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Chapter 1
The Good Side of Evil: Harnessing
the Power of Helminths as Therapeutics

Naina Arora and Amit Prasad

Abstract The evolution of mankind has always aimed at better living conditions
with constantly evolving urbanization and civilization. The persistent efforts in
improving the life style and health regime have decreased the rate of infectious
diseases but have imposed us at risk of autoimmune disorders. Our environment
comprising of flora and fauna not only shape up the surroundings geographically but
also evolve and mould immune system of human beings by continuous exposure to
different allergens and pathogens. Helminths are known strong immune manipula-
tor, with very well devised strategies to evade human immune system they are able to
thrive within the host for long period without evoking an immune insult to the host.
This immune suppression arises as a result of Th2 bias induced by the residing
helminth and the helminth secreted products. Auto-immune disorders are associated
with incessant inflammation and organ damage in the long run. There have been
reports suggesting that exposure to helminths confers protection against these auto-
immune disorders which are Th1 associated. Hence, helminth derived products
might be useful in ameliorating the pathology linked to auto-immune disorders as
they might help in restoring the homeostasis. Here, we discuss the potential of
helminths and helminth derived products in therapy.

Keywords Helminth · Auto-immune disorders · Hygiene hypothesis · Immune
modulation · Therapeutics

1.1 Introduction

The healthy state of an individual is constantly challenged and shaped up by the
environment they are exposed to. The surrounding environment is shared with a
large number of pathogens and many potent immune agents/allergens and hence our
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immune system is constantly evolving. Not only that, there are thousands of bacteria,
fungi and parasites reside in our body all the time. The immediate micro/parasite/
fungal biome is highly influential to our evolutionary existence; for instance, the gut
immunity plays a vital role in our nutrition, development and protection (Johnson
and Foster 2018). The large number of microbes inhabiting human body outnumber
the total cells in human body; so it is justified to say we are more microbes than
humans!

Our environment is constantly changing as a result of human activities and so is
the microbiome surrounding us, the exposure and insult with these microbes are not
always harmful, the foreign insult in some case confers protection from reinfection
with such pathogenic agents and as is with the helminths; a more surprising
advantage that they offer; confers protection against auto-immune/inflammatory
disorders. This is contrary to the present-day status of infectious disease burden
which is taking a toll on human health and soil -transmitted helminths itself infect 1.5
billion people worldwide as per World Health Organization. But, a limiting amount
of infection with helminths is proving to offer an edge to many autoimmune
disorders, allergies and inflammatory bowel disease.

Helminths are very skilful and powerful manipulator of immune system (Maizels
et al. 2018). By an estimate, approximately one third of world population get
infected with some kind of helminth infection in their life time. These infectious
agents are responsible for many chronic and debilitating diseases or syndromes
(Arora et al. 2019). These helminths not only affect humans but also are a major
problem for livestock diseases and cause major loss to agriculture too. The unex-
pected pervasiveness of helminth infections indisputably reflects their special capa-
bility to influence the host immune system, subduing host immune responses that
could end in their ejection from host body. Host immunity has also developed over
times in this condition of coevolution with parasites defence mechanisms to con-
straint pathology and to balance resistance, susceptibility and immunopathogenesis.
Hence, host immune responses habitually allow ongoing infection in preference to
complete elimination of parasite and the collateral damage that would result to
surrounding tissues.

The immune axis weighs between pro-inflammatory or anti-inflammatory scale to
establish immune homeostasis (Fig. 1.1). The host–parasite interaction results in
downregulation of host immune system and promotes parasite survival by moving
the immune axis to anti-inflammatory scale (Amit et al. 2011). To inhabit and create
comfortable niche for themselves they have adopted various immune regulatory
roles, immune masking and immune evasion strategies like altering the expression of
host microRNA which eventually alters protein expression of signalling cascades
(Arora et al. 2017). The protective immunity against helminths develops at slow
pace over a time period only, and the effector mechanisms for eliminating them in
human host are not well defined; however, by animal models studies, it is defined as
of Th2-dependent pathways that mediate protection, as successful parasites seek to
blunt the host immune attack for their own survival. The cross talk between helminth
and humans has revealed a number of excretory–secretory products from helminths
which participate in this differential immune regulation to more permissive humoral
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immune response (Harris and Gause 2011). This facilitates survival of parasite and
does not cause immediate damage to host system. The more developed and aware
part of the world has been successful in eradicating the incidences of the parasitic
diseases but has become more prone to allergies, inflammatory bowel disease,
metabolic disorders, etc. (Wiria et al. 2012). As evident from the rising status of
inflammatory disorders in the west where the cleaner surroundings have restricted
the prevalence of helminthic infections; suggestive of the protective status helminth
confers from auto-immune disorders. These helminth derived products are proving
to be beneficial to humans in protecting against auto-immune disorders where the
immune axis weighs more on pro-inflammatory side (Table 1.1). Here, we discuss
the helminth derived products in therapy and associated challenges.

1.2 Evolution of Biota Alteration Theory

Coined by David Barker; Hygiene hypothesis dates back to the 1970s where in urban
communities were reported to have much higher allergic incidences as compared to
rural communities which are exposed to many pathogenic viral, bacterial or helmin-
thic agents (Bloomfield et al. 2006). Later on, this theory continued to develop; with
increasing living standards, reduced family size, better personal hygiene and reduced
exposure to common pathogens specially helminths which induce anti-inflammatory
tolerance. Though the helminth infections are prevalent in major parts of the
developing world but have been cleared out from high income and developed

Fig. 1.1 Immune axis strikes a balance between Th1 and Th2 response; autoimmune disorders
weighs down the Th2 axis resulting in inflammation and systemic disorders, whereas the helminthic
infections uplift the Th2 axis and restores the balance between Th1 and Th2. Thus, ameliorating the
inflammation due to Th1 response
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countries, thus western communities with low to no prevalence of helminthic
infection are being reported to have higher risk and incidence of inflammatory
disorder (Smallwood et al. 2017). But it still remains elusive as to what factors
with urbanization and economic development in western lifestyle correlate to
immune mediated inflammatory disorders. One factor that can be attributed to this
shift in immune/protective paradigm is altered biome with environment as they have
been co-existing and co-evolving together (Fig. 1.2). This altered biome affects the
composition of symbionts than the chances of getting infections conferring to
protection. It is a more complex relationship than it appears, not all infections or
microbes are same and each has its own immune axis of induction which shapes up
host immune status. Thus, the hygiene hypothesis translated/alter to “Biota alteration
theory” which states that depletion of biome in industrialized world results in
unstable immune status and over reactivity to self-antigens. The factors contributing
to altered biome are not only clean surroundings, along with that lifestyle changes,
sedentary life style over active life, diet more processed than fresh (inflammatory
diet), stress, environmental stimuli, genetic factors are among many other factors
contributing to inflammatory phenotype in west (Holick 2007; Brenner et al. 2015;
Villeneuve et al. 2017).

The surge of more clean practices has seen an increase in number of autoimmune
disorders, it has been in debate whether the cleaner environment; clearing the
parasitic worms out of environment also affects the good bacteria status in our gut
and whether more hygienic practices predispose human being to auto-immune
disorders at some point of time. The present-day global disease burden of helminths
shows an inverse relation to auto-immune disorders; is generating curiosity among
researchers as to how the immune axis responds and protects the individuals against

Table 1.1 Helminth derived products investigated for auto-immune disorders

Disease Organism Product/immune response

IBD Trichinella spiralis
Ancylostoma
caninum
Syphacia obvelata
Trichuris suis
S. japonicum

Recombinant serine proteases and cystine protease inhib-
itors TsKaSPI and TsAdSPI; TsCystatin
Low-molecular-weight metabolites derived from both
somatic extracts (LMWM-SE) and excretory-secretory
products (LMWM-ESP)
Egg
Ova
Cercariae, recombinant Sj16

Type
1 diabetes

Dirofilaria immitis
Wuchereria
bancrofti
Schistosoma
japonicum

Recombinant Dirofilaria immitis antigen (rDiAg)
rWbL2
rSjcystatin and fructose-1,6-bisphosphate aldolase
rSjFBPA

Rheumatoid
arthritis

Schistosoma
japonicum
Trichinella spiralis
Fasciola spp
Acanthocheilonema
viteae

Recombinant SjCystatin
Autoclaved Schistosoma mansoni antigen (ASMA)
Autoclaved Trichinella spiralis antigen (ATSA)
C-terminal of Fasciola helminth defence molecule-1
(C-FhHDM-1 ES62)
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auto-immune disorders in helminthic endemic regions and puts helminth derived
products in a new spotlight for therapeutic interventions to address auto-immune
therapies.

1.3 What Are Helminths?

Helminths are parasitic worms. They are classified into three types depending on the
external and internal physiology. Most of the helminths cause gastrointestinal
infection, some of them are tissue or blood vessel residents. They are both hermaph-
rodite and bisexual species. The life cycle comprises one or more intermediate host
and a definitive host and transit from various life stages of egg to larvae to mature
sexually active adult contributing to multiplicity of infection in the host. The three
classes are Trematodes: flat leaf like digenetic worm, Cestode: flat tapeworm and
Nematode: round soil transmitted worm. Among the helminths, soil transmitted
helminths incur the maximum rate of infection to their share, affecting 24% of the
world’s population (WHO fact sheet 2020). The infections are transmitted through
contaminated soil and water in areas of poor hygiene. Helminths colonizing the
human host remain asymptomatic for a prolonged period; the messengers of hel-
minths to human immune system which temper the host immune system to promote
their survival are being exploited/evaluated to understand their therapeutic role in
autoimmune disorders.

Fig. 1.2 The multitude of factors that constantly alter the biome and comprise inflammatory insults
to the human beings by disturbing the microbiome around us
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1.3.1 Helminths: Redefining the Survival of Fittest

Helminths excretory–secretory products have gain popularity over the years, initially
investigated with the purpose of diagnosis as they were easily detected in the blood
of parasitized host, immunoassays, vaccines, etc. Nonetheless various active molec-
ular functions like tissue invasion (proteases), anti-oxidants, chemotaxis, etc., were
also reported (Harnett and Parkhouse 1995). With time, a number of interesting
immunomodulatory molecules were described and it was established that parasite
excretory–secretory products (ESPs) play an elementary role in creating/setting up
environment for the parasite survival by means of immune modulation and not
immune suppression (Hartnett 2014). The ESPs interfere with host immune regula-
tion and induce the expression of (1) Th2 cytokines IL4, IL5, IL13 and (2) regulatory
immune response involving IL-10, TGF-β, alternative activated macrophages, Tregs
and Bregs (Hepworth et al. 2013). The ESPs are stage specific, the signature changes
with the developing stage of parasite, it is interesting to observe that the ESPs from
wide range of cestodes, nematodes and trematodes carry molecules capable of
altering/alarming the antigen presenting cells to set up protective response. The
immune modulation by ESPs also protects host from exacerbated inflammation in
invading and residing tissue and help with wound healing. For example, well
described and characterized ESPs come from nematode Acanthocheilonema viteae
ES-62, 240 kDa tetrameric protein have shown to induce Th2 response with IL-4
secretion in naïve DCs (Whelan et al. 2000). Similarly, there are many more
helminth derived products which pursue a protective immune response in host and
hence confer protection against the auto-immune disorders which are primarily Th1.
Since helminth infection strike a balance with immune regulation for clearance of
pathology and survival, it is of increasing interest if this phenomenon can be used to
ameliorate therapy for inflammatory and allergy disorders.

1.4 Helminths in Therapy

The most widely studied helminths for therapeutic purpose in auto-immune disor-
ders are Nematodes: Heligmosomoides polygyrus bakeri, Trichuris sp, Trichinella
sp, Nippostrongylus brasiliensis, Acanthocheilonema viteae, Necator americanus;
Cestodes: Hymenolepis diminuta, Taenia crassiceps; Trematodes: Schistosoma sp,
Fasciola hepatica.

In this review, we specifically discussed the patterns and pathways of helminth
derived host immune modulation that has been used for treatment of other diseases
specially autoimmune and allergic diseases, with the standpoint that this understand-
ing of helminths use in immune modulation will not only provide new avenues for
understanding parasite immunology but also offer routes to treat noncommunicable
immune dysfunctions by utilizing the benefit of helminths or helminths derived
products.
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1.4.1 Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease comprises two chronic gastrointestinal disorders,
i.e. Ulcerative colitis (UC) and Crohn’s disease (CD). The disease of the west
affecting approximately one million people in the USA and more than 2.5 million
people in Europe is becoming a global trend with “compounding prevalence” in
every continent (Kaplan 2015). There is no single factor or microbe associated with
incidence of disease; genetic susceptibility, environmental factors, immune status/
susceptibility, use of antibiotics and commensal dysbiosis in gut are multitude
factors associated with risk of mucosal inflammation. The disease is population-
varied in its association with genetic risk loci, for example: strongly associated gene
loci with disease are; innate sensing of bacteria (NOD2), the inflammatory response
to microbes (IL23R) and autophagy (ATG16L1). These genes result in elimination
of some intracellular bacteria or bacterial peptide sensing, eventually resulting in
intestinal inflammation. In Asian population ATG16L1 finds no correlation to
Crohn’s disease and NOD2 mutation found here is different from white European
population at genetic predisposition. The environmental factors affecting the prev-
alence shows differential existence to regions; for example, smoking was considered
to alter gut dysbiosis and was corelated to occurrence of CD or UC, but on the
contrary, the newly industrialized countries do not show same trend, may be the
trend associated with chance of occurrence of disease has not yet set in this
population (Ng et al. 2015). The environmental factors affect the gut microbiota
which affects the individual’s immune status. The disease models have shown more
abundance of pro-inflammatory bacteria than anti-inflammatory ones. This imbal-
ance in microbial population disturbs the immune axis and induces Th1/Th17
immune response leading to inflammation in mucosal lining with IFN-gamma and
IL-17 being signatory cytokines released in abundance. Eventually, this chronic
disease though low in morbidity affects the quality of life. The advances in indus-
trialized status of country come up with better health-care systems and as therapeutic
interventions are needed to ameliorate the effect, helminth therapy comes out as a
promising approach. The animal models for IBD; D/TNBS colitis, IL-10 deficient
colitis and T-cell transfer colitis have been studied vastly for effect of helminths and
it appears that the helminth therapy works at four levels; starting from suppressing
Th1 cytokines by Th2 cytokines like IL-4, IL-5, IL-13 and reduces the severity of
inflammation in colitis model. Further, helminth infections are associated with
induction of dendritic cells, alternatively activated macrophage and regulatory T
cells which release IL-10 and TGF-beta that restore homeostasis and avoid effector T
cells response. Eventually helminth infection alters the intestinal flora, for example,
H. polygyrus promotes lactobacilli family and thus increases the count of anti-
inflammatory bacteria in the gut (Walk et al. 2010; Elliott and Weinstock 2012).
Helminth therapy has proven to be safe, well tolerated and significantly effective in
treating UC and CD since the first report which dates back to 20 years (Summers
et al. 2005). Helminth products from T. suis and N. americanus have been probed for
therapeutics perpetually, with T. suis being more safer than N. americanus as a long
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duration infection with later can have some deleterious effects (Helmby 2015; Sipahi
and Baptista 2017). T. suis embryonated ova have been used in various studies, these
ova when ingested orally hatch into larvae and this larvae impedes the TH1 axis and
induces regulatory immune axis. Being a porcine whipworm T. suis does not infect
humans and is morphologically different from T. trichiurawhich infects man. T. suis
has been studied in UC and Cd with patient cohorts and compared to placebos has
shown promising result and translatability to helminth therapy (Weinstock and
Elliott 2013; Huang et al. 2018).

1.4.2 Rheumatoid Arthritis

Rheumatoid arthritis is an auto-immune disorder marked by circulating auto-
antibodies to IgG and citrullinated proteins, chronic in nature, its effects are systemic
and arises as a result of inflammation due to immune dysfunction affecting joints,
eventually impairing the life quality and limiting life expectancy of the affected. The
global epidemiology is lacking and prevalence data available from western countries
show 0.5–1.0% frequency in the white population (Myasoedova et al. 2010). Risk
factors interlinked to RA are genetic predisposition (60% risk factor); which show
approximately 100 loci to be associated to susceptibility or severity of RA, for
example, gene loci HLA-DRB1*01 and HLA-DRB1*04 are significantly associated
with RA, environmental factors; dust inhalation containing silica, asbestos, pulver-
ized cement, textile dust; all these environmental hazards show significant correla-
tion to RA (Webber et al. 2015), gender bias; women are 2–3 times at higher risk or
3.6% chances of women to develop RA during a lifetime compared to men at 1.7%
(Ngo et al. 2014; Crowson et al. 2011) and microbiota are associated risk factors to
develop RA. The gut microbiota plays an important role as observed there is
reduction of predominant abundant taxa and expansion of a rarer taxa of
Actinobacteria (Konig et al. 2016) and Prevotella copri appears to be early marker
for onset of disease (Chen et al. 2016). Another example of microbiota in influencing
disease outcome is observed in alteration of periodontal microbiota, Porphyromonas
gingivalis and A. actinomycetemcomitans. It is known to cause common periodontal
disease and can influence citrullination process as it expresses peptidyl arginase
deaminase and hence increasing the anti-citrullination protein antibody (ACPA)
(Dissick et al. 2010). These risk factors lay the foundation of disease or the
susceptibility to disease with no sign and symptom of autoimmunity, it then enters
into preclinical phase with onset of autoimmunity and there is transition from
asymptomatic autoimmunity to symptomatic phase; this phase is associated with
citrullination or modification of self-proteins generating anti-citrullinated protein
antibodies or neo-epitopes (post-translational modification), loss of immune toler-
ance at mucosal surface/site and generation/formation of auto-antibody leading to
cell activation as a result of antigen loading and migration activating secondary
lymphoid tissue and production of B-cells and T-cells along with auto-antibodies by
antigen presenting cells. The activation of APCs, macrophages, FLSs (fibroblast like
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synoviocytes) leads to release of various cytokines and chemokines which triggers
synovial inflammation and formation of immune complexes, activation of comple-
ment leads to synovial vascular leakage, a second hit or perpetual cytokine storm due
to activated adaptive immune response manifests into cartilage and bone destruction
and damages joint and bone erosion by osteoclasts (release proteases). With the
propagation/expansion of autoimmunity or auto-antibodies clinical RA transits from
undifferentiated to classifiable RA. The associated symptoms are infiltration of
immune cells at the joint, hyperplasia of lining layer, pannus formation. Synovium
is a delicate structure which helps in maintaining the homeostasis by supplying
nutrient to cartilage and secreting lubricant for cartilage to function smoothly.
Destruction to synovium destructs the intimal lining which houses macrophages,
FLS, adipocytes, fibroblasts, etc. The activated APC activates adaptive arm and
cytokines pre-dominating are IL-1, IL-6, TNF-α, small molecules like MMPs
(collagenases, stromelysins), leukotrienes, prostaglandins, miRNAs. This disturbs
the matrix and pathways involved in cell migration, adhesion, cytokine signalling,
etc., are implicated in pathogenesis of the disease. Thus, this pro-inflammatory set up
forms a network loop with minimal apoptosis and due to paracrine and autocrine
nature of synovium, inflammation spreads nearby, though the internal inhibitors/
antagonist are produced like Il-10, IL-1R, Il-35 and Soluble-TNF, but they are not
strong enough to mitigate the effect. With better understanding of the disease
pathology, once damage that was considered irreversible now has remission hope
with early diagnosis, better patient management and treatment strategies. The past
two decades have seen a paradigm shift in understanding of RA, better instrumen-
tation for clinical assessment and targeted therapy. Existing therapy is target based
using synthetic or biological “Disease-modifying antirheumatic drugs for RA”
(DMARDs). Conventionally used synthetic DMARD is methotrexate and glucocor-
ticoids. There is ongoing debate on using biological DMARDs along with conven-
tional ones, discussion of which is out of scope for this review/discussed elsewhere
and there are various side effects associated with the present targeted therapy
discussed in (Smolen et al. 2018). As observed gut microbiota dysbiosis plays
major role in RA, number of animal studies have been undertaken to study the
role of helminths in remission of RA by restoring microbiota in inflammation.
Inflammatory murine model to study RA are collagen induced arthritis (CIA)
(where DBA/I mice inoculated with bovine collagen), other murine models devel-
oped by inoculation of specific microbes develop T-cell mediated arthritis sponta-
neously, suggesting microbiota plays role in K/BxN (segmented filamentous
bacteria) murine model, IL-1ra�/� (Lactobacillus bifidus Helicobacter) SKG
(Prevotella spp) RA models (Maeda and Takeda 2019). RA therapeutic approach
is target based, i.e. inhibiting or blocking the molecule directly associated in joint
damage, papain-like cysteine proteases appear to play significant role in joint
damage and bone remodelling (Trabandt et al. 1990). Recombinant S. japonicum
cystatin protein is known to interfere with antigen presentation and downregulates
immune activation by suppressing production of TNF-alpha and IL-6 (Zhu et al.
2014), it possesses enzymatic property of inhibiting proteolytic activity of papain.
Murine model of CIA-RA showed prophylactic effect of rSjcystatin in reducing the
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structural joint pathology by augmenting Th2 cytokines IL-10,IL-4 and collagen
specific IgG and T reg population of CD4+ CD25+ Foxo3+, but did not alter the
RANKL level. RANKL is a receptor activator for NF-KB ligand and had been asso-
ciated with osteoclast differentiation and hence pathology in RA (Liu et al. 2016).
The rSjcystatin works by disarming TH1 response and not by its inhibition of
proteases activity as it failed to block the cathepsin activity in synovium in an
established osteoarthritis (Kyostio-Moore et al. 2015). Another helminth derived
molecule that could inhibit/block RANKL was studied by Khan et al. (2020);
C-terminal sequence of Fasciola helminth defence molecule-1 (C-FhHDM-1). This
molecule impaired the macrophage differentiation to osteoclast, therefore, impacting
the osteoclastogenesis and altering the RANKL/OPG ratio decreased bone resorp-
tion and prevention of bone loss due to CIA, without compromising on systemic
immune surveillance. Another novel strategy of employing helminth in RA treat-
ment is altering the gut microbiota to restore homeostasis. As discussed above it is
evident that RA pathology arises of altered microbiota and Tuftsin–
Phosphorylcholine a chimeric molecule with immunomodulatory property, when
administered in CIA mouse model had gut microbiota composition similar to control
with reduced score of RA, joint destruction and inflammation storm (Bashi et al.
2016). The gut microbiota of healthy group had more short chain fatty acid produc-
ing bacteria and PBS/CIA had loss of enterobacteriaceae and abundance of
Mucispirillum, Oscillospira and unclassified Clostridiales genera (Ben-Amram
et al. 2017). Thus, this study established and paved for another therapeutic interven-
tion to RA therapy by restoring the gut microbiota.

Though helminth shows great potential in remission, it is difficult to convince
patients in getting infection with helminth which causes altogether a different
disease. The systemic effect of parasitic products is not well evaluated and hence
the deleterious effect associated with it and this lack of knowledge offsets the
therapeutic advantage they offer. Eissa et al. 2016 proposed and investigated
autoclaved antigens from S. mansoni and T. spiralis in adjuvant induced arthritis
model in rats and met with much success with upregulated Treg FOxo3+ population.
Thus, counteracting the drawback of incurring helminth infection with these
autoclaved extracts.

Langdon et al. (2019) performed a meta-analysis study to evaluate the effective-
ness of helminth products in RA in CIA model and put forwards Acanthocheilonema
viteae’s ES-62 a phosphorylcholine and well characterized immunomodulatory
molecule in therapeutic spotlight for RA. The A. vitae ES62 induces IL-10 expres-
sion via downregulating MYD88 expression which attenuates NF-κB pathway and
hence pro-inflammatory signalling.

1.4.3 Type-1 Diabetes

Another chronic auto-immune disorder is type 1 diabetes, where the immune system
becomes destructive against self pancreatic-beta cells, which hampers insulin
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production and it results in high blood glucose level which leave the patients in
debilitated state. It is highly prevalent in Asia-pacific and the available statistics
suggest even higher prevalence of disease in Indian population in coming years. The
mechanism behind beta-islet cell destruction remains intangible, factors associated
with disease occurrence are genetic predisposition, lifestyle and diet. Epidemiolog-
ical survey reports concomitant increase in diabetes prevalence with reducing
helminth infection rates (Bashi et al. 2015). In support of this data, there have
been many investigational studies with mouse models and parasites to establish
this. The mouse model of streptozotocin induced diabetes (STZ) or non-obese
diabetes have shown reduction/elimination of diabetes when treated with ESP of
filarial parasites Fasciola hepatica or Litomosoides sigmodontis and recombinant
Dirofilaria immitis antigen (rDiAg) (Lund et al. 2014; Imai et al. 2001;
Chenthamarakshan et al. 1996). Amdare et al. investigated the effect of different
antigenic preparation of Brugia malayi in multiple low-dose STZ-induced T1D
mouse model; adult soluble antigen (Bm A S), microfilarial excretory–secretory
antigens (Bmmf ES) and microfilarial soluble antigen (Bmmf S), respectively. They
found low severity of disease with reduction of 37.5% incidence, with increase in
number of healthy islets and reduced pancreatic inflammation. The destructive islet
Beta cell phenomenon is a consequence of cell mediated Th1 immunity along with
phagocyte-dependent protective responses producing IFN-gamma causing massive/
heightened inflammation (Kikodze et al. 2013). There was a cytokine paradigm shift
of inflammatory TNF-α/IFN-γ to IL-10 and IL-4 elevated levels in B. malayi treated
mouse models, this was observed along with over expression of anti-insulin IgG1
and reduced levels of anti-insulin IgG2a antibodies and elevated levels of insulin
specific IgE, which mediates protective effect. Other helminths; T. spiralis,
H. polygyrus and S. mansoni have shown similar results in mouse diabetes models
(Saunders et al. 2007; Mishra et al. 2013). S. japonicum recombinant proteins
cystatin and fructose-1,6 bisphosphate which are excretory–secretory proteins and
known for their immunomodulating properties ameliorated type-1 diabetes in NOD
female mice model with elevated IL-10 and TGF-Beta and increase in number of
Treg cells (Tang et al. 2019). Helminth can ameliorate the degradation of pancreatic
islets and hyperglycaemia not only by induction of Tregs, but by expression of Arg1
and Ym1 as well (Osada et al. 2017). Soluble egg antigen (SEA) or soluble worm
antigen (SWA) confers protection against development of Type-1 diabetes induced
proliferation of NKT cells subtype, it induces phenotypical changes in dendritic cells
which results in Tregs expansion and proliferation associated with IL-10 and TGF-β,
SEA increases TGFB secretion in TLR2 dependent manner downstream leading to
CXCL10 expression, this recruits T-cell macrophages, DCs to pancreatic islets. SEA
also differentiates macrophages to M2 phenotype. Thus, depending on various
conditions SEA can either prevent or ameliorate type1-diabetes (Burton et al.
2010; Parsa et al. 2012).

Thus, induction of regulatory immune response yet again suppressed disease
associated inflammatory pathology (Yan et al. 2020) and there might be one more
pathway affecting the pathology of the disease, it is not always induction of Th2 that
can suppress disease pathology. The present-day therapy is insulin administration,
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immunosuppressive drugs, which are short term and cause toxicity on prolonged
use. Thus, better therapeutics are demanded considering the increasing toll on
disease burden and helminth therapy can prove to be beneficial.

1.4.4 Allergy/Asthma

Unlike above mentioned/discussed auto-immune disorders which are Th1/Th17
driven, Allergy or asthma is Th2 dominant, i.e. arise because of excess of Th2, so
implying helminth intervention may further worsen the scenario. But that is not the
case as the helminth derives regulatory Th2 response and hence controls Th2-driven
atopic inflammation. To study asthma/allergy mouse models with allergic airway
inflammation with ovalbumin as allergen has been created and experimentally
studied. In general, this allergic response is associated with exaggerated levels of
IL-4 and IL-13, which results in infiltration of basophils and stimulation of goblet
cells releasing more mucus and proliferation.

Helminth infection in mouse models has met with considerable success in
suppressing chronic and acute inflammation. Impressively the gut associated para-
sites (H. polygyrus) induce regulatory immune phenotype in gut lymphoid tissue;
Bregs (IL-10 + CD19+), Tregs (IL-10 + CD4+ and FoxP3 + CD4+) are able to
ameliorate lung airway inflammation (Gao et al. 2019). Adoptive transfer of Treg
FoxP3+ CD4 + CD25+ from T. spiralis infection model conferred protection
by OVA-induced lung airway inflammation (Kang et al. 2014) and T. spiralis
extracts of adult worm and larvae muscle reduced the infiltration of eosinophils
in airway inflammation, thus, the worm based therapeutics helped in reducing Il-4
elevated levels and increased Il-10 and TGF-β and they also reduced IgE specific to
OVA, proving their promising therapeutic efficacy.

1.5 Conclusions

Helminths including other microbes have co-evolved with humans and their immune
system. Wiping these infectious agents out of the environment has resulted in
increase in propensity of non-infectious autoimmune disorders. Although helminth
infection is associated with protective immunity, not all helminth infection confers
protection against autoimmune disorders, occurrence of concurrent infections and
infection intensity influence the allergenicity status and hence the protective out-
come associated with helminths as observed with hookworm infection (Helmby
2015). The Th2 bias induced by helminths in host system creates immune suppres-
sion to support parasite survival and parasite secreted products are of particular
interest and their expansive repertoire from number of helminths signposts the scope
of therapeutics (Fig. 1.3).
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Though the animal models show promising results in suppressing or preventing
inflammatory disorder; the use of helminth derived products may be used as sup-
plement in modern diets in future. As of now there are certain challenges and
limitations, the translation of mouse model results in clinical trials is slow, there is
limitation with obtaining the pure form of helminth products and their downstream
effect on the host physiology remains unknown, some of these identified helminth
molecules (For example ES-62) could be systemic in abrogating inflammation than
being tissue/organ specific and might fail to suppress or prevent disease pathology
(Doonan et al. 2019). This is because helminth derived products are life stage
development and we still lack in-depth understanding of parasite biology and their
interaction with host response. The route of administration of helminth derived
products and taboo with eating worms for therapy imposes challenges to effective
therapy. Undoubtedly, helminth therapy has shown promising results in ameliorat-
ing disease pathology, nonetheless detrimental effects/risk associated with helminth
infection remain a major concern.
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Chapter 2
Microbes: An Integral Component of Flavor
Production

Himanish Dutta Choudhury, Pappu Deb, and Ravi Rajwanshi

Abstract Natural flavoring industry has undergone an immense surge in production
that has done more than enough to compete and even supersede the chemically
synthesized flavoring industry, due to a rapid increase in demand from the consumer.
The natural flavoring industry utilizes techniques like plant tissue culture, de novo
synthesis, and biotransformation to increase their production. However, de novo
synthesis and biotransformation have been found to be better suited for industrial
production than plant tissue culture pertaining to the ease and efficiency in
bioproduction. Especially, the propitious role played by microorganisms like bacte-
ria, fungi, and algae in either production or enzymatic conversion into secondary
metabolites has been an essential part for the production of flavoring compounds.
The production of desired flavor from low cost precursor with a limited emission of
harmful wastes is also a valued addition to industrialization of bioflavor production
considering the detrimental impact of chemically synthesized flavoring compounds
on environment. With the advancement in the field of biotechnology, the genetically
engineered microorganisms or enzymes have ushered in a new era of the flavoring
industry with economical production of flavorants. The present chapter reviews the
different processes involving the diverse microbial entity in the efficient production
of flavors and fragrances, and also enumerates a series of advantages that are
conferred by it to the natural flavoring industry.

Keywords Bioflavor · Flavorant · PTC · de novo synthesis · Biotransformation ·
Elicitor
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2.1 Introduction

The term flavor describes the impression of food or substance due to a chemorecep-
tion of olfactory and gustatory system. The effectiveness of a flavor depends upon
the consumer’s liking and acceptability where the presence of a flavorant alters the
smell or taste and hence contributes to the value addition of food. More specifically,
it is the flavor that determines the olfactory quality of the food which can be
considered as the backbone of the economically important food flavoring industry
involved in the production of flavorants. The flavorants used in the food, cosmetic,
or pharmaceutical products can be natural or artificial as per the requirement (Scragg
2007). The chemical or biochemical reactions during food processing and storage
along with the quality of the raw materials used may influence the flavor of the food.
Flavor may also be changed by the addition of the organic or inorganic substances
(Cabaroğlu and Yılmaztekin 2010; Hosoglu et al. 2018). The compounds mostly
involved in generating flavor include aldehydes, alcohols, esters, ketones, lactones,
free fatty acids, phenolic compounds, and sulfur compounds (Gupta et al. 2015).
There are more than 6500 flavor compounds identified for food industries, but only a
few (~400) are widely used for foods such as beverages, dairy products, and sauces
(Güneşer et al. 2015; Scragg 2007). Flavors can be produced naturally from plants,
by extraction or distillation process, considered as natural flavors or can be synthe-
sized chemically, termed as artificial flavor compounds (Janssens et al. 1989). Flavor
compounds extracted from plants are more consumer friendly. However, limited
availability of the natural resources due to different environmental factors, high cost
of extraction, and distillation process of precursors is a regular constrain in the
overall productivity of natural flavoring agents (Hosoglu 2018). With the advance-
ment of modern techniques, synthetic flavor development has become an integral
part of flavor industry but flavor produced by biological processes is in demand due
to health concerns. The chemically synthesized flavoring agents have an efficient
and low cost approach to boost the production but their complex chemical processes
and release of environmentally hazardous substances conclude to give more priority
towards the efficient synthesis of natural flavoring compounds using biotechnolog-
ical approaches. However, it has been observed that the biotechnological processes
do not require extreme conditions and are environment friendly than the chemical
processes (Willaert et al. 2005). Therefore, production of flavoring compounds by
nature friendly processes can be considered as one of the most effective alternatives
for production of flavor and fragrances. Microbial processes have been playing a
vital role since long time in the production of high quality of foods and beverages
with flavors liked by the mankind (Tamang 1998). Though the role of microorgan-
ism in the development of flavor was unclear in the ancient times but the advance-
ment in the field of microbiology and biochemistry helped to understand the role of
microbes in flavor generation. After the publication of the first article on microbial
flavor in the year 1923 (Omelianski 1923; Schrader 2007), the analytical techniques
to isolate and separate the volatile and nonvolatile compounds along with the
identification of their structure and function become more systematic and integral

20 H. D. Choudhury et al.



part of flavor generating industry. The use of microorganisms became an integral
part of different biotechnological approaches for the production of bioflavoring
agents with enhanced shelf life of the product (Vandamme 2003). The present
chapter highlights the role of microorganism in the production of flavoring com-
pounds with special concern to different techniques involved in microbial
bioflavoring.

2.2 Biotechnological Approach in Bioproduction
of Flavorant

The production of commercially important compounds with the help of biological
systems with an eco-friendly approach is considered as bioproduction (Willaert et al.
2005). The bioproduction of flavoring compounds and fragrances in a large scale is a
necessary requirement to fulfill the demand of natural flavoring compounds for the
associated industry. The intial step towards the bioproduction of flavoring compunds
by microorganism is the formation of a complex flavor by mixing the microbial
culture used for fermentation process. The perfect example for the same process is
the flavor produced during the fermentation of gueuze beer, soy sauce, kefir (Hallé
et al. 1994; Halm et al. 1993; Kumara 1989). Bioproduction sometimes leads to the
poor yield, lower rate of biotransformation, self toxicity of microorganisms and
causes trouble in recovery from the bioreaction mixture, however, the use of
biotechnological approach has turned into a most appealing method for the produc-
tion of natural flavors and fragrances as it requires lenient conditions with no release
of harmful or toxic chemicals which has resulted in the production of more than
100 commercially available flavor compounds so far (Bicas et al. 2010; Krings and
Berger 1998; Medeiros et al. 2000). Microorganisms are not only used for complex
flavor production but they can also be used for the production of single flavoring
compound from a well-chosen substrate (Willaert et al. 2005). The same can be
achieved by various biotechnological approaches, viz. plant cell or tissue culture
(PTC), microbial fermentation and microbial or enzymatic bioconversion and bio-
transformation (Bicas et al. 2010; Schrader et al. 2004).

2.2.1 Flavor Production Using Plant Cell or Tissue Culture

Plant cells are totipotent that can rediffrentiate to develop into new plant, organ, and
cell type at certain stages of development and perform various metabolic process
under suitable environmental condition. Such metabolic processes involve the
production of secondary metabolites which are considered as sources of flavor.
Production of flavoring compounds by cell suspension culture is advantageous as
it remains uneffected from harsh and differential environmental conditions
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compared to those isolation from plants grown in agricultural fields (Berger 1995;
Harlander 1995; Medeiros et al. 2000). PCT helps in the direct production of
flavoring compounds from specific plant cells or tissues in large bioreactors as it
provides controlled condition for secondary metabolism. Secondary metabolite
production requires standardization of controlled condition and manipulation of
culture medium with respect to micronutrient, carbon source, and enzymes; addition
of external elicitors along with the introduction of well differentiated cells which
results into an efficient production of secondary metabolites (Zenk 1990).

Anthraquinone production from Rubiaceae species is a well-studied example of
PTC based secondary metabolite production (Schulte et al. 1984). The study
describes the effect of different concentration of sucrose and auxin quality (effector)
on optimal production of anthraquinone by the development of the homogeneous
cell suspension in B5 medium containing 1–14% sucrose concentration,
1-naphthaleneacetic acid and one of the effectors such as 4-fluoro-, 4-bromo-,
4-chloro-, 4-iodo-, 4-methyl-, 2,3-dimethyl-, and 2,4-dichloro-phenoxyacetic acid
at 10�5 M concentration (Fig. 2.1). The same study also shows that on addition of
elicitors or carbon component in the PTC medium, an increase in the level of
secondary compounds is observed in comparison to the well differentiated plants.
The industrial production of berberine from Coptis japonica and shikonin from
Lithospermum erythrorhizon cell line by repeated cell aggregate selection and

Fig. 2.1 Production of anthraquinone using plant cell culture technique
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protoplast selection process are also well known examples of secondary metabolite
production as reported by Fujita (1988). The environmental factors such as light,
osmotic pressure, carbon dioxide also play an essential role in the secondary
metabolite production. As reviewed by Harlander (1995) the exposure of light
results in the formation of aliphatic ketones and esters in Ruta graveolens cell
cultures whereas maintenance in the dark leads to the monoterpene formation in
roots. The presence of mannitol increases the osmotic pressure that leads to the four
to five fold increased production of indole alkaloid (Zhao et al. 2001). Increased
production of ethyl butyrate, ethanol ethyl acetate, and isobutanol was observed in
apple and grape cell culture due to increased level of carbon dioxide in the atmo-
sphere (Harlander 1995).

The plant tissue culture technique is also utilized in the field of aroma production.
Vanilla is produced from suspension culture of vanilla pod in MS media containing
NAA (Funk and Brodelius 1990a). The study also reported the low concentration of
extractable secondary compounds while testing the role of elicitors like
2,4-Dichlorophenoxyacetic acid (2,4D), cytokines, kinetin, and 2-benzyladenine.
The production of vanillic acid was also observed by introduction of
4-hydroxycinnamate: CoA ligase inhibitor, 3,4-methylenedioxy cinnamic acid in
cell cultures of Vanilla planifolia (Funk and Brodelius 1990b). The tissue culture
technique also facilitates the production of p-Hydroxyphenylbutanone (raspberry
ketone) from raspberry cell suspension in Anderson’s medium in addition of 2,4-D,
Indole-3-butyric acid (IBA) and 6-(γ,γ-Dimethylallylamino) purine (2iP) (Borejsza-
Wysocki and Hrazdina 1994). An increase in raspberry ketone level was also
monitored upon addition of methyl jasmonate under cell suspension; however, the
yield is insufficient for large batch culture as reported by Pedapudi et al. (2000). The
aroma is basically associated with different volatile compounds such as ketones,
aldehydes esters, lactones, acetals, sulfur compounds, aromatic compounds
(Salunkhe et al. 1976). Even the tissue culture technique cannot resolve the elevation
of every compound; however, it can facilitate the increase in production of specific
component of aroma. The same can be well understood by the experiments carried
out on strawberry by different researchers across the world. For example, addition of
6-deoxy-D-fructose, a potential precursor of dimethyl-4-hydroxy-2H-furan-3-one
(DHMF) triggers the biosynthesis of DMHF-glucoside or addition of small chain
fatty acid responsible for flavor (Hong et al. 1990). Another example is α-keto-acid,
a precursor to produce ethyl butyrate and butyl butyrate which facilitates the
formation of fruity flavor compound under well balanced tissue culture system
(Hong et al. 1990; Zabetakis and Holden 1995). Even though there are several
applications of PTC in the field of natural flavor production but there is less scope
for large-scale production of flavor compound using the same technique. The
limitations include the higher doubling time of the plant cells resulting in higher
batch cycle, difficulty in maintaining sterility, lower level of yield, higher chances of
contamination, and loss of desirable metabolite during the growth of cell in the
culture that results in the lower stability of metabolite making the PTC an unprof-
itable option for flavor industry.
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2.2.2 Microorganisms Involved in Bioflavoring

Microorganisms involved in the production of flavors and fragrances are omnipres-
ent in nature. Industrial production of flavors and fragrances by microorganisms for
economical benefits is a new approach, but the concept behind this practice is very
old such as production of wine by fermentation. Benzaldehyde responsible for the
almond-like flavor was the first flavor compound to be recognized (Speelmans et al.
1998). In situ microbial culture of bacteria such as Lactobacillus sp. produces flavors
in dairy products like butter, milk, cheese, yogurt, and curd. Some microorganisms
are found to produce fruity and floral aroma in dairy products rather than buttery
flavor. Ceratocystis fimbriata, a famous fungi is known to produce a very strong
fruity fragrance in Solid State Fermentation (SSF) by utilizing some of the substrates
like wheat bran, cassava bagasse, and sugar bagasse (Christen et al. 1997). Bioflavor
production is classified into three major types according to the source of microor-
ganisms (Roy and Kumar 2019). These include:

1. Bacterial originated Bioflavors: There are several species of bacteria that help in
the bioproduction of flavor components either by de novo synthesis or transfor-
mation (Table 2.1). Vanillin is an active compound which is used for developing
a unique flavor named as “Vanilla.” Nocardia iowensis is a bacterium that pro-
duces vanillin by de novo synthesis and also by biotransformation (Bicas et al.
2010; Walton et al. 2000). Some other bacteria such as Pseudomonas putida,
Corynebacterium glutamicum, Arthrobacter globiformis also produce vanillin by
bioconversion of euginol and isoeuginol (Shimoni et al. 2003). Pseudomonas
gladioli produces bioflavor present in essential oil such as α-terpinol
(Cadwallader et al. 1989). Bacillus lichiniformis is another bacterium that pro-
duces isoamyl acetate from isoamyl alcohol (Torres et al. 2009). “Nookatone” is
the grapefruit aroma produced by some soil bacteria of genera
Enterobacteriaceae, having a very high market demand and used in beverages
and perfumes (Gupta et al. 2015).

