
volumes of waste rocks, as these have to be removed to reach the ore. As newly
discovered mineral deposits usually have a lower ore grade and are found at greater
depths (International Council of Mining and Minerals 2014), it is expected that their
exploitation will result in significant amounts of additional mining waste
(Wieszczycka 2018).

Generated waste is characterized by different physicochemical properties
depending on the extracted mineral, ore composition, and deposit type (Wieszczycka
2018). Two main types of solid waste produced by mining activities are waste rock
and mine tailings. Waste rock consists of various geological materials that have been
excavated to reach the ore. This type of waste is usually deposited in the form of
heaps or piles. The surface of the rock piles is exposed to external temperature
conditions, oxygen and water infiltration, which leads to weathering of the rock
material. This weathering can produce metal-contaminated drainage water, the
control and mitigation of which is a long-term challenge to the surrounding environ-
ment. Long-term monitoring by Vriens et al. (2018) showed that the primary
weathering rate of waste rock varies with its composition and particle size, while
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the secondary mineral formation process and the presence of reactive rocks influence
the drainage chemistry.

Certain geological environments, such as metallic ore deposits, coal seams, oil
shale, or mineral sands, may contain abundant content of sulfide minerals
(Lotermosser 2010), which can easily be weathered when exposed to oxygen,
producing acidic drainage water enriched with sulfate and metals that can be easily
released into the environment. This process, known as acid mine drainage (AMD), is
one of the major environmental problems facing the mining industry today (Dold
and Fontboté 2001). One of the most common sulfide minerals is pyrite (FeS2),
which is commonly found in metal ore deposits and coal seams. Air movement and
associated oxygen transport through waste rock dumps have the potential to signifi-
cantly enhance the oxidation rate of pyrite-bearing material. High concentrations of
dissolved metalloids and metals, low pH, and high sulfate in the acid mine drainage
pose a serious threat to surface and underground water, soil, and biota. Although
extensive research has been conducted in recent decades, there is still no reliable
method for dealing with acid mine drainage process and its effects (Dold 2014;
Skousen et al. 2017). The colonization of such environments by vegetation or other
biota is usually quite inhibited due to the harsh conditions they contain, and it can

Fig. 9.1 Various types of generated mine wastes and possible environmental consequences: (a)
sulfidic rock waste and generated acid mine drainage at Bor copper mine site; (b) Stolice antimony
flotation tailing dam spill; (c) Veliki Krivelj copper mine waste rocks; (d) Flotation tailings of
Rudnik polymetallic mine

9 Phytoremediation of Mine Waste Disposal Sites: Current State of Knowledge. . . 225



occur within a considerable period of time after the waste is deposited (Lotermosser
2010). In cases where waste rock contains sulfide minerals and the minerals that can
consume released ions through buffering reactions (such as carbonates, silicates, or
hydroxides), the formation of acid mine drainage can be inhibited or controlled
(Dold and Fontboté 2001).

Mine tailings are another type of mine waste produced during ore processing in
order to separate valuable minerals. They consist of ground rock and process
effluents, and their grain size is relatively homogeneous as they undergo a grinding
process before the selective separation of the useful components. The composition of
mine tailings differs considerably from the mined waste rock in terms of texture,
mineralogy, and chemistry (Lotermosser 2010; Ranđelović et al. 2014). In addition,
the tailing characteristics can vary as they are conditioned by ore mineralogy and
physicochemical processes used during ore extraction.

Most of the major ore minerals are geochemically associated with certain metals
and metalloids. In addition, the different forms of metals or metalloids found in mine
wastes vary greatly in terms of solubility and mobility, which also determines their
potential environmental impact. Important factors influencing the release of these
elements into the surrounding environmental media are the geology of the mining
area, climate, topography, and the type of mining and processing activities applied
(Dybowska et al. 2006). Understanding metal speciation in such complex
environments is crucial to gain insights into the mobility, bioavailability, and
toxicity of metals. Various abiotic and biotic processes influence element speciation
and distribution, including adsorption and desorption of mineral surfaces, precipita-
tion, release through mineral dissolution, and interactions with plants and microbes
(Brown et al. 1999). When assessing the transport mechanisms and fate of elements
originating from mining sites, it is necessary to consider mineralogical and geo-
chemical conditions at the site (Ranđelović et al. 2019a).

The proportion of the total content of a chemical element or compound in an earth
material that can be released into the surface or near-surface environment by various
mechanical, chemical, or biological processes is known as geo-availability (Plumlee
1994), which refers to the susceptibility of the resident mineral to weathering
reactions (Rivera et al. 2015). Although elements originating from mineralized
resources may be present in large quantities in mine wastes or in the surrounding
environment, they may also be highly chemically bound and therefore not readily
available for release and mobilization. When elements are loosely bound in soluble,
exchangeable, or different adsorbed phases, they tend to be easily moved and
dispersed when environmental conditions change. The transition of an element
from the unavailable to the available form is regulated by various physicochemical
or biological conditions such as pH, redox potential, clay, and organic matter
content, competition from other ions (Smith 2007; Leita et al. 2009).

However, living organisms react to the specific part of the current concentration
of the element that is considered biologically available or bioavailable. Therefore,
many of the regulatory frameworks for the remediation of contaminated sites include
the bioavailability of the contaminant in the risk assessment processes (Kim et al.
2015). However, to date there is no generally accepted definition of bioavailability,

226 K. Jakovljević et al.



and the method of assessing it is not clearly defined. One of the widely accepted
definitions was created by the National Research Council Comitee (2003) and refers
to bioavailability processes, defined as the individual physical, chemical, and
biological interactions that determine the exposure of plants and animals to
chemicals associated with soils and sediments. Bioavailability can be used as a
tool for the selection of appropriate remediation strategies for contaminated sites
(Leita et al. 2013), whereby the effects of speciation on the bioavailability of
elements must be assessed and quantified. The bioavailability of metals includes
metal species that are biologically available and are absorbed or adsorbed by an
organism that has the potential for further distribution, metabolism, elimination, and
bioaccumulation (Drexler et al. 2003). Certain plants or animals living in or around
mining areas are often exposed to the accumulation of various elements present.
Similarly, living organisms that are able to cope with increased internal or external
concentrations of metals or metalloids may be used in remediation programs.

Some challenges for modern mining remained from past experiences include
remediation of legacy impacts, active protection of the environment and human
health, and the reduction of the negative impacts and ecological footprint of mining
operations (Carvalho 2017). To meet these challenges, there is a constant need for
research and application of clean technologies, sound environmental legislation, and
waste management.

9.2 Phytoremediation

Remediation of mine waste disposal sites is one of the main priorities of environ-
mental protection, particularly with regard to industrial development and its impact
on the environment. There are different schemes for mine waste sites remediation,
such as excavation, chemical stabilization, capping, electrokinetic treatments, ther-
mal procedures (Mendez and Maier 2008; Bech et al. 2014), with different imple-
mentation effectiveness and variable costs. In addition to these conventional
approaches, the use of plants in the treatment of these surfaces, i.e., the process of
phytoremediation, is increasingly emphasized. Four phytoremediation techniques
have been singled out, depending on the remediation mechanism of the
contaminated soil or water: (1) phytostabilization, or retention of pollutants in
plant roots, limiting translocation into the aboveground tissues and diffusion in the
soil; (2) phytoextraction or absorption of metals or metalloids in the roots with
intensive translocation into the shoot, where they are being accumulated;
(3) phytovolatization or absorption of organic pollutants by plants and their removal
in the atmosphere by volatilization; and (4) phytofiltration or removal of pollutants
from aqueous systems by their absorption and concentration in plant roots or their
submerged organs (Ali et al. 2013; Favas et al. 2014). However, phytoextraction and
phytostabilization can primarily be used in the treatment of mine sites.
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9.2.1 Phytoextraction in Mine Waste Sites

Phytoextraction (phytoaccumulation) is a process in which plants remove metals and
metalloids from the substrate through their accumulation/hyperaccumulation in the
aboveground plant tissues. After reaching full growth, the plants are mowed and
safely removed. The harvested material can either be disposed of as hazardous waste,
reused in metal extraction or used as biofuel (Pidlisnyuk et al. 2014; Ozyigit et al.
2020). In this way the amount of metal in the soil is reduced. Two main strategies for
phytoextraction are: continuous and assisted (induced) phytoextraction (Salt et al.
1998).

9.2.1.1 Continuous Phytoextraction in Mine Waste Sites
Continuous or long-term phytoextraction is based on hyperaccumulating plants that
are able to absorb, translocate and accumulate exceptional concentrations of metal/
metalloids in their aboveground tissues, without expressing toxicity symptoms (van
der Ent et al. 2013). There are different criteria regarding the accumulation capacity.
According to Baker et al. (1994), species with a shoot-to-root ratio > 1 are suitable,
while Krämer (2010) proposed exceeding the hyperaccumulation threshold as a
necessary criterion. In addition, the selected plants should be fast-growing with
high biomass, easy to cultivate, resistant to pathogens, and well adapted to the
local climate (Baker et al. 1991; Wójcik et al. 2017). There are several steps within
the process of hyperaccumulation of metals or metalloids in plants: uptake into the
root cells through the plasma membrane where specific compounds such as histidine
in the uptake of Ni prevent their sequestration in the roots and enhance their
movements (Deng et al. 2018). They are then transported through the xylem to the
aboveground parts of the plant, mainly into the leaves as the main storage organ, and
sequestered in the vacuoles in order to avoid toxicity (Tangahu et al. 2011).
Compartmentalization in the vacuoles decreases the surplus of metals or metalloids
ions, thus reducing the possibility of their interaction with metabolic processes in
plants (Assunção et al. 2003; Ali et al. 2013). Although a significant number of
hyperaccumulating plant species are known to date (about 700 species; Reeves et al.
2018), due to the low biomass only a small number of them can be used in the
phytoextraction process without the additional use of the inducing agents.

Sedum alfrediiHace, found in the Pb/Zn mine area in Zhejiang Province in China,
is one of the Zn hyperaccumulating plant species that also accumulates significant
amounts of Cd, as a geochemically related element. Particularly high amounts of Cd
were accumulated in the leaf stems with a shoot-to-root ratio of Cd concentration> 2
(Yang et al. 2004). In view of the high Zn and Cd levels in tailings, which occur in
Pb/Zn mines, S. alfredii could be a very good candidate for use in phytoremediation.

Pteris vittata L. is a known arsenic hyperaccumulator with exceptionally high
amounts of As accumulated predominantly in the aboveground tissues (with
22,630 mg kg�1 of As in the fronds as 93% of fully accumulated arsenic; Ma
et al. 2001). Similar concentrations of As have also been found in another species
of the same genus (Pteris longifolia L., P. cretica L. and P. umbrosa R.Br.; Zhao
et al. 2002), confirming the view that closely related hyperaccumulator species are
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prone to accumulate the same or similar metals (Xu et al. 2020). The distribution
analysis showed that higher quantities of As were detected in mature, even in
senescing fronds, compared to younger ones, predominantly in the lamina of the
pinnae, more than in the pinnae midrib and in the spores, and, at the cellular level, in
the upper and lower epidermal cells of the pinnae, most likely in their vacuoles
(Lombi et al. 2002; Han et al. 2020). In addition to the strong tolerance and the
extraordinary accumulation of As, this species proved to be an excellent candidate
for the remediation of As-rich tailings due to its fast growth and large biomass.
Co-accumulation of Tl and As was also recorded in P. vittata near an As tailing site
in Yunnan, SW China (Wei et al. 2020). Cadmium-tolerant ecotypes of P. vittata
could be used for simultaneous phytoextraction of As and Cd from the sites
co-contaminated with these elements (Xiyuan et al. 2008), whereas co-planting of
P. vittata withMorus alba L. or Broussonetia papyrifera (L.) L’Hér. ex Vent. could
achieve a more comprehensive phytoextraction of As, Zn, and Cd than these species
individually (Zeng et al. 2019).

The great potential for uranium extraction in vetiver grass (Vetiveria zizanioides
L. Nash) has been experimentally confirmed (Pentyala and Eapen 2020). Although
at low uranium concentrations (200 mg kg�1), most of the U is accumulated in the
roots, a strong translocation into the shoots was observed in plants exposed to
significantly higher concentrations (1000 mg kg�1). In addition, a high accumulation
rate was observed (17% of biomass) when exposed to 11,900 mg kg�1 of U. These
results indicate the strong ability of vetiver grass to survive in uranium-rich tailings
and to successfully remediate them.

Although related to perennial plants, effective phytoextraction could also be
achieved with woody species. It has been shown that Salix viminalis L. thrives in
soils heavily contaminated with single or multiple-metals/metalloids, especially As
(Mleczek et al. 2018). Moreover, most of the accumulated elements are translocated
into the leaves, which can be removed mechanically at the end of the season, thereby
removing a portion of pollutants from the contaminated substrate each year.
Although samples from mining sludge cannot achieve full growth compared to
those from non-contaminated substrate, significant amounts of pollutants can still
be removed according to Mleczek et al. (2018).

9.2.1.2 Assisted Phytoextraction in Mine Waste Sites
While hyperaccumulating plants continuously absorb considerable amounts of
metals or metalloids, in the induced or assisted phytoextractions, a significant
amount of pollutants is absorbed within a short time after the addition of some
agents. Recently, numerous studies have been conducted on mine waste sites and
sites contaminated by mining activities, in order to find effective ways to apply
assisted phytoremediation (Table 9.1). There are several ways to boost extractions,
such as the application of chelating agents (chelants), organic matter, fertilizers,
biosolids, biochar, biotechnological modification of plants, plant growth-promoting
bacteria, arbuscular mycorrhizal fungi, etc. (Fig. 9.2). These amendments improve
the extraction of pollutants by increasing their availability and thus the uptake by
plants and translocation into the aboveground tissues (Grčman et al. 2001). In this
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Table 9.1 Examples of assisted phytoextraction of mine wastes or sites contaminated by mine
activities

Mine waste/
site
contaminated
by mining
activities

Contamination
type Amendment Plant species Reference

Serpentine
mine tailing

Cr, Ni EDTA, DTPA,
LMWOAs

Brassica juncea Hsiao et al.
(2007)

Former Pb/Zn
smelter

Cd, Pb, and Zn EDTA Sinapis alba Kos et al.
(2003)

Open-pit Mn
mine

Mn EDTA Polygonum
pubescens

Yu et al.
(2019)

Cu
contaminated
soil

Cu EDTA, Cu-resistant
PGPB

Cucurbita pepo Abbaszadeh-
Dahaji et al.
(2019)

Pb/Zn mine
tailing

Pb, Cu, Zn EDTA,
rhamnolipid

Atriplex
nummularia, Zea
mays

Jordan et al.
(2002)

Soil
contaminated
with Pb/Zn
mining
wastewater

Cd, Zn Organic matter Sedum alfredii Wu et al.
(2006)

Tailing pond
of Pb/Zn mine

Pb, Zn, Cu, Cd Organic (pig slurry)
and inorganic
(marble waste)
amendments

Atriplex halimus Acosta et al.
(2018)

Iron mine
tailing

Cu, Zn, Pb, Cd,
Mn

Organic fertilizer,
rice husk, biochar,
ceramsite, and
micromycete
(Mucor
circinelloides)

Glycine max Li et al.
(2019a)

Soil
contaminated
with Pb/Zn
mining
wastewater

Cd, Zn Fertilizer Sedum
plumbizincicola

Wu et al.
(2006)

Polluted site
near Au mine

As, Sb Fertilizer Brassica juncea Wang et al.
(2018)

Cu mine
tailing

Cu Biochar Lolium perenne Santibáñez
et al. (2008)

Ag-Pb
extraction site

Pb Biochar Salix alba Lebrun et al.
(2017)

Au mine
tailing

Au, Hg Biosolids Brassica juncea,
Daucus carota

Alcantara
et al. (2015)

Contaminated
soil near
Pb/Zn mine

Cd PGPB (cd-resistant
rhizobacteria)

Brassica napus Li et al.
(2019b)

(continued)
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way, low accumulating species with fast growth rate and high biomass can be
successfully used, overcoming some of the disadvantages of continuous
phytoextraction, i.e., small biomass of hyperaccumulating plants with limited
depth that can be assessed by the plant roots, a limited (often small) number of
elements that can be absorbed this way, long time required for purification, etc.
(Bech et al. 2014; Pinto et al. 2015). Various types of chelating agents are currently
used in chelant-assisted phytoextractions, but ethylene diamine tetraacetic acid
(known as EDTA) proved to be the most effective so far (Grčman et al. 2001).
Besides the EDTA, some of the available synthetic chelants are:
diethylenetriaminepentaacetic acid (DTPA), hydroxylethylenediaminetetraacetic
acid (HEDTA), ethylene glycol-bis(β-aminoethyl ether)N, N, N0, N0-tetraacetic
acid (EGTA), etc. There are also natural or biodegradable chelating agents, such
as S–ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA),
methylglycinediacetic acid (MGDA), etc. (Evangelou et al. 2007). These chelating
agents, which are also readily degradable and therefore more acceptable for use,
have proven to be less effective than the more commonly used synthetic chelating
agents (Luo et al. 2006). A certain chelating efficiency was also observed with low-
molecular-weight organic acids or LMWOAs (oxalic, citric, malic, tartaric acid,

Table 9.1 (continued)

Mine waste/
site
contaminated
by mining
activities

Contamination
type Amendment Plant species Reference

Wmine tailing Cd, Zn PGPB
(Chryseobacterium
humi)

Helianthus annuus Marques
et al. (2013)

Pb/Zn mine
tailing

As, Cd, Cu, Pb,
Zn

PGPB (Bacillus
thuringiensis)

Alnus firma Babu et al.
(2013)

Bauxite mine
ore waste

Cd, Mn, Pb, Zn PGPB (Bacillus
cereus)

Jatropha curcas Narayanan
et al. (2020)

Pb-
contaminated
site

Pb Biotechnological
modification
(Agrobacterium
tumefaciens)

Nicotiana glauca Gisbert et al.
(2003)

As mine site As Arbuscular
mycorrhizal fungi

Holcus lanatus Gonzalez-
Chavez et al.
(2002)

Pb/Zn mine
area

Cd, Cu, Pb, Zn Arbuscular
mycorrhizal fungi

Ailanthus
altissima, Cotinus
coggygria,
Populus simonii,
P. purdomii,
Robinia
pseudoacacia

Yang et al.
(2015)

PGPB plant growth promoting bacteria
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etc.), but this was lower compared to the synthetic chelants (Liu et al. 2008). When
added to the soil, the chelating agent forms a complex with the metal, which is
usually absorbed by the plants via the apoplastic pathway and then translocated
within the plant (Komárek et al. 2010).

One of the examples was an experimental study conducted on serpentine mine
tailings, which indicated that the application of chelants could significantly increase
the uptake of Cr and Ni by Brassica juncea (L.) Czern., one of the main model
systems for various remediation techniques (Hsiao et al. 2007). Two groups of
chelants were used in the study, synthetic chelants such as EDTA and DTPA, and
natural low-molecular-weight organic acids (LMWOAs), such as citric and oxalic
acid. The results showed that synthetic chelating agents EDPA and DTPA, although
they increase the Cr and Ni concentrations in the soil solution more efficiently
compared to LMWOAs, simultaneously caused a more significant reduction in the
biomass of B. juncea. Therefore, although LMWOAs are less successful in the metal
extraction process, they are a more acceptable alternative from an environmental
point of view. Different Brassica species can also accumulate significant amounts of
Cd (Angelova et al. 2008; Bauddh and Singh 2012; Cojocaru et al. 2016). Although
this process depends on many factors, such as concentration and solubility of Cd and
physicochemical characteristics of soil, as well as on the selection of Brassica
species, it has been shown that Cd is absorbed in significant quantities and
transported to aboveground organs, even much easier than Zn and Pb (Angelova
et al. 2008; Rizwan et al. 2018). In addition to choosing the most suitable Brassica
cultivars, Cd accumulation can be enhanced by genetic modification, plant growth
regulators, soil organisms, organic acids, organic and inorganic amendments
(Nehnevajova et al. 2007; Meng et al. 2009; Yang et al. 2009; Feng et al. 2013;
Bauddh and Singh 2014; Zong et al. 2017; Kaur et al. 2018).

However, the use of chelating agents is not always sufficient for extraction
enhancement. Wu et al. (2006) showed that addition of a mixture of organic
additives not only improved the solubilization and extraction of Cd and Zn by
Sedum alfredii from contaminated soils in S China, but also reduced the leaching
of metals into the underground water, which only proved to be significant when
EDTA was used. Furthermore, it was observed that irrigation and application of
fertilizers particularly favors the extraction of Cd and Zn by Sedum plumbizincicola
X.H.Guo & S.B.Zhou ex L.H.Wu in Pb/Zn mine tailing by lowering the pH of the
soil and increasing metal availability (Jiang et al. 2010). Today, rare earth elements
(REEs) attract special attention because of the enormous possibilities of their
application, especially as essential components of electric vehicles, nuclear
technologies, sensors, batteries, etc. (Negrea et al. 2018). However, surviving on
soil rich in REEs is quite a challenge for plant species, and a small number of species
thrive on REE mine tailings. According to the results obtained so far (Grosjean et al.
2019), Phytolacca americana L., a fast-growing and widely distributed perennial
plant with huge biomass, has been shown to be able to hyperaccumulate up to 0.1%
REEs in the aboveground tissues, which is why it can be successfully used to extract
REEs and remediate their mine tailings. However, it has been found that the
efficiency of phytoextraction can be improved by adding organic amendments,
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such as organic material and biochar, mainly through the improved physicochemical
characteristic of the soil. Although both amendments are beneficial, it has been
shown that treatment with biochar has a greater potential to improve RRE extraction
by Ph. americana compared to organic material (Liu et al. 2020). Biochar is a
material highly efficient in heavy metal sorption, especially from contaminated
water (Shakoor et al. 2020). Due to its environmental-friendly characteristics and
easy application, it is one of the most favored biomaterials (Shakoor et al. 2020).
Additionally, biochar was found to be a useful amendment for immobilization of
contaminants thus contributing to assisted phytoremediation of various mine wastes.
Addition of biochar to the Pb/Zn mine tailings resulted in decreased mobilization of
elements such as Pb, Cd, and Cr in tailings, as well as the increased level of
macronutrients (K and P) followed by improved water retention, probably due to
promoted formation of microaggregates (Fellet et al. 2011). Similar was found by
investigations of Rodríguez-Vila et al. (2017) who stated improved soil conditions
(pH, carbon content, total nitrogen content) and reduced mobility of contaminants
(namely Al, Co, Cu, Fe, and Ni), coupled with increased germination of Brassica
juncea plants used for phytoremediation experiments on copper mine soils in Spain.
Generally, biochar-assisted phytoremediation is supported by a number of successful
small-scale examples (see Ghosh and Maiti 2020, for more details), but it is
necessary to take into account the biomass feedstock characteristics, pyrolysis
temperature, and type of present pollution for successful application of biochar for
such purposes.

According to Santibáñez et al. (2008), positive effects were observed in
phytoremediation of Cu-contaminated mine tailings when Lolium perenne L.,
widely distributed perennial grass, was used. The results of this study show that
this species, when grown on biosolid-treated tailings, is able to produce high
biomass as well as to limit erosion and potential leaching of toxic elements into
environment. The biosolids mixed with or applied to the surface of the tailings
increased the chlorophyll and nutrient concentrations in the shoots of the L. perenne,
thereby directly inducing plant growth. In addition, accumulated elements are mostly
retained in the roots, and only a small amount is transported to the aboveground
tissues.

Special attention should be paid to mine tailings in arid and semi-arid
environments, due to the high risk of aeolian erosion and potential spread of
contaminants. The best solution for stabilizing these areas is revegetation, but this
process usually requires the addition of organic material. As the source of organic
matter can be challenging to find or costly, especially for the large mine deposition
sites, the growth of plants can be enhanced with plant growth-promoting bacteria
(Grandlic et al. 2008). However, it is important to find the plant growth-promoting
bacteria tolerant to the main characteristics of tailings, such as increased amounts of
heavy metals and unfavorable pH values, so many studies involved species isolated
from the rhizosphere of plants present on the mining sites. Research of Li et al.
(2019b) on application of Cd-resistant plant growth-promoting bacteria isolates from
Pb/Zn mine on development of Brassica napus L. in pot experiments showed
improved Cd uptake in plant roots and shoots (48.09–79.73% in roots and
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7.38–11.98% in shoots, compared to the control), thus promoting phytoremediation
processes. Contrary to that, two metal-resistant plant growth-promoting bacteria
strains were found to reduce the losses in biomass of Helianthus annuus L. and
decreased concentration of metals in plant (Marques et al. 2013). Strain of
Chryseobacterium humi was more effective in that sense, decreasing content of Zn
by 67% and 64% in roots and shoots, respectively, and content of Cd by 27% in plant
roots, thereby increasing phytostabilization potential of H. annuus. So far, efficacy
of plant growth-promoting bacteria in microbe-assisted phytoremediation is
recognized predominantly in terms of promoted plant growth, biomass production,
and increased tolerance to metals, aiming at supporting the phytostabilization pro-
cesses on mine sites (Novo et al. 2018). The positive effects of plant growth-
promoting bacteria were also observed in biodegradation of polycyclic aromatic
hydrocarbons (PAHs) generated in crude oil refining (Sarma and Prasad 2016).
PAHs are difficult to degrade, and are therefore considered as one of the leading
pollutants. However, plant-microbe consortia proved to be highly efficient in their
removal, and even more effective in combination than when applying plants or
microbes separately (Sarma and Prasad 2015). In addition, their output can be
improved with biochars, through their positive impact on nutrient availability,
microbial biomass, systems of plants and microbes, etc. (Sarma et al. 2019).
Although application of these consortia is beneficial for PAH removal and soil
quality, certain limitations were observed. One of the most pronounced is poor
nutrient status, which can be overcome with simultaneous implementation of
plant–microbe consortia and nutrients (Sarma and Prasad 2016).

Another promising method of phytoremediation is the biotechnological modifi-
cation of plants to improve their metal tolerance and accumulation capacity. One of
the successful applications of this method has been the introduction and
overexpression of wheat genes that encode phytochelatin in Nicotiana glauca
Graham, a fast-growing, widely distributed plant species that is repellent for
herbivores (Gisbert et al. 2003). After modification, the roots of N. glauca elongated
to 160% of the length of the wild relative, while the amount of Pb absorbed doubled
(up to 1572 mg kg�1). According to these results, N. glauca can not only be
cultivated as an ornamental plant, but can also be successfully used for decontami-
nation sites polluted with of heavy metals. Besides the various Nicotiana species
(Misra and Gedamu 1989; Korenkov et al. 2007), Arabidopsis Heynh. was also
widely used in various transgenic modifications. In the study by Hsieh et al. (2009),
the binding protein for mercuric ion (MerP) from Bacillus megaterium de Bary 1884
was expressed in transgenic Arabidopsis. Considering that MerP is responsible for a
good accumulation of several metals/metalloids, the transgenic Arabidopsis has the
great ability to accumulate heavy metals and can be successfully used in the process
of remediation of contaminated soils.

Positive effects on metal extraction were observed in plant associations with
arbuscular mycorrhizal (AM) fungi. They participate in the additional supply of
nutrients and water to the plants and thus increase plant growth. Additionally, they
reduce the toxicity of pollutants by complexation or precipitation (Gonzalez-Chavez
et al. 2002). However, these effects were much more pronounced in
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non-hyperaccumulator plants then in true hyperaccumulator plants (Gaur and
Adholeya 2004). Due to the mycotoxic effect of copper, AM fungi cannot be used
for the remediation of surfaces contaminated with this metal (Ernst 2005).

Researches with combination of different amendments for enhanced
phytoremediation are recently emerging, trying to combine advantages of single
amendments. For instance, Radziemska et al. (2020) investigated influence of
immobilizing amendments mixtures on assisted phytoremediation with Festuca
rubra L. in pot experiments. Use of halloysite and compost mixture showed increase
in aboveground biomass of F. rubra, followed with decrease in concentration of total
and mobile Pb in the soil compared to the control. Moreover, mean content of Pb in
shoots of F. rubra decreased by 28%, while bioconcentration factor reached the
value of 2.78 (in comparison to <1 of the control). Similarly, Abbaszadeh-Dahaji
et al. (2019) showed that combined application of chelate EDTA and Cu-resistant
plant growth-promoting bacteria increased uptake of Cu in shoots of Cucurbita pepo
L. four times compared to the control, while additionally increasing its mobility in
soil by reducing the Cu concentration bound to Fe and Mn oxides and increasing the
soluble and exchangeable Cu concentration.

9.2.2 Phytostabilization in Mine Waste Sites

In addition to often enormous quantities of metals/metalloids, mine waste deposits
are rather inhospitable habitats for most plants due to their other hostile
characteristics, such as unfavorable pH values (often extremely low or high),
nutrient deficiency, low water retention capacity, and susceptibility to erosion
(Conesa et al. 2007; Shi et al. 2011). Of particular importance is the risk of erosion
due to the effects on the stability of tailings and eventually their collapse, as well as
the potential leaching of toxic material (e.g., acid mine drainage) into the environ-
ment (Salomons 1995; Conesa et al. 2007). In contrast to phytoextraction, the main
objective of phytostabilization is the immobilization of contaminants in soil by
reducing their availability and the possibility of leaching into the surrounding soil
or water (Lee 2013). Bioavailability is reduced by binding to the soil matrix through
root exudates or by accumulation in or adsorption by the roots (Tangahu et al. 2011).
While hyperaccumulating plant species are recommended for the phytoextraction,
metal-tolerant grasses are the best choice for phytostabilization (Prasad 2006).
Numerous previous studies indicated that grasses could be successfully used to
stabilize Pb/Zn/Cd-contaminated sites (Shu et al. 2002; Ranđelović et al. 2018).

Shu et al. (2002) investigated the potential of several grasses in revegetation and
stabilization of Pb/Zn tailings in Guangdong Province, S China. They conducted a
field experiment to compare the growth rate of Cynodon dactylon (L.) Pers.,
Imperata cylindrica var. major (Nees) C.E.Hubb., Paspalum notatum Flüggé, and
Vetiveria zizanioides on the tailings rich in heavy metals, such as Pb, Zn, Cu, and Cd,
and at the same time extremely poor in organic matter and nutrients (N, P, K). Their
results showed that Vetiveria zizanioides reached the highest growth rate and height
among the species studied, with a 100% coverage. Thanks to its favorable
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morphological characteristics, this species is already traditionally used in erosion
control. At the same time, its physiological specificity in terms of tolerance to high
concentrations of heavy metals, but also to a wide pH range (2.7–9.5), allows it to be
used in the stabilization of various mining overburden, as has been demonstrated in
coal and gold mines in Australia (Truong 1999). Furthermore, this species was
widely used in Pb/Zn mines in China due to its exceptional revegetation potential
(Prasad 2006). The phytostabilization potential of this species was also confirmed by
Meeinkuirt et al. (2013) in the experimental study conducted on Pb-tailing soil in W
Thailand, when it was found that Thysanolaena maxima (Roxb.) Kuntze also
showed a significant potential for stabilization of Pb-tailings, with BCF > 1 and a
shoot-to-root ratio (TF) < 1 in all experiments. Both species have favorable features
for phytostabilization, such as metal tolerance, rapid growth, high biomass, massive
root system, autochthonous character (Meeinkuirt et al. 2013).

Similar characteristics were observed in Calamagrostis epigejos (L.) Roth, which
successfully inhabits various degraded habitats, thus significantly reducing the risk
of erosion by extensive rhizomes and building of a dense vegetation cover (Lehmann
and Rebele 2004; Ranđelović et al. 2020). Furthermore, C. epigejos shows tolerance
to elevated heavy metal concentrations, especially Pb, Zn, Cd, and Cu, which it
stores in significant amounts in the roots (Mitrović et al. 2008; Ranđelović et al.
2018). At the same time, only a small fraction of heavy metals is translocated into the
aboveground tissues, suggesting exclusion as a strategy of this species (Lehmann
and Rebele 2004). Although the accumulated amounts of heavy metals in the roots
of C. epigejos were not as pronounced, its revegetation potential should not be
neglected, especially in view of the wide range of anthropogenically devastated sites
where it can successfully thrive (Ranđelović et al. 2018).

Due to its high biomass production and known metal tolerance, Miscanthus spp.
could be used simultaneously in phytostabilization and energy crop production, with
its growth additionally improving the substrate properties (Pidlisnyuk et al. 2014). A
2-year field trial was carried out on the flotation tailings contaminated with Pb, Cu,
and Zn at Rudnik Mine (Serbia), whereMiscanthus� giganteus acted as an excluder
of Cu, Zn, and especially Pb, and it was shown that it could be cultivated on the
abandoned flotation tailings. Fertilization with NPK fertilizer improved metal uptake
by the plant roots, but did not affect their translocation into the leaves. Fertilization
also had a significant positive effect on biomass yield, chlorophyll content, and the
potential efficiency of the photosystem II photochemistry (Andrejić et al. 2019).

A positive effect on the phytostabilization process has been observed during
application of the sewage sludge, which in combination with plant growth can
stabilize metals in acidic mine tailings and thus prevent the mobilization of metals
in food webs (Kacprzak et al. 2014). The reduction of heavy metal uptake was
achieved by a reduced availability of metals and their stabilization in the soil after the
sludge was applied, due to the effects on pH and Eh of the soil. Although there were
obviously positive effects on metal stabilization, there is, however, a number of
obstacles that need to be removed to make this process successful over a long period
of time (disposal and exploitation of wastewater used for the production of sewage
sludge, instability of the pH of the soil solution, etc.) (Kacprzak et al. 2014).
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One of the consequences of mining activities with significant environmental
impact is the production of acid mine drainage. Certain remediation measures
could reduce acidity and improve the chemical properties of the polluted soil.
According to RoyChowdhury et al. (2019), satisfactory results have been achieved
by using drinking water treatment residues and perennial grass Chrysopogon
zizanioides L. The role of drinking water treatment residues (WTRs), formed during
the treatment of drinking water, is to bind metals and neutralize the acidity of mine
drainage, while Ch. zizanioides, fast-growing grass with high biomass and extensive
root system, is intended to prevent substrate erosion. Both laboratory and field
studies confirmed that WTRs effectively increase pH and reduce metal bioavailabil-
ity and leachability by adsorbing them on its surface. Additionally, Ch. zizanioides
reduces the risk of erosion in great extent.

It is reported that Brassica juncea, Indian mustard, hyperaccumulates Pb, which
is a rare phenomenon in nature. It has been shown that when this species grows in
soil with 500 mg kg�1 Pb, it accumulates 2675 mg kg�1 of this element (Begonia
et al. 1998). Due to its low mobility, a large part of the accumulated Pb is retained in
the root, which makes this species a good candidate for the phytostabilization
process. However, this process has some shortcomings. Namely, Pb availability
increases under restricted phosphate conditions, such as in mine tailings, but at the
same time plant yield is significantly reduced, which significantly decreases the
efficiency of the process (Chaney and Baklanov 2017).

Das and Maiti (2007) investigated the accumulation potential of the semi-aquatic
plant species Ammannia baccifera L., which grows in a marshy area of the tailings
pond rich in untreated waste left behind after the closure of a copper mine in India.
The observed average amounts of Cu and Ni in tailings from the rhizospheric zone of
A. baccifera were 1779 and 564 mg kg�1, respectively. Analysis of the metal
concentration in the tissues of A. baccifera tissues showed that this species effec-
tively accumulates Cu in concentrations up to 1000 mg kg�1, exceeding the
hyperaccumulation threshold of 300 mg kg�1 (van der Ent et al. 2013). However,
considering that a large part of the accumulated Cu retained in the roots, A. baccifera
cannot be considered a true hyperaccumulator (TF < 1; van der Ent et al. 2013), but
can be successfully used for metal stabilization of copper tailings.

A significant potential for stabilization of mine waste through revegetation has
been observed for certain woody species. Namely, it was found that shrub species
such as Sesbania cannabina (Retz.) Pers. and Amorpha fruticosa L. are able to
absorb significant amounts of heavy metals in Pb/Zn and Cu tailings. At the same
time, the translocation and bioconcentration factors were < 1, indicating an exclu-
sion strategy in heavy metal tolerance and thus a potential in the tailing revegetation
(Shi et al. 2011). The results of this study showed that A. fruticosa is highly tolerant
to heavy metal excess in both tailings and maintains normal growth, while S.
cannabina, although with significant biomass, showed stress symptoms in the
form of reduced growth.

In the study carried out by King et al. (2008), the phytostabilization potential of
eucalyptus species was assessed taking into account their high ecological plasticity
and wide distribution. Four eucalyptus species were grown in Australia in gold mine
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tailings particularly rich in As. The results showed that Eucalyptus cladocalyx F.
Muell. reached a much higher height compared to the other species, which is not
correlated with the As concentration in substrate. At the same time, low
concentrations of As were found in the stems, with no As detected in young leaves,
which is especially important to prevent As entering the food chain. Although
additional studies are needed to improve the remediation characteristics of this
species, E. cladocalyx is a good choice for the long-term phytostabilization of
As-rich tailings.