2. Fungal originated bioflavors: Number of fungal species including yeast and
molds have been found to produce bioflavors naturally as well as by biotransfor-
mation. Fungal species such as Geotrichum fragrans produces various secondary
metabolites such as alcohol, acids, and esters. Strong fruity fragrance of pineapple
is produced by esters such as ethyl acetate and ethyl butyrate (Damasceno et al.
2003). Studies have been performed on the optimization of α-terpinol production
by using some fungal molds such as Fusarium oxysporum, Penicillium digitatum,
and Cladosporium sp. (Bicas et al. 2010). Cladosporium sp. produces the
α-terpinol at a highest concentration of 1.0 g/L whereas Fusarium oxysporum
produces at the lower concentration of 500 mg/L (Bicas et al. 2010; Maróstica Jr
and Pastore 2007). Several aromatic compounds like isobutyl acetate, isoamyl
acetate, geraniol, and citronella can also be synthesized by fungi Ceratocystis
moniliformis (Longo and Sanromán 2006).

3. Algal originated bioflavors: Unicellular cyanobacterium such as Synechococcus
elongatus can produce buttery bioflavor through acetone synthesis metabolic
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Table 2.1 List of microorganisms involved in the production of bioflavoring compounds

Organisms  

Precursors 

Products  

REFERENCES Group Species Compound 

Produced 

Flavor 

 

 

 

 

 

 

 

Bacteria 

 

 

 

 

 

 

 

Pseudomonas 
oleovorans 

Fatty acids 

esterified in 

plant oils 

Methylketones Butter scotch (Krings and 

Berger, 1998) 

Pseudomonas 
gladioli 

 

α-pinene 

 

α-terpineol 

 

Anticonvulsant 

agent, perfume, 

monopolymer 

(Cadwallader, et 

al. 1989) 

Bacillus  
subtilis 

Glucose and 

xylose 

Acetoin Buttery (Hua, et al. 

2007) 

Lactococcus 
lactis 

Glucose Diacetyl Buttery (Nielsen, et al. 

2010) 

Pseudomonas 
putida 

Geraniol Geranic acid Leafy with citrus 

hint 
(Mi, et al. 2014) 

Nocardia 
iowensis 

Isoeugenol Vanillin Vanilla (Carroll, et al. 

2016) 

Streptomyces 

griseus 

White 

potatoes 

and corn 

meal bread 

Geosmin 

 

Earthy 

 

(Gupta, et al. 

2015) 

Streptomyces 

sp. V-1 
Ferulic acid Vanillin Vanilla (Xu, et al. 2009) 

Arthobacter 
globiformis

Ferulic acid  Vanillin Vanilla (Shimoni, et al. 

2003)

Pediococcus 
pentosaceus

Glucose Acetoin Buttery (Escamilla-

Hurtado, et al. 

2005)

(continued)
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Table 2.1 (continued)

Fungi

Saccharomyces 
cerevisiae

Benzyl     

alcohol

Butyl butyrate Pineapple (Aggelopoulos, 

et al. 2014)

Pichia pastoris Agro-

industrial 

wastes

Benzaldehyde Cherry & Almond (Craig and 

Daugulis, 2014)

Ceratocystis 

fimbriata 

Cassava 

wastewater

Esters Fruity (Soares, et al. 

2000)

Geotrichum 

fragans 

Sucrose   Esters Fruity (Damasceno, et 

al. 2003)

Trichoderma 

viride    

Olive mill 

waste

6-pentyl-α-

pyrone

Coconut (Fadel, et al. 

2015)

Rhizopus 

oryzae & 

Candiada 

tropicalis

Acetic acid, 

2-

methylprop

yl ester

Lemonene Citrus (Guneser, et al. 

2017)

Ceratocystis 

moniliformis 

Ferulic acid Isobutyl 

acetate, 

Geraniol

Banana, rose (Akacha and 

Gargouri 2015)

Pycnoporous 

cinnabarinus 

L-

phenylalani

ne

Vanillin Vanilla (Falconnier, et 

al. 1994)

Ischnoderma 

benzoinum 

L-

phenylalani

nes and 

glucose

Benzaldehyde Nutty & Almond (Longo and 

Sanromán,

2006)

Nidula niveo-

tomentosa

Acetone 4-(4-

Hydroxypheny

l)2-butanone

Raspberries (Krings and 

Berger, 1998).
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pathway. Earthy aroma of Geosmin by de novo synthesis is also reported to be
produced by some algae (Oliver et al. 2013).

2.2.2.1 Flavor Production Using Microbial Fermentation/de novo
Synthesis

Since the ancient times the microorganisms play a key role in the production of
fermented products. The microorganisms like yeast, bacteria, and fungi are found to
have inevitable role in the production of several flavoring compounds including
aldehydes, ketones, esters, alcohol, lactones, and sulfur compounds as secondary
metabolites (Hosoglu et al. 2018). With the advancement in the field of biotechnol-
ogy, the fermentation technology was utilized for economical and industrial per-
spective. The production of complex mixture of flavoring compounds using the
fermentation was the first step towards the progress of flavor industry. However,
immobilization technique along with proper design leads to the development of
single flavoring compound. The de novo fermentation is also advantageous as the
process can be boosted up with limited supply of intermediate or precursor molecule
(Vandamme and Soetaert 2002). The microbial fermentation involves Submerged
Fermentation (SmF) and Solid State Fermentation (SSF) as a rapid approach towards
the production of secondary metabolite which is used as a flavor along with bioactive
compound (Subramaniyam and Vimala 2012). The microbial fermentation is also
considered as an inexpensive technique that requires low cost supplies like carbon,
nitrogen, along with vitamins, minerals, and micronutrients in the culture media
(Harlander 1995). The use of agrowastes in bioproduction is preferred due to its
contribution towards the low cost and rich content during the flavor and fragrance
production. For example, the addition of tapioca bagasse, sugar beet, beet molasses,
wheat bran, apple pomace, soy bean meal, rice bran, fruits and vegetables pomaces,
and whey in the microbial fermentation has shown the efficient production of natural
flavors and fragrances (Akacha and Gargouri 2015; Nigam and Pandey 2009). Due
to high fermentation capability with low-growth requirements and high-enzyme
catalyzed systems, it was noted that metabolism of yeasts and fungi are more
efficient during fermentation of agrowastes (Häusler and Münich 1997).

Several studies have shown the usage of yeast or fungal strains in the production
of flavor. One such study is about the production of aroma products like isobutyl
acetate, ethyl acetate, propyl acetate, isoamyl acetate, citronellal, and geraniol from
Ceratocystis moniliformis (Collins 1976). Several other fungal species like Asper-
gillus niger, Aspergillus parasiticus, Aspergillus ochraceus, Aspergillus oryzae,
Penicillium chrysogenum, Penicillium funiculosum, Penicillium citrinum, Penicil-
lium raistrickii, Penicillium viridicatum,Cephalosporium, Alternaria, and Fusarium
sp. are found to produce 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol,
1-octanol, and 2-octen-1-ol together with octane, isobutyl alcohol, butyl alcohol,
butyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine,
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benzaldehyde, propylbenzene, and phenethyl alcohol in coarse wheat medium under
culture condition (Kaminski et al. 1974). Degradation of β,β-carotene is an essential
step for production of terpene components. Studies show that several fungi are
responsible for degradation of β,β-carotene either directly or with extracellular
enzyme activity in culture containing β,β-carotene (Zorn et al. 2003). Study
performed by Zorn et al. (2003) showed that the production of dihydroactinidiolide
which exhibits a pleasant hay like odor important for black tea flavor, from sub-
merged culture of Ganoderma applanatum, Hypomyces odoratus, Kuehneromyces
mutabilis, and Trametes suaveolens. The genera Saccharomyces are often associated
with alcoholic fermentation and also found to produce esters, alcohols, and acetates.
Some non-Saccharomyces, yeasts, such as Hanseniaspora guilliermondii,
Hanseniaspora uvarum, and Pichia anomala, were also reported as a producers of
ethyl acetate, geranyl acetate, isoamyl acetate, and 2-phenylethyl acetate which
influence the sensory quality of wine (Rojas et al. 2001). Rojas et al. (2001) reported
that Pichia is able to promote the esterification of ethanol, geraniol, isoamyl alcohol,
and 2-phenylethanol which increases the concentration of esters having a fruity
aroma. The strains of Saccharomyces, Hansenula, Candida, Pichia, and
Torulaspora along with the strains of Aspergillus, Mucor, Rhizopus, Monascus
and Trichoderma help in production, processing, and providing aroma to dacu,
Maotai-flavor liquor (Wang et al. 2008). The fruity, floral flavor producing compo-
nents such as citronellal, geraniol, and linalool were also reported to be synthesized
de novo by Kluyveromyces lactis (Drawert and Barton 1978). The production of
γ-lactone and γ-decalactone along with alcohol, esters, and carbonyl compounds was
observed in the synthetic media containing glucose, L-asparagine, MgSO4. 7H2O,
KH2PO4, and deionized water of Sporobolomyces odorus culture (Tahara et al.
1972). The component produced was found to be responsible for the development
of peach like flavor in the culture. The de novo synthesis and identification of the
components produced by the culture of S. odorus are described in Fig. 2.2. Some
bacterial strains like Gluconobacter roseus are found to produce methylbutyric acid,
a common ester among the flavor compounds, on oxidation of methylbutanol
(Gatfield and Sand 1995).

The production of tetramethylpyrazine which results into production of nutty,
roasted, and toasty flavor was also reported to be produced by a mutant species of
Corynebacterium glutamicum (Demain et al. 1967). Although the same compound
can also be produced from the suspension culture of Bacillus subtilis, where Daqu or
glucose is used as a precursor (Xiao et al. 2006; Zhu et al. 2010). SSF of B. subtilis
was reported to produce aroma compounds such as 2,5-Dimethylpyrazine
(2,5-DMP) and tetramethylpyrazine (TTMP) from soyabean in the presence of
threonine and acetoin (Besson et al. 1997). The compounds such as butyric acid,
lactic acid, and diacetyl responsible for buttery flavor are found to be produced from
microbial culture of Lactococcus lactis, Lactobacillus sp., Streptococcus
thermophilus, Leuconostoc mesenteroides (Escamilla et al. 2000; Ibragimova et al.
1980; Longo and Sanromán 2006). Vanillin is also produced from the culture media
of Oenococcus oeni supplemented with isoeugenol, coniferyl aldehyde, or ferulic
acid (Bloem et al. 2007). Several other strains of microorganisms are also reported to
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be used in de novo synthesis of flavor compounds as mentioned in Tables 2.2 and
2.3.

2.2.2.2 Flavor Production using Microbial or Enzymatic Bioconversion
and Biotransformation

Specific flavor and fragrance compounds can also be produced by approaches like
bioconversion or biotransformation which involves conversion of specific substrates
added to the cultural medium. Several microbial enzymes are capable of converting
specific substrates into flavor compounds (Janssens et al. 1989). The yield of
bioconversion process is very high which leads to better opportunities towards the
commercial production in comparison to de novo synthesis (Guiné et al. 2010). The
process requires easily available low cost precursors and several biochemical reac-
tions such as reduction, oxidation, dehydration, and hydrolysis for the production of
different flavoring compounds. Some alternative processes like immobilized cell
systems, SSF are also reported to contribute in the improvement of the yield (Feron

Fig. 2.2 Steps of de novo synthesis of γ-lactone and γ-decalactone using Sporobolomyces odorus
culture
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et al. 1996). Both the processes (bioconversion and biotransformation) are advanta-
geous; however, bioconversion is a multistep process, whereas biotransformation is
single step process. A typical example of bioconversion and biotransformation is the
production of vanillin (4-hydroxy-3-methoxybenzaldehyde) that involves natural
precursor like ferulic acid from which several intermediates are produced on treat-
ment with microbial strains like Aspergillus niger, Pycnoporus cinnabarinus,

Table 2.2 List of Fungal strains/Yeast involved in the de novo production of bioflavoring
compounds

Name of the
organism (fungi/
yeast) Precursor

Immobilization
method Product References

Saccharomycopsis
lipolytica

Glucose, galactose Membrane cell
recycle

Citric acid Rane and
Sims (1995)

Aspergillus niger Glucose, galactose,
sucrose

Hollow fiber Gluconic acid,
citric acid

Chung and
Chang
(1988)

Pichia pastoris Benzyl alcohol Membrane cell
recycle

Benzaldehyde Craig and
Daugulis
(2014)

Ceratocystis
fimbriata

Cassava bagasse,
apple pomace, and
soya bean

Ca-alginate
beads

Esters,
e.g. ethyl
acetate

Soares et al.
(2000)

Trichoderma
viride

2-phenylethanol
(2-PE)

Liquid surface
immobilization

6-
pentyl-α-pyrone

Fadel et al.
(2015)

Rhizopus oryzae Oil mill wastes Polyurethane
foam

Limonene Guneser
et al. (2017)

Ischnoderma
benzoinum

Phenylalanine Polyurethane
foam

Benzaldehyde Longo and
Sanromán
(2006)

Table 2.3 List of bacterial strains involved in the de novo production of bioflavoring compounds

Name of the bacteria Precursor
Immobilization
technique Product References

Escherichia coli Farnesyl
diphosphate

Ca-alginate fibers Geosmin Nielsen et al.
(2010)

Lactococcus lactis Ferulic acid Ca-alginate fibers Vanillin Nielsen et al.
(2010)

Pediococcus
pentosaceus

Peptidoglycan Ca-alginate beads 3-phenyl lac-
tic acid

Kearney et al.
(1990)

Lactobacillus
cremoris

Lactose, whey Membrane cell
recycle

Lactic acid Bibal et al.
(1991)

Lactobacillus
delbrueckii

Glucose Hollow fiber Lactic acid Kulozik et al.
(1992)

Corynebacterium
glutamicum

α- keto
glutarate

κ-Carrageenan
porous glass

Glutamic acid Lu and Chen
(1988)
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Phanerochaete chrysosporium, Pseudomonas putida, Streptomyces setonii
(Khoyratty, et al. 2018). The involvement of fungi such as Pycnoporus cinnabarinus
is a well-studied example of bioconversion where agar media with selective XAD-2
resin were used for the large-scale production in a mechanically agitated and an
air-lift bioreactor (Stentelaire et al. 2000). The process ultimately results into the
formation of 1575 mg of vanillin per liter of fungal culture on basal medium
containing maltose, diammonium tartrate, yeast extract, KH2P04, CaC12.2H2O,
and MgS04.7H20. However, the bacteria such as Pseudomonas give promising
results in the production of vanillin from a non-oxidative, CoA-dependent chain-
shortening mechanism from ferulic acid (Walton et al. 2003). Biochemical reactions
like decarboxylation of ferulic acid, reduction of ferulic acid and coenzyme-A-
independent deacetylation of ferulic acid are involved in the microbial cultures of
different strains of Pseudomonas (Pseudomonas mira, P. fluorescens, P. putida),
Bacillus subtilis, Corynebacterium glutamicum, and Bacillus coagulans (Priefert
et al. 2001). The modern biotechnological tools are also helpful in the use of
transposon induced mutant of P. fluorescens strain BF13, containing an insertion
in the vanA gene that encodes the α-subunit of the vanillate O-demethylase involved
in the transformation of ferulic acid to vanillic acid resulting an yield of 0.23 g
vanillic acid/hr./g (wet weight) (Civolani et al. 2000).

The cheese flavor is another highly demanded flavor in the commercial market.
Studies conducted by several researchers showed that the compound responsible for
the development of strong cheese flavor is methyl ketone. The same can be obtained
with the help of bioconversion and transformation rather than a synthetic production
approach. Studies show that with the addition of medium length fatty acid as
precursor can help the fungi Penicillium roqueforti in the production of methyl
ketone via an incomplete β-oxidation of fatty acid precursor in the presence of
enzyme, 3-ketoacyl CoA-thioester hydrolase (Vandamme and Soetaert 2002). The
fungi Botryodiplodia theobromae is reported to be associated with jasmine odor
generating compound, methyl(+)-7-isojasmonic acid from α-linolenic acid
(Häusler and Münich 1997). The process involves esterification of jasmonic acid
obtained from α-linolenic acid by fungi with the help of commercial lipases.
Hyphozyma roseoniger, Cryptococcus sp. are found to convert sclareol to sclareolide
which can be converted to Ambrox® (Cheetham 1997). A study shows that
Zygosaccharomyces rouxii is used to develop the 2,5-Dimethyl-4-hydroxy-3(2H)-
furanone (DMHF) from a medium supplied with D-fructose-1,6-diphosphate and
glucose (Dahlen et al. 2001). Table 2.4 provides a list of few examples related to
production of favoring compounds via bioconversion by microorganisms. The
microbial enzymes are also found to play essential role in production of flavoring
compounds. For example, the production of l-menthol, a key constituent of pepper-
mint oil. l-menthol is produced by enantio selective hydrolysis of dl-menthyl acetate
with esterase extracted from Bacillus subtilis (Zheng et al. 2009). The production of
l-fucose from capsular exopolysaccharide (EPS) isolated from Clavibacter and
Klebsiella strain by enzymatic hydrolyzation under fermentation is also a well-
known example that shows the usage of microbial strain in enzymatic process of
flavor production (Vanhooren and Vandamme 1999).
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2.3 Conclusion

Studied performed on the production of different flavoring compounds with the help
of techniques like PTC, microbial cultures or enzymes have generated greater
interest in terms of industrial perspective. Bioengineering especially metabolically
and genetically modified microbes are playing a major role in the production of
desired flavor compound. Though de novo synthesis and biotransformation are
found advantageous for enhanced production of flavoring compound, however,
commercialization of such techniques is still a bigger challenge towards
bioproduction. The literature stated throughout the chapter highlights the advanta-
geous role of different microorganisms in scaling up the production of flavor
compounds and fragrances; however, product inhibition, unstable characteristics of

Table 2.4 List of flavoring compounds produced via bioconversion by microorganisms

Group Name of species Precursor
Immobilization
technique Product References

Bacteria Klebsiella
oxytoc

Glucose, 1,3
propanediol

Glass wool 2,3-Butanediol Champluvier
et al. (1989)

Rhodococcus
fascians

Limonin κ-Carrageenan
beads

Citrus juice
debittering/
limonin
degradation

Manjón et al.
(1991)

Zymomonas
mobilis

Sucrose Hollow fiber Gluconic acid Paterson
et al. (1988)

Arthrobacter
sp.

D- glucose
and
D-xylose

κ-Carrageenan
beads

Glucose
isomerization

Bazaraa and
Hamdy
(1989)

Erwinia
rhapontici

Sucrose Ca-alginate
beads

Isomaltulose Cheetham
et al. (1982)

Brevibacterium
ammoniagenes

Fumaric
acid

Polyacrylamide
beads

Malic acid Yang et al.
(1992)

Pseudomonas Ferulic acid Ca/Ba-alginate Vanillic acid Bare et al.
(1994)

Fungi Saccharomyces
cerevisiae

Xylose,
Oxaloacetic
acid

Ca-alginate
beads, agarose
beads

Glucose isom-
erization, malic
acid

Koren and
Duvnjak
(1992)

Candida rugosa Fumaric
acid

Agarose beads Malic acid Neufeld et al.
(1991)

Rhizopus
delemar

Saturated
fatty acids

Polyurethane
foam

Olive oil
hydrolysis

Chen and
McGill
(1992)

Penicillium
italicum

Geraniol,
nerol, or
citral

Agarose beads Methyl ketones Lomascolo
et al. (1999)

Pycnoporus
cinnabarinus

Ferulic acid Agitated tank Vanillin Lomascolo
et al. (1999)
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products, or formation of toxic by-products are the common challenges in the
process of commercial production. Therefore, research emphasis should be given
on the identification of low cost precursors, suitable substrates, enzymes, and
elicitors that are more specific and efficient in terms of production of flavoring
compounds. Feasible technology should be adopted for efficient product removal
to enhance the productivity of desired flavor compounds within the purview of
healthy natural environment leading to health benefits to the consumers.
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Chapter 3
Clinical Potential of Bacteriophage
and Endolysin Based Therapeutics: A
Futuristic Approach

Vijay Singh Gondil, Fazal Mehmood Khan, Nancy Mehra, Deepak Kumar,
Aastha Khullar, Tanvi Sharma, Abhishek Sharma, Rahul Mehta, and
Hang Yang

Abstract Antibiotic resistance is a global health challenge in the modern era. The
emergence of antibiotic-resistant strains poses a serious threat to human health
across the globe and compromises the arsenal of antibiotics upon which the modern
healthcare system heavily relies. Antibiotic resistance diminishes the choice for
effective antimicrobial agents and forces researchers to look for effective alternative
agents. Bacteriophages have been established as potent antibacterial agents against
most of the bacterial pathogens since the pre-antibiotic era. Additionally, the dis-
covery and exploration of endolysins, i.e. phage coded peptidoglycan hydrolases,
have further revolutionized the field of phage-based therapy. Bacteriophage and
endolysin have demonstrated to be effective for clearing the infection in both in vitro
and in vivo models. Nevertheless, there is a scarcity of information on the clinical
potential of bacteriophage and endolysin. The present chapter will highlight the
features of bacteriophage and endolysin that make them attractive and effective long-
term therapeutic alternatives for the treatment of drug-resistant infections in clinical
settings.
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3.1 Bacteriophage as Antimicrobial Agent

Bacteriophage, most popularly known as phage, is bacteria-infecting viruses. Phage
is the most diverse, abundant, and most genetically variable biological entities on
earth, with the global number estimated at 1030 to 1032 (Abedon 2008; Hemminga
et al. 2010, Hatfull and Hendrix 2011). Phage plays an important role in maintaining
bacterial diversity in the natural environment (Shapiro and Kushmaro 2011; Braga
et al. 2018). Phage was initially discovered in 1915 and 1917 by Frederick Twort and
Felix d` Terrelle, respectively. However, the term “bacteriophage” was first used by
scientist Felix d` Herelle (Tammelin 1992). To date, more than 5000 classified
bacteriophages are reported (Ackermann 2003). Bacteriophage, in a broader classi-
fication, is of mainly two types: lysogenic (temperate) in which bacteriophage
incorporates their genome into host DNA and lytic (virulent) in which bacteriophage
rapidly replicates in cells followed by burst opening the host cell to begin afresh
infection cycle. Lytic bacteriophage replicates in the host bacterial cell exponentially

Fig. 3.1 Steps involved in lytic and lysogenic phage replication: (a) Adsorption of phage to host
bacterium and transfer of phage genome into the bacterial cell, (b) (lytic cycle) multiplication of
phage in host bacterium and (c) lysis of host bacteria to release phage virions that could initiate
infections to new host bacterial cells, (d) (lysogenic cycle) insertion of phage genome into the
bacterial genome, which can be passed into subsequent generations or may enter into lytic cycle
upon induction by environmental stressors
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and is released by lysis of infected host bacterium (Gondil and Chhibber 2018).
Phage is released in the environment and can potentially infect host bacteria in the
near vicinity (Fig. 3.1).

Phage has been the choice of treatment for bacterial infections in the
pre-antibiotic era, but progress in the development of antibiotics leads to a decline
in the therapeutic application of phage (Sulakvelidze and Morris 2001). However,
with the rapid emergence of antibiotic resistance, interest in utilizing bacteriophage
and their products as therapeutics in controlling infections caused by Escherichia
coli, Pseudomonas, Klebsiella, and Proteus strains in human and animal models has
rekindled (Barrow and Soothill 1997; Brussow 2005; Gorski and Weber-Dabrowska
2005; Kumari et al. 2010). For example, as one of the phage therapy pioneers, the
Institute of Immunology and Experimental Therapy (IIET) includes phage prepara-
tions that can take care of 60–80% of specific nosocomial pathogens, such as
Pseudomonas, Enterococci, and Acinetobacter (Houby and Mann 2009). Generally,
most of the lytic phages used as antimicrobial agents belong to the family of
Myoviridae (having long, rigid contractile tail), Siphoviridae (having long flexible
and noncontractile tail), and Podoviridae (having short noncontractile tail) (Housby
and Mann 2009).

3.2 Advantages of Phage as a Treatment Option

Bacteriophage poses several advantages over established antibacterial drugs. Phage
is highly specific to target bacterium and does not disturb the normal microflora of
human hosts (Divya Ganeshan and Hosseinidoust 2019). Along with specificity,
phage is self-replicating and self-limiting as long as bacteria are present. Their
multiplication usually happens exponentially as long as the host bacterium is
available for multiplication and subsequent infection (Ghannad and Mohammadi
2012). Phage receptors on the bacterial cell wall are primarily virulence factors, so it
is believed that a bacterium will become less virulent when evolves resistance to
phage (Inal 2003). In antibiotic allergic patients, options to treat bacterial infections
become limited. Bacteriophage therapy in an allergic patient could be a potent
alternative to conventional antibiotic treatment (Ligonenko et al. 2015). Bacterio-
phage does not affect eukaryotic cells, making it a clinically safe product for
healthcare applications (Domingo-Calap and Delgado-Martínez 2018). Apart from
infrequent and mild immune reactions, no major adverse effects have been reported
upon phage therapy (Romero-Calle et al. 2019). The safety profile of bacteriophage
makes it an attractive antibacterial agent to be used in combination with pre-existing
antibacterial agents which include therapeutic enzymes (Nelson et al. 2006;
Chhibber et al. 2018), efflux pump inhibitors (Lamers et al. 2013), phytochemicals
(Moreno et al. 2013), pigments (Gondil et al. 2017), and antibacterial metal
nanoparticles (Kumar et al. 2017; Gondil et al. 2019). Phage resistance to host
bacterium is reported to be at a lower frequency as the rate of phage mutation is
higher than that of bacteria, so if a phage-resistant bacterium emerges, the phage
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responds quickly (Dorval Courchesne et al. 2009). The coevolution of phage with its
host entity makes it an evolving therapeutic alternative, a unique feature in all of the
available therapeutic agents present to date. Considering an economical perspective,
phage that can be easily scaled up with restrained resources represents an inexpen-
sive option compared to antibiotics (Tang et al. 2019).

3.3 Applications of Phage Therapy in Animal Infection
Models

Efficacy of phage therapy has been evaluated in in vivo antibacterial activities for
more than 100 years. A variety of pathogens that include but not limited to Staph-
ylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, E. coli,
Acinetobacter baumannii, and Salmonella enterica that lead to fatal infections
have been included in studies with numerous animal infection models. We highlight
a few of the selected animal models to summarize the vast exploration of phage
therapy in antibiotic sensitive as well as antibiotic-resistant infection models
(Table 3.1).

3.4 Clinical Trials of Phage Therapy

One of the rate-limiting factors in the translation of phage therapy from the labora-
tory into healthcare settings is the lack of well-evidenced and validated clinical trials.
A clinical trial of phage therapy is somehow different from other drug-based clinical
trials due to the unique characteristics of phage (Furfaro et al. 2018). The pharma-
cological dose is an important factor in clinical trials as these self-replicating entities
increase their number upon infection in their host bacteria (Payne and Jansen 2003).
Another important factor is the nature of colonization in the site of infection,
i.e. monomicrobial versus polymicrobial, which makes the situation complex. The
eradication of one pathogen from the site of infection might accelerate the coloni-
zation by another pathogen, which makes monophage therapy debatable for patient
care (Harper 2018). Nonetheless, these concerns can be technically addressed by
phage cocktail-based strategy that covers multiple pathogens.

Humans co-exist with phage in their daily life which is a major indicator of phage
safety. However, as clinical therapeutics, isolation, characterization, and scale up of
phage need to follow strict guidelines to ensure uniform quality parameters
(Parracho et al. 2012). In addition, for clinical outcomes and readiness of phage
therapy, more intensive and multi-pronged clinical trials which include sterility,
purity, and immune response mediated by sudden host lysis should also be taken into
consideration (Furfaro et al. 2018). In Table 3.2, we summarize several clinical trials
of phage therapy in clinical settings:
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Table 3.1 List of selected animal infection models evaluated for phage therapy

Target pathogen
Infection
model Animal

Route of
administration References

E. coli Systemic
infection

Mice Intramuscular
injection

Smith and
Huggins
(1982)

E. coli Diarrhea Calves, piglets,
lambs

Oral
administration

Smith and
Huggins
(1982)

A. baumannii,
P. aeruginosa, and
S. aureus

Systemic
infection

Mice Intraperitoneal
injection

Soothill (1992)

E. coli and S. enterica
serovar Typhimurium

Systemic
infection

Mice Intraperitoneal
injection

Merril et al.
(1996)

E. coli Septicaemia
and
meningitis

Chicken and
calves

Intramuscular
injection

Barrow et al.
(1998)

Vancomycin-resistant
Enterococcus faceium

Bacteraemia Mice Intraperitoneal
injection

Biswas et al.
(2002)

S. aureus Bacteraemia Mice Intraperitoneal
injection

Matsuzaki
et al. (2003)

E. coli Diarrhea Mice Oral
administration

Chibani-
Chennoufi
et al. (2004)

Multiple drug-resistant
(MDR) K. pneumoniae

Bacteraemia Mice Intraperitoneal
injection

Vinodkumar
et al. (2005)

S. aureus Wound
infection

Rabbit Subcutaneous
injection

Wills et al.
(2005)

Imipenem-resistant
Pseudomonas spp.

Bacteraemia Mice Intraperitoneal
injection

Wang et al.
(2006a)

β-Lactamase producing
E. coli

Bacteraemia Mice Intraperitoneal
injection

Wang et al.
(2006b)

P. aeruginosa Bacteraemia Mice Intraperitoneal
injection

Watanabe et al.
(2007)

P. aeruginosa Bacteraemia Mice Intraperitoneal
injection

Vinodkumar
et al. (2008)

S. aureus Systemic
lethal
infection

Mice Intraperitoneal
injection

Zimecki et al.
(2010)

P. aeruginosa Lung
infection

Mice Intranasally Debarbieux
et al. (2010)

S. aureus Bacteraemia Mice Intraperitoneal
injection

Sunagar et al.
(2010)

K. pneumoniae Liver
Abscesses
and
bacteremia

Mice Intraperitoneal
injection

Hung et al.
(2011)

K. pneumoniae Burn wound
infection

Mice Tropical
administration

Kumari et al.
(2010)

(continued)
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Table 3.1 (continued)

Target pathogen
Infection
model Animal

Route of
administration References

P. aeruginosa Lung
infection

Mice Intranasal Morello et al.
(2011)

Cronobacter turicensis Urinary tract
infection

Mice Intraperitoneal
injection

Thotova et al.
(2011)

P. aeruginosa Lung
infection

Mice Intranasal Alemayehu
et al. (2012)

Extended spectrum beta
lactamase (ESBL)
E. coli

Meningitis Rat Intraperitoneal
injection

Pouillot et al.
(2012)

P. aeruginosa Keratitis Mice Topical Fukuda et al.
(2012)

Methicillin-resistant
S. aureus

Bone
infection

Rat Medullary
injection

Yilmaz et al.
(2013)

S. aureus Septicemia Mice Intraperitoneal
injection

Takemura-
Uchiyama et al.
(2014)

K. pneumoniae Lung
pneumonia

Mice Intranasal Cao et al.
(2015)

E. coli Lung
pneumonia

Mice Intranasal Dufour et al.
(2015)

A. baumannii Wound
infection

Rat Topical
administration

Kusradze et al.
(2016)

Methicillin-resistant
S. aureus

Joint infec-
tion model

Mice Coated ortho-
pedic wires

Kaur et al.
(2019)

P. aeruginosa Cystic
fibrosis

Mice Intranasal Pabary et al.
(2016)

V. Cholerae Diarrhea Mice Oral Yen et al.
(2017)

E. coli, K. pneumoniae,
and Enterobacter
cloacae

Systemic
infection

Wax moth larvae
(Galleria
mellonella)

Injection Manohar et al.
(2018)

E. coli Systemic
model

Mice Intravenous
injection

Schneider et al.
(2018)

Carbapenem-resistant
A. baumannii

Lung infec-
tion model

Mice Intranasal Hua et al.
(2018)

Multidrug-resistant
P. aeruginosa

Joint infec-
tion model

Human case study Local
administration

Tkhilaishvili
et al. (2019)

S. enterica serotype
Enteritidis

Diarrhea Mice Oral Dallal et al.
(2019)

S. aureus Burn wound
infection

Mice Topical
administration

Kaur et al.
(2019)
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Table 3.2 List of clinical trials of phage therapy

Target organism Disease
Number of
participants Route

Success
rate References

Proteus, Staphylo-
coccus, and
Streptococcus

– 236 Subcutaneous/
surgical
drainage

92% Sakandelidze
and
Meĭpariani
(1974)

– Abscess
pneumonia

– Parenteral – Pipiia et al.
(1976)

E. coli, Proteus,
Staphylococcus, and
Streptococcus

Systemic
infection

96 – – Zhukov-
Verezhnikov
et al. (1978)

Staphylococcus Lung
infection

223 – 82% Meladze et al.
(1982)

Pseudomonas and
Staphylococcus

Post-surgical
wounds

65 – 82% Kochetkova
et al. (1989)

Enterococcus,
E. coli,
P. aeruginosa, Pro-
teus, Staphylococ-
cus, and
Streptococcus

Allergoses 936 86% Sakandelidze
et al. (1991)

E. coli, Proteus, and
Staphylococcus

Acute and
chronic uro-
genital
inflammation

46 – 84–92% Perepanova
et al. (1995)

Proteus, Staphylo-
coccus, and
Streptococcus

Burn wound
infections

54 Oral tablets – Lazareva
et al. (2001)

E. coli, Proteus,
Pseudomonas, and
Staphylococcus

Ulcers and
wound
infections

96 Topical 70% Markoishvili
et al. (2002)

P. aeruginosa Chronic
otitis

24 Ear drops – Wright et al.
(2009)

P. aeruginosa,
S. aureus, and E. coli

Chronic
venous leg
ulcers

42 Topical – Rhoads et al.
(2009)

E. coli Diarrhea 120 Oral – Sarkar et al.
(2016)

Enterococcus,
E. coli, Proteus
mirabilis,
P. aeruginosa,
Staphylococcus, and
Streptococcus

Urinary tract
infection

81 Suprapubic
catheter

– Leitner et al.
(2017)

S. aureus, E. coli,
Streptococcus,
P. aeruginosa, and
P. mirabilis

Urinary tract
infection

118 Instillation – Ujmajuridze
et al. (2018)
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3.5 Pharmacokinetics and Safety of Therapeutic Phage

Pharmacokinetics is a property of therapeutic molecule/drug to reach the specific
target site and exhibit pharmacodynamic effects. The pharmacokinetic properties of
the drug or any other therapeutic molecule can be classified into absorption, distri-
bution, metabolism, and excretion of the therapeutic molecule (ADMET properties).
The success of phage therapy is dependent on the concentration of phage and its
multiplication at the site of host–pathogen infection. Phage can increase in situ
concentration at the site of infection, thus increasing the efficiency of treatment
without repetitive dosing. The increase in phage concentration over time can easily
counterbalance the clearance of phage by the host immune system. Some phage
delivery systems which include liposomes, transferosomes, and topical dressings not
only increase the antibacterial efficiency but also increase the pharmacokinetic
behavior of the loaded phage (Singla et al. 2016; Chadha et al. 2017; Gondil and
Chhibber 2017; Kaur et al. 2019). These delivery systems have been well reported
for in vitro as well as in vivo antibacterial efficacy in literature.

Phage is considered as safe for human because of its abundant presence in the
environment and human host for a long time. Phage, like other drugs, also interacts
with non-target organs and tissues, such as interactions with reticuloendothelial
systems and transportation from organs to blood (Górski et al. 2006; Merril 2008).
However, these interactions are not reported to lead to any adverse effects in the
human system. Immunological responses to phage have been studied since long and
humoral responses not only elicit immunity against viral particles but also lead to
phage inactivation (Sulakvelidze et al. 2005). Phage coat protein-mediated cytokine
response also has been studied, for their mammalian cell interactions (Budynek et al.
2010). The specificity of phage can be exploited as a prophylactic agent, unlike
antibiotics which show broad-spectrum effects and may result in dysbiosis by killing
important microflora. The specificity of phage against target bacterium can be
modulated by using a single or cocktail of bacteriophage, which can increase the
lytic efficiency of phage by keeping the overall activity spectrum on a narrow range.
Phage may also enhance the bacterial lysis mediated toxin release, which is also
mediated by a number of antibiotics. However, in the case of Gram-positive bacteria,
exotoxin release is on the lower end, but in the case of Gram-negative bacteria, the
presence of endotoxin in phage preparations limits their applications (Kutter 2008).
Therefore, phage that is employed for systemic administration requires an additional
step in preparation of removing endotoxin (Hietala et al. 2019). Gram-positive
lysates also exhibit mild side effects, which may be due to the presence of bacterial
pathogenicity factors (Sulakvelidze and Kutter 2005). However, these issues are of
minor concern as these reactions are mild and do not complicate the treatment
process, especially in localized treatment of infections. Phage demonstrates safety
profile in a number of animal infection models as well as in human subjects,
establishing their potential application in future clinical applications.
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3.6 Endolysins and Their Potential in Clinical Applications

3.6.1 General Characteristics of Endolysin

Endolysins (lysins) are phage derived lytic proteins, produced during the end stage
of phage replication to degrade the cell wall of host bacterium and release newly
synthesized phage particles. Based on their enzymatic nature and robust antibacterial
activity, endolysins have been also termed as enzybiotics (Nelson et al. 2001).
Endolysin exhibits several advantages over antibiotics which includes high speci-
ficity to target bacterium, rapid bacterial lysis, effectiveness in planktonic as well as
biofilm cells, non-emergence of resistant mutants and potency against antibiotic
sensitive as well as resistant strains (Lopez et al. 1997; Loessner et al. 2002; Schuch
et al. 2002). Endolysin possesses two types of structural architecture, specifically,
enzymatically active domain (EAD) and cell-wall binding domain (CBD) are present
for lysins against Gram-positive bacteria, whereas in most of the endolysin against
Gram-negative bacteria only EAD is present. EADs are catalytic part of endolysin
responsible for bacterial peptidoglycan disruption, whereas CBDs are responsible
for conferring binding and specificity function for the endolysin towards host
bacterium (Bateman and Rawlings 2003; Ohnuma et al. 2008). Endolysins activity
can be detected based on turbidity reduction of bacterial suspension, log killing
assay, and a clear zone on bacterial or peptidoglycan lawns (Schmelcher et al. 2012).
Overlay assay and zymograms are also used as variants of turbidity reduction assays
for in vitro assessment of endolysin activity.

3.6.2 Antibacterial Spectrum and Safety of Endolysin

To date several natural, as well as chimeric endolysins have been reported; however,
lysins against Gram-positive bacteria seem to dominate the repertoire of available
endolysins. The presence of an outer membrane barrier limits the peptidoglycan
access to endolysins in Gram-negative pathogens, resulting in lower potency as
compared to Gram-positive bacteria specified endolysins. Various endolysins
against potent pathogens have been evaluated which are briefly summarized in
Table 3.3.

Above described endolysins have been well characterized and established in their
in vitro as well as in vivo efficacy in various animal models over time (Yang et al.
2014c; Gondil et al. 2020b). Prospective of lysin therapy has been also well-
reviewed by São-José (2018). In a recent study, the chitosan-based delivery system
has been also reported to augment antibacterial activity and stability of
endolysins (Gondil et al. 2020a, 2021). Like phage, endolysins are considered as
safe alternative therapeutics as they do not interfere with normal microflora, which is
a common shortcoming with antibiotics. A lower level of cytokine response was
observed in animals treated with endolysins (Witzenrath et al. 2009). Harhala et al.
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(2018) also postulated the safety of Cpl-1 endolysin in cell lines and animal models
in terms of modulation of gene expression and complement pathways. Fast kinetics
of endolysins and their high specificity towards their target bacterium surpass the
immune interactions present by the host immune system (Jado et al. 2003).

Table 3.3 List of selected endolysins against various potent pathogens

Pathogen Endolysin(s) Reference(s)

S. pneumoniae Cpl-1, pal-1, LytA, LytC, Cpl-7,
Cpl-7S, Cpl-711, PL3, ClyJ, ClyJ-3,
and ClyJ-3m

Loeffler et al. (2003), Rodríguez-
Cerrato et al. (2007), Bustamante
et al. (2010), Domenech et al. (2011),
Blázquez et al. (2016), Corsini et al.
(2018), Yang et al. (2019), Yang et al.
(2020), Luo et al. (2020)

S. suis Csl2 and PlySs2 Glimer et al. (2017), Vázquez et al.
(2017)

S. pyogenes PlyC and Plypy Cheng et al. (2005), Lood et al. (2014)

S. agalactiae ClyR, PlyGBS, λSa2lys, and ClyV Donovan and Foster-Frey (2008),
Yang et al. (2015), Huang et al.
(2020)

S. aureus 2638A, LysK, ClyS, phi11/phi12,
Ply187, Lys-phiSA012, P128, ClyF,
LysGH15, PlyGRCS, CF-301,
MR-10, ClyH, and ClyC

Abaev et al. (2013), Sass and
Bierbaum (2007), Becker et al.
(2008), Pastagia et al. (2011), Fenton
et al. (2013), Singh et al. (2014), Yang
et al. (2014a), Yang et al. (2014b),
Chopra et al. (2015), Linden et al.
(2015), Haddad Kashani et al. (2017),
Schuch et al. (2017), Yang et al.
(2017), Zhang et al. (2016),
Channabasappa et al. (2018), Li et al.
(2021)

Mycobacterium
spp.

Ms6-LysB, LysA, LysB, and Bxz-2-
LysB

Gil et al. (2010), Grover et al. (2014),
Lai et al. (2015)

A. baumannii LysAB2, LysAB-01, LysAB3,
LysAB4, PlyE146, PlyAB1,
PlyF307, ABgp46, and PD-6A3

Lai et al. (2011), Lai et al. (2013),
Huang et al. (2014), Lood et al.
(2015), Thummeepak et al. (2016),
Larpin et al. (2018), Zhang et al.
(2018), Wu et al. (2019)

P. aeruginosa KZ144, EL188, LysPA26, Art-175,
Art-085, PlyA, and LysAB54

Paradis-Bleau et al. (2007), Briers
et al. (2014), Guo et al. (2017), Khan
et al. (2021)

K. pneumoniae K11gp3.5/K11, KP32gp15, and
KP27

Walmagh et al. (2013), Maciejewska
et al. (2017), Shavrina et al. (2016)

E. coli EndoT5, Lysep3, and Lysep3-D8 Lv et al. (2015), Wang et al. (2017),
Yan et al. (2017)

S. enterica
serovar
typhimurium

Lys68, SPN1S, LysBPS13, and
SPN9CC

Lim et al. (2012), Park et al. (2012),
Lim et al. (2014), Oliveira et al.
(2014)
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3.6.3 Clinical Trials of Endolysin

In lieu of alternative therapeutic exploration, some of the endolysins were exploited
in clinical settings. In a clinical trial (NCT01746654), nasal carriage of S. aureuswas
studied in P128 endolysin treated 74 healthy and chronic kidney disease human
subjects. The in vivo tolerability, immunogenicity, pharmacokinetics,
recolonization, and safety were accessed up to 50 days. Another anti-staphylococcal
phage lysin N-Rephasin® SAL200 was studied for its safety, pharmacokinetics, and
thermodynamics in 36 healthy male volunteers for 50 days. Results showed that
SAL200 exhibits no serious adverse effects, 1 mg/kg as the optimal dose and
increased AUC and Cmax in a dose-dependent manner (Jun et al. 2017). S. aureus
induced bloodstream bacteraemia was also studied in a placebo-controlled study to
determine the safety and tolerability of CF-301 in 20 healthy subjects after a single
intravenous dose. Results showed that a single dose of CF-301 is unable to elicit a
significant immune response and a long-term study of 6 months also showed the
absence of any hypersensitivity and antibody protection post-endolysin injection
(Cassino et al. 2016). Endolysin Staphefekt SA.100 were also tested against
S. aureus induced dermatitis in a randomized controlled double-blinded placebo
trial. 100 subjects were studied for 12 weeks and the effect of endolysin on disease
severity was accessed (Totté et al. 2017). Phase 2 clinical trial (NCT03089697) of
N-Rephasin® SAL200 has also been started to evaluate the effect of endolysin on
persistent S. aureus infection in 50 human subjects. Another Phase 2 clinical trial
(NCT03163446) of CF-301 versus placebo was accomplished for safety, pharma-
cokinetics, and antibacterial efficacy against S. aureus bacteraemia in 121 human
participants. The role of conventional antibiotics (Daptomycin, Vancomycin, and
semi-synthetic Penicillin) was also studied along with CF-301 treatment up to
6 months post-endolysin treatment. Most of the completed as well ongoing clinical
trials are focused on anti-staphylococcal endolysins; however, in the advent of
antibiotic resistance other endolysins should also be addressed for their clinical
outcomes in the near future.

3.7 Conclusion

Phage and endolysin are promising therapeutics in this modern era of antibiotic
resistance, in which clinicians are unable to use conventional antibiotic interven-
tions. Phage is a potent alternative agent since its discovery, the antibacterial
perspectives of endolysin spur researchers to look upon these lytic molecules instead
of whole phage entity. The unique characteristics of phage and endolysin also
complicate their clinical outcomes, as they must also go through rigid regulatory
frameworks and clinical trials. Phage has been rightly explored for their clinical
potential for a long period, whereas endolysins gained the clinical validation at a
higher pace as compared to phage. The upcoming time can be considered as a
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breakthrough for phage and endolysin for their clinical acceptance as effective,
alternative therapeutic products to antibiotics. In addition to progress in clinical
trials, researchers and clinicians must also look for improved delivery strategies and
novel approaches of designing for phage and endolysin to fill the gap and strengthen
the battery of antibacterial agents.
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Chapter 4
Probiotics: Origin, Products,
and Regulations in India

Amrita Narula

Abstract The concept of probiotics is well known from the time of Greeks and
Romans. The term ‘Probiotics’ is defined as the substances produced by microor-
ganisms that help stimulate the secretion of another. Though the definition has been
redefined by many, the most recent and acceptable definition is by FAO/WHO
(2001) and has defined it as: ‘Live microorganisms that when being administered
in appropriate dose, confer the benefit of health to the receiver’. Probiotics are
usually found in dairy and non-dairy products, infant formula, dietary supplements,
and energy drinks. They are generally recommended for consumption after the
antibiotic therapy and help to manifest a positive balance of valuable microbes in
the intestine. The most often used probiotic species belongs to Lactobacillus and
Bifidobacterium, apart from these some of the yeast Saccharomyces cerevisiae and
some Bacillus and E. coli species are also used as they too demonstrated the
probiotic properties. To be a probiotic, the strain needs to fulfil certain specific
criteria (GRAS, nontoxic, stable, etc.) and their mechanism of probiosis includes
manipulating gut microbial communities, immunomodulation, suppressing patho-
gens, stimulating epithelial cell proliferation and differentiation; and fortification of
the intestinal barrier. The use of probiotics can restore the replenished good bacteria
and overcome the adverse effect of chronic diseases. Yakult, Danone, Nestle, Amul,
and Mother Dairy are the common probiotic brands in India which have made their
remark of recognition in this industry along with many others (some minor brands)
are too heading towards better quality pre and probiotic products. The laws
governing probiotics are ambiguous due to the categorization of probiotics in
functional food or drugs, therefore are regulated differently in countries as per
their intended use. Regulations for the probiotic production and release in India
have been framed by regulatory bodies of ICMR, DBT, and FSSAI. The outlook of
researchers is looking out for commercialization of Indian probiotic strains and a
new technique that holds promises to help prolong the shelf-life of probiotic
products. This will create more acceptability in consumers and increase the probiotic
market.
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4.1 History of Probiotics

Scientists are studying the flora of the human intestine from long and generally
bacteria have always been kindred with the disease and have made the human face
much grief. Hence the concept of saddling bacteria for health benefits has a poetic
ring to it (Joshi and Pandharbale 2015).

Ellie Metchnikoff has been accredited with the idea of working with food-
friendly microbes without knowing the actual hero in the background was Stamen
Grigorov. Grigorov was a Bulgarian physician and in 1905 he identified the starter
culture (Lactobacillus) used in fermented Bulgarian dairy products. He got popu-
larized as he published his work and was then invited to work in the Pasteur Institute
of Paris. By the age of 27, he was able to accidentally retrieve that consumption of
yoghurt is the secret behind the long life of the Bulgarian people. With this
discovery, he was offered a post to work with the Pasteur Institute. But to live up
to the promise that he had made to serve his people, he refused the offer and returned
to Trun, Bulgaria. Therefore, the institute later authorized Metchnikoff to work on
this subject. Later Metchnikoff and his assistants Coendi and Mikelson named the
bacteria as Lactobacillus bulgaricum in recognition of Grigorov.

In 1917 German Professor, Alfred Nissle, discovered the non-pathogenic
Escherichia coli Nissle strain during the outbreak of dysentery (shigellosis), using
the faeces of two non-affected soldiers at the time of World War I. It was also
discovered that E. coli Nissle strain 1917 played an important role in the food and
medical industries before the antibiotics were discovered. His studies also revealed
that probiotics not only could help treat the infectious diseases but also could be used
in the medication of other ailments especially related to the GI tract (Sonnenborn and
Schulze 2009).

Henry Tissier (working in Pasteur Institute) isolated the Bifidobacterium strain
from a breast-fed infant and named the bacterium as Bacillus bifidus communis in
1889. He claimed that this bacteria helps displace the proteolytic bacteria causing
diarrhoea and therefore can be prescribed to the infants suffering from the same. This
discovery led to the conceptualization ‘specific bacteria play role in maintaining
health’ (Soccol et al. 2010).

Isaac Carosso, a physician, treated numerous patients with gastrointestinal disor-
ders by recommending yoghurt which helped in recovering the intestinal health.
Following the conventional methods, he started producing the yoghurt, for that he
procured the purified bacterial cultures from the Pasteur’s institute. Thereafter the
World War I, he commercialized the yoghurt production entitled ‘Danino’—an
outlet named after his son (Fuller 1995). Carosso then migrated to the USA from
Paris, due to the onset of World War II, and in 1942, he launched ‘Dannon Milk
Products’ which became the first American yoghurt plant.
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After World War I, two Armenians named Sarkis and Rose Colombosian had
emigrated to the USA and were collaterally working on yoghurt production. They
sold their homemade product under the brand named ‘Madzoon’meaning yoghurt in
Armenian. Madzoon could not arouse the people’s interest so to enhance their sales
they replaced ‘Madzoon’ with ‘Yogurt’ and in 1929 and with their hard work they
led to the establishment of their company ‘Colombo and Sons Creamery’—became
the USA’s first yoghurt brand labelled as ‘Colombo Yogurt’. Later in 1993
‘Colombo Yogurt’ was then sold to General Mills (Ozen and Dinleyici 2015).

Meanwhile in the 1930s in the far east Dr. Minoru Shirota isolated Lactobacillus
casei strain Shirota in the Microbiological Laboratory of Kyoto University, Japan.
The strain had the property of tolerance towards bile and gastric juices and therefore
it could travel easily to the lower intestine, hence with this probiotic bacteria,
Dr. Shirota developed the diary product ‘Yakult’ (Yakult 2014) hypothesizing that
its day to day consumption might boost enteric health and extend the lifespan.

It was a turning point and from then on, people have been all about eating
probiotics—good microbes—to benefit their health.

4.2 What Are Probiotics?

Probiotics derived from ‘pro bios’ the Greek term meaning ‘for life’. The history of
probiotics is well associated with the emergence of man; fermented milk and cheese,
the concept popular among the Greeks and Romans. Fermentation was not just tasty;
it was also known to be healthy and people were consuming fermented foods: beer,
wine, yoghurt, cheese, kefir, etc.

Probiotic now not a new term, was first introduced by Lilly and Stillwell (Fuller
1989) in 1965 (antonym of the term ‘antibiotics’) to describe the substances pro-
duced by a microorganism that helps stimulate the secretion of another (Soccol et al.
2010). Later different interpretations for probiotics were given by the researchers
considering their functioning and their health benefits for humans
(Anandharaj 2020).

In 1974, Parker defined ‘probiotic’ as ‘substances and microorganisms which
contribute to intestinal microbial balance’, whereas Fuller (1989) modified it to as
‘viable microbial dietary supplement that beneficially affects the host through its
effects in the intestinal tract’. de Vrese et al. (2001) in collaboration with the ILSI
(International Life Sciences Institute) of Europe defined this term as ‘a viable
microbial food supplement which beneficially influences the health of the host’
(Salminen et al. 1998). Lately in 2001 FAO/WHO defined probiotics as: ‘Live
microorganisms that when being administered in appropriate dose, confer benefit
of health to the receiver’.

According to the current concurrences correlated to defining probiotics, the
out-turn of probiotics is not pondered to be only restricted to microflora mediated,
but, other types of mechanisms are getting investigated and familiarized too. This
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revelation on probiotics encouraged innovation in this field and opened the doors for
a wider range of probiotic possibilities (Sanders et al. 2019).

In normal human intestines where 1010–1012 live microorganisms per gram in the
human colon have been reported (Collins and Reid 2016), and around 400 variable
bacterial species coexist, making it a more nexus ecosystem. The colon only is
approximate to contain above 70% of all the microorganisms in the human body.
Generally, the microflora of the gut is persistent but numerous factors including age,
environment, diet, stress, and medication can affect the ratio (Anandhraj 2020). The
frequently used species in probiotics production belong to bacterial species of
Lactobacillus and Bifidobacterium and some of E. coli and Bacillus species are
recently included, apart from these some of the yeast includes Saccharomyces
cerevisiae, Saccharomyces boulardii, Kluyveromyces are also used, as they too
demonstrated the probiotic properties (Fig. 4.1).

Probiotics are naturally found in dairy and even in non-dairy products, infant
formula, and dietary supplements. They are recommended for consumption after the
antibiotic treatment (taken for some ailment). This generally eradicates the inhabited
good microbial flora of the digestive tract in addition to the targeted harmful
microbes. Therefore, probiotic products enriched with beneficial microbes is
recommended for regular consumption, manifesting the positive balance of valuable
microbes in the intestine.

Fig. 4.1 Probiotic strains used by industries
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4.3 Criteria’s to Be a Probiotic

During recent years, almost every fermented food has been considered to possess the
probiotic properties, but not all such products are probiotics. Despite different
definitions given for probiotics, there have to be certain fixed criteria’s to consider
the microbial suspension as a probiotic. These include:

• Should be nontoxic.
• Should be genetically stable.
• Should be a lactic acid producer.
• Should possess antimicrobial activity.
• Should possess lower generation time.
• Should possess forbearance to food additives.
• Should possess stability in the food matrix.
• Should be able to avoid the effect of peristalsis.
• Should be safe for the host/non-pathogenic (GRAS).
• Should be able to evaluate its resistance to antibiotics.
• Should avoid inhibition of adhesion of pathogenic bacteria.
• Should have the power to adhere to epithelial cells and tissue.
• Should be able to produce antibacterial substances (bacteriocin).
• Should have resistance towards gastric acids and pancreatic secretions.
• Should be able to enhance the eradication rate and reduce the adverse effect when

given in combination with the antibiotics.
(Pandey et al. 2015; Anandharaj 2020).

Although to fulfil all the criteria is difficult but certain properties are mandatory to
be a probiotic.

4.4 Concept of Prebiotics and Synbiotics

4.4.1 Prebiotics

The notion of Prebiotics was first defined in 1995 by Glenn Gibson and Marcel
Roberfroid. According to them, prebiotics is useful in manoeuvring the microorgan-
isms in the host to ameliorate quantifiable health outcomes. It was reframed by
Gibson in 2004 as: ‘A prebiotic is a selectively fermented ingredient that allows
specific changes, both in composition and/or activity in the gastrointestinal micro-
flora that confers benefits upon host wellbeing and health’ (Gibson et al. 2004).
‘Probiotics are live microbial feed supplements whereas prebiotics is fibre or dietary
carbohydrates’. Prebiotic examples include β-fructans, lactulose, inulin, and GOS
that have selective metabolism in the colon and help to escalate the numerical
amount of probiotic producing bacteria like LAB (Broekaert and Walker 2006).
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Prebiotics may serve as a substitute for probiotics or as ancillary support for them.
However different prebiotics will help stimulate the growth of variable native enteric
bacteria. Prebiotics has a lower risk of degradation and problems like allergic
reactions or intolerance than probiotics due to their fibre constitution. Other benefi-
cial effects of prebiotics include enhanced resistance to invading pathogens,
improved bowel movement, lipid reduction, reduced risk of colon cancer, improved
calcium, and iron utilization (Bosscher et al. 2003; Ferguson and Philpott 2007;
Bruzzese et al. 2009).

4.4.2 Synbiotics

Gibson and Roberfroid inaugurated the term synbiotic in 1995 and was reserved for
products where the prebiotic compound(s) selectively favour the growth of the
probiotic organism(s) (Cencic and Chingwaru 2010). The concept of synbiotics
came into existence to overcome the toil of probiotics, as they are efficient implants
in the colon and contribute to maintaining the intestinal homeostasis (Peña 2007).

The probiotic strains used in synbiotic formulations include Bifidobacteria spp,
Lactobacilli, B. coagulans, S. boulardii, etc., whereas the prebiotics used majorly
comprised of xyloseoligosaccharide (XOS), fructooligosaccharide (FOS), GOS,
inulin, and even prebiotics from natural sources like yacon roots and chicory, etc.,
could be incorporated (Pandey et al. 2015). They have many health benefits like
cholesterol reduction, antimutagenic effect, anti-hypertension, antibiotic-induced
diarrhoea, boosting immunity, overcoming allergy, Helicobacter pylori infection,
irritable and inflammatory bowel syndrome (Gupta et al. 2014).

4.5 Mechanism of Action of Probiotics

The process by which the probiotics deploy their biological effects is still poorly
understood. Certain non-specific terminologies like competitive exclusion or colon
resistance development are generally used to explain their mode of execution (Elo
et al. 1991).

The concept of competitive elimination or exclusion first emerged in the early
1970s (Nurmi et al. 1992). Oelschlaeger (2010) reported three variable modes of
probiotic working stating that they:

1. perhaps modulate the host’s innate or acquired immune system.
2. directly affect neighbouring microbes, might be commensals or pathogenic ones.
3. could affect the microbial (like toxins) or host products (e.g. bile salts and food

ingredients).
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Individually or combination of such properties in a certain specific probiotic
strain could determine its action and serve as a product towards the prevention
and/or treatment of a certain disease (Soccol et al. 2010).

The studies have been conducted using different tools and techniques including
culturing or sequencing on diversity, composition, and function of the microbial gut
flora, and hence the variability in the probiotics mode of operation has been
suggested through these variable experimental models. However, the exact mecha-
nisms remain unanswered. Though in 2004 Sartor in his research study has illus-
trated multiple mechanisms of probiosis, including manipulating gut flora,
suppressing pathogen, immune response modulation, inducing epithelial cell prolif-
eration and differentiation, and fortification of gastroenteric hindrances (Fig. 4.2)
(Thomas and Versalovic 2010). He has stated some general rules as:

4.6 Adherence and Colonization of the Gut

Competition for space does exist among the native and foreign bacteria resulting in
knock-back of exogenous pathogens. Certain microbes like Lactobacilli or
Bifidobacteria have the potential to adhere to the mucosal membrane (Ohashi and

Fig. 4.2 Mechanism of
probiosis in human beings
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Ushid 2009). This enhances the probiotics intestinal endurance and limits the access
of pathogens to the epithelium (Ouwehand et al. 2001; Boudeau et al. 2003).

The Glycocalyx is the outermost layer of the cells that are concocted with
glycolipids and glycoproteins, plays a crucial role in protecting the epithelial cells
of the intestine from mechanical injury, and also helps obstruct the invading bacteria,
thereby protecting the host from contamination (Bron et al. 2012). Also during the
intestinal inflammation, mucins or glycosylated proteins act as ligands for membrane
receptors leading to dysbiosis (Larsson et al. 2011; Sommer et al. 2014). Commonly
used probiotic species of Lactobacillus and Bifidobacterium share some common
surface molecules, having a significant role in the interconnection with the mucus
components (Lebeer et al. 2010). The surface molecules may include mucin-binding
proteins (Mubs), surface layer associated proteins (SLAPs), and the most commonly
known lipoteichoic acid (LTA). The initial adhesin is generally non-specific, driven
by hydrophobic interactions, once bonded to specific cell wall components like
proteinases, adherence becomes irreversible. This helps amplify hydrophobicity
and consequently adhesion in some lactic acid bacteria (Radziwill-Bienkowska
et al. 2017; Zhang et al. 2015; Muñoz-Provencio et al. 2012).

For example, such adherence is seen between mucins as well as the C-terminal
Leu-Pro-any-Thr-Gly motif (LPxTG) of the peptidoglycan layer of the cell wall
because these mucus-binding proteins contain domains of Mub and/or MucBP
(MUCin-Binding Protein), which can develop this bond. Though MucBP/Mub
domains are exclusively discovered in human gut isolated LAB (van Tassell and
Miller 2011; Monteagudo-Mera et al. 2019; Boekhorst et al. 2006) they are even
observed in the pathogenic bacteria like Listeria monocytogenes (Popowska et al.
2017).

Like proteins, bacterial fimbriae or pili can also promote adhesion. Such patterns
have been widely characterized in case of both Gram-negative (Type IV pili) and
Gram-positive bacteria. For instance, Bifidobacterium possesses such type of pili
(Piepenbrink and Sundberg 2016; O’Connell Motherway et al. 2011) and more
specific example of SpaCBA pili have been observed in some species of Lactoba-
cillus (Lactobacillus rhamnosus LGG) (Toh et al. 2013; Reunanen et al. 2012).
These structures could possibly be a trump card in colonizing mucosal tissues
superficially (Monteagudo-Mera et al. 2019; Hospenthal et al. 2017).

A few other peripheral proteins like surface layer proteins (SLPs) and fibronectin-
binding proteins (FBPs) have also been found in contributing to the phenomena of
bacterial adherence to the intestinal mucosal sheath. FBPs have been recognized
extracellularly in the intestine, in an insoluble form among both Gram-negative and
Gram-positive bacteria. These proteins assist in intensifying the process of adhesion
which is beneficial for the probiotic bacteria and excludes pathogenic strains
(Monteagudo-Mera et al. 2019; Hymes et al. 2016; Lehri et al. 2015). SLP’s are
extracellular too but on contrary to FBPs have para-crystalline proteins covering the
entire bacterial cell surface. These SLP’s perform variable functions like generating
virulence in pathogenic bacteria or constructing structural components, among these
adhesion promoters aid in probiotics functioning. These also act as
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immunomodulators and assist in probiotic bacterial interaction with host’s intestinal
receptors (Konstantinov et al. 2008).

Such adhesion mechanisms have been studied by various researchers and have
produced fine results.

4.7 Suppressing Growth of Pathogenic Bacteria Using
Antimicrobial Substances

Antimicrobial agents or Antagonistic compounds are chemical in nature, used to
demolish microbes (especially pathogenic) or to prevent their burgeon. Among the
broad antimicrobial spectrum properties, this ability is of utmost importance for
probiotics functionality (Fijan 2016). Probiotics are more responsive and metabol-
ically active in (in vivo) intestinal environment (Walter et al. 2003; Bron et al. 2004)
hence to restrain the epithelial invasion by the pathogens they either instigate cells of
the host to produce peptides or directly liberate peptides causing interference in
pathogenic activities (Gogineni et al. 2013).

Certain antimicrobial peptides like defensins (hBD protein, elafin, and SLPI),
cathelicidins, hydrogen peroxide, lysozyme, nitric oxide, secretory phospholipase
A2, and short-chain fatty acids (SCFA), for instance, acetic and lactic acids,
expressed constitutively by the Paneth cells (specialized secretory cells of small
intestine located in the intestinal crypts of Lieberkuhn). These peptides exhibit
antimicrobial activity towards an array of microbes (Kelsall 2008; Furrie et al.
2005) by reducing the lumen acidity (Penner et al. 2005) and help diversify the
richness of beneficial gut flora (O’Hara and Shanahan 2007).

The antimicrobial peptides act in the following manner, SCFA hampers the outer
membrane of bacteria (Gram-negative) (Alakomi et al. 2000) whereas bacteriocins
help create pores disrupting cells (Liévin-Le Moal and Servin 2006) and Microcins
along with the structural synthesizing enzymes (of DNA/RNA) attacks the inner
membrane (Duquesne et al. 2007).

4.8 Fortification of Intestinal Barrier Function

Intestinal epithelial cells have a role in both as a barrier and immunomodulator in the
gut, as epithelial and immune cells can interact and influence each other. Microbe as
a whole with its structural components or metabolites produced can stimulate the
epithelial cell signalling pathways (Madsen 2012). Some of the probiotics have been
advised in preserving epithelial barrier function, safeguard and reformation of the
damaged mucosal sheath, incited by various factors including enteric pathogens,
drugs, food antigens, or pro-inflammatory cytokines (Resta-Lenert and Barrett 2006;
Rosenfeldt et al. 2004; Montalto et al. 2004; Resta-Lenert and Barrett 2003).
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Probiotics help serve to combative effects which are mediated by successive
mechanisms (Madsen 2012):

1. mucus secretion by goblet cells (Chichlowski et al. 2007),
2. maintaining cytoskeletal and tight junction proteins by phosphorylation (Brown

2011),
3. refurbishing chloride secretion,
4. enhancing trans-epithelial resistance (O’Hara and Shanahan 2007).

4.9 Suppression of Intestinal Inflammation

Researchers have presented sufficient scientific evidence supporting the role of
probiotics in mucosal inflammation, particularly by restraining or restoring ‘leaky’
epithelial barriers (Leisched 2014). The anti-inflaming property of probiotics negates
the source of pro-inflammatory stimuli and is used as therapeutic against chronic
diseases like Gastroenteritis, Inflammatory bowel syndrome, Lactose Intolerance,
UTI’s, etc.

Combining comprehensively researched probiotic strains can assist to control and
restore inflammation directly and indirectly by various modes such as:

1. arresting probable key stimulant of acute inflammation, including LPS (Claros
et al. 2013),

2. simultaneously modulating multiple signalling pathways (Bermudez-Brito et al.
2012; Thomas and Versalovic 2010),

3. yielding short-chain fatty acids with anti-inflaming properties (e.g. butyrate),
4. synthesis of antimicrobial peptides (Leisched 2014),
5. synthesis of heat shock proteins (Ohland and Mac Naughton 2010; Rao and

Samak 2013),
6. increased expression of mucins (Ohland and Mac Naughton 2010; Rao and

Samak 2013),
7. release of metabolites and bioactive molecules (Ohland and Mac Naughton

2010; Rao and Samak 2013),
8. suppression of oxidative stress (Ohland and Mac Naughton 2010; Rao and

Samak 2013),
9. interference with inflammatory pathways (Ohland and Mac Naughton 2010;

Rao and Samak 2013),
10. augment levels of IgA (Ohland and Mac Naughton 2010; Rao and Samak 2013),
11. acting as a ligand for Toll-Like Receptors (TLR) influencing key

pro-inflammatory pathways (Thomas and Versalovic 2010; Bermudez-Brito
et al. 2012),

12. Influence development, maturation, and differentiation of dendritic and T-cells
(Bermudez-Brito et al. 2012; Thomas and Versalovic 2010).

13. Influence synthesis of the important regulatory cytokines like IL-10 and TGF-β
(Smits et al. 2005; Hseih et al. 2012).
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4.10 Stimulation of Mucosal and Systemic Host Immunity

The researchers have demonstrated that on Oral administration of a fragment of pro-
biotic bacteria only, a complex network of signals gets initiated inside the Interstitial
Epithelial Cells (IECs). The commensal bacteria through pattern recognition recep-
tors leads to (1) immune engagement and demonstrable systemic immunologic
changes (McCarthy et al. 2003) associated with the tissue of GALT in the lamina
propria like mucosal; (2) immune development; (3) to maintain and repair gut
(Rakoff-Nahoum et al. 2004; Fukata et al. 2005); and (4) activating mainly the
innate response and the cytokines released by T-cells (Galdeano and Perdigón 2004).
Even the immune sensory cells (i.e. dendritic cells, M cells, and enterocytes) in the
alimentary canal constantly respond to intestinal bacteria (O’Hara and Shanahan
2007).

Transmitting the antigenic information to the underlying cells is a crucial process
towards immune fate: leading to activation versus suppression/tolerance. Three such
mechanisms are involved which help process the antigenic material and lay before
the underlying immune cells. These aforesaid mechanisms are further controlled by
distinct antigen-presenting cells (APCs) (Hardy et al. 2013).

Consuming probiotic strains ‘Bifidobacterium lactis Bb-12, Lactobacillus GG
(Rautava et al. 2006), and Saccharomyces boulardii’ (Rodrigues et al. 2000) allevi-
ates the production of IgA and its secretion via cytokine environs causes an alteration
in the gut mucosa. These bacteria manifest epithelial cell expression of interleukins
IL-6, IL-10 as well as TGFβ (transforming growth factor-β) and help favour IgA
production through the medium of antibody class-switching, B-cell maturation
phenomena (Shang et al. 2008; He et al. 2007). Finally augmenting polymeric Ig
receptors expression into the gut lumen (Reséndiz-Albor et al. 2010).

4.11 Health Benefits by Probiotics

The intestinal tract harbours a complex and dynamic microbial ecosystem, capable
of producing elevated concentrations of chemicals for detection and signalling
particles—molecules affecting cells in the entire body. The bacteria lying in the
gut produces some influential proteins which can affect the chemical and signalling
molecules of the intestine either positively or negatively (Yan et al. 2007). If the ratio
of good-to-bad bacteria shows disparity, initiates the activity of many of these
detectors probably in negative ways, triggering a host of diseases, not just those
associated with the gut but even in other body areas too (Furness et al. 1999).
Fortunately, the use of probiotics can restore the replenished good bacteria and
reverses the signalling which can lead to chronic diseases (Kotzamanidis et al.
2010; Ley 2010; Vyas and Ranganathan 2012; Mortaz et al. 2013). The summary
for such diseases along with the probiotic use has been stated below (Table 4.1):
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4.12 Probiotic Scenario in India

‘Probiotics’—the term has created a buzz as it has entered the Indian food market
since 2007. Though this merchandise in India is diminutive (only 1%) in comparison
with the Western countries, at the moment it is all set to shoot up. The world’s largest
cattle population exists in India hence the largest producer of milk. Therefore, India
is progressing to be a future prime probiotic market and can play a crucial role in the
probiotic revolution as it is the rapidly expanding arena among the functional foods.
Its annual growth rate of 13.56% was observed in 2019 and is expected to reach a
market size of US$961.856 million in 2025 (Research and Market Reports, June
2020). Yakult, Danone, Nestle, Amul, and Mother Dairy are the common probiotic
brands in India which have made their remark of recognition in this industry. Minor
brands like Carbamide Forte, Wow Probiotics, Nature’s Velvet, BoldFit, and many
others are too heading towards better quality pre and probiotic products.

These well-known probiotic industries presently are using the outsourced strains,
i.e. microbes of foreign origin. Scientists believe that the intestinal environment is
home for gut flora as the members of a specific community have originated (from
different food habits) and henceforth well accommodated, giving tough competition
to the evolved probiotic bacteria. Though they have proven results adapting to the
Indian gut easily since, isolated from a similar gut environment. But the probiotics in
either form have to be taken daily as they can only transiently colonize the gut and
presumed to be washed out anyway. Not all the scientists and researchers would
agree, as there is no proof, this statement is merely based on the existing knowledge.

On that account, scientists of different Indian universities like NDRI (Karnal),
Christian Medical College (CMC) in Vellore (Tamil Nadu), Anand Agricultural
University (Gujarat), and some others are working on the optimization and produc-
tion of Indian probiotic strains. For decades, Virender K Batish (Emeritus scientist)
and his colleague Sunita Grover (Principal scientist) from NDRI (Karnal) have been
working in this field and have generated a repository collection of 120 types of
bacteria. They have planned to market Lactobacillus fermentum-1 (Lf-1) and Lac-
tobacillus plantarum-91 (Lp-91) in near future for colitis and cholesterol reduction,
respectively. These strains have shown motivating results in animal trials and studies
are continuing on humans. They are even working on probiotics to overcome India’s
burgeoning obesity epidemic.

Not only in NDRI but other institutes like in Anand Agricultural University,
Gujarat, the head of the dairy microbiology department, J B Prajapati, is working on
species of Lactobacilli for the past 25 years. His team has standardized and very well
incorporated these beneficial probiotic bacteria (MTCC 5463- L. helveticus, MTCC
5462- L. rhamnosus) into curd, buttermilk, and lassi (sweet buttermilk). The role of
these microbes is now even tested for improving immunity especially in people
between the age of 65 and 75 years. B.S. Ramakrishna (HOD Gastroenterology,
CMC) is also working on the Lactobacillus genus but has studied various bacteria
isolated from Indian dairy animals. His work is in the nascent stage, will take around

76 A. Narula



the next 5–10 years to reach out to the market. These researchers are facing certain
bottlenecks mainly funds for biosafety trials and tie-up with a commercial entity.

Companies in India have launched a range of probiotic products, Amul has
introduced the concept of ice-creams and lassi enriched with probiotic. B-Activ
Probiotic Curd, b-Activ Dahi, b-Activ Probiotic Lassi, and Nutrifit (Strawberry and
Mango) are the Mother Dairy’s range of probiotic products. Nestle launched
Nesvita-India’s first probiotic Dahi. Yakult, Danone Group’s probiotic drink is
prepared using Lactobacillus, some sugar, and fermented milk. The probiotic drug
market is also emerging with companies like Ranbaxy (Binifit), Dr. Reddy’s Labo-
ratories, comprising four sub-brands: Unichem, Zydus Cadila, Glaxo SmithKline,
and JB Chem. Major pharmaceutical companies have come in-action and attempting
to formulate newer supplements aiming specific needs like immunodeficiency and
gastrointestinal problems. These products are listed in Table 4.2.

4.13 Regulatory Guidelines for Probiotics in India

Industrialization based on probiotics is enhancing in India as well as in other
countries, but the status for the release of any probiotic product is still ambiguous.
Probiotics nowadays are being produced under variable categories of food products
(functional foods), nutraceuticals, health supplements, or energy drinks (examples as
stated above in Table 4.2). This being the case, are regulated diversely in countries
and as per their desired use. In India, products enriched with pre and probiotics are in
huge demand due to their unusual health care benefits and some claims to cure
certain diseases (but not all of them are certified). Though, in India, they are
recommended once in a while by doctors as part of medicament, not as a drug
substitute. Henceforth, these claims by manufacturers and the absence of particular
regulations have made the regulating bodies in various countries to elucidate param-
eters and guidelines. These should be on par with drugs to regulate their safety,
efficacy, claims, and quality (Gokhale and Nadkarni 2007).

Initially, with the advent of probiotics in India, there were no specific regulations.
So for evaluating the safety and to avoid popularization of probiotic products with
false claims, the Indian Council of Medical Research (ICMR) in association with the
Department of Biotechnology (DBT) constituted a task group, framing the regula-
tory guidelines for probiotic production in India (Arora and Baldi 2015).

4.14 The ICMR-DBT Guidelines Are Stated Under
the Following Sub-Requirements as

(a) Identification of Genus, Species, and Strain for Probiotic Use:
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The use of specific strain plays an important role in probiotic products, as their
effects are dependent primarily on it. Therefore, strain identity is important and
directly linked to specific health effects. Standard protocols and techniques,
namely ‘DNA fingerprinting, viz. Pulsed Field Gel Electrophoresis (PFGE)
and ribotyping; 16S rRNA sequencing and PCR’ help identify phenotypic as
well as genotypic traits. The identified traits and the nomenclature should be
confirmed through the scientifically validated ‘International Committee on Sys-
tematics of Prokaryotes (ICPS)’ (available at http://www.the-icsp.org/). These
identified strains must be accumulated in internationally acclaimed repositories/
culture collection centres for probiotic use. Indian repositories include: Micro-
bial Type Culture Collection (MTCC), Chandigarh; Microbial Culture Collec-
tion (MCC), Pune; National Fungal Culture Collection of India, Pune; National
Collection of Industrial Microorganisms, Pune; agriculturally important
National Bureau of Microorganisms, and National Collection of Dairy Cultures,
Karnal, etc. MTCC and MCC are IDA (International Depository Authority)
recognized (Sharma and Shouche 2014; Source: http://www.wfcc.info/ccinfo/
collection/col_by_country/i/91).

(b) Screening of potential probiotic strains:
For screening the putative probiotic strains, following in vitro tests are a must.

1. Withstand gastric acidity.
2. Show resistance to bile acid.
3. Antimicrobial activity towards potentially pathogenic bacteria (acid and

bacteriocin production).
4. Ability to curtail pathogen adhesion to surfaces.
5. Bile salt hydrolase activity.

These are performed with specific standard methodology and are subjected to
pre-clinical validation.

(c) Safety studies in animal models (In Vivo):
All the potential probiotic strains* are assessed for acute, subacute, and

chronic toxicity of ingestion of exceedingly large amounts of probiotics.
(* not necessary for acclaimed strains)

(d) Efficacy Studies in animal models (In Vivo):
To justify the in vitro effects of probiotic strains, efficacy must be checked in

animal models, before human trials.
(e) Evaluation for human use:

The probiotic strain used, must be GRAS approved and needs to be assured
and characterized by the following tests:

1. Determining antibiotic resistance patterns, strain should not pose significant
risk concerning transferring antibiotic resistance.

2. Evaluation of inadmissible side effects.
3. If the strain used in probiotic use belongs to species of well-known mamma-

lian toxin producer/haemolytic potential, must be tested for both toxic and
haemolytic activities consequently.
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(f) Evaluation of efficacy studies in humans:
The results of efficacy studies should be proven with similar benefits in

human trials*, including parameters like:
Statistical and clinically significant improvement in conditions, symptoms,

quality of life, reducing the risk of reoccurrence of disease or faster recovery.
(*Phase-3 studies must be continued only if the probiotic claims for any

specific health benefit)
If the probiotic in use has documented safe piece of evidence outside India,

the data could be reviewed and sufficient enough to allow marketing within the
country. While these studies are taken into account, the efficacy of abroad
reports should be tested on Indian subjects.

(g) Effective dose determination:
The minimal effective dose along with the viable count of the strain used in

terms of CFU/ml/day along with the targeted population must be indicated
clearly.

(h) Requirements for Labelling:
The general labelling guidelines under food law have to be followed. Along

with these, the display of the following information is a must:

1. Genus, species, and strain designation must be stated following the standard
international nomenclature.

2. The minimum viable count of each probiotic strain should be specified both at
the level at which efficacy is claimed and at the end of the shelf-life.

3. Health claim(s) should be stated clearly (only if approved based on
evidences).

4. The suggested serving size to deliver the minimum effective quantity of the
probiotic related to the health claim.

5. Proper storage conditions must be mentioned.

(i) Manufacturing and Handling Practices to be followed:
Good Manufacturing Practices should be obeyed while probiotic foods are

manufactured. These practices should stick to the recommendations of the
Codex General Principles of Food Hygiene and Guidelines for Application of
Hazard Analysis and Critical Control Point (HACCP). These practices will
ensure public protection from fraud and false manufacturing practices (Arora
et al. 2013). Figure 4.3 represented the ICMR Guided Regulations for Probiotic
Evaluation and Release.

ICMR also envisaged the formation of a special regulatory body ‘Foods Safety
and Standards Authority of India (FSSAI)’ along with other sub-ordinate bodies to
monitor all food relevant issues. Currently in India foods and drugs are regulated
under the Prevention of Food Adulteration Act (PFA) and the Food and Drug
Administration (FDA), respectively (Arora and Baldi, 2015). The guidelines in
India released by the Foods Safety and Standards Authority of India (FSSAI)
2016, formed under the Food Safety and Standards Act, 2006 are as follows:
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4.15 FSSAI General Guidelines Applicable to All Food
Products Under Different Categories

1. The syrups, capsules, and tablets shall meet up to the general quality requirements
and standards as specified in Indian Pharmacopoeia, British Pharmacopoeia, or
the United States Pharmacopoeia.

2. The food business operator may use the approved colours and additives sanc-
tioned in Schedule VF, further may use natural or synthetic flavours, which have
to be following FSSAI Regulations 2011. The addition of flavours must be
declared on the label of the packaging.

3. The amount of nutrients incorporated into the articles of food shall not outreach
the approved daily limit as specified by ICMR.

4. If the food product claims to be a health supplement, the nutrient content
recommended daily for an individual shall not be less than 15% and should be
greater than 30% only if the nutrient claim is higher.

5. The standard nutrients added in the food article must deliver the desired level of
energy, proteins, vitamins and minerals, and other essential nutrients required for
the respective age group, gender, and physiological stage following the guide-
lines made by ICMR.

6. The purity of the ingredients used must be covered under regulations notified by
the food authorities.

7. In case such standards are not specified, the purity criteria generally accepted by
pharmacopoeias, namely, Indian Pharmacopoeia, Ayurvedic Pharmacopoeia of
India, relevant Bureau of Indian Standards Specifications, Quality Standards of
Indian Medicinal Plants, Indian Council of Medical Research, British Pharmaco-
poeia, United States Pharmacopoeia, Food Chemical Codex, Joint Food, and

Identification
(Genus, Species &

Strain)

Screening potential
probiotic strain
(In Vitro Test)

Safety studies
(In Vivo )

Efficacy Studies
(In Vivo)

Safety Evaluation of
Probitic for Human

Use

Efficacy studies in
Humans

Determination of
Effective Dosage

Labelling
Requirements

Manufacturing and
Handling

Requirements

Fig. 4.3 ICMR guided regulations for probiotic evaluation and release
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Agriculture Organization, or World Health Organization Expert Committee on
Food Additives or CODEX Alimentarius may be adopted by food Business
operators.

8. The tolerance limit for variation in the case of the food articles shall not be more
than (�) 10% from the declared value of the nutrients or nutritional ingredients on
the label.

4.16 FSSAI Guidelines Specifically Applicable to Food
Products with Added Probiotic Ingredients

1. The main ingredient of the probiotic food has to be the culture of live microor-
ganisms, the culture used may be a single strain or combination of microbes.

2. The approved strains only can be added in the probiotic products (specified in
Schedule VII), or those microbes approved from time to time by the authority.

3. It must confer specified health benefits to the consumer.
4. It may contain added prebiotics as per FSSAI regulations.
5. The microbes must be depicted on the labelling display panel of the product.
6. These microbes must be non-GMOs.
7. The viable count of the added microbes must be�108 CFU in the recommended

serving size per day.
8. Probiotic food product shall not claim or mention (in labelling or even in the

advertisement) to have any property of preventing, healing, or treating human
disease.

9. The food authority can allow the company to mention a particular statement
regarding any health claim, only if supported with scientific evidence.

10. The packaging of the probiotic product must include the following:

a. ‘PROBIOTIC FOOD’ must be mentioned clearly on the label
b. Genus and species including strain designation or culture collection number

as per MTCC (if applicable) in the list of ingredients.
c. Serving size (recommended), duration of use, storage conditions, and ‘best

by’ date after the container is opened.
d. Viable count at the end of the shelf-life of the probiotic strain should be

stated.
e. ‘NOT FOR MEDICINAL USE’—advisory warning must be written

prominently
f. Any other warning or precaution to be taken while consuming, known side

effects, contraindications, and product-drug interactions, as applicable.