9.3 Limitations of Phytoremediation

In addition to the numerous advantages of using phytoremediation techniques in the
treatment of mine waste disposal sites, there are a number of shortcomings that may
limit their use in practice. When considering the time required to successfully carry
out the phytoextraction process, the main disadvantage is that the application of
phytoremediation techniques usually takes longer than more conventional
approaches (Mendez and Maier 2008; Sarma 2011; Antoniadis et al. 2017), which
is particularly true for continuous phytoextraction. Furthermore, according to
Wójcik et al. (2017), phytoextraction should not be the first choice for the remedia-
tion of areas hardly affected by mining activities, as it is only effective in moderately
polluted soils, which is why it is necessary to start with soil stabilization and reduce
the contamination rate.

An additional problem is the choice of the appropriate species, especially in the
process of phytoextraction. Of the approximately 700 hyperaccumulator plant spe-
cies known to date (Reeves et al. 2018), most of them are able to hyperaccumulate
only one, rarely two elements, while mine waste disposal sites are mostly
contaminated with a whole group of geochemically related metals or metalloids
(Sarma 2011). In addition, hyperaccumulator plant species are mostly characterized
by a low or very low biomass, which makes the phytoextraction process inefficient at
the beginning. The low biomass is the reason why Noccaea caerulescens (J.Presl &
C.Presl) F.K.Mey. is not considered a suitable species for the phytoextraction
process, despite the enormous concentrations of Zn and Cd it can adopt
(Purakayastha and Chhonkar 2010). Similarly, despite high or even extremely
high concentrations of Ni, Zn, and Cd found in certain accessions of Noccaea
praecox (Wulfen) F.K.Mey. and N. kovatsii (Heuff.) F.K.Mey, these species could
not be considered suitable candidates for the phytoextraction of these elements due
to their low biomass (Mišljenović et al. 2018, 2020). The same applies to Potentilla
griffithii Hook.f., a newly discovered Zn hyperaccumulator which grows in the
Pb/Zn mine at Yunan Province in SW China with as much as 193,000 mg kg�1 of
Zn, without showing any serious toxicity symptoms (Qiu et al. 2006). Although a
high accumulation rate of several toxic elements (Pb, Zn, Cu, Cd, As, Sb) by active
absorption has also been found in samples of Tussilago farfara L. from several
mining sites in Serbia, the species would not be a suitable candidate for
phytoextraction of these elements. On the other hand, as a pioneer species, with
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high ecological plasticity, it could play an important role in the early stages of
revegetation of heavily contaminated sites, which would reduce the risk of spreading
trace elements to adjacent habitats (Jakovljević et al. 2020). However, biomass
problems can be related also to the plants with high yields, considering that it varies
every year, sometimes to a very large extent (Antoniadis et al. 2017).

Though their effects on the extraction of metals/metalloids from contaminated
media are significant and very rapid, the use of chelants in the assisted
phytoextraction process could promote the leaching of both potentially toxic
elements and chelants into the surrounding soil (Tangahu et al. 2011). This way,
the substrate is additionally loaded with pollutants, and the extraction process itself
becomes inefficient and counterproductive. Moreover, one of the major
shortcomings of chelant-assisted phytoextraction is the fact that high amounts of
chelants are needed to make the process effective, which makes this activity very
expensive (Chaney and Baklanov 2017). There is also a risk of increasing the
availability of other metals that a particular species cannot absorb, and leaching of
chelants is also very likely, raising concerns about this process (Nowack et al. 2006).
Although it is possible to use biodegradable chelants, such as EDDS, the usefulness
of using chelants in assisted phytoextraction remains questionable, and perhaps this
method can be considered insufficiently profitable in the remediation of mine waste
sites.

Large-scale trials and applications of phytoremediation technology are still rarely
represented in practice, as they encounter certain obstacles. Although various
phytoremediation models in the plant–soil–atmosphere system are used for the
preliminary evaluation of phytoremediation results (Baltrėnaitė et al. 2017), many
complex natural interactions and stress factors that can limit the success of
phytoremediation are not obvious in laboratory or pot experiments.

Even though phytoremediation projects on a field-scale emerged since the 1980s
and a number of companies offering commercial phytoremediation services have
been established in the United States, Canada, and Europe (Glass 1999; Baltrėnaitė
et al. 2017), only limited information is available on their results, cost, and duration.
While the projects carried out in Canada and the United States were mainly focused
on the remediation of petroleum hydrocarbons and metals, the projects in Europe
were mainly focused on the remediation of metal and radionuclide pollution (Glass
1999). In a long-term field-scale phytoremediation project that has been conducted at
the Anaconda smelter site (USA) since 1995, over 36 species of grasses, forbs, and
shrubs were tested for their efficiency in phytostabilization of As, Cd, Cu, and Zn
content in mining and smelting site (EPA 2005). Some field scale studies were
carried out to explore the phytoremediation potential of triticale, Helianthus annuus,
Brassica juncea, and Sorghum bicolor (L.) Moench for immobilization of heavy
metals and radionuclides in an area of the former uranium mine in Germany. The
results showed an immobilization of metals and radionuclides in the rhizosphere by
phytostabilization, followed by a significant reduction of the seepage water rate,
showing that phytoremediation was a suitable method for the remediation of large-
scale sites with low to medium heavy metal and radionuclide contamination
(Willscher et al. 2013).
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Though the market for phytoremediation was growing at the beginning of the
twenty-first century, recent decades have shown that its potential has not yet been
fully exploited (Conesa et al. 2012). Some of the main obstacles to the development
of commercially applicable phytoextraction projects are: the time-frame required to
remediate the soil up to valid regulation limits and the following utilization of
contaminated biomass. In the case of marginal land (such as mine wastes and
other former mining sites) with no demand for immediate land use and short-term
economic value, it is not the time constraints that are crucial, but the problems arising
from the treatment and handling of contaminated biomass. According to Wang et al.
(2020), to increase sustainability of phytoremediation, future research should focus
on creating the ways of limiting secondary pollution emerging from biomass treat-
ment, and to incorporate social and economic impacts in life cycle assessment of
phytoremediation projects.

9.4 Conclusion and Future Investigations

Although phytoremediation is considered a cost-effective and environmentally
friendly technology, there are currently no large areas affected by this type of soil
pollution reduction. It is therefore necessary to make much more effort to develop
new, and to improve existing phytoremediation procedures. In this respect, several
steps should be taken to make this process feasible and more successful: understand-
ing the mechanisms of uptake and accumulation of metals/metalloids by plants,
carrying out pilot and laboratory-scale trials followed by full-scale and field trials to
meet the most optimal criteria for the application of appropriate techniques, and
seeking new techniques that would be more successful in solving contamination
problems while minimizing environmental impact (Bini et al. 2017).

There are many challenges that must be addressed during the phytoremediation
process. In the process of phytoextraction, it is necessary to properly treat or dispose
the plant material removed from contaminated surfaces and to ensure that the
accumulated metals/metalloids do not spread or leach out into the environment.
There are, however, several possibilities for the use of this material. In addition to a
significant amount of metals and metalloids extracted from the soil, plant material
also contains lignin, cellulose, hemicellulose, and many other compounds with
significant calorific value, all of which have significant potential for further use
(Jiang et al. 2015). Coupling phytoremediation with bioenergy production is one of
synergistic opportunities that offer potential economical valorization of biomass in
the form of renewable energy. However, the sustainability of bioenergy production
from polluted lands still needs to be proved by demonstrating feasibility by large-
scale trials, as well as by selection of adequate methods for processing contaminated
feedstocks to biofuels (Gomes 2012; Tripathi et al. 2016). Another way of utilizing
biomass after the phytoremediation process is developed through phytomining,
process in which metals/metalloids are extracted from the low-grade ores or metal-
enriched soils by using hyperaccumulator plant species that concentrate metals in
their aboveground parts. After moving, their biomass is processed via combustion
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and metals/metalloids are recovered from ash in the form of elements or their salts
that could be sold on market, while energy released during the combustion can also
be exploited for adequate purposes (Zhang et al. 2014; Simonnot et al. 2018).

Recently, pre-orientation from phytoremediation strategies to so-called
phytomanagement approaches is taking place, focusing on gradual elimination of
environmental risk while simultaneously restoring ecosystem services of mining
lands (Gerhardt et al. 2017). Current environmental regulations and practices,
directed to the overall concentration of environmentally harmful elements, require
a shift toward the recognition of risk-based approaches taking into account the
bioavailable concentration of elements that should be removed from soils during
the phytoremediation process. Mean factors of contaminant transfer into bioavail-
able fractions within the mine soil matrices should be identified and made accessible
in this sense. Furthermore, bioavailability is crucial to assess the success of the
phytoremediation technology, as many researchers today consider bioavailable
fractions when calculating the bioconcentration factors of plant species (Petruzzelli
et al. 2015; Ranđelović et al. 2019b). Similarly, it is recognized that the overall
efficiency of the phytoextraction process can be increased by manipulating the
bioavailability through the application of various single or combined amendments
(Khan et al. 2018). Biomass valorization for use as an energy resource, biochar,
timber, or for purpose of metal recovery could provide additional economic benefits
that could justify the cost and timeframe for site remediation, as showed by recent
studies (Jiang et al. 2015; Gerhardt et al. 2017). Additionally, integration of
phytoremediation with other remediation methods or their successive use for reme-
diation of contaminated sites could aid to the wider application and more successful
implementation of phytoremediation technologies. Similarly, emergence of new
pollutants and their wider dispersion into the environment could also open
opportunities for wider application of phytoremediation technologies. Generally,
wider acceptance of phytoremediation as proven, effective and sustainable technol-
ogy requires development of more innovative and efficient approaches that would
aid to overall feasibility of the process, including the economical valorization of
gained biomass and mitigation of environmental risks.
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Abstract

Metal(loid) contaminated soils are a big issue worldwide due to their negative
effects on the environment and human health. Phytoremediation, using plants and
their associated microorganisms, can reduce the toxic impacts of these soils on the
environment and human health. The success of phytoremediation will depend on
the plant species. Metallicolous ecotypes are good candidates due to their toler-
ance towards the pollutants present in the soil. Moreover, microorganisms, and
especially bacteria, can influence phytoremediation by affecting plant growth and
pollutant mobility and bioavailability. Finally, due to the extreme soil conditions,
amendments are often required to improve soil fertility (compost, manure) and
reduce pollutant mobility (biochar, red mud). This chapter will show the potential
of various metallicolous plant species found on metal(loid) polluted sites, which
were associated with amendments and/or bacterial consortia, isolated from the
soil and selected based on their tolerance towards particular metal(loid)s, for the
stabilization of mine deposits.
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10.1 Introduction

Soil pollution by metals and metalloids is an important issue worldwide. Indeed,
more than 60% of the polluted soils have excess concentrations of metal(loid)s and
total petroleum hydrocarbons (Carré et al. 2017). One of the main sources of the soil
metal(loid) pollution is the mining activities, past and present, which have strongly
affected the operating sites (Vareda et al. 2019). Moreover, polluted area releases a
mixture of pollutants to the surrounding environment. Such metal(loid) pollutions
pose a problem for the environment and are known to be toxic to humans, inducing
chronic diseases and cancers (Ashraf et al. 2019). They also decrease soil fertility
and thus the biodiversity (Ashraf et al. 2019). Therefore, after the cessation of the
extraction activities, the mining technosols need to be remediated. To this end, many
physical and chemical techniques have been used; however, such methods are
expensive, destructive for the soil, can induce a secondary pollution and render the
soil improper for vegetation. The biological remediation, using plants and/or
microorganisms, is a more environmental friendly and cost-effective method. It is
divided in two techniques: the phytoremediation, which uses plants to reduce the
toxic risk of contaminated soils (Awa and Hadibarata 2020), and the bioremediation,
in which microorganisms can affect metal(loid) behavior, making them less toxic
and less mobile (Wang et al. 2017a). Thus, plants and microorganisms can be used
together, bringing mutual benefits and leading to a more efficient soil remediation.
The success and efficiency of a biological remediation process will depend on the
plants and the microorganisms selected. They need to tolerate the soil conditions,
especially the high pollution level and the poor soil fertility. Therefore, the use of
plants that are native of the site or found in the vicinity of the polluted soil can have
better results than the implementation of foreign species, since they are already
tolerant to the climatic conditions and the pollution encountered on the site. For
instance, Deng et al. (2007) collected Sedum alfredii seeds on two mines as well as a
clean soil and performed a hydroponic experiment to evaluate their tolerance
towards Cd and Zn. For each treatment, the populations from the contaminated
sites grew better and produced a higher biomass than the population collected on
unpolluted area and accumulated higher amounts of Zn and Cd in their leaves and
stems, demonstrating the higher tolerance of the endemic populations. Similarly, Wu
et al. (2009) grew non-metallicolous and metallicolous populations of Pteris vittata
on an As contaminated soil and observed that the metallicolous ecotype performed
better in terms of biomass production and restriction of As uptake than the
non-metallicolous population. Finally, Agrostis, a facultative metallophyte of the
Poaceae family, has been found on many contaminated sites and showed good
potential for the remediation of those sites (Nandillon et al. 2019b; Dahmani-Muller
et al. 2000; Doubková and Sudová 2016; Sudová et al. 2008). In the bioremediation
strategy, microorganisms are inoculated to render metal(loid)s less toxic, as they
cannot be degraded. For this, they use mechanisms such as extracellular complexa-
tion, intracellular accumulation, oxidation-reduction, and precipitation (Ashraf et al.
2019). Moreover, some microorganisms possess some plant growth promoting
properties, which can ameliorate plant growth (Rahman and Singh 2020). Similarly
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to the plants, which have to be able to develop and grew in the soil, the inoculated
microorganisms need to be tolerant to the soil conditions including the pollution
present. That is why, endemic species selected from the soil to be remediated can
lead to better outcomes than non-endemic strains.

Metal(loid) polluted mining technosols often have low nutrient and organic
matter contents, extreme pH and high pollution levels, which hinder plant and
microorganism growth and activity and thus reduce the remediation efficiency.
Therefore, to increase remediation success, it is necessary to ameliorate the soil
conditions, which can be obtained by applying amendments to the soil. These
organic or inorganic amendments will have potentially two interests: they will
ameliorate the fertility of the soil, by providing nutrients and organic matter, and
they will also reduce metal(loid) stress towards plants and microorganisms, by
reducing their mobility and/or availability (Lebrun et al. 2017, 2018; Nandillon
et al. 2019a). Diverse amendments can be used, such as biochar, compost/manure,
iron sulfate, and red mud, which demonstrated, in many studies, efficiency towards
metal(loid) immobilization, fertility improvement, and plant growth amelioration
(Lomaglio et al. 2018; Nandillon et al. 2019a, b; Lebrun et al. 2020).

In the present chapter, divided in four parts, we will focus firstly on soil pollution
with a special emphasis on the remediation techniques. Secondly, a brief overview
will be done on the potential of metallicolous plant species for the remediation of
metal(loid) contaminated soils. In a third part, the selection and inoculation of single
bacterial strains or microbial consortia will be described in order to explain their
beneficial roles. Finally, the association of plant, amendment, and microbial inocu-
lation will be outlined, focusing on the advantages of such combination for the
alleviation of metal pollution in mining environments.

10.2 The Soil Pollution and the Remediation Techniques

Around the world, the number of contaminated sites and potentially contaminated
sites has been estimated at 10–20 million (Carré et al. 2017). The sources of such
pollution are natural or anthropogenic (Ahmad et al. 2015). The natural sources are
the weathering of the parent material as well as the volcanic activities; these
activities usually cause small concentrations of available metal(loid)s. However,
the human activities are responsible for high available levels of pollution. The
anthropogenic sources are the industrial and domestic waters, the use of fertilizers
and pesticides in agriculture, the mining, smelting and industrial processing
activities as well as the transport (Vareda et al. 2019; Ashraf et al. 2019). Many
pollutants, organic and inorganic, are found in soils, such as nitrogen and phospho-
rus, hydrocarbons, radionuclides, and metal(loid)s. Among them, metal(loid)s are
the most important ones, found in more than 50% of the contaminated soils world-
wide (Rodríguez-Eugenio et al. 2018; Khalid et al. 2016). Metal(loid)s pose envi-
ronmental and health issues. Indeed, contrary to organic pollutants, they cannot be
degraded and thus accumulate in the soils for centuries. They are also toxic to plants,
altering their metabolism and reducing their growth (Ashraf et al. 2019). Moreover,
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metal(loid) polluted soils are subjected to wind erosion and water leaching, which
transport the contamination to the surrounding non-contaminated environment. In
addition, metal(loid)s are classified as carcinogenic and induce other health problems
such as chronic weakness, nervous system disorders, and biochemical imbalance
(Bissen and Frimmel 2003; Jaishankar et al. 2014; Rodríguez-Eugenio et al. 2018;
Ashraf et al. 2019). Consequently, there is an important need to remediate those
metal(loid) polluted areas, to avoid the adverse impacts of metal(loid)s and thus
reduce the environmental risk (Awa and Hadibarata 2020).

Remediation techniques are divided in three types of processes: physical, chemi-
cal, and biological. The physical and chemical remediation techniques have been
used for a long time because they are faster than the biological remediation
techniques.

Physical remediation is divided in four main techniques: soil replacement, surface
capping, encapsulation, and thermal desorption. The removal of the contaminated
soil and its partial or complete replacement by a clean soil is called soil replacement.
Such technique dilutes the metal(loid) content and improves soil fertility (Khalid
et al. 2016; Gong et al. 2018). In the surface capping, the polluted soil is covered by a
geotextile layer covered with garden soil. This capping will support vegetation and
reduce water leaching (Liu et al. 2018). For soil encapsulation, physical barriers are
placed all around the polluted soil to limit leaching and horizontal metal(loid)
migration (Khalid et al. 2016). Finally, in the thermal desorption, the soil is heated,
using steam, microwave, or infrared radiations. This technique induces the volatili-
zation of the pollutants that need to be collected (Gong et al. 2018).

The chemical remediation is also subdivided into different strategies, such as soil
washing, solidification/stabilization, vitrification, electrokinetic and oxidation/neu-
tralization/reduction. For soil washing, the soil is removed from the site and mixed
with chemical reagents or extractants that remove the metal(loid)s. The cleaned soil
is then returned to the original site (Gong et al. 2018). Similarly, the soil needs to be
excavated for solidification and stabilization processes. In solidification, binding
agents are applied, leading to the formation of water proof solids that encapsulate the
pollutants, whereas in stabilization, chemical reagents are added to the soil to reduce
the mobility and toxicity of the metal(loid)s (Liu et al. 2018; Nejad et al. 2018).
When vitrification is performed, the soil is excavated and heated at high
temperatures, between 1600 and 2000 �C, which incinerates the organic and mineral
matters. The soil is thus transformed into glasslike solids having a smaller volume
(Liu et al. 2018; Nejad et al. 2018). The electrokinetic method consists to add to the
soil a buffer solution and to apply a low intensity current between a cathode and an
anode placed inside the soil. Under this current, and according to their charge, the
metal(loid)s migrate, to the anode or to the cathode. Metal(loid)s are then recovered
and treated (Gong et al. 2018; Liu et al. 2018). Finally, the oxidation/neutralization/
reduction processes use solutions to detoxify, precipitate, or solubilize metal(loid)s
(Hamby 1996; Mulligan et al. 2001).

The different physical and chemical remediation techniques are summarized in
Table 10.1. These techniques have been highly used in the past because they are
usually fast. However, they render the soil improper for vegetation and can even
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induce a secondary pollution, especially with the use of chemical solutions, and have
a high cost, especially if applied on large areas. That is why, clean-up techniques are
now turning towards a more sustainable and cost-effective remediation method,
which advocates the implementation of biological approaches for the remediation
of these contaminates sites.

The term “biological remediation” englobes the use of plants and microorganisms
in order to reduce the toxic effects of polluted soils. It is divided in two main
processes: the phytoremediation and the bioremediation. The phytoremediation
uses plants to remove metal(loid)s or stabilize them into a harmless form (Liu
et al. 2018). Different phytoremediation techniques exist, depending on the fate of
the pollutant in the plants: phytovolatilization, phytodegradation, phytoextraction,
and phytostabilization. They are illustrated in Fig. 10.1. Phytovolatilization is
mainly applicable to organic pollutants and Hg, Se and As, which are uptaken by
the plants, transformed into a less toxic and volatile form and then released into the

Table 10.1 Definitions of the physical and chemical methods to remediate a contaminated soil

Remediation
type Method Definition References

Physical Soil
replacement

Excavation of the soil and replacement by
a clean soil

Khalid et al.
(2016), Gong
et al. (2018)

Physical Surface
capping

Geotextile cover installation on the
surface, which supports vegetation and
reduces water leaching

Liu et al. (2018)

Physical Soil
encapsulation

Physical barriers set up on the soil surface
and underground to prevent horizontal
and vertical transfer

Khalid et al.
(2016)

Physical Thermal
desorption

Heating of the soil and collection of the
volatilized metal(loid)s

Gong et al.
(2018)

Chemical Soil washing Excavation of the soil, mixing with
reagents or extractants and return of the
clean soil to the original site

Gong et al.
(2018)

Chemical Solidification Encapsulation of the soil by mixing with
binding agents

Liu et al. (2018),
Nejad et al.
(2018)

Chemical Stabilization Application of chemical reagents to
reduce metal(loid) toxicity and mobility

Liu et al. (2018),
Nejad et al.
(2018)

Chemical Vitrification Heating of the soil at high temperatures
and transformation into glass like solid of
a smaller volume

Liu et al. (2018),
Nejad et al.
(2018)

Chemical Electrokinetic Application of a current between two
electrodes and recovery of the metal
(loid)s

Gong et al.
(2018), Liu et al.
(2018)

Chemical Oxidation/
neutralization/
reduction

Application of solutions to detoxify,
precipitate, or solubilize metal(loid)s

Hamby (1996),
Mulligan et al.
(2001)
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atmosphere (Haq et al. 2020; Awa and Hadibarata 2020). In the phytodegradation,
pollutants are taken up by the plants and break down at the root or aerial level into
smaller molecules (Mirck et al. 2005; Wenzel 2009); however, this technique is only
suitable for organic pollutants and cannot be used for metal(loid)s, as they are not
degradable. Phytoextraction is one of the two main phytoremediation techniques. In
this process, plant roots uptake the pollutants from the soil, or water, which are then
translocated and accumulated in the aerial tissue. This aerial biomass is then
harvested and incinerated (Haq et al. 2020; Awa and Hadibarata 2020). The other
main phytoremediation technique is phytostabilization, which uses plants to stabilize
the pollutants in the soil, and especially in the rhizosphere, but does not remove the
pollution (Awa and Hadibarata 2020; Liu et al. 2018). The phytoremediation has
many advantages over the physical and chemical remediation techniques: it has a
low cost, it is environment-friendly, it requires little manpower, it is aesthetically
pleasing, and it is a passive approach, relying on solar energy (Haq et al. 2020; Awa
and Hadibarata 2020; Ashraf et al. 2019; Nejad et al. 2018). Additionally, the
establishment of a plant cover will reduce water leaching and wind erosion,
protecting the surrounding environment. It will also restore the functionality and
biodiversity of the ecosystem. Finally, the biomass produced on the sites can be
valorized for energy and biofuel production, adding an economical benefit to the
remediation process. Such valorization of marginal sites by manipulating the soil-
plant system to produce biomass of economic value is called phytomanagement
(Kidd et al. 2015; Evangelou et al. 2015). However, phytoremediation also has some
limitations, the most important one being time, as several plant growing periods are
required to clean a soil. In addition, only the subsurface layer of the soil, prospected
by the roots, is cleaned (Haq et al. 2020; Ashraf et al. 2019). Therefore, the choice to
use phytoremediation, and which technique, will depend on the societal pressure
exerted on the site as well as the pollution level. When a soil contains high
concentrations of metal(loid)s at an important depth, it is not feasible to use
phytoextraction, as it will take centuries and will require the harvest and proper
disposal of the contaminated biomass, which add an extra cost. Therefore,
phytostabilization is more suitable in such cases in order to stabilize the soil pollutant
and prevent contamination spreading.

Other than plants, soil contains microorganisms such as bacteria, fungi,
actinomycetes, protozoa, and algae (Thavamani et al. 2017). Among them, bacteria
are the most important ones, with 108 to 109 cells per gram of soil on average
(Yu et al. 2019). Although metal(loid)s cannot be degraded, microorganisms can
affect their behavior and mobility, through different mechanisms, illustrated in
Fig. 10.2. For instance, microorganisms can reduce metal(loid) mobility through
biosorption, a passive process in which metal(loid)s are bound to the cellular
structure of the bacteria. The attachment can be physical or chemical, with
biofunctional groups (Rahman and Singh 2020). Moreover, sorption can be done
through extracellular sequestration by means of biosurfactants (Etesami 2018; Yin
et al. 2019). Biosurfactants are compounds secreted by microorganisms having
complexing capacity towards metal(loid)s (Rahman and Singh 2020). In addition
to being sorbed on the cell surface, metal(loid)s can be actively uptaken inside the

10 Metallicolous Plants Associated to Amendments and Selected Bacterial. . . 257



cell and trapped into the cytoplasm; such process is called bioaccumulation (Etesami
2018; Rahman and Singh 2020). Inside the cell, metal(loid)s can be detoxified into a
less harmful form through enzyme detoxification process (Etesami 2018; Yin et al.
2019) and can also be subjected to oxidation/reduction reactions, involving the
transfer of an electron from one element to another, which changes the oxidation
state of the element. Oxidation-reduction reaction can be mainly performed for As,
Cr, and Hg (Rahman and Singh 2020). Finally, microorganisms can act on metal
(loid)s by secreting chelators, such as carboxylic acids and siderophores (Sessitsch
et al. 2013). Carboxylic acids, such as oxalate, malate, and citrate, are produced by
bacteria, as well as plant roots, and are able to chelate metal(loid)s (Sessitsch et al.
2013). Siderophores are secondary metabolites released under iron-limiting
conditions and qualified as iron carriers (Sessitsch et al. 2013). In addition to chelate
iron, they can complex other metal(loid)s (Sessitsch et al. 2013). These resistance
mechanisms make microorganisms suitable to use in the remediation of metal(loid)
polluted soils. This process is called bioremediation.

In addition, microorganisms can ameliorate plant growth, as some of them
possess plant growth promoting properties. For instance, siderophores produced
by microorganisms can support the uptake by plants of iron, and other
micronutrients such as magnesium and phosphorus, enhance chlorophyll content
and plant growth, in addition to chelating toxic metal(loid)s (Sessitsch et al. 2013;
Wang et al. 2017a; Rahman and Singh 2020). Microorganisms can also produce
phytohormones, such as indole acetic acid (IAA). This IAA can be produced using
various pathways, most of them using tryptophan as precursor but having different
intermediates (Spaepen et al. 2007). The secretion of IAA by bacteria can modify the
osmotic contents of the plant root cells and increase their permeability to water,
stimulating cell elongation and thus enhancing plant growth (Mohite 2013; Rahman

Fig. 10.2 Illustration of the main tolerance mechanisms towards metal(loid)s used by bacteria.
(Modified from Yin et al. 2019; Nong et al. 2019)

258 M. Lebrun et al.



and Singh 2020; Babu et al. 2013). Finally, microorganisms can have
aminocyclopropane-1-carboxylate deaminase activity, which reduces the formation
of ethylene in response to stress and thus reduce the induction of senescence,
chlorosis, and abscission (Santoyo et al. 2019). Therefore, microorganisms and
plants can be used together for the remediation of metal(loid) polluted soils, bringing
mutual benefits: microorganisms will enhance plant growth and benefit from root
exudates for their activity in return.

10.3 The Use of Metallicolous Plants in Phytoremediation

For an efficient phytoremediation, plants need to have (1) an important growth,
which will permit a large soil cover, reducing wind erosion, water leaching, and
allowing biomass valorization; (2) a deep and wide root system; and (3) be tolerant
to the pollution levels (Alkorta et al. 2004; Ernst 2005). In this goal, endemic
metallicolous species that are found on polluted sites showed good results. For
instance, Fahr et al. (2015) tested metallicolous and non-metallicolous populations
of Hirschfeldia incana towards Pb in a hydroponic experiment and observed that the
metallicolous population were more able to tolerate the presence of Pb and
accumulated less Pb in its aerial parts. Becerra-Castro et al. (2012) sampled plants
on an abandoned Pb and Zn mine and found that the species Betula celtiberica,
Cytisus scoparius, and Festuca rubra excluded Cd, Zn, and Pb from their shoot
tissues and had a good potential in phytostabilization. Agrostis species has been
found on many contaminated area or in their surroundings. For instance, Dahmani-
Muller et al. (2000) collected plants on a non-ferrous metallurgical factory and found
four herbaceous species: Armeria maritima, Cardaminopsis halleri, Arrhenatherum
elatius, and Agrostis tenuis. The metal(loid) concentrations they measured in
A. tenuis suggested that the ecotype of this site was metal tolerant. Similarly,
Rodríguez-Seijo et al. (2016) collected Agrostis capillaris plants on an old trap
shooting range and found higher Pb concentrations in the roots compared to the
shoots, showing its potential as a Pb phytostabilizer. Several studies compared
Agrostis metallophyte ecotypes collected on polluted sites or non-metallicolous
ecotypes collected on unpolluted soils with commercial ecotypes to evaluate their
tolerance towards metal(loid)s. For instance, Doubková and Sudová (2016) found
that the metallicolous ecotype of Agrostis capillaris was able to maintain higher
chlorophyll contents under severe metal(loid) stress compared to the
non-metallicolous ecotype and had lower Pb and Zn concentrations. Sudová et al.
(2008) compared metallicolous and non-metallicolous ecotypes of Agrostis for their
tolerance to Pb, Zn, and Cu. The authors found that the non-metallicolous ecotype,
when exposed to metal(loid)s, had a lower root length and tiller percentage than the
metallicolous ecotype sampled in the vicinity of a Pb smelter. They attributed this
observation to a long-term selection pressure that allowed a tolerance towards the
metal(loid)s encountered on this site; this tolerance resulted from an avoidance
strategy, i.e., a restriction of the metal(loid) uptake. Finally, Nandillon et al.
(2019b) compared the growing and metal(loid) accumulation capacity of Agrostis
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plants of commercial origin with the ones coming from the former mine technosol of
Pontgibaud highly contaminated with As (539 mg kg�1) and Pb (11,453 mg kg�1).
They observed that the metallicolous ecotype had a higher dry weight production
and higher Pb concentrations in the roots. They concluded that the metallicolous
ecotype of Agrostis was a good option for the amendment-assisted phytoremediation
of such mine technosol.

The better growth of adapted metallicolous ecotypes is important in terms of soil
vegetation cover because they produce more biomass that will cover more surface
than non-adapted plants and thus reduce wind erosion more importantly. In addition,
such better development is important at the root zone (rhizosphere effect). Indeed,
plants can affect the rhizosphere through their root activity. For instance, the growth
of Deschampsia and Agrostis plants slightly decreased the availability of Cd and Mn
and increased their residual and non-available fractions; however, Agrostis growth
had a negative impact on Cu and Pb, leading to their mobilization (Langella et al.
2014). Similarly, Abbas et al. (2016) observed that growing acacia ameliorated the
chemical properties of the soil, by increasing pH and electrical conductivity, as well
as its physical properties by decreasing bulk density and allowing a better water
infiltration rate and availability. Plants can control metal(loid) behavior via different
mechanisms such as uptake, root exudation, soil pH modulation, and dissolution of
mineral phases (Becerra-Castro et al. 2012; Wenzel 2009).

Finally, plants can also affect the microbial community of the soil. As an
example, Becerra-Castro et al. (2012) measured a higher microbial density in the
rhizosphere of plants grown on a mine soil compared to the bulk compartment. In the
rhizosphere of Rumex acetosa, enzyme activities, Biolog™ diversity and activity
indices as well as microbial biomass C were higher than in the bulk soil, making this
species the best choice for a biologically active and healthy soil (Epelde et al. 2010).
Finally, Borymski et al. (2018) sampled rhizosphere soils of Arabidopsis arenosa,
Arabidopsis halleri, Deschampsia caespitosa, and Silene vulgaris as well as bulk
soils at three polluted locations. They measured a higher oligotrophic fraction of
cultivable bacteria in the rhizosphere than in the bulk soils. The total catabolic
activity was higher in the rhizosphere of A. halleri and S. vulgaris. They concluded
that the microbial community was positively affected by the presence of a plant,
arising from the release of plant-derived metabolites by the roots, which served as a
carbon source for the microorganisms.

10.4 The Selection of Microorganisms and Their Uses
as Inoculant

Generally, the presence in a soil of metal(loid)s in high concentrations reduce the
microbial activity (Marques et al. 2013). However, the presence of metal(loid)s in
soils exert a selection pressure to microorganisms, which favors the development of
microorganisms tolerant to metal(loid)s. For instance, Nicoară et al. (2014) isolated
25 bacterial strains from the rhizosphere of Agrostis capillaris plants growing on a
mine tailing; 21 of those had a metal(loid) resistance. Similarly, Abdelkrim et al.
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(2018) isolated from the rhizosphere of Lathyrus sativus 12 bacterial strains, which
are Pb accumulators. Finally, Thouin et al. (2019) identified microorganisms capable
of As(III) oxidization and As(V) reduction in a As and Pb contaminated technosol.

Moreover, those endogenous resistant microorganisms are also characterized by
plant growth promoting (PGP) properties. Langella et al. (2014) isolated microbial
strains from two polluted sites, one from Germany, polluted by Ni and Mn, and one
from Sweden, polluted by Cd, Cu, Mn, Pb, Sr, and Zn. All the strains isolated from
the Ni-Mn polluted soil showed siderophore production, whereas only three of the
ten strains were able to produce phytohormones. The reverse was observed for the
strains of the soil polluted by Cd, Cu, Mn, Pb, Sr, and Zr, all were producing
phytohormones, whereas only three produced siderophores. Similarly, among the
74 metal tolerant rhizobacterial strains isolated from an abandoned Pb/Zn mine, 38%
had at least 1 PGP trait and/or were able to produce biosurfactants, 15% were
capable of solubilizing inorganic phosphate, and 6 strains could produce
siderophores and 2 IAA (Becerra-Castro et al. 2012). Therefore, strains isolated
from polluted soils and selected based on their tolerance towards metal(loid)s and
their PGP traits could be used for the remediation of polluted soils, either as a single
strain inoculation or as a consortium of several strains having complementary
features.

In addition, microorganisms can affect the mobility and availability of metal
(loid)s. For instance, Nicoară et al. (2014) stated that the siderophore produced and
released by the inoculated bacteria could be involved in the metal(loid) immobiliza-
tion they observed. Indeed, siderophores are chelating agents that can bind several
metal(loid)s such as Fe, Mg, Mn, Cd, Zn, Pb, and As (DalCorso et al. 2019; Ashraf
et al. 2019). In addition, microorganisms can also increase metal(loid) solubility and
modify their speciation (Wenzel 2009; Sessitsch et al. 2013) through diverse
mechanisms. For instance, the release of organic ligands via the decomposition of
soil organic matter and exudation of metabolites can complex metals or desorb
anionic elements from soil sorption sites (Wenzel 2009). Immobilization
mechanisms include uptake and accumulation in the biomass, adsorption onto the
cell wall, and complexation with exopolymers released by microorganisms (Wenzel
2009; Marques et al. 2013).

In addition, due to their PGP properties, microorganisms can ameliorate plant
growth and thus the phytoremediation process. This has been demonstrated previ-
ously. For example, Becerra-Castro et al. (2012) selected 14 strains among the
74 they isolated from an abandoned Pb/Zn mine for a re-inoculation experiment.
Inoculating the soil with these strains improved Festuca pratensis plant growth
without affecting leaf macronutrient levels; however interestingly, the same strains
had a negative effect on Salix viminalis growth. The beneficial effect on F. pratensis
was attributed to the production of the phytohormone IAA. Similarly, Marques et al.
(2013) isolated two bacterial strains from a metal contaminated site, Ralstonia
eutropha and Chryseobacterium humi. They inoculated these strains to an agricul-
tural soil supplemented with Cd or Zn and grew Helianthus annuus plants. They
observed an amelioration of plant growth in the inoculated conditions. Langella et al.
(2014) observed that the shoot length of Festuca rubra and Agrostis capillaris was
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slightly higher in inoculated pots compared to the non-inoculated soils, collected on
former mining sites. Similarly, the total biomass of Agrostis capillaris native of a
mine was ameliorated by the inoculation of a consortium made of ten strains capable
of producing siderophore and phytohormones and able to fix nitrogen and solubilize
P (Nicoară et al. 2014). Furthermore, polluted soils often have low nutrient levels.
Microorganisms can improve the nutritive status of soil by increasing N and P
available, through: (1) the transformation of unavailable N and P present in the
soil into phytoavailable forms and (2) the fixation of atmospheric N and transforma-
tion into plant assimilable N (Sessitsch et al. 2013; Epelde et al. 2010).