11. Only additives specified in Schedule VA to Schedule VF can be used in probiotic
preparations (FSSAI Regulations 2016).
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4.17 Future Direction

Commercial availability of probiotics is a diverse range including capsules, dried
powders, sprays, dietary supplements in the form of energy drinks, fortified yoghurt,
probiotic enriched curd, lassi, and even ice creams. These are enriched with
microbes especially Lactic Acid Bacteria (LAB) which actually could not survive
for longer, may not even reach live into the gut of humans. Hence, diminishing the
benefits. So, DBT Biotech Consortium is looking out for commercialization of a new
technique that holds promises to help prolong the serviceable life of probiotic
products. Their concept says encapsulation of probiotic strains with food grade
edible strips or coatings of biopolymers (made of milk protein and plant-based
waxy substances) can keep the probiotic bacteria active for 1 month, stored at
4�C. They have validated their results by building an in house lab set up, generated
proofs. This concept has given promising results and now offering a license to
suitable industries for commercialization. This technology has the huge market
potential both in India as well as outside and can reach USD 69.3 billion markets
for probiotics by 2023 reported by Dr. Bilqeesha Bhat (Jan 30, 2020; Source: https://
vigyanprasar.gov.in/isw/Technology-to-increase-shelf-life-of-probiotic-products.
html).
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Chapter 5
Fungi and Its By-Products in Food
Industry: An Unexplored Area

Ansar Alam, Komal Agrawal, and Pradeep Verma

Abstract Fungi were an unsung microorganism before it was recognized for its
bio-products and their utilization in daily human life. As a result of which the impact
of fungi and its by-products in food and food industries is increasing day by day.
They are rich sources of protein and are also utilized as animal protein replacement,
e.g., mushroom, Quorn, nutritional yeast, etc. Fungal products such as amylase,
cellulase, xylanase, pectinase, lipase, protease, etc. have applications in bread,
brewing, milk processing, fruit juice processing, meat and fish processing. Most
fermented foods, e.g., cheese, Koji rice are consumed in daily life and are produced
due to the uprising practice of fungi and its enzymes. There are other fungal products
as well which are used as food colouring agents. Thus, looking into the broad
application of fungi in food, the present chapter will deal with the impact of fungi
and its biomolecules in food, application along with its limitation and future aspects.

Keywords Fungi · By-products · Enzymes · Pigments · Fermented food

5.1 Introduction

The long search for food was an endless struggle for the survival of mankind. Our
ancestors searched and ate numerous objects which resulted in the identification of
few living plant and animal species as a principal source of food. The civilized
agricultural habit has restricted the edible items to small number of plant and animal
species indicating either the existence of small number of edible species or the lack
of enthusiasm for food examination. In fact, man has used limited number of
microorganisms for food and there are still numerous unverified microorganisms
which can be potentially used as an alternative to satisfy the human urge for food.
Matassa et al. (2016) stated that few strategies have been developed when the supply
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of food is concerned as human civilization progresses. Since centuries, man under-
stands about use of microorganisms in preparation of better textured bread, wine and
strong drink. These days man is powered with technology which allows them to
point out an amazing stock of knowledge concerning microorganisms and in most of
the aspect their potential as food source or application in food industries. Overgrow-
ing population is now facing major crisis of food resulting in two-third of the
population being malnourished. This has enabled the researchers to keep up the
momentum or speed up the research about potential microorganism-based food
(Berglund 2003) and its application at practical levels. The potential of some fungal
species to contribute to the large portion of world protein supply is having great
impact (Agrawal and Verma 2020; Agrawal et al. 2019; Bhardwaj et al. 2017).
Though mushrooms of different type have been used by man for many years as food
source, their influence may be considered negligible because they were used as
condiments rather than as food staples (Fig. 5.1).

5.2 Contribution of Fungi in Food

Mushroom is an umbrella shaped reproductive fruiting structure that can be hypo-
geous or epigeous, carpophore or basidiocarp, large enough to be seen without
magnification, termed as ‘macrofungus’ by Chang and Miles (1992). It has been
used globally for many centuries for its gourmet assets, plus specific aroma and
texture (Kalač 2009) and Asian countries like China, Japan, etc. are leading the foot
step toward mushroom cultivation. They cultivated, Auricularia auricularia mush-
room around 600 A.D (Kües and Liu 2000). Various mushroom varieties are
valuable natural products because they are rich source of nutrients and also have
biological activities (Mao et al. 2005). They contain high amount of protein and low
energy content because of low level of fat molecules which makes them an

Fig. 5.1 Diverse role of fungi in food
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admirable food for caloric diets. They provide different dietary nutrients, phenolic
compounds, vitamins and their strong antioxidant capacities make them good as
functional foods and as a source of bioactive compounds (Furlani and Godoy 2008;
Kalač 2009; Vaz et al. 2011). It also acts as a diverse range of secondary metabolites
such as phenolic compounds, polyketides, terpenes and steroids (Ishikawa et al.
1984). Various products produced via mushroom are used as a functional ingredient.
Functional breads baked with mushrooms reflect valuable health benefit (Lin et al.
2008). The use of Grifola frondosa, Hypsizygus marmoreus, or Pholiota nameko
mushroom (10%) with wheat flour decreases the loaf and specific volume of the
bread and changes its functional properties as well (Okamura-Matsui et al. 2003).

Increasing population pressures for food increased the fungal contributions
toward mankind’s food supply. In present time, a notable inquisitive contradiction
occurs in the human race with fungal species. At present time, in scientific and
industrial sphere, research and development for fungal proteins is getting impe-
tus (Agrawal and Verma 2021a, 2021b; Agrawal et al. 2021; Bhardwaj et al. 2020).
Mushrooms have been cultured for many centuries in East Asian countries and are
now becoming an important agricultural product throughout the globe (Matassa et al.
2016). China is leading in cultivation of mushroom species. More than 60 mushroom
species have been cultivated around the world and around 40 different mushroom
species have been cultivated only in China. The mushroom species Lentinula,
Pleurotus, Flammulina, Auricularia, Pholiata, Tremella, Agrocybe, Ganoderma
are cultivated on fresh wood residues, while some on slightly composted lignocel-
lulosic materials (e.g., Volvariella, Stropharia, Coprinus), some on well-composted
materials or animal dung (e.g., Agaricus), while others grow on soil and humus (e.g.,
Lepiota, Leptista, Morchella, Gyromitra). Agaricus bispora, Lentinula edodes and
Pleurotus spp. are the popular species which are cultivated all around the world.
Mushroom was considered for their therapeutic wealth in early civilization of the
Chinese, Egyptians and Romans. Romans believed that it provides health and
strength, praised as food of the gods and Chinese cherished as food of life (Miles
and Chang 2004). Chang (1999) stated that Chinese were the first who cultivated
Auricularia auricula-judae in 600 AD and Lentinus edodes mushroom between
1000 AD. Agaricus bisporus was cultivated in France in 1600 and in 1900 United
States of America cultivated Pleurotus bisporus. Raghevendra et al. (2017) has
accounted that for delicious taste, nutritional and medicinal value, mushroom has
gained notable interest in recent time along with its cultivation around the globe as
nutritional and protein rich agricultural product (Table 5.1).

Kim et al. (2011) stated that the mycelium of mushroom Agaricus bisporus was
used as meat alternative. Mushroom is more preferred as meat analog over plant
derived protein for their textural properties. Agaricus bisporus mycelium displayed
better sensory assessment over soy protein (Kim et al. 2011). Because of short
postharvest shelf life mushroom Agaricus bisporus is used as a flavouring agent.
The powdered version increases the utility of mushroom as it is utilized as soup
mixing and seasonings (Singh et al. 2003) agents which showed good sensory scores
after 8 months of storage. Park et al. (2001) studied the production of natural food
seasonings with mushroom Pleurotus ostreatus and Lentinus edodes and concluded
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that their nucleotides are reason for savoury flavour. Food seasoned with Pleurotus
ostreatus makes more score upon sensory assessment over lentinus edodus. Yoo
et al. (2007) reported the Lentinus edodes can be used as novel functional resource
for natural seasoning as it showed antioxidant activity too. Han et al. (2006) stated
that Lentinus edodus can be used over Agaricus bisporus as flavouring component in
brown sauce. Hong et al. (2009) reported that the use of Tricholoma matsutake for
flavourful apple sauce can be maintained and stored for 60 days and also showed
tolerable sensory scores. Leskosek-Cukalovic et al. (2010) reported that Ganoderma
lucidum was used in traditional Chinese medicine. It contains several bioactive
compounds which exhibited unique health benefits, extract of it added in brewing
process led to the harvest of new type of beer with improved functionality. Its
powder is added in Korean traditional rice wine called Yakju, which has best sensory
score. Lin et al. (2008) reported that addition of 2–7% Lentinus edodus stipe with
wheat flour showed high fibre content.

Various possible form of mushroom for bread making was studied (Ulziijargal
et al. 2013; Okafor et al. 2012; Jeong and Shim 2004; Lee et al. 2004, 2009). Mostly
the powder form is added to bread but Ganoderma lucidum is added as extract
(Chung et al. 2004). Kim et al. (2011) conducted experiment with Lentinus edodus
and Pleurotus eryngii powder in foodstuff such as muffins and cookies. Chung et al.
(2004) reported that mushroom powder was added in pork patties to enhance its
texture, juiciness and functionality. Cha et al. (2014) used Tremella fuciformis
mushroom to upsurge oil holding capacity of pork patties. Agaricus bisporus singly
accounted for more than 70% of total mushroom production globally and is the most

Table 5.1 The reported nutritional value of various mushrooms

S.
No.

Mushroom
species

Protein
content

Fat
content

Carbohydrate
content References

1 Pleurotus
Florida

34.56 2.11 42.83 Alam et al. (2008)

2 Pleurotus sajor-
caju

36.75 2.22 31.40 Michael et al. (2011)

3 Pleurotus
ostreatus

30.92 1.68 37.8 Michael et al. (2011)

4 Calocybe indica 021.4 4.95 048.5 Alam et al. (2008)

5 Lactarius
hatsudake

15.3 1.0 38.2 Yin and Zhou (2008)

6 Lentinula edodes 17.1 1.9 13.4 Zhu et al. (2007)

7 Tricholoma
matsutake

14.3 5.0 36.7 Liu et al. (2010)

8 Boletus edulis 26.5 2.8 65.4 Ouzouni and Riganakos
(2007)

9 Agaricus
arvensis

56.3 2.7 37.5 Barros et al. (2007)

10 Cantharellus
cibarius

53.7 2.9 31.9 Barros et al. (2008)

11 Ramaria botrytis 39.0 1.4 50.8 Barros et al. (2008)
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common cultivated mushroom species. In the twentieth century, the conservative
market of Agaricus breached by wider variety of mushroom called exotic mush-
room. Fresh supply of exotic mushroom like Lentinula, Pleurotus, Flammulina,
Volvariella, etc. species are found alongside Agaricus in the local markets (Moore
and Chiu 2001). There is remarkable increase found to compete with Agaricus and is
due to the substrate used for the production of these mushroom. Oyster mushroom
(Pleurotus ostreatus, P. cystidiosus, P. sajor-caju) species grow on cotton waste,
while straw mushroom (Volvariella volvacea) traditionally grow on rice straw but
also can grow on cotton waste. Mushroom crop farming is good example of waste
remediation.

Truffle is very similar to mushroom like fruiting body but grows under soil
surface symbiotically with plant root to accomplish their life cycle. However, it is
an Ascomycetes fruiting body which has an irregular shape and size with 2–8 cm
diameter. It has a long history and praised as a gourmet food. Bokhary and Parvez
(1993) stated that it has been used as food for 3000 years. The black truffle, Tuber
melanosporum was praised as the ‘diamond of French cuisine’ in France. These are
the highly appreciated for texture and aroma in many countries having good demand
for white and black truffles. Truffles are one of the expensive delicacies ascocarp
body (Kagan-Zur and Roth-Bejerano 2008; Wang and Marcone 2011). Bokhary and
Parvez (1993) reported that fresh Tuber claveryi is rich source of protein (16%) and
carbohydrate (28%). The nutritional composition of truffle estimated that the dry
biomass contains 20–27% protein, 85% which is digestible by humans; 3–7.5% fat
(unsaturated and saturated fatty acids); 7–13% crude fibre, approximately 60%
carbohydrates; and 2–5% ascorbic acid. It also represents a wealthy source of
volatile compound, regarded for traditional herbal medicine and exceptional in
being consumed for its nutraceutical value (Kagan-Zur and Roth-Bejerano 2008).

5.3 The Fungal Mycelium as Source of Protein

The importance of production of single-cell protein is getting momentum as fungi
make hope to solve the world’s food shortage by industrial production of alternative
meat protein and resolve the problem with fungal biotechnology (Moore and Chiu
2001). Only one prominent product named Quorn is introduced as meat substitute in
the market in 1984 (Bamforth and Cook 2019). Brewer’s yeast has been also used as
a co-product of fermentation for food substitute of human and animals. Using
brewery wastes to produce yeast product are, respectively, two most fruitful appli-
cations for fungal protein in food industry. But the successful model with fungal
product available in the market is mycoprotein Quorn. This is the mycelium of
filamentous soil-fungus Fusarium. Wilson (2001) has stated that in late 1960s a
British food company Ranks Hovis McDougall (RHM) did screening for suitable
mycoprotein producing fungi and results come in favour of Fusarium species. The
species Fusarium moniliforme cultivated on cheap substrate produces a biomass of
high nutritional value (Drouliscos et al. 1976; Macris and Kokke 1978). Another
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species, i.e., Fusarium graminearum is another strain gaining attention for the
production of commercial mycoprotein where the filamentous structure is similar
to the fibrous nature of meat (Seifert et al. 2003). Moore and Chiu (2001) stated that
fungal biomass contains characteristic nutritional properties like low-fat, low calorie
and cholesterol-free health food which allow consumers to choose Quorn as a meat
alternative. Rodger (2001) has compared freshly harvested mycoprotein with egg for
their nutritional value, found that it has good composition of all essential amino acids
with 12% (w/w, wet weight) protein content. It contains 6% dietary fibre, 1:4 ratio of
saturated and unsaturated fatty acid except cholesterol. A comparison of
mycoprotein with chicken and tofu and the amount of food consumed is less than
other two respective non-mycoprotein meat, it was also stated that mycoprotein has
significant effect on appetite (Williamson et al. 2006). Turnbull and Ward (1995)
analysed glucose and insulin level of blood has been found reduced after having
mycoprotein meal. It is also a very useful low-energy food source for control of body
weight and for diabetes dietary (Williamson et al. 2006). Quorn is sold as meat
alternative for vegetarian people at premium price rate. Some study is also focused
on cultivation of fungal species like Trichoderma, Penicillium, Rhizopus arrhizus
and Aspergillus oryzae (Moore and Chiu 2001) on inexpensive cellulosic wastes.

5.4 Nutritional Yeast

Yeasts are single celled fungi and come under Ascomycetes and basidiomycete
group. They predominantly reproduce by budding or fission and grow in vegetative
state. Reed and Nagodawithana (1988) reported that since 7000 BC yeast were used
for the production of fermented food. The biomass of yeast is called nutritional yeast,
used as single-cell protein (SCP). The yeast biomass is rich in fats, carbohydrates,
nucleic acid, vitamins and minerals with additional essential amino acids like lysine
and methionine (Gonçalves et al. 2014; Nayak 2011). It is used as nutritional source
which is limited in most plant and animal foods (Adedayo et al. 2011; Suman et al.
2015; Uchakalwar and Chandak 2014). Nutritional yeast cells are killed and heat
deactivated for nutritional components. Burgents et al. 2004 stated that yeast SCP
has inclusive amino acid range and high protein carbohydrate proportion, used for
high nutrient forage substitute.

Saccharomyces cerevisiae and its various strains are most popular species applied
for various purposes such as baking, brewing and probiotics (Fleet 2007). Yeast
biomass from fruit waste and brewing process are widely used as nutrient rich food
additive for human and animal feed, they can use cheap raw material, several wastes
to produce biomass, protein and amino acid. According to Suman et al. (2015) both
conventional and unconventional substrate are used for biomass and metabolite
production where yeast can grow on wastes to help in its remediation (Adedayo
et al. 2011). They need comparatively small amount of substrate to produce large
amount of biomass in a short time period compared to plants and animals. Nutri-
tional yeasts are eco-friendly because they help in waste remediation. In the

108 A. Alam et al.



developing countries, the budding pattern of population growth has resulted in food
scarcity problem (Suman et al. 2015). Uchakalwar and Chandak (2014) reported that
according to World Food and Agriculture Organization (FAO), 25% of the world
population are suffering from protein deficiency where the use of nutritional yeast
biomass as nutrient supplement can resolve the problem associated with food on
earth. However, yeast protein are not commonly believed as a protein supplement
and nutritional yeast production has not gained importance. For its global accep-
tance, one needs to find new methods by which it can be incorporated into food
(Suman et al. 2015). According to Nasseri et al. (2011) drying at high tempera-
ture and under defined condition, the digestibility and shelf life of nutritional yeast-
based food product enhances. Further, in developing country, nutritional yeast
biomass can fulfil the diet supplement and can be used for humans and livestock
(Jach et al. 2015).

5.5 Fungal Enzymes in Food Industry

Enzymes play an important role in food processing industries as bread making and
brewing were dependent on enzymes. Enzymes play a prominent role in the food
industry because the enzyme facilitates less energy requirement and high specificity
for enzymatic conversation which makes it attractive workstation in the food indus-
tries. According to Vermelho and Noronha (2013) enzymes involved in the food
industries are specific and break down the complex molecules into simpler ones.
There are various sources to get enzymes but the fungal enzymes show advantages
upon animal, vegetal origin and even bacterial. The enzyme obtained from animal
and plant has advantage of their low-cost production, whereas the animal derived
enzyme has limitation like ethical parameters, shortage and health of animal and
their glands. Plant derived enzymes depend upon climate condition, soil properties
and seed quality. These are the major factors which change the track toward
microbial enzyme production (Vermelho and Noronha 2013). Advancement on
genetic modification and control at every stage of production improves the attraction
toward fungal enzymes to use for production at commercial scale (Fig. 5.2). The
food and beverage industries are chiefly using hydrolases and transferases enzymes.
These are mostly extracellular (Bhardwaj et al. 2021; Bhardwaj and Verma 2021;
Chaturvedi et al. 2021), some of them are discussed as follows (Table 5.2):

5.5.1 Amylase

Amylase is widely applied enzyme in the various fields of food and beverage
industries. Wheat is the most important crop around the world and wheat product
bread satisfies one-third protein and half of carbohydrates requirement of Europeans
(Uhlig 1998). According to Mutsaers (1997) Egyptians were the first who made use
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of enzyme in flour without knowing the exact effect. Starch is the main constituent of
bread which causes hardness and unpleasant to eat. According to Singh et al. (2019)
addition of amylase in dough reduces the starch crystallization and extends the shelf
life of bread. It is also the first enzyme in industry which is applied in bread making

Fig. 5.2 Utilization of various fungal enzymes in food industries

Table 5.2 Different Enzymes and their application

S.
No. Microorganism Enzyme Food Application References

1 Saccharomyces
cerevisiae, Peni-
cillium occitanis

Pectinases Mash treatment, juice clarification Sharma et al.
(2013),
Maktouf et al.
(2014)

2 Penicillium
roqueforti

Proteases Protein hydrolysis, milk clotting,
low-allergenic infant food, enhanced
digestibility and utilization, flavour
improvement in milk and cheese,
meat tenderizer, prevention of chill
haze formation in brewing

Larsen et al.
(1998)

3 Aspergillus
oryzae

Amylases Starch liquefaction and saccharifica-
tion, increasing shelf life and
improving quality by retaining moist,
elastic and soft nature, bread softness
and volume, flour adjustment, ensur-
ing uniform yeast fermentation, juice
treatment, low calorie beer

Gupta et al.
(2003)

4 Aspergillus
terreus

Cellulases Animal feed, clarification of fruit
juice

Narra et al.
(2012)

5 Aspergillus
oryzae

Xylanase Viscosity reduction, enhanced
digestibility, dough conditioning

Camacho and
Aguilar (2003)

6 Rhizomucor
miehei

Lipase Cheese flavour development, cheddar
cheese production

Jooyandeh
et al. (2009)
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flour to reduce viscosity and crumb structure of baked food. According to
Raveendran et al. (2018) it is a most widely used enzyme in baking industries as
anti-staling and flavour enhancement agent to improve bread quality. It converts
starch of flour into smaller dextrin molecules, which is further fermented by yeast.
By breaking down complex molecules into smaller molecules it generates sugar
molecules in dough, which improves bread toasting quality, taste and crust colour.
Couto and Sanroman (2006) reported that amylase is also used in brewing, digestive
aid, fruit juice and cake production. Fungal acid amylase and amyloglucosidase are
used in food industries to process fruit. Various fungi produce acid α-amylase and
amyloglucosidase (Fogarty and Kelly 1980). De Souza et al. (2010) stated that these
enzymes are applied to prevent post-bottling haze formation in fruit juice industries.
Acid endoamylase breaks down amylose and amylopectin to dextrin, further
degraded by amyloglucosidase hydrolase into glucose. Blanco et al. (2014) stated
that addition of exogeneous glucoamylase to beer mash leads to additional amount of
glucose in wort for fermentation but it reacts with oligosaccharide and not averts the
starch haze. According to a published report, for saccharification,
exo-glucoamylases of Aspergillus niger is used to treat starch hydrolysate for
concentrate glucose syrup production. Chemical hydrolysis of starch in food
processing industries is totally replaced by microbial amylases and high specificity
with substrate has resulted in distinct physicochemical properties of generated
products (Paloheimo et al. 2010; Amoozegar et al. 2003).

5.5.2 Proteases

Due to wide spectrum application, protease accounts for 60% of the total industrial
enzymes present in the market. Proteases are most commonly used with broad-
spectrum industrial application because it has several advantages over traditional
chemical catalysts. Fungal proteases are generally more stable compared to animal
and plant derivatives. Fungi have faster growth rate which make it more suitable for
production to get abundant quantities (Rani et al. 2012). Protease is applied in
various food industries like baking, brewing, meat tenderization, fruit juice pulping,
etc. Wheat flour has unique property to form viscoelastic gluten matrix. This matrix
gives unique baking property as it can hold gas in the dough. It is reported that
specific fungal protease alters the gluten structure which improved extensibility,
better structure and volume of product. Some proteases have the ability to influence
the flavour and colour of the product as well. Mamo and Assefa (2018) stated that in
the beer formation process, protease from Saccharomyces fibuligera and Torulopsis
magnolia could inhibit the formation of hazes and acidic proteases from Aspergillus
niger produced almost haze free beer. In the juice industries different type of pro-
teases from species Aspergillus niger are used to juice clarification (Pinelo et al.
2010). Odour, colour and texture of meat are an important parameter for its mer-
chantability. Tenderization of meat improves softness of meat, digestibility and ease
to chopping. Singh et al. (2019) stated that proteases from fungus Aspergillus Oryzae
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is used for tenderization of meat. Chancharoonpong et al. (2012) has reported that at
industrial production, protease enzyme from fungi Aspergillus Oryzae is used to
reduce the salt brine fermentation time duration. Singh et al. (2019) stated that
protease enzyme has great application in diary industries. Casein and whey proteins
are the two most important substrates extracted from raw milk. Specific protease
enzymes are used for controlled hydrolysis of protein. It is used in fortifying sport
and health drinks, infant nutrition and nutritional foods. Cheese an another milk
derivative is extensively used by mankind in his food habit. Ripening of cheese is a
process; it is due to proteolytic breakdown of casein protein (McSweeney and Sousa
2000). Proteases as coagulants play an important role in the cheese ripening process.
At lower pH protease enzyme needs to be more specific. For enhanced ripening
process proteases would be added to cheese milk.

5.5.3 Cellulases/Hemicellulases

Cellulase and hemicellulases have ability to break down complex structure of plant
biomass (Kumar et al. 2018). Cellulase is the third largest enzyme used after protease
and amylase (Bajaj and Mahajan 2019). Hemicelluloses are made up of xylan,
xyloglucan, glucomannan, arabinogalactan and other heteropolymers, while cellu-
lose is homopolymer of β-1-4-linked glucose molecules. According to Juturu and
Wu (2014) cellulases have been used for the extraction and clarification of fruit and
vegetable juice to increase their yields. They used to macerate the fruit pulp for
partial or complete liquefaction, to reduce processing time, complete liquefaction
and improve extraction of valuable fruit components, these complex enzymes are
used to macerate the fruit pulp. The use of these enzymes increases yield and process
performance without additional capital investment (Kuhad et al. 2011, Karmakar and
Ray 2011). Karmakar and Ray (2011) stated that after juice extraction, these
enzymes also help to lower down juice viscosity and stability of product. Bajaj
and Mahajan (2019) stated that use of the enzymes to predigest the feed makes the
nutrients of the feed more absorbable; therefore, less amount of feed is required for
the similar amount of weight gain of the animals. Murad and Melim Miguel et al.
(2013) stated that both cellulase and xylanases are used in baking industry to
increase dough softness and decrease its stickiness. These complex enzyme systems
break down the polysaccharides into different simpler glucose molecules. Break-
down of these polysaccharides helps in redistributing the water and improves the
overall strength and the quality of the flour (Bajaj and Mahajan 2019). These
enzymes applied to frozen dough retain its properties for long duration under storage
condition. Both enzymes are also used in brewing industry to help in the process of
malting and macerating. These enzymes degrade the cell wall and release simple
sugar, phenolic compound and aroma. They increase the yield, stability and decrease
the viscosity and haze formation of wine (Sharma et al. 2014).
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5.5.4 Pectinase

Pectinase enzyme can degrade high molecular weight heteropolymer polysaccha-
ride, a major component of cell wall of plants (Khan et al. 2013). Pectinases are
mixture of different enzymes which hydrolyse different part of pectin molecule
(Pedrolli et al. 2009). Hoondal et al. (2002) stated that alkaline pectinase has been
used in coffee and tea fermentation, while acidophilic pectinases have been exten-
sively used in the extraction and clarification of fruit juice and wine. Fast clarifica-
tion of juice resulted in a shorter process and improved quality of juice. The use of
pectinases prevents post-bottling haze formation which results in smaller storage
volume, better concentrate stability without spoilage. The combination with other
enzymes such as hemicellulase, amylase decreases the viscosity of pulp and
increases yield. Jayani et al. (2010) stated that pectinase enzyme treatment acceler-
ates tea fermentation and also terminates the froth forming property of instant tea
powders by destroying pectin. They are also used in coffee fermentation to remove
mucilaginous coat from coffee beans. According to Will et al. (1992) raspberry and
strawberry require enzymatic maceration and depectinization for production of clear
concentrate juice. It improves juice production without disturbing any organoleptic
properties of fruit.

5.5.5 Lipases

Lipases are serine hydrolases commonly used to esterification. In the food industries
they are used to enhance texture and flavouring (Barbe et al. 2009) and good impact
as qualitative and quantitative production. In food industry it enhances and quickens
the development of flavouring aromatic substance. In cheese industries it is applied
in the breakdown of milk fat in free fatty acid which puts characteristic flavour to
cheese. In baking industries, it breaks down the wheat lipid into emulsifying lipid
and creates flavour. It also increases bread volume, improves stability of gas cells in
dough and allows it for prolonged shelf life (Carlson 1981). Phospholipase enzyme
catalyses the hydrolysis of fatty acid and forms more water soluble
lysophospholipid. It is also used for the production of lysolecithin which has
broad range of application in food industries. Parmesan cheese is a strong flavoured
product due to aldehyde and ketone compound. Fungal lipase releases long chain
fatty acid which acts as substrate for oxidation. The oxidation produces flavoured
compounds like aldehyde and ketone. Polyunsaturated fatty acid plays an essential
part in human nutrition. Lipase enzyme have characteristic features and lipase from
Rhizomucor miehei has good activity in low water condition. For the cocoa butter
alternative, high-oleate sunflower oil and stearic acid are used with immobilized
lipase enzyme.

Other enzymes such as glucose oxidase, galactosidase, transglutaminase, cata-
lase, superoxide dismutase, lactoperoxidase and sulfhydryl oxidase have limited
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applications. In food industries, galactosidase enzymes have a broad-spectrum
application. They are used for sugar-syrup, prebiotic production (Contesini et al.
2013). Transglutaminase enzyme has the ability to create cross link in proteinaceous
substance. It catalyses the acyl transfer between glutamine and lysine amino acid. It
plays a very important role in dairy food products like yoghurt production, renneting
of fresh cheese making and cream whipping (Agrawal et al. 2018; Lantto et al.
2007).

The use of enzymes for food applications has increased steadily over the past two
decades, not only in traditional application areas such as starch processing, brewing,
fruit processing and dairies. In applications such as baking, the use of enzymes has
grown even more (Godfrey and Partner 2000). The appearance of new enzyme
applications is due to the increasing diversity of the enzymes available, the majority
based on gene modification technology. In future new enzymes for food applications
are expected to lead to major developments in the use of industrially produced
enzymes (Godfrey and Partner 2000).

5.6 Fungal Pigments as Food Additives

Food industry and processed foods became technologically advanced due to indus-
trial revolution. In the late nineteenth century, chemically synthesized colours
replaced natural colourants. However, safety concerns arose with increasing uses
of synthetic colouring agents. Consumer awareness regarding the use of synthetic
colouring agent led to shift toward natural food colourants where microorganism and
insects are replacing the synthetic colours. Mukherjee et al. (2017) have stated that
some fungi like Aspergillus, Fusarium, Penicillium, Trichoderma and Laetiporus
have been reported for production of various pigments such as quinones, anthraqui-
nones, rubropunctatin, monascin, b-carotene, etc. accountable.

for various colours like red, purple, yellow, orange and brown. Gupta et al. (2013)
have stated that due to scarcity of nutrition, fungi produce pigment known as
secondary metabolites. In Asian countries, the production of pigments dates to
hundreds of years (Mapari et al. 2005). Dufosse (2014) has stated that fungus
Monascus purpureus produces red colour pigment. Mukherjee et al. (2017) have
reported that fungi Monascus can produce various colours like yellow, red and
orange. Joshi et al. (2003) stated that fungus Blakeslea trispora is used by
European countries for the industrial production of pigments like β-carotene and
lycopene. According to Garbayo et al. (2003) light influenced the mycelial growth of
fungus Gibberella fujikuroi and presence of light induced to produce orange
pigment.

Fungal pigment has been used as food colourants in the late nineteenth century
and some of the fungal pigments have been approved as well (Dufosse et al. 2014).
Pigments are used in cheese, candy, fruits, beverages, snacks, beer and wine wherein
pigments such as riboflavin are used in beverages, ice creams and instant desserts
(Chattopadhyay et al. 2008). As reported these pigments have antimicrobial and

114 A. Alam et al.



antifungal properties, different foods require different concentrations of pigment to
produce the desired colour intensity which may vary the spoilage time duration of
foodstuff. Cheng-Yun and Wen-Ping (2008) reported addition of 0.03 g of
Monascus pigment per kg of sausage. El-Kholie et al. (2012) reported a high
concentration of Monascus pigments. Rojsuntornkitti et al. (2010) noted that addi-
tion of 0.1–0.4 g of red rice powder to 100 g of Thai sausage was able to control the
growth of Salmonella, Staphylococcus aureus and Clostridium perfringens.

5.7 Limitation and Future Prospect

Due to source, chemical nature and catalytic activity, some fungi and their associated
biomolecules show threat. This exhibits allergenicity, activity related toxicity and
chemical toxicity. Fungal enzymes are possible allergens and have strong effects if
inhaled as dust. Quorn has many aids but it is a probable allergen too. There is low
sensitization of Quorn but it might counter badly to patients who are allergic to
mould. Mushroom can play an imperative part in the nourishing man and also animal
without doing ill effects but some mushrooms species are known as poisonous to
man only. The fungal pigment can loss their property with different pH, temperature
variation, heat, etc. Food and feed processing industries have potential success using
fungi and their associated products. In coming period genetic manipulation of
microorganism may play a vital role in the production of enzymes and pigment.
Genetically manipulated strain will be superior to the wild strain. There is need to
advance the food processing technology to reduce the cost and time of processed
food items. Therefore, more development and research are required in the area of
commercially viable enzyme and pigment production.
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Chapter 6
Biogenic Synthesis of Nanomaterials
Toward Environment-Friendly Approach

Suman Das and Dhermendra K. Tiwari

Abstract Nanotechnology driven materials hosted all avenues of science for next-
generation technology development. Nanomaterial synthesized by various
approaches such as physical, chemical, and biological methods to achieve the
defined shape, size, and morphology. Former two methods undoubtedly create
high-quality nanomaterials with self-controlled and user-specific modifications in
the synthesis procedure to optimize output. However, these methods are not envi-
ronmentally sustainable and eco-friendly for bulk production. Biological systems
created enormous scopes for eco-friendly and cheaper nanomaterial and a variety of
nanomaterials has been produced in the last few years. This chapter summarizes
some common biological systems such as bacteria, fungi, actinomycetes, algae, and
plants used to produce various metallic and non-metallic nanomaterials and their
biological applications.

Keywords Biopolymers · Nanomaterials · Nanoparticles · Nanotechnology

6.1 Introduction

Nanotechnology is one of the most emerging fields nowadays, which mainly deals
with nanometer-sized particles or items (Feynman 1991). A material exhibits new
property upon reduction of its size into nanoscale which is generally not observed in
its macroscale or bulk form (Bogunia-Kubik and Sugisaka 2002). Nanoparticles can
be categorized into three different types such as incidental nanoparticles, natural
nanoparticles, and engineered nanoparticles (Buzea et al. 2007). The use of
nanomaterials in biotechnology integrates biology with material science.
Nanoparticles with their unique properties, such as size, surface area to volume
ratio, and shapes like a rod or spherical, demonstrate a wide range of applications in
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the field of biology as well as other research areas (Murray et al. 2000). The
usefulness and specific characteristics of nanoparticles arise from different aspects,
including the equivalent size of the nanoparticles and biomolecules, such as nucleic
acid and proteins (Ferrari 2005). There are numerous conventional physical and
chemical methods for nanoparticle synthesis, but these pathways sometimes are
given rise to many environmental challenges and are extremely pricey (Remya
et al. 2017). For instance, processes like pyrolysis and chemical precipitation often
result in the deposition of toxic chemical species on the surface of newly synthesized
nanoparticles. The presence of such surface contaminants makes these nanoparticles
undesirable for biomedical and clinical applications (Ai et al. 2011). Silver
nanoparticles synthesized by chemical processes exhibited toxic effects in the
human body when used for the treatment of various diseases. Owing to these
facts, many researchers start to explore biological systems for nanoparticle synthesis,
which are considered safe, cost-effective, and at the same time, sound eco-friendly
(Thakkar et al. 2010). Nature has given ways and insight into the advanced synthesis
of nanomaterials. Several studies reported that the biological systems have the
potential to act as ‘bio-laboratory” for the fabrication of pure metal and metal
oxide particles without any surface contaminants at the nanometer scale using a
biomimetic approach. The biogenic synthesis of nanoparticles involves microorgan-
isms like bacteria, virus, fungi, algae, and plants which acts as reducing agents
having the high capability of metal uptake and at the same time, the toxic substances
produced during the synthesis process can easily be destroyed with the help of
enzymes produced by the plants or microorganisms (Sarkar et al. 2012; Menon
et al. 2017). The biological approach for the synthesis of nanoparticles provides
excellent stability, polydispersity, and dimensions when compared to chemically
synthesized nanoparticles (Chen et al. 2008). The biogenic methods used to synthe-
size nanoparticles allow the synthesis to occur at physiological pressure, pH, and
temperature and thereby eliminate ruthless processing conditions. A considerable
number of microorganisms have been found to possess the capability of synthesizing
nanoparticles either extra or intracellularly. In recent years, nanoparticles play an
important role in many fields, including environment, energy, agriculture, and
healthcare due to their implausible properties (Raveendran et al. 2003). In this
chapter, we are discussing the approaches and applications of nanoparticle synthe-
sized using biological systems.

6.2 Biological Systems for Nanomaterial Synthesis

Our main objective is to focus on the synthesis of nanoparticles utilizing biological
approaches due to its easiness of rapid synthesis, size characteristics controlling,
controlled toxicity, and eco-friendly nature. A variety of natural sources exists from
which nanoparticles could be synthesized including bacteria, fungi, algae, virus,
actinomycetes, and plants (Fig. 6.1) (Kumar and Yadav 2009; Saifuddin et al. 2009;
Balaji et al. 2009; Ali et al. 2011; Ahmad et al. 2003a; Lee et al. 2002). These
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unicellular or multicellular organisms are capable of synthesizing inorganic
nanoparticles extracellularly or intracellularly (Govindappa et al. 2016). Here we
discussed all the sources which are considered as a potential source for biological
nanoparticle synthesis.

6.3 Bacteria Mediated Nanoparticle Synthesis

In recent years, nanoparticle synthesis using bacteria is extremely increased because
of its vast application. Bacterial production of nanoparticles may be intracellular or
extracellular. The extracellular synthesis of nanoparticles by bacteria involves enzy-
matic reactions that convert metallic ions into metallic nanoparticles. In extracellular
synthesis, bacteria are cultured under optimum conditions for 1–2 days and centri-
fuge the culture to remove the biomass. The remaining supernatant is then added to a
filter-sterilized solution of a metal salt and is incubated again for nanoparticle
synthesis. While in the case of an intracellular mechanism the whole biomass is
used instead of supernatant and involves specific ion transportation into the nega-
tively charged cell wall and due to the electrostatic attraction, the positively charged
metal ions get diffused through the cell wall. Then the toxic metal ions converted
into non-toxic metal nanoparticles by the action of enzymes present in the bacterial
cell wall (Pacioni et al. 2015; Khandel and Shahi 2016). This suggests that the

Fig. 6.1 Schematic representation of the mechanism of biogenic nanoparticle synthesis
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primary mechanism of nanoparticle synthesis by bacteria relies on enzymes (Zhang
et al. 2011); for example, the enzyme called nitrate reductase has been found
responsible for the synthesis of silver nanoparticles in B. licheniformis (Elbeshehy
et al. 2015). Bacteria during fermentation produce a variety of water-soluble bio-
polymers which are considered as biodegradable, non-toxic, and biocompatible
nanomaterials (Rodríguez-Carmona and Villaverde 2010). These biopolymers
along with their source and application were summarized in Table 6.1. In recent
years different species of bacteria were explored for silver, gold, and other metallic
nanoparticle synthesis. Bacteria like Magnetospirillum magnetotacticum could be
used for bio-remediation of Fe (III) metals via reduction where they took up iron and
re-oxidized from low-density hydrous oxide to high-density ferrihydrite or Fe(III)

Table 6.1 Biopolymers derived from bacteria and their application

Biopolymer Bacteria Application Reference

Alginate Pseudomonas
aeruginosa, Azoto-
bacter vinelandii

Drug delivery, tissue
engineering, wound
management

Pawar and Edgar
(2012); Hay et al.
(2013); Boekhoven
et al. (2015)

Cyanophycin
derivatives

Cyanobacteria,
recombinant strains of
Escherichia coli,
Ralstonia eutropha
and Corynebacterium
glutamicum

Drug delivery Sallam and
Steinbüchel (2010)

Dextran Leuconostoc
mesenteroides, Strep-
tococcus mutans,
Lactobacillus brevis

Tissue engineering,
drug delivery, vascu-
lar and blood
applications

Vu et al. (2009);
Mokhtarzadeh et al.
(2016); Brøndsted
et al. (1998)

Gellan Pseudomonas elodea,
Sphingomonas
paucimobilis

Drug delivery Morris et al. (2012);
D’Arrigo et al.
(2014)

Poly γ-glutamic acid
(PGA)

Bacillus subtilis,
Bacillus licheniformis,
Staphylococcus
epidermidis

Vaccine carriers, tis-
sue engineering, bio-
sensors, drug
delivery, diagnostics,
bioimaging

Ashiuchi (2013);
Pereira et al. (2012);
Tsai et al. (2014);
Maya et al. (2014);
Shu et al. (2014)

Polyhydroxyalkanoates Bacillus sp.,
Acromonas sp., Pseu-
domonas sp.,
Rhodobacter sp.,
Ralstonia sp.

Tissue engineering,
bioimaging, wound
dressing in surgery,
biosensors, wound
management,
diagnostics

Park et al. (2012);
Leong et al. (2014);
Wang et al. (2003);
Masood et al. (2015)

Poly-L lysine Streptomyces albulus Biosensors, drug
delivery, non-viral
gene delivery vector

Pandey and Kumar
(2014); Sasaki et al.
(2013); Yang et al.
(2014)

Xanthan Xanthomonas
campestris

Drug delivery Rosalam and
England (2006); Luo
and Wang (2014)
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oxide. In the last step, Fe(III) ions were reduced to produce magnetite within the
magnetosome vesicles. Accumulation of iron within the vesicles occurs due to the
presence of an intracellular protein called Ferritin, which kept it soluble and
non-toxic (Pacioni et al. 2015). The thermophilic bacteria could be an exceptional
tool for the extracellular synthesis of silver and gold nanoparticles (Gomathy and
Sabarinathan 2010). Some Bacillus species showed their ability to reduce silver and
synthesize extracellularly fabricated, circular nanoparticles, ranging in size from
10 to 20 nm (Sunkar and Nachiyar 2012). Pseudomonas stutzeri AG259 isolated
from silver mines and textile soil exhibit the accumulation of silver nanoparticles in
their periplasmic space (Slawson et al. 1994; Rajora et al. 2016). A novel strain of
Marinobacter pelagius was reported to synthesize monodisperse and stable gold
nanoparticles (Sharma et al. 2012). Prasad and coworkers used Lactobacillus strains
for the synthesis of titanium nanoparticles (Prasad et al. 2007). Lactobacillus species
was also reported for silver, gold, and nanocrystals of gold-silver alloy synthesis.
Pseudomonas aeruginosa’s cell supernatant was used for the synthesis of gold
nanoparticles (Husseiny et al. 2007). It was reported that E. coli DH5α could
synthesize gold nanoparticles on their cell surface (Du et al. 2007). In the presence
of exogenous electron donor, a sulfate-reducing bacteria called Desulfovibrio
desulfuricans NCIMB 8307 can synthesize palladium nanoparticles (Omajali et al.
2015). Studies also found that Plectonema boryanum UTEX485, filamentous
cyanobacteria when treated with an aqueous solution of AuCl4

� and Au(S2O3)2
�3

under specific conditions, they synthesize octahedral and cubic gold nanoparticles
(Lengke et al. 2006). Nanoparticles synthesized from various bacterial sources
together with their characteristics are listed in Table 6.2.

6.4 Fungi Mediated Nanoparticle Synthesis

Mycosynthesis is another approach for easy and stable biological nanoparticle
synthesis using fungal biomass and their associated metabolites. Most fungi possess
important metabolites with the higher capability of bioaccumulation and simple
downstream processing is easy to culture for the production of low-cost and efficient
nanoparticles (Alghuthaymi et al. 2015). They also have greater uptake competences
and tolerances to metals, which provide an advantage for the high-yield production
of nanoparticles as metal salts have a high wall-binding capability with fungal
biomass (Alghuthaymi et al. 2015; Castro-Longoria et al. 2011). The process
which is commonly used to synthesize nanoparticles using fungi is depicted in
Fig. 6.2. Researchers proposed three possible mechanisms through which
mycosynthesis of metal nanoparticles occur, including electron shuttle quinones,
nitrate reductase action, or both (Alghuthaymi et al. 2015). The enzymes present in
fungi such as the α-NADPH-dependent reductase and nitrate reductase have been
found to have an important role in the synthesis of nanoparticle, similar to the
extracellular nanoparticle synthesis mechanism found in bacteria (Kumar et al.
2007). The fungal organisms produce active biomolecules which controlled the
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Table 6.2 Bacterial-derived nanoparticles and their characteristics

Bacterial strain Nanoparticles
Mode of
synthesis Size Shape Reference

Bacillus subtilis Silver and
gold

Extracellular
and
intracellular

5–10 Anisotropic Reddy et al.
(2010)

Bacillus
licheniformis, Bacil-
lus pumilus and,
Bacillus persicus

Silver Extracellular 77–92 Spherical,
triangular
and
hexagonal

Elbeshehy
et al. (2015)

Bacillus
amyloliquefaciens

Cadmium
sulfide

Extracellular 3–4 Cubic/
hexagonal

Singh et al.
(2011)

Bacillus
methylotrophicus

Silver Extracellular 10–30 Spherical Wang et al.
(2016)

Bhargavaea indica Silver and
gold

Extracellular 30–
100

Silver
anisotropic;
gold, flower

Singh et al.
(2015a,
2016a)

Listeria
monocytogenes

Silver – Varied
sizes

Anisotropic Soni and
Prakash
(2015)

Brevibacterium
frigoritolerans

Silver Extracellular 10–30 Spherical Singh et al.
(2015b)

Pseudomonas
deceptionensis

Silver Extracellular 10–30 Spherical Jo et al.
(2016)

Weissella oryzae Silver Intracellular 10–30 Spherical Singh et al.
(2016b)

Pseudomonas
aeruginosa

Gold Extracellular 15–30 – Husseiny
et al. (2007)

Pseudomonas stutzeri Silver Intracellular 200 – Klaus et al.
(1999)

Lactobacillus sp. Silver and
gold

Intracellular 60 – Sintubin
et al. (2009)

Escherichia coli Cadmium
sulfide

Intracellular 2–5 Spherical Kowshik
et al. (2002a)

Escherichia coli
DH5α

Gold Intracellular 25–33 Spherical Du et al.
(2007)

Clostridium
thermoaceticum

Cadmium
sulfide

Extracellular
and
intracellular

2–5 – Cunningham
and Lundie
(1993)

Streptomyces
albidoflavus

Silver Intracellular 10–14 – Buddana
(2012)

Rhodopseudomonas
capsulata

Gold Extracellular 10–20 Spherical Syed et al.
(2016)

Klebsiella pneumonia Gold Extracellular 10–15 Spherical Prema et al.
(2016)

Plectonema
boryanum UTEX485

Gold Extracellular 10–25 Octahedral
and cubic

Lengke et al.
(2006, 2007)

Marinobacter
pelagius

Gold Extracellular <20 Spherical Sharma et al.
(2012)

Stenotrophomonas
maltophilia

Gold Extracellular 40 Spherical Nangia et al.
(2009)
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nanoparticle’s biochemical compositions, size distribution, and shape. Fungi
absorbed gold ions and subsequently produce gold nanoparticles intracellularly.
The active molecules involved in the energy metabolism of fungal cells such as
proteins like 3-glucan binding proteins, glyceraldehyde-3-phosphate dehydroge-
nase, ATPase, and reducing sugars could be used for mycosynthesis of
nanoparticles. When ultrathin sections of the Au-fungal cells were studied, it was
observed that gold nanoparticles were accumulated within the vacuoles of the cells
(Menon et al. 2017). Some fungal strains such as Aspergillus oryzae, Aspergillus
niger, and Fusarium solani were reported to have the capability of producing silver
nanocrystals extracellularly (Binupriya et al. 2010a; Gade et al. 2008; Ingle et al.
2009). Trichoderma viride was reported to synthesize spherical nanoparticles
(Thakkar et al. 2010). The silver nanoparticles produced by Phoma glomerata
showed its antimicrobial efficiency against P. aeruginosa, E.coli, and S. aureus
(Birla et al. 2009). It was found that Trichothecium sp. produced extracellular
nanoparticles when incubated with gold ions under static conditions whereas they
synthesized intracellular gold nanoparticles under shaking conditions. The possible
reason behind this might be the proteins and enzymes secreted by the fungus during
stationary conditions were not secreted by them during shaking conditions (Sowani
et al. 2016). The Penicillium genus is one of the superior candidates for the synthesis
of silver nanoparticles, where production occurs through the extracellular

Fig. 6.2 Mycogenic
synthesis of metal
nanoparticles
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mechanism (Sadowski et al. 2008). The microscopic fungus yeast strain MKY3
under forced ecological conditions can synthesize silver nanoparticles when incu-
bated with aqueous silver nitrate (Kowshik et al. 2002b). Dameron and coworkers
reported cadmium synthesis by using Schizosaccharomyces pombe and Candida
glabrata (Dameron et al. 1989). It was reported that a strain of extremophilic yeast
isolated from acid mine drainage showed the capability of gold and silver nanopar-
ticle synthesis (Mourato et al. 2011). Kowshik et al. reported the intracellular
synthesis cadmium sulfide (CdS) nanocrystallites by using Torulopsis sp., which
exhibit quantum semiconductor properties (Kowshik et al. 2002a). It was also
reported that S. cerevisiae biosorbes and reduces gold ions to elemental gold in the
cell wall peptidoglycan layer by the aldehyde group of the reducing sugars (Khandel
and Shahi 2018). The marine yeast Rhodosporidium diobovatum has been investi-
gated for the stable synthesis of lead sulfide nanoparticles intracellularly (Seshadri
et al. 2011). Similarly, Pichia jadinii was used to synthesize gold nanoparticles of
various morphologies intracellularly (Velusamy et al. 2016). Nanoparticles synthe-
sized from various fungal sources together with their characteristics are listed in
Table 6.3.

6.5 Algae Mediated Nanoparticle Synthesis

Algae are photosynthetic organisms with significant ecological and economic impor-
tance. They may be unicellular such as Chlorella and the diatoms or multicellular
such as the giant kelps (large brown alga), found in a variety of environments such as
marine water, freshwater and, or moist rock surfaces (Thajuddin and Subramanian
1992, 2005; Oscar et al. 2014). They are categorized as macroscopic (macroalgae)
and microscopic (microalgae). They are considered an important source for different
commercial products such as biofuels and natural dyes (Lee 2018; Johansen 2012;
Borowitzka 2013; Sing et al. 2013). Till now, researchers have explored various
groups of algae for the biosynthesis of nanoparticles such as Cyanophyceae,
Chlorophyceae, Rhodophyceae, Phaeophyceae, euglenoids, and diatoms (Sharma
et al. 2016). Algae can accumulate metals and subsequently reduced metal ions into
nanoparticles, which makes them an important candidate for the biosynthesis of
nanoparticles (Sharma et al. 2019). They are referred to as “bionanofactories” as the
dried biomasses of both dead and live algae could be used for the metallic nanopar-
ticle synthesis (Davis et al. 1998). There are mainly three important steps for the
algal synthesis of nanoparticles: first, algal extract preparation in an aqueous solvent
(organic or water) by boiling or heating for a certain time, second, preparation of
appropriate concentration of the ionic metallic compound and third, incubation of
ionic metallic compounds and algal solutions under controlled conditions with or
without continuous stirring for a certain period (Thakkar et al. 2010; Rauwel et al.
2015). The basic mechanism of nanoparticle synthesis by fungi is that the functional
groups and the enzymes present in the algal cell wall react with the precursor
molecules or metal ions to form complexing agents at ambient conditions causing
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reduction and deposition of metal or metal oxide nanoparticles (Fig. 6.3) (Gade et al.
2008; Crookes-Goodson et al. 2008). The biomolecules responsible for the reduction
process include pigments, polysaccharides, and peptides (Sethi 2011; Mohamed
et al. 2012). A polysaccharide called fucoidan is secreted from the marine brown
algae cell walls exhibited many applications in different fields like anti-cancer, anti-
inflammatory, anti-coagulant, and anti-viral therapy (Lirdprapamongkol et al. 2010).
Till now, different algal species were used to synthesize silver and gold
nanoparticles in a cost-effective way such as Spirulina platensis, Lyngbya majus-
cule, and Chlorella vulgaris (Chakraborty et al. 2009; Niu and Volesky 2000;
Kalabegishvili et al. 2012; Annamalai and Nallamuthu 2015). It was reported that
microalgae such as Diadesmis gallica and Navicula atomus (diatoms) are capable of
synthesizing silica-gold bionanocomposites and gold nanoparticles (Schröfel et al.
2011). A marine alga called Sargassum muticum was utilized for the extracellular
synthesis of silver, gold, and gold/silver bimetallic nanoparticles (Madhiyazhagan
et al. 2015; Namvar et al. 2015). Recently it was reported that green and red alga
Spirogyra insignis and Chondrus crispus could be used for the synthesis of silver
and gold nanoparticles, respectively (Castro et al. 2013). Senapati and coworkers
used Tetraselmis kochinensis for intracellular synthesis of gold nanoparticles
(Senapati et al. 2012). Due to these facts, biosynthesis of nanoparticles using algae
should be given equal importance as other biosynthetic processes. Nanoparticles
synthesized from various algal sources together with their characteristics are listed in
Table 6.4.

6.6 Virus Mediated Nanoparticle Synthesis

Nanoparticle biosynthesis using a virus is one of the unique techniques that has been
explored for the delivery of inorganic nanomaterials like cadmium sulfide (CdS),
silicon dioxide (SiO2), iron dioxide (Fe2O3) and Zinc sulfide (ZnS) (Yildiz et al.
2011). Viruses allowed the development of organized nanoparticle assemblies by
showing great promise in interconnecting and assembling novel nano-sized compo-
nents (Blum et al. 2005). They provide a useful scaffold for molecular assembly into
nanoscale devices because of their size, availability of various chemical groups for
modification and monodispersity (Yu et al. 2003). They have surfaces covering with
capsid proteins which makes them interacting with metallic ions by creating a highly
reactive surface (Yildiz et al. 2011). Tobacco mosaic virus (TMV), a plant virus on
their covering surface, contains approximately 2130 molecules of capsid protein.
These protein molecules can serve as the points of attachment for the scattering of
nano-sized materials (Yildiz et al. 2011). A study demonstrated that upon addition of
a very low concentration of TMV to gold or silver salts before adding Nicotiana
benthamiana plant extracts, the virus-mediated solution drastically increases the
nanoparticle’s number as well as reducing the size of synthesized nanoparticles as
compared to control. This finding suggested that TMV converts metallic ions into
nanowires by acting as a bio-template. They also help in the mineralization process
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Table 6.4 Algal-derived nanoparticles and their characteristics

Algal strain Nanoparticles
Mode of
synthesis Size Shape Reference

Bifurcaria
bifurcate

Copper oxide Intracellular 5–45 Spherical
and
elongated

Abboud et al.
(2014)

Chlorella
vulgaris

Gold Extracellular 9–20 Spherical Annamalai and
Nallamuthu
(2015)

Caulerpa
racemose

Silver Extracellular 5–25 Spherical
and triangle

Kathiraven et al.
(2015)

Chlorococcum
humicola

Silver Intracellular 4 and 6 Spherical Jena et al. (2013)

Spirulina
platensis

Gold Intracellular 20–30 Spherical Kalabegishvili
et al. (2012)

Sargassum
wightii

Silver and
gold

Extracellular 8–12 for
gold, 5–
22 for
silver

Spherical Singaravelu
et al. (2007);
Shanmugam
et al. (2014)

Sargassum
myriocystum

Zinc oxide
and gold

Extracellular 96–110
for zinc
oxide,
15 for
gold

Spherical,
rectangular,
triangular

Dhas et al.
(2012);
Nagarajan and
Kuppusamy
(2013)

Sargassum
muticum

Gold and zinc
oxide

Extracellular 5.42 for
gold and
30–57
for zinc
oxide

Spherical
for gold and
hexagonal
for zinc
oxide

Madhiyazhagan
et al. (2015);
Namvar et al.
(2015); Azizi
et al. (2014)

Sargassum
plagiophyllum

Silver
chloride

Intracellular 18–42 Spherical Dhas et al.
(2014)

Lyngbya
majuscule

Gold Extracellular <20 Spherical Chakraborty
et al. (2009)

Tetraselnis
kochinensis

Gold Intracellular 5–35 – Senapati et al.
(2012)

Spirogyra
insignis

Silver – 30 Spherical Castro et al.
(2013)

Chondrus
crispus

Gold – 30 Spherical,
triangular
and
hexagonal

Castro et al.
(2013)

Diadesmis
gallica

Gold Intercellular Various Spherical Schröfel et al.
(2011)

Navicula atomus Gold Intercellular Various Spherical Schröfel et al.
(2011)

Ecklonia cava Gold Extracellular 30 Spherical
and
triangular

Venkatesan et al.
(2014)

(continued)
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of crystalline nanowires and sulfide (Royston et al. 2009; Shenton et al. 1999).
Cowpea mosaic virus (CPMV) and Cowpea chlorotic mottle virus have been utilized
for the mineralization of inorganic materials (Douglas and Young 1998; Douglas
et al. 2002). It was demonstrated that the surface of M13 bacteriophage contains
peptides that are competent in nucleating nanocrystal growth (Mao et al. 2003).
Nanoparticles synthesized from various viral sources together with their character-
istics are listed in Table 6.5.

6.7 Actinomycetes Mediated Nanoparticle Synthesis

Nanoparticle synthesis using actinomycetes remains less explored area even though
the nanoparticles synthesized by them showed good stability, monodispersity, and
remarkable biocidal activity against different pathogens (Golinska et al. 2014). They
can be easily modified genetically to achieve nanoparticles with better size and poly-
dispersity (Ahmad et al. 2003a). The basic mechanism behind the actinomycetes
mediated synthesis of nanoparticles is that the reductase enzyme present, reduced
metal salts into metallic nanoparticles. This mechanism was concluded from the
studies where zinc, silver, and copper nanoparticles were synthesized by using
Streptomyces sp. suggested that the reductase enzyme has an important role in the

Table 6.4 (continued)

Algal strain Nanoparticles
Mode of
synthesis Size Shape Reference

Cystophora
moniliformis

Silver Extracellular 50–100 Spherical Prasad et al.
(2013)

Chlamydomonas
reinhardtii

Silver Intracellular
and
extracellular

5–35 Round/
rectangular

Barwal et al.
(2011)

Euglena gracilis 2-lines
ferrihydrite
nanoparticles

Intracellular 0.6–1.0 Spherical Brayner et al.
(2012)

Ulva fasciata Silver Intracellular 28–41 Spherical Rajesh et al.
(2012)

Table 6.5 Virus-derived nanoparticles and their characteristics

Viral strain Nanoparticles
Mode of
synthesis Size Shape Reference

Tobacco
mosaic virus
(TMV)

Silicon dioxide, cadmium sul-
fide, Lead sulfid,e and ferric
oxide

Intracellular
and
extracellular

45–80 – Shenton
et al.
(1999)

M13
bacteriophage

Zinc sulfide and cadmium
sulfide

Intracellular
and
extracellular

50–100 – Mao et al.
(2003)
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process of metal salts reduction (Karthik et al. 2014). It was also reported that
Thermomonospora sp., extremophilic actinomycetes produce gold nanoparticles
extracellularly with a much better polydispersity when treated with gold ions
(Golinska et al. 2014). In another study, it was reported that an alkotolerant
Rhodococcus sp. could synthesize gold nanoparticles and the metal ion concentra-
tion was found to be higher on the cell wall and cytoplasmic membrane when
compared with the cytosol that might be because the enzymes catalyzed the reduc-
tion of metal ions reside on the cell wall and cytoplasmic membrane but not in the
cytosol (Ahmad et al. 2003b). Nanoparticles synthesized from various actinomy-
cetes sources together with their characteristics are listed in Table 6.6.

Table 6.6 Actinomycetes-derived nanoparticles and their characteristics

Actinomycetes
strain Nanoparticles

Mode of
synthesis Size Shape Reference

Thermomonospora
sp.

Gold Extracellular 8 Spherical Ahmad et al.
(2003a);
Golinska et al.
(2014)

Streptomyces
sp. LK3

Silver Extracellular 5 Spherical Karthik et al.
(2014)

Streptomyces
clavuligerus

Gold Extracellular 8.2 Spherical Kumar et al.
(2015)

Streptomyces
fulvissimus

Gold Extracellular 20–
50

Spherical Soltani et al.
(2015)

Streptomyces
albidoflavus

Silver Extracellular 10–
14

Spherical Buddana (2012)

Streptomyces
hygroscopicus

Silver Extracellular 20–
30

Spherical Sadhasivam
et al. (2010)

Streptomyces
viridogens(HM10)

Gold Intracellular 18–
20

Spherical Balagurunathan
et al. (2011)

Streptomyces sp.
VITDDK3

Gold Extracellular 90 Hexagonal,
cubical, brick
and irregular

Gopal et al.
(2013)

Rhodococcus sp. Gold Intracellular 5–
15

– Ahmad et al.
(2003b)

Gordonia amicalis
HS- 11

Silver and
gold

Extracellular 5–
25

Polycrystalline Sowani et al.
(2016)

Gordonia amarae Gold Extracellular
and cell
associated

15–
40

Spherical Bennur et al.
(2016)
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6.8 Plants Mediated Nanoparticle Synthesis

Nowadays, phytonanotechnology, which utilizes plants for the synthesis of
nanomaterials, has provided new avenues for the simple, cost-effective, eco-friendly,
stable, and rapid method for nanoparticle synthesis. They have the capability to
synthesize various types of nanoparticles, including copper, iron, silver, zinc, gold,
palladium, selenium, and platinum. There are many advantages of using
phytonanotechnology, which include scalability, non-toxicity, biocompatibility,
and the medical application of nanoparticles that are synthesized using water as a
reducing medium (Noruzi 2015). For the synthesis of metal nanoparticles, different
parts of the pants could be used including roots, stems, leaves, fruits, and their
extracts (Murugan et al. 2015; Poopathi et al. 2015; Amooaghaie et al. 2015;
Sadeghi et al. 2015; Zhou et al. 2014; Gogoi et al. 2015; Singh et al. 2016c). The
basic protocol for phytosynthesis of nanoparticles contains the following steps: a
first, collection of different plant parts and wash them thoroughly with detergent and
double distilled water followed by an air dry and then cut into small pieces. Second,
Boil the plant parts in an aqueous solvent (water) at a controlled temperature for a
certain period to perform the extraction. Third, purify the extract by centrifugation or
filtration and incubate with the respective metal salts solution at a controlled
temperature for the reaction to occur, which gives a visible color change. Finally,
the nanoparticles can be collected in the form of pellets after density gradient or
high-speed centrifugation followed by thoroughly washing with water or other
solvents (Rajeshkumar 2016; Singh et al. 2016d). Till now the exact components
and mechanism behind the phytosynthesis of nanoparticles are not known but
researchers proposed that organic acids, proteins, vitamins, amino acids as well as
plants secondary metabolites like polyphenols, heterocyclic compounds, alkaloids,
polysaccharides, terpenoids, and flavonoids significantly participate in the reduction
of metal salts and consequently act as stabilizing and capping agents for nanoparticle
synthesis (Pohlit et al. 2011; Doughari 2012; Duan et al. 2015). El-Kassas and
coworkers depicted that the carbonyl group from proteins and the hydroxyl group
from polyphenols of Corallina officinalis extract may help in forming and stabilizing
gold nanoparticles (El-Kassas and El-Sheekh 2014). Similarly, a purgative resin
called emodin with quinone compounds found to be responsible for silver nanopar-
ticle synthesis by xerophyte plants. In the case of mesophytic plants dietchequinone,
cyperoquinone and remirin were found to be useful for the synthesis of metal
nanoparticles. Cinnamomum zeylanisum contains an important terpenoid called
eugenol which was suggested to have a key role in silver and gold nanoparticles
synthesis (Makarov et al. 2014). It was also suggested in reports that the mechanism
of plant-mediated nanoparticle synthesis differs from species to species (Baker et al.
2013). Extracts of different plant species were explored for the synthesis of
nanoparticles including Azadirachta indica, Mirabilis jalapa, and Cinnamomum
camphora leaf extract, Aloe vera plant extracts, Geranium extract, etc. for silver
and gold nanoparticle synthesis (Shankar et al. 2004a, 2004b; Chandran et al. 2006;
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Huang et al. 2007a; Patil et al. 2012). Nanoparticles synthesized from various plant
sources together with their characteristics are listed in Table 6.7.

6.9 Application of Biologically Derived Nanoparticles

Nanotechnology is based on modulation and the synthesis of nanoparticles demands
significant modifications of the metal properties (Visweswara Rao and Hua Gan
2015). Nowadays, scientists explore the application of nanoparticles in diverse areas
such as physiochemical, agriculture, biomedical and environmental areas
(Visweswara Rao and Hua Gan 2015; Rai et al. 2016; Abbasi et al. 2016; Giljohann
et al. 2010; Pereira et al. 2015). Gold and silver are the most commonly explored
nanoparticles in the biomedical area. Gold nanoparticles were employed for specific
delivery of drugs like doxorubicin, methotrexate and paclitaxel (Rai et al. 2016).
They were also used for the diagnosis of a genetic disorder and genetic disease,
tumor detection, photothermal therapy, detection of angiogenesis and photoimaging
(Huang et al. 2007b; Khlebtsov and Dykman 2011). Based on the aggregation
properties of gold nanoparticles, a susceptible, exclusive, and highly explicit system
of immunoassay was developed where the gold nanoparticles coated with protein
antigens became aggregated in the presence of their respective antibodies (Thanh
and Rosenzweig 2002). The magnetic nanoparticle iron oxide was applied for drug
delivery, tissue repair, hyperthermia, cancer therapy, magnetic resonance imaging
(Mishra et al. 2012), targeting and immunoassays, magnetic responsive drug deliv-
ery, cell labeling and biological fluids detoxification process (Iv et al. 2015; Gao
et al. 2008). Silver nanoparticles were reported to be used for anticancer, antimicro-
bial purposes, wound treatment, and anti-inflammatory applications (Ahamed et al.
2010). The endophytic fungus Pestalotia sp., isolated from Syzygium cumini leaves
able to synthesize silver nanoparticles that exhibited antibacterial activity against
S. typhi and S. aureus human pathogens (Raheman et al. 2011). Titanium and zinc
nanoparticles were used in various essential processing applications as well as in
ultraviolet (Sharma et al. 2019)-blocking agents, biomedical and cosmetic products
due to their skin-compatibility, biocompatibility, antimicrobial, self-cleansing, der-
matological behaviors and non-toxic nature (Zahir et al. 2015; Ambika and
Sundrarajan 2015). In electronic and optical industries, palladium and copper
nanoparticles have been used in optical limiting devices, batteries, plastics
plasmonic waveguides and polymers (Nasrollahzadeh and Sajadi 2015; Momeni
and Nabipour 2015). Furthermore, metal nanoparticles have been applied for the
visual analysis of different biomolecules with higher sensitivity and spatial resolu-
tion which include lipids, several metabolites, fatty acids, peptides,
glycosphingolipids, nucleic acids, and drug molecules (Waki et al. 2015). The
unique properties possess by the nanoparticles make them suitable for the develop-
ment of biosensors and chemical sensors (Peng and Miller 2011). For example,
researchers have developed nanosensor that may be able to detect algal toxins,
mercury and mycobacteria present in drinking water (Selid et al. 2009). Scientists
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Table 6.7 Plant-derived nanoparticles and their characteristics

Plant Nanoparticles

Plant
Tissues
for
Extraction Size Shape Reference

Aloe vera Gold Leaves 50–350 Triangular Chandran et al.
(2006)

Azadirachta
indica

Silver Leaves 41–60 – Poopathi et al.
(2015)

Anogeissus
latifolia

Silver Gum
powder

5.5–5.9 Spherical Kora et al.
(2012)

Abutilon
indicum

Silver Leaves 5–25 Spherical Ashokkumar
et al. (2015)

Artocarpus
gomezianus

Zinc Fruit > 20 Spherical Suresh et al.
(2015)

Banana Cadmium
sulfide

Peel 1.48 – Zhou et al.
(2014)

Cocos
nucifera

Lead Leaves 47 Spherical Elango and
Roopan (2015)

Catharanthus
roseus

Palladium Leaves 40 Spherical Kalaiselvi et al.
(2015)

Citrus medica Copper Fruit 20 – Shende et al.
(2015)

Cymbopogon
citratus

Gold Leaves 20–50 Spherical,
hexagonal, tri-
angular, and
rod

Murugan et al.
(2015)

Euphorbia
prostrata

Silver and
titanium
dioxide
(TiO2)

Leaves 10–15 for
silver; 81.7–
84.7 for TiO2

Spherical Zahir et al.
(2015)

Ginkgo biloba Copper Leaves 15–20 Spherical Nasrollahzadeh
and Sajadi
(2015)

Gardenia
jasminoides

Iron Leaves 32 Rock like
appearance

Naseem and
Farrukh (2015)

Nigella sativa Silver Leaves 15 Spherical Amooaghaie
et al. (2015)

Nyctanthes
arbortristis

Silver Flower 5–20 Anisotropic Gogoi et al.
(2015)

Lawsonia
inermis

Iron Leaves 21 Hexagonal Naseem and
Farrukh (2015)

Panax ginseng Silver and
gold

Root 10–30 for
silver, 10–40
for gold

Spherical Singh et al.
(2016e)

Pistacia
atlantica

Silver Seeds 27 Spherical Sadeghi et al.
(2015)

(continued)
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also developed nanosensors that react with auxin that helps them to study the plant’s
regulation of auxin (Koren et al. 2015). The nanoparticles were also used for
immobilization of biomolecules, the catalyst for various electrochemical reactions,
carrier for efficient electron transfer among electrode, etc. (Liu et al. 2003). Xiao
et al. used gold nanoparticles to effectively immobilize horseradish peroxidase by
attaching gold nanoparticles to gold electrodes which were modified with cyste-
amine monolayer (Xiao et al. 1999).

6.10 Conclusion

The diverse application of nanoparticles increases their need which in turn increases
the need for industrial production with stable formulations and in eco-friendly
processes. Thus, we need to focus on exploring natural resources to implement
biological methods for nanoparticle synthesis as it provides a single-step process,
commercially economical, environment-friendly process. The biological pathways
for nanoparticle synthesis comprise many advantages compared to physical path-
ways, including lack of toxic contaminants, lack of complex chemical synthesis,
stable production of nanoparticles with controlled shapes and sizes, and the ability
for rapid synthesis using various biological resources. Nanoparticles synthesized by
the biological processes can be used in the treatment of various diseases which will
further open new avenues in the field of medical sciences. The nanoparticle-based
biosensors have potential use in agriculture and bioremediation processes which will
help the environment from getting exposed to toxic substances. Despite having
benefits, the nanoparticles synthesized from biological sources still have some
challenges and limitations that need to be overcome and extensive research should
be done to optimize various conditions to obtain better control over shape, size, and
monodispersity of synthesized nanoparticles. Additionally, the exact mechanism by
which biological nanoparticles were synthesized is not clearly understood till now
and hence more researches are needed to elucidate and identify the exact

Table 6.7 (continued)

Plant Nanoparticles

Plant
Tissues
for
Extraction Size Shape Reference

Pinus
densiflora

Silver Cones 30–80 Oval and in
few cases
triangular

Velmurugan
et al. (2015)

Red ginseng Silver Root 10–30 Spherical Singh et al.
(2016f)

Orange and
pineapple

Silver Fruit 10–300 Spherical Hyllested et al.
(2015)
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mechanisms and the responsible biomolecules behind the reduction and stabilization
of nanoparticles.
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Chapter 7
Fungal Potential for the Degradation
of Synthetic Dyes: An Overview
of Renewable Alternatives
for the Production of Lignin-Modifying
Enzymes

Clara Dourado Fernandes, Débora S. Vilar, Nádia Hortense Torres,
Muhammad Bilal, Hafiz M. N. Iqbal, Ram Naresh Bharagava,
Silvia Maria Egues, and Luiz Fernando Romanholo Ferreira

Abstract This chapter contains a brief review of the literature on synthetic dyes,
their chemical characteristics, the different types of applications, and the problems
caused to the water system that receives this effluent. Possible biological treatments
were addressed, such as the use of fungal ligninolytic enzymes. Some agro-industrial
by-products were pointed out as substrate alternatives, in addition to being
questioned about their use as a support for fungal immobilization. This approach
was indicated as a prospecting methodology, which is justified by the increased
induction of lignin-modifying enzymes. A brief survey on the toxicity of agro-
industrial effluents was also carried out. Finally, operational optimization method-
ologies are presented to treat effluents through biological processes.
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7.1 Introduction

Synthetic dyes are widely used to dye diverse products in the industry such as
cosmetics, plastics leather, and mainly different fabrics (Naraian et al. 2018).
According to the statistical review of world trade, the textile (SITC 65) and clothing
(SITC 84) sector collected a total of US $ 315 billion and the US $ 505 billion in
world exports respectively in 2018, in addition to presenting a 6% prospecting of
growth in the market until 2023 (WTO (World Trade Organization) 2020).

The growing economic relevance in the textile industry raises questions about the
environmental impacts caused in this segment since, in the process of processing the
fibers, pigmented effluents are generated that are difficult to degrade. About
160 thousand m3 of water is spent per ton of fiber in the process of textile processing
in operations such as bleaching, mercerization, dyeing, and washing (Adar 2020).
Due to the partial incompatibility between the dye and the fibers, it is estimated that
high proportions of dyes (2–50%) are discarded after these processes (de Oliveira
et al. 2018). The generated effluent has a complex variety of organic and inorganic
chemicals that generate non-biodegradable hazardous waste and contributes to the
imbalance of the quality standards of the receiving water body.

Dyes are synthesized molecules that have a heterocyclic or aromatic nature and
can be soluble in an acidic, neutral, or basic medium (Shindy 2016). In addition to
having a complex molecular structure, metals are added to its composition to
increase the binding strength of the dyes to the fabric. This complexity in its
chemical structure, added to its physical and chemical characteristics, makes it
difficult to degrade this effluent. Its discharge without proper treatment causes a
change in pH, increases the amount of total dissolved solids (STD), and total
suspended solids (SST), which consequently increases the biochemical oxygen
demand (BOD) and the chemical oxygen demand (COD) (Kumar and Pavithra
2019). This imbalance can cause serious environmental problems to the soil and
the tributary, creating an inhibition of photosynthetic activity and favoring the
anaerobic condition, conducive to eutrophication.

In this way, the complex molecular structure of the dyes associated with their loss
during the industrial process raises concerns regarding human health and the envi-
ronmental impacts caused. Among the diversified methods of treating this effluent,
degradation by enzymatic route arouses the interest of the scientific community as it
is a high-efficiency green strategy, with no toxic by-products and low energy
demand. In this context, biodegradation techniques with the crude enzyme by fungal
fermentation show to be a promising approach, capable of reaching 99% efficiency
in removing synthetic pigments (Fernandes et al. 2020).

Fungal biodegradation occurs due to the microorganism’s ability to have two
types of extracellular enzyme system: the hydrolytic system, which produces hydro-
lases responsible for the degradation of the polysaccharide, and an oxidative
ligninolytic system, which can degrade lignin-like structures in addition to opening
phenyl rings (Sánchez 2009). Among the several microorganisms studied, the
basidiomycete fungus Pleurotus sajor-caju proved to be a major producer of
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ligninolytic enzymes such as laccase (Lac, E.C. 1.10.3.2) and manganese peroxidase
(MnP, E.C. 1.11.1.13) (Fernandes et al. 2020; Vilar et al. 2018). Such enzymes are
considered extremely efficient biodegradable biological catalysts, which have high
regio-selectivity and the ability to operate under mild conditions of pH, pressure, and
temperature, thus enabling industrial prospecting in biorefineries. (Torres et al.
2017). Because they have high oxidative potential, MnP and Lac were cited as
responsible for the degradation of synthetic contaminants such as Reactive Black
5 (Fernandes et al. 2020), azo Congo Red (Yehia and Rodriguez-Couto 2017)
reactive red and green bright (Zaccaria et al. 2019).

New researches are being developed, to produce enzymes of commercial interest
in a sustainable way, without using chemical substrates, which avoids the generation
of new effluents. In this way, agro-industrial residues such as vinasse and pulp wash,
have been re-signified as potential strategic sources of C and N for the cultivation of
fungal ligninolytic enzymes (Cruz et al. 2020; Vilar et al. 2018). Another approach
that has an economic and environmental impact is the immobilization of the micro-
organism on natural surfaces such as Luffa cylindrica (Sriharsha et al. 2017). This
alternative facilitates operational handling and increases the useful life of the bio-
catalyst, allowing its recyclability (Arantes et al. 2011; Saiu et al. 2018; Sriharsha
et al. 2017).

The efficiency of biotechnological processes is also associated with the interfer-
ence of parameters, pH, temperature, and concentration of the substrate and con-
taminant (Bettin et al. 2019). For this reason, mathematical modeling that can predict
the best operational condition for the degradation of synthetic dyes shows to be the
approach of the future. Among the various models cited in the literature, the
Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) are
among the most popular approaches, capable of predicting the efficiency of biodeg-
radation processes of emerging contaminants (Mahmoodi-Babolan et al. 2019;
Witek-Krowiak et al. 2014).

The implementation of agribusiness residues in the bioprocess of degradation of
synthetic dyes is a sustainable alternative of high efficiency. When adding this
approach with mathematical models capable of optimizing the process, one finds
the approximation of the empirical to the industrial application. In these circum-
stances, this chapter elucidates sustainable approaches to the reuse of waste as
substrates for the production of enzymes by the fungal route. The study also raises
questions about the inclusion of mathematical models capable of optimizing the
degradation of synthetic dyes.

7.2 Dye Classification

In general, dyes can be classified according to their application in the industry.
However, the most specific way of classifying them is following the norms and
nomenclature of the global reference classification of the Color Index (C.I.)which is
biased for commercial purposes. This index has a database of dyes and pigments

7 Fungal Potential for the Degradation of Synthetic Dyes: An Overview of. . . 155



developed by SDC (Society of Dyers and Colorists - United Kingdom) and AATCC
(American Association of Textile Chemists and Colorists). In this classification, the
dyes are given a generic name determined by the application technology, followed
by the C.I. number based on their chemical structure.

The classification of dyes can also be carried out according to the chemical
structure. For Yesilada et al. (2018), the chemical structure determines the properties
and use of dyes, in addition to providing the only rational basis for the classification
of these compounds. This classification depends on the chromophore group, which
is responsible for giving each dye its characteristic color, and the auxochrome which
is the structure responsible for fixing the color to the fibers. The main chromophor
groups are: Azo, Indigo, Anthraquinone, Nitro, Triphenylmethyl and Phthalene
(Benkhaya, 2018).

The most common chromophor groups are: azo (-N¼N-), methino (-CH¼),
carbonyl (-C¼O), �nitro (-NO2) and quinoidal rings while the auxochromes are:
amino (-NH3), carboxyl (-COOH), sulfonate (-SO3H) and hydroxyl (-OH) (Bajaña
et al. 2017). According to Burkinshaw and Salihu (2013), another practical way to
classify dyes is through the application method, as they can be acidic, basic, direct,
dispersed, mordant, metallized, solvent or reactive.

Table 7.1 summarizes the most common classes using this classification criterion
and its applications in the industry.

7.2.1 Azo Dye

Within the classification by functional groups, azo dyes have been overused by the
industry, corresponding to 70% of global demand (Rawat et al. 2016). Its favoritism
is associated with four main factors: high adaptability to application needs, simpli-
fied coupling reaction, capacity for structural variations and high molar absorbency
(Said Benkhaya, 2018). These dyes are developed to resist the fading effects of
exposure to light, sweat and water.

Characterized by the functional group of the azo type (-N ¼ N-) as well as
aromatic rings and sulfonic groups, these dyes form an important class of molecules
with hydrophobic characteristics known as dispersed dyes, being the only one
capable of dyeing polyester fibers and therefore widely used in textile processes
(Almeida and Corso, 2014; Fernandes et al. 2018).

However, recent studies reveal that the azo dye has a genotoxic effect by forming
cleavage products (such as aromatic amines) that cause damage to the genetic
material (da Brambilla et al. 2019; Brüschweiler and Merlot 2017). These discover-
ies raise the concern of human exposure and bioaccumulative environmental con-
tamination, which can lead to adverse effects due to their harmful activity to DNA
(da Brambilla et al. 2019).

Among azo dyes, reactive black 5 (RB-5) is commonly used for dyeing fibers
with high resistance to heat and moisture (Schubert et al. 2012). Its molecular
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structure is composed of two vinyl-sulfone groups (SO3 and H2SO4) that are
converted into anionic sulfate in aqueous solutions (Jager et al. 2018) (Fig. 7.1).

In addition to having a complex structure, the dye can be modified to improve the
application properties of the product, for example, its dispersibility, flow or resis-
tance to flocculation. For these characteristics, RB-5 has resistance to the main
oxidizing agents of conventional treatments (Fernandes et al. 2018). In this way,
this azo dye raises concerns for causing environmental and human health impacts so,
sustainable and economically viable approaches have been developed for its removal
and degradation.

7.3 Treatment Methods

The effluents released by the textile industries have carcinogenic xenobiotic charac-
teristics that are difficult degradation. Consequently, the existence of this waste in
the water body is becoming a socio-environmental concern. In order to minimize the
negative impacts caused to the environment and living beings, studies have been
carried out in the search for methods of treating pigmented effluent that are sustain-
able and efficient in the long term (Katheresan et al. 2018). Among the existing
methods, there are two general categories of treatment, namely physical-chemical
and biological.

The physical-chemical dye removal processes have a significant percentage of
efficiency that varies between 88% to 99% (Katheresan et al. 2018). This approach is
characterized by using chemical methods associated with physical interaction to
remove the dye, such as electrochemical oxidation (Jager et al. 2018), photo-
oxidation (Traven et al. 2018) and adsorption (Jager et al. 2018; Traven et al.
2018; Vikrant et al. 2018). However, these methods are guided by economic and

Fig. 7.1 Molecular
structure of Reactive
Black 5

7 Fungal Potential for the Degradation of Synthetic Dyes: An Overview of. . . 159



technical challenges, being commercially unattractive. Katheresan et al. (2018) point
out in their studies specific disadvantages of these processes such as the generated
sludge that is difficult to handle and dispose of, production of toxic by-products, the
amount of energy and the handling of chemicals required to maneuver the process.
Therefore, despite its efficiency in decolorizing the effluent, most of these processes
are not considered environmentally friendly.

In contrast, biological treatments stand out in the scientific community, due to
their advantages in sustainability, cost-benefit, easy handling, absence of sludge or
toxic secondary waste (Vikrant et al. 2018). This approach is characterized by its
flexibility in different implementation configurations, which can be installed on site
(in situ) or outside (ex situ). However, the process always occurs before its disposal
into the environment (Ghosh et al. 2017). Bioremediation techniques that employ
fungi are called mycorremediation and can degrade recalcitrant substances in pro-
cesses with or without oxygen, such as adsorption by fungal biomass and/or
degradation by enzymatic route (Katheresan et al. 2018). Moreover, its practice
can reconcile a diverse consortium of fungi, which can enhance its performance in
decolorization (Abd El-Rahim et al. 2017; Wanyonyi et al. 2019).

Several fungi are studied for the biodegradation of dye. Nevertheless, fungi
isolated from forest ecosystems, such as white rot ligninolytics, have been shown
to be very efficient in decoloring the dye in submerged fermentation (Yang et al.
2016). Its performance in mycoremediation is associated with the ability of micro-
organisms to carry out joint actions of bioabsorption and biodegradation.

Fungal biosorption is characterized by the ability to adhere a chemical molecule
to the surface or micropores of the biomass (Almeida and Corso 2014). Adhesion
can occur through the fungal cell wall, which has a wide variety of functional groups
(such as amino, carboxyl, thiol, lipid and phosphate groups) that form bonds with the
dye molecules, enabling the subsequent removal of the system (Yang et al. 2016). In
a microscopic study conducted by Singh et al. (2015), the spores of white rot fungi
absorb the dye due to the hydrophobic-hydrophilic interaction between those
involved, which associated with the enzymatic concentration excreted by the fungus
enhances the removal of the dye.

Therefore, the processes with biosorption and biodegradation have economic,
social and environmental relevance in addition to presenting a high percentage of
remediation of the textile effluent. Therefore, the fusion of these methods in a single
dye removal process should be considered as promising technologies to be studied.

7.3.1 Ligninolytic Fungi

Mir-Tutusaus et al. (2018) reported that the term white rot fungus is not a taxonomic
grouping, but rather a collection of species of fungi capable of degrade lignin. Its
distinction from other microorganisms when applied to bioremediation is due to the
presence of filaments called hyphae that easily pass through the substrate and reach
pollutants. The hyphae cluster forms the mycelium, representing the basic units of
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filamentous fungi characterized by a resistant cell wall composed of polysaccharides
(chitin and β-glucan) and glycoproteins (Moreno-García et al. 2018). White rot fungi
are mainly basidiomycetes and some relevant species include Phanerochaete
chrysosporium, Aspergillus terreus, Pleurotus ostreatus and Pleurotus sajor-caju.

The undefined multi-enzymatic system of these fungi is suitable for destabilizing
molecules. Its degradation capacity is associated with the release of extracellular
enzymes in the substrate that colonize them, including hydrolases and oxidoreduc-
tases (laccase (Lac), manganese-peroxidase (MnP) and lignin peroxidase (LiP)),
playing a fundamental role in the removal of lignin (Mir-Tutusaus et al. 2018).
Due to these characteristics, white rot microorganisms are considered efficient in the
degradation of emerging pollutants, due to their high redox potential capable of
recovering contaminated environments and their low specificity of the enzyme set
(Ali, 2010). However, like all living organisms, these fungi can modify their
environment and use the chemical compounds present in the environment as sources
of energy and base for their growth and reproduction.