Finally, microbial soil inoculation can also affect the endogenous microflora of
the soil. The consortium of ten strains tolerant to metal(loid)s and harboring PGP
properties lead to an increase in the soil microbial respiration of a mine tailing
(Nicoară et al. 2014). For instance, Marques et al. (2013) observed that adding Cd or
Zn to an agricultural soil reduced its microbial activity. However, the inoculation of
a polluted soil with two bacterial strains isolated from a metal contaminated soil
lowered this negative effect, indicating that these inoculated strains prevented the
loss of variability of the microbial community (Marques et al. 2013).

In conclusion, microbial inoculation has a double benefit to contaminated soils: it
can reduce metal(loid) mobility and ameliorate plant growth, thus increasing pollut-
ant successful soil stabilization. In return, microorganisms benefit from the
metabolites exuded by plant roots (Marques et al. 2013). However, the sustainability
of the inoculum over time needs to be evaluated and can be improved by adding
amendments that will ameliorate soil conditions and thus the survival rate of the
inoculum.

10.5 The Combination of Plants, Amendments,
and Microorganism Inoculation

Many studies, as reported in previous sections, demonstrated that plants and
microorganisms are efficient in reducing metal(loid) mobility and ameliorating soil
conditions. However, metal(loid) contaminated technosols generally have poor
agronomic properties, i.e., extreme pH, low content in organic matter, reduced
level and availability of nutrients, which together with the elevated metal(loid)
concentrations hinder plant establishment as well as microorganism growth and
activities. Therefore, it can be necessary to apply amendments in order to ameliorate
the soil properties. Amendments, which can be organic or inorganic, will serve
several purposes: supply of nutrients for plants and microorganisms, improvement of
soil physicochemical properties such as pH, organic matter content, and metal(loid)
immobilization. Some amendments also contain microorganisms, which will be
added to the soil and potentially be efficient to allow a better plant growth if adapted
to encountered pollutants. Many amendments can be used but three attracted atten-
tion over the last decades, biochar, compost/manure, and iron-based amendments.
Compost, an organic amendment used in agriculture, is the product of the microbial
degradation of organic wastes (Huang et al. 2016). It is rich in humic substances,
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microorganisms, and nutrients (Fischer and Glaser 2012). Biochar is a carbon rich
and porous material obtained from the pyrolysis of biomass (Paz-Ferreiro et al.
2014). Biochar is generally characterized by an alkaline pH, a high surface area, a
high cation exchange capacity, and elevated contents in carbon, hydrogen, oxygen
and nitrogen (Paz-Ferreiro et al. 2014; Kwak et al. 2019). Finally, iron-based
amendments, such as iron grit and red mud, are especially used to overcome anion
pollution like arsenic (Mak et al. 2009; Bhatnagar et al. 2011).

Previous studies demonstrated the positive effects of amendments on the soil, the
plants as well as the microorganisms. For instance, Lebrun et al. (2017)
demonstrated that applying a pinewood biochar to a mining technosol highly
contaminated with As and Pb increased soil pore water pH and electrical conductiv-
ity (EC) while decreasing drastically Pb mobility and ameliorating the dry weight
production of Salix plants. Similarly, the application of four hardwood biochars with
various particle sizes to the same soil increased soil pore water pH and EC, decreased
SPW Pb concentrations, and increased Salix viminalis dry weight (Lebrun et al.
2018). Furthermore, biochar, compost, and iron grit were applied alone or combined
to the former mine soil and all treatments ameliorated soil properties (water holding
capacity, organic matter content, pH and EC increases, Pb immobilization) and
increased Salix viminalis growth, except iron grit alone or combined with biochar
(Lebrun et al. 2019). Nandillon et al. (2019b) sown Agrostis seeds on the former
mine, amended or not with biochar, compost, and/or iron sulfate. The authors did not
observe a growth on non-amended soil; however, both the metallicolous and
non-metallicolous ecotype had a higher growth when the contaminated soil was
amended, due to the amelioration of the growing conditions. The best treatment was
the combination of the three amendments, biochar, compost, and iron sulfate.
Similarly, the metallicolous ecotype of Agrostis was sown on the same soil filled
with different amendment combinations, using biochar, ochre, and cow manure. All
the treatments containing cow manure improved plant growth compared to the
non-amended condition, due to the nutritive properties of the cow manure
(Fig. 10.3) (Lebrun et al. 2020).

Regarding the microorganisms, biochar was shown to increase the microbial
population of a contaminated agricultural soil and to modify the bacterial commu-
nity, increasing the abundance of Actinobacteria and decreasing the ones of
Acidobacteria and Chloroflexi (Ahmad et al. 2016). Meier et al. (2017) demonstrated
that biochar could stimulate the microbial activity of a Cu smelter by reducing Cu
availability and providing C sources and nutrients to the microorganisms. Similarly,
in the study of Farrell and Jones (2010), the application of compost to an old mine
spoil caused important shifts in the structure of the microbial community due to the
addition of microorganisms present in the compost. Compost can also stimulate
microorganism activity through the release of nutrients (Mackie et al. 2015).

Both amendments and microorganism inoculation can be combined with plant
growth for an efficient phytoremediation. For instance, Andrey et al. (2019) com-
bined the application of a pinewood biochar with the inoculation of bacterial strains,
isolated from highly polluted sites, in order to stimulate the growth of Hordeum
vulgare. They observed that the high surface area of the biochar could enhance the

10 Metallicolous Plants Associated to Amendments and Selected Bacterial. . . 263



activity of the endogenous and added microorganisms and that the joint application
of biochar and bacteria was very effective in reducing metal(loid) stress towards
plant and thus induced an amelioration ofH. vulgare growth. Similarly, Arshad et al.
(2017) inoculated two bacterial strains and applied a wood chip biochar to a
Cr-spiked soil. They found that amendment and inoculation improved wheat growth
due to the positive effect of the biochar on the soil physicochemical properties and
the reduction of Cr and supply of nutrients by the inoculated bacterial strains. Wang
et al. (2017b) applied a pig manure biochar in combination with Bacillus subtilis,
which lead to a synergistic effect on the soil fertility improvement, plant growth
promotion, and soil metal(loid) immobilization. The association of rice husk biochar
with the inoculation of Pseudomonas putida and Bacillus megaterium increased
maize dry weight and reduced Cr uptake.

Finally, biochar, due to its porous structure, can serve as habitat for
microorganisms, protecting them from harsh conditions and predators (Gul et al.
2015). Therefore, biochar can be used as a carrier for the inoculation of the
microorganisms, i.e., microorganisms are fixed on the biochar surface and the
biochar is then applied to the soil (Zhang et al. 2017). For instance, in their studies
of 2014 and 2015, Hale et al. showed that the bacterial population of the soil was ten
times higher when biochar was used as a carrier compared to the liquid inoculation.
Similarly, Chuaphasuk and Prapagdee (2019) used cassava stem biochar as a carrier
for Arthrobacter sp. and Micrococcus sp., two Cd resistant bacteria. The bacterial
cells that were immobilized on the biochar were able to proliferate and survive in the

Fig. 10.3 Dry weight (g pot�1) of the aerial (light grey) and root (dark grey) parts of Agrostis
capillaris plants grown for 26 days under greenhouse conditions on a mining technosol, highly
contaminated with As and Pb, unamended (P0%) or amended with 1% biochar (B), 1% ochre
(I) and 1% manure (M), alone or combined. Letters indicate significant difference between
treatments ( p < 0.05) (n ¼ 5 � SE). (Extracted from Lebrun et al. 2020)
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Cd contaminated soil, due to the protection of the bacterial cells from toxic or
stressful environments. Both bacterial inoculations increased Cd bioavailability
and thus Cd accumulation in Chlorophytum laxum. In their study published in Liu
et al. (2020), Liu et al. inoculated Delfia sp. B9 bacteria either alone or fixed on a
corn stalk biochar. They observed that rice growth was improved, Cd rice accumu-
lation decreased, and the residual fraction of Cd in soil increased. These benefits
were higher when bacteria were fixed on the biochar compared to the pure cell
inoculation. Moreover, the microscopic analysis of the bacteria-loaded biochar
showed that bacterial cells were attached on the surface of the biochar but also in
its pore. Finally, Tu et al. (2020) amended a Cd and Cu spiked soil with maize straw
biochar, loaded or not with Pseudomonas frederiksbergensis. They observed that the
bacteria adhered well on the biochar and that biochar amendment decreased Cd and
Cu availability and increased soil enzyme activity; the effects were better with the
bacteria-loaded biochar compared to the biochar alone.

10.6 Conclusion

Soil pollution by metal(loid)s is an important issue worldwide, threatening both the
environment and the human health. Therefore, these polluted areas need to be
remediated. Compared to the conventional physical and chemical remediation
techniques that are fast but expensive and often leave the soil improper for vegeta-
tion, the biological remediation, using plants and/or microorganisms, is less expen-
sive, aesthetically pleasing and does not disrupt the soil. Among the plants that can
be used in phytoremediation, endemic plant species found in the vicinity of polluted
soils and already tolerant to metal(loid) stress can perform better than non-native
plants and are also more acceptable ecologically as no non-endemic plants are
introduced into the environment. Similarly, microorganisms found in polluted soils
can be isolated and selected for their tolerance towards metal(loid)s and PGP traits
and inoculated to the soil. They will immobilize metal(loid)s and provide nutrients to
the plants, improving plant growth and thus remediation efficiency. Finally,
amendments can be applied to further ameliorate soil conditions, improve plant
and microorganism growth and activity and thus increase remediation success.

More research needs to be made to understand the mechanisms involved in the
higher tolerance of metallicolous ecotypes as well as their response to amendment
and microbial inoculation. Furthermore, the becoming of inoculated microorganisms
needs to be studied over a longer period of time, to testify of their non-toxicity over
time and potentially allow their application in the field, method that is for now
forbidden in many countries, except for a handful of products having a homologation
and called biofertilizers.
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Bioindication of Heavy Metals
Contamination by Mushrooms and Mosses
in Highly Industrialized Environment

11

Marek Pająk and Marcin Pietrzykowski

Abstract

The importance of plants in bioindicative assessment of environmental pollution
is well known. Mosses and edible mushrooms, especially in the context of human
health risk assessment, can be useful, as well. Contaminants generated by human
activity and industrial pressure, including heavy metals, entering to the ecosystem
by wet and dry deposition and are dangerous for the food chain. Upper Silesia in
Poland is one of the most industrialized and populated regions in Europe, where
simultaneously forest ecosystem services, including forest floor fruits and
mushrooms acquisition, are important and have a long tradition. In the chapter,
we present the biomonitoring of heavy metals pollution by mushrooms and
mosses contamination level on the evidence from forest ecosystems around the
“Miasteczko Śląskie” zinc smelter.
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11.1 Introduction: Mosses and Edible Mushrooms
as Bioindicators of Heavy Metals Contamination

Heavy metals are a natural and inseparable element of the natural environment.
Circulation and migration of heavy metals in the natural environment are mainly
related to such processes as rock weathering, volcanic eruption, evaporation of
oceans, forest fires and soil-forming processes (Kabata-Pendias and Pendias 2001).
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However, various human activities have released excessive amounts of metallic
elements into the environment. The most important anthropogenic sources of envi-
ronmental pollution include mining and non-ferrous metals metallurgy, metallurgi-
cal and chemical industry, waste storage, application of mineral fertilizers and plant
protection products at high doses, sludge fertilization, and surface runoff from roads
with heavy traffic (Kabata-Pendias and Pendias 2001; Ociepa et al. 2008; Serengil
et al. 2011). Heavy metals arriving from these sources are dispersed in the natural
environment, polluting the soil, water and air. Once introduced into the environment,
they circulate in it constantly, changing their form at best. Metallic elements are
characterized by a very long period of decomposition, which can last up to several
hundred years in soils (Grzebisz et al. 2002; Cabała 2009; Moosavi and Zarasvandi
2009). The risk from metallic elements results directly from their movement in the
tropic chain, from soil > plant > animal > human. The movement of metals from
soil to animals and humans occurs primarily through plants, which are the most
important link in the food chain (Mulligan 2005).

According to the degree of risk to living organisms, trace metal elements can be
divided into:

• Very high potential hazard, e.g. Cd, Hg, Pb, Cu, Zn.
• High potential hazard, e.g. Mo, Mn, Fe.
• Medium potential hazard, e.g. Ni, Co.
• Low potential hazard, e.g. Sr, Zr (Ociepa et al. 2008).

The toxicity of trace metals depends mostly on the role in the physiological
processes of the living organisms and their concentration in environment. However,
elements such as cadmium, lead and zinc introduced in large quantities into
ecosystems pose a risk of their balance disturbance and even threaten the life of
some organisms and the functioning of whole ecosystems (Cabała et al. 2008;
Dokmeci et al. 2009).

The environmental pollution from heavy metals is still a major problem for many
parts of the world, so it is very important to understand the relations observed in
forest ecosystems in the areas heavily polluted with metallic elements. Forest
ecosystems play a very important protective role against further penetration of
pollutants for surrounding areas. Forests can exclude from circulation, sometimes
even for a very long period of time, heavy metals that accumulate in its components.
Excessive concentration of metallic elements, however, causes destabilization of this
system, which, apart from economic losses, is much more serious in terms of the
losses to the broadly understood non-productive functions of forests. The precipita-
tion of pollutants under the canopy of the stand is clearly higher than in open areas
(Zwoliński 1995), and the scale of the problem may be seen in the accumulation of
heavy metals in individual components of forest ecosystem layers.

Bioindication is the oldest method of environmental assessment by an indicator
species i.e. the species whose function, population, or status can reveal the qualita-
tive status of the environment, for example, the stress of excessive pollution. For this
reason, bioindicator species can be used to detect the presence of pollutants in a
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specific location and provide information on changes in air quality (Gorovtsov et al.
2017). The organism to be used as a bioindicator must have the following
characteristics: be easily identifiable and retrievable; be widespread in the studied
area; have a long life cycle and be present throughout the year (Stankovic and
Stankovic 2013). Bioindication is an excellent alternative to the monitoring of
pollutant methods using technical equipment (which can be expensive) for
biomonitoring (Wolterbeek 2002).

We distinguish between two groups of bioindicators: sensitive indicators and
accumulation indicators. The first group is made up of organisms that react to
changes in the environment in a visual way (e.g. morphological changes), while
the second group is made up of organisms that can accumulate toxic compounds
whose concentration can be determined by analytical methods. Chemical analyses of
higher plant tissue as leaves has been long time used in the biomonitoring (Stankovic
and Stankovic 2013).

Heavy metals emitted into the atmosphere may bind to other atmospheric
particles. The particles can be a mixture of various compounds in the atmosphere,
many of which are harmful to plants, animals and humans. Due to their small size,
particulates are considered a serious health risk, as they can be inhaled and
circulated. Leafy tree crowns can be used to filter out emissions of heavy metals
from the atmosphere, as the nanoparticles settle on plant leaves. As a result, chemical
analyses of heavy metals concentration levels in plant leaves are often used in
environmental risk assessment studies and as indicators of air pollution
(Dmuchowski and Bytnerowicz 1995; Celik et al. 2005; Samecka-Cymerman
et al. 2006; Gratani et al. 2008; Shahid et al. 2017). They became an effective
alternative to more common monitoring methods, including the methods using
mosses and lichen. In particular, Scots pine tissue has been used to assess the
environmental pollution and anthropogenic pressure by SO2 and heavy metals
(Lamppu and Huttunen 2002; Rossini-Oliva and Mingorance 2004; Parzych and
Jonczak 2013). Numerous authors (Brown and Wilkins 1985; Eltrop et al. 1991;
Marguí et al. 2007; Pająk et al. 2017) used that the silver birch leaves, as well, as
bioindicator for heavy metal contamination of the environment.

The distribution of heavy metals in individual organs of woody plants is uneven.
The highest concentrations are recorded in the bark, which is related to the time of
exposure to pollutants and the rough structure facilitating the deposition of particles
from the air. Plant roots also show high levels of toxic substances. After the bark, the
next organs with the ability to accumulate heavy metals are roots, leaves and fruits
(Filipović-Trajković et al. 2012).

Nowadays, however, lichens and mosses are most often used as bioindication
plants to assess air pollution by heavy metals. This is largely based on a lack of roots
compared to most higher plants, which means that they are both considered to obtain
almost all of their mineral resources from air sources rather than from the ground
(Wolterbeek 2002). Jiang et al. (2018) compared the ability of moss and tree leaves
to accumulate heavy metals. They showed that the mosses accumulated the elements
better and that the accumulated elements came mainly from atmospheric deposition
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and not from the soil. The author’s studies have also shown that moss tissue
accumulates more heavy metals than tree leaves.

In particular, mosses are often used to identify forest pollution, as they are very
accurate and sensitive bioindicators (Rühling et al. 1987; Türkan et al. 1995;
Grodzińska et al. 1999; Szarek-Łukaszewska et al. 2002; Szczepaniak and Biziuk
2003; Dmuchowski and Bytnerowicz 2009). In Central Europe, the most popular
mosses used for biomonitoring purposes of contamination with metallic elements are
Pleurozium schreberi and Hylocomium splendens (Berg and Steinnes 1997;
Harmens et al. 2008; Migaszewski et al. 2009). P. schreberi is a frequently used
species in the bioindication of the natural environment, both in places with poten-
tially high contamination and in the vicinity of metal mines (Pöykiö et al. 2001) and
in places where there is no significant air pollution, such as in national parks.

As noted above, significant contamination of the forest soil ecosystems with
metallic elements negatively affects the nutrient cycle, which reduces the growth,
quality and vitality of trees and forest floor vegetation. High accumulation of heavy
metals in forest soils limits the species structure and the number of soil
microorganisms as well as their metabolic activity (Bååth 1989; Kandeler et al.
1996; Kuperman and Carreiro 1997; Wyszkowska and Wyszkowski 2003;
Šmejkalová et al. 2003; Stefanowicz et al. 2008; Sardar et al. 2007). As indicated
by Shen et al. (2006), soil enzyme activity, for example, urease as well as dehydro-
genase (Brookes 1995), can be used to assess soil contamination with trace elements.

Wild mushrooms, i.e. macroscopic fungal fruiting bodies, particularly easily
assimilate heavy metals from the forest environment. Many authors point to their
high bioindicative capacity (Kalač et al. 1996; Kalač and Svoboda 2000; Falandysz
et al. 2001, 2002, 2007; Falandysz and Borovička 2013; Kokkoris et al. 2019). What
is more, according to numerous studies, mushrooms are able to absorb many heavy
metals from the substrate. Heavy metals in mushroom fruiting bodies can be
accumulated in concentrations much higher than the amounts present in the substrate
(Gast et al. 1988; Wang et al. 2014; Türkmen and Budur 2018). As stated by Kalač
and Svoboda (2000), depending on the species, much higher concentrations of heavy
metals can be found in mushrooms than in plant tissues. These include mostly
mercury, cadmium, lead, or copper.

It is the factors related to genetics and the environment that are responsible for
mushrooms absorbing heavy metals as well as macro- and microelements from the
soil into their fruiting bodies. According to Kalač and Svoboda (2000) and Kalač
(2013), among the former factors are the individual development stage and the
enzyme activity levels while the latter include the soil’s organic matter content,
texture and pH. Other studies (Falandysz et al. 2011; Liu et al. 2015) point to the
high hazard to human health resulting from increased levels of lead, mercury,
cadmium and arsenic in edible wild mushrooms. Former ore mining and processing
sites are particularly dangerous when it comes to mushroom collection and con-
sumption as they are heavily contaminated with heavy metals. What follows, edible
mushrooms as well as mosses make excellent bioindicators of environmental pollu-
tion, which ought to be constantly monitored in industrialized areas.
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11.2 Heavy Metals Accumulation in Mosses and Mushrooms:
Evidence from Upper Silesia

Among those regions of central Europe where heavy metal contamination is one of
the highest is Upper Silesia (southern Poland), in which zinc-lead ore mining and
processing has lasted for centuries (Krzaklewski and Pietrzykowski 2002;
Krzaklewski et al. 2004; Pająk and Jasik 2012; Pietrzykowski et al. 2014; Pająk
et al. 2018). The heavy metals pollution is still one of the most important effect of
industrial activity in Upper Silesia region and their accumulation in soil is the great
problem for environment and biogeochemical cycles in the ecosystems (Ullrich et al.
1999; Pająk and Jasik 2011, 2012; Chrastný et al. 2012; Gruszecka and Wdowin
2013; Ciarkowska et al. 2014; Pająk et al. 2015, 2016).

In order to investigate the state of heavy metal contamination of forest areas
located in the highly industrialized environment in the immediate vicinity of the zinc
plant Miasteczko Śląskie, 31 permanent monitoring areas were established
(Fig. 11.1, Photos 11.1 and 11.2). The surfaces are located at the grid intersection
points of 1500 � 1500 m.

The research areas were situated to the east and north-east of the “Miasteczko
Śląskie” zinc smelter, with the coordinates| 50�2900100–50�3202500N, 18�5701000–
19�0804300E. They were located downwind with regard to the dominant direction
of winds, carrying with them the highest amounts of pollutants from the smelter. The
areas were characterized by two forest types: wet mixed coniferous forest and fresh

Fig. 11.1 Location of monitoring areas (a—monitoring areas, b—zinc plant Miasteczko Śląskie,
c—forests) (Pająk et al. 2020)
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mixed coniferous forest, the soil types were Haplic Podzols as well as Gleyic
Podzols (IUSS Working Group WRB 2007). According to the Forest Management
Plan for the years 2003–2012, the research plots were situated in stands aged 40–80.
Each plot had its coordinates (x, y) and its location was identified with the use of a
GPS receiver.

As part of the conducted research, moss Pleurozium schreberi (Pająk and Jasik
2011) and wild mushrooms (Pająk et al. 2020) were collected on permanent moni-
toring surfaces.

Sampling of Pleurozium schreberi moss was done on all monitoring areas where
it was found (27 plots). The samples were then transported to the laboratory where
the green and brown parts of the unwashed tissue were dried at 60 �C and grounded.
The concentration of Zn, Pb and Cd in plant tissues was measured by the AAS
method on AA Varian 20 apparatus (Pająk and Jasik 2011).

Sampling of edible wild mushrooms was done by collecting their fully developed,
ripe fruiting bodies, and included ten individuals of each species. The collected
fruiting bodies were instantly cleaned by removing all impurities, such as sand, using
a plastic knife. The next stage was drying at room temperature, in a dry, well-
ventilated, clean space for several days. After their transport to the laboratory, the
mushrooms underwent drying at 60 �C in the laboratory dryer until reaching a
constant mass, which was followed by crushing in the laboratory mill and

Photo 11.1 The area after a
die-back of forest stands,
which probably are caused by
interaction of critical heavy
metals load in soil and the
drought phenomena in the last
3 years, which is an additional
stress factor in these heavily
polluted sites (in the
background the view of the
chimney of the zinc smelter
“Miasteczko Śląskie”)
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mineralization with the use of the “wet procedure” in a mixture of concentrated nitric
and perchloric acids (ratio 3:1). This enabled the determination of the content of: Ca,
Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb and Zn by means of the ICP-AES plasma
emission spectrometry, using the Thermo Scientific iCAP 6000 Series ICP-OES
(Pająk et al. 2020).

More important results of the research (Pająk and Jasik 2011; Pająk et al. 2020)
conducted on permanent monitoring surfaces are discussed below.

The concentration of the investigated heavy metals in moss tissues is presented in
Table 11.1. The highest concentrations of Zn, Pb and Cd were found on the
monitoring plots located closest to the metallurgical complex (Fig. 11.1;
Table 11.1). The study also showed very high correlation coefficients of Zn
(R ¼ 0.93), Cd (R ¼ 0.93) and Pb (R ¼ 0.90) concentrations in moss tissue along
with a change in distance from the metallurgical complex “Miasteczko Śląskie”
(Pająk and Jasik 2011).

Comparing the results of our research with those of Grodzińska and co-authors’
research (1999), which were carried out throughout Poland, the Brynica district
should be classified as one of the most polluted area by cadmium in Poland.
According to the Grodzińska et al. (1999), only 0.8% of the samples in Poland
had a Cd content of more than 2 mg�kg�1, whereas in the analysed moss samples
from the forest areas of the Świerklaniec Forest District, higher Cd concentrations
were recorded in all moss samples. Similarly, also in the case of lead, based on the
content of this element in moss tissues, the whole studied area should be classified as

Photo 11.2 Tree stands with the symptoms of weakened and industrial pollution pressure in the
area of influence of the zinc smelter “Miasteczko Śląskie”
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one of the most polluted areas of Poland (Grodzińska et al. 1999). Also in the case of
zinc, as much as 90% of the monitoring surfaces were characterized by very high
levels of contamination. For example, the concentrations of the heavy metals in
question found in the Pleurozium schreberi moss in the forest ecosystems of the
Świerklaniec Forest District were much higher than those determined in the Pieniny
Mountains by Panek and Szczepańska (2005). In case of Zn, these concentrations
were 20 times higher, and in case of Pb and Cd, as much as over 80 times higher.
Zwoliński (1995) pointed out that it is very important to know the total concentration

Table 11.1 Content of zinc, cadmium and lead in the moss Pleurozium schreberi [mg�kg�1]
(Pająk and Jasik 2011)

Number of the monitoring area Distance from zinc smelter [km]

Moss

Zn Cd Pb

20 1.8 * * *

26 2.2 * * *

21 3.3 969 38 811

27 3.5 700 28 856

3 3.7 468 25 657

12 3.7 641 31 683

31 4.3 335 17 434

4 4.6 524 27 746

22 4.8 464 21 422

28 4.9 * * *

13 5.1 372 15 385

5 5.8 368 17 653

23 6.3 289 14 323

29 6.4 368 22 518

14 6.5 345 9 192

6 7.0 279 9 191

24 7.8 75 15 116

30 7.9 262 12 266

15 7.9 197 8 192

7 8.4 236 8 199

25 9.3 199 8 179

16 9.4 171 7 121

8 9.8 191 5 148

1 10.4 156 7 168

17 10.9 162 6 129

9 11.2 188 5 124

2 11.8 192 7 165

18 12.4 162 6 135

10 12.7 150 4 98

19 13.9 241 4 118

11 14.1 * * *

Where: * the moss did not grow
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of all heavy metals in the forests, which are the cause of the negative impact on forest
health. As a critical value he indicated a total content of about 500 mg�kg�1of heavy
metals in the organic layer of forest soil. In the studied forests of the Świerklaniec
Forest District, as much as 80% of the area was characterized by concentrations of
Zn, Cd and Pb higher than 500 mg�kg�1 in the organic layer of forest soil.

As shown in Table 11.2 below, the biomonitoring performed on the research plots
in the years 2013 and 2014 resulted in gathering 88 samples of edible wild
mushrooms. Among them, it is four species: Imleria badia, Lactarius helvus,
Russula sardonia and R. aeruginea that turned out to be the most frequent.

As presented in Table 11.3 below, in most of the mushroom species sampled in
the research area, heavy metal concentrations, ranging from the highest to the lowest,
concerned the elements: Zn> Cu> Cd> Pb> Cr> Ni. Among the metals with the
highest mean content, the values for zinc (the highest one) amounted to 79.2 mg�kg�1

in the species Suillus bovinus to 451.1 mg�kg�1 in Russula aeruginea. In the case of
Cd, the highest value of 3.6 mg�kg�1 was found in Lactarius deliciosus and the
lowest, 27.0 mg�kg�1, was in Imleria badia. The highest concentration of Pb:
12.0 mg�kg�1, was noted in Imleria badia. It is worth noting that a high mean Cu
content: 36.5 mg�kg�1, was also found in Imleria badia.

The studies carried out showed that fungi belonging to the families Russulaceae
and Boletaceae were characterized by a higher accumulation of heavy metals in
comparison with the family Suillaceae (Fig. 11.2); moreover, the most frequent
species were similar in their content of three metals, namely Zn, Cd and Pb.

Conducting a statistical analysis revealed a number of significant relationships
related to edible wild mushrooms under scrutiny. Firstly, there was an evident
relationship between the distance from the source of heavy metal emissions and
heavy metal concentration in the study material: R2 ¼ 0.46, R ¼ 0.66, which was
particularly significant for three elements: Zn, Cd and Pb. Secondly, in most of the
analysed mushrooms, the highest bioconcentration was noted in the case of Cd,
which turned out to be particularly well pronounced for Imleria badia. In that
species, the BCF between soil and mushrooms amounted to 9.17 (Pająk et al. 2020).

The majority of higher fungi are able to accumulate in their fruiting bodies not
only heavy metals but also other metals and metalloids (Sarikurkcu et al. 2011). To
numerous living organisms, the fact that heavy metals get into the food chain and
stay there constitutes a serious threat (Wang et al. 2017). Therefore, apart from the
degree of environmental contamination, the toxicity of heavy metals also depends on
the large degree of their absorption and excretion as well as their biochemical role in
disrupting metabolism (Szynkowska et al. 2008). Due to the fact that, apart from
nutrients (minerals), water and soil are also sources of toxic metals to be absorbed by
mushrooms, the latter can deliver those metals to human and animal bodies in the
form of food and fodder (Chen et al. 2009).

As reported by various studies, the degree of heavy metal concentration may vary
in different parts of the fruiting bodies of individual species (Kojta et al., 2011).
Thus, the highest average Cd content was noted in the cap (3.23 mg�kg�1) and stalk
(2.24 mg�kg�1) of Agaricus campestris (Širić et al. 2016). In the case of Pb, it is
Macrolepiota procera that revealed the highest average content of that metal in its

11 Bioindication of Heavy Metals Contamination by Mushrooms and Mosses in. . . 279



Ta
b
le

11
.2

L
is
t
of

m
on

ito
ri
ng

ar
ea
s
(p
lo
ts
)
w
he
re

co
lle
ct
ed

of
ed
ib
le
m
us
hr
oo

m
s
in

20
13

an
d
20

14
(P
aj
ąk

et
al
.2

02
0)

N
um

be
r
of

th
e

m
on

ito
ri
ng

ar
ea

Im
le
ri
a

ba
di
a

(F
r.
)
F
r.

Su
ill
us

lu
te
us

(L
.)

R
ou

ss
el

Su
ill
us

gr
ev
ill
ei

(K
lo
tz
sc
h)

S
in
ge
r

Su
ill
us

bo
vi
nu

s
(L
.)

R
ou

ss
el

L
ac
ta
ri
us

de
lic
io
su
s

(L
.)
P
er
s.

L
ac
ta
ri
us

he
lv
us

(F
r.
)
F
r.

R
us
su
la

pa
lu
do

sa
B
ri
tz
el
m
.

R
us
su
la

cl
ar
ofl

av
a

G
ro
ve

R
us
su
la

ae
ru
gi
ne
a

L
in
db

la
d
ex

F
r.

1 2 3
*

*
�

*
�

4
*

�

5
*

�
*

�

6
�

*
�

7 8
*

�
*

�
*

�

9
*

�
*

�

10
*

�
*

�

11
*

�
*

�
*

�

12 13
�

*
�

*
�

14
*

�

15
�

*
�

*
�

*
�

16 17
*

�
*

�

18 19
*

�
*

�

20
�

21
�

22
*

�

23
*

280 M. Pająk and M. Pietrzykowski



24 25
*

�
*

�
*

�

26
*

�

27 28
�

*
�

*
�

*
�

29
*

�
*

�
*

�

30 31 W
he
re
:
*
pl
ot
s
in

w
hi
ch

th
e
sp
ec
ie
s
of

m
us
hr
oo

m
s
w
as

co
lle
ct
ed

in
20

13
�
pl
ot
s
in

w
hi
ch

th
e
sp
ec
ie
s
of

m
us
hr
oo

m
s
w
as

co
lle
ct
ed

in
20

14

11 Bioindication of Heavy Metals Contamination by Mushrooms and Mosses in. . . 281



cap (1.91 mg�kg�1) and stalk (1.60 mg�kg�1). Finally, the largest concentrations of
Mn, i.e. 2.54 mg�kg�1, and Zn, namely 60.6 mg�kg�1, were noted for Imleria badia
sampled in areas with no traces of environmental pollution (Kuziemska et al. 2018).

The results obtained in our study show that, taking into consideration the most
common mushrooms in the research area, it was Russula aeruginea that revealed
especially large Pb, Cd and Zn contents while Imleria badia, another mushroom that
is frequently occurring and often picked for human consumption, can also serve the
purpose of biomonitoring in areas with high heavy metal contamination. As found in
our study, the mean Pb accumulation in Imleria badia amounted to 12 mg�kg�1.
However, in the most contaminated areas, its values exceeded 100 mg�kg�1

(Table 11.2).
Since human health may be seriously threatened by the presence of heavy metals,

limits have been established for their permissible intake by people. As indicated by
two organizations acting within the United Nations, namely theWHO (World Health

Table 11.3 Content of Cd, Cr, Cu, Ni, Pb and Zn [mg�kg�1] in the edible mushrooms of the study
area (Pająk et al. 2020)

Species of
mushroom

Cd Cr Cu Ni Pb Zn

[mg�kg�1]

Imleria badia 27.0
(7.8–
84.3)

7.0
(1.3–
57.0)

36.5
(2.8–
90.6)

2.2
(0.5–
6.5)

12.0
(1.3–
102.0)

187.4
(100.4–
404.0)

Suillus luteus 12.3
(6.5–
20.8)

5.0
(3.9–
6.1)

20.4
(0.9–
39.7)

2.1
(1.1–
2.9)

4.9
(3.8–5.6)

146.9
(96.6–
175.6)

Suillus grevillei 4.1
(2.7–5.5)

3.1
(2.3–
3.8)

2.3
(0.9–4.7)

0.7
(0.5–
0.9)

4.5
(3.5–5.6)

94.1
(87.3–
100.8)

Suillus bovinus 4.3
(3.8–4.9)

2.7
(2.6–
2.8)

0.2
(0.1–0.3)

1.5
(1.2–
1.8)

4.2
(2.7–5.7)

79.2
(73.6–84.8)

Lactarius
deliciosus

3.6
(1.2–5.9)

2.6
(2.3–
2.8)

17.7
(0.2–
35.1)

1.0
(0.5–
1.4)

6.4
(4.6–8.3)

124.2
(97.1–
151.8)

Lactarius helvus 11.5
(1.4–
40.9)

4.4
(2.6–
9.9)

24.8
(0.2–
76.3)

1.6
(0.8–
2.9)

6.7
(3.0–
13.8)

147.4
(81.3–
219.1)

Russula paludosa 14.4
(12.7–
17.5)

3.5
(1.9–
4.8)

48.1
(40.3–
53.8)

1.7
(0.9–
3.1)

14.0
(12.8–
15.6)

129.5
(110.1–
158.8)

Russula
claroflava

11.1
(4.8–
17.4)

10.2
(5.8–
14.7)

36.8
(30.3–
43.4)

2.2
(2.0–
2.4)

10.5
(7.4–
13.7)

302.7
(212.2–
393.3)

Russula
aeruginea

9.3
(7.0–
12.7)

3.5
(2.8–
4.3)

10.8
(0.3–
33.5)

1.9
(1.0–
2.8)

9.7
(6.4–
13.8)

451.1
(251.3–
599.6)

Where: 7.0 mean, (1.3–57.03) minimum and maximum value
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Organization) together with the FAO (Food and Agriculture Organization) (JECFA
2010), the weekly permissible content of Cd and Pb in food amounts to 7 and 15μg/
kg of body weight, respectively (Fang et al. 2014; Liu et al. 2015). For example, a
person that weighs 60 kg, which is the mean weight of an adult, can consume these
respective metals in weekly amounts of up to 0.42 and 0.9 mg. What this means in
the case of our research material is that, for instance, 1 kg of the dry matter of Imleria
badia found in our study area exhausts the Cd consumption limit for cadmium for as
long as 64 weeks. Against the background of the EU Food Guidelines (EU 2008),
the Pb and Cd contamination found in Imleria badia exceeds the limit values
(0.3 mg kg�1 for Pb and 1.0 mg kg�1 for Cd, considering fresh weight). The edible
mushrooms sampled in the most contaminated forests revealed the Pb content
exceeding the limit value by approx. 30 times while the Cd content was exceeded
by approx. 10 times.

11.3 Conclusion

In our study the bioindicative role of mosses and edible mushrooms, especially in the
context of human health risk assessment, was confirmed. Contaminants generated by
human activity and industrial pressure, including heavy metals, entering to the

Fig. 11.2 CVA ordinance diagram of differences in heavy metal concentrations between the
analysed mushroom families. Open squares stand for the Boletaceae family, colored squares for
Russulaceae and black circles for Suillaceae (Pająk et al. 2020)
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ecosystem and are dangerous for the food chain in the studied ecosystems. Upper
Silesia in Poland is one of the most industrialized and populated regions in Europe,
where the metallurgic complex “Miasteczko Śląskie” was confirmed as a significant
source of heavy metal pollution, which may affect ecosystem vitality. As revealed by
our research, in areas with high heavy metal contamination, the Boletaceae and
Russulaceae mushroom families accumulate more heavy metals than the Suillaceae
family. The BCF values taken into consideration allow for a conclusion that it is Cd
that had the highest bioaccumulation level in most of the wild edible mushrooms
under scrutiny. Furthermore, our study unambiguously points to the spatial depen-
dence that exists between heavy metal concentrations in the analysed mushrooms
and the distance of the forest area from the chief source of heavy metal emission. The
conducted research showed, as well, the high usefulness of the moss Pleurozium
schreberi in conducting biomonitoring of contamination in a highly industrialized
environment.
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Polycyclic Aromatic Hydrocarbons: Toxicity
and Bioremediation Approaches 12
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Abstract

PAHs (Polycyclic Aromatic Hydrocarbons) constitute a particular class of
organic compounds, which has been widely studied because of their genotoxic,
carcinogenic, and teratogenic properties. Given their stability in the environment
(Persistent Organic Pollutants (POPs)) and their toxicity, 16 of them have been
declared as priority pollutants. The structure of PAHs makes them very stable in
the environment. PAHs in the atmosphere are formed during incomplete com-
bustion or pyrosynthesis of organic matter. Thus, they are present in soot and
smoke of all origins (exhaust gases of internal combustion engines, in cigarette
smoke, etc.). Fortunately, microbial populations and plants naturally adapted to
the biodegradation of PAHs exist. Many studies have, in fact, demonstrated that
in the presence of various plants and microorganisms, the degradation of PAHs is
accelerated. This chapter mainly summarizes and analyzes the state-of-the-art
within the PAHs toxicity at the molecular level (DNA) and the biochemical
aspects of their bioremediation by microorganisms and plants.
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12.1 Introduction

Pollution is everywhere nowadays, whether in everyday life or at work. Pollution of
outdoor air was also classified in 2013 in the group of certain carcinogens to humans
by the International Agency for Research on Cancer of the World Health Organiza-
tion and are considered as “the most extensive environmental carcinogens” (Kim
et al. 2018). The link between a pollutant and a health effect is difficult to express
with certainty given the numerous risk factors, generally chronic exposures, and the
sometimes very long latency time between exposure and disease (Johannson et al.
2015). Besides, the concentration levels of pollutants are higher in the professional
environment.

Ubiquitous in the environment, PAHs form a family of several hundred persistent
organic compounds made up of at least two fused benzene rings (Okamoto 2019). In
the atmosphere, they are always present in the form of complex mixtures comprising
a particulate phase for the heaviest (four cycles and more, potentially carcinogenic)
and a gas phase for the lighter ones (two to four cycles, less toxic) (Kumari and
Lakhani 2018). They are very stable molecules with multiple sources of emission.
They are emitted during the processes of incomplete combustion of organic matter
but also the distillation of coal (pyrogenic source) and petroleum (petrogenic
source), or the use of products derived from these processes or thermal inversion
phenomena (Ifegwu and Anyakora 2015; Abdel-Shafy and Mansour 2016; Largeron
and Staquet 2016; Zhang et al. 2016). The concentrations and the relative
proportions of the different PAHs in the mixtures are very variable. In urban areas,
concentrations depend on the season and are higher in winter than in other seasons
due to higher emissions linked in particular to domestic heating and emissions from
transport vehicles (Ifegwu and Anyakora 2015). The concentrations also depend on
the sources of emission which depend in particular on the type of industrial activity
(Petit et al. 2019; Alhamdow et al. 2020; Yakovleva et al. 2020).

PAHs have lipophilic properties and low aqueous solubility allowing them to
readily penetrate living organisms. They also tend to bioaccumulate in soft tissues.
The main routes of penetration of these molecules into the body are inhalation,
ingestion (food, drinks, pharmaceuticals), and skin contact (skin, mucous
membranes, and eyes) (Hamidi et al. 2016; Zhang et al. 2016). Regarding
non-occupational contamination, the main routes of absorption are inhalation of
smoke in smokers, and ingestion of grilled food in non-smokers, while at
the professional level they are inhalation and direct and indirect skin contact with
the products (Abdel-Shafy and Mansour 2016; Cattaneo et al. 2016). Once inside the
body, after absorption by the lungs, skin, and intestine, PAHs are distributed rapidly
to all compartments of the body and can be stored in the kidneys, liver, and fat tissue.
They are then generally bio-transformed into metabolites to be more easily excreted.
But during this metabolization, certain compounds are bioactivated, making them
toxic (Flesher and Lehner 2016). Elimination occurs primarily through feces and to a
lesser extent through urine. The heaviest compounds (four cycles and more) are
mainly excreted in the feces while the lightest (two to four cycles) are mainly
excreted in the urine (Ifegwu and Anyakora 2015). PAHs represent one of the
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most toxic families of organic compounds known to date. Short-term exposures can
cause lung problems in asthmatics as well as thrombosis in people with heart disease.
In the workplace, high exposure to PAHs can cause symptoms such as eye irritation,
nausea, vomiting, or even diarrhea (Kim et al. 2013). PAHs are best known for their
chronic effects. They are believed to be responsible for immunity disorders, for
triggering or increasing asthma symptoms, especially during childhood, and would
increase the risk of cardiopulmonary mortality (Zaccaria and McClure 2013; Karimi
et al. 2015; Alshaarawy et al. 2016; Liu et al. 2016). They are suspected of causing
reproductive disorders, of being teratogenic (premature deliveries, delays in child
development as well as low birth weight), and endocrine disruptors (Zhang et al.
2016; Bolden et al. 2017; Li et al. 2018). However, the major health problems linked
to exposure to PAHs concern their carcinogenicity, which is mainly due to their
ability to bind to DNA, which can generate a series of disruptive effects often at the
origin of the initiation of tumors (Zaccaria and McClure 2013; Hamidi et al. 2016;
Kim et al. 2016; Misaki et al. 2016; White et al. 2016).

To remedy this scourge, different approaches are being explored, including
bioremediation. It consists of using microorganisms (microbial remediation) or
plants (phytoremediation) to reduce mobility or transform pollutants into non-toxic
compounds (Mougin 2002). Microbial remediation uses the potential of
microorganisms (fungi, bacteria, and algae) to break down certain types of
pollutants. This biodegradation can take place under aerobic or anaerobic conditions
(Liao et al. 2019). In the case of PAHs, bioremediation techniques consist of
increasing their biodegradation or biotransformation, by inoculating specific
microorganisms (bioaugmentation) or by stimulating the activity of indigenous
microbial populations (biostimulation) by providing nutrients and adjusting the
environmental conditions (oxidation-reduction potential, humidity) (Haleyur et al.
2019; Villaverde et al. 2019; Sarma et al. 2019a, b).

This chapter is a synthesis of current knowledge on the toxicity of PAHs and the
capacity of microbial and plant species to capture and degrade them in air, water,
and soil.

12.2 Polycyclic Aromatic Hydrocarbons (PAHs): General
Considerations

Polycyclic aromatic hydrocarbons consist of a large family of organic compounds of
carbon and hydrogen that contain from two to up to seven fused aromatic rings
arranged in three different configurations (linear, cluster, or angular). PAHs can be
found in soil, air, food, water, and sediments deposited from water, wind, and even
ice (Sarma et al. 2016).
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12.2.1 Sources of PAHs

PAHs are formed during incomplete combustion of organic matters with lack of
oxygen. Under such conditions, C-H free radicals occur, which polymerize to form
ultimately different PAHs compounds. It has been estimated that the global world-
wide air emissions of the 16 priority PAHs of the US Environmental Protection
Agency in 2004 were 520 giga grams per year. The Asian countries were the biggest
emitters with 290 giga grams per year (Rengarajan et al. 2015). PAHs are released
from several natural and man-made sources. In the natural environment, PAHs occur
naturally in fossil fuels such as crude oil and coal (in which dibenzothiophenes are
typically the dominant component), and are also produced during volcanic eruptions
and during bush and forest fires (Alawi and Azeez 2016). PAHs can also be
produced naturally (biogenic origin) by living organisms such as plants, bacteria,
and fungi (Wakeham and Canuel 2016). However, human activity remains the
dominant source of PAHs in the environment (Wilcke 2000). The anthropogenic
sources of PAHs are categorized into petrogenic and pyrolytic. Petrogenic PAHs are
released during the production of different petroleum products including coal tar
creosote (wood preservative), coke and asphalt (Adeniji et al. 2018; Offiong et al.
2019). Pyrolytic sources refer to combustion processes which include biofuels and
fossil fuels combustion, wood burning (Naphthalenes, Benzo[b,j,k]fluorene,
Benzopyrenes, Fluorene, etc.) industrial processes, and automobile and aircraft
exhaust systems (Dimethylphenanthrenes, Methylbenzanthracenes, Chrysene,
Benzofluoranthenes, Benzopyrenes, Benzochrysene, etc.) (Faboya et al. 2020;
Remizovschi et al. 2020). PAHs are also likely to be generated from food processes
such as drying, smoking, roasting, and grilling, which are considered as significant
sources of food contamination (Codex Alimentarius Commission 2004). Some
PAHs compounds have been used commercially as intermediates in the
manufacturing of different chemicals including dyes and pigments, pharmaceuticals,
thermoset plastic, resins, and agrochemicals such as pesticides (Abdel-Shafy and
Mansour 2016).

12.2.2 Physical and Chemical Characteristics of PAHs

Although PAHs are made up of only carbon and hydrogen atoms, they can contain
other elements such as oxygen, sulfur, and nitrogen within the benzene
ring (Fig. 12.1). These substituted derivatives are designated by a more general
term, which is heterocyclic aromatic compounds (HACs), that include azaarenes
(containing nitrogen) such as nitropyrene, nitroanthracene, 5-nitroacenaphthene,
6-nitrochrysene, etc.; thiophenes (containing sulfur) such as dibenzothiophene,
1,2-benzodiphenylene sulfide, thianthrene, etc.; furans (containing oxygen) such as
naphthalenone, 9,10-phenanthra quinone, 1,4-naphtho quinone, and hydroxy-
derivatives such as 1,5-dihydroxynaphthalene, 1-naphthol, etc. (Menichini and
Bocca 2003; Goldfarb 2013; Hayakawa 2018; Balmer et al. 2019). The molecular
weight of PAHs varies from 128 g/mol (Naphthalene, C10H8) to up to 300 g/mol
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(Coronene, C24H12). PAHs are characterized by their neutral charge, semi-volatility,
and low solubility in water. Some molecules with six aromatic rings such as Benzo
[ghi]perylene and Dibenzo[a,e]pyrene are even practically insoluble in aqueous
solutions (Table 12.1). The aqueous solubility and vapor pressure of PAHs decrease
with increasing molecular mass (Albers 2002); their solubility also decreases with
increasing degree of substitution and ring structure (Adeniji et al. 2018). They have
high melting and boiling points, which increase with the augment of their molecular
mass (Nikolaou et al. 2009). Besides, because they are nonpolar molecules, PAHs
exhibit a high solubility in most organic solvents including toluene and benzene and
show strong binding on particular matters and clays. This adsorption phenomenon is
almost exclusively related to the octanol to water partition coefficient (Kow) of
PAHs, which augments with increasing molecular weight (Smith et al. 1999). It is
important to bear in mind that the transformation (biotic or abiotic) and fate of PAHs
in soil and sediment materials are typically influenced by the physical-chemical
characteristics of both the chemicals and the sediment matrices.

12.2.3 Toxicity of PAHs

12.2.3.1 DNA Damage by PAHs
The hazardous effects of PAHs on human health or the environment are nowadays
well established and admitted by all experts in toxicology and ecotoxicology from
administration and academia. The deleterious effects of PAHs compounds result
from their metabolic activation, which occurs intracellularly and results in the
formation of electrophiles responsible for their mutagenic, cancerogenic, and terato-
genic properties. This bioactivation which has been well studied involves predomi-
nantly three enzymatic pathways (Fig. 12.2): (1) the bay-region dihydrodiol epoxide
pathway involving the cytochrome P450 enzymes; (2) the radical cation pathway
mediated by P450 peroxidase; and (3) the o-quinones pathway mediated by
dihydrodiol dehydrogenases also known as aldo-keto reductases (Xue and
Warshawsky 2005). The most negative effect of PAHs is precisely related to their
genotoxic properties (DNA deterioration) acquired after their metabolic activation,
against normal cells by killing them through different processes such as necrosis
(pathological cell death) (Bai et al. 2017), senescence (cellular aging) (Yu et al.
2019), or apoptosis (programmed cellular self-destruction) (Solhaug et al. 2004; Das
et al. 2017). The molecular DNA damages induced by exposure to genotoxic PAH
compounds include (1) non-enzymatic DNA-protein crosslinks, where there are
nonspecific covalent linkages between proteins and DNA-DNA crosslinks
(Yu et al. 2006); (2) single-strand breaks induced by photoirradiated PAHs, which
sever the phosphate-deoxyribose backbone of one DNA strand (Yu et al. 2006);
(3) double-strand breaks, in which the two strands of the DNA double helix are
severed; this results in intracellular reactive oxygen species accumulation, which is
mediated by PAHs (Wilk et al. 2013); and (4) PAH-DNA adducts in which covalent
bounds are formed between segments of DNA and some reactive PAHs such as
benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene (Galván et al. 2005). The
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human carcinogen metabolite of benzo[a]pyrene (benzo[a]pyrene diol epoxide), for
instance, forms a stable covalent binding with the exocyclic amino groups of
guanine and/or of adenine (Ewa and Danuta 2017). The adducts formed by PAHs
can induce several point mutations, including base substitution resulting in the

Fig. 12.1 Chemical structure of some PAHs and HACs
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conversion of G to T (Smith et al. 2000), frameshifts (Mordukhovich et al. 2010),
small deletions, and chromosome- and chromatid-type aberrations (Wei et al. 1996;
Abdel-Shafy and Mansour 2016).

The main health concern in the long term due to PAHs exposure is development
of cancer (Sarma et al. 2017). There are three categories of genes whose mutation
usually causes cancer formation in the case of unsuccessful DNA repair or faulty cell
replication: (1) the tumor suppressor genes (anti-oncogenes) are known to act by
inhibiting tumor development, examples include APC, DPC4, RB1, NF2; (2) the
mutator genes such as BRCA1 or BRCA2 constitute a class of genes that is involved
in DNA repair and replication. Their mutated versions cause several cellular
damages, including carcinogenesis (Clark and Pazdernik 2016). In both cases of
mutator genes and anti-oncogenes, the two mutant alleles of these genes can lead to
malignant transformations (Caldas and Venkitaraman 2013); and (3) the proto-
oncogenes are a group of genes that are normally responsible for regulating cell
division. In this case, a single mutant allele may be sufficient to induce uncontrolled
cell division. Several mammalian genes are targeted by PAHs, ras proto-oncogenes
(family of genes encoding a GTPase), for example, whose mutation by PAHs
compounds including benzo[j]anthracene, benzo(b)fluoranthene, benzo[a]pyrene,
dibenzo[al]pyrene, etc. leads to cancer formation (Ross and Nesnow 1999). In
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another study, it was suggested that PAH o-quinones can inactivate the tumor
suppressor gene p53 leading to lung cancer (Shen et al. 2006).

12.2.3.2 Toxicity of PAHs on Human System
The toxicity of PAHs on human health has been extensively studied and documented
for decades. Among the several hundred of PAHs that may be formed, 15 PAHs,
namely benz[a]anthracene (BaA), benzo[b]fluoranthene (BbFA), benzo[j]
fluoranthene (BjFA), benzo[k]fluoranthene (BkFA), benzo[ghi]perylene (BghiP),
benzo[a]pyrene (BaP), chrysene (CHR), cyclopenta[cd]pyrene (CPP), dibenz[a,h]
anthracene (DBahA), dibenzo[a,e]pyrene (DBaeP), dibenzo[a,h]pyrene (DBahP),
dibenzo[a,i]pyrene (DBaiP), dibenzo[a,l]pyrene (DBalP), indeno[1,2,3-cd]pyrene
(IP), and 5-methylchrysene (5-MCH) are known for their mutagenic/genotoxic
effects in experimental animals (EFSA 2008). Out of these 15 compounds, 7, namely
BaA, BbFA, BkFA, BaP, CHR, DBahA, and IP are categorized as carcinogenic
(IARC 2010). The sources of PAHs human exposure include air (inhalation), contact
through the skin, and diet (ingestion). With respect to the exposure through ingestion
of food, the EFSA (2008) estimated that the average intakes in Europe of eight PAHs
(PAH8) (BaP, BaA, BbFA, BkFA, BghiP, CHR, DBahA, and IP), which are
carcinogenic indicators in food, were from 28.8 to 51.3 ng/kg by weight per day.
The manifestations of PAHs toxicity on the physiological, cellular, and molecular
levels are many and varied; they include acute symptoms such as nausea, vomiting,
and eye irritation, or chronic symptoms such as fatal or non-fatal cancers, immune
and hematological function disorders, organ (kidney, liver) damage, cataracts, etc.
(Rengarajan et al. 2015). Table 12.2 summarizes some adverse effects of PAHs on
human health.

12.3 Biochemical Mechanisms for the Microbial Degradation
of PAHs

The popularity of bioremediation which combines fundamental biochemical
mechanisms and engineering techniques is increasing because of the advantages it
offers in terms of low-energy and resources consumption, making it more sustain-
able than conventional physicochemical treatment methods such as incineration,
coagulation, and adsorption. Biological processes possess even the capability of
converting the pollutants into their inorganic constituents (H2O, CO2, SO4

2�, etc.).
However, biological techniques are often slow and incomplete, so it is advisable to
combine them with other remedial treatments. These methods are, however, the most
respectful of soil quality (Azubuike et al. 2016).

Once released in the environment, especially in soils, PAHs are subject to
different processes including adsorption, photolysis, volatilization, and chemical/
biological oxidation (Ghosal et al. 2016). The biodegradation of PAHs can occur
both aerobically and anaerobically in different environmental matrices, such as
water, soil, and sediments. The adsorption of PAHs on microorganisms followed
by their biotransformation is by far the major process determining their fate. Notable
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progress has been accomplished toward understanding the microbiological transfor-
mation of PAHs, which is performed by a metabolically and phylogenetically
versatile group of microorganisms that spans from halophilic archaea
(Halobacterium, Haloferax, etc.) to proteobacteria (Alphaproteobacteria
(Agrobacterium, Beijerinckia, etc.), Betaproteobacteria (Achromobacter,
Acidovorax, Alcaligenes, etc.), Gammaproteobacteria (Escherichia, Enterobacter,
Klebsiella, Pseudomonas, Proteus, etc.) and fungi (Neurospora, Mucor, Saccharo-
myces, Scedosporium, Penicillium, Sordaria, Candida, Cladosporium,
Helicostylum, etc.) (Prince and Drake 1999; Ghosal et al. 2016). Besides, several
microalgae species have been reported to be capable of degrading different PAHs.

Table 12.2 Some human health disorders associated with PAHs organism

Adverse effects PAHs Effects References

Cytotoxicity A mixture of benzo[a]
pyrene, benzo[b]
fluoranthene,
acenaphthylene,
Phenanthrene, benz[a]
anthracene, benzo[ghi]
perylene, dibenz[a,h]
anthracene, and
fluoranthene

Significant reduction of the
viability and the cell cycle
S-phase of the MDA-MB-
231 human breast cancer
cell line.

Smith
et al.
(2019)

1-methyplyrene and
perylene

Significant decrease of the
viability and proliferation of
keratinocytes, and
increasing of their cell
apoptosis.

Bahri et al.
(2010)

Neurodegeneration Pyrene, naphthalene,
phenanthrene, and fluorene

Decrease in caudate and
pallidum volumes, verbal
learning and memory
function.

Cho et al.
(2020)

Cancer PAHs of tobacco smoke Early age leukemia. Ferreira
et al.
(2012)

PAHs in coal combustion
products

Lung cancer Straif et al.
(2005)

Teratogenicity PAHs of tobacco smoke Craniosynostosis (birth
deformity in which the
bones in an infant’s skull
join together prematurely).

O’Brien
et al.
(2016)

Congenital heart defects. Patel et al.
(2020)

Immunotoxicity Benzo[a]pyrene Suppression of the
expression of DGAT2
(a gene responsible for
immune response).

Iwano
et al.
(2010)

Apoptosis induction on B
lymphocytes.

Salas and
Burchiel
(1998)
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Examples include Chlorella kessleri (benzo[a]pyrene) (Takáčová et al. 2014),
Oscillatoria sp. and Chlorella sp. (pyrene) (Aldaby and Mawad 2019), and
Selenastrum capricornutum and Scenedesmus acutus (benzo[a]anthracene and
benzo[a]pyrene) (García de Llasera et al. 2018). The microbial involvement in
PAHs biodegradation has been well established through studies over the past half
century. Low-molecular-weight PAHs are known to be highly reduced; they can
therefore easily serve as catabolic electron/proton donors in aerobic biodegradation
processes mediated by various microorganisms. The microorganisms that are capa-
ble of biodegrading PAHs compounds under aerobic conditions (with oxygen) are
usually indigenous of contaminated environments. Besides, several in vitro and in
situ studies have reported that biodegradation of PAHs compounds can also take
place anaerobically (without oxygen) involving different terminal electron-accepting
compounds including ferric ions, manganese (IV) oxide, nitrate, carbon dioxide, and
sulfate (Meckenstock et al. 2016). With respect to the extent of PAHs transforma-
tion, two situations can exist. The first situation refers to biotransformation process
that slightly affects the chemical structure of the contaminant, particularly in pure
cultures, and can be injurious to cells by diverting energy from growth and metabo-
lite production. In the second situation, there is a complete biodegradation (mineral-
ization) of the contaminant yielding harmless inorganic compounds. During
contaminant biodegradation processes, energy production and cellular growth do
not systematically occur. This depends on the extent of the biodegradation process
itself (biotransformation or mineralization). Thus, complete biodegradation of the
contaminant is often associated with energy and/or biomass production through
primary metabolic processes, while biotransformation which occurs
co-metabolically in the presence of growth substrate (glucose, ethanol, citrate, etc.)
cannot support cellular growth (Tazdaït et al. 2013, 2015; Salah-Tazdaït et al. 2018).
On the other hand, release of metabolites that are similarly or more toxic than the
parent contaminant is usually observed during biotransformation, which may pose
health risks when released in the environment. Thus, particular care should be taken
in performing biodegradation reactions by identifying final by-products to ensure
that bioremediation objectives are being reached. Besides, it should be mentioned
that the rate of biodegradation of PAHs is inversely related to their molecular mass,
which means that compounds with high molecular weight are less rapidly degraded
than those with low molecular weight (Prince and Drake 1999). On the other hand,
the biodegradation rates of PAHs depend not only on microbial genetic capabilities
and the culture conditions, but also on the factors that influence their bioavailability.
Perhaps the most important factor that impedes the biodegradation rate of PAHs is
their sorption to solid materials, resulting in limitations in interphase mass-transfer.

In this part of the chapter, a description of some recent studies dealing with the
biotreatment of PAHs through aerobic and anaerobic biodegradative approaches will
be presented.
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12.3.1 Aerobic Biodegradation of PAHs

The highly reduced nature of PAHs, especially those with low molecular weight,
makes them likely to serve as energetic substrates (electron donors) in aerobic
degradation reactions; however, the very low water solubility of high-molecular-
weight PAHs strongly limits their biodegradation. In the presence of oxygen, the
biodegradation of PAHs by microorganisms is commonly initiated through one of
the three general strategies in which molecular oxygen (O2) is inserted into aromatic
rings: (1) oxidation performed by dioxygenases, (2) oxidation by methane
monooxygenase, and (3) oxidation by cytochrome P450 monooxygenases.

12.3.1.1 Oxidation by Dioxygenases
The microbial dioxygenases act by inserting two atoms of oxygen into different
aromatic substrates, including phenanthrene, anthracene, naphthalene, chrysene,
fluorene, etc. (Muratova et al. 2014; Jiang et al. 2018; Vaidya et al. 2018;
Rabodonirina et al. 2019). Under oxic conditions, biodegradation of these
compounds occurs through analogous pathways in bacteria (Prince and Drake
1999). For instance, in the case of anthracene biodegradation, the dioxygenase,
which requires NADH, H+ as a co-reactant, adds two hydroxyl groups to yield
trans-1,2 dihydroxy-1,2-dihydroan-thracene, which is then opened between the
hydroxyl groups through ortho cleavage reaction yielding 2-hydroxynaphthalene-
2-carboxylic acid, whose further degradation leads to the formation of central
metabolic intermediates (pyruvate, acetaldehyde, and formate) for cell growth and
proliferation (Fig. 12.3). Several microbial strains were reported to initiate PAHs
biodegradation with the usage of dioxygenases. A rhizobacterial strain (Ensifer
meliloti P221) isolated from the roots of Phragmites australis (common reed)
cultivated in soil contaminated by PAHs was capable of phenanthrene degradation
through two pathways. The first pathway involves the cleavage of the terminal
aromatic ring and yields benzocoumarin and 1-hydroxy-2-naphthoic acid, and the
second pathway yields 2,20-diphenic acid through central aromatic ring oxidation.
The biodegradation of phenanthrene was observed in inverse dose-dependent man-
ner with a maximum biodegradation rate of 60% at initial phenanthrene concentra-
tion of 0.1 g/L. The ability to utilize phenanthrene as an efficient carbon and energy
source was also noted (Muratova et al. 2014). Another study, testing the potential of
15 halophilic Archaea strains to degrade three PAHs (naphthalene, phenanthrene,
and pyrene), found that nine isolates, namely, Haloarcula hispanica, Haloferax
sp. (two isolates), Halobacterium piscisalsi, Haloarcula sp., Halobacterium
salinarum, Halorubrum ezzemoulense (two isolates), and Halorubrum sp. were
able to use the three PAHs for their growth as a source of carbon and energy through
the expression of catechol 1,2 dioxygenase and/or protocatechuate 3,4 dioxygenase,
which acted via ortho cleavage pathway (Erdoğmuş et al. 2013). Besides, the authors
noted that no growth was observed in the presence of 200 ppm pyrene and that no
meta cleavage pathway intermediate was detected. In another study, Cycloclasticus
sp. strain P1 (MCCC 1A01040) isolated from deep-sea sediments (Pacific Ocean)
was shown to be capable of degrading 500 ppm naphthalene, phenanthrene, and
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pyrene, used as the sole carbon source, after 5 days incubation with removal percent
values of 98%, 92%, and 57%, respectively. Genome and transcriptome-based
analysis revealed that nine ring-cleaving dioxygenases were differentially entailed
in the degradation of the following six PAHs: phenanthrene, naphthalene, pyrene,
biphenyl, anthracene, and fluoranthene. Besides, it was found that the dominant
intermediate metabolites during naphthalene, phenanthrene, and pyrene biodegrada-
tion were salicylaldehyde, 1,2-naphthalenediol, salicylic acid, and catechol, imply-
ing that the degradative pathway in Cycloclasticus sp. strain P1 is common to the
three PAHs tested (Wang et al. 2018). More recently, out of 20 bacterial isolates
from PAHs-contaminated sediments, only 3 (Pseudomonas aeruginosa, Pseudomo-
nas sp., and Ralstonia sp.) were successfully tested for their ability to degrade a
mixture of 20 mmol/L pyrene, phenanthrene, and fluoranthene thanks to different
catabolic genes identified in their genomes, especially C12O and C23O that encode
catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, respectively (Sangkharak
et al. 2020). Another recent study isolated from compost mixed with crude oil sludge
55 fungal isolates belonging to Fusarium, Aspergillus, Bionectria, Exophiala,
Galactomyces, Mucor, Penicillium, Geotrichum Trichoderma, Trichurus, and
Doratomyces, and 36 bacterial isolates pertaining to the following genera:
Stenotrophomonas, Pseudomonas, Bordetella, Brucella, Bacillus, Achromobacter,
Advenella, Klebsiella, Mesorhizobium, Mycobacterium, Ochrobactrum,
Pusillimonas, and Raoultella and holding the C230 genes. It was found that the
entire fungal isolates and almost all the bacterial isolates were capable of
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Fig. 12.3 Biodegradation of anthracene via initial dioxygenase-catalyzed reactions that lead to
pyruvate acetaldehyde and formate (central metabolic pathway intermediates). Note that successive
arrows designate multiple reactions
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metabolizing 17 PAHs compounds, identified in the crude oil sludge, as sole source
of carbon and energy. The isolates pertaining to Fusarium sp., Galactomyces,
Bacillus, Pseudomonas sp., Aspergillus, Bionectria, Pusillimonas, Mucor, and
Achromobacter were the best effective in degrading PAHs. Interestingly, some
PAHs (benzo[a]pyrene, benzo[a]anthracene, dibenzo[ah]anthracene, benzo[b]
fluoranthene, benzo[k]fluoranthene, indeno[1,2,3,cd]pyrene, and chrysene) were
even completely degraded (mineralized) within 4 months of composting (Obi et al.
2020).

12.3.1.2 Oxidation by Methane Monooxygenase
Methane monooxygenases (MMO), which catalyze the conversion of methane to
methanol through oxidation reaction, have been particularly highlighted in a partic-
ular group of bacteria called methanotrophic bacteria (or methanotrophs) that use
methane as sole substrate for growth and energy production (Ro and Rosenzweig
2018). The methanotrophs harbor two forms of MMO: membrane-associated (par-
ticulate) (pMMO) form and cytoplasmic (soluble) (sMMO) form, the latter is
efficient in oxidizing a large number of organic compounds including PAHs (Pandey
et al. 2014). Several studies have dealt with investigating the potential of using
methanotrophic bacteria in environmental remediation. sMMO initiates the degra-
dation of PAHs by inserting into their C-C bonds single oxygen atom, the other
oxygen atom is transformed into H2O through reduction by NADH + H+ (reduced
nicotinamide adenine dinucleotide). In a study by Rockne et al. (1998), a marine
methanotrophic enrichment from Eagle Harbor in Puget Sound (Washington) was
used in phenanthrene, anthracene, pyrene, and fluorene degradation. It was found
that phenanthrene, fluorene, and anthracene were completely degraded within 6, 11,
and 15 days, respectively, while pyrene was not transformed at all, very likely
because of its low solubility in the culture medium. In a more recent study, it was
clearly showed that sMMO from Methylosinus trichosporium OB3b was capable of
significantly oxidizing naphthalene in the presence of 1μM copper (II) chloride and
methanobactin from Methylocystis sp. strain SB2 (Ul-Haque et al. 2015).

12.3.1.3 Oxidation by Cytochrome P450 Monooxygenases
Cytochrome P450 monooxygenases are found in practically all living organisms,
including prokaryotes, viruses, fungi, mammals, and plants, in which they are
categorized into ten different classes (Finnigan et al. 2020). They are harbored by
most eucaryotes, mainly by non-lignolytic fungi and, at a lesser extent, by bacteria
(Prince and Drake 1999). Several PAHs have been shown to be metabolized through
various P450 microbial systems. In a study by Luo et al. (2016), a P450
monooxygenase (CYP108J1) from Rhodococcus sp. P14 showed oxidizing activity
toward 10μg/mL high-molecular-weight PAHs, namely phenanthrene, anthracene,
and benz[a]anthracene used as the sole source of carbon, through the appearance of
their respective metabolites 1-hydroxyphenanthrene, 9,10-anthracenedione, o-
hydroxybiphenyl, and benz[a]anthracene-7,12-dione. Tao et al. (2020) have
attempted to improve the catalytic efficiency of P450 monooxygenase
(CYP116B3) belonging to Rhodococcus ruber DSM 44319 using site-directed and
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saturation mutagenesis strategies. The mutant CYP116B3 with three mutations
(E88C/N199Q/Q209A) engineered by the authors significantly enhanced 14-fold
the oxidation of naphthalene to generate 1-naphthol compared to the control (wild
type). In another study, Ostrem Loss et al. (2019) tested the capability of 13 different
fungal strains belonging to the following species, namely Aspergillus nidulans,
A. fumigatus, A. oryzae, and A. flavus to degrading 200μM BaP (classified as a
Group 1 carcinogen to humans). All the four species tested showed degradative
capabilities with different degrees. A. oryzae and A. nidulans were the most effective
degraders with 95% and 92% efficiencies, respectively, obtained within 7 days
cultivation. Besides, the authors identified and characterized a P450 monooxygenase
(CYP BapA), which is required for BaP degradation by A. nidulans and whose
genetic expression is controlled by two fungal NF-κB-type velvet regulators (VeA
and VelB).

12.3.2 Anaerobic Biodegradation of PAHs

Under anaerobic conditions, PAHs oxidation has been described extensively within
sulfate- and nitrate-reducing bacteria tested either in pure or mixed cultures. Car-
boxylation or methylation reaction is known to be the key step in the biodegradation
of PAHs under anaerobic conditions. As examples of studies dealing with anoxic
PAHs biodegradation, the one of Rockne et al. (2000) who succeeded in degrading
(mineralizing) 15.6μM naphthalene in the presence of nitrate used as the sole
electron acceptor by two pure cultures of bacterial isolates phylogenetically related
to Pseudomonas stutzeri and Vibrio Pelagius. Kumar et al. (2009) reported the
application of central composite design for the optimization of the biodegradation
of a mixture of five PAHs (fluoranthene, naphthalene, phenanthrene, fluorene, and
pyrene) by a consortium of mesophilic sulfate-reducing bacteria in batch
experiments. The results revealed the following optimum conditions: acidic pH
between 4 and 6.5, ethanol concentration <35 mg/L and biomass concentration
>65 mg/L provided the maximum PAHs biodegradation values of 43% (naphtha-
lene), 78% (fluorene), 76% (phenanthrene), 81% (fluoranthene), and 81% (pyrene)
within 27 days of cultivation for an initial concentration of 50μg/g of soil for each
PAH. In a more recent study, Zhang et al. (2019) tested different electron acceptors
including nitrate, sulfate, iron, and bicarbonate for the biodegradation of phenan-
threne by different bacterial communities enriched from petroleum contaminated
soil, coking sludge, and domestic sludge. It was found that the degradation rates of
phenanthrene under different redox conditions were in the order nitrate > sul-
fate > methanogenic > iron. Moreover, it was verified that carboxylation reaction
represents the first step during anoxic phenanthrene biodegradation followed by ring
reduction and cleavage.
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12.4 Mechanisms of Phytoremediation of PAHs

Phytoremediation is a set of techniques applied to the treatment of polluted soils
using plants and associated microorganisms to immobilize (via accumulation or
sequestration), extract or transform (biodegradation, volatilization) pollutants (Yan
et al. 2020). A new way of treating polluted soils, phytoremediation has aroused over
the past 10 years of growing interest. If we currently have technologies valid for the
treatment of water and soils, on the other hand, the strong interactions with the
organo-mineral make it difficult to extract or inactivate soil pollutants from available
technologies, without altering the properties of the medium. Thus, due to their
potential to act on soil pollutants, plants are viewed with a new look. With the Sun
as a source of energy, a root system “Prospector” and a moderate impact on the
intrinsic properties of the soil, this type of approach appears economically and
ecologically very attractive for managing contaminated sites. The rhizosphere is
particularly involved in the degradation of PAHs. Plants adsorb, accumulate, or
volatilize these compounds, they also increase the microbiological activity of the
rhizosphere in the soil (Guo et al. 2017; Dai et al. 2020).

The use of phytoremediation for the treatment of sites polluted by PAHs shows
satisfactory results. Some plants have been proposed as candidates for the
phytoremediation of soils polluted by PAHs: sunflower (Helianthus annuus),
Indian mustard (Brassica juncea), fescue (Festuca arundinacea), alfalfa (Medicago
sativa), ryegrass (Lolium perenne), etc. (Ndubueze 2018; Dai et al. 2020; Reddy
et al. 2020). Mechanisms of phytoremediation of PAHs can be summarized as
follows:

12.4.1 Penetration and Mobility of PAHs in the Plant

The fate of a PAH arriving at a barrier depends on the physicochemical properties of
the compound (molecular weight, dissociation constant, etc.), and the affinity of the
various constituents of the barrier for the molecule considered. Thus, the greater this
affinity, the more the PAH will be stored in this compartment, and the less chance it
will have of progressing in the plant unless the adsorption capacities of the barrier are
saturated.

12.4.1.1 The Cuticle
The cuticle is present on all non-lignified aerial structures. It is composed of a surface
layer, the epicuticle, made up of waxes, and a deeper layer made up of cutin and
waxes. Waxes are made up of a complex assembly of monomers including long-
chain alkanes, alcohols, ketones, aldehydes, acetals, and acids (Racovita and Jetter
2016). Cutin, another compound of the cuticle, is a bio-polyester, a low-polar
polymer made up of two families of hydroxylated and epoxidized fatty acids.
These two families are respectively made up of C16 fatty acids and C18 fatty
acids (Bakan and Marion 2017). Waxes constitute a hydrophobic pole. Cutin is a
relatively hydrophilic polymer therefore capable of excluding the passage of PAHs.
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Thus, the architecture of the cuticle determines two entry routes for xenobiotics,
depending on their polarity. PAHs, very lipophilic molecules, can reach cell walls
via waxes. They are also highly likely to be retained there, just as at the level of the
cutin, by Van der Waals bonds or covalent bonds. The composition of the cuticle
will therefore govern the passage of xenobiotics. This can vary according to the
stages of development of the plant because the composition of the cuticle changes
over time (Li et al. 2017).