7.4 Lignin-Modifying Enzymes

7.4.1 Laccase

Laccase enzymes (benzenediol: oxygen oxidoreductase) belong to the family of
polyphenols oxidases, being widely found in plants, insects, bacteria, and filamen-
tous fungi (El-Batal et al. 2015). In Pleurotus ostreatus laccase, this enzyme has a
molecular mass ranging from 50–60 KDa, in addition to covering four copper ions
(Cu) present in three binding sites, in which each ion performs a considerable
function in the catalytic reaction that occurs through the oxidation of phenolic
substrate, as molecular oxygen is reduced to water (Rivera-Hoyos et al. 2015).

Fungal laccases are classified according to their redox potential, as high
(790 mV), medium (430–710 mV) and low (430 mV), which makes it possible to
transform toxic compounds into metabolic ones, through the oxidation of these
compounds (Piscitelli et al. 2011). However, these enzymes have difficulties to
penetrate the substrate (biomass) and degrade lignin, due to their high molecular
weight. Furthermore, they are able to degrade phenolic compounds of lignin only on
the surface of the substrate. In contrast, they are unable to oxidize the non-phenolic
compounds of the lignin present on the surface and have a high redox potential, as
these enzymes generally have low redox potential (Widsten and Kandelbauer, 2008).
With the use of chemical mediators, in which they are compounds of low molecular
mass that allow oxidized radicals to react chemically with the target substrates of
high redox potential, these limitations can be overcome since these mediators act as
intermediate substrates of laccases (Rivera-Hoyos et al. 2015).

Most of these enzymes are inducible, so inducers such as aromatic or phenolic
compounds related to lignin or lignin derivatives are responsible for increasing the
production of this enzyme through fermentation processes. The same inducer can
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either increase the laccase production for a given species of fungus or cause no effect
on another species. Therefore, the optimum inducer is not common to all fungi, and
the choice of it will depend on the fungus studied (Mann et al. 2015). Laccase
production is affected by the physiological differences that exist in cultivation
conditions and between fungal cultures, as well as in low-cost procedures that
make application of these enzymes viable (Kocyigit et al. 2012). The ideal temper-
ature of its activity and its stability vary according to the different sources of
enzymes, normally more stable in acidic pH (Majeau et al. 2010).

Laccase, according to Rivera-Hoyos et al. (2015) is a dimeric glycoprotein
belonging to the family of blue copper enzymes that usually contain an active center
that comprises 4 copper atoms well distributed in three groups of cupredoxin are
identified: a type 1 copper (T1), responsible for the oxidation of the substrate and is
covalently linked to a cysteine that provides the intense blue-green color of the
enzyme, as well as having a maximum electronic absorbance at 610 nm, when
copper is in the cupric state (Cu2+) (Giardina et al. 2010; Piscitelli et al. 2011). A
type 2 (T2) copper that acts as an electron acceptor, has poor absorption in the visible
region, not being detected by electronic absorption, but has detectable RPE and,
finally, two types 3 Cu (T3) that do not show a signal EPR, consisting of two tightly
coupled copper atoms and operates as a two-electron acceptor, in addition to being
responsible for the band at 330 nm (Rodríguez-Delgado et al. 2015) (Fig. 7.2).

The catalytic cycle of the enzyme Lac begins with the reduction of T1 by the
substrate where Cu1 removes electrons from the substrate and transfers them to T2
and T3, through the amino acids of the polypeptide chain (His-Cys-His), and due to
the strong interaction between T1 and T2 there is a reduction of one oxygen
molecule to two water molecules in the active center of these coppers (Fig. 7.2).
The oxidation of four substrate molecules is necessary to produce the complete
reduction of molecular oxygen to water through successive monoelectronic oxida-
tions of the substrate (variety of organic and inorganic substances) (Brijwani et al.
2010).

7.4.2 MnP

According to Maciel et al. (2010), manganese peroxidase (MnP) is a glycosylated
extracellular enzyme with a catalytic cycle similar to that of lignin peroxidase (LiP).
It has a molecular mass ranging from 40 to 52 KDa, has a heme prosthetic group and
is dependent on hydrogen peroxide as a co-substrate responsible for catalysis,
oxidation from Mn+2 to Mn+3 (Hakala et al. 2005).

The catalytic cycle of MnP is initiated by the binding of H2O2 or another organic
peroxide to the enzyme’s native iron, forming an iron-peroxide complex (Fig. 7.3).
The subsequent breakdown of the O-O bond of the peroxide requires the transfer of
two electrons from the heme group of the enzyme, which results in the formation of a
complex radical Fe+4-oxo porphyrin (MnP-I). With the breakdown of the oxygen
bond, a water molecule is released, followed by a reduction that causes the formation
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of non-root Fe+4 -oxo porphyrin (MnP-II). This intermediate complex gains 1 elec-
tron from the Mn+2 ion, thus being oxidized to Mn+3. From Mn+2, the reduction of
MnP-II occurs, and another Mn+3 is generated, which leads to the original formation
of the enzyme and soon a second molecule of water is released (Hofriter, 2002).

During catalysis, Mn+3 formed and stabilized by organic acids produced by the
fungus itself, can displace electrons from various organic compounds, which also
includes phenols, aromatic amines, sulfur compounds and unsaturated fatty acids in
a non-specific way, leading to the formation of highly reactive radicals, which makes
it possible to achieve recalcitrant structures with high reduction potential, although
in the presence of appropriate intermediates, their performance can also be extended
to non-phenolic structures (Carvalho et al. 2009).

MnP of white rot fungi is considered one of the main enzymes involved in
biotechnology, due to its ability to oxidize various toxic compounds, and can also
be used in the biodegradation of lignin, humic acids, synthetic dyes, polychlorinated

Fig. 7.2 Protein sequence homology model of Lacase Pleurotus ostreatu, white rot fungus and its
catalytic cycle
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biphenyls (PCBs), aromatic hydrocarbons polycyclic (PHA) and aromatic xenobi-
otics (de Oliveira et al. 2009). Until then, no bacteria, yeast and mycorrhizal
basidiomycete capable of producing manganese peroxidase have been revealed,
being apparently limited to certain basidiomycete fungi. The ability to synthesize
MnP is widespread among the different taxonomic groups of basidiomycetes
(Kulikova et al. 2011).

In this context, according to (Fernández-Fueyo et al. 2014), the genome of
P. ostreatus, belonging to lignicellulolytic fungi, was sequenced in a preliminary
analysis in silico showed the genes that encode their manganese peroxidase (MnP4).
The study showed a helical structure (formed by four main helices and two to three
small ones) that has a structural calcium ion, and a proximal domain composed of six
other helices as illustrated in Fig. 7.3.

7.5 Agro-Industrial by-Products as Enzymatic
Production Tool

In the course of processes conducted by microorganisms, according to (Giese, 2015),
three stages can be distinguished: upstream, which involves the preparation of the
inoculum and the raw material; transformation, in which the microorganism is
placed in direct contact with the substrate and the formation of products arising
from biochemical reactions favored by the process conditions and the downstream

Fig. 7.3 Homology model of MnP protein sequence Pleurotus ostreatus and its catalytic cycle

164 C. D. Fernandes et al.



step, where the formed product is separated, recovered and purified when necessary.
During the fermentation process, ligninolytic fungi transform the substrates present
in the culture medium into one or more products of biotechnological interest. These
products include ligninolytic enzymes such as Lac and MnP (Pompeu et al. 2018;
Cruz et al. 2020; Vilar et al. 2018).

Among the techniques used for enzymatic production processes of fungal origin,
the classification regarding the cultivation mode, usually called solid or submerged
fermentation, stands out (Costa, 2016). In solid-state fermentation, filamentous fungi
grow on the surface of the medium, as they usually are in nature; however, this
method does not favor the downstream stage for the extraction of the generated
products. On the other hand, submerged fermentation facilitates the homogenization
of soluble nutrients, and demonstrates relative simplicity when the cultivation is
scheduled for industrial production purposes, since the homogeneity of the medium
facilitates the control of process parameters such as pH and dissolved O2. Other
advantages reported by Costa (2016) were reduced product degradation in enzymes
with low thermo stability; control of the carbon source and ease in the extraction of
the product of interest from the fermented broth, avoiding catabolic repression.
Nevertheless, there are limitations in this process, such as the generation of large
liquid volumes, requiring an increase in the energy demand associated with sterili-
zation and removal of products from the environment (Costa, 2016).

In order to minimize this obstacle, several studies have been developed on
submerged fermentation using agro-industrial by-products, since Brazil is one of
the largest agricultural producers in the world and responsible for large amounts of
lignocellulosic residues that can be used as enzyme inducers (Golveia et al. 2018).

In the process of degradation of emerging pollutants, due to the action of fungal
ligninolytic enzymes capable of carrying out their degradation. These enzymes have
widespread applications in several industries, being used in pharmaceutical pro-
cesses (Li et al. 2015), cellulose treatment (Zhang et al. 2017a, b) and agricultural
processes (Krell et al. 2018). However, despite its great versatility for industrial
applications, a large amount of enzymes and with high catalytic activity are required.

Munir (2015) evaluated the production of lignin-degrading enzymes by
P. chrysosporium, from wheat straw residues, reaching, under optimized conditions,
the yield of 993.9 � 18.4 UI.mL�1 (MnP). On the other hand, Golveia et al. (2018)
obtained a Lac production of 1,642 UI.mL�1 during the submerged degradation of
cupuaçu residues by Pycnoporus sanguineus. Amriani et al. (2017) reported that
when using the fungus Trametes versicolor U80 and grown in black liquor, an
activity of 80 IU.L�1 (MnP) was achieved, which provided the decolorization of
90% of the residue. Other enzymes can also be induced, such as cellulase through
sugarcane bagasse by Trichoderma koningii (8.2 IU.g�1 substrate) (Salomão et al.
2019). Therefore, the application of by-products and agro-industrial residues proves
to be a versatile and promising alternative for the production of diverse ligninolytic
enzymes.
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7.6 Immobilization of Fungal Mycelia

Techniques for immobilizing fungal mycelia can be defined according to the adhe-
sion of the biomass to a solid or porous support, limiting the detached growth of the
microorganism, but conserving its biological activity (García-Reys et al. 2017). This
process is identified as a viable alternative to increase stability and reduce shear
stress in fermentation processes, in addition to favoring the separation of biotech-
nological products from the fermented medium and, consequently, reducing costs in
the downstream stage. As shown by Giese (2015), the support for immobilization
should have a large contact surface, preferably containing the presence of functional
groups that cause better cell adhesion, be easy to handle, reusable, in addition to
ensuring cell viability and stability of the processes in which they are employed.
Thus, in general, fungal mycelia immobilizations can be classified as fixation, in
which the microorganisms adhere to the surface by chemical bonding alone; or by
entrapment, which involves the retention of microorganisms in the pores of fibers or
is physically trapped inside a solid or porous matrix, as exemplified in Fig. 7.4
(Moreno-García et al. 2018).

Microorganisms perform several multicellular methods of immobilization. As an
example of fungal self-immobilization, Moreno-García (2018) cites the formation of
cell filaments and flakes. This natural immobilization process consists of the

Fig. 7.4 Classification of immobilization methods
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aggregation of single-celled organisms in suspension to form cellular aggregates
known as flakes, making their potential use in reactors viable. This technique is
considered simple and economically viable, although it is easily influenced by
several factors such as composition of the cell wall, medium, pH and dissolved
oxygen (Moreno-García et al. 2018).

Artificial immobilizations can be obtained by trapping mycelia in microcapsules,
or by an interaction surface between two immiscible fluids. Immobilization in a
polymeric matrix, the microorganism binds to the support through covalent bonds
where the matrix used can be preformed or synthesized in situ (Moreno-García et al.
2018). Covizzi (2007) states that the cellular matrix formed in this process, prevents
the spread of the microorganism to the culture medium, without interfering with the
absorption of nutrients and metabolites. Moreno-García et al. (2018), cites polysac-
charide gels as alginates, agar, chitosan and polygalacturonic acid as one of the main
immobilizing agents.

On the other hand, fungal adhesion on solid surfaces is the most common way for
the microorganism to be present in nature, especially on rocks and minerals, being
directly related to microbial activity and its survival (Costa, 2016). During this
natural process, electrostatic interactions between the microorganism and the sup-
port are responsible for immobilizations such as adsorption and the formation of
biofilms. In this model, the binding of fungal cells consists of a physical-chemical
process resulting from the hydrophilic and / or hydrophobic properties of the cell
surface, depending on the pH, ionic strength of the solution in which it is found and
also on the composition of the support surface (Park et al. 2010) since, the method of
immobilization by adhesion is based on the excretion of polysaccharides that helps
in fixing the fungus to the support (García-Reys et al. 2017). This is a low operating
cost method, easy to handle, where different types of supports can be used
(Svobodová and Novotný, 2018).

In studies by Przystaś et al. (2018) specific supports were selected for
immobilizing biomass from basidiomycete fungi to verify the degradation of azo
dyes. Among the different substrates tested, the biomass immobilized in sawdust
absorbed 82.5% of bright green. A similar study was carried out by Mazmanci and
Ünyayar (2005) and Nilsson et al. (2006), both using the organic support Luffa
cylindrica, for the adsorption of dye, reaching an efficiency of 70 and 99% of
decolorization, respectively. Table 7.2 summarizes some microorganisms
immobilized on different supports to adsorb on different contaminants.

Cell immobilization can also be used to complement wastewater treatments.
Because it is an efficient approach to removing dangerous substances, fungal
treatments can be integrated into advanced treatment processes (Ghosh Ray and
Ghangrekar, 2015). In order to treat wastewater flows generated by the pulp and
paper mills Zhang et al. (2017a, b) used ears of corn from agricultural residues to
immobilize white rot fungi, increasing the efficiency of the treatment in terms of
removing the color and COD of a secondly treated pulp and paper. Fernandes et al.
(2020) also reported that the immobilization of P. sajor-caju on the surface of Luffa
cylindrica brought improvements to the enzymatic activity of MnP, which could
assist in the decolorization processes of the synthetic dye RB5. On the other hand,
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Sriharsha et al. (2017) stated the high efficiency of Aspergillus niger and Aspergillus
terreo immobilized in Luffa cylindrica for the treatment of water contaminated with
high concentrations of lead.

7.7 Effluent Toxicity

With emphasis on studies that evaluate the harmful effects of chemical substances on
living organisms, ecotoxicology has been shown to be an effective approach in
helping to analyze the environmental impacts caused by such contaminants, provid-
ing the validation of toxicity by bioindicators (O’Brien, 2017). The realization of
ecotoxicological tests in aquatic and terrestrial organisms, allows identifying the
harmful effects of several pollutants, aiming to evaluate the potential risk to the local
biota (CONAMA, 2005). Bioassays are recommended by international and national
organizations, which guide the use of sensitive and abundant organisms. According

Table 7.2 Application of microorganisms and supports used in biotechnological processes

Microorganism Support Process Reference

Metarhizium brunneum CB15 Encapsulation with:
Amidated pectin, corn
starch, cellulose, cellulase
and yeast

Increased endo-
phytes in potato
plants

Krell et al.
(2018)

Aspergillus Niger Carbon Nano tube Textile dye
removal

Bello et al.
(2017)

Aspergillus niger e, Aspergil-
lus terreu

Luffa cylindrica Lead removal Sriharsha
et al.
(2017)

Aspergillus Niger Alumina nanoparticles Fluoride removal
from water

Yang et al.
(2017)

Fungal strains of white rot Corn cob Tertiary treatment
of cellulose

Zhang
et al.
(2017a, b)

Aspergillus Niger,
Cladosporium cladosporioides
e Penicillium solitum

Rice and sodium alginate Analysis of
potential for agro-
industrial use

Elizei et al.
(2014)

Phanerochaete
chrysosporium; T. Versicolor;
Pleurotus ostreatus; Pleurotus
sajor-caju

Luffa cylindrica Reactive red
2 Decolorization;
reactive blue 4.

Nilsson
et al.
(2006)

Funalia trogii Luffa cylindrica Reactive black
5 Decolorization

Mazmanci
and
Ünyayar
(2005)

P. Sajor-caju Luffa cylindrica Reactive black
5 Decolorization

Fernandes
et al.
(2020)
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to (Colombo et al. 2018), the analysis of ecotoxicological effects enables an under-
standing of the possible effects on the ecosystem surrounding the effluent-receiving
water body, in addition to explaining the biological effect of solubilized compounds.
In contrast, the main Brazilian legal instrument, which regulates the standards for the
discharge of effluents, maintaining the quality of water bodies, is CONAMA Res-
olution N�. 357/05, supplemented and amended by CONAMA N�. 430/2011, where
these define the relevance ecotoxicological tests, explaining methods used to detect
and evaluate the ability of a toxic agent to cause harmful effects, identified by
bioindicators of large groups in an ecological chain (CONAMA, 2011).

Bioindicators are particularly sensitive species, and when they are absent in the
environment to which they are inserted, it suggests an adverse impact, visible by the
biological responses of the species under study, which show synergistic, additive,
antagonistic and potentiation effects. Depending on its concentration and property,
the effluent can cause changes in the food web, which can cause biomagnification
(increase) or trophic dilution (decrease) of the bioindicator (Zhou et al. 2019). The
ecotoxicity tests are carried out under specific conditions and controlled in the
laboratory or in situ, which maintain the veracity and experimental relevance in
determining the toxicity of the contaminant. In these tests, the test organisms are
exposed to different concentrations of a given sample and the toxic effects produced
are observed and quantified.

To perform toxicity bioassays, different trophic levels are commonly used
(Fig. 7.5). The propensity to choose these is related to some essential characteristics,
such as: constant and high selectivity to contaminants, high availability, genetic

Fig. 7.5 Classification of bioindicators by trophic level
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stability in populations, representativeness of their trophic level, environmental
relevance in the study area, commercial importance, ease of cultivation and adapta-
tion to laboratory conditions (Sobrero and Ronco, 2004). In addition, species with
clearly established physiology, genetics and behavior should be chosen, in order to
promote better interpretation of results (Fernandes et al. 2018).

On the other hand, bioassays can be classified according to the time of exposure
and effects caused on the test organism, thus being able to be distinguished as acute
or chronic. The acute toxic effect corresponds to a short period of life of the test
organism on display, culminating in its lethality or total immobility. In contrast, in
the chronic toxic effect, test organisms demonstrate deleterious effects measured
over a long period of time, which can affect various biological functions of the
organism, such as life cycle, reproduction and behavior (CONAMA, 2005).

After exposure of the test organism to the contaminant, the test results can be
analyzed for their average lethal concentration (LC50) or average effective concen-
tration (EC50), representing the values of concentrations of toxic agents capable of
causing mortality or immobility at 50% of test organisms, after the exposure period
under the test conditions. In addition, the result of the bioassay can also be expressed
by the Toxicity Factor - FT, to determine the lowest dilution of the contaminant,
which does not cause deleterious effects during, or after exposure (CONAMA,
2011).

In order to assess the toxicity of the textile and agro-industrial effluent and prove
the efficiency of the treatment process, the species Lactuca sativa L. belonging to the
Asteraceae family was chosen as a bioindicator for its availability, ease of repro-
duction, maintenance in laboratory conditions and for its relevance environmental
and economic.

7.7.1 Lactuca sativa

According to Priac et al. (2017), bioindicators used in ecotoxicological tests allow an
evaluation of the residues in an integral and efficient way, before contact with the
environment. Seed of Lactuca sativa L. (lettuce) are plant species commonly used in
phytotoxicity tests and widely recommended by the United States Environmental
Protection Agency (USEPA, 1996) the International Organization for Standardiza-
tion (ISO, 1995) and the Organization for Economic Co-operation and Development
(OECD, 2003). Colombo et al. (2018) states that phytotoxicity with L. sativa pro-
vides information when observing the effective or absent seed germination. This
analysis is performed through the germination index (GI), where there is interference
in the metabolic reactions of the organism, culminating in the harmful effects caused
by the effluent, in addition to inferring the biological effect caused by the soluble
compounds even in low concentrations.

IG is the phytotoxicity index commonly used to assess the toxicity of pure
compounds or complex mixtures, such as industrial waste or effluents. These tests
are classified as a static acute toxicity test with 120 h of exposure, where the process
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of germination and root development in the first days of growth is evaluated
(Komilis et al. 2016). Several authors have reported acute phytotoxicity through
bioassays carried out with Lactuca sativa on treated effluents from the textile
industry (Table 7.3), (Fernandes et al. 2018; de Oliveira et al. 2018) and agro-
industrial residues, such as pulp wash and vinasse (Cruz et al. 2020; Vilar et al. 2018)
demonstrating the versatility of application of this bioindicator. Thus, the use of
bioassays with plants represents a fast and economical method for characterizing the
toxicity of environmental samples (Chan-Keb et al. 2018).

7.7.2 Zebrafish (Danio rerio)

Danio rerio (popularly known as Zebrafish) belonging to the phylum Cyprinidae, is
a diploid freshwater vertebrate used in bioassays for the toxicity of environmental
pollutants that have a complex composition. This method is considered of high
efficiency because it presents biological responses that show synergistic, additive,
antagonistic and potentiation effects that do not appear in conventional physical-
chemical analyzes (Lourenço et al. 2017).

The acute toxicity test used for this organism in its early stages of life (Fish
Embryo Acute Toxicity Test (FET) is of high importance with regard to the
impairment of the growth and survival phases of the organisms in polluted environ-
ments, constituting an important tool for adequate environmental monitoring. This
organism has high sensitivity when exposed to different contaminants, as it has rapid
absorption of compounds available in aqueous media and accumulates them in
various tissues such as, in your central nervous system (Sant’Anna et al. 2011;
Wang et al. 2020). Currently, zebrafish are used as an in vivo vertebrate model for
ecotoxicological studies due to the high degree of genomic homology for humans
(70% similarity), low cost, optical transparency, and high fertility rate (Howe et al.
2013). Thus, research with this organism in several areas is increasingly frequent to
assess toxicity, the occurrence of malformations, and assess sublethal effects (Horie
et al. 2017) as expressed in Table 7.4.

Table 7.3 Application of toxicity bioassays

Test organism Application Reference

L. sativa; A. salina Procion red MX-5B azo dye fungal
treatments

Almeida and
Corso (2014)

Lactuca sativa, Cucumis sativus,
and Lycopersicon esculentum

Toxicity of textile dyes: DB38- azo dye;
RB15- copper deftalocyanine

de Oliveira
et al. (2018)

Lactuca sativa, A. salina and Danio
rerio

Azo dye removal using Fenton-type
processes

Fernandes
et al. (2018)
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7.8 Optimization of Operational Conditions

As previously reported, efficiency in biodegradation processes is associated with the
proper functioning of operating conditions, such as reaction time, pH, substrate and
contaminant concentration (Bettin et al. 2019). Therefore, modeling capable of
predicting and optimizing such parameters becomes an essential step to achieve
the highest process yield. However, because it is a living process, extremely
sensitive to external interference, biodegradation is considered a complex model to
be modeled due to the non-linearities involved (Fernandes et al. 2020). According to
Witek-Krowiak et al. (2014), it is possible to work around this limitation using
analyzes that simulate the random relationship between the operational input param-
eters and the desired result. Among the methods used in recent research, the
Artificial Neural Networks (ANN) and the Response Surface Methodology (RSM)
are among the most efficient, being able to predict biodescoloration processes with
accuracy values close to 100% (Mahmoodi-babolan et al. 2019; Fernandes et al.
2020).

With a smaller number of experimental data, RSM is the tool capable of finding
the optimal region and, thus, determining the best operational conditions according
to an analytical mathematical model (Shojaeimehr et al. 2014). This methodology is
widely used for the design of wastewater treatment processes (Gasemloo et al. 2019).
However, the RSM technique is limited by the quadratic correlation hypothesis,
since it assumes second order polynomial equations (Fernandes et al. 2020).

On the other hand, Artificial Neural Networks (ANN) are considered universal
approximators (Fernandes et al. 2020), In addition to being able to design empirical
models simulating the process of biodecolorization, RNA has no limitations in the
correlation of nonlinearities (Torregrossa and Capitanescu, 2019). In the view of
Khataee et al. (2011) ANN makes an analogy with the brain of intelligent organisms,
where it is possible to use artificial neurons divided into layers, and thus serve as
models that design the path of complex responses. The number of neurons used in
each layer is equivalent to the number of parameters (input) and responses (output).
Neurons located in the middle layer are responsible for processing information. With
this approach, it is also possible to analyze the representation of the contributions of
each parameter under analysis for the final answer. For this, the ANN weighs the

Table 7.4 Applications of bioassays with zebrafish

Applications Reference

Toxicological analysis of uranium mining waste Lourenço et al. (2017)

Toxicity of basic red 51 synthetic dye and natural
erythrostominone dye

Abe et al. (2017)

Tannery effluent toxicity Rocha and De Oliveira
(2017)

Impact of vinasse on aquatic organisms Sousa et al. (2019)

Toxicity by-product of the oil extraction process Babić et al. (2019)

Toxicity of oil refinery waste Kim et al. (2019)
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weights and bias between the neurons used (Al Aani et al. 2019). Among the existing
RNA models, the multilayer perceptron is mainly used, as it allows the modeling of
highly non-linear processes through different layers of neural networks (Li et al.
2019).

However, ANNs are not able to optimize the input parameters from their adjust-
ment, it is necessary to use a global search algorithm to perform this function.
Among the existing stochastic methods, Genetic Algorithms (AG) have stood out
due to their efficiency. An AG is an algorithm inspired by evolutionary theory,
where natural selection chooses the best individuals (possible solutions to the
problem) within a population (Ghanavati Nasab et al. 2018). Another great differ-
ential is the synergy between Genetic Algorithms and neural models, making the
ANN-AG technique an effective tool in the simulation and optimization of complex
processes (Ghanavati Nasab et al. 2018).

More recently, RSM and ANN methods have been applied to model and optimize
environmental studies (Mahmoodi-Babolan et al. 2019). In addition, bibliographic
research reveals that ANN and RSM are considered effective forecasting tools for
descolorization phenomena. To date, many studies have been carried out to estimate
the capacity of enzymes to micro-measure wastewater using RSM. Cordova-villegas
et al. (2019) performed the optimization of the decolorization of AB113 and DB38
azo dyes by peroxidase enzymes, using the response surface methodology in a
Box-Behnken Designer (BBD) evaluating parameters such as pH and pollutant
concentration, reaching R2 value of 99, 07%. Ajmi et al. (2018) performed the
optimization for color removal from wastewater using a fungal consortium reaching
99.75% efficiency by applying RSM with an R2 of 90.93%. Parameters such as
initial concentration of the dye, pH, reaction time, and temperature were evaluated
by Torbati (2016) through the ANN to optimize the phytoremediation of the dye
Green malachite. In addition, its results revealed that ANN-GA’s predictions are
more advantageous than those of the quadratic model provided by RSM (Baştürk
and Alver, 2019; Qi et al. 2019) which shows that the predicted operational
conditions lead to more high process efficiency. On the other hand, Fernandes
et al. (2020) concluded that both ANN-GA and RSM were able to efficiently
model the biodecolorization of the synthetic dye RB5 using crude enzyme of the
fungus P. sajor-caju. The authors found an R2 of 98% for RSM and 99% for
ANN-GA showing that there is no statistically significant difference between the
models.

7.9 Conclusion

Scientific progress points to the advancement of sustainable technologies capable of
reframing residues on alternative highly efficient substrates. In this context, different
agro-industrial residues have unique characteristics, capable of providing a good
enzymatic performance of Lac and MnP. The white-rot fungus Pleurotus sajor-caju
is considered as the promising fungus for the production of ligninolytic enzymes

7 Fungal Potential for the Degradation of Synthetic Dyes: An Overview of. . . 173



with the ability to degrade not only synthetic dyes but also other emerging contam-
inants. In this way, it was possible to present traditional biosorption techniques, as
well as to raise prospects about the application of the crude enzyme as a
biodecolorization agent. The search for the approximation of these techniques to
industrial scale has been raising great efforts on the part of scientists and researchers.
Therefore, studies that carry out mathematical models capable of predicting and
optimizing operational conditions, proved to be a recent but necessary advance, to
bring biotechnological processes closer to the industry. Few articles were found in
this area, as there is also a lack of studies with economic viability analysis, demon-
strating a gap for future works.
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Chapter 8
Industrial Scale Production of Important
Therapeutic Proteins Using Bacterial
Expression System

Kunal Kerkar, Manisha Tiwari, Dhermendra K. Tiwari, and Savita Kerkar

Abstract Proteins are very important for the smooth functioning of the human body
since they act as structural components, enzymes, signaling molecules and cell-cell
interaction mediator. Mutations in genes, might result in improper expression or
maturation of proteins leading to mild or serious abnormalities. In many cases,
external supply of such functionally active proteins in the body subsidizes protein
related abnormalities. Some protein related abnormalities such as diabetes are
common in a large section of public where insulin is the best source of protein to
streamline the proper body functions. However, large productions of such proteins
are required for the treatment of deficient patients. In such a scenario, natural sources
are not sufficient enough to match the required demand and chemical synthesis
increases the cost. However, recombinant DNA (r-DNA) technology using a host
expressing system fulfilled the large-scale therapeutics requirement at a low cost.
Bacterial systems when compared to other organisms are the most studied and easy
to handle in generating these proteins. Apart from recombinant therapeutic protein
production, bacteria naturally produce peptide antibiotics as defense metabolites
which can be used to treat bacterial infections. Peptide antibiotics are thus very
useful products. However, are naturally produced in minute concentrations in
bacterial systems. Hence r-DNA technology is generally preferred for mass produc-
tion. In this chapter review, we have discussed the major therapeutic proteins,
peptide antibiotics and their industrial scale production. We also elaborated the
benefits of a bacterial host system for a large-scale production of these recombinant
products.
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8.1 Introduction

Proteins produced from bacterial systems are widely used in pharmaceutical, com-
mercial, supplementary food, cosmetics, research, and diagnostic products (Peternel
2013). Proteins are very important for a biological system as they play important role
in various biological activities such as metabolic catalyzers, structural components,
cell- cell interaction and cell signaling. Natural functionality of a biological system
will be affected if an individual produces mutant of functional protein, its
non-functional form or deficient production of that protein. In various cases, anon-
functional, mutant or deficient protein can be compensated with the administration
of artificially produced protein or analogues of that protein (Gomes et al. 2018).
Recombinant therapeutic proteins have gained immense importance for treating
diseases that depends on administering functional proteins to restore the normal
function of the affected organs or tissues. The main challenge initially was to acquire
the functional protein from external sources as they were extracted from tissues of
animals, seriously limiting its availability and high cost. Several biological model
systems established to use as a platform for industrial scale production of variety of
proteins and enzymes.

A vector used for the expression of a protein in prokaryotes, contains a selectable
marker gene, promoter, regulator and a terminator. It also contains Ori C (origin of
replication), that helps to determine the copy number of the vector. Promoters for
high level protein expression in prokaryotes should be strong and should have the
ability to produce up to 10-30% of the total cellular protein. The promoter should be
highly repressible in order to avoid generation of excess protein which might lead to
feedback inhibition and potentially reduce the production. Finally, the promoter
should be inducible such as pET vector which uses IPTG (isopropyl
thiogalactopyranoside) for induction. There are many promoters available for high
level expression of protein in prokaryotes, some of them are listed below in Table 8.1
(Hannig and Makrides 1998).

Several expression vectors has been developed for recombinant protein produc-
tion in bacterial system among them the pET series of vectors are the most common
for expression of heterologous proteins as it contains the T7 phage promoter, which
has very high affinity with T7 RNA polymerase (from T7 bacteriophage, which
infect most of the E. coli strains) (Huang et al. 2012).

Table 8.1 Types of promoters used in host-expression system for recombinant protein production

Promoter Regulation Induction

T7 lac operator LacI IPTG

Lac LacI IPTG

Trp LacI Tryptophan starvation, indole acrylic acid, IPTG, lactose

recA LexA Nalidixic acid

Tac LacI IPTG

T5 lac LacIQ IPTG

araBAD AraC L-Arabinose
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The selection of the host cell for production is depended on the type of protein to
be produced, the intellectual property rights, availability, and cost measures during
production process. Bacterial system is one among the commonly used host, which
is most widely used for industrial scale production of therapeutic and food supple-
mentary proteins due to its low cost, ease of handling, faster multiplication cycle,
and long term maintenance of recombinant strains (Fig. 8.1). Among them the most
common and important host is the Escherichia coli because of its well-known
genome structure, high productivity, short doubling time and minimal requirement
for growth and multiplication (Graumann and Premstaller 2006; Nagesh and
Srivastava 2019). However bacterial system has certain limitations such as the
lack of post translational protein modifications, codon bias, endotoxin and inclusion
body production which affect the high yield of recombinant protein production. To
overcome these issues, certain steps such as, addition of fusion specific tag,
co-expression of protein with molecular chaperones and cofactor supplementation
should be enriched in growth media. BL21 is the most common Escherichia coli
strain used for expression of proteins since it has high-level T7 bacteriophage
promoter expression system, which facilitate soluble, non-toxic recombinant pro-
teins, easy protein purification and detection. BL21 lacks the Lon protease which is
responsible for degradation of the foreign proteins (Gottesman 1996). They are also
deficient of OmpT protease which is an outer membrane protease which degrades the

Fig. 8.1 Production of recombinant therapeutic protein
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extracellularly synthesized proteins, and which may cause problems after cell lysis
(Grodberg and Dunn 1988). Basically, bacterial systems are used to express non
glycosylated proteins or peptides. Lactococcus lactis is an alternative to Escherichia
coli as it is endotoxin free so can be used in therapeutics as well as the food industry
(Yeh et al. 2009). It is a Gram-positive bacterial expression system so it can produce
protein extracellularly (Morello et al. 2007).

Other than bacteria, yeast expression system is most commonly used host.
Saccharomyces cerevisiae and Pichia pastoris are the most common candidates.
Similar to Escherichia coli, yeast also has a short doubling time and the well
understood genome (Strausberg, and National Institutes of Health Bethesda M,
Strausberg, Susan L, University of Maryland, Rockville M 2000). In recent years
Pichia pastoris has become the yeast of choice since it expresses high levels of
recombinant proteins as compared to Saccharomyces cerevisiae, which uses meth-
anol as its carbon source (Cregg et al. 1985). Pichia pastoris is used to express both
intracellular as well as extracellular secretary proteins containing disulphide bonds
like any other eukaryote and hence is used to express proteins containing disulphide
bonds.

Baculovirus is another expression system used to express large size recombinant
proteins. Baculo viral expression system has several advantages over Escherichia
coli such as improved solubility, post-translational modifications and higher yield
for secretory proteins. Baculo virus is a large double stranded DNA virus and lytic in
nature. The most commonly used baculo virus for recombinant protein expression is
isolated from Autographa californica. Insect cells used as a host for baculo virus
generate disulphide bonded proteins and can produce a majority of the post transla-
tional modifications. Insect cells mostly generate N-linked glycans (Jenkins et al.
1996). This finding led to the development of glycoproteins with N-linked glycans
normally found in mammalian cells (Harrison and Jarvis 2006). Finally, but not the
least, mammalian cells have also been used extensively for recombinant protein
expression and considered to be least effective as the strict nutrients requirements,
slow growth, attachment surface requirement for most mammalian cells etc.
(Figueroa et al. 2007; Wurm 2004).

Fusion proteins were originally used or constructed for large scale production of
the expressed proteins to help the protein of interest to immobilize on chromato-
graphic column and to couple the enzyme activity. Several fusion tags are added in
vector either at N or C terminal of the gene of protein of interest, which facilitates
easy and effective purification with high yield. Several commonly used fusion tags
are mentioned in Table 8.2:
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8.2 Industrial Scale Production of Important Therapeutic
Protein Products

8.2.1 Human Insulin

Human insulin is an essential polypeptide hormone to maintain metabolic function
of the body cells (Barfoed 1987). Diabetes may lead to hyperglycaemia and hence
can affect the metabolism of fats, proteins and carbohydrates (Beverley and
Eschwège 2003). There’s a link between sugar control and complications related
to diabetes as shown by the diabetes control and complications trial (Diabetes
Control and Complications Trial Research Group 1993). Insulin not only acts on
lowering glucose levels but also acts as a potent physiological anabolic agent
(Mastick et al. 1998). Apart from this it also has many functions such as synthesis
and storage of carbohydrates, lipids and proteins, prevents their degradation and
releases back into circulation. Treatment of diabetes using insulin therapy was
discovered by Banting and Best in 1922. Human insulin has a molecular weight of
5808 daltons and contains around 51 amino acids, produced by beta cells of pancreas
and regulates the blood sugar level. Insulin is produced as pre-proinsulin which has
24 amino acid long peptide (signal peptide). Once it’s in the lumen of the endoplas-
mic reticulum the peptide is cleaved to form proinsulin. In the endoplasmic reticu-
lum the proinsulin is folded in a proper conformation by enzymes prohormone
convertases and exoprotease carbopeptidase E to produce functional insulin (Vajo
et al. 2001).

Table 8.2 Types of fusion tags used for protein purification

Tag Size (kDa) Matrix/Elution Uses Reference

Fh8 Size of around
8 kDa and 69 amino
acid long

Bind by hydrophobic inter-
action and EDTA for eluting

Purification, solubil-
ity and expression of
proteins

Costa
et al.
(2014)

His
tag

Typically, 0.86 kDa
in size and 6 amino
acid long.

Affinity chromatography
binds to metal ions such as
Ni, co, cu and Zn and eluted
by lowering the pH or with
imidazole

Used for detecting
and purification of
proteins

Porekar
and
Menart
(2001)

GST 26 kDa in size and
211 amino acids
long

Glutathione, eluted using
reduced glutathione

Used for increasing
expression and solu-
bility, purification
and detection

Kimple
et al.
(2013)

GFP Approximately
26.9 kDa in size and
around238 long
amino acid chain

– Detection, increased
expression and
solubility

Hammon
et al.
(2009)

MBP 42 kDa in size and
396 amino acid long

Amylose which is cross
linked and eluted using
maltose.

Purification, detec-
tion, solubility and
expression

Zhao
et al.
(2013)
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Subcutaneously injected insulin takes a long period of time to act and is very slow
as compared to insulin secretion by a healthy individual (Heinemann et al. 1992).
Insulin was first produced and purified from pancreas of cows and hence there were
limitations in its availability until it was produced in Escherichia coli using recom-
binant DNA technology. Industrial scale production of insulin help to save a large
mass of diabetic patients, who has immature or faulty insulin production in body.
Large scale production mainly uses Escherichia coli expression system using
recombinant DNA technology and is the first licensed recombinant protein based
drug. Human insulin was first produced from Escherichia coli by Gentench, using
two chain combination procedure wherein the two chains A and B encoded cDNAs
were expressed in Escherichia coli and were purified separately and incubated
together to get a functional bioactive insulin. Another approach was encoding
cDNA for proinsulin and expressing it in Escherichia coli, followed by proteolytic
digestion of the C peptide. This was a more convenient method for large scale
production of insulin (Chance et al. 1999).

Escherichia coli has been used as a preferred microorganism for the production of
insulin on industrial scale has few disadvantages such as lack of post translational
activity, phosphorylation, and proteolytic processing (Jenkins 2007; Walsh and
Jefferis 2006). Campylobacter jejuni is a bacterium having glycosylation activity
has been used as an alternative host to Escherichia coli (Wacker et al. 2002).
Initially, insulin is produced as inclusion bodies and after further multiple step for
refolding and solubilisation, the functional insulin produced (Nilsson et al. 1996). In
order to control the level of glucose in the blood, there was a need for insulin having
faster and longer acting time. Improvement of human insulin was seriously retarded
until molecular genetic techniques were introduced to create insulin analogues by
changing the native structure and improving the properties of the therapeutic protein.

8.2.2 Lectins

Lectins are microbial proteins that bind to carbohydrates present on the surface of the
microorganisms (Procopio et al. 2017). Hence lectins are extensively studied to
determine the role in pathogenicity with human host in disease development (Dias
et al. 2015). Lectins have many activities such as immunomodulatory, antitumor and
antifungal activities. Lectins agglutinate erythrocytes with known carbohydrate
specificities. Lectins are produced by recombinant DNA technology since the
yield from natural sources is limited. Escherichia coli (BL21-DE3) strain commonly
used for industrial scale production of lectins. The yield of lectins using recombinant
DNA technology has been summarized in Table 8.3 (Oliveira et al. 2013; Lam and
Ng 2011).

Lectins are formed from mixtures of many isolectins (isoforms) this is due to the
variability of the source from which they are extracted, structural subunits and post
translation diversity (De Hoff et al. 2009). Protein mixtures which contain lectins
have been studied, with respect to their functional and biological properties since it is
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difficult to separate numerous isoforms of lectins using any conventional methods.
However, Isoforms may lead to complications if they have a different sugar binding
affinity as it would lead to an unwanted result. For example, isoforms of Phaseolus
vulgaris lectin (PHA-E and PHA-L) react differently with human blood cells. Both
PHA-L and PHA-E have different functions, the PHA-E at low concentrations
agglutinate erythrocytes whereas PHA-L agglutinate leukocytes (Raemaekers et al.
1999).

Such problems can be improved by producing and expressing recombinant lectins
in a heterologous expression system using model host organisms. Since this results
in lectins with high purity and having a defined amino acid sequence and the amount
of lectin produced by the hosts is much higher in shorter time duration (Gemeiner
et al. 2009). Apart from this, recombinant DNA technology and cDNA libraries are
used to establish primary structures of lectins, studying the biosynthesis of lectins,
studying the role of amino acid sequences involved in carbohydrate recognition and
in obtaining novel lectins (Streicher and Sharon 2003). Many lectins produced in a
variety of organisms especially plants, have been produced heterologous variants in
Escherichia coli. Once the lectin is produced in the heterologous systems. It’s
functionality is tested by carrying out numerous tests such as activity assay and
carbohydrate binding activity/assay. To check the toxicity of the lectins, cytotoxicity
assays can also be carried out.