12.4.1.2 Suberin
Suberin is the constituent polymer of protective barriers for underground parts,
injured surfaces, and certain internal organs, such as the Caspary frame. It is a
polymer close to lignin, rich in phenolic and aromatic functions. Due to its polyester
nature, suberin behaves as a weak cation exchanger. The suberin constitutes,
although it is close to lignin which is a hydrophilic polymer, one of the lipophilic
poles of the cellular limits at the level of the roots, capable of allowing the adsorption
of the PAHs to the root surfaces (Fismes et al. 2002; Guarino et al. 2019).

12.4.1.3 Pecto-Cellulosic Walls
They are present in all cells, including root hairs and stomatic cells. These walls can
behave like a physical trap for molecules, thanks to the meshes of the constituent
polymers, or like a chemical trap by binding to the constituents. PAHs are first
adsorbed on the surface of the pecto-cellulosic walls and then diffuse inside the plant
cell (Kang et al. 2010).

12.4.1.4 The Plasma Membrane
This barrier regulates the mobility of water and solutes in the plant. The plasma-
lemma is made up of a lipid bilayer in which proteins are fully or partially embedded.
The geometry of this membrane is variable. The two properties governing the
passage of chemical species through the plasma membrane are lipophilicity,
expressed by the water-octanol partition coefficient (log Kow), and the dissociation
constant pKa. PAHs have log Kow values greater than 3 and are not ionized.
Therefore, these molecules are unlikely to cross the plasma membrane. The mobility
of molecules having crossed the plasmalemma would thus be reduced and confined
to the apoplasm of the xylem vessels (Achten and Andersson 2015; Schriever and
Lamshoeft 2020).

12.4.2 Root Absorption of PAHs

The entry of PAHs into the root can take place by passive-type processes, based on
transpiratory flow and the phenomenon of diffusion, or by active processes, involv-
ing specialized structures or not (Fismes et al. 2002; Zhang et al. 2017). In the first
case, the entry phenomenon can be correlated with the physicochemical properties of
the molecule considered. In the case of PAHs, the literature does not mention the
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existence of a transporter; the entry of these compounds into the root is probably
done by a ripple effect following the water flow.

12.4.3 Transfer of PAHs from the Roots to the Aerial Parts

Many authors have demonstrated the transfer of PAHs in plants (Sonowal et al.
2018). These studies indicate the passage of PAHs in the plant as much by the root
route as by the foliar route, followed by transfer and mobility in the plant; the transfer
is based on the physicochemical properties of the molecules. The transfer of
molecules from the root to the aerial parts occurs via passage through the xylem.
The higher the lipophilicity of the compound, the more difficult the access to the
transpiratory flow is, even if there is an equilibrium of concentration at the level of
the root (Fismes et al. 2002). On the other hand, the pollutant is in contact with the
walls of the xylem. Consequently, translocation to the leaves will depend on the
capacity of the wall constituents to retain pollutants. These will reach the leaves
when the sorption capacity of the vessels is saturated (Castello et al. 2014). Assum-
ing that the mobility of PAHs in the plant is passive, depending on the transpiratory
flow, the relationship between the water flow and the transport of pollutants is
described by the TSCF (Transpiration Stream Concentration Factor) which
corresponds to the ratio between the amount of pollutant in the aerial parts per
milliliters of water transpired and the amount of pollutant in the external solution.
The TSCF is generally less than 1 for xenobiotics, which is indicative of passive
transport. It can be related to the log Kow (Schriever and Lamshoeft 2020). Since
PAHs have log Kow values greater than 3, they are unlikely to be transferred to aerial
parts of plants (Dettenmaier et al. 2009).

12.4.4 Passage of PAHs into the Plant from the Leaves

PAHs are semi-volatile compounds present in the atmosphere in gaseous form. They
are therefore likely to penetrate the plant following contamination of the leaves by
dry or wet deposition of particles (Zha et al. 2018). The foliar penetration route could
thus be a major route of contamination of plants by PAHs due to:

1. The total area of the foliage.
2. The affinity of the constituents of the surface of the leaves for lipophilic

compounds.
3. The capacity to penetrate in gaseous form at the level of the stomata (Lehmann

and Or 2015; Terzaghi et al. 2020).
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12.4.5 Fate of PAHs in the Plant

In plant cells, PAHs seem to follow two main pathways: either they are passively
retained by the parietal compounds, or they enter a process of biotransformation.

The metabolism of PAHs in the plant takes place in three phases:

Phase I: is an oxidation phase, during which the molecule is functionalized. This step
is catalyzed by enzymes of the cytochrome P450 monooxygenase type (heme
proteins located in the endoplasmic reticulum) and peroxidases (Chroma et al.
2002; Kumar et al. 2012).

Phase II: proceeds by conjugation to various water-soluble molecules, including
sugars, amino acids, ellagic acid, and glutathione, through the action of glutathi-
one transferases.

Phase III: aims to eliminate the xenobiotics in its conjugated form. Two processes
seem to co-exist: either incorporation into plant constituents such as lignin, or
compartmentalization in vacuoles. The enzymes, that catalyze the polymerization
of lignin, are nonspecific, so aromatic and reactive molecules such as PAH
metabolites can enter the process (Koh et al. 2000; Alagić et al. 2015; Jafari
et al. 2018).

12.5 Conclusion

Although research efforts dealing with PAHs have gained a wide interest in the last
several decades leading to a great advance in knowledge of physiological, biochem-
ical, and microbiological processes of their decomposition, supplementary studies
into the genetic/epigenetic regulation mechanisms are still needed. It was
demonstrated that many phylogenetically diverse microorganisms are able to use
them as a source of carbon and energy for growth. The screening of new and more
effective microbial strains and plants species from nature remains a focal topic for
researchers and engineers to decontaminate the environment from residues of PAHs.
On the other hand, implementation of innovative process engineering will greatly
help expanding the currently limited application of bioremediation to PAHs in real
field conditions. Further efforts should also be made to target factors that may limit
the biotransformation of PAHs in the environment. This involves in particular
having a better understanding of the kinetics and stoichiometry of microbial degra-
dative reactions.
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Abstract

Polyaromatic hydrocarbons (PAHs) are considered as dangerous contaminants in
water and soil, which are highly toxic, and also carcinogenic to living organisms
including humans. The concerns on the PAHs removal are increased due to the
difficulties in their removal from contaminated water and soil. Bioremediation
technology is the most promising, cost-effective, and eco-friendly approach to
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remove the hydrocarbons by using potential microorganisms. Nevertheless, the
existing bioremediation technology has important limitations, such as, poor
efficiency of microbial communities in the field, and lesser bioavailability of
pollutants. To overcome these issues, advanced nano-biotechnology could be
used. In recent studies, functionalized biogenic nanomaterials have shown possi-
ble PAH removal efficiency by adsorbing/desorbing them. Also, nano-sized
photocatalysts can be used for photocatalytic oxidation of adsorbed or separated
PAHs. Combining these integrated approaches will make a significant impact on
the bioremediation of PAH contaminants. Nano-bioremediation could play an
important role in mobility, micelle formation, and increasing bioavailability,
which will assist in the removal/utilization of PAHs by biological (i.e., using
microorganisms) or physicochemical (i.e., photocatalysis) methods.

Keywords

Polyaromatic hydrocarbons · Bioremediation · Biodegradation · Biosurfactant ·
Eco-friendly · Bioavailability

13.1 Introduction

Globalization along with enormous anthropogenic actions leads to the accumulation
of toxic contaminants/pollutants into the environment. These toxic contaminants are
very harmful to living organisms including human beings (Behera et al. 2018).
Common toxic contaminants which are making major issues to the environment
are hydrocarbons (majorly from crude oil), non-degradable plastic, heavy metal
accumulations, polycyclic aromatic hydrocarbons (PAHs), etc. Most of these
contaminants are classified as carcinogenic and mutagenic to most living organisms
(Sajid et al. 2021). Among the hydrocarbons, PAHs are classified as the most
dangerous pollutants due to their impact on the environment and health issues
(Sarma and Prasad 2015).

PAHs are classified as persistent organic hydrocarbons with two or more fused
aromatic rings. PAHs are frequently encountered naturally or by man-made actions
(Sarma et al. 2016a, b). The main source of PAHs in environments are crude oil spill,
apart from this PAHs are entered into the environment by inadequate incineration of
many organic materials including coal, petrol, wood, natural gas, garbage, used
lubricating oil, waste incineration, petroleum spill/discharge, etc. (Sarma and Prasad
2016; Muangchinda et al. 2018; Sarma et al. 2019). PAHs from used motor oil
makes an enormous impact on the environment due to inappropriate dumping into
the soil. A study by Paneque et al. (2020) describes, 16 types of PAHs were
identified and all these PAHs are considered to be most toxic to nature since their
disposal is closely relevant to human activities, which makes the chance of inhala-
tion by human beings very common and may perhaps cause serious health problems.
Partial burning of organic materials gives out about 100 different types of PAHs,
which are the primary pollutants. PAHs are found in varying levels in soil from 1μg
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to 300 g/kg, depending on the sources of the pollutants (Bamforth and Singleton
2005).

The life-threatening concerns regarding the PAHs is their ubiquity in air, soil,
water, and aquatic sediments along with huge dwell periods in the environment
(Mrozik et al. 2003). PAHs are solely responsible for the numerous health issues in
human beings including cancer, nausea, anemia, abdominal pain, etc. (Chaudhary
et al. 2018). Also they cause numerous antagonistic changes to aquatic living
matters, including causing several adverse effects to aquatic organisms, including
growth reduction (Christiansen and George 1995), endocrine modification (Meador
et al. 1995), DNA mutation (Caliani et al. 2009), and deformities in larvae and
embryos (Carls et al. 2008). Removal of PAHs is very difficult due to their high
hydrophobicity nature, particularly in aquatic atmospheres; they habitually get
adsorbed over the particulate matter for prolonged periods (Behera et al. 2018).

13.2 Remediation Technologies of PAHs: Overview

Over the years, many approaches (physical, chemical, and biological) including
conventional methods to advanced technologies are used to treat the hydrophobic
PAHs contaminations from soil and water sources. In brief, incineration and in-situ
thermal desorption an physical methods used for the treat coal tar, wood treatment
waste by volatilizing or destroying them from contamination (Gan et al. 2009). This
incineration technique working at high temperatures (900–1200 �C) destroyed more
than 90% of the PAHs. The major drawback of this technology is the requirement of
high energy for the incinerator off-gas control devices, and also a long period
(in most cases more than 3 years) along with high operational cost (Islam et al.
2012). The next one is solvent extraction/washing; this method is highly preferable
for the high molecular weight (HMW) PAHs. This method is not successful as
expected, since it has few drawbacks including the high hydrophobic nature of
HMW PAHs, which makes it very difficult to wash, slow desorption, and low
bioavailability (Pourfadakari et al. 2019). To overcome these issues, surfactants
are utilized to increase bioavailability, but which makes harmful effects on the
environment. Another widely used technique is chemical oxidation. This is in-situ
processing technology and preferable for both low molecular weight (LMW) and
HMW PAHs. In this process, PAHs are degraded after reacted with oxidants which
are injected into the soil (Lemaire et al. 2013). For this purpose, various chemical
oxidants have been tested including ozone and Fenton’s reagent, KMnO4, H2O2,
peroxy-acid, etc. (Cheng et al. 2016).

Among all these existing approaches, bioremediation is considered as a best
alternative technology for the removal of hydrophobic PAHs. Bioremediation is
accomplished great attention among the scientific and industrial sectors since it is a
sustainable and green approach to treat PAHs contaminated environment (Azubuike
et al. 2016). In general, bioremediation techniques are carried out in two ways such
as in-situ (bioaugmentation, biostimulation, phytoremediation, and land farming)
and ex-situ (using bioreactors) (Kuppusamy et al. 2016a, b). In the case of the in-situ
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method, degrading organisms is influenced by the physicochemical properties of the
environments. At the same time for the ex-situ approach, all the parameters and
conditions can be controlled, which enhances the degradation rate (Gan et al. 2009).
Many factors such as cost-effectiveness, efficiency, contaminants types, complexity,
time duration, and availability of resources are the major aspects that need to be
considered for the selection of appropriate bioremediation methods for the removal
of PAHs from the contaminated environments.

13.3 Integrated Bioremediation Approaches

Nevertheless, bioremediation is limited successive since it is a time-dependent
method, high cost, low bioavailability, long duration and it is not an ideal approach
for the highly contaminated environments with HMW PAHs. So, these limitations
can be overcome by applying integrated approaches such as physical-chemical (for
example, solvent extraction along with chemical oxidation), physical-biological (for
example, solvent extraction along with bioremediation), chemical-biological (for
example, chemical oxidation along with bioremediation), biological-biological (for
example, enhanced bioremediation with biostimulation) and physical-chemical-
biological (for example, soil washing with chemical oxidation and bioremediation)
(Kuppusamy et al. 2016c). Few integrated approaches are discussed briefly here.

13.4 Electrokinetic Remediation of PAHs

One of the potential and effective integrated approaches being investigated in recent
time is electrokinetic remediation. This approach is mostly applied for the treatment
of the least hydraulic permeability soils. In this method, a low-intensity direct current
is applied to the contaminated soil samples using appropriate electrodes.
Contaminants with ionic charges transported to the oppositely charged electrode
through electromigration. Besides, electroosmotic flow offers a driving power for the
migration of soluble pollutants (Reddy et al. 2006). Regarding the PAHs degradation
using the electrokinetic, it is not a well-established technique. The low bioavailabil-
ity with the hydrophobic nature of PAHs makes it hard to separate them from soil
environments using the conventional electrokinetic method. However, this problem
can be rectified using the solubilizing agents (i.e., surfactants, co-solvents). At the
same time, using these harmful solvents and chemical surfactants might make an
adverse impact on the soil environments (Kuppusamy et al. 2016c).

13.5 Enzymatic Treatment of PAHs

Another useful approach implemented for PAHs removal is enzymatic treatment.
The catalytic activity of the enzymes is an eco-friendly approach and efficient as
compared to the chemical catalysts with higher reaction rates, stable at different
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temperature and pH ranges (Mohan et al. 2006). In a study, Wu et al. (2008)
extracted laccase enzyme from a fungus Trametes sp. and used it to oxidize
15 priority PAHs-polluted field soils with the presence of 2,20-Azino-bis-3-
ethylbenzthiazoline sulfonate as mediator. Outcomes from this study illustrated
that laccase played a major role in the conversion of the toxic PAHs into the less
toxic intermediate products (for example, anthracene converted as anthraquinone). If
the quantity of enzyme is increased, the degradation rate is also enhanced. Recently,
Perini et al. (2020) also performed laccase activity on the degradation of anthracene,
benzo(a)pyrene, and naphthalene. The addition of the laccase doubled the degrada-
tion rate and converted toxic hydrocarbons into less toxic products. One of the major
limitations of this method is financial constraints. This cost factor can be overcome
by using advanced biotechnological approaches such as immobilization, and opti-
mization of production conditions.

Apart from these two integrated approaches, other two methods are also existing.
The first one is phytoremediation, which can be implemented using combinations of
physical, chemical, and biological methods. This approach can be executed with
landfarming followed by introducing potential microorganisms to degrade the PAHs
and finally growing contaminants-tolerant plants in that soil. It’s considered to be a
good approach but removal efficiency is comparatively very less (Huang et al. 2004;
Kuppusamy et al. 2016c). Another similar approach is vermi-remediation, this
method is preferable for some special case, where contaminated soil has a lesser
pore size (below 1μm) and there penetration of degrading microorganism is a much
difficult process. In this case, PAHs are not bioavailable. In such cases, introducing
earthworms makes a huge impact in the enlarging of the pore sizes, which permits
degrading microorganisms to access the PAHs efficiently (Ma et al. 1995).

13.6 Nano-bioremediation

In recent times, these integrated approaches are greatly improved by introducing
advanced nanotechnology and its innovations. In this technology, nano-sized
materials are introduced into the contaminants to alter their physicochemical
properties. This technology is implemented with other technology such as chemical
methods (increasing bioavailability with the addition of surfactants) and biological
methods (biodegradation). Still, many factors need to be considered in executing this
approach such as the selection of toxic-free nanomaterials, biomolecules for the
functionalization, and other factors. Because many nanomaterials are synthesized
using highly toxic reducing agents, which need to be avoided. This problem can be
sorted out by the selection of toxic-free green and biologically synthesized
nanoparticles. Biogenic nanoparticles are the preferably best choice for green and
sustainable nano-bioremediation.
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13.7 Biogenic Nanomaterials: Synthesis, Properties,
and Importance

Nanomaterials including metal and metal oxide nanoparticles (silver, gold, zinc,
copper, nickel, graphene, etc.) are widely used in many applications due to their
physicochemical properties. Two broad approaches such as top-down and bottom-up
are most widely used for synthesis of nanomaterials. In the top-down method, large-
sized bulk materials are reduced using physical methods (i.e., sonication, mechanical
milling, etc.). This method is time-consuming and very difficult to obtain a uniform
size of nanomaterials (Suganeswari 2011). In the bottom-up method, nanomaterials
are formulated from a molecular base. Most of the common synthesis methods such
as co-precipitation and sol-gel process fall under this category only. Most commonly
using reducing agents such as hydrazine and sodium borohydride are classified as a
highly toxic chemical, which could be accumulated as hazardous products in the
environments (Wu et al. 2011; Sadhasivam et al. 2020). This problem can be
overcome by utilizing eco-friendly reducing and capping agents. In recent times, it
is well documented that biological reducing and capping agents such as plant extract
and microbial metabolites (from bacteria, fungi, yeast, algae, etc.) is a potential
alternative to the chemical reducing agents (Owaid 2019). Nanomaterials
synthesized using these reducing agents are widely used in many industrial and
environmental applications (Patil and Kim 2018). In this chapter, the biogenic
synthesis of nanomaterials and their impact on the bioremediation of the PAHs
contaminated environments are documented. For this purpose, the biogenic synthe-
sis of nanomaterials using various biological sources is discussed in detail. In
biogenic synthesis, nanomaterials can be synthesized by intracellular or extracellular
methods. Comparatively, the extracellular method is easier and highly feasible, since
microbial products such as proteins, amino acids, reductase enzymes, and peptides
are serving as reducing and capping agents (Subbaiya et al. 2017). It is very easy to
collect these kinds of bacterial metabolites from the growth medium by using a
simple centrifugation method (Fatemi et al. 2018). At the same time, the intracellular
method is less preferable since it requires several steps to acquire contamination-free
nanoparticles, particularly this process is started with cell lysis, repetitive centrifu-
gation/washing to separate cell debris and nanomaterials (Patil and Kim 2018).

13.8 Bacteria-Mediated Synthesis of Biogenic Nanomaterials

As earlier said, different biological sources are being tested as eco-friendly reducing
agents to synthesis of different nanomaterials. The most widely tested biological
source is bacterial metabolites. In most cases, the bacterium can be easily culturable
and within a short time bacterium will reach their maximum growth state. Wide
ranges of bacterial strains and their metabolites are employed as simple and sustain-
able reducing agents. Recently, Suriyaraj et al. (2019) used the Acinetobacter strain a
zirconium resistant extremophilic bacterial strain for the synthesis of crystalline
zirconium dioxide. This synthesis process is simply done by adding the starting
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materials into the growth medium and metabolites released into the growth medium
reduced the ZrOCl2 to ZrO2. Similarly, Jha et al. (2009) synthesized TiO2 using the
Lactobacillus bacterial strain. The membrane-bound oxidoreductase plays important
role in the bio-reduction of oxide nanoparticles.

Diverse bacterial strains are being tested for the biosynthesis of the nanomaterials.
For instance, Fayaz et al. (2011) used a thermophilic bacterium Geobacillus
stearothermophilus for the biogenic synthesis of silver (Ag) and Au nanoparticles.
This strain and their metabolites reduced metal nanoparticles without any aggrega-
tion, which might be due to the production of the capping protein in the growth
medium. A study by Zhang and Hu (2018) used a marine bacterium Bacillus strain
for the biogenic synthesis of Palladium (Pd) and gold (Au) nanoparticles. Starting
materials are added in the growth medium, the reduction process is occurred along
with the production of the bacterial metabolites in the growth medium. In this
approach, obtained nanoparticles have a uniform size (below 40 nm). A study by
Srivastava and Mukhopadhyay (2013) reported the biological synthesis of selenium
nanoparticles using the non-pathogenic bacterium Zoogloea ramigera. Selenium
oxyanions were added in the growth medium as an electron acceptor along with
bacterial strain. Selenium NPs were formed extracellularly with uniform size and
shape. A protein secreted by this bacterium was bound over the membrane surface
and it was belonging to the oxidoreductase which is playing a key role in the
reduction of SeO3

2� into Se0. Also described that electrostatic interaction of proteins
traps SeO3

2� ions over the surface of proteins and which leads to the reduction of Se
nanoparticles. Similarly, Presentato et al. (2018) also synthesized biogenic Se
nanoparticles using bacterium Rhodococcus aetherivorans. Similarly, Wadhwani
et al. (2018) used Acinetobacter strain for the biogenic synthesis of Au and Se
nanoparticles. This bio-reduction process was mediated by the lignin peroxidase
enzyme produced by Acinetobacter strain. In another study, Tiwari et al. (2016) used
a copper-resistant Bacillus strain isolated from copper mine for the synthesis of
copper nanoparticles (Cu NPs). Similarly, Ag NPs were biologically synthesized
using Salmonella typhirium cell extract in bright conditions (Ghorbani 2017).

13.9 Fungi-Mediated Synthesis of Biogenic Nanomaterials

Different types of fungus are found in the environments and some of them are used
for the synthesis of various types of nanomaterials. Recently, Ganesan et al. (2020)
used Periconium species an endophytic fungus for the biosynthesis of the zinc oxide
(ZnO) nanoparticles. In this study, Periconium biomass extract was obtained from
dried biomass and the crude extract was used for the reduction purpose. A similar
study by Clarance et al. (2020) used Fusarium solani another endophytic fungus for
the biogenic synthesis of Au NPs. Polypeptides and proteins secreted by Fusarium
solani play a key role in the reduction of the Au NPs. In a study, ligninolytic fungi
Trametes trogii was used for the biogenic synthesis of the Ag NPs. This strain
produces several ligninolytic enzymes, which are playing an important role in the
bio-reduction of Ag NPs (Kobashigawa et al. 2019). Similarly, biogenic Ag NPs
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were synthesized using an extracellular extract of two white-rot fungi, namely
Ganoderma enigmaticum and Trametes ljubarsky (Gudikandula et al. 2017). In a
study, fungus Aspergillus oryzae was used for the fermentation of the lupin. This
fermented lupin extract is directly used for the biogenic reduction of Se NPs
(Mosallam et al. 2018). A study by Vago et al. (2016) used filamentous fungus
belonging to the genus Aspergillus, Penicillium, and Trichoderma for the successful
reduction of Au NPs.

13.10 Algae-Based Biogenic Nanomaterials Synthesis

Algae are classified as a photoautotrophic member of eukaryotic organisms; differ-
ent types of algae are spread over in seawater globally. Algae is a potential resource
for nanomaterials synthesis since it is enriched with secondary metabolites (proteins,
pigments, etc.). These characteristic features make them nano-biofactories for the
metallic nanoparticle’s synthesis (Khanna et al. 2019). Also, algae are easily avail-
able, easily cultivable, eco-friendly, and least cost. Still, very few numbers of algae
species were only explored for the biogenic synthesis of nanomaterials.
Polysaccharides extracted from marine algae, namely Pterocladia capillacae,
Jania rubens, Ulva fasciate, and Colpomenia sinuosa were used for the reduction
of Ag NPs (El-Rafie et al. 2013). An interesting study by Pytlik et al. (2017)
described the usage of Stephanopyxis turris a unicellular diatom for the biogenic
synthesis of Au NPs. This diatom was reduced Au NPs both extracellularly and
intracellularly. Similarly, Gonzalez-Ballesteros et al. (2017) used Cystoseira
baccata a brown alga for the biogenic synthesis of Au NPs. Interestingly,
synthesized Au NPs are found below 10 nm only. This brown alga extract was
obtained by applying the conventional reflux method and the obtained extract was
directly used for the bio-reduction. Similarly, Colin et al. (2018) synthesized Au NPs
using algae Egregia species. In another study, iron oxide nanoparticles were biolog-
ically synthesized using brown algae Colpomenia sinuosa and red algae Pterocladia
capillacea extracts (Salem et al. 2019). The polysaccharides present in these algae
act as reducing and capping agents. Recently, Fatima et al. (2020) synthesized
biogenic Ag NPs using Portieria hornemannii a red alga.

Apart from these biological sources (bacteria, fungi, and algae), some of the other
microbial sources (for example some species of yeast) are also being tested for the
biogenic synthesis of metal nanoparticles. Overall, these biogenic nanoparticles are
considered as eco-friendly, stable at diverse environmental conditions; synthesis
procedure is very simple; also there is no requirement of any harmful chemical
compounds. This feature makes them a supreme candidate for many of the interdis-
ciplinary applications from medicine to environment.
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13.11 Principles/Strategies of Nano-bioremediations

In the bioremediation process, nanomaterials itself play a major role in the removal
of contaminants. In some cases, nanomaterials are functionalized to perform some
auctions; for this purpose, some basic methods are followed such as covalent
coupling of nanomaterials surface with the ligand, the non-covalent coupling of
nanomaterials surface with ligand, adsorption, and co-encapsulation. In a covalent
coupling, either the nanomaterials or biomolecule binds directly through a dative
bond or external bound ligand attaches nanomaterials with biomolecule using a
covalent bond. In continuation into the initial interaction, some other interaction
might be possible like irreversible bond formation to reversible and transient inter-
action based on modification, fixation, etc. (Basak et al. 2020). In the non-covalent
coupling biomolecules, nanomaterials are functionalized by self-assembly redox
enzyme-protein complexes (Diaz et al. 2018), dock and lock mechanism (Gong
et al. 2019), etc. Another famous approach is encapsulation, in this method
nanomaterials remain coated inside the capsules and also moveable. This approach
is very useful for materials with higher oxidation, leaching, etc. (Gross et al. 2015).
The final approach is adsorption, this method is recent technology with more
advantages, more likely being applied for the nano-remediation for the affected
environment.

13.12 Nano-bioremediations of PAHs

Many functionalized nanomaterials are tested for the bioremediation of PAHs
contaminants from the soil and water sources. Figure 13.1 describes the overall
process and steps involved in the nano-bioremediation of PAHs-polluted water. This
figure clearly illustrated how integrated approaches are combined in an appropriate
step for the successful removal of PAHs. In a study, Laveille et al. (2010) reported
how functionalized nanomaterials react with PAHs removal. In this study, the
authors used mesoporous silica to immobilize hemoglobin (Hb), since free Hb has
the aptitude to oxidize about 11 different types of PAHs. But the problem associated
with their use in the real-time application is their sensitivity/activity beyond pH 5
(Hb is highly active at pH 5). Most of the wastewater contaminated with PAHs are
ranged from pH 6.5 to 8.5. To overcome this issue, Hb was immobilized with
mesoporous silica nanoparticles using a simple adsorption method (300 mg/g). In
that study also pointed out an interesting factor that free Hb activity is decreased to
47% at pH 7. At the same time, functionalized Hb showed 82% PAHs removal,
which makes clear that functionalization Hb in silica nanoparticles leads to higher
stability towards a broad range of pH, temperature, solvents, etc. Jin et al. (2016)
used green synthesized iron nanoparticles (Fe NPs) along with bacterial strain for the
removal of phenanthrene and naphthalene from aqueous solution. Initially, authors
tried biodegradation alone for the removal of both PAHs, for their effort naphthalene
was easily degraded completely by strain Bacillus fusiformis. At the same time, that
capability of phenanthrene degradation by the same strain was not up to mark as they
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expected (only 28.9% removed). Further to improve the degradation efficiency tea
extract reduced Fe NPs were included in the degradation systems and monitored the
removal efficiency. They achieved 100% phenanthrene removal successfully using
an integrated approach with bacterial strain and Fenton-like oxidization using Fe
NPs.

The impact of the biosurfactant and iron nanoparticle on indeno(1,2,3-cd)pyrene
(InP) biodegradation by a yeast isolate was described in an interesting report by Ojha
et al. (2019). In that study, seven different isolates of yeast were applied for the
biodegradation of InP. Isolates Candida tropicalis NN4 showed higher degradation
efficiency among other isolates. Also, strain NN4 has a higher capability of
biosurfactant production among other strains. Besides, iron NPs were green
synthesized using mint plant leaves. Further, different reaction conditions are
applied to obtain maximum removal of InP (for example with and without iron
NPs and sophorolipid type of biosurfactant). Further, they added that 20 mg/L of
iron NPs along with sophorolipid addition increased InP degradation up to 90%. At
the same time increasing iron NPs concentration beyond 20 mg/L leads to a decrease
in the degradation activity, it might be due to that higher concentration of iron NPs
highly toxic to the yeast cells and may perhaps reduce their growth and development.

The use of single-walled carbon nanotubes (SWCNT) for the environmental
cleanup specifically for the removal of phenanthrene in the sediment sample was
done by Cui et al. (2011). In this study, they usedMycobacterium vanbaalenii strain
for the degradation of phenanthrene. The addition of SWCNT leads to the enhanced
removal of phenanthrene, it was due to that SWCNT have a higher attraction towards
phenanthrene like highly hydrophobic contaminants, and the presence of SWCNT

Fig. 13.1 Different steps involved in synthesis of biogenic nanoparticles and functionalization for
the effective PAHs bioremediation
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enhanced the bioavailability of phenanthrene. Also, the large surface area and high
pore volume of SWCNT played important role in the sorption of phenanthrene. At
the same time inclusion of dissolved organic matters (tannic acid, humic acid, and
peptone) reduced the surface area by attachment of polar functional groups over the
SWCNT, which reduces the sorption of phenanthrene. In a similar study,
Wannoussa et al. (2015) subjected biphenyl for the biodegradation using
Rhodococcus erythropolis with the inclusion of different metallic nanoparticles
such as silver (Ag NPs), copper (Cu NPs), cobalt (Co NPs), and palladium
(Pd NPs). The addition of nanoparticles alone into the degradation system leads to
the agglomeration, so all the metallic NPs were anchored into the inside of micropo-
rous SiO2 as Ag/SiO2, Cu/SiO2, Co/SiO2, and Pd/SiO2. The bacterial cultures
included with Co/SiO2 with the concentration of 10�4 M showed 50% higher
biphenyl degradation, also improved growth and development of R. erythropolis
strain. Further, the authors added that thermal treatment also playing a key role in the
stimulating effect of biphenyl removal, since calcinated Co NPs show more effective
degradation efficiency than as prepared Co NPs. Also, they summarized that the
addition of Cu2+ or Ag+ ions makes a negative impact on the biphenyl biodegrada-
tion since they are toxic to the R. erythropolis bacterial strain than their respective
metal nanoparticles anchored inside SiO2. But the addition of Co2+ ions or Co NPs
anchored on SiO2 enhanced the activity of catechol 1,2-dioxygenase (a key enzyme
playing a major role in the aromatic biodegradation pathway), their activity was
inhibited in absence of those nanoparticles and their respective ions. This observa-
tion infers that the activity of nanoparticles and their ions are specific to each reaction
condition.

In 2018, Mandal et al. (2018a) used a yeast consortium (YC04) with the combi-
nation of Rhodotorula sp., Hanseniaspora valbyensis, and Debaryomyces hansenii
for the biodegradation of benzo[ghi]perylene with aid of ZnO nanoparticles
biosurfactant. The addition of the ZnO NPs and biosurfactant into the degrading
system shows improvement in the degradation efficiency with 62%. Later on, the
same research group in another work used a similar concept to degrade benzo[a]
pyrene. For this, they used yeast consortium (YC01) as said above but
Hanseniaspora valbyensis was replaced with strain Hanseniaspora opuntiae, and
the remaining two strains are the same. Yeast consortium (YC01) degraded 82.6% of
benzo[a]pyrene within the 6 days of incubation period with the inclusion of
biosurfactant and ZnO NPs. To obtain this much degradation efficiency growth
conditions such as pH (7.0), temperature (30 �C), shaking condition (130 rpm),
ZnO NPs (2 g/L), and inoculum (3%) concentrations are optimized (Mandal et al.
2018b).

In interesting integrated bioremediation, naphthalene was subjected to biodegra-
dation using Bacillus fusiformis. In this study, B. fusiformis alone degraded about
99% of the naphthalene in 96 h of reaction time. At the same time, 59.4% of
chemical oxygen demand only removed, which means that the remaining degraded
metabolites still exist in the solution. For this reason, nanoscale zero-valent iron
(nZVI) was applied as heterogeneous catalyst material to enhance Fenton-like
oxidation of degraded products after B. fusiformis-mediated biodegradation process
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takes place (Yu et al. 2015). In a similar study, Gholami et al. (2019) used
magnesium peroxide (MgO2) nanoparticles for the nano-bioremediation of naphtha-
lene. For this purpose, MgO2 was encapsulated in the permeable reactive barrier
(PRB) and a degradation study was conducted for 50 days and found almost
complete removal within the 20 days incubation period. Microorganism responsible
for this much degradation was conformed using next-generation sequencing and
found Pseudomonas putida and Pseudomonas mendocina, their growth is stimulated
by the addition of MgO2 NPs in the bioremediation systems. Shanker et al. (2017)
used a green approach to synthesis of iron hexacyanoferrates (FeHCF) nanoparticles.
A natural surfactant rich plant sapindus-mukorossi was used for the synthesis of
FeHCF with a size of 10–60 nm. Further, synthesized nano-sized FeHCF was used
for the photocatalytic degradation of hazardous PAHs including phenanthrene,
anthracene, fluorene, benzo(a)pyrene, and chrysene in both water and soil
conditions. Under the solar light irradiation with 25 mg/L of catalyst concentration
almost all the PAHs are fractioned into the less toxic small molecules. The degrada-
tion ranges were differed based on the PAHs for instance anthracene and phenan-
threne, which were removed in the range of 80–90%. At the time benzo(a)pyrene,
chrysene, and fluorene were degraded in the range of 70–80%.

Adsorption-synergic biodegradation effect of phenanthrene over the surface of
multi-walled carbon nanotubes (MWCNT) buckypaper was established by Tarafdar
et al. (2018). In their study, they used Bacillus thuringiensis bacterial strain for the
degradation of phenanthrene. In general, MWCNT is highly toxic to many bacterial
species but the addition of phenanthrene reduced contacts between bacterial cells
and MWCNT. At the lower layer cells have to contact with MWCNT and they are
disrupted, whereas at the upper layer bacterial cells are developed as a biofilm.
About 93.81% of phenanthrene was degraded in presence of Bacillus thuringiensis
and MWCNT buckypaper. This MWCNT buckypaper acts as a biological carrier or
matrix which strongly supports microbial growth.

In a recent study, Wang et al. (2019) described an efficient integrated nano-
bioremediation process. In that study, microbe consortium (MC) developed from
sewage sludge was adjourned in the microcapsule (MI) interior space, further nano-
sized photocatalyst Ag3PO4@Fe3O4 was anchored on the membrane of MI. These
entire arrangements are called an MI-MC-photocatalyst compound system (MCS).
The biocompatibility test confirmed that Ag3PO4@Fe3O4 makes a slight impact on
soil microbe activity. This MCS degraded about 944.1 mg/kg of PAHs in 30 days, it
was 49.83% higher than the control system. The addition of MCS makes a huge
impact on the soil texture and microbial diversity in the contaminated areas. It also
enhanced some enzyme activity more specifically dehydrogenase and hydrolase.
Also, the soil toxicity was greatly decreased, which permits the germination of some
seeds on the treated soil. This study clearly describes the role of photocatalyst and
biodegradation process on the removal of some high molecular weight PAHs. This
kind of approach and techniques facilitate sustainable environments.

Researchers from China tested the impacts and effectiveness of nano bamboo
charcoal (NBC) towards the biodegradation rate of phenanthrene by bacterial strain
Sphingomonas sp. GY2B. The addition of NBC enhanced 10.29–18.56%
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degradation within 24 h of incubation and completely removed in 48 h. The addition
of NBC at 20–50 mg/L enhanced the growth of Sphingomonas species. At the same
time, increasing the concentration of NBC over 200 mg/L inhibited the growth of
Sphingomonas strain and notable it makes a small impact in the solubilization of
phenanthrene while included in low concentrations (She et al. 2016). Later on,
another group of researchers focused on the role and impact of stearic acid-modified
montmorillonite on the biodegradation of phenanthrene by the same bacterial strain
Sphingomonas sp. GY2B. In the biodegradation system surface and colloidal
characters of stearic acid-modified montmorillonite were altered in presence of
bacterial strain, and found about 98% degradation efficiency in 2 days (Ruan et al.
2018).