8.2.3 Human Granulocyte-Macrophage Colony Stimulating
Factor (GM-CSF)

GM-CSF is a haematopoietic growth factor that stimulates development of blood
immune cells such as macrophages and neutrophils. The molecular weight is 14.6
kilo Daltons and contains around 128 amino acids with disulphide linkages and N

Table 8.3 Lectin yield using recombinant DNA technology

Natural sources of
lectins

Yield
(mg/L) Expression system References

Allium sativum leaf
(garlic)

5 pET19b vector was used and cDNA was cloned
into it

Upadhyay
et al. (2010)

Galanthusnivalis 42 Cloning in pET vector plasmid Luo et al.
(2005)

Polyporussquamosus 4-7 Expressed BL21DE3 cells, cloned in pET vector Tateno
et al. (2004)

Pisum sativum 2-5 cDNA cloned in HindIII/BamHI/PstI restricted
plasmid and expressed in Escherichia coli

Stubbs
et al. (1986)

Nicotiana
tabacumleaves

6 cDNA cloned in EcoRI /NotI restricted plasmid
and expressed in Escherichia coli

Lannoo
et al. (2007)

Artocarpus incise 16 cDNA cloned in pET25b (+) and expressed in
Escherichia coli

Oliveira
et al. (2009)
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glycosylation sites. Granulocyte macrophage colony stimulating factor is a type of
cytokine that helps in maturing different types of haematopoietic cells (Metcalf
2008). It is produced by fibroblasts and endothelial cells when stimulated by
microbes. Since it stimulates production of haematopoietic, it has been used in
immune compromised patients (Seeger 2011).

Recombinant GM-CSF is usually produced as an inclusion body in Escherichia
coli cells. Inclusion bodies have to be resolubilized and refolded to get an active
functional protein (Vallejo and Rinas 2004). So, in order to solubilise generally
chaotropic agents such as 6 M guanidine hydrochloride or 8 M urea is used.

8.2.4 Protein Disulphide Isomerase (PDI)

Disulphide isomerase is a protein that helps in disulphide bond formation which are
important to maintain the three-dimensional structure and biological activity. It also
helps in protein folding (Koivu et al. 1987; Hillson et al. 1984). It is a soluble protein
that is normally found in the lumen of the endoplasmic reticulum. It has been isolated
from human placenta, bovine and rat liver. It has been noticed that production of
mammalian proteins in Escherichia coli expression system causes the production of
inactive proteins due to incorrect disulphide bond formation. Hence PDI can be used
to help proper folding and disulphide bond formation to get an active protein.

The proteins produced from Escherichia coli expression system has an additional
methionine group attached to it so to get a PDI with attached alanine, Bacillus brevis
culture was used for the production of Human PDI protein. B. brevis produces this
protein extracellularly without much extracellular proteinase activity unlike
S. cerevisiae and B.subtilis (Takagi et al. 1989).

8.2.5 Collagenase

Collagen is an extracellular matrix that is most abundantly found in vertebrates.
Collagen has many functions in vertebrate’s right from providing scaffold to helping
in growth, differentiation and survival of the cells (Theocharis et al. 2016). In order
to maintain the function of the tissue, the extracellular matrix needs to be remodelled
and digested (Lu et al. 2011). It can be done with the help of collagenase enzyme.
Collagenase is a type of protease that degrades collagen or gelatine and non helical
regions of collagen (Pseudo collagenases). Collagenases are the type of proteases
that are associated with many different kinds of diseases such as bacterial infections,
inflammation, rheumatoid arthritis and tumours (Watanabe 2004).
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8.2.6 Lactase

Lactase also known as beta-galactosidase, is an enzyme that digests beta D galacto-
sides (Gasteiger et al. 2003). It is used to digest lactose from milk products and has
transgalactosylation activity. Many organisms such as plants, animals and microor-
ganisms can produce beta-galactosidase naturally (Husain 2010; Panesar et al.
2006). Bacteria such as lactic acid bacteria and Bifidobacterium sp are good sources
of beta-galactosidase as they are generally regarded as safe and can be used in food
industry. Recombinant DNA technology has been used recently to produce large
amount of beta-galactosidase, thereby increasing the economic and potential appli-
cations of beta-galactosidase. Lactase can be used as an enzyme supplement for
people who are lactose intolerant.

8.2.7 Miscellaneous Recombinant Therapeutic Proteins

There have been many other recombinant therapeutic proteins produced from
different hosts as shown in Table 8.4 (Puetz and Wurm 2019; Rao and Kroon

Table 8.4 Therapeutic proteins and their applications

Product
Expression
system Application

Eculizumab Murine mye-
loma cell lines

Paroxysmal nocturnal haemoglobinuria and generalized
myasthenia gravis

rHepatitis B surface
antigen

S. cerevisiae Vaccine against hepatitis B, and as a diagnostic marker

Rituximab Hamster ovary CD 20+ lymphoma’s especially B cell lymphoma

Recombinant acti-
vated factor VIII

Hamster ovary Prophylactic treatment in case of severe haemophilia or
haemophilia A and controls and prevents bleeding

Protopine Escherichia
coli

hGH deficiency

Roferon A Escherichia
coli

Hairy cell leukaemia, hepatitis C, AIDS- related
Kaposi’s sarcoma and Pheladelphia chromosome posi-
tive chronic myelogenous leukemia

Intron A Escherichia
coli

Cancer, genital warts and hepatitis

Humatrope Escherichia
coli

hGH deficiency, short stature and platelet derived
growth factor BB

Activase (Altiplase) CHO cell line Acute myocardial infarction and acute ischemic stroke

Epogen (Epoetin
alpha)

CHO cell line Anaemia and myelodysplastic syndrome, used in
research of heart failure, acute kidney injury and stroke

Recombivax HB S. Cerevisiae Hepatitis B

Orthoclone OKT3 Hybridoma cell
line

Reversal of acute kidney graft rejection and rescue of
steroid resistant rejection
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1993; Chien-Hung et al. 2014; Joseph et al. 2012; Mitchell et al. 2016; Dhillon 2018;
Santagastino 2014), other than those mentioned above.

8.3 Antibiotics

Antibiotics are the substances that have the ability to inhibit the growth of other
microorganisms. They have numerous applications viz. from treating infectious
diseases in animals and some plants to food and biological specimen conservation
(Waksman 1970). The needs of antibiotics have increased since bacterial infections
are the second highest leading cause of death worldwide. Over the last decade, a
large number of antibiotics have been isolated from different species and strains of
the genus Streptomyces that has shown a broad spectrum activity against a range of
Gram negative to Gram positive bacteria. (Waksman 1940). Most of the antibiotics
used today have been sourced from Streptomyces, the most common source of
antibiotics being actinomycetes (Watve et al. 2001). Streptomyces belong to actino-
mycetes and are Gram-positive (Procopio et al. 2012)., Streptomyces sp. produces
antitumoral, antihypertensives, antiviral, antifungal and immunosuppressive com-
pounds as secondary metabolites (Omura et al. 2001).

8.3.1 Peptide Antibiotics

Antibiotics are produced as secondary metabolites in microorganisms via anabolic
biosynthetic pathways (Demain et al. 1983). Antibiotics are substances having low
molecular weight and are synthesised ribosomally or non-ribosomally (Nakano and
Zuber 1990). Peptide antibiotics are basically derived in two ways, thus forming two
classes, ribosomal synthesised peptides (natural peptides) and non-ribosomal
synthesised peptides (produced from bacteria). There have been several peptide
antibiotics which have been used in pharmaceutical industry such asbacilysin,
gramicidin, tyrocidine, subtilin, glycopeptides, polymyxin and Bacitracin
(Kleinkauf and von Dohren 1988). Non-ribosomally synthesised class of antibiotics
are made by multienzyme complexes. Antibiotics such as penicillin derivatives,
cephalosporin C and some glycopeptides such as vancomycin and teicoplanin fall
in this category.

8.3.1.1 Bacitracin

Bacitracin is a cyclic polypeptide antibiotic that is produced by Bacillus
sp. Bacitracin is an anti-infective agent used to kill Gram positive bacteria in
industrial preparations such as creams, ointments, lotions and aerosols (Yousaf
1997; Awais et al. 2008). Bacitracin producing bacillus is inoculated in nutrient
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broth and kept for 72 hours at 30 �C on a shaker. Once the Inoculum is ready it is
transferred to a production media and incubated at 30 �C on a shaker. Samples were
taken after every 24 hours and centrifuged to get a cell free supernatant. Agar
diffusion method is performed to check the antimicrobial activity and the production
(Sen et al. 1995). Cultures such Staphylococcus aureus andMicrococcus luteus were
used as test organisms and spread plated on agar plates and wells were bored. Then
80μL of cell free supernatant was added to the wells and incubated at 37 �C and
checked for inhibition zones. Paper chromatography and high-performance liquid
chromatography (HPLC) can be used to further reconfirm the quality of produced
peptide antibiotics (Snell et al. 1955).

8.3.1.2 Polymyxins

Polymyxin E (colistin) that was isolated from a soil bacterium Paenibacillus
polymyxa is a polypeptide antibiotic (Benedict and Langlykke 1947). Along with
polymyxin B, they showed activity mostly against Gram-negative bacteria. The
chemical structure is similar to other cationic antimicrobial peptides such as
defensins and gramicidin (Hancock 1997). Polymyxin consists of a cyclic
heptapeptides and a tripeptide side chain (Falagas et al. 2010; Li et al. 2006). It
also contains a N-terminal fatty acyl segment that is acylated to the tripeptide side
chain and is an important factor in the antimicrobial activity of the antibiotic (Brink
et al. 2014; Gallardo-Godoy et al. 2016). Polymyxin E and Polymyxin B differ in
only one amino acid residue i.e. polymyxin B has phenylalanine in place of leucine
in Polymyxin E (Nation et al. 2014). Polymyxin acts on the outer lipid membrane of
Gram-negative bacteria. Interaction of positively charged diamino butyric acid (Dab)
on the polymyxin on the negatively charged phosphates on the membrane, destabi-
lizes the membrane and hence causes lysis of cell (Dixon and Chopra 1986).

8.3.1.3 Gramicidin

There are many types of Gramicidin based on the function and isolation. Gramicidin
A is a peptide antibiotic that is isolated from Bacillus brevis. It acts by creating a
cation permeable channel in the lipid and biological membrane. The two beta helical
subunits form the channel. Gramicidin S is a peptide antibiotic that is produced from
soil bacilli. It destroys the lipid bilayer barrier and interferes and displaces membrane
bound proteins (Afonin et al. 2008). No intercellular structures accumulate Grami-
cidin S in Gramicidin producing cells and it appears that the acidic S layer can
accumulate the production (Ostrovski et al. 1988). Gramicidin D is a mixture of
Gramicidin A, B and C. Gramicidin D is used as eye drops to treat eye infections and
is mostly effective against Gram positive bacteria like Bacillus subtilis and Staph-
ylococcus aureus but not so effective against Gram negative bacteria. Apart from
these peptide antibiotics there are many other listed in Table 8.5 (Wang et al. 2012).
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8.4 Production

Processes involved in the production of Recombinant therapeutic proteins from
bacterial systems are depicted in Fig. 8.2. As far as peptide antibiotics are concerned,
with certain exceptions such as nisin and some antibiotics produced by Lactococcus
lactis, it is not feasible to produce peptide antibiotics from natural sources. There-
fore, the two methods are in practice for production using recombinant DNA
technology and protein chemistry. Chemical building of peptide antibiotics involves
the use of automated peptide synthesizer which involves adding amino acids from N
to C terminus. While recombinant DNA technology involves the use of genes
responsible for the protein production and incorporating them into the host organism
for expression in a suitable vector, which is more feasible and cost effective than the
chemical synthesis.

Table 8.5 Types of peptide
antibiotics

Peptide antibiotics Applications

Boceprevir Hepatitis C

Oritavancin Bacterial infections

Dalbavancin Bacterial infections

Enfuvirtide HIV

Bacterial nisin Stomach ulcers and oral mucositis

Actinomycin D Cancer

Bleomycin Tumors

Fig. 8.2 Production of recombinant proteins (Hirabayashi et al. 1993)
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8.4.1 Protein Extraction and Purification

Once the protein of interest has been produced by the host organism, the final step is
extraction and purification. Most of the therapeutic proteins are intracellular. The
first step involves breaking down the cell wall which can be achieved by mechanical,
enzymatic or chemical method. In some cases the host expression cell can be
genetically engineered so that the intracellular product is excreted out. However,
making bacterial cell wall leaky using genetic manipulation is very tricky and
achieved only in limited cases (Chisti and Moo-young 1986). Therefore the cell
wall disintegration after successful protein expression is commonly used.

Once the cell wall has been broken, the protein should be separated from the rest
of the cell contents until a purified protein is obtained. The success of cell disruption
depends on the buffers, the chosen method and the presence of inhibitors. However,
all the steps should be carried out carefully and always in a cold room at 4 �C for
high quality protein production. Buffers are the most important factor in protein
extraction. Since proteins are zwitterions, the pH of the extraction buffer should be
maintained in order to get a biologically active protein (Ahmed 2004). Lysis buffer
should contain phosphate or HEPES, high ionic strength i.e. approx. 300 mM NaCl
for solubility and stability of protein and a reducing agent.

8.4.2 Protein Extraction

Bacterial cell wall can be disrupted using chemical, enzymatic or mechanical
methods as discussed above. The first two are done on the small scale such as in
research laboratory whereas on the industrial scale the mechanical methods are often
preferred as it gives better result, cost-effective and less time consuming. The degree
of disruption of the cell depends on the size of the protein of interest as small proteins
need little space as compared to inclusion bodies where the mechanical stress should
be more to get more pore size.

8.4.2.1 Chemical, Enzymatic and Mechanical Methods for Cell
Disruption

Chemical lysis includes treatment of bacteria with alkali and detergent. Chemical
methods are not suitable for isolation of inclusion bodies since they are soluble in
detergent hence results in less protein output but if incorporated with sonication, it
results in better extraction of inclusion bodies (Rodríguez-Carmona et al. 2010).

Enzymatic method depends on the enzyme lysozyme for disruption of the cells.
Certain bacteria like Gram-negative Escherichia coli have a lipid outer membrane
which makes it less susceptible to enzymatic lysis. Gram-negative bacteria are less
susceptible to lysozyme since it contains the asymmetric lipid bilayer (LPS)
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therefore small divalent cations and polycationic small molecules have been used to
permeabilize bacterial membrane. Lysozyme is positively charged as compared to
inclusion bodies (IB) and cell debris which are negatively charged. Hence agglom-
erates of lysozyme, inclusion bodies and cell debris are formed upon lysis. When the
recombinant protein is in the form of inclusion bodies, enzymatic method is not a
good option since the lysozyme sticks to the inclusion bodies adding an impurity
(Peternel and Komel 2010).

Mechanical methods should be as gentle as possible so that the protein of interest
is not disrupted. Mechanical lysis method is preferred for large scale production
since no chemicals are needed and if dealt carefully the yield is superior.
Ultrasonication is a mechanical method performed on a smaller laboratory scale. It
induces shear stress along with low pressure regions which finally leads to the
breakage of the cell (Doulah 1977). Sonication is not applicable when working
with non-classical inclusion bodies (ncIBs) as it affects the structure stability of the
inclusion bodies resulting in significant loss of protein from the inclusion bodies
(IBs). French press or homogenizer uses high pressure to disrupt bacterial cells and is
commonly used at industrial scale (Middelberg 2000). Unlike sonication this method
is suitable for extracting ncIBs since it does not affect the structure. But to get a pure
IB several cycles of homogenisation is required. Hence it is of utmost importance to
optimize the disruption method, being an important aspect of the biotechnological
process of protein purification and mainly depends on the solubility and intended use
of the protein.

8.4.3 Protein Purification

After bacterial disruption, the protein must be separated from the cell debris, host cell
proteins and remaining cell debris. If the protein is soluble, it can be easily extracted
using centrifugation to separate out the cell debris. Soluble protein once separated
from the cell debris is passed through different chromatographic columns, such as
ion exchange chromatography, affinity chromatography, size exclusion chromatog-
raphy, hydrophobic interaction chromatography based on the tags available, to
acquire purified recombinant proteins. The protein needs to be concentrated to up
to 60-70 g/L which is suitable for chromatographic purification (Asenjo et al. 1989).
To maximize the yield, it is important to minimize the number of steps to recover the
final purified protein. The first step involves the removal of contaminants from the
protein of interest and is called clean up or pre-treatment. This treatment involves,
relatively inexpensive methods such as adsorption on Whatman paper, ion exchange
cartridge, aqueous partitioning in two phases, hydrophobic interaction or using salts
such as ammonium sulphate for precipitation.

After the primary treatment, high resolution purification is carried out which
results in the recovery of protein up to 98-99%. It involves one or two ion exchange
or affinity chromatography steps. After high-resolution purification, the final step is
polishing which gives ultra-purity to the protein of interest. Mainly HPLC is used for
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polishing step, gel filtration can also be used to separate dimers, oligomers from
monomer. Steps involved in protein extraction and purification is given in Fig. 8.3.

8.4.4 Storage

Once the purification and activity of the protein is determined, it needs to be stored in
proper condition so that it doesn’t denature until further use. There are many
methods used for storage of protein but the most commonly used is lyophilisation.
The protein is lyophilised using a lyophilizer. The storage conditions vary depending
on the protein characteristic and the storage period. For short term storage, proteins
can be kept in a refrigerator (�20 �C). For storage at 4 �C longer than 24 h, it may be
necessary to filter sterilize the protein preparation (through a 0.22μm filter) or to add
a bacteriostatic agent to avoid bacterial growth. For long term storage, it becomes
necessary to freeze the protein preparation either by using liquid nitrogen or a dry
ice/ethanol mixture to avoid denaturation. Small aliquots are used to avoid repeated
freezing and thawing which may reduce the biological activity or affect the structure.
For storing the protein preparation for several months at -20 �C or -80 �C, it is
necessary to add 50% glycerol to the solution to avoid freezing (Kenig et al. 2006).

8.5 Conclusion

With the increase in human pathologies, overcome with protein deficiency in body
and treatment of several diseases related to faulty protein production, the market and
potential for recombinant protein therapeutic products and peptide antibiotics is
rapidly increasing day by day. In-spite of the mammalian cell lines strength, many
factories still focus and use microbial cells specially Escherichia coli as a host

Fig. 8.3 A flowchart of
protein purification: steps
involved from expression to
marketing
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organism because of its easy handling, well annotated genome and cost effective-
ness, making Escherichia coli a potent cell factory. Since gene therapy is not
available for all pathologies it has become imperative to produce an active functional
protein to get rid of the abnormalities. This review chapter will help researchers to
understand the importance of bacterial systems for recombinant therapeutic protein
production, the types of recombinant therapeutics being produced, the way they are
produced, types of bacterial host available etc. Main focus of the chapter is to bring
out the types of protein products being currently produced in factories at a large scale
to overcome the deficiency of gene therapy in treating human pathologies due to
protein deficiency. The chapter also talks about the peptide antibiotics produced by
bacterial expression system and its applications.
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Chapter 9
Role of Microbes and Microbial Products
in Cancer Therapeutics

Vinayak Sharma, Prakash Kumar Sinha, Jagtar Singh, and
Eshu Singhal Sinha

Abstract Despite all the major advancements in therapeutic research and drug
synthesis, cancer still remains one of the major reasons for deaths worldwide. This
calls for the need of speeding the search for new anticancer medicines. Microbes and
microbial products have numerous implications in health out of which anticancer
potential has been explored well. Many of these products have been screened,
established, and are available in market as anticancer drugs. This chapter provides
an overview of different microbes and microbial products involved in cancer
therapeutics that act either directly by killing the cancer cells or indirectly by
inducing immunotherapy where immune system gets activated and targets cancerous
cells.

Keywords Cancer · Microbes · Microbial products · Anticancer agents · Enzymes

9.1 Introduction

Cancer is uncontrolled growth of abnormal cells in the body and is a leading cause of
death worldwide. According to GLOBOCAN, 18 million new cancer cases were
reported in 2018 and 9.5 million deaths were observed worldwide. Cancer incidence
is estimated to increase by 5.1 million in 2030 which demands a coordinated
response from public health professionals, oncologists, policy-makers, and
researchers (Bray et al. 2018).

From time immemorial, natural products have played an important role in
therapeutics of many human diseases including cancer. Natural products with
medicinal values are available from both terrestrial and marine organisms, including
microorganisms. William B. Coley, a surgeon in the Memorial Hospital in
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New York described the role of bacteria as anticancer agents for the first time in 1890
(Chakrabarty 2003; Karpiński and Adamczak 2018). He utilized a mixture com-
posed of supernatants of Streptococcus pyogenes and Serratia marcescens for the
treatment of malignancy patients. This mixture is now known as Coley’s toxins. Of
approximately 1200 patients, cancer regression was observed in 52 cases and a
complete cure in 30 patients. The mechanism of this reaction has now been under-
stood partially. Microbial infections activate immune cells and induce the production
of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) leading to cancer
regression (Patyar et al. 2010). Later, in 1935 Connell used sterile filtrates from
Clostridium histolyticum to treat advanced cancers and he observed tumor regression
and explained it to be the result of enzyme production.

Besides microbes, organic compounds, e.g., pentostatin, peplomycin, and
epirubicin derived from a wide range of microorganisms also have implication in
the treatment of many diseases including cancer. Some of the microbial compounds
can be used in their natural form and others are applicable after their synthetic
modification.

Several microbes and microbial proteins/peptides have emerged as a promising
group of bioactive agents that act as effective anticancer drugs. Some of these
include drugs which are already in use such as actinomycin D, doxorubicin,
mitomycin C, and diphtheria toxin, while other substances are either in clinical trials
or are being tested in in vitro research.

9.2 Microbes as Anticancer Agents

The efficiency of microorganisms as antitumor agents is extremely diverse. Hypoxic
core of solid tumors is resistant to major treatment methods. However, certain live,
attenuated, and engineered microorganisms such as Bifidobacterium, Bacillus, Clos-
tridium, Salmonella, Mycobacterium, and Listeria have the ability to grow in this
hypoxic region of tumors (Fialho et al. 2008) and thus act as promising vectors for
drug delivery for anticancer therapies (Table 9.1). Some of the microbes exhibiting
the property of cancer suppression are discussed below:

9.2.1 Mycobacterium bovis BCG

A correlation between the occurrence of tuberculosis and cancer regression was
observed in the beginning of the twentieth century. In 1976, Morales and his
colleagues demonstrated that the use of BCG vaccine was accompanied with cancer
regression through induction of both local and systemic immune response resulting
in the elimination of bladder cancer cells. Subsequently, tuberculosis vaccine BCG
was approved as a complementary treatment of bladder cancer (Droller 2017;
Taniguchi et al. 1999). Clinical studies have proven that intra-vesical administration
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of BCG decreases the chances of cancer relapse following surgical removal of tumor
or surgery and chemotherapy (Kamat et al. 2016). BCG acts on tumor cells by
stimulating the immune response where CD4+ and CD8+ lymphocytes recognize
tumor antigens along with a simultaneous enhancement of pro-inflammatory cyto-
kines. The activation of immune system of the patient results in phagocytosis of the
cancer cells (Chakrabarty 2003; Droller 2017; Felgner et al. 2016; Biot et al. 2012).
Therefore, the current treatment of bladder cancer using M. bovis involves tumor
resection and subsequent intra-vesical infusion of the microbial suspension using
urethra catheters to prevent cancer relapse (Droller 2017).

9.2.2 Toxoplasma gondii

T. gondii is an obligatory intracellular protozoan which requires a host cell for its
replication. Humans and other warm blooded animals are its major hosts and its
infection causes toxoplasmosis which has a worldwide distribution. This microbe
generally affects the pregnant women and individuals with compromised immunity.
Despite causing several problems Toxoplasma also exhibits anti-tumorous activity in
the host. It was reported that the protein extracts of T. gondii possess antitumor
activity and that toxoplasmic infection exerts antitumor activity against melanoma
(Pyo et al. 2014). The non-replicating Toxoplasma uracil auxotrophs (NRTUA) have
been used in the treatment of melanoma, pancreatic cancer, lung cancer, and ovarian
cancer, because these auxotrophic strains are non-pathogenic in the host organism
because of the inhibition of the de novo pathway for the synthesis of UMP which is
required for the synthesis of nucleic acids. Due to the absence of uracil in animals
these auxotrophs are non-virulent as they do not replicate in the invaded host (Pyo
et al. 2014; Sanders et al. 2016; Kim et al. 2007; Baird et al. 2013). The mechanism
behind the anti-tumorigenic activity is that NRTUA leads to a rapid increase in IL-12

Table 9.1 Different types of microbes as anticancerous agents

Types of organism Strain Cancer

Bacteria

Mycobacterium bovis Attenuated strain
Calmette-Guerin

Superficial bladder cancer

Streptococcus pyogenes OK-432 Lymphangioma

Clostridium novyi Strain NT Solid tumors

Salmonella enterica serovar
typhimurium

Strain VNP20009 Melanoma

Magnetococcus marinus MC1 Solid tumors and some metabolic
tumors

Protozoan

Toxoplasma gondii CPS/TLA Pancreas, lung, and ovarian cancer
and melanoma

Plasmodium falciparum rVAR2-DT Melanoma
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secretion leading to inflammation and activation of other immune cells such as CD4+

and CD8+ T cells. There is a significant increase in the production of T-cell mediated
chemokines such as CXCL9 and CXCL10 in the tumor environment which further
leads to a gradual increase in tumor antigen specific CD8+ T helper cells which
recognize and kill the tumor cells. NRTUA also generates hypoxic environment in
the tumor site due to the inhibition of angiogenesis and lead to regression of tumor.
In vivo studies reveal the development of immune memory and high titer of IgG
recognizing specific tumor antigens which lead to anti-tumorigenic environment in
the host (Pyo et al. 2014; Sanders et al. 2016).

9.2.3 Streptococcus pyogenes OK-432

Streptococcus pyogenes is a gram-positive bacterium that causes several diseases in
humans such as pharyngitis, skin infections, acute rheumatic fever, scarlet fever, and
toxic shock syndrome. Despite all these adverse effects on human body S. pyogenes
also possess cytotoxic activity against different types of cancer. Dr. William Coley
initially used S. pyogenes in the treatment of bone sarcoma. Currently, S. pyogenes
has been used for the treatment of lymphangiomas in children (Deweerdt 2013;
Olivieri et al. 2016). Lymphangiomas are tumors developed in toddlers due to
excessive division of lymphatic vessel’s endothelial cells. Treatment is usually
done by surgical removal of cyst and it poses a high risk to the life of the toddler;
therefore, alternative therapy called sclerotherapy is utilized which includes injecting
S. pyogenes OK-432 strain into pathologically changed lymphatic vessels. Studies
have proved the safety and efficacy of the strain in reducing the cyst volume by at
least 50% (Olivieri et al. 2016; Ruiz Jr et al. 2004). The mechanism includes
immunological activation of neutrophils and macrophages followed by increase in
NK CD56 cells, TNF-α, IL-6, IL-8, IFN-γ, and VEGF (vascular endothelial growth
factor). After incorporation of the strain inflammatory reactions cause swelling in the
lesion but the effects are observed after few months (Olivieri et al. 2016; Ruiz Jr et al.
2004; Ohta et al. 2010a, 2010b).

9.2.4 Magnetococcus marinus

M. marinusMC1 is a gram-negative coccus found in the Atlantic Ocean near Rhode
Island, USA. The distinctive feature includes the presence of magnetosomes which
are special elements of magnetite particles (Fe3O4) surrounded by membranes which
form chains in the cytosol (Bazylinski et al. 2013). The presence of magnetosomes
helps the bacteria to orient with the earth’s magnetic field. Another property that
favors its use as an anticancer agent is the negative aerotaxis capacity where the
bacteria prefers hypoxic regions (Martel 2017). Utilization of powerful magnetic
fields as applied in MRI technique can direct the bacteria to tumor sites where it
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collects in the hypoxic core, thus increasing its capability of being used as a vector
for various anticancer drugs (Felfoul et al. 2016).

9.2.5 Clostridium novyi

Presence of hypoxia in tumor core has increased the use of obligate anaerobes and
facultative anaerobes in anticancer therapies. The anaerobic environment in the
tumor core creates favorable environment for the growth of anaerobic bacteria
(Felgner et al. 2016; Paton et al. 2012). The use of anaerobic bacteria is beneficial
over chemotherapeutic drugs because they traverse through the depths of tumor,
affecting only the tumor cells unlike chemotherapeutic drugs which affect both
cancer and healthy cells (Paton et al. 2012; Liu et al. 2014; Staedtke et al. 2016).

In 1935, Connell firstly described the proteolytic enzymes produced by
C. histolyticum were seen to cause regression of advanced cancers and then used
this strain as an anticancer agent (Connell 1935). Since then, research on Clostridium
for anticancerous activity began. C. novyi showed significant antitumor effect during
experiments in mice but due to presence of lethal toxin known as α-toxin more than
one-third of the mice died in a very short period of time after the spores were
injected. To avoid the toxicity, C. novyi NT was formed by removing the α-toxin
through heating. Although satisfactory results were obtained, but C. novyiNT is only
active in the hypoxic environment of the tumor and becomes less effective at other
sites. Therefore, combinatorial therapies such as conventional chemotherapy in
combination with C. novyi NT show significant results in the treatment of tumor.

Treatment of leiomyoma has been promised in phase I and phase II of clinical
trials through the attenuated strain of C. novyi NT (Paton et al. 2012; Liu et al. 2014;
Staedtke et al. 2016). It can be utilized in active targeting where C. novyi is expected
to produce specific enzymes, toxins, and proteins capable of conjugating to specific
chemotherapeutics.

9.2.6 Salmonella enterica Serovar Typhimurium

Salmonella enterica serovar Typhimurium is an anaerobic rod whose attenuated
strain S. typhimurium VNP20009 is used as anticancer agent (Bereta et al. 2007).
Clinical trials on the use of this microorganism for melanoma and pancreatic cancer
treatment as a vaccine started in 2002. This bacterium has a plasmid encoding
expression of VEGFR2 (vascular endothelial growth factor receptor-2) which blocks
the angiogenesis process (Felgner et al. 2016; Schmitz-Winnenthal et al. 2018).
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9.2.7 Plasmodium falciparum

P. falciparum is the causative agent of malaria but it can also be used to treat cancer.
It is known that P. falciparum expresses a malarial protein VAR2CSA in erythro-
cytes which binds to mucopolysaccharide-chondroitin sulfate A, present in physio-
logical conditions on the surface of placenta cells (Salanti et al. 2015; Chishti 2015;
Dimitriadis 2016). Interestingly, surface of many tumor cells also possesses chon-
droitin sulfate. Thus, a recombinant version of VAR2CSA, known as rVAR2 was
conjugated to the appropriate part of the diphtheria toxoid and both in vitro and
in vivo studies showed anticancerous effect on melanoma cells expressing high
levels of chondroitin sulfate (Salanti et al. 2015; Dimitriadis 2016).

9.3 Purified Microbial Products as Anticancer Agents

Apart from using whole microorganism as anticancer agents and vectors, purified
products of microbes can also be utilized for the same (Table 9.2). Some microbial
products that exhibit anticancer activities have been discussed below:

9.3.1 Antibiotics

Antibiotics are secondary metabolites produced by certain microbes during the
stationary phase of their growth. Some of these antibiotics have been demonstrated
to possess anticancer activity and have been utilized as antitumor drugs. Such
antibiotics include actinomycin D, doxorubicin, mitomycin C, and bleomycin.

1. Actinomycin D: Actinomycin D, also referred as dactinomycin is produced by
Actinomyces antibioticus. Besides possessing antibacterial activity, it also
exhibits antitumor activity. Several mechanisms explain the cytotoxic and
antitumor activity of actinomycin D. These mechanisms are mainly associated
with inhibition of transcription from DNA and thus indirectly lead to translation
inhibition. One of the mechanisms is through intercalation of actinomycin D in
DNA where it blocks RNA transcription by firmly attaching to DNA, preferably
at sites with guanine residues.

Actinomycin D results in localization of a phenoxazone ring between GpC
base pair sequence in DNA. In another mechanism, actinomycin D induces a
stabilization of otherwise cleavable complexes of topoisomerases I and II with
DNA in which polypeptide lactone rings occupy a position in the minor groove of
the DNA helix or the drug penetrates to a place in the DNA structure where
topoisomerase binds with DNA (Della Latta et al. 2015). Actinomycin D is
known to induce cellular p53-independent apoptosis after blockage of both
DNA and RNA (Farhane et al. 2018). The slow dissociation of actinomycin D
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from DNA complexes, its photodynamic activity, and free radical formation also
influence the biological activity of this antibiotic cum anticancer drug. The
efficacy of actinomycin D has been observed in the treatment of Wilms’ cancer,
Ewing sarcoma, neuroblastomas, and trophoblastic tumors (Karpiński and
Adamczak 2018; D’arpa and Liu 1989). Multiple variants of actinomycin D are
available in the market, e.g., actinomycin D, lyovac, and cosmegen (Karpiński
and Adamczak 2018). However, the clinical use of actinomycin D to inhibit
malignant tumors is discouraged due to its toxic effects, thus limiting its appli-
cation for experimental purposes.

Table 9.2 Different microbial products possessing anticancerous activity with cancers for which
they are effective

Microbial
products Efficacy in cancer

Bacteriocins Bovicin HC5 Human breast adenocarcinoma and liver hepatocellular
carcinoma

Colicin Breast carcinoma, osteosarcoma, fibrosarcoma

Laterosporulin 10 Breast adenocarcinoma

Microcin E492 Acute T-cell leukemia, Burkitt’s lymphoma, and cervi-
cal adenocarcinoma

Antibiotics Actinomycin D Wilms’ cancer, neuroblastomas, and trophoblastic
tumors

Doxorubicin Acute lymphoblastic tumors, ovarian carcinoma,
malignant lymphoma, and gastric carcinoma

Mitomycin C Lung cancer, human colon cancer, gastric cancer

Bleomycin Hodgkin’s disease, ovarian cancer, non-Hodgkin’s
lymphoma, and malignant pleural effusion

Enzymes Arginine
deiminase

Prostate cancer and hepatocellular carcinoma

L-asparaginase Myeloblastic leukemia, ovarian carcinoma, and
Hodgkin’s and non-Hodgkin’s lymphoma

Non-ribosomal
peptides

Arenamides Human colon carcinoma

Ariakemicins Human lung tumor

Halolitoralins Human gastric tumor cells

Heptapeptide from
P. profundus

Human melanoma

Toxins Botulinum neuro-
toxin type A

Benign prostatic hyperplasia, prostate cancer

Diphtheria toxin Human adrenocortical carcinoma, T-cell lymphomas

Exotoxin A Pancreatic cancer, melanoma, and head and neck squa-
mous carcinoma

Listeriolysin O Human leukemia T-lymphocyte cells and human breast
adenocarcinoma

Other proteins
and peptides

Azurin Breast cancer, melanoma, and oral squamous carcinoma

Entap Colorectal adenocarcinoma, gastric cancer, cervical
cancer, breast cancer, and prostate cancer

Pep27anal2 Gastric cancer, breast cancer, and leukemia
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2. Doxorubicin: Doxorubicin is one of the most effective chemotherapy drugs used
against solid tumors in the treatment of several cancer types. It is an anthracycline
antibiotic with antitumor activity. It acts as an amphiphilic molecule as it contains
a water-insoluble aglycone and a water-soluble amino-sugar functional group
(Abraham et al. 2005). Doxorubicin depicts its anticancer activity by two main
mechanisms: inhibition of DNA and RNA synthesis in rapidly growing cells by
blocking the replication and transcription processes (Thorn et al. 2011) and
generation of iron-mediated free radicals, causing oxidative damage to cell
membranes, proteins, and DNA (Cagel et al. 2017). The use of doxorubicin as
anticancerous drug has been approved by Food and Drug Administration for the
treatment of several cancers including acute lymphoblastic/myeloblastic leuke-
mia, neuroblastoma, bone sarcomas, breast carcinoma, thyroid carcinoma, ovar-
ian carcinoma, bladder carcinoma, Hodgkin’s disease, malignant lymphoma,
gastric carcinoma, and bronchogenic carcinoma. It has been demonstrated that
combining niacin with doxorubicin can improve the treatment efficacy of skin
cancers (Preet et al. 2015). Doxorubicin containing drugs include doxorubicin
medac, doxorubicinum accord, doxorubicin ebewe, caelyx, adriblastine PFS, and
myocet (Karpiński and Adamczak 2018).

Resistance to chemotherapeutic agents is one of the major disadvantages of
long-term anticancer treatment. Repeated doxorubicin administration leads to
drug-resistant cancer cells and increased cytotoxicity. In fact, cardiotoxicity is
the most common doxorubicin-induced side effect. Therefore, most of the
research conducted on doxorubicin has been focused on the elimination of the
anti-therapeutic effects. Potential treatment options have been developed to
reduce doxorubicin-mediated cardiotoxicity, such as lowering the dosage of
doxorubicin, combined therapies with cardioprotective agents (e.g.,
dexrazoxane), through regulation of cardiac circular RNA expression.

3. Mitomycin C: Streptomyces caespitosus strain was used to isolate mitomycin
C. Mitomycin C acts as an anticancer agent as it inhibits DNA synthesis by
binding to DNA during alkylation forming cross-linked double stranded DNA
(Verweij and Pinedo 1990). Mitomycin C has been used for the treatment of
various cancers (Bradner 2001). Mitomycin C containing drugs include mitomy-
cin accord and mitomycin C kyowa (Karpiński and Adamczak 2018).

4. Bleomycin: Streptomyces verticillus-derived bleomycin is a mixture of glycopep-
tide antibiotics which have cytotoxic properties (Egger et al. 2013). Bleomycin
induces oxygen- and metal ion-dependent cleavage of DNA by binding to it,
releasing hydroxyl radical under the influence of molecular oxygen, thus damag-
ing DNA. Bleomycin is used in the treatment of head and neck squamous cell
carcinomas, Hodgkin’s disease, non-Hodgkin’s lymphoma, testicular carcino-
mas, ovarian cancer, and malignant pleural effusion (Segerman et al. 2013;
Bayer et al. 1992). Drugs containing bleomycin include Blenoxane and
Bleomycin USP (Karpiński and Adamczak 2018).
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9.3.2 Toxins

Toxins produced by microorganisms damage host tissues either directly at the site of
microbial infection or throughout the body. Some toxins are used for therapeutic
purposes (Henkel et al. 2010) and are discussed below:

1. Botulinum Neurotoxin Type A: Botulinum neurotoxin type A that is produced by
strains of anaerobic spore forming gram-positive Clostridium botulinum are used
for the symptomatic relief of spasticity and other movement disorders. It is also
used as anticancer agent against benign prostatic hyperplasia. Since the toxin is
apoptotic in nature, it reduces cell growth and proliferation of prostate cancer cell
lines, PC-3 and LNCaP (Karsenty et al. 2009; Proietti et al. 2012). It is also
known to initiate death by caspase-3 and -7 dependent apoptotic pathways in
breast cancer cell line, T47D (Bandala et al. 2013). Injection of botulinum
neurotoxin type A is also used for the treatment of post-radiation and surgical
pain induced by the conventional radiotherapy with lesser side effects (Mittal and
Jabbari 2020).

2. Diphtheria Toxin: Corynebacterium diphtheria produces diphtheria exotoxin
which is of 60 kDa and is composed of 538 amino acids. Diphtheria toxin exhibits
anticancer activity with minor side effects, so it is utilized in the antitumor therapy
in combination with other agents that eliminate its side effects. Nontoxic mutant
of diphtheria toxin, cross-reacting material 197 (CRM197) binds to heparin-
binding epidermal growth factor and acts as inhibitor of this growth factor.
CRM197 is known to inhibit angiogenesis and stimulate cell apoptosis in
human adrenocortical carcinoma cells, H295R (Martarelli et al. 2009). DTAT, a
diphtheria toxin-based immunotoxin is directed to cancer vascular endothelium.
DTAT exhibited in vitro anticancer action in case of glioblastoma cell lines
including U118MG, U373MG, U87MG (Vallera et al. 2002). A drug named
Ontak is used in cutaneous T-cell lymphomas expressing CD25. It is a fusion
product known as denileukin diftitox which is a DNA derived cytotoxic protein
composed of enzymatically active domain of DT followed by sequences of
human IL-2 and acts against the cells expressing IL-2 receptor which is highly
expressed on malignant T cells (Lutz et al. 2014; Lewis et al. 2017).

3. Exotoxin A: Pseudomonas aeruginosa produces many toxins out of which exo-
toxin A is the main toxin which is a 66 kDa protein composed of 638 amino acids.
It acts similar to diphtheria toxin and also has ADP ribosyl transferase activity. Its
production is dependent on the presence of iron. Exotoxin A inhibits protein
synthesis by inactivation of elongation factor-2 (EF-2). It acts as an immunotoxin
with different ligands (Karpiński and Szkaradkiewicz 2013). De-immunized
Pseudomonas exotoxin cloned with both human epidermal growth factor (EGF)
and IL-4 showed anticancer activity against pancreatic cancer, PaCa-2, and
prevented metastasis, selectively (Oh et al. 2012). Two exotoxin A-based
immunotoxins (9.2.27PE and ABT-737) caused synergistic cytotoxicity and
death of melanoma cell lines such as FEMX, Melmet-1, Melmet-5, Melmet-44,
Mel RM, and MM200 by apoptosis (Risberg et al. 2011). It has also been
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demonstrated that exotoxin A cloned with anti-CD133 scFv causes inhibition of
head and neck squamous carcinoma (Waldron et al. 2011).

4. Listeriolysin O: Listeriolysin O is a pore-forming toxin produced by Listeria
monocytogenes and is responsible for bacterial phagosomal escape. It facilitates
bacterial multiplication into the cytoplasm during infection (Provoda et al. 2003).
Listeriolysin O belongs to the family of cholesterol dependent cytolysins which
exhibit potential cell type non-specific toxicity which is a potent source of
dominant CD4+ and CD8+ T-cell epitopes. Therefore, the conjugated
immunotoxin B3-listeriolysin O inhibits breast carcinoma cell lines MCF7 and
SKBR-3 (Bergelt et al. 2009). Supernatants of L. monocytogenes strains showed
dose-dependent cytotoxicity against human leukemia T-lymphocyte Jurkat cells
(Stachowiak et al. 2012). Interestingly, listeriolysin O activity is targeted more to
T cells than B cells and it may exhibit some specific anticancer activities
(Stachowiak et al. 2012).