Recently, Pourfadakari et al. (2019) used biosurfactants for the sorption of PAHs
followed by electrokinetic oxidation for efficient removal of separated
hydrocarbons. For this purpose, a halotolerant strain Pseudomonas aeruginosa
PF2 was used for the synthesis of the rhamnolipid type of biosurfactant. This
biosurfactant solution was used for the sorption of three PAHs such as anthracene,
pyrene, and phenanthrene in a soil sample. Further, these desorbed PAHs were
subjected to electrokinetic oxidation using the magnetite nanoparticles modified
graphite. Specific pH, contact time, voltage, and electrolyte concentration are
playing a key role in the removal efficiency in electrokinetic oxidation. As said,
among the tested broad range of these parameters effective outcome was observed at
a pH value of 5, 6 h of contact time, and applied voltage was 3 V with 25 mg/L of
electrolyte concentration. These conditions show more than 99% removal efficiency
of all three tested PAHs. Similarly, another recent report by Baragano et al. (2020)
describes the use of commercial magnetite nanoparticles for the immobilization of
PAHs in soil samples. Different concentration of nanoparticles was used such as
0.2%, 1%, 2%, and 5%. About 89% of PAHs are immobilized with 0.2% magnetite
nanoparticles. After this treatment, the accumulation of iron content in the soil
samples is unavoidable but the toxicity of the soil was reduced greatly.

More recently, Qin et al. (2020) used combinations of photocatalysis and biodeg-
radation as integrated approaches for the removal. For this purpose, Cu, N-TiO2 was
coated over the polytetrafluoroethylene carriers. Microorganisms used for the bio-
degradation purpose were cultivated from two types of petroleum-contaminated soil
(A0 and B) and biofilms are developed over the Cu, N-TiO2 coated
polytetrafluoroethylene carriers, which was further used for the photocatalytic deg-
radation of phenanthrene. Later on, high-throughput sequencing of the 16S rRNA
gene was done to find out microbial diversity in both biofilm samples and found
Lysinibacillus as a dominant genus in the A0 sample, but in sample B genus
Pseudomonas is more dominant. These nanocarriers enhanced the development of
diverse groups of microbial strains in the biofilm sample and also these strains have
actively participated in the biodegradation of phenanthrene.

Apart from these nanoscale functionalized materials, some micro-scaled materials
are also used for integrated bioremediation studies. In a study, Imam et al. (2021)
used rice straw biochar for the immobilization of laccase a ligninolytic enzyme, and
used for the anthracene degradation. Biochar used in that study was treated with acid
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to make carboxyl functionality, which leads to a twofold increase in their surface
area. This immobilized laccase enzyme was completely removed about 50 mg/L of
anthracene in 24 h of incubations. Another study by Yang et al. (2017) used
graphene oxide/Ag3PO4 composites as photocatalyst for the removal of three
PAHs, namely phenanthrene, naphthalene, and pyrene using visible light irradiation.
Within a few seconds to minutes, all the PAHs are completely removed in the
solution. This much photocatalytic degradation was facilitated by superoxide
radicals, photogenerated holes, and hydroxyl radicals. In a very similar manner,
Cai et al. (2019) describe the use of new integrated technology called visible-light
photocatalysis and biodegradation (VPCB). Efficient photocatalyst Mn3O4/MnO2-
cubic Ag3PO4 with exposed facets (MnOx-cAP) was used in that study for the
biodegradation of phenanthrene. This photocatalyst shows extraordinary degrada-
tion efficiency with 96.2% of phenanthrene removal within 20 min of reaction time.
Further, elimination and mineralization were enhanced by introducing the VPCB
sponge with biofilm with enriched microbial strains belonging to Sedimentibacter,
Shewanella, Acinetobacter, Comamonas, and Pseudomonas. The intermediate
compounds formed during the photocatalytic degradation were utilized by bacterial
strains present in the biofilms. This kind of integrated approach also gives promising
outcomes in PAH removal. Table 13.1 summarized the functionalized nanomaterials
used for the treatment of PAHs contaminants with the mode of auction and removal
efficiency.

13.13 Factors Influencing the Biogenic Nano-bioremediation
Process

It’s very important to choose the correct nanomaterials for the degradation of specific
hydrophobic contaminants. In some cases, the addition of some nanomaterials
makes an adverse impact on the bioremediation process. For example, Zhang et al.
(2018) tested the impact of carbon nanomaterials (CNM) for the mineralization and
degradation of phenanthrene. In the initial period, maximum mineralization rate and
mineralization efficiency were positively associated with the bioavailability of
phenanthrene. Notably, the addition of phenanthrene enhanced the growth of fungi
and bacteria communities and catabolic gene biomarker nidA. The addition of CNM
suppressed the sorption rate and also makes an adverse effect on the biomass of
bacterial, fungal cells, and nidA. These findings suggest that the selection of appro-
priate sorption or nano-carrier is a key feature for the successful bioremediation
process.

In a study, Chaudhary et al. (2018) used silica nanoparticles (SiO2 NPs)
functionalized with four various types of cationic surfactants. These functionalized
silica nanoparticles are used for the removal of naphthalene a simple and white
crystalline common PAHs found in most of the contaminated areas. Among the used
cationic surfactants, cetyl pyridinium bromide functionalized SiO2 NPs showed an
85% removal percentage. This removal efficiency is 35% higher than as prepared
SiO2 NPs. In this specific study, the authors used chemical surfactants, for
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sustainable remediation this chemical surfactant can be replaced with biosurfactant
(Parthipan et al. 2017a, b, c; Parthipan et al. 2018). Biosurfactants usage in the nano-
bioremediation is less documented.

Many physicochemical factors are influencing the removal percentage including
the adsorbent concentration, pH, naphthalene concentration, etc. In this study, it was
highlighted that increasing adsorbent dose increases the removal percentage, but
concentration exceeds above 25 mg/L, adsorption steadiness of naphthalene was
attained. The availability of large surface area due to the restriction in growth of
nanomaterials may perhaps play a major role in this enhanced removal in presence of
cationic surfactant. Similarly, decreasing the pH of the reaction condition also
enhanced removal efficiency. Also, many studies have proven that physicochemical
properties including temperature, pH, the concentration of catalysts or nanomaterials
are playing a major role in the successful remediation of PAHs contaminated
environmental samples. For this reason, some studies focus on the optimization of
these parameters before proceeding to the bioremediation process (Laveille et al.
2010; Mandal et al. 2018b; Pourfadakari et al. 2019b). Also, biosurfactants are the
ideal option to replace the chemical surfactant.

13.14 Conclusions and Future Directions

As discussed earlier, PAHs are considered as most toxic compounds persistent in the
environment due to natural and anthropogenic reasons. The toxic nature is very
harmful to aquatic organisms, even human beings are also affected due to their toxic
nature. Removal of PAHs is a very basic and important necessity to make this
environment eco-friendly and sustainable. Their higher hydrophobicity nature
makes them very complicated compounds in the bioremediation process. Conven-
tional bioremediation techniques are not effective and time taking process. Increas-
ing bioavailability at the PAHs contaminated area may perhaps be useful for the
PAHs utilizing/degrading microorganisms. For this purpose, integrated approaches
are tried for the successful removal of PAHs from soil and water sources. Many
biological molecules/compounds are playing a key role in the solubilization or
degradation of PAHs, but direct delivery of these biomolecules is having many
troubleshoots (active or inactive to specific pH, temperature, and other physicochem-
ical conditions that may influence their activity). To overcome these problems,
functionalized nanomaterials are introduced for the adsorption or sorption of
PAHs. In some cases, nano-sized photocatalysts are used for the photocatalytic
oxidation of adsorbed or separated PAHs.

However, in a sustainable point of view, very limited studies are dealing with the
use of eco-friendly biogenic nanomaterials for the integrated bioremediation
approaches. Still, many active biogenic nanomaterials are available or can be
synthesized for nano-bioremediation. Combining nanotechnology with biotechnol-
ogy will promote the expansion of “sustainable-bio-nanotechnology” approaches for
the cleanup of PAHs contaminated environments. For better understanding and
improvement of PAHs remediation, few technologies or approaches are needed to
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be considered. For instance microbiological and molecular techniques can be used
for the identification of potential biosurfactant producing microorganisms. Since,
biosurfactants can be used as sole compounds to enhance the bioavailability of
PAHs. Highly sensible, low cost, quick detecting device or biosensors are needed
to be developed to detect PAHs level and types in the environmental samples,
because current methods are time-consuming analytical methods which need to be
developed. Overall, very little research work is only done on the concept of biogenic
nano-bioremediation, this is one of the advanced integrated approaches for the
removal of PAHs pollutants. More researches need to be focused on this approach
to develop sustainable and environmentally friendly bioremediation technology.
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Value-Added Products from Agroindustry
By-product: Bagasse 14
Aparna B. Gunjal

Abstract

The agroindustry by-products are generated in huge amount in all countries.
Bagasse is by-product generated in huge amount from the sugar factories. This
bagasse is either incinerated or disposed directly to the landfills, which creates
environmental problems, i.e., pollution. The management of this agroindustry
by-product bagasse can be done by converting into different value-added
products viz., chemicals (xylooligosaccharides, organic acids, and enzymes);
biofertilizer; materials (paper products, particleboard, bioplastics, textile fibers,
bricks, bio-char, and bagasse ash); energy (methane, power and producer gases
production, charcoal and activated unburnt carbon); fuels (bioethanol and bio-
gas); and animal feed, which is focused in detail in this review. The management
of bagasse by conversion into value-added products will be eco-friendly. This
will also contribute to a significant sustainable environmental approach in the
management of bagasse and also reduce the pollution. In addition, the value-
added products obtained from bagasse will have industrial applications which are
significant and highlighted in this review.

Keywords

Eco-friendly · Pollution · Soil conditioner · Biofuels · Bioplastics · Feed · Bio-char

A. B. Gunjal (*)
Department of Microbiology, Dr. D.Y. Patil, Arts, Commerce and Science College, Pune,
Maharashtra, India
e-mail: aparnavsi@yahoo.com

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021
S. J. Joshi et al. (eds.), Biotechnology for Sustainable Environment,
https://doi.org/10.1007/978-981-16-1955-7_14

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1955-7_14&domain=pdf
mailto:aparnavsi@yahoo.com
https://doi.org/10.1007/978-981-16-1955-7_14#DOI


14.1 Introduction

Sugarcane production as compared to other crops is more globally. India ranks
second in sugarcane production in the world (15% of the total sugarcane production
in the world) (Bahurudeen et al. 2015). In 2018–2019, the world sugar production
from sugarcane was 138.89 million metric tons. From this, the sugar production in
India was 33.29 million metric tons (www.statista.com). In 2011–2012, 342.56
million tons of sugarcane was produced (Naik et al. 2013). The sugarcane production
has enhanced 8 times over the last 50 years (Bahurudeen et al. 2015). Bagasse is
agroindustry by-product obtained from the sugar factories (Bezerra and Ragauskas
2016; Munir et al. 2009). It is the sugarcane fiber which remains after extraction of
juice from the sugarcane. The processing of 1 ton of sugarcane gives 280 kg of
bagasse (Moreira 2004). In India, 80 million tons of bagasse is produced annually.
Bagasse is lignocellulosic in nature. So, bagasse mainly comprises cellulose
(45–55%), hemicellulose (20–25%), lignin (18–24%), and pectin (0.6–0.8%)
(Yadav et al. 2015). It has about 45–50% moisture content. Cellulose is most
crystalline. They are tightly packed due to strong intermolecular hydrogen bonds.
The cellulose exists in three types viz., α, β, and γ. The α-cellulose is called pure
cellulose. The β and γ cellulose together is known as hemicellulose (Marthur 1975).
The hemicellulose is linked with cellulose. The third main component present in
bagasse is lignin which has high molecular weight. The bagasse generated is usually
incinerated or disposed directly to the landfills. This causes immense environmental
pollution which is a serious issue. The state-wise bagasse generated in different
states in India is represented in Fig. 14.1. Bagasse can be made to various useful
products by solid state fermentation (SSF). SSF involves fermentation by the
microbial process without water. In SSF, there are many substrates viz., paddy
husk, pressmud, bagasse, sawdust, wheat straw, coconut shell, etc. which can be

Fig. 14.1 State-wise bagasse generated in different states in India. (*Source: Indian Sugar Mills
Association 2010)

340 A. B. Gunjal

http://www.statista.com


used for the fermentation (Romanoschi et al. 1997). SSF generates various products
having industrial and agricultural applications (Gunjal et al. 2018). The wastes can
be used to generate products such as compost, soil conditioner, enzymes, animal
feed, single cell protein, mushroom production, antibiotics, and plant growth pro-
moting substances (Lizardi-Jimenez and Hernandez-Martinez 2017). The biocon-
version of agroindustry by-products for various value-added products is significant
and fruitful (Sindhu et al. 2016). There is a report on energy efficiency of biorefinery
schemes using bagasse as substrate (Restrepo-Serna et al. 2018). This will be
eco-friendly and cheap and also the value-added products obtained from bagasse
will have various applications. The objective of the review here is to focus on the
value-added products from agroindustry by-product, bagasse (Yang-Rui 2012). This
will help in the management of bagasse and also value-added products obtained from
bagasse will have immense industrial and agricultural applications.

14.2 Sugarcane Processing for Generation of Bagasse

Sugar is consumed in daily life and is important. It can also help to bring up new
industries. Sugarcane is source of energy. Sugar industries provide employment and
convert raw material into value-added products. Sugarcane is source of biomass for
generation of biofuels. The environmental sustainability and social issues are
concerned with sugar production. From the 700 sugar factories in India, about
314, 324, and 62 factories are under cooperative, private, and government sector,
respectively (Patil et al. 2016). The juice is extracted from sugarcane and
concentrated to get juice. The juice is further processed to produce sugar granules.
After separation of the molasses by centrifugation, the fibrous material is shredded to
get bagasse.

14.3 Value-Added Products from Bagasse

The different value-added products from bagasse are viz., chemicals
(xylooligosaccharides, organic acids, and enzymes); biofertilizer; materials (paper
products, particleboard, bioplastics, textile fibers, bricks, bio-char, and bagasse ash);
energy (methane, power and producer gases production, charcoal and activated
unburnt carbon); fuels (bioethanol and biogas); and animal feed. Each of these
value-added products from bagasse is described below along with their applications.

14.4 Chemicals

Bagasse is a good raw material for xylooligosaccharides production (Jaypal et al.
2013). Xylose can be used in dehydration process; the useful products viz., xylitol,
furfural, and hydroxymethylfurfural (HMF) are obtained (Chatterjee et al. 2010;
Chheda and Dumesic 2007). Xylitol has immense uses in medical as well as food
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industries (Prakasham et al. 2009). Xylitol is also used in making chewing gums,
gum drops, and bakery food. These compounds can be further processed to get
important compounds. This furfural has excellent application as solvent for refining
lubricating oils, and resins used for molding powders (Murugan et al. 2013).

There is a report on production of organic acids from sugarcane bagasse by
hydrothermal pretreatment of bagasse using batch fermentation (Soares et al.
2018). Bagasse has attracted attention for the use in making of other acids viz.,
acetic acid; citric acid (Berovic and Legisa 2007); glutamic acid (Borges and Pereira
2010); lactic acid (Fig. 14.2), itaconic acid (Dodds and Gross 2007). Lactic acid
production from bagasse has been reported (Adsul et al. 2007; van der Pol et al.
2016). There is a report where bagasse is used as substrate in SSF (Chandel et al.
2012) for the production of citric acid (Kumar et al. 2003) and lactic acid (Garg and
Hang 1995) where the microorganisms used in SSF were Aspergillus niger and
Rhizopus oryzae, respectively.

Bagasse has been used for the production of many enzymes by SSF
(Parameswaran 2009). The enzymes production viz., cellulase and xylanase with
bagasse as substrate by SSF has been extensively studied (Singh et al. 2010). The
enzymes production using SSF with bagasse as a substrate has been reported
(El-Bakry et al. 2015; Parameswaran 2009). These enzymes have various
applications viz., in food industries, bakery, animal nutrition, cosmetics, medical
field, and in research (Li et al. 2012).

Fig. 14.2 Lactic acid
production with bagasse as
substrate
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14.5 Biofertilizer

Biofertilizers are formulations which contain beneficial microorganisms that colo-
nize the roots of plants and improve the plant growth by direct and indirect
mechanisms. The formulations of biofertilizers are made by combination of benefi-
cial microorganisms and carrier-based inoculants. Bagasse is used as a carrier in the
preparation of formulations of biofertilizers. Bagasse can be used by co-composting
with other wastes to obtain useful biofertilizer. This biofertilizer is also called as
“soil conditioner” which will help in the plant growth and yield, and ultimately
benefit the farmers. There is a report on co-composting landfill leachate with
sugarcane bagasse for biofertilizer production (Shaarani et al. 2018). Bagasse is
excellent substrate in SSF to produce substances which improve the crop growth
viz., hormones like indole acetic acid (IAA); gibberellins and cytokinins, enzymes,
siderophores (iron chelating compounds), etc. The use of bagasse as a substrate for
production of plant growth promoting substances by SSF is shown in Fig. 14.3.
Bagasse by composting process can be made to a valuable biofertilizer. This
biofertilizer which is rich in major and minor nutrients is essential for the plant
growth (Sidana and Farooq 2014).

Fig. 14.3 Bagasse as a substrate for plant growth promoting substances by SSF
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14.6 Materials

Bagasse is used as a raw material for various paper products (Catosse et al. 2009;
Kumaraguru et al. 2014; Martinez-Hernandez et al. 2017; Poopak and Reza 2012;
Rainey 2009). There is a study on use of bagasse for pulp and paper (Elballa et al.
2017).

Bagasse particleboard is used as raw material for laminated floor and furniture
applications. The particleboard from bagasse has excellent mechanical properties
and is also economical.

The bioplastics have immense applications. Bagasse after pretreatment can be
used for the production of bioplastics (Getachew and Woldesenbet 2016; Jian and
Heiko 2008; Wu 2011; Zaid and Jamil, 2015). These bioplastics are
polyhydroxyalkonates (PHA) biopolyesters. These bioplastics can be used as alter-
nate to petroleum-based non-degradable plastics which causes pollution and is
harmful to the environment. The use of bioplastics from bagasse will be very
cheap and eco-friendly (Getachew and Woldesenbet 2016).

The cellulose present in bagasse is used to make textile fibers which have high
tensile strength and also water-holding capacity. The fibers are used for making
nonwoven products which are easily biodegradable and eco-friendly (Chiparus
2004).

Bagasse in combination with quarry dust and lime can be used to make bricks
which are eco-friendly and stronger (Alavez-Ramirez et al. 2012). These bricks have
more advantage in comparison to clay bricks. These bricks have applications in
making eco-friendly construction materials and thus help in sustainability.

Bio-char can be produced from anaerobically digested bagasse by pyrolysis at
600 �C in nitrogen environment (Inyang et al. 2010). The bio-char can be used as:

• Soil amendment to improve soil properties and texture.
• Contaminant remediation barrier.
• Adsorbents for the bioremediation of heavy metals or toxic compounds from

contaminated water. Bagasse ash have good silica content which can be used in
buildings for cement (Ganesan et al. 2007). Bagasse ash thus can be excellent
alternate for cement in concrete.

14.7 Energy

Methane (CH4) is sustainable source of energy. There is a report which shows
production of CH4 from sugarcane bagasse by hydrothermal pretreatment of bagasse
using batch fermentation (Soares et al. 2018). This CH4 gas can be used to generate
electricity.

Sugarcane industries use boiler systems for steam generation. Bagasse when
burned in presence of oxygen produces carbon monoxide and hydrogen gases.
These gases have uses in turbine engines and boilers for steam generation and
power (Basu 2010). Co-generation of electricity by incineration of bagasse can
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yield 130 kWh/ton bagasse (Seabra and Macedo 2011). In 2015, 474 TWh (2%) of
the global electricity was from biomass resources (IEA 2017). Bagasse (about
280 kg) can generate 500–600 kg steam per ton of sugarcane (i.e., 2 kg steam/kg
bagasse) (Yang et al. 2013).

Pyrolysis is heating bagasse without oxygen to produce charcoal, bio-oil, and
producer gases. The bagasse based co-generation in various states in India is shown
in Fig. 14.4. This is good alternative to the conventional fossil energy. The bagasse
based co-generation will be economical and reduce fuel consumption and pollution
(Sahu et al. 2015). Bio-char contains 85% carbon, and remaining amount consist of
hydrogen and oxygen. Bio-char when burned generates power which has energy.
Bio-oil is dark brown/black liquid which is used as fuel in power plants. Bio-oil is a
clean fuel and when mixed with petroleum refinery feedstocks can produce petro-
leum grade refined fuels. The producer gases also have applications in gas turbines
for heat generation and power (Basu 2010; Nigam and Pandey 2009; Parameswaran
2009).

There is a report on sugar mills in Brazil generating around 412 kWh electricity
per ton bagasse, 330 kWh heat, and 16 kWh mechanical energy (Turdera 2013).

The activated unburnt carbon (AUC) is prepared from bagasse by deashing and
steam activation. The AUC can decolorize oils, fats, and beverages. It is also to make
refined sugar and also used as fuel in boilers (Batra et al. 2010; Mobarak et al. 1982).
The charcoal from bagasse can be used to make briquettes (Clement 2007; Martinez-
Hernandez et al. 2017; Teixeira et al. 2010).

Fig. 14.4 Bagasse based co-generation in various states in India. (*Source: Singh 2010)
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14.8 Fuels

The fuels as value-added product from bagasse include bioethanol and biogas. There
is a growing concern over high cost fossil fuels. The conversion of lignocellulosic
wastes into bioethanol or any biofuels is economical and is renewable alternative
(Rubin 2008). The world production of bioethanol in 2015 was around 97� 106 m3.
From this total production, United States (56 � 106 m3) and Brazil (27 � 106 m3)
account for major production of bioethanol which is nearly 85% (Alternative Fuels
Data Center 2016). Brazil is the major exporter of bioethanol. Ethanol is major
energy source in countries viz., Brazil, United States, China, and India. The produc-
tion of ethanol in the world in 2013 was around 89 GL, where 74% availability of
ethanol was from Brazil and the USA (Bhatnagar et al. 2016). Bagasse has been
reported to have application in bioethanol production (Bezerra and Ragauskas 2016;
Cardona et al. 2010; Chandel et al. 2012). Pretreatment of bagasse is necessary to
separate cellulose, hemicellulose, and lignin. There is a report on bioethanol produc-
tion from bagasse (Antunes et al. 2014; Iram et al. 2018; Khattab and Watanabe
2019; Tyagi et al. 2019).

Biogas can be produced with bagasse as a substrate which involves anaerobic
digestion (Carvalho et al. 2005). Bagasse is decomposed into simple sugars by
acidogenesis. After this process, fatty acids present are decomposed to carbon
dioxide (CO2) and hydrogen (H2). These final products by acetogenesis form
hydrogen sulfide (H2S). This H2S can be removed by scrubbers. The final step
involves conversion of methane acetate to CH4 which is major constituent of biogas
(Carvalho et al. 2005). This biogas can be used as fuel and in cooking. Fermentation
of bagasse for biohydrogen production can yield about 70.6% gas. This will be very
cheap, eco-friendly and also reduce greenhouse emissions (Zhang et al. 2007).

14.9 Animal Feed

Bagasse has important component, i.e., cellulose and ruminants can easily digest this
cellulose due to cellulase enzyme. Also, it is good source of proteins and hence, can
be recycled into protein-rich food. Bagasse can be excellent substrate for the
production of animal feed (Parameswaran 2009). Complete feed for ruminants is
prepared by mixing bagasse with molasses as major components. The percentage of
bagasse and molasses can be varied depending upon the ruminants to make complete
animal feed (Diwan et al. 2020). Single cell protein (SCP) is a good protein-rich
palatable feed and alternative to costly soymeal and fishmeal. SCP is cheap and can
be easily converted to animal and human feed (Mtui 2009).
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14.10 Biosorbents

Bagasse also has important application to remove toxic metals (Joseph et al. 2009;
Moubarik and Grimi 2015; Sarker et al. 2017; Vera et al. 2019), dyes, organic
compounds (da Silva et al. 2019; Siqueira et al. 2020), etc. from aqueous solutions,
waste waters, etc. The AUC from bagasse has been used in melanoidins adsorption
(Kaushik et al. 2017).

14.11 Conclusion and Future Prospects

The different important value-added products from the agroindustry by-product
bagasse mentioned in the review are very useful, cheap, non-toxic, and
eco-friendly. These value-added products have various industrial and agricultural
applications which will be very helpful. It also maintains sustainable approach which
is essential. The value-added products from bagasse can be termed as “green
products” as they do not contribute to any pollution. This is the main important
factor which is focused in this review. Bagasse is also available easily in huge
amount. This bagasse instead of burning or directly disposing to the landfills when
converted to value-added products will help in the management of agroindustry
by-product waste. The aspect of wastes turning to wealth will be a clean technology.
This will also contribute to a significant sustainable environmental approach in the
management of bagasse. The reduction in environmental pollution is the need of
the time.

The agroindustry by-product bagasse can be used to generate novel products
which will have immense industrial applications. The study in this area needs to be
carried out on a large scale with other agroindustry by-products viz., sawdust, peanut
shell, corncob, etc. Further research is needed to study more additional new uses of
bagasse which will have more applications in the medical field.
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Abstract

Exopolysaccharides (EPS) are secondary metabolites which are produced by
organisms utilizing various carbon sources. They can be found in
microorganisms, plants, and animals. EPS are able to perform different funda-
mental biological functions. There is large amount of carbon consumption
required for production of EPS, which makes the production process costly.
However, cheaper alternative substrates are there, which may lead to higher
EPS production. A large amount of wastes is produced by food industry every
year. Management of such waste is a critical issue for food industries. Because of
their high organic water content, disposal of such waste has a notable problem
both in terms of costs and environmental pollution. Normally disposal of such
waste is done in traditional ways, such as land filling and composting; it is used as
low quality animal feed, incineration and land spreading. Dumping of these
wastes can have several adverse effects like it may produce greenhouse gases.
It is one of the source of secondary pollution, it emits foul smell, such waste is
easily susceptible to microbial attack, and the process like land spreading results
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in contamination of underground water table due to its runoff in rainy seasons;
landfills and land spreading create breeding grounds for many human pathogens
which can be a reason of epidemics, and thus causing negative impact on human
health. The industries experience losses as these wastes require pre-treatment and
transportation costs for dumping into landfills, which is costly. Generally it is
believed that such waste can be used as biofertilizer or as fodder for cattle. But all
of these wastes cannot be always used as fodder or biofertilizer due to high fibre
content, however, it is observed that these waste can easily be utilized by
microbes as a source of energy and metabolism, thus being useful in producing
secondary metabolites like EPS. Unpleasant effects of agro-industrial wastes can
be handled with the help of environmental biotechnology, which is an emerging
field nowadays. The use of agro-industrial wastes for production of valuable
bio-products can minimize various environmental hazards. For these reasons,
such wastes may offer probable solutions to the actual need of a sustainable
development which would accomplish the increasing demand of energy which is
required for the production of EPS and would lower the overall cost of the
production at higher level.

Keywords

Bio-prospecting · Bioprocess · Exopolysaccharide · Fermentation · Fruit waste ·
Bacteria

15.1 Introduction

Extracellular polymeric substances are produced by both prokaryotes and
eukaryotes. One group of these polymeric substances are exopolysaccharide
(EPS); they are the secondary metabolites that are produced by organisms by
utilizing carbon source. Several bacteria, algae, fungi and yeasts are known to
produce exopolysaccharide. Exopolysaccharide is also investigated from autotrophic
acidophiles, hydrothermal vent bacteria, methanogens, halobacteria, as well as from
microbes present in groundwater and sewage sludge. Extracellular polymeric
substances of microbial origin are also scattered in marine environments. They are
found in dissolved forms, colloids, in association to particulate matter, which
includes bio-films, cell aggregates, microbial mats, detritus, etc. (Bhaskar and
Bhosle 2005). EPS can be found in various plants and animals as well. EPS are
able to perform various biological functions. They are reserve energy substances and
are structural elements which maintain mechanical shape and rigidity of the living
cells such as cellulose, hemicelluloses and pectin in plant and microbial cell wall,
chitin in arthropod exoskeletons. Many microbes produce EPS as strategy of grow-
ing, surviving under adverse conditions and adhering to solid surface. EPS enables
the microbes to survive continuously at high cell densities in a stable mixed
population of biofilm communities. Biofilms are mainly composed of EPS and
microbial cells. In biofilm, EPS is considered primary matrix material as it accounts
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for 50–90% of the total organic carbon. The collective behaviour of microbes has
significance in bioengineering, agriculture, biotechnology, environmental sectors,
industrial, medicine, dentistry, geosciences and many other disciplines. In response
to selective pressures, microbes produce EPS naturally. EPS may hinder the mass
transportation of antibiotics through biofilm by directly binding to these agents and
thus contributes to the antimicrobial resistance properties of bio-films (Donlan
2002).

Depending on their position, they may be endopolysaccharides or
exopolysaccharides. They are classified into homopolysaccharide that has only one
type of sugar moiety, e.g. alternan, cellulose, curdlan, dextran, levan, mutan,
pullulan and heteropolysaccharide that has two or more sugar moiety, e.g. gellan
and xanthan (Zannini et al. 2016). The process of its synthesis involves complex
enzyme system. They are organic macromolecules that are formed by polymeriza-
tion of simple or identical building blocks like monosaccharides, amino sugars,
uronic acids linked by glycosidic bonds, amino acids linked by peptide bonds,
nucleic acid, phospholipids and humic substances, which may be arranged as
repeating units within the polymer molecules. EPS may also contain low molecular
weight non-polymeric substituent, which significantly changes structure and
physiochemical properties. Thus EPS carry organic substituent such as succinyl,
acetyl or pyruvyl group or inorganic substituent like sulphates. Polysaccharide
chains vary in molecular weight from 103 to 108 kDa and it also contains functional
and species-specific sub-unit (Sutherland 1997). The charge carried by the polysac-
charide mainly depends upon the components of the repeated units. It is observed
that polysaccharides are usually negatively charged, sometimes neutral or rarely
positively charged. Furthermore, polysaccharides may be hydrophilic but can also
have hydrophobic properties. The behaviour of the polysaccharide at the cell surface
or at an interface is determined by hydrophobic nature of polymer. Angle of bonds
determines the shape of EPS; it also manages the relative orientation of adjacent
sugar residues in chain. In solution EPS have an ordered helical confirmation and
may be single, double, or triple helix. Intermolecular hydrogen bond stabilizes their
helix. Such confirmation makes polysaccharides semi-rigid and thus the molecules
can shunt large volume of solutions. Intermolecular interaction stabilizes the helix
and effects properties of EPS such as viscosity, solubility and gel formation. Poor
intermolecular interaction will solubilize the EPS. Presence of side chain mainly
influences the interaction. EPS gets affected with change in environmental factors in
terms of molecular mass and composition; this turn can affect their ability to interact
with other polymers and cations.

15.2 Bacterial EPS

Structural diversity of bacterial polysaccharides is found to be many folds higher in
comparison to plant. This is due to variations in condensation linkages, monosac-
charide composition, molecular weight and non-sugar decorations, and this all leads
to their various biological functions. This diversity adds up to diverse physical and
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rheological properties of microbial EPS and thus opens up its commercial
applications in various sectors (Becker 2015). Apart from structural diversity,
microbial polysaccharides are preferred over plant and algal polysaccharides
because the microbial EPS are produced in short period of time and in higher
amount, the production process in fully controlled, microbial EPS is energy efficient,
there is no effect of seasonal variation during production and have the possibility of
utilizing agricultural waste.

EPS are considered as a probable alternative to chemical polymers because of
their ease of extraction, biodegradability, biocompatibility, high efficiency,
improved physical properties, reproducible physicochemical properties, edibility
and non-toxicity to both human and environment. Vast number of bacterial EPS
are reported over last decades; their structure, composition and functional properties
have extensively been studied (Table 15.1). Due to their bioactive role and their
extensive range of applications, substantial interest has aroused with regard to
isolation and identification of new bacterial polysaccharide. Due to their unique
physical properties and structure, EPS are used in textile, food, detergents,
beverages, agricultural, pharmaceutical, drug delivery, biotechnology, paper, petro-
leum, paint, medical, cosmetic industries and in the formulation of the culture media.

Polysaccharides are involved in several mechanisms such as stress tolerance
associated to food process, conformation, pre-biosis, pro-biosis, viscoelasticity,
polyelectrolyte adherence and biocompatibility, thus some of their applications
include their use as binders, coagulants, emulsifiers, film formers, gelling agents,
lubricants, stabilizers, pro-biotic, suspending and thickening agents. The natural
environment and ecological niches from which microorganisms have been isolated
mainly determine the physiological role of EPS. A new approach to encounter EPS
with novel properties might entail investigating different EPS producers from
different environments.

In spite of great diversity in molecular structures of bacterial EPS, only a few have
been industrially developed. There are different roles of bacterial EPS such as hiding
the bacterial surface for protection, as protective agents against environment, bond-
ing agent for interactions with other bacterial surfaces or substratum, in the rhizo-
sphere communities as substances for bacterial aggregation, as signalling molecules
and as a structure stabilizer in biofilm. Still various physiological functions of EPS
remains unidentified and thus only few of them have been industrially used (Suresh
Kumar et al. 2007; Badel et al. 2011).

15.3 Mechanism and Regulation of EPS Synthesis

Production pathway and utilization of substrate molecule differ depending upon the
type of EPS that is produced (Patel et al. 2010). Three phases are involved in EPS
biosynthesis: (a) assimilation of a carbon substrate, (b) intracellular synthesis of the
polysaccharide and (c) its exudation out of the cell.

Extracellular glycosyltransferase catalyses the polymerization reaction for syn-
thesis of homopolysaccharides. In this reaction, there is transfer of a monosaccharide
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unit from a disaccharide and this leads to increase in the length of the polysaccharide
chain. The same enzyme causes reassignment of a sugar residue from activated
donor molecules which are nucleoside mono-phosphate sugars, lipid phosphate
sugars and sugar 1-phosphate to specific acceptor molecules. This leads to biosyn-
thesis of glycosidic bonds.

In the case of hetero-polysaccharides, glycosyltransferases relocate sugar residues
to a lipophilic carrier continuously; this leads to the assembly of repeating units in
the cytoplasm. Once it is formed, the sugar chain is transferred outside the cells and
polymerized. There is genetic and enzymatic control on the level of the release of the
polymers, their chemical modification such as acetylation or pyruvylation reactions,
and addition of phosphate or sulphate substituent (Finore et al. 2014).

Table 15.1 Types of exopolysaccharide and example of EPS producing bacteria

Exopolysaccharide EPS producing bacteria

Glycogen Archaea and several bacterial species

Xanthan Xanthomonas species

Levan Halomonas smyrnensis AAD6T, Zymomonas mobilis, Lactobacillus
species, Bacillus species, Bifidobacter species, Halomonas species.,
Paenibacillus polymyxa, Streptococcus species, Leuconostoc
mesenteroides

Dextran Leuconostoc species., Bacillus species, Lactobacillus species, Weissella
cibaria

Mutan Lactobacillus species, P.damnosus, Streptococcus mutans, S. sobrinus,
S. thermophiles, S. salivarius

Reuteran Lactobacillus reuteri

Alginate Bacillus species isolated from marine environment, Pseudomonas species
Azotobacter species

Glucomannan Rhizobium leguminosarum, R. meliloti

Curdlan Alcaligenes faecalis, Cellulomonas flavigena, Agrobacterium species,
Paenibacillus jamilae, Cellulomonas sp.

Hyaluronan Pseudomonas aeruginosa, Pasteurella multocida, E. coli

Gellan Sphingomonas species, S. paucimobilis

Alteran Leuconostoc mesenteroides

Insulin Streptococcus mutans, Lactobacillus species, Leuconostoc citreum CW28

Welan Alcaligenes species

β-Glucan Bacillus spp., Pediococcus spp., Streptococcus species

α-D-glucans Leuconostoc pseudomesenteroides

Fructans Streptococcus salivarius, Leuconostoc species

Pyruvated galactan Methylbacterium sp. (isolated from a Finnish paper machine) (Lembre
et al. 2012)

Cellulose Salmonella, E. coli, some Gram-positive bacteria

Polygalactan L. lactis subsp. lactis H414 (Ruas-Madiedo et al. 2002)

K30 antigen Escherichia coli

Colanic acid Enterobacter spp., Escherichia coli, Salmonella spp., Shigella spp.

FucoPol Enterobacter A47
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For the production of polymers in bacteria by utilization of carbohydrates, four
general mechanisms are known:

1. Wzx/Wzy-dependent pathway: At the inner membrane, individual repeating are
linked to an undecaprenol diphosphate anchor (C55), they are then assembled by
number of glycosyltransferases and translocated across the cytoplasmic mem-
brane by flippase, which is a Wzx protein. Wzy protein (polymerase) carries out
the polymerization at the periplasmic space (Islam and Lam 2014). Polysaccha-
ride co-polymerase and the outer membrane polysaccharide Transport of the
polymerized repeat units from the periplasm to the cell surface is dependent
upon additional protein(s) assigned to as polysaccharide copolymerase (PCP)
and the outer membrane polysaccharide export (OPX) families (Cuthbertson et al.
2009; Whitney et al. 2011).

2. ATP-binding cassette (ABC) transporter-dependent pathway: Synthesis of cap-
sular polysaccharide (CPS) (Whitney and Howell 2013) occurs through ABC
transporter-dependent pathway where assembly occurs through action of
glucosyltransferases at the cytoplasmic face of the inner membrane. The export
across the inner membrane and translocation to the cell surface occurs with the
help of tripartite efflux pump, which is composed of ABC transporters. CPSs
produced through this pathway carry a conserved glycolipid at the reducing
terminus which is made up of phosphatidylglycerol and a poly-2-keto-3-
deoxyoctulosonic acid linker.

3. Synthase-dependent pathway: Secretion of complete polymer strands across the
membranes and cell wall occurs through this pathway. A single synthase protein
performs the polymerization as well as the translocation process. For the assem-
bly of homopolymers requiring only one types of sugar precursor, such pathways
are often utilized.

4. Extracellular synthesis, polymerization reaction: Various enzymes carry out trans-
fer of a monosaccharide from a disaccharide to a growing chain of polysaccharide
in the extracellular environment (Ates 2015). In a particular linkage pattern like α
and β, the sugars of polysaccharides get then assembled (Dave et al. 2020).

15.4 Alternative Substrates for EPS Production

The main troubles with large-scale production of EPS are their high substrate cost
and costs related with their downstream processing, which makes the production an
expensive affair. The amount and composition of EPS produced by a bacterium are
determined genetically, but still there is high influence of media components and
cultivation conditions. Large amount of carbon consumption for production of EPS
makes the process costly. However, cheaper alternative substrates are there which
may lead to higher EPS production. High carbon containing food waste mainly
generated from fruits and vegetables processing industry, household kitchen waste,
dairy waste, cafeteria, fruit juice vendors can be a very good source for EPS
production at higher level. All these sectors produce mammoth amounts of wastes
constituted by pulps, seeds and peels (Kanimozhi et al. 2018). Getting rid of these
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wastes is a huge problem both economically and environmentally. The nature of
waste is also such that it has limited application as biofertilizer and fodder. However,
microbes can use such waste as a source of energy and metabolism, thus being useful
in producing secondary metabolites.

Environmental biotechnology provides alternative options to handle the adverse
effects of fruits wastes. The use of fruits wastes for production of priceless
by-products like EPS through microbial fermentation is not only economically
important but can also decrease several environmental hazards. For these reasons,
such waste may offer possible solutions to the need of a sustainable development,
thus satisfying the increasing demand of energy required for EPS production and
thereby lowering the overall production cost.

Research has found that such fruits residues are very good alternate substrate for
EPS production, mainly due to their potential advantages like biocompatibility,
non-toxicity, easy and cheap availability; above all such wastes are easily utilized
by microbes. It is observed that the conversion of such substrate is up to 70%. Fruit
wastes consist of hemicellulose, carbon, cellulose, lignin, vitamins, ash, moisture,
nitrogen, etc. and these constituents can be biochemically digested by bacteria to
produce commercially important product such as EPS (Sadh et al. 2018). Use of such
waste in medium formulation makes the medium cheaper and simpler; and by
utilizing such medium for EPS production the extraction and purification of EPS
also becomes simple (Hafez et al. 2007; Leroy and De Vuyst 2016).

Availability and utilization of simple and cheap technologies might attract the
researchers and industrialist to isolate novel microbial strains with novel EPS
production ability with novel application. Intelligent screening of bacteria for EPS
is necessary for its further exploration towards commercialization. Wastes attained
after processing of vegetables and fruits are exceedingly seasonal and perishable;
such wastes are massive problem to the pollution monitoring agencies and
processing industries (Arun et al. 2015). An attempt is made for use of several fruits
waste for large scale production of EPS which might have commercial application.
These concepts could include new pre-treatment methods and resources as well as
modified downstream processing and fermentation techniques (Castillo et al. 2015).
The entire process of utilizing the waste for EPS production might lead towards
Green revolution.

For production of diverse products, industries are reluctant in utilizing fruits
waste as substrate. This may be due to various problems that might be faced in
handling such waste, dewatering it, pre-treatments, discarding and many more.
Bio-processing may play an important role by providing adequate pre-treatment,
coagulation, dewatering and modification of alternatives. Currently, these fruits
wastes are allowed to decay naturally in the fields; they are dried and then burned.
For production of bacterial EPS, processes like submerged fermentation and solid-
state fermentation make appropriate use of such waste as substrate or raw material.
In addition, the use of such wastes is an environmentally friendly method of
managing waste because their disposal presents an added cost to processors, and
direct disposal into soil or landfills causes serious environmental problems.
Investigations are going on for development of value-added process for production
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of EPS on large scale using such waste with the goal that the production would be
cheap and there would be reduced use of non-renewable substrates and other
resources which may lead to an economical outcome.

15.5 Bio-processing of Fruits Wastes

Bio-processing involves the complete use and conversion of substrates by
microorganisms for the production of EPS. This may also solve the environmental
problem of pollution. Through industrial development and new innovations, differ-
ent bioprocesses are employed in the utilization of such waste residues in various
products. By making use of various physical processes and harsh chemicals for
synthesis of valuable products from waste resources, the process becomes very
expensive, hazardous and non-renewable proposition. Making use of
microorganisms to synthesize value-added bio-chemicals from biomass is a
promising alternative to harsh chemical synthesis and physical processes. The
process is not hazardous, there is use of renewable source, and the process is less
expensive. It is very much important to lower production costs. Different ways to
reduce production costs could engage using low-priced substrates like agro-
industrial waste, optimization of fermentation conditions and downstream process
or developing recombinant strains by mutagenesis or genetic manipulation which
could give higher yield.

Bio-processing mainly involves bioconversion, where there is biotransformation
of organic matter present into the waste to energy containing fuels and value-added
products through microbes. Two steps are involved in bioconversion of solid waste
to valuable product. First step mainly engrosses breakdown of complex
carbohydrates into simple reducing sugar by using various pre-treatment methods,
and in the second step, by fermentation of the reducing sugars needed products are
obtained (Lange 2007; Lee et al. 1997; Sun and Cheng 2002). Several industrially
important biochemical products have been produced via bio-processing techniques
which makes use of different biological wastes as substrates (Gunasekar et al. 2014).
The main goal of these technologies is to use the waste to develop value-added
products, thus reducing environmental pollution and solving issues which are
associated with waste disposal (Cheng et al. 2012; Göksungur, et al. 2011). Further-
more, it will also assist in the positive development of a biologically built economy.

Bio-processing can be carried out by both solid-state fermentation (SSF) and
submerged fermentation (SmF). SSF is the method which has shown high produc-
tivity from low-cost carbon and nitrogen source; it is simple and is mainly preferred
by industries as it is less costly as well. There are various other advantages of this
process too. It generates less effluent, no sophisticated fermentation equipments are
required and above all, substrate can directly be used as feed in fermentation with no
requirement of pre-treatments (Yang et al. 2001). There are less chances of contami-
nation during the process and the downstream process is very simple requiring no
machines.
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15.6 Methods of Fermentation

15.6.1 Solid-State Fermentation (SSF)

In SSF, the microbes are grown on solid substrate, there is absence of free moving
water but to maintain the growth and metabolism enough moisture is maintained
(Rahardjo et al. 2006). Inert and organic materials can be used in SSF. Inert material
acts only in attachment places, whereas organic material functions as a source of
nutrients so they are also termed as support substrate. Using support substrates has
several advantages; for example, there is a reduced production cost because these
substrates provide some nutritive substances to the microbes. Above all it has
similarity to the natural habitat of several microorganisms. Biological wastes are a
good example of such material. SSF has been used for the production of EPS; yield
attained by this method is compared to those obtained from conventional submerged
cultivation (Thomas et al. 2013). Agro-industrial wastes like pomaces and lignocel-
lulosic biomass are commonly used for production of EPS in SSF (Özcan and Öner,
2015). Making use of mango peels as substrate cost-effective EPS with fructose,
mannose and glucose production is carried out from B. licheniformis in SSF (Asgher
et al. 2020). Stredansky and Conti (1999) made use of grape pomace, citrus peels and
apple pomace as solid substrate to produce xanthan from Xanthomonas campestris
strains in SSF.

Disadvantages of SSF to commercial application include limited knowledge of
the operation and design of large-scale bioreactors; there are various problems faced
in controlling important culture parameters such as heat removal and mass transfer,
difficult to control the process parameters such as nutrient conditions, pH, moisture,
heat, tedious downstream process requiring removal of the matter, cells and then
extraction. Various types of bioreactor have been used in SSF processes, which
mainly include rotating drums, stirred bioreactors, packed beds and gas–solid
fluidized beds.

15.6.2 Submerged Fermentation

Use of submerged fermentation (SmF) method of fermentation requires various steps
before the process of fermentation begins. The waste needs to be crushed by a
mechanical mixer. Hydrolyzed by thermo-chemical pre-treatment using sulphuric
acid or alkali solution with incubation at higher temperature, i.e. autoclaved, can be
incubated at room temperature or can be subjected to boiling as well (Li et al. 2017).
Enzymatic hydrolysis of such waste is also an alternate but it is costly (Vavouraki
et al. 2013, 2014). There is a need to build up environment-friendly, cost-effective
and novel alternative approaches for effective pre-treatment of waste (Philippini
et al. 2020). Filtration is the next step for removal of insoluble matters. The
hydrolysate thus attained is used for fermentation after autoclaving it. Certain time
the hydrolysate attained needs to be diluted to attain proper ratio of nutrients present
in it, one also needs to analyse the amount of carbon and nitrogen present into it and
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maintain the pH of the attained hydrolysate before being used for fermentation in
specially designed bioreactors. The bioreactors are sophisticated and are equipped
with well-controlled operative systems. It is a onetime investment for production by
industries as these reactors can be operated under batch, continuous and fed batch
mode with automation. Downstream processes are simpler as it mainly includes
removal of cell from the fermented broth and then extraction of the product. Such
hydrolysate attained after pre-treatment can easily replace synthetic medium used for
EPS production.

There are various other advantages of SmF like easier product purification and in
short period one can achieve high yield. In liquid culture, the control of the
fermentation is simpler with reduced fermentation time. The use of submerged
culture can also benefit the production of many secondary metabolites and decrease
production costs by reducing the labour cost which is involved in SSF. However, the
method of SmF is less used as there is more effluent generation, process requires
pre-treatment which is time consuming and also requires complex fermentation
equipments. It is observed that by SSF there is improved product characteristics as
compared to the product attained by SmF.

Different types of fermenter made up of autoclavable material are designed to
carry out SmF. For example, continuous stirred tank fermenter, bubble column
fermenter, tower fermenter, two-stage airlift fermenter, etc. Pineapple fruits waste
attained from the pineapple processing industries is successfully used for bacterial
EPS production using submerged fermentation at laboratory scale (Pyar et al. 2014).
Use of grapes skin waste as source for production of pullulan using fungal strain is
also reported (Israilides et al. 1994). Successful use of sugarcane juice as source of
carbon for xanthan production making use of SmF at laboratory scale is also reported
(Faria et al. 2011). As a biomass resource fruit juices are also a good substitute. For
bacterial cellulose production, Hungund et al. (2013) made use of various fruit juices
including pomegranate, pineapple, water melon, sugarcane juice, muskmelon,
tomato and orange and also molasses, coconut water, and coconut milk as cheap
and alternative carbon sources by Gluconacetobacter persimmonis. Survase et al.
(2007a, b) used various dilutions of sugarcane molasses, sugarcane juice and
coconut water which were not subjected to any pre-treatment methods before their
use for the scleroglucan production by filamentous fungi S. rolfsii MTCC2156. An
attempt to use coconut water and sugarcane juice for EPS production by Lactobacil-
lus confusus cultures (Seesuriyachan et al. 2011) is also reported. Residue from
apple juice processing is used as an alternate source of carbon for xanthan gum
production where it is observed that there is ten times higher production of EPS in
comparison to medium containing sucrose as carbon source (Druzian and Pagliarini
2007). An attempt to produce EPS by making use of apple peels, pineapple pulp and
mixed fruits waste containing pulp, seeds and peels of various fruits attained from
fruits juice vendor from Bacillus species and Xanthomonas campestris isolated from
fruits waste itself (Vaishnav et al. 2016) at laboratory scale and scale up to 5 L
fermentation medium is also reported. The production was 1.4 and 1.2 folds higher
respectively by both the strains in comparison to the synthetic medium used for EPS
production (Vaishnav and Dave 2017). Plenty of information is reported in various
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literatures and research articles regarding use of fruits waste for production of
various organic acids (Ahmad and Langrish 2012), but reports of making use of
fruits waste for EPS production are very few. Table 15.2 briefly describes the EPS
produced by bacteria making use of different fruits and its different parts as well as
the method of fermentation applied.

15.7 Substrate for Exopolysaccharide Production

The extensive research and development mainly aims on determining how to reuse
fruits waste and convert it into useful product. It also aims for an alternate to current
disposal method. The improper disposal is environmentally and ecologically not
advantageous. Certain times due to constrains in transport fruits are not exported, the
cost of the fruits spikes, and so they remain unused resulting in to spoilage upon long
storage. Such wastes have large amount of organic matter that is rich in
bio-molecules which are easily bio-convertible. Cultivation of microorganisms on
these wastes may be a valuable process that is capable of converting these materials,
into value-added product which otherwise are considered to be wastes. Processes
with techno-economic feasibility are used by scientists and researchers nowadays to
convert waste into valuable products. Industrial production of EPS is costly affair as
more than half of production cost is covered up by the substrate used. By making use
of this waste one can easily lower the production cost to around 40% (Suresh Kumar
et al. 2007). Regarding fruit wastes, more attention has been paid to wastes in form
of pomace, peels and juice. These wastes are organic in nature and are rich in sugars
and are thus easily used by the microorganisms. This makes such wastes very
suitable to be exploited as raw materials in the industrial production of EPS under
SSF and SmF conditions.

15.7.1 Pomace

Pomace is the remainder produced after the extraction of juice, flavours and
concentrates from fruits. Pomace consists of peel, core and pulp, which are usually
used as animal feed or fertilizer. Pomace is also directly converted into snacks,
cereals and pet foods via extrusion process (Paraman et al. 2015). The presence of
carbohydrates and other bio-molecules is in very high concentration, due to which
pomace can no longer be considered to be waste. It is rich in dietary fibres, poly-
phenols, bioactive compounds and natural antioxidants that make it an attractive
source for human diet supplements (Kanimozhi et al. 2018). It contains a lot of
health-promoting ingredients as well as value-added products such as organic acids,
enzymes, alcohols, bio-fuels, bio-adsorbents, flavours and pigments. Among all the
types of pomace, apple pomace and grape pomace are largely used. Pomace has a
large potential for bioconversion into several value-added products in an economi-
cally feasible way. Content of pomace is crude fibre, pectin and minerals such as K,
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Table 15.2 Biomass and type of fermentation used for production of microbial EPSs

EPS Microbial strain Biomass
Types of
fermentation References

Levan Paenibacillus
polymyxa NRRL
B-18475

Sugarcane
syrup

Smf Han and
Watson (1992)SmF

Levan Zymomonas
mobilis ATCC
31821

Sugarcane
syrup

SmF de Oliveira
et al. (2007)

Scleroglucan Sclerotium rolfsii
MTCC 2156

Sugar can juice Smf Survase et al.
(2007a, b)

Lactobacillus
confusus

Coconut water SmF Kuntiya et al.
(2010)

Coconut water Seesuriyachan
et al. (2011)

Bacterial cellulose Gluconacetobacter
xylinus PTCC 1734

Date syrup SmF Moosavi-
Nasab and
Yousefi (2011)

Xanthan Xanthomonas
campestris

Sugar cane
juice

SmF Faria et al.
(2011)

Bacterial cellulose Gluconacetobacter
persimmonis

Watermelon
juice

SmF Hungund et al.
(2013)

Bacterial cellulose Gluconacetobacter
persimmonis

Orange juice SmF Hungund et al.
(2013)

Gluco dextran Bacillus species
SRA4

Mixed fruits
pulp, apple
peels,
pineapple
fruits waste

SmF Vaishnav and
Dave (2017)

Vaishnav et al.
(2020)

Xanthan Xanthomonas
campestris

Apple juice SmF Druzian and
Pagliarini
(2007)

Xanthan Xanthomonas
campestris

Mixed fruits
pulp, apple
peels,
pineapple
fruits waste

SmF Vaishnav and
Dave (2017)

Galactose and
mannose
containing EPS

Shewanella
chilikensis

Ripe plantain
peels

SmF Nwosu et al.
(2019)

Xanthan X. campestris PD
656

Apple pomace SSF Stredansky
and Conti
(1999)

Xanthan X. campestris Grape pomace SSF Stredansky
and Conti
(1999)

Heteropolymeric
nature of EPS with
mannose glucose,
and fructose

B. licheniformis Mango peels SSF Asgher et al.
(2020)
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Mg, Fe and Mn and thus it is a common substrate for microbial fermentation in SSF
(Shalini and Gupta 2010).

15.7.2 Fruits Peel

Tons of waste in form of fruits peel is produced by the fruit processing industries,
which are involved in canning of fruits pulp and fruits juice. Peels are wealthy source
of biologically active compounds, and enzymes such as, peroxidase, protease,
polyphenol oxidase, carotenoids, vitamins C and E, dietary fibres, and carbohydrate
(Ahmad and Langrish 2012). These fruits wastes are either allowed to decay
naturally, or are burnt. However, these wastes are also rich in sugars like fructose,
sucrose and glucose as well as pectin and cellulose (Giese et al. 2008) and due to
their organic nature, they are easily used by microorganisms as substrates for the
production of industrially relevant compounds like EPS through its microbial con-
version (Ahmad and Langrish 2012). Globally citrus fruit production is very high.
Almost half of these citrus fruits are squeezed to juice, and the leftover includes peel,
segment membranes and other by-products. Customarily it is used as a cattle feed
which is of low value to cover the transportation and production costs. So, a large
fraction of citrus waste remains deposited leading to environmental and economical
disadvantages, and also leading to health problem of human beings (Kim et al.
2011). Stredansky and Conti (1999) have reported the use of citrus fruits waste for
xanthan production using Xanthomonas campestris. Production and optimization of
xanthan gum from pineapple peels using Xanthomonas campestris through SmF is
reported by Amenaghawon et al. (2015). These fruits peels can be sundried,
pulverized and then powdered. Such powders can be stored for longer period of
time used for EPS production along with addition of nitrogen source and essential
salts.

15.7.3 Fruits Juice

Fruits juice is mainly generated by canning industries. Fruits juice mainly consists of
high concentration of sugar like sucrose and organic acids. They can be a cheaper
source for the large-scale production of bacterial EPS. Palm date juice by-product is
one of the most widely cultivated crops in the Mediterranean region; it has been used
for xanthan production using Xanthomonas campestris at laboratory level by Salah
et al. (2011). Sugarcane juice is rich in carbon source with high concentration of
sucrose and it is a good substrate for production of EPS at cheaper level (Hungund
et al. 2013). Several fruit juices including orange, muskmelon, pineapple, water
melon, pomegranate, coconut milk and coconut water are used for the production of
EPS using Gluconacetobacter persimmonis GH-2. Spoiled fruits juice can also be a
substrate for polysaccharide production. Reports are there of cellulose synthesis by
strain Gluconacetobacter xylinus ATCC 53582 on medium containing juice of
spoiled fruits like plums, grapes, green pineapple and apples (Jozala et al. 2015).
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The shelf life of the fresh fruits juice is short and so if during the fruit processing or
during the storage the spoilage could result into economical loss but one can easily
make up to it by making use of spoiled juice of EPS production.

15.8 Applications of EPS

Application of microbial EPS began in 1960s and since then there has been an
amazing increase in their commercial use. Exploiting the biological, chemical and
physical properties of microbial EPS leads to its successful commercial application
(Dave et al. 2016). Depending upon properties of EPS, its applications have been
observed in variety of fields. Table 15.3 briefly reports the application of EPS.

15.9 Disadvantages of Using Fruits Waste as Substrate

On such cheaper substrate, bacteria through various metabolic pathways can produce
various undesirable products along with EPS (Kanimozhi et al. 2018). This might
cause structural changes in biopolymer. Unused part of the waste may get
accumulated in the broth and thus may act as inhibitor leading to lowering of the
overall production. So to decrease the risk of impurities to the final product and
attaining high purity and high quality product one has to make use of high and good
quality substrate. Therefore, the use of wastes or by-products might not be an option
or, if they are used, higher investment must be put in downstream procedures. Media
components and cultivation conditions do influence the composition of EPS and it
also influences the amount of EPS production. Growth conditions do not have
significant effect on EPS structure but its content in substituent groups can differ
widely, and thus it changes the properties of the polymer. However, there are
exceptions to this behaviour. Downstream processing of this product is also the
area which requires good research and modification in the conventional methods
used for extraction and purification.

15.10 Improvement in Strategy

To avoid the accumulation of the unused part of waste in the broth, one can extract
the sugar content of the waste by applying various pre-treatments and then
subjecting the content to filtration and then autoclaving, by following such strategy
one can avoid the production of undesirable product formation as well as can get rid
of the accumulation.

To obtain consistent and high polymer yields, the large-scale production pro-
cesses should be standardized, that too under controlled conditions, keeping in
consideration the strain used for production. In order to accomplish superior quality
and consistency of product yield, it is essential to regularly monitor and control the
EPS production processes. The methods developed and used by the industry for this
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purpose cannot be easily implemented in processes for the production of microbial
EPS as it is hard to link key process factors. Although some real-time monitoring
techniques have been attempted, most often EPS production monitoring depends on
off-line analytical methods that requires regular removal of samples from the

Table 15.3 Properties and application of Bacterial EPS

Properties Uses Polymer

Biological properties

Antitumor and
immunomodulating

Antitumor agent β-D-Glucans

Antithrombotic,
antiseptic and
regenerative

Heparin analogues E. coli K5 EPS

Bacterial cellulose

Antiadhesive Eye and joint surgery Hyaluronic acid
(Streptococcus EPS)

Chemical properties

Protein Enzyme substrates E. coli K4 and K5 EPS

Polymer Oligosaccharides preparation Curdlan, Pullulan,
scleroglucan

Physical properties

Emulsion stabilization Foods, thixotropic paints, drug stability Xanthan, FucoPol

Fibre strength Acoustic membranes Bacterial cellulose

Film formation
adhesion

Food coating, biodegradable film
formation, biosorption, bioaugmentation

Pullulan

FucoPol

Scleroglucan

Flocculent Water clarification, ore extraction Various polymers

Foam stabilization Beer, fire fighting fluids Xanthan

Gelling agent Cell and enzyme technology as well as
food

Gellan, Curdlan,
Pectin, alginate,
FucoPol

Oil recovery Xanthan and curdlan

Retention of ice crystals
in size

Ice creams and ice lollies Propylene glycon
alginate

Heat reversible gel
formation

Microbial solid media, jellies, synthetic
meat feels

Agar, Carrageenan

Hydrating agents Cosmetics and pharmaceuticals Hyaluronic acid

FucoPol

Suspending agent Food, paper coating agrochemical
pesticides and sprays

Xanthan

Non reactivity with
dyes

Textile print thickeners Alginate, Xanthan

Inhibitor of crystal
formation

Frozen foods, pastilles and sugar syrups Xanthan, Gum arabic

Shear thinning and
viscosity control

Jet printing, oil drilling Xanthan

Complex formation
with milk products

Milk drinks Carrageenan
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bioreactor (Seviour et al. 2011). Downstream process can be made simpler by
optimizing the required parameters like cell separation, pigment removal, etc.
Different extraction methods and purification techniques can also be experimented
and applied. This processing stage optimization is important and can be modified
depending on the desired purity as well as the area in which EPS is to be applied
(Castillo et al. 2015). These processes are incredibly simple and more often than not
result in high product yields.

With advancement in new technologies, improvisation in research and develop-
ment, and extensive trials more and more industries would go for EPS production
using such many low-cost and promising wastes and by-products.
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Plant Growth Promoting Rhizobacteria
as Bioinoculants for Plant Growth 16
Aparna B. Gunjal and Balasaheb P. Kapadnis

Abstract

Agriculture is very important for food production. The use of chemical fertilizers
to increase the plant growth is harmful to the humans and environment. The use
of biological approach is the best way to increase the plant growth and yield. The
bioinoculants include biofertilizers, biopesticides, and organic decomposers.
These bioinoculants improve the productivity of many plants by helping in the
availability of minerals such as phosphorus, potassium, iron; production of
ammonia; plant growth hormones; enzymes; antimicrobial compounds; etc. The
plant growth promoting rhizobacteria; nitrogen-fixing bacteria; phosphorus and
potassium solubilizing, mycorrhiza inoculants have helped in the increase of
yield of rice, wheat, sugarcane, tomato, cauliflower, sunflower, etc. The chapter
here mentions the carrier for preparation of bioinoculants; types of bioinoculants;
the advantages, market demand, and preparation of bioinoculant; and types of
bioinoculant formulation. The chapter also focuses on mechanisms behind the
plant growth and sustainable approach in agriculture for the plant growth. The
effect of bioinoculants on the plant growth and in control of plant diseases is also
taken into consideration. The use of bioinoculants in agriculture is getting wider
attention and can be widely applied in the fields for many crops, thus ultimately
helping the farmers. The use of plant growth promoting rhizobacteria as
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bioinoculants due to their several immense advantages will gain more impor-
tance, and completely replace the use of chemical fertilizers, in the near future.

Keywords

Sustainable · Plant growth promoting rhizobacteria · Economical · Carrier · Eco-
friendly · Biological

16.1 Introduction

Agriculture is very important for the availability of cereals, pulses, vegetables, and
fruits. The use of chemicals in agriculture has disadvantages viz., toxic, costly,
harmful to the environment, causes pollution, and not safe to consume the
vegetables, fruits, and pulses (Chandini et al. 2019; Farnia and Hasanpoor 2015;
Pretty and Bharucha 2015). The alternate to chemical fertilizers is biological
approach, i.e., use of microorganisms, which is eco-friendly, economical, safe and
easy to use (Suyal et al. 2016). The biomass of microorganisms is also easily
available in abundant amount. Plant growth promoting rhizobacteria (PGPR) are
associated with the roots of various plants. The PGPR increase the growth of plants
and crops by direct as well as indirect mechanisms (Backer et al. 2018; Kundan et al.
2015). These include production of enzymes: indole acetic acid (IAA); gibberellins;
iron chelating compounds called siderophores; phosphorus (P) solubilization;
ammonia (NH3); antibiotics; 1-aminocyclopropane carboxylate deaminase (ACC);
antimicrobial activity (antibacterial and antifungal); nitrogen fixing (N-fixing); etc.
(Backer et al. 2018). The PGPR include species of Pseudomonas, Bacillus,
Azospirillum, Azotobacter, Arthrobacter, Alcaligenes, Serratia, Rhizobium,
Enterobacter, Burkholderia, Beijerinckia, Klebsiella, and Xanthomonas (Kalita
et al. 2015). Rhizosphere is the hotspot for many soil microorganisms (Kalita et al.
2015) and is divided as endorhizosphere, rhizoplane, and ectorhizosphere (Nazir
et al. 2018).

With this aspect, the chapter here mentions the PGPR bioinoculants for sustain-
able agriculture. The advantages of biological approach are more eco-friendly, safe,
economical, and very easy. Another advantage is that the biomass of
microorganisms can be available in abundance.

16.2 Carrier for the Preparation of Bioinoculant

A carrier is a solid or semi-solid material which sustains the growth of
microorganisms for a given period of time. For the preparation of bioinoculants, a
carrier is required. A good carrier must have the characteristics viz., moisture
absorption capacity, easy to use, non-toxic, economical, easy to autoclave, readily
available, and good pH buffering capacity (Nehra and Choudhary 2015). It should
also have good adhesion property to the seeds and have good stability. The various
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bioinoculants include PGPR; nitrogen-fixing bacteria; phosphorus, potassium
solubilizing microorganisms; and mycorrhiza (Pathak and Kumar 2016) and are
represented in Table 16.1. The various carriers used for the preparation of
bioinoculants are peat, lignite, vermiculite, talcum powder (Nehra and Choudhary
2015), paddy husk, pressmud, sawdust, corn cob, peanut shell, coconut shell, etc.
The different carriers used in preparation of bioinoculants are represented in
Fig. 16.1. The bioinoculants Trichoderma harzianum and Pseudomonas fluorescens
have shown increase in the pomegranate fruit quality, fruit length and diameter
(Reddy et al. 2017).

Table 16.1 Various important bioinoculants

Inoculants Examples References

PGPR Serratia, Pseudomonas, Bacillus, Acetobacter,
Burkholderia, Xanthomonas, Enterobacter, Erwinia
sp.

Gupta
et al.
(2015)

Symbiotic nitrogen-
fixing bacteria

Rhizobium, Sinorhizobium, Azoarcus,
Mesorhizobium, Frankia, Allorhizobium,
Bradyrhizobium, Azospirillum, Azorhizobium sp.

Turan
et al.
(2016)

Non-symbiotic nitrogen-
fixing bacteria

Azoarcus sp., Gluconacetobacter diazotrophicus,
Azotobacter sp.

Vessey
(2003)

Phosphorus solubilizing
microorganisms

Bacteria—Bacillus, Pseudomonas, and Rhizobium
sp.
Fungi—Penicillium, Aspergillus sp.
Actinomycetes—Streptomyces sp.

Kalayu
(2019)

Potassium solubilizing
microorganisms (PSMs)

B. mucilaginosus, B. edaphicus, and B. circulans Meena
et al.
(2016)

Mycorrhiza Glomus versiforme, Gigaspora margarita,
G. mosseae

Begum
et al.
(2019)

Carriers

Peanut shell

Corn cob
Sawdust

Pressmud

Paddy husk
Coconut shell

Peat

Vermiculite

Talcum powder

Fig. 16.1 Different carriers
used in preparation of
bioinoculants
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16.3 Various Important Bioinoculants

Rhizobia bioinoculants occupy 79% demand, PSB 15%, and mycorrhiza 7% (Owen
et al. 2014). The various important bioinoculants are shown in Fig. 16.2. The
bioinoculants include biofertilizers, biopesticides, and organic decomposers.
Azospirillum is a Gram negative and motile bacterium which belongs to the order
Rhodospirillales. It colonizes the roots of plants (e.g., wheat, rice) and forms
symbiotic association. Azospirillum helps the plants by nitrogen fixation and pro-
duction of plant growth hormones (Abd El-Lattief 2016).

16.4 Advantages of Bioinoculants

The main advantages of bioinoculants are (Ahemad and Kibret 2014; Bhardwaj et al.
2014):

• Eco-friendly
• Economical
• Easy to use
• Non-toxic
• No use of chemicals
• Help in absorption of nutrients by the plants
• Helps in the plant growth by direct and indirect mechanisms
• Improves soil fertility

Plant growth

promoting

rhizobacteria

Symbiotic

nitrogen fixing

bacteria

Non-symbiotic

nitrogen fixing

bacteria

Phosphorus

solubilizing

bacteria

Potassium

solubilizing

bacteria

Mycorrhiza

Fig. 16.2 Various important biofertilizers
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16.5 Market Demand of Bioinoculants

The bioinoculants market was about USD 1.57 billion in 2018 in the global world.
From this, North America had the biggest market (27.7%). This bioinoculants
market is thought to increase more by 10.1% in the coming time. The advantages
of bioinoculants help to enhance the market of bioinoculants worldwide.

16.6 Different Types of Bioinoculants

16.6.1 Biofertilizers

The different types of biofertilizers include plant growth promoting rhizobacteria,
phosphorus and potassium solubilizing microorganisms, mycorrhiza, symbiotic and
non-symbiotic nitrogen-fixing bacteria. The PGPR are the beneficial bacteria found
near the rhizosphere region of the plants. Phosphorus and potassium solubilizing
microorganisms convert the insoluble form of phosphorus and potassium to soluble
form which can be readily taken by the plants. Mycorrhiza is the symbiotic associa-
tion between the plants and fungi. In this symbiotic association, the plants prepare
the food, i.e., carbohydrates (sugars) which are made available to the fungi and the
fungi helps in the absorption of water and nutrients to the plants (Chen et al. 2018).
The symbiotic and non-symbiotic nitrogen-fixing bacteria help to make available the
major element, i.e., nitrogen, to the plants.

16.6.2 Biopesticides

The bioinoculants can be used as biopesticides which are safe and do not impose any
toxic effects on the crops (Pathak and Kumar 2016). The main biopesticides which
have gained wide attention are Trichoderma, Bacillus thuringiensis, and
Azospirillum. Biopesticides are used to control the insects and pests on the crops.
The biopesticides are target specific and required in small amount. They are safe to
use, naturally biodegradable, economical, easy and do not cause any environmental
pollution. The biopesticides therefore are used as alternate to the chemical fertilizers.
The biopesticides when used with Integrated Pest Management (IPM) improve the
yield of many crops (Kawalekar 2013). Biopesticides include viz., microbial
pesticides, biochemical pesticides, and plant-incorporated protectants (PIPs)
(Thakur et al. 2020). The biopesticides can be combined with organic manures for
sustainable agriculture (Kaushik et al. 2019).
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16.6.3 Organic Decomposers

The decomposing microorganisms convert the complex organic matter into very
simpler form, so that it can be readily utilized by the plant for their growth. The
organic decomposing microorganisms include Trichoderma, Aspergillus sp., etc.

16.7 Methods of Application of Bioinoculants

The different methods for applying bioinoculants into soil include (Mahanty et al.
2016):

• Seed inoculation.
• Sprinkle method.
• Slurry is prepared using bioinoculants and adhesive. The seeds are coated with

this slurry using some ground material viz., lime.
• Seed pelleting.
• Seedling root dip.

16.8 Preparation of Bioinoculant

16.8.1 Preparation of Inoculum

The inoculum of PGPR is prepared by growing the PGPR in suitable media at 28 �C
for 48 h on a rotary incubator shaker. The cell count is determined which has to be
1 � 108 cells/mL. After this, the inoculum (10 mL) and sterilized carrier (10 g) are
mixed properly with calcium carbonate [CaCO3] (1 g) to prepare the slurry. The
CaCO3 serves as adhesive.

16.8.2 Disinfection of Seeds

The seeds are disinfected with 95% ethanol for 5 min and then by 0.2% mercuric
chloride (HgCl2) for 3 min. The disinfected seeds are further washed three times with
sterile distilled water to remove any traces of the HgCl2 (Sachdev et al. 2009). The
disinfected seeds are coated with slurry and used for the growth of plants. The
preparation of bioinoculants is represented in Fig. 16.3.

16.9 Types of Bioinoculant Formulation

The types of bioinoculant formulations are peat, liquid, granules, and freeze-dried
powders.
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16.9.1 Peat

Peat is a carrier used for PGPR. It contains nutrients and therefore can allow the
growth of beneficial microorganisms (Bashan et al. 2014). Peat must be economical,
readily available, safe, and easy to autoclave and have good water-holding capacity
(Malusa et al. 2012).

16.9.2 Liquid Bioinoculants

Liquid bioinoculants are in aqueous form (e.g., broth cultures or polymer-based
suspensions). The mode of application of liquid bioinoculants on seeds or soil is easy
(Herrmann and Lesueur 2013). These liquid bioinoculants have good amounts of
minerals, nutrients, and also cell protectants which improves the plant growth (Sahu
and Brahmaprakash 2016). They have long shelf-life as compared to solid-based
formulations and can be used on a small scale (Mahanty et al. 2016).

16.9.3 Granules

Granules are prepared using small marble, calcite, or silica grains with inclusion of
adhesive. The granules are coated with PGPR (Bashan et al. 2014). Granules are
safe, easy to use and apply (Bashan et al. 2014).

16.9.4 Freeze-Dried Powders

The bioinoculants in freeze-dried powder form are prepared by making use of soil or
organic/inert carrier (Bashan et al. 2014).

Disinfect

the seeds

Coat the

seeds with slurry

Carrier

Growth of PGPR

(1 x 108
 cells/ml)

Use for the plant

growth

inoculum (10 ml) + carrier

10 (g)+ CaCO3 (1 g) as

adhesive. Mix toprepare

the slurry.

Fig. 16.3 Preparation of bioinoculants
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16.10 Mechanisms for the Plant Growth

16.10.1 Mechanism for the Plant Growth by Plant Growth Promoting
Rhizobacteria

The PGPR improve the plant growth by production of plant hormones, iron chela-
tion, enzymes production, etc. There is a report where IAA production from Serratia
sp. isolated from chickpea nodules enhanced the grain biomass of chickpea in
mineral-deficient areas (Zaheer et al. 2016). PGPR strain Promicromonospora
sp. SE188 due to production of plant growth hormone enhanced the shoot length
(Kang et al. 2014). The use of PGPR as bioinoculants can be due to colonization of
the plant roots, exudation by the plant roots, the type of soil, and moisture content in
the soil.

16.10.2 Mechanism of Inorganic Phosphorus Solubilization by PSMs

The organic acid produced in the periplasmic space is the reason for solubilization of
phosphorus (Zhao et al. 2014). This organic acid such as gluconic acid produced
causes a decrease in pH which gives out H+ ions, with accumulation of cation.
Gluconic acid chelates the cations bound to phosphate and this helps to make
phosphorus available to the plants (Alori et al. 2017).

16.10.3 Mechanism of Organic Phosphorus Solubilization by PSMs

The enzymes are involved in the mechanism of solubilization of organic phosphorus.
One enzyme is phosphatase. Another enzyme is phytase that helps in the breakdown
of phytate with the release of phosphorus which can be readily used by the plants.

16.10.4 Mechanism of Biological Nitrogen Fixation

The diazotrophs help to fix the nitrogen by biological way. The nitrogenase enzyme
helps in biological nitrogen fixation (BNF), where nitrogen (N2) is reduced to
produce NH3 (Geddes and Oresnik 2016).

The reaction is as follows:

N2 þ 8Hþ þ 8e� þ 16ATP !nitrogenase
2NH3 þ H2 þ 16ADPþ 16Pi ð16:1Þ
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16.10.5 Mechanism of Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi (AMF) improve plant yield by the uptake of nutrients
and minerals in exchange for carbon required for photosynthesis from hosts (Smith
et al. 2010) and also reduce stress.

16.11 Advantages of Plant Growth Promoting Rhizobacteria

• Beneficial microorganisms.
• Help in the yield of plants by various mechanisms.
• PGPR microorganisms are easy to cultivate.
• Help to improve the fertility of soil.
• They show antimicrobial activity and thus help to control bacterial and fungal

pathogens.
• Help the plants to tolerate biotic and abiotic stress (Hassen et al. 2016).
• Very fruitful in agriculture.

16.12 Sustainable Approach in Agriculture for the Plant Growth

The sustainable approach is very important for the plant growth. It is safe to
the environment which is important and also very easy. Also, it will be safe to the
humans (Zerihun et al. 2019). The bioinoculants are very useful in sustainable
agriculture to increase the crop growth and productivity. This will be helpful in
the field of agriculture and will also maintain the balance of the ecosystem (Zandi
and Basu 2016).

16.13 Effect of Bioinoculants on the Plant Growth, a Sustainable
Approach

There are several reports where PGPR bioinoculants have improved the yield of
many plants and crops. There is a study on PGPR as potential bioinoculants for the
growth of Pennisetum clandestinum (Poaceae) (Manoj and Kaushal 2018; Romero-
Perdomo et al. 2019). The PGPR bioinoculants have immense use in sustainable
agro practice (Odoh 2017). There is a report where Bacillus and Pseudomonas
bioinoculants have shown increase in seed germination, root and shoot length, dry
weight, and chlorophyll content (Padder et al. 2015). The use of Azotobacter
chroococcum and PSB bioinoculants has shown increase in the no. of leaves per
plant in combination of farm yard manure (FYM) + Vesicular Arbuscular
Mycorrhizae (VAM) (Pathak et al. 2013). Study is done where Bacillus and Pseu-
domonas sp. bioinoculants have shown 23.5% and 21%, respectively, enhancement
in the yield of green pod (Rafique et al. 2018). The bioinoculants have shown
increase in the growth of crops viz., beans, cotton, legumes, pea, rice, and soybean.
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The phosphate solubilizing bacteria (PSB) are also used to prepare various
inoculants (Bashan et al. 2014). The PSB single or in combination can increase
the growth of various plants (Ruzzi and Aroca 2015). This will reduce the use of
chemicals, leading to sustainable agriculture practices. There is a report where
bioinoculants (Bacillus sp. JN700924 + Bacillus megaterium ATCC 14581 + Pseu-
domonas monteilii HQ 995498 and AMF Glomus intraradices) in different
combinations have improved the yield of Ocimum basilicum (Varma et al. 2016).
Bioinoculants serve as good biofertilizer, biostimulator, and biocontrol agent
(Tallapragada and Seshagiri 2017). There is a report where halophilic bioinoculants
helped in nutrient mobilization in saline soil, thereby improving the growth of plants
(Tripathi et al. 2015). There is a study on bioinoculants as prospective inputs for
achieving sustainability (Gupta et al. 2020). Azotobacter bioinoculant has shown to
enhance the biomass of plants as well as seed germination (Chennappa et al. 2017).
Bioinoculants shape the microorganisms community in the rhizosphere region,
which enhanced soil nitrogen turnover and soil fertility (Sharma et al. 2020). Also,
there is a report on increase in the yield of rice plant with the use of Rhizobium
leguminosarum inoculant in Australia (Kecskes et al. 2013). There is a study where
Azotobacter has been found to provide 15–93 kg N/ha for Paspalum notatum
(Youssef and Eissa 2014). There is a report on increase in the plant height, root
length, stem diameter, and dry weight of Zea mays due to Azotobacter and
Azospirillum bioinoculants (Iwuagwu et al. 2013).

16.14 Bioinoculants for Control of Plant Diseases

The bioinoculants help to control the fungal diseases in plants (Babalola and Glick
2012). Colletotrichum coccodes, Fusarium sp., Trichoderma harzianum, Aspergil-
lus fumigatus, Aspergillus niger, Penicillium funiculosum, Penicillium
aurantiogriseum, Penicillium citrinum, and Trichoderma koningii, etc. are reported
to exhibit activity against the fungal phytopathogens (Olanrewaju et al. 2017).
Bacillus amyloliquefaciens, Amphibacillus xylanus, Bacillus subtilis, etc. are
reported to show activity against Aspergillus flavus. Pseudomonas sp. is also studied
to control Fusarium wilts (Alori and Babalola 2018). Bacillus sp. due to production
of volatile compounds can help to control diseases in many plants (Alori and
Babalola 2018). All these bioinoculants are reported to control plant diseases caused
by bacteria and fungi.

16.15 Solid State Fermentation for the Production of Plant
Growth Substances Using PGPR

The solid state fermentation (SSF) can be used for the production of plant growth
promoting substances using agroindustry by-products substrates viz., bagasse,
pressmud, corn cob, sawdust, paddy husk, peanut shell, coconut husk, wheat
straw, etc. These agroindustry by-products are wastes, so they can be converted to
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value-added products such as compost, soil conditioner, enzymes, and plant growth
hormones by the SSF using PGPR. This is very eco-friendly, economical and also
helps in the management of agroindustry by-products.

16.16 Conclusion

The bioinoculants will be useful in agriculture for various plant growths and will also
increase the yield of plants. The bioinoculants will not have any disadvantages and
will be eco-friendly, economical, and easy to use. The use of chemical fertilizers will
be minimized, which is very necessary. This will also lead to sustainable approach in
agriculture and also organic farming. The bioinoculants used to enhance the crop
growth and productivity will be alternate to other chemical fertilizers and thus help
the farmers. The bioinoculants can also be used as biopesticides and for control of
bacterial and fungal diseases in plants. This will be really fruitful in the field of
agriculture.

16.17 Future Prospects

• New bioinoculants should be developed and studied.
• The bioinoculants (using the consortium of microorganisms) should be studied on

a large scale by doing the field experiments.
• Molecular aspects of PGPR in plant growth promotion also need to be considered.

More research needs to be done in this area.
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Abstract

Leather industry has been considered as one of the most highly polluting
industries, because of the generation of solid, liquid, and gaseous wastes
containing organic and inorganic matters. During leather processing, huge
amounts of untanned and tanned solid wastes are discarded. Nearly 800 kg of
solid wastes are generated while production of only 200 kg of finished leather.
Generally, 90% of water used in leather manufacturing is generating as
wastewaters rich in toxic and hazardous compounds. However, these wastes
accumulates in nature and contributes to a global pollution over the years. For
this reason, the tannery sector needs to implement new greener strategies and
solutions to provide a cleaner, more sustainable and more competitive industry.
This chapter discusses the possible solutions for utilizing and bioconverting
leather industry wastes such as, the bioremediation of dye and chromium
contaminated wastewaters, the enzymatic digestion of chrome shavings, and the
bioconversion of organic wastes as fleshings and keratin rich wastes to renewable
energy and biofuels.
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17.1 Introduction

The leather industry is an old industrial sector which produces a variety of products
such as leather goods, shoes, gloves, clothes, and furniture. It is an industry which is
based on the use of co-products as raw material and therefore the valorization of food
industry wastes, particularly from meat processing (Bizzi et al. 2020). This industry
is considered as one of the most important sectors in the development of the world
economy by producing each year more than 400,000 tons of heavy leather world-
wide (Bouacem et al. 2016; Beghetto et al. 2017). Leather manufacturing is
comprised of three main steps: beamhouse operations, tanning operations and
finishing operations (China et al. 2020; Villalobos-Lara et al. 2020). During these
processes, several baths were used for hides and skins treatment. These baths which
are full of chemicals and organic wastes were unfortunately generated in nature and
caused a serious damage to the environment and human health. Among these wastes,
we found chromium, salts, sulphide, hair, fats, fatliquors, dyes, etc. (Zhao and Chen
2019; China et al. 2020; Tang et al. 2021). This chapter provides a review of the
treatment and valorization of leather industry wastes including the bioremediation of
synthetic dye and hexavalent chromium contaminated wastewaters and the biotrans-
formation of solid wastes mainly chrome shavings and keratin rich wastes into
valuable and useful products.

17.2 Leather Making Process

Once animals were slaughtered, fresh hides and skins will be used as raw material
and transported to leather industry where they will be arranged depending on their
species, size, weight and quality. After selection, hides and skins were conserved to
avoid any microbial contamination (Kahsay et al. 2015).

Leather manufacturing is a long process aimed to transform raw hides and skins
into resistant finished leather, and this through several operations. However, each
operation requires inputs such as water and chemicals and leads to outputs such as
wastewater, organic and mineral pollutants (Jahan et al. 2014; Elabed et al. 2019)
(Fig. 17.1).

The process started with beamhouse operation which consists of the preparation
of raw hides and skins for tanning by the elimination of all components other than
collagen including the elimination of salt used in conservation, the removal of blood
and all other dirt attached to the skin (Nazer and Siebel 2006; Dixit et al. 2015).
Soaking enzymes generally proteases and carbohydrases could be also implicated in
the degradation of fats and proteins (other than collagen) and also make the rehydra-
tion easier. Once cleaned, hides and skins will be treated with sodium sulphide in
order to remove hair and epidermis. The liming operation implicates the use of huge
amounts of water with approximately 4 to 6 L/kg of skin/hide (Rao et al. 2003; Nazer
and Siebel 2006). After liming, pickling is performed for fibres dehydration using
sulphuric acid and sodium chloride and also implicates the use of large quantity of
water (about 80–100%) (Thanikaivelan et al. 2004).
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The second and the most important operation in leather manufacturing is tanning.
This irreversible operation leads to the transformation of hides and skins into
resistant leather. During this process, the leather acquires specific properties as
stability and heat resistance (Duraisamy et al. 2016; Nur-E-Alam et al. 2018).
Tanning could be performed either by chrome tanning or by vegetable tanning,
but the most used method in 60–70% of leather industries is chrome tanning using
chromium salts. This tanning agent induces the formation of a complex with
collagen molecules through covalent bonds and stabilizes collagen against microbial
attacks (Oruko et al. 2020). However, only 60% of chromium salts are fixed to
collagen while the other 40% are discharged in tanning effluent (Erdem 2006; China
et al. 2020).

Finally, the finished operation took place to ameliorate the final aspect of the
product. It generally consists of giving a more uniform appearance and softness for
leather and hiding surface imperfections by the use of dyes and the injection of fats
and oils. This step also leads to the generation of wastewater full of organic and
mineral pollutants (Thanikaivelan et al. 2004, 2005).

17.3 Characterization of Leather Industry Wastes

Despite its importance, the leather industry is known of being involved in a huge
environmental pollution. This industry is generating hazardous liquid and solid
wastes containing organic and mineral pollutants such as proteins, lipids, sulphides,
heavy metals, solvents, buffing dust, syntans, salt, acids and dyes (Fig. 17.1).
Gaseous wastes were also generated during leather process which leads to the
emission of toxic and poisonous compounds mainly hydrogen sulphide, ammonia
and volatile organic compounds (VOCs) derived from different solvents used in
leather manufacturing (Hashem et al. 2015a, b; Sivaram and Barik 2019). As shown
in Table 17.1, these wastes are characterized with a high chemical oxygen demand
(COD); biochemical oxygen demand (BOD); total suspended solids (TSS), dyes and
chromium concentrations (El-Sheikh et al. 2011; Chowdhury et al. 2015; Nur-E-
Alam et al. 2018). According to Nur-E-Alam and its collaborators in 2018, the
amount of COD and BOD in wastewaters could exceed 21,000 and 12,000 mg/L,
respectively. Chowdhury and collaborators in 2015 also revealed that chromium
concentration in tannery effluent could reach 2000 mg/L.

17.4 Bioremediation of Leather Industry Wastewaters

17.4.1 Microorganisms Involved in Synthetic Dye Decolourization
and Degradation

Generally, dyeing process is performed after tanning using mainly acid, basic or
direct dyes (Table 17.2). Mixing different dyes could be also used to provide a
particular colour for finished product. During this process, different dyes were not
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totally fixed to leather. Wastewater containing the excess of all these colouring
agents is discharged in the environment (Sharma and Malaviya 2016). Therefore,
it requires an intensive treatment before discharge. Until today, various studies have
confirmed the toxicity of synthetic dyes particularly azo-dyes for microorganisms,
plants, animals and even for human. Their complex structure makes them less
susceptible to biodegradation. Therefore, they represent a huge risk to human health,
being implicated in many diseases as diarrhoea, skin irritation and even cancer
especially in liver and lungs (Selvam et al. 2003; Sen et al. 2016; Sivakumar and
Anbalagan 2016).

Dyes are known with their recalcitrant and complex structure. However, many
studies have described the use of microorganisms and their effectiveness in dye
removal and degradation during the treatment of industrial wastewaters (Table 17.3).
These studies highlighted the contribution of bacterial strains, yeasts and fungi in
bio-decolourization through different enzymatic and non-enzymatic mechanisms
(Sen et al. 2016; Ajaz et al. 2020).

It’s been reported that the most efficient bacteria that have the ability to degrade
industrial dyes belong to the genera of Bacillus and Pseudomonas. Many researchers
have identified various bacterial species with a high dye removal yield such as
Bacillus cereus (Tripathi and Garg 2014), Pseudomonas aeruginosa (David et al.
2015; Mishra and Maiti 2019) and Pseudomonas stutzeri (RS1D) (Khan et al. 2019).

Table 17.2 Different classes of dyes used in leather industries

Dye
class Examples Characteristics References

Acid
dyes

• Acid blue
113

• Dyeing leather, nylon,
Wool, silk. . .

Huang et al. (2015), da Fontoura et al.
(2017), Rocha et al. (2017), Shanmugam
et al. (2019)• Acid blue

161
• Soluble in water

• Acid
black 210

• Stable in alkaline
medium

• Acid
black ATT

Basic
dyes

•Malachite
green

• Dyeing leather, textile,
silk, ceramic, wood,
paper. . .

Kumar and Chopra (2017), Ali and
Muthuraman (2020)

•

Methylene
blue

• Soluble in water and
alcohol

• Crystal
violet

Direct
dyes

• Direct red
28

• Dyeing leather, cotton,
silk, plastic. . .

Sauer et al. (2006), Huang et al. (2015),
Hernández-Zamora et al. (2015)

• Direct
black 38

• Soluble in water

• Direct
violet N
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Many other genus such as Shigella and Listeria were also widely studied (Kumar
and Chopra 2017; Khan et al. 2019).

Until now, the mechanism of dye biodegradation in yeasts species is still unclear
and needs more investigations (Pajot et al. 2011; Martorell et al. 2012). Meanwhile,
it has been revealed that several yeasts are involved in dye removal (Pajot et al. 2011;
Jafari et al. 2013). For example, Pajot and collaborators, in 2011, have reported that
Pichia membranifaciens HP-3098 and Candida sorbophila HP-3094 were able to
degrade 200 mg/L of Vilmafix Blue RR-BB and Vilmafix Red 7B-HE dyes with a
yield exceeding the 95% in just 36 h.

Other than bacteria and yeasts, ligninolytic fungi have been widely used in dye
removal and degradation (Pajot et al. 2011; Singh et al. 2015; Sen et al. 2016; Neifar
et al. 2016; Singh and Singh 2017; Ajaz et al. 2020). Among these fungi, Trametes
versicolor reported by Baccar and collaborators in 2011. It was able to remove
around 89% of Black Dycem TTO dye (150 mg/L) in just 10 days. Devi and
collaborators, in 2013, have also described the effectiveness of the application of
the fungal strains Aspergillus niger, Aspergillus flavus and Penicillium spp. in the

Table 17.3 Microorganisms implicated in decolourization of dye contaminated wastewaters

Microorganisms Dye
Conditions of
incubation

Dye
(mg/L)

% and time of
decolourization References

Bacillus cereus
RMLAU1

Tannery
dyes

Shaking
(150 rpm);
pH 7; 35 �C

– 42%/24 h Tripathi and
Garg (2014)

Pseudomonas
aeruginosa

Tannery dye Shaking
(110 rpm);
pH 7; 30 �C

– 92.77%/96 h David et al.
(2015)

Lactobacillus
paracasei
CL1107

Acid black
ATT

Shaking
(170 rpm);
pH 7; 37 �C

100 92.3%/7 days Huang et al.
(2015)

P. aeruginosa
23N1

Reactive
orange 16

Shaking
(150 rpm);
pH 10; 40 �C

50 95.1%/48 h Mishra and
Maiti
(2019)

Shigella sp. Crystal
violet
methylene
blue

Shaking
(150 rpm);
30 �C

– 64.3%/6 days Kumar and
Chopra
(2017)

65.7%/6 days

P. stutzeri
(RS1D)

Black dye pH 7; 35 �C 1000 100%/10 days Khan et al.
(2019)

Listeria
monocytogenes
RS2E

100%/9 days

Trametes
versicolor

Black
dycem TTO

Shaking
(135 rpm);
25 �C

150 86–89%/
10 days

Baccar et al.
(2011)

Aspergillus
flavus SPFT2

Tannery dye Shaking
(150 rpm);
pH 5.3; 30 �C

– 61.5%/6 days Sharma and
Malaviya
(2016)
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decolourization of azo-dyes. The efficiency of Aspergillus genus was also confirmed
by Sharma and Malaviya in 2016 by the application of Aspergillus flavus SPFT2 in
the treatment of tannery effluent.

The decolourization using bacteria and fungi was achieved through the utilization
of pool of oxidative enzymes such as azoreductases (EC 1.7.1.17), laccases
(EC 1.10.3.2) and peroxidases (EC 1.11.1) (Neifar et al. 2011; Abdel-Hamid et al.
2013; Sen et al. 2016).

Bacterial azoreductases are the most used in azo-dyes decolourization due to their
extremophilic properties. These enzymes are able to break down the azo bond even
under saline and alkaline conditions. Bacillus megaterium, Bacillus subtilis, Pseu-
domonas aeruginosa, and Bacillus latrosporus were investigated in several projects,
being able to degrade synthetic dyes through azoreductase activities (Chen 2006;
Singh et al. 2015; Ajaz et al. 2020).

Microbial laccases were produced by either bacteria, yeasts or fungi (Wakil et al.
2017, 2019; Yang et al. 2017; Ponomareva et al. 2019; Unuofin et al. 2019; Arregui
et al. 2019). These oxidoreductases were involved in bioremediation strategies in the
decolourization of dyes in textile and leather industries wastewaters (Dubé et al.
2008; Pajot et al. 2011; Jafari et al. 2013; Bharagava et al. 2018). It has been found
that the white rot fungi such as Trametes versicolor (Couto and Herrera 2006),
Thelephora sp. (Selvam et al. 2003), and Pleurotus ostreatus (Bharagava et al. 2018)
were able to degrade dyes using laccases. Other ligninolytic enzymes were involved
in dye removal including lignin peroxidase and manganese peroxidase. Bharagava
and collaborators, in 2018, have described the biotechnological potential of
Aeromonas hydrophila. This bacterial strain was able to remove 99% of 100 mg/L
of crystal violet dye in just 48 h. Pajot and collaborators, in 2011, also reported the
important role of peroxidases in dye removal. Pichia membranifaciens HP-3098 and
Candida sorbophila HP-3094 were able to degrade more than 95% of dyes through
peroxidases enzymes. Also Thelephora sp. uses lignin peroxidase and manganese
peroxidase for the decolourization of orange G, congo red and amido black 10B
(Selvam et al. 2003).

In addition to dyes biodegradation, several microorganisms are able to generate
electricity via microbial fuel cell technology (Huang et al. 2011; Khan et al. 2015;
Ezziat et al. 2019; Aarthy et al. 2020; Xu et al. 2020). Lai and collaborators, in 2017,
have described the efficiency of Ganoderma lucidum BCRC 36123, a dye
decolourizing and laccase producing white rot fungus in electricity generation
using microbial fuel cell technology. It shows a rate of decolourization of acid
orange 7 of 90% with the generation of maximal power density which reached
13.38 mW/m2. Moreover, it was found that the application of the bacterial strain
Stenotrophomonas sp. based microbial fuel cell leads to the production of electricity
(power density was around 370 mW/m2) with total decolourization of the reactive
black 5 dye (Galai et al. 2015).
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17.4.2 Microorganisms Involved in Hexavalent Chromium Reduction
and Removal

Chromium wastes come mainly from tanning effluents and chrome shavings (Nigam
et al. 2015; Shakilanishi et al. 2017; Abebaw and Abate 2018). Chromium is
considered among the most toxic and dangerous heavy metals due to its mutagenic-
ity and carcinogenicity (Joutey et al. 2015; Ezziat et al. 2019; Ouertani et al. 2020a).
In fact, this heavy metal exists in nine forms of valence ranging from �II to +VI,
thus, the most abundant forms are trivalent chromium (Cr III) and hexavalent
chromium (Cr VI) (Smith et al. 2002; Garg and Tripathi 2013; Sanjay et al. 2020).
The soluble Cr VI is considered as the most toxic form, meanwhile, the stable Cr III
is the less toxic form. Therefore, several research projects have focused on the
efficiency of the reduction of Cr VI into Cr III using various microorganisms. It
has been reported that microbes mainly bacteria, yeasts and fungi were used in
bioremediation of leather industry wastewaters through chromium removal
(Table 17.4). The best studied chromium reducing microorganisms are Rhizobium
leguminosarum (Raaman et al. 2012), Bacillus cereus NCr4 (Tamindžija et al.
2019), Chelatococcus daeguensis TAD1 (Li et al. 2016), Pseudomonas putida
SKG-1 (Garg and Tripathi 2013) and Thermus scotoductus strain SA-01 (Opperman
and Van Heerden 2007). Furthermore, it was investigated in the study of Ouertani
and collaborators in 2020a, that Microbacterium metallidurans TL13, a bacterial
strain isolated from a tannery wastewater, was able to remove more than 70% of
500 mg/L of Cr VI and to promote plant growth under metal stress.

Apart from bacteria, the application of yeasts and fungi was extensively reported
in literature. Saccharomyces cerevisiae was used in the bioremediation of heavy
metal contaminated effluents through the accumulation of more than 99% of Cr VI
(90 mg/L) (De Rossi et al. 2018). Other yeast species were also used in chromium
bioremediation mainly Candida tropicalis strain HE650140 (Bahafid et al. 2013),
Yarrowia lipolytica NCIM 3589, Yarrowia lipolytica NCIM 3590 (Rao et al. 2013),
Pichia jadinii M9 and Pichia jadinii M10 (Fernández et al. 2012).

As for fungal strains, researchers have confirmed the effectiveness of these
microorganisms and their biotechnological potential in chromium detoxification
(Table 17.4). Long and collaborators, in 2018, have revealed that Penicillium
oxalicum SL2 has the capacity of removing 98% of chromium with an initial
concentration of 200 mg/L. Other fungi were investigated, mainly, Aspergillus
niger MTCC 2594 (Mala et al. 2006), Rhizopus Oryzae (Sukumar 2010) and
Trichoderma viride (Wang and Wang 2013).

As reported by Ouertani and collaborators in 2020a, Microbacterium
metallidurans TL13 isolated from a tannery wastewater can reduce chromium by
several mechanisms. Chromium gets into the cell via the sulphate permease leading
to the activation of the efflux system (chromate transporter). Cr VI was then reduced
into Cr III through enzymatic pathway which involved thioredoxin reductase,
superoxide dismutase, catalase and glutathione peroxidase. It has been also found
that TL13 could remove chromium by forming an exopolysaccharides (EPS)-
chromium complex.
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The studies of Gangadharan and Nambi (2015), Fei et al. (2017) and Uddin et al.
(2020) reported the role of chromium reduction combined to the electricity produc-
tion. Microorganisms used in microbial and enzyme fuel cells were able to use
wastewater as a culture medium and to break the organic and inorganic matters to
produce electricity. Wang and collaborators in 2008 showed that 100 mg/L of
chromium VI reduced into chromium III could produce about 150 mW/m2 in
150 h. Gangadharan and Nambi (2015) revealed that the reduction of almost total
concentration of chromium (100 mg/L) is coupled with the generation of about
767.01 mW/m2 of power density, in 48 h. The study of Fei and collaborators, in
2017, has succeeded to remove more than 80% of Cr VI with maximal power density
up to 132.1 mW/m2 in 48 h.

17.5 Bioconversion of Leather Industry Solid Wastes

17.5.1 Valorization of Leather Industry Fleshings Wastes

During the liming-fleshing process, a significant amount of limed fleshings solid
wastes were discarded. These wastes represent around 55% of untanned wastes and
characterized with a high lipids content including fats and oils (Hashem et al.
2015a, b; Sandhya et al. 2016). Therefore, the biotransformation of these wastes is
considered as an energy saving method for the production of a renewable energy.
However, these fleshings wastes were explored in terms of valorization leading to
the extraction of fats and oils and the production of biofuels. As reported by
Kubendran et al. (2017), da Fontoura et al. (2017), Fazal et al. (2018), Li et al.
(2019), these lipid containing wastes are useful for biodiesel production. Kubendran
and collaborators in 2017 have succeeded to extract 70% of fats contained in the
fleshings wastes leading to biodiesel production. Another study by Hashem and
collaborators in 2017 has indicated that fats extracted from leather industry fleshings
are useful for soap manufacturing.

17.5.2 Biotransformation of Chrome Shavings Waste into Valuable
Products

Just after tanning, the wet blue leather should be shaved to give desired shape and
thickness. The excess of wet blue (small and thin pieces) were directly eliminated.
Meanwhile, the chrome shavings wastes were generated (Rigueto et al. 2020;
Kandasamy et al. 2020). Chrome shavings solid waste consists of collagen (nearly
75–90%), chromium, fats, oils, etc. (Pati et al. 2014; Shakilanishi et al. 2017; Li et al.
2019).

The bioconversion of these chromium containing wastes is achieved through two
steps (Kocurek et al. 2017) (Fig. 17.2). Firstly, the denaturation under alkaline
conditions of collagenous wastes which leads to the gelatin extraction useful in
many applications such as cosmetics and agrifood (gelatin making). Then, the
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second step which consists of the enzymatic digestion. Proteases, trypsin, collage-
nase and gelatinase are among several enzymes that could be involved in this
hydrolysis (Shakilanishi et al. 2017; Li et al. 2019; Gomes et al. 2020). After
filtration, chromium remains in the filter (chromium cake or chromium sludge)
could be extracted and recovered for further reutilization as a tanning agent in leather
process or a pigment (Kocurek et al. 2017; Li et al. 2019). Hence, the dechromed
protein hydrolysate or collagen hydrolysate is a mixture of small peptides and amino
acids including glycine, proline and hydroxyproline that represents around 50%
(Shanthi et al. 2013; Abebaw and Abate 2018). In fact, collagen hydrolysate has
been applied in biomedical sector, in cosmetics, in agriculture as a biofertilizer, in
livestock production as an animal feed, in bioplastics production, biogas production
and many other applications (Pati and Chaudhary 2015; Epure et al. 2018; Gomes
et al. 2020; Kandasamy et al. 2020).

In an earlier study in 2017, Shakilanishia and collaborators have used the collagen
hydrolysate as a substrate for bacterial strain Bacillus cereus VITSN04 to enhance
the production of keratinolytic enzymes useful in dehairing during leather making.
Another study of Pati and Chaudhary in 2013 had confirmed that the high value
collagen hydrolysate could be also used as a substrate for microorganisms to produce
biogas. Also, a recent project of Epure and collaborators in 2018 focused on the
importance of the collagenous hydrolysate application in the agriculture field as a
biofertilizer. The effectiveness of this valuable product has been proven on cereal
seeds such as wheat and oat. The results show a remarkable increase in the germina-
tion yield.

17.5.3 Valorization of Finished Leather Solid Wastes

Animal hides and skins are biodegradable resources that can be damaged by several
factors such as parasitic diseases, microbial putrefication, animal husbandry, bad
conservation, mechanical damage or human practices, which leads to their rejection
(Kahsay et al. 2015). Furthermore, these factors affected the value of hides and skins,
thus the production of low quality leather. However, a large quantity of leathers are
discarded which leads to considerable financial loss for the leather industry (Teklay
et al. 2019).

Hides and skins are made up of three layers: the epidermis, the dermis and the
hypodermis. The dermis which is the major component of leather consists primarily
of collagen (Lacouture 2006). This specific structure makes it susceptible to micro-
bial attack (Zhang et al. 2015; Pal and Suresh 2016; Duarte et al. 2016; Bhagwat and
Dandge 2018). Biocides and specific enzyme inhibitors are added during industrial
processing to improve leather protection by the prevention of the growth of
collagenolytic microorganisms. However, this treatment shows certain limitations
concerning microorganisms whose already secreted their collagenases (Oppong
et al. 2006). Several studies have been focusing on the valorization and the recycling
of finished leather solid waste (Senthil et al. 2015; Teklay et al. 2017). Since recent
years, in 2015, Senthil and others researchers have used the leather solid waste for
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the making of blended fabrics. They have used enzymes especially collagenases to
biodegrade these collagen rich wastes.

17.5.4 Biotransformation and Valorization of Keratin Rich Wastes

Keratinous wastes were generating in huge quantities during the dehairing process.
Bovine hair and ovine wool are the major sources of keratin in leather industry
wastes (Brandelli et al. 2010; Verma et al. 2017; Li et al. 2019). Keratin is a fibrous
protein known for its highly stable, recalcitrant and insoluble structure due to the
presence of disulphide bonds. However, it mainly contains cysteine residues which
explains its high sulphur content. It also contains other amino acids such as proline,
valine, glycine, lysine and serine (Gopinath et al. 2015; Thankaswamy et al. 2018;
Ghaffar et al. 2018). Keratin is classified into two groups depending on its structure:
hard keratin with high sulphur content and flexible or soft keratin with a lower
sulphur content. Other keratinolytic sources exist in nature such as feathers, human
hair, nails, horns and hooves (Laba and Rodziewicz 2014; Kumawat et al. 2016).

Hair and wool containing 90–95% of keratin, are both classified as hard keratins
which makes them hard to degrade. The use of physico-chemical methods for keratin
degradation causes a huge problem for the ecosystem (Bhari et al. 2019). However,
the development of enzymatic strategies using microorganisms and their
applications for bioremediation and bioconversion of leather industry keratinous
wastes into valuable products become a green solution for contamination (Sharma
and Gupta 2016; Zhang et al. 2020).

Keratins are resistant to most proteases, therefore, they are generally degraded by
keratinases leading to the production of small peptides and amino acids (Vidmar and
Vodovnik 2018). Keratinases (EC 3.4) are able to catalyse the cleavage of the
insoluble, recalcitrant and highly stable keratin substrates through the hydrolysis
of sulphide bonds. They could easily break down different keratin sources. These
enzymes are among proteases that can tolerate different temperatures and pH
(Pissuwan and Suntornsuk 2001; Brandelli et al. 2010; Vidmar and Vodovnik 2018).

Keratinolytic enzymes are widespread in nature and could be produced by various
microorganisms including fungi and bacteria (Laba and Rodziewicz 2014; Paul et al.
2016; Verma et al. 2017). Microbial keratinases generally belong to the
metalloproteases family (EC 3.4.24) but they may belong to serine-proteases family
(EC 3.4.21). They could also belong to serine-metalloproteases and their inhibition
occurs by the same inhibitors as serine-proteases, and metalloproteases. Keratinase
mechanism is still not well characterized (Pissuwan and Suntornsuk 2001; Gupta
et al. 2013; Lange et al. 2016).

Bacterial keratinases have been widely described (Table 17.5). It has been proven
that the most efficient keratinases are produced by Bacillus genus due to their
physico-chemical properties (Brandelli et al. 2010; Gopinath et al. 2015; Verma
et al. 2017). Among the most studied Bacillus species are: Bacillus subtilis (Cai and
Zheng 2009; Mazotto et al. 2010; Kumar et al. 2010; Daroit and Brandelli 2014),
Bacillus licheniformis (Hu et al. 2013; Huang et al. 2017; Abdel-Fattah et al. 2018)
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and Bacillus pumilus (Kumar et al. 2008; Jaouadi et al. 2014; Jagadeesan et al.
2020). Other bacterial strains have been also reported such as Meiothermus
taiwanensis (Wu et al. 2017), Caldicoprobacter algeriensis (Bouacem et al. 2016),
Bacillus cereus (Arokiyaraj et al. 2019), Bacillus aerius (Bhari et al. 2019) and
Brevibacterium luteolum (Thankaswamy et al. 2018).

Apart from bacteria, fungi are also considered as an efficient keratinase producing
microorganisms. They have the ability to degrade different types of keratins such as
feather, hair and wool. Keratinases produced by Doratomyces microsporus
(Gradišar et al. 2000), Aspergillus oryzae (Farag and Hassan 2004), Trichoderma
atroviride (Cao et al. 2008), Chrysosporium keratinophilum (Singh 2003) and many
other species have been described and characterized in many researches.

Since several years, keratinases producing microorganisms have been considered
as great candidates for bioremediation and degradation of keratin rich wastes leading
to the production of valuable organic matters (amino acids) (Paul et al. 2016; Ghaffar
et al. 2018). These keratin-based products present a big industrial interest with
biotechnological potential and could be widely applied specially in agriculture
(biofertilizers), animal feed, pharmaceutical industries, cosmetics, leather industries,
etc. (Verma et al. 2017; Zhang et al. 2020).

It has been proven that keratin hydrolysate extracted from bovine hair could serve
as an ecological biofertilizer for a durable agriculture. It contributed in the ameliora-
tion of soils quality due to its high carbon and nitrogen content. Several hair-based
organic fertilizers are already available and commercialized. Instead of fertilizers
production, keratin meal also served as nutritional animal feed (Sundar et al. 2011;
Sharma and Gupta 2016; Ghaffar et al. 2018). Thankaswamya and collaborators, in
2018, used Brevibacterium luteolum (MTCC 5982) for the conversion of keratinous
wastes (about 80%) from the leather industry into hair meal in just 72 h and under
alkaline conditions. Another study by Hussain and collaborators in 2020, revealed
the use of keratins extracted from leather industry solid wastes for the fabrication of
sponges useful for the removal of chromium from wastewaters. Furthermore, in
2011, Barbosa and his group have succeeded to develop a process for the fabrication
of biodegradable films using bovine hair wastes.

Besides the use of bovine hair for the preparation of renewable products, it have
been demonstrated that ovine wool presents similar properties which allows its use
as a biofertilizer or animal feed. It contains amino acids, lipids, salts and
carbohydrates, hence, it was able to improve soils characteristics. Wool keratin
also was also integrated in cosmetical products for skin, hair and nail care (Sundar
et al. 2011; Zhang et al. 2020).

17.6 Conclusion

The leather industry contributed in an enormous environmental pollution being
responsible for the generation of three types of wastes: liquid, solid and gaseous.
In this chapter, we reported the characterization of different wastes and their
potential valorization using green processes. Microorganisms and enzymes were
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involved in bioremediation of wastewaters, particularly dyes biodegradation and
chromium detoxification. Enzymatic digestion of chrome shavings, reutilization of
finished leather wastes and bioconversion of keratin rich wastes for the production of
valuable products were also investigated. The biovalorization of leather industry
wastes and the use of an eco-friendly, energy saving and non-polluting alternatives
instead of chemicals during leather manufacturing will contribute to an ecological
and green industry by the decrease of environmental pollutions and risks.
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