9.3.3 Bacteriocins

Bacteriocins are a heterogeneous group of ribosomally synthesized bacterial pep-
tides or proteins with antimicrobial properties and some of them exhibit anticancer
activity (Kaur and Kaur 2015; Mandal et al. 2016; Drider et al. 2016). Bacteriocins
have been isolated from all types of bacteria. Gram-positive bacteria secrete four
classes of bacteriocins.

1. Bovicin HC5: Streptococcus bovis secretes antibiotic bovicin HC5 having molec-
ular weight of 2.4 kDa. Bovicin HC5 has structural and functional similarities to
nisin and has broad spectrum antimicrobial activity against closely related species
of S. bovis and also against Gram-positive and Gram-negative bacteria (Kaur and
Kaur 2015). In vitro cytotoxic activity of bovicin HC5 has been observed against
human breast adenocarcinoma (MCF-7) and human liver hepatocellular carci-
noma (HepG2) with IC50 of 279.4 and 289.3 M, respectively (Paiva et al. 2012).

2. Colicins: Colicins are plasmid encoded antimicrobial bacteriocins having molec-
ular weight of more than 20 kDa and are produced by the Escherichia coli.
Basically, colicins act on E. coli and other closely related strains. They also
possess anticancer activity against different cancers such as breast cancer, colon
cancer, bone cancer, and uterus cancer.

E. coli produces different colicins A, E1, and E3 and all these colicins possess
cytotoxic activity against different cancers by inducing apoptosis, necrosis, and
by alteration of cell cycle (Kaur and Kaur 2015). Colicins E1 and E3 are known to
exhibit cytotoxic activity against BM2 cells. Colicin E3 kills cells by necrosis
rather than apoptosis. However, maximum apoptotic cell death is observed by
exposing cells to colicin E1 (1.25 g/mL) for 48 h (Smarda et al. 2001). Four
different colicins (A, E1, U, E3) were tested in terms of their inhibitory activity
against 11 cancer cell lines. Colicin E1 inhibits breast carcinoma (MCF7, ZR75,
BT549, BT474, MDA-MB-231, SKBR3, and T47D), leiomyosarcoma (SKUT-
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1), osteosarcoma (HOS), and fibrosarcoma (HS913T). 50% inhibition of fibro-
sarcoma (HS913T) and 17–40% inhibition of other cancer cells were exhibited by
colicin E1 (Chumchalova and Šmarda 2003).

3. Laterosporulin 10: Brevibacillus sp. produces laterosporulin 10 (LS10), a
defensin-like class IId bacteriocin which inhibits microbial pathogens. LS10
shows antibacterial activity against pathogens like M. tuberculosis and Staphy-
lococcus aureus. Interestingly, LS10 is also known to exhibit anticancer activity.
A dose-dependent cytotoxic activity is observed against different human cancer
cell lines and it is observed that 10μM concentration induces highest anticancer
activity against MCF-7 cells and no cytotoxicity was observed up to 15μM of
concentration against normal cells. Therefore, LS10 acts as a good anticancer
agent. It acts on cancer cells by mediating membrane disintegration. Notably, it
induces both apoptosis and necrosis in cells at varying concentrations where
apoptosis was observed at lower doses and necrosis was observed at higher
doses (Baindara et al. 2017).

4. Microcin E492: Microcin E492 is low molecular weight bacteriocin produced by
Klebsiella pneumoniae RYC492 strain. It shows antimicrobial activity against
Klebsiella, E. coli, and Salmonella. Microcin E492 has been proven to be
cytotoxic against several malignant human cell lines, including acute T-cell
leukemia (Jurkat), Burkitt’s lymphoma cell line, B-lymphoblastoid cell lines
transformed by infection with Epstein–Barr virus (RJ2.25), and cervical adeno-
carcinoma (HeLa). However, human endothelial cells from human tonsils
(AMG-3) and a monocyte-macrophage cell line (KG-1) were not affected by
microcin E492 (Hetz et al. 2002). Similar to laterosporulin 10, microcin E492
causes apoptotic cell death at low concentrations and necrotic cell death at higher
concentrations (Hetz et al. 2002). Induction of apoptosis by microcin E492 causes
several biochemical and morphological changes such as cell shrinkage, DNA
fragmentation and flipping of phosphatidylserine to the outer membrane. Due to
apoptosis, there is an activation of caspases along with a loss of membrane
potential (Hetz et al. 2002).

9.3.4 Non-Ribosomal Peptides

An enzyme complex present only in bacteria, cyanobacteria and fungi synthesizes
non-ribosomal peptides. Besides exhibiting antimicrobial activity, some
non-ribosomal peptides exhibit anticancerous activities (Agrawal et al. 2017) and
are discussed below:

1. Arenamides: Arenamides are produced by the fermented broth of marine
actinobateria, Salinispora arenicola which is found in the sea sediment (Great
Astrolabe Reef, Kandavu Island chain, Fiji). There are three new
cyclohexadepsipeptides, namely arenamides A, B, and C. Arenamides A and B
exhibit anticancerous activity by blocking TNF-induced activation. Inhibition of
prostaglandin E2 and nitric oxide production by arenamides also induces
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moderate cytotoxic effect on human colon carcinoma, HCT-116 cells (Sieber and
Marahiel 2003). The anticancer effect of these arenamides is due to suppression
of NF-κB which regulates the expression of a number of genes whose effector
proteins are associated with tumorigenesis (Asolkar et al. 2009).

2. Ariakemicins: The culture of the marine gliding bacterium of Rapidithrix genus
(Ariake Inland Sea, Japan) produces two linear hybrid polyketidenon-ribosomal
peptides (ariakemicins A and B). They are composed of threonine, two Ω amino
(Ω-3) methyl carboxylic acids containing diene units and δ-isovanilloyl butyric
acid. These ariakemicins antibiotics inhibit Gram-positive bacteria. Ariakemicins
are also known to exhibit low cytotoxicity to human lung tumor cell line, A549,
and baby hamster kidney cells (Oku et al. 2008).

3. Halolitoralins: Cyclic hexapeptide (halolitoralin A) and cyclic tetrapeptides
(halolitoralin B and C) derived from Halobacillus litoralis YS3106 strain have
a molecular mass 572 Da which exhibits moderate activities against human
gastric tumor cells, in vitro (Yang et al. 2002).

4. 6pt?>Heptapeptide from Paenibacillus profundus: Glyceryl acid derived
heptapeptide (glyceryl-D-leucyl-D-alanyl-D-leucyl-D-leucyl-L-valyl-D-leucyl-
D-alanine) was produced from the culture of Paenibacillus profundus. The
peptide exhibits cytotoxic activity against human melanoma cell line,
SK-MEL-28 (Kalinovskaya et al. 2013).

9.3.5 Enzymes

An emerging strategy in cancer therapy is to starve cancer cells through amino acid
deprivation. Microbial enzymes like arginine deiminase and L-asparaginase act by
amino acid deprivation in sensitive cancer cells and thus are used for the treatment of
different cancers.

1. Arginine Deiminase: Arginine deiminase is an enzyme produced byMycoplasma
hominis or Mycoplasma arginine. It degrades arginine to citrulline in vivo,
releasing ammonia (Ni et al. 2008). Thus, it acts as an anticancerous therapeutic
for tumors requiring arginine.

Interestingly, the anticancerous efficacy of pegylated arginine deiminase
(ADI-PEG20) is directly correlated with the deficiency of argininosuccinate syn-
thetase enzyme. This is because argininosuccinate synthetase enzyme is involved in
the synthesis of arginine from citrulline and various tumor cells such as hepatocel-
lular carcinoma, melanomas, pancreatic carcinomas lack the expression of this
enzyme, therefore, unable to synthesize arginine. Thus, arginine deiminase inhibits
the growth of cancerous cells by depleting arginine. It has been established that
arginine deiminase inhibits hepatocellular carcinoma and acts as a promising drug
utilizing high enzymatic deficiency of argininosuccinate synthetase in hepatocellu-
lar carcinoma. Prostate cancer cells (CWR22Rv1) are also susceptible to
ADI-PEG20 in vitro. ADI-PEG20 acts on a tumor cell by inducing G1 cell cycle
arrest and caspase independent apoptosis (Kim et al. 2009).
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2. L-asparaginase: Escherichia coli or Erwinia sps. produce L-asparaginase
enzyme. The antitumor action of bacterial L-asparaginase enzyme is through
the ability to reduce blood concentration of asparagine causing a selective
inhibition of sensitive malignant cells (Avramis et al. 2002) and also by inducing
apoptosis and inhibition of protein synthesis of the treated cells. Dose-dependent
inhibition of brain tumor cell lines, p53 and PTEN null human glioblastomas
(GBM-ES and U87) and a pediatric medulloblastoma (DAOY) has been seen
after using L-asparaginase as an anticancer agent (Paiva et al. 2012).
L-asparaginase has also been utilized in myeloblastic leukemia, acute lympho-
blastic leukemia, Hodgkin and non-Hodgkin lymphomas, extranodal NK/T-cell
lymphoma, and ovarian carcinomas (Jaccard et al. 2011; Covini et al. 2012; Yu
et al. 2012).

9.3.6 Other Proteins and Peptides.

1. Azurin: Pseudomonas aeruginosa produces a copper containing protein known as
azurin, which has molecular mass of 16 kDa. Removal of copper produces
cytotoxic apo-azurin (Goto et al. 2003). Azurin is known to exhibit anticancerous
properties through induction of apoptotic cell death by (1) forming complex with
tumor suppressor protein p53, (2) by interfering in the receptor tyrosine kinase
EphB2-mediated signaling process, (3) preventing angiogenesis through reduc-
ing VEGFR-2 tyrosine kinase activity, (4) interference with P-cadherin protein
expression, and (5) inhibition of the growth of breast cancer cells (Gao et al.
2017). Azurin has a strong cytotoxic effect on breast cancer cell lines including
MCF-7, MDA-MB-157, MDD2, and MDA-MB-231 (Punj et al. 2004). Azurin
also exhibits anticancer activity against oral squamous carcinoma cells, YD-9
(Choi et al. 2011), and melanoma cells, UISO-Mel-2 (Yamada et al. 2002).

2. Entap: Clinical strains of Enterococcus genus produce anti-proliferative peptide
(Entap). Entap is known to exhibit anti-proliferative activity against cell lines of
colorectal adenocarcinoma (HT-29), human gastric adenocarcinoma (AGS), uter-
ine cervix adenocarcinoma (HeLa), mammary gland adenocarcinoma
(MDA-MB-231), and also prostatic carcinoma (22Rv1). Entap induces
autophagous apoptosis in cancer cells and causes cancer cell cycle arrest in G1
phase (Karpiński and Szkaradkiewicz 2013; Karpiński et al. 2013; Karpiński
2012).

3. Pep27anal2: Pep27anal2 is an analogue of a signal peptide Pep27 produced by
Streptococcus pneumonia. It is known to exhibit anticancer properties by pene-
trating the cell membrane and inducing caspase- and cytochrome c-independent
apoptosis. Due to the membrane permeability the peptide gets hydrophobic which
plays an important role against cancer cells. Pep27anal2 inhibits proliferation of
cell lines of gastric cancer (SNU-601), leukemia (AML-2, HL-60, Jurkat), and
breast cancer (MCF-7) (Lee et al. 2005).
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9.3.7 Conclusion and Future Perspectives

Microbes constitute a valuable and a moderately known source of biologically active
substances with significant anticancer properties. Some of these include drugs which
are already in use such as actinomycin D, doxorubicin, mitomycin C, and diphtheria
toxin, while other substances are either in clinical trials or are being tested in in vitro
research. Majority of bacterial anticancer proteins/peptides end in the in vitro stage
and only few undergo the entire procedure, from in vitro testing to clinical trials
followed by registration and use as medicines. More such products should be
explored for analysis at in vitro and in vivo level for production of new and efficient
anticancer drugs at the earliest. The combination of different techniques such as
omics with virtual and computational screening can also be utilized for the modifi-
cation of the known anticancer proteins or for selection of new chemical compounds
with antitumor activity.

References

Abraham SA,Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB (2005) The liposomal
formulation of doxorubicin. In: Methods in enzymology. Elsevier, Amsterdam, pp 71–97

Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK (2017) Nonribosomal peptides
from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 8:828

Asolkar RN, Freel KC, Jensen PR, Fenical W, Kondratyuk TP, Park E-J et al (2009) Arenamides
A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J Nat
Prod 72(3):396–402

Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ et al (2002) A randomized
comparison of nativeEscherichia coli asparaginase and polyethylene glycol conjugated
asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic
leukemia: a Children’s Cancer group study. Blood 99(6):1986–1994

Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like
class IId bacteriocin Laterosporulin10. Sci Rep 7:46541

Baird JR, Fox BA, Sanders KL, Lizotte PH, Cubillos-Ruiz JR, Scarlett UK et al (2013) Avirulent
toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression
in the ovarian cancer microenvironment. Cancer Res 73(13):3842–3851

Bandala C, Perez-Santos JLM, Lara-Padilla E, Delgado Lopez MG, Anaya-Ruiz M (2013) Effect of
botulinum toxin a on proliferation and apoptosis in the T47D breast cancer cell line. Asian
Pacific J Cancer Prev 14(2):891–894

Bayer RA, Gaynor ER, Fisher RI (1992) Bleomycin in non-Hodgkin’s lymphoma. In: Seminars in
oncology. Elsevier, Amsterdam, pp 46–53

Bazylinski DA, Williams TJ, Lefevre CT, Berg RJ, Zhang CL, Bowser SS et al (2013)
Magnetococcus marinus gen. Nov., sp. nov., a marine, magnetotactic bacterium that represents
a novel lineage (Magnetococcaceae fam. Nov., Magnetococcales Ord. Nov.) at the base of the
Alphaproteobacteria. Int J Syst Evol Microbiol 63(3):801–808

Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J et al (2007) Improving
tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface
CEA-specific antibodies. Vaccine 25(21):4183–4192

Bergelt S, Frost S, Lilie H (2009) Listeriolysin O as cytotoxic component of an immunotoxin.
Protein Sci 18(6):1210–1220

216 V. Sharma et al.



Biot C, Rentsch CA, Gsponer JR, Birkhäuser FD, Jusforgues-Saklani H, Lemaître F et al (2012)
Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci
Transl Med 4(137):137ra72

Bradner WT (2001) Mitomycin C: a clinical update. Cancer Treat Rev 27(1):35–50
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics

2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 coun-
tries. CA Cancer J Clin 68(6):394–424

Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA (2017) Doxorubicin: nanotechno-
logical overviews from bench to bedside. Drug Discov Today 22(2):270–281

Chakrabarty AM (2003) Microorganisms and cancer: quest for a therapy. J Bacteriol 185
(9):2683–2686

Chishti AH (2015) Malaria selectively targets pregnancy receptors. Blood 125(2):217–218
Choi J-H, Lee M-H, Cho Y-J, Park B-S, Kim S, Kim G-C (2011) The bacterial protein azurin

enhances sensitivity of oral squamous carcinoma cells to anticancer drugs. Yonsei Med J 52
(5):773–778

Chumchalova J, Šmarda J (2003) Human tumor cells are selectively inhibited by colicins. Folia
Microbiol 48(1):111–115

Connell HC (1935) The study and treatment of cancer by proteolytic enzymes: preliminary report.
Can Med Assoc J 33(4):364

Covini D, Tardito S, Bussolati O, Chiarelli RL, Pasquetto MV, Digilio R et al (2012) Expanding
targets for a metabolic therapy of cancer: L-asparaginase. Recent Pat Anticancer Drug Discov 7
(1):4–13

D’arpa P, Liu LF (1989) Topoisomerase-targeting antitumor drugs. Biochim Biophys Acta (BBA)-
reviews. Cancer 989(2):163–177

Della Latta V, Cecchettini A, Del Ry S, Morales MA (2015) Bleomycin in the setting of lung
fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res 97:122–130

Deweerdt S (2013) Bacteriology: a caring culture. Nature 504(7480):S4–S5
Dimitriadis E (2016) The use of malaria glycosaminoglycan to block cancers-lessons from the

human placenta. Transl Cancer Res 5:S1085–S1087
Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial

agents. Probiot Antimicrob Proteins 8(4):177–182
Droller MJ (2017) Intracavitary bacillus Calmette-Guerin for superficial bladder tumors. J Urol 197

(2S):S146–S147
Egger C, Cannet C, Gérard C, Jarman E, Jarai G, Feige A et al (2013) Administration of bleomycin

via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as
quantified by UTE-MRI and histology. PLoS One 8(5):e63432

Farhane Z, Bonnier F, Byrne HJ (2018) An in vitro study of the interaction of the chemotherapeutic
drug Actinomycin D with lung cancer cell lines using Raman micro spectroscopy. J
Biophotonics 11(1):e201700112

Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, Loghin D et al (2016) Magneto-
aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat
Nanotechnol 11(11):941–947

Felgner S, Kocijancic D, FrahmM,Weiss S (2016) Bacteria in cancer therapy: renaissance of an old
concept. Int J Microbiol 2016

Fialho AM, Das Gupta TK, Chakrabarty AM, Sleator R, Hill C (2008) Promiscuous drugs from
pathogenic bacteria in the post-antibiotics era. In: Patho-Biotechnol. Landes Bioscience, Austin,
TX, pp 145–162

Gao M, Zhou J, Su Z, Huang Y (2017) Bacterial cupredoxin azurin hijacks cellular signaling
networks: protein–protein interactions and cancer therapy. Protein Sci 26(12):2334–2341

Goto M, Yamada T, Kimbara K, Horner J, Newcomb M, Das Gupta TK et al (2003) Induction of
apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53
and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol
Microbiol 47(2):549–559

9 Role of Microbes and Microbial Products in Cancer Therapeutics 217



Henkel JS, Baldwin MR, Barbieri JT (2010) Toxins from bacteria. In: Molecular, clinical and
environmental toxicology. Springer, Cham, pp 1–29

Hetz C, Bono MR, Barros LF, Lagos R (2002) Microcin E492, a channel-forming bacteriocin from
Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci 99
(5):2696–2701

Jaccard A, Gachard N, Marin B, Rogez S, Audrain M, Suarez F et al (2011) Efficacy of
L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients
with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 117
(6):1834–1839

Kalinovskaya NI, Romanenko LA, Kalinovsky AI, Dmitrenok PS, Dyshlovoy SA (2013) A new
antimicrobial and anticancer peptide producing by the marine deep sediment strain
“Paenibacillus profundus” sp. nov. Sl 79. Nat Prod Commun 8(3):1934578X1300800326

Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström P-U, Choi W et al (2016) Bladder
cancer. Lancet 388(10061):2796–2810

Karpiński TM (2012) New peptide (Entap) with anti-proliferative activity produced by bacteria of
Enterococcus genus. Habilitation thesis. Scientific Publisher of Poznań University of Medical

Karpiński TM, Adamczak A (2018) Anticancer activity of bacterial proteins and peptides.
Pharmaceutics 10(2):54

Karpiński TM, Szkaradkiewicz A, Gamian A (2013) New enterococcal anticancer peptide. In: 23rd
European Congress of Clinical Microbiology and Infectious Diseases Berlin, Germany, 2013,
p. 30

Karpiński TM, Szkaradkiewicz AK (2013) Anti-cancer peptides from bacteria. Bangladesh J
Pharmacol 8(3):343–348

Karsenty G, Rocha J, Chevalier S, Scarlata E, Andrieu C, Zouanat FZ et al (2009) Botulinum toxin
type a inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo. Prostate 69
(11):1143–1150

Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 6:272
Kim JO, Jung SS, Kim SY, Kim TY, Shin DW, Lee JH et al (2007) Inhibition of Lewis lung

carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and
inhibition of angiogenesis. J Korean Med Sci 22:S38–S46

Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU et al (2009) Arginine
deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent
apoptosis. Cancer Res 69(2):700–708

Lee DG, Hahm K-S, Park Y, Kim H-Y, Lee W, Lim S-C et al (2005) Functional and structural
characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int 5(1):21

Lewis DJ, Dao H Jr, Nagarajan P, Duvic M (2017) Primary cutaneous anaplastic large-cell
lymphoma: complete remission for 13 years after denileukin diftitox. JAAD Case Rep 3(6):501

Liu S, Xu X, Zeng X, Li L, Chen Q, Li J (2014) Tumor-targeting bacterial therapy: a potential
treatment for oral cancer. Oncol Lett 8(6):2359–2366

Lutz MB, Baur AS, Schuler-Thurner B, Schuler G (2014) Immunogenic and tolerogenic effects of
the chimeric IL-2-diphtheria toxin cytocidal agent Ontak® on CD25+ cells. Onco Targets Ther
3(3):e28223

Mandal SM, Pati BR, Chakraborty R, Franco OL (2016) New insights into the bioactivity of
peptides from probiotics. Front Biosci 8:450–459

Martarelli D, Pompei P, Mazzoni G (2009) Inhibition of adrenocortical carcinoma by diphtheria
toxin mutant CRM197. Chemotherapy 55(6):425–432

Martel S (2017) Targeting active cancer cells with smart bullets. Ther Deliv 8(5):301–312
Mittal SO, Jabbari B (2020) Botulinum neurotoxins and Cancer-a review of the literature. Toxins 12

(1):32
Ni Y, Schwaneberg U, Sun Z-H (2008) Arginine deiminase, a potential anti-tumor drug. Cancer

Lett 261(1):1–11

218 V. Sharma et al.



Oh S, Todhunter DA, Panoskaltsis-Mortari A, Buchsbaum DJ, Toma S, Vallera DA (2012) A
deimmunized bispecific ligand directed toxin that shows an impressive anti-pancreatic cancer
effect in a systemic nude mouse orthotopic model. Pancreas 41(5):789

Ohta N, Fukase S, Suzuki Y, Ishida A, Aoyagi M (2010a) Treatments of various otolaryngological
cystic diseases by OK-432 1: its indications and limitations. Laryngoscope 120(11):2193–2196

Ohta N, Fukase S, Watanabe T, Ito T, Aoyagi M (2010b) Effects and mechanism of OK-432
therapy in various neck cystic lesions. Acta Otolaryngol 130(11):1287–1292

Oku N, Adachi K, Matsuda S, Kasai H, Takatsuki A, Shizuri Y (2008) Ariakemicins a and B, novel
polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org
Lett 10(12):2481–2484

Olivieri C, Nanni L, De Gaetano AM, Manganaro L, Pintus C (2016) Complete resolution of
retroperitoneal lymphangioma with a single trial of OK-432 in an infant. Pediatr Neonatol 57
(3):240–243

Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC (2012)
Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin
activity. Microbiology 158(11):2851–2858

Paton AW, Morona R, Paton JC (2012) Bioengineered microbes in disease therapy. Trends Mol
Med 18(7):417–425

Patyar S, Joshi R, Byrav DSP, Prakash A, Medhi B, Das BK (2010) Bacteria in cancer therapy: a
novel experimental strategy. J Biomed Sci 17(1):21

Preet S, Bharati S, Panjeta A, Tewari R, Rishi P (2015) Effect of nisin and doxorubicin on DMBA-
induced skin carcinogenesis—a possible adjunct therapy. Tumor Biol 36(11):8301–8308

Proietti S, Nardicchi V, Porena M, Giannantoni A (2012) Botulinum toxin type-a Toxinactivity in
prostate Cancer cell lines. Urol J 79(2):135–141

Provoda CJ, Stier EM, Lee K-D (2003) Tumor cell killing enabled by listeriolysin O-liposome-
mediated delivery of the protein toxin gelonin. J Biol Chem 278(37):35102–35108

Punj V, Bhattacharyya S, Saint-Dic D, Vasu C, Cunningham EA, Graves J et al (2004) Bacterial
cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene
23(13):2367–2378

Pyo K-H, Jung B-K, Xin C-F, Lee Y-W, Chai J-Y, Shin E-H (2014) Prominent IL-12 production
and tumor reduction in athymic nude mice after toxoplasma gondii lysate antigen treatment.
Korean J Parasitol 52(6):605

Risberg K, Fodstad Ø, Andersson Y (2011) Synergistic anticancer effects of the 9.2. 27PE
immunotoxin and ABT-737 in melanoma. PLoS One 6(9):e24012

Ruiz E Jr, Valera ET, Veríssimo F, Tone LG (2004) OK-432 therapy for lymphangioma in children.
J Pediatr 80(2):154–158

Salanti A, Clausen TM, Agerbæk MØ, Al Nakouzi N, Dahlbäck M, Oo HZ et al (2015) Targeting
human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell 28(4):500–514

Sanders KL, Fox BA, Bzik DJ (2016) Attenuated toxoplasma gondii therapy of disseminated
pancreatic cancer generates long-lasting immunity to pancreatic cancer. Onco Targets Ther 5
(4):e1104447

Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H et al (2018) A
phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination
with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic
cancer. Onco Targets Ther 7(4):e1303584

Segerman ZJ, Roy B, Hecht SM (2013) Characterization of bleomycin-mediated cleavage of a
hairpin DNA library. Biochemistry 52(31):5315–5327

Sieber SA, Marahiel MA (2003) Learning from nature’s drug factories: nonribosomal synthesis of
macrocyclic peptides. J Bacteriol 185(24):7036–7043

Smarda J, Fialova M, Smarda J Jr (2001) Cytotoxic effects of colicins E1 and E3 on v-myb-
transformed chicken monoblasts. Folia Biol 47(1):11

9 Role of Microbes and Microbial Products in Cancer Therapeutics 219



Stachowiak R, Lyzniak M, Budziszewska BK, Roeske K, Bielecki J, Hoser G et al (2012)
Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. J
Biomed Biotechnol 2012

Staedtke V, Roberts NJ, Bai R-Y, Zhou S (2016) Clostridium novyi-NT in cancer therapy. Genes
Dis 3(2):144–152

Taniguchi K, Koga S, Nishikido M, Yamashita S, Sakuragi T, Kanetake H et al (1999) Systemic
immune response after intravesical instillation of bacille Calmette-Guérin (BCG) for superficial
bladder cancer. Clin Exp Immunol 115(1):131–135

Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE et al (2011)
Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21
(7):440

Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type
plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion
protein DTAT. J Natl Cancer Inst 94(8):597–606

Verweij J, Pinedo HM (1990) Mitomycin C: mechanism of action, usefulness and limitations. Anti-
Cancer Drugs 1(1):5–13

Waldron NN, Kaufman DS, Oh S, Inde Z, Hexum MK, Ohlfest JR et al (2011) Targeting tumor-
initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotrans-
plant model of human head and neck cancer. Mol Cancer Ther 10(10):1829–1838

Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K et al (2002) Bacterial redox protein
azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci 99
(22):14098–14103

Yang L, Tan R, Wang Q, Huang W, Yin Y (2002) Antifungal cyclopeptides from Halobacillus
litoralis YS3106 of marine origin. Tetrahedron Lett 43(37):6545–6548

Yu M, Henning R, Walker A, Kim G, Perroy A, Alessandro R et al (2012) L-asparaginase inhibits
invasive and angiogenic activity and induces autophagy in ovarian cancer. J Cell Mol Med 16
(10):2369–2378

220 V. Sharma et al.



Chapter 10
Bacterial Cellulose: A Multifaceted
Microbial Product

Abhay Pandit and Rakesh Kumar

Abstract The evolution of biotechnology revolutionized the modern era. The uses
of plastic and plastic-based materials were widely accepted but due to its
non-biodegradable nature the focus of research is getting shifted towards biodegrad-
able material called biopolymer. Biopolymers are the polymers derived from bio-
logical origin with characteristic of getting degraded after its use in the normal
environmental condition. Bacterial cellulose (BC) is one of the sustainable bio-
polymers which are biodegradable, biocompatible, and are obtained from fermenta-
tion. In this book chapter, we have discussed the two main methods to obtain BC, its
biosynthesis, and its wide application with their relevant characteristic features.

Keywords Bacterial cellulose · Biodegradable · Agitated mode · Static mode ·
Mechanical properties

10.1 Introduction

Cellulose, one of the most enormously available polysaccharides, is being delivered
by a diverse group of life forms, scaling from plants to photosynthetic eukaryotes
and some prokaryotes (Brown 1886; Nobles et al. 2001; Ross et al. 1991). The
annual production of cellulose ranges up to 180 billion tonnes (Amor et al. 1995;
Delmer 1999). For the first time in 1886, Brown started the research related to
synthesis of an extracellular gel-like mat of a linear chain pellicle produced by
Bacillus xylinum. The produced pellicle shows chemical resemblance with the
cellulose of plant origin (Bi et al. 2014; Donini et al. 2010; Hestrin and Schramm
1954; Klemm et al. 2001; Rangaswamy et al. 2015). It has been reported that, the
production of bacterial cellulose (BC) is initiated through oxidative fermentation in
several media by the bacterial genera Gluconoacetobacter, Sarcina and
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Agrobacterium, etc. (Donini et al. 2010; Esa et al. 2014; Huang et al. 2014). The
glucose chains are produced from the tiny pores present on the bacterial cell
membrane which forms microfibrils that further aggregates resulting in the formation
of cellulosic ribbons. The aggregation of microfibrils results in cellulose ribbons,
generating a 3-D structure having ample of void spaces which makes the matrix
highly porous as evident from its increase in water uptake behavior (Esa et al. 2014;
Shah et al. 2013). The produced membrane exhibits a property of a never dried
membrane containing 99.1 wt% water of which 0.3 wt% remains associated with
water and 98.5 wt% is available free water (Thompson and Hamilton 2001). BC acts
as a shield against UV light or as a hurdle to some of the primitive forms of
eukaryotic cells and other microorganisms but still the mechanism needs to be
validated (Moon et al. 2011). BC shares one of the most dynamic behavior that is
its likelihood to modify the microfibril aggregation or assembly and crystalline
structure just by fine-tuning the culture conditions (Astley et al. 2003; Harris et al.
2012). BC membrane not only protects bacteria from the toxic nature of UV light
rather it also serves in respiration by floating at the gas-liquid interface of the culture
vessels (Reiniati et al. 2017). BC shares similar molecular formula (C6H12O6)n as
that of celluloses obtained from plant origin, but BC are devoid of other polysac-
charide units like lignin, hemicellulose and pectin which make its purification much
easier, simpler and a low energy process whereas purification from plant origin
requires harsh chemicals (Huang et al. 2014). In future, the BC production will
substantially cut the utilization of big trees to harvest white cellulose pulp from it for
the manufacture of paper and related goods (Keshk and Sameshima 2006). Also, the
3-D structure of BC results in a higher degree of microfibril polymerization with
improved mechanical properties (Iguchi et al. 2000; Paximada et al. 2016; Tsouko
et al. 2015). The higher aspect ratio of the BC microfibrils imparts a higher specific
area to the resulting cellulose ribbons, compared to plant cellulose (Sulaeva et al.
2015). BC based membrane shows increased drying time because of the tight
bonding of water molecules with the free surface hydroxyl groups of the cellulose
chains which enhances its water uptake ability (Gelin et al. 2007; Meftahi et al.
2010). The presence of functional groups in abundance within the BC membrane
renders it an appropriate material for the introduction of functionalities for producing
a diverse range of products (Siró and Plackett 2010). The high aspect ratio of BC
renders it suitable for interaction with molecules like antimicrobial and active
compounds like antioxidants (Shah et al. 2013). It has found application in the
biomedical industry such as in tissue repair, wound bandage, artificial tubes, and as a
carrier for drugs (Rajwade et al. 2015; Tsouko et al. 2015). It shows film-forming
properties due to the presence of -OH chemical group in its structure, which
improves the -H bonding networks (De Olyveira et al. 2016). Under the stationary
condition, the BC in form of ribbons is uniaxially oriented whereas, in agitated
conditions, disordered, curved, and overlapping BC ribbons are produced. Cellulose
microfibrils produced from both culture condition differs between them, one from
agitated culture shows thinner microfibrils unlike that produced from stationary
condition (Czaja et al. 2004). Also BC is polyfunctional as well as multi-chiral in
nature (Keshk and Sameshima 2006; Yoshinaga et al. 1997).
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10.2 Biosynthesis of BC

Biosynthesis of BC remains a highly regulated mechanism with multi-step reactions.
BC biosynthesis remains a highly synchronized mechanism coupled together with
several intermediary steps involving different enzymes and proteins. However, the
process can be divided into two distinct transitional steps. First is the establishment
of intracellular 1,4-β-glucan chains and second is the aggregation and crystallization
of cellulose microfibrils. In the second stage only, subfibrils containing polymerized
glucose units get extruded out from tiny pores present in the cell membrane of
bacteria which aggregates extracellularly and gets self-assembled to result in fibrils/
cellulose ribbons as demonstrated in Fig. 10.1. However, the exact mechanism
regarding elongation of 1,4-β-glucan chains and its crystallization has not been
confirmed till date (Lee et al. 2014; Reiniati et al. 2017).

10.2.1 Types of Cultivation

Two types of cultivation modes are used to produce BC i.e., static cultivation and
agitated cultivation. In stationary cultivation, a gel-like cellulose matrix is formed on
the air/liquid interface of the medium while suspension pellets of different sizes
(Chao et al. 2000, 2001) and solid spheres of BC are produced under agitated
cultivation (Gu and Catchmark 2012).

10.2.1.1 Static Mode

In static cultivation, BC pellicles are produced and keeps on floating at the liquid-air
interface of the medium because of the entrapment of CO2 gas that is produced
during the aerobic respiration by bacterium responsible for producing BC (Lin et al.
2013). The shape and dimension of the BC produced in continuous form depend on
the type of vessels used for fermentation. Cellulose synthesis under static condition
is highly synchronized by the aeration rate at the interface of the medium, whose net
productivity also rests on the concentration of carbon source (Budhiono et al. 1999).
By increasing the cultivation period, the BC formation increases due to the hydrogen

Fig. 10.1 Mechanism of BC biosynthesis
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and C-H bonding within the reaction volume (Sheykhnazari et al. 2011). When the
bacterial cells get entrapped into the cellulose membrane it becomes inactive due to
the insufficient oxygen and, the BC production gets limited or decreased (Borzani
and de Souza 1995). The oxygen supply also gets limited due to the entrapment of
bacterial cells in the produced cellulose membrane, and the nutrients of the media get
continuously consumed leading to decrease in the contents of nutrients with time
which finally effect the net productivity of BC (Esa et al. 2014). However, due to the
time-consuming process with low productivity, it faces challenges in industrial
applications (Lin et al. 2013).

10.2.1.2 Agitated Mode

Under agitated cultivation, BC yield is enhanced as compared to static cultivation,
which contributes to cost reduction due to the continuous mixing of oxygen into the
medium (Ul-Islam et al. 2015). The stirred cultivation process favours the formation
of cellulose having pellet or sphere morphology and sometimes it exists as fibrous
suspensions (Esa et al. 2014), which is governed by varying the agitation rate
(Ul-Islam et al. 2015). Theoretically, it is assumed that under agitation cultivation,
the net BC yield should be higher due to the continuous mixing of oxygen with the
media but data from literatures state that practically it is not true. The elevation in
shear rate not only encourages the turbulence force of medium but also governs the
maximum likelihood for the cellulose producing bacterial strains to acquire the
mutations resulting in cellulose negative strains designated as Cel� (Kim et al.
2007; Park et al. 2004). However, the rate of agitation directly influences the net
BC yield via the formation or transformation of cellulose producing (Cel+) strains
into Cel� mutants. A study conducted by Jung et al. reported BC pellet acts as an
effective barrier towards elevated agitation rate (i.e., >500 rpm) created at the tip of
the impeller while mutated strains i.e., Cel� get killed due to outer protector by the
strong shear stress. Thus it is put forward that an optimum impeller speed is required
for BC production without living Cel�mutants in agitated cultivation. In conclusion,
it can be stated that an optimal agitation rate is essential for cellulose production
without transforming the native strains of cellulose producer (Jung et al. 2005).
Additionally the produced BC can be shaped in different forms like a membrane,
multi-shaped pulps, solid spheres, tubes, and whiskers which could endow BC in
industrial applications (Shi et al. 2014).

10.2.2 Different Bacterial Strains

The BC is produced by the bacteria of family Acetobacteracea which are aerobic,
able to convert ethanol into acetic acid due to which the cells are capable to grow at
low pH values (Kersters et al. 2006; Yeo et al. 2004). The cellulose biofilm produced
by these family, positions the cells at the surface of high oxygen tension, with zero
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interference in the supply of nutrients through diffusion (Iguchi et al. 2000). Few
unique features of BC producing strains are discussed below. Under agitated culti-
vation bacterial strain like Gluconacetobacter entaniiACCC10215,
Komagataeibacter nataicolaY19 produces flocks of star-shaped BC with many
projections and solid ball-like BC in the presence of HS medium (Bi et al. 2014).
Komagataeibacter genus is the major producers of BC owing to its ability to
metabolize extensive carbon or nitrogen based nutrients (Islam et al. 2017; Lee
et al. 2014). To increase BC production under static conditions, researchers have
proposed genetically engineered strains which have have been developed so as
produce in low oxygen atmosphere (Liu et al. 2018). Iguchi et al. 2000 found that
Acetobacter xylinum produces two distinct forms of cellulose units namely cellulose
I (ribbon-like polymer), and another is cellulose II (stable amorphous polymer).
Gluconacetobacterxylinum produces solid spheres of BC under agitation culture
with carbohydrate based media containing xyloglucan, xylan, arabinogalactan, and
pectin (Gu and Catchmark 2012). Gluconacetobacter persimmonis GH-2 uses
various carbon sources (2% w/v) for growth and production of cellulose
(Embuscado et al. 1994). The strain utilizes effectively glucose, fructose, sucrose,
mannitol, and inositol as nutrient media for the production of BC (Hungund et al.
2013). The dimensions of the BC fibers are significantly lower which ranges in the
order of a few nanometers, due to which it has led to its use in the biomedical
industry to the electronics world (AydIn and Aksoy 2014). However, the choice of
bacterial strain for BC production depends solely on the final application of the
material.

10.3 Properties of BC

10.3.1 Morphology

Since BC ranges in the scale of few nanometers, so it’s scanning electron micros-
copy (SEM) have been used to exactly determine its size and structure of the
produced cellulose material. BC membrane shows unique porous three-dimensional
cellulosic nanofibril structure which are randomly arranged (He et al. 2020). By
varying the culture methods, the BC morphology of microfibril changes. BC
possessing asterisk morphology has higher pore intensity when compared to BC
with morphology of solid spherical masses (Bi et al. 2014). The cellulose microfi-
brils produced during agitation mode show twisted and curled morphology that may
be due to the generation of high turbulence force inside the culture broth during
agitation (Yan et al. 2008; Yun et al. 2011). Cellulose microfibrils of
Komagataeibacter sp. Nov. CGMCC 17276 show marked differences in its micro-
fibril arrangement with dense network (Fig. 10.2a) in stationary culture and looser
and more porous (Fig. 10.2b) microfibrillar aggregation under agitated cultivation
(Lu et al. 2020).

10 Bacterial Cellulose: A Multifaceted Microbial Product 225



10.3.2 Water Holding Capacity

BC shows hydrophilic network structures due to which it retains more percentage of
moisture than their dry weight. The hydrophilic nature of BC pellicles makes it a
suitable material for the manufacture of its hydrogel structures. Regardless of high
water uptake (~99%), the BC membrane imparts satisfactory mechanical properties
because of its unique 3-D microfibrillar arrangement and that can also be tuned
chemically (Astley et al. 2003; Chanliaud and Gidley 1999; Millon and Wan 2006;
Whitney et al. 1999). BC hydrogel structure can be used as a scaffold material in
cardiovascular grafts, wound (as a bandage) and in tissue repair because of its
biocompatibility with the living body (Gatenholm and Klemm 2010; Klemm et al.
2001, 2005, 2006; Schumann et al. 2009). The BC membrane rehydrates to ~6%
which is similar to the rehydration results as obtained for the cellulose of plants. BC
treated via the freeze-dried method, can reabsorb nearly 70% of water (Klemm et al.
2005). BC fibrils are about 100 times thinner as compared to cellulose of plant
origin, making it an exceptionally permeable matrix letting the translocation of
antibiotics or other drugs at the injury site, while simultaneously fulfilling the role
of a competent physical hindrance against any foreign infectious agents. The bacte-
rial origin cellulose membrane resembles the same properties as the hydrogels
derived from polymers. BC shows effective absorption and adsorption (i.e., sorp-
tion) of fluids and also it is non-hypersensitive to immune and are sterilized without
any change in its qualities (Gayathry and Gopalaswamy 2014).

10.3.3 Mechanical

The excellent mechanical properties of BC are due to the crystalline nature of
produced nanofibril and microfibril, making it well-suited reinforcing material in
paper and textile industry. BC exhibits elevated modulus of elasticity in conjugation
with a huge internal loss factor which makes it a likewise prevalent material for

Fig. 10.2 The microfibril arrangement of BC produced by Komagataeibacter sp. nov. CGMCC
17276. Morphology of BC produced under static (a) and agitated (b) culture conditions. (Scale
bar ¼ 3μm.) (Reproduced with the permission from Lu et al. (2020). Characterization and
optimization of production of bacterial cellulosefrom strain CGMCC 17276 based on whole-
genome analysis. Carbohydr Polym 232:1–14, Copyright (2020) Elsevier))
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earphones and amplifier films (Klemm et al. 2005). BC obtained from static culture
also shows great stretchability which can be used as a reinforcement material in the
field of medicine such as wound healing, artificial blood vessels, and tissue engi-
neering (Gao et al. 2020).

10.3.4 X-Ray Diffraction

Cellulose is an identical polycrystalline macromolecular composite, composed of
crystalline (ordered) and amorphous (less ordered) phase both. Six diverse crystal-
line allomorphs are reported that includes celluloses I (natural cellulose), II (hydrated
cellulose), IIII, IIIII, IVI, IVII (Park et al. 2010). Cellulose I remains the most
bottomless structure noticed in the natural world and its assembly is thermodynam-
ically stable for a longer period. Cellulose I can be converted into any one of kind
cellulose II or cellulose III regeneration and mercerization. (Klemm et al. 2005; Ross
et al. 1991; O’sullivan 1997). Cellulose I consists of two polymorphs: Iα
representing triclinic assembly and Iβ with monoclinic assembly and the existence
of both form depend on the cellulose source (Nishiyama 2009; O’sullivan 1997). Iα
is the most prominent polymorph found in most algae and bacteria, while Iβ is the
most prevailing polymorph found in the case of higher plants and tunicates (Belton
et al. 1989; Yamamoto and Horii 1993; Yamamoto and Horn 1994). Both Iα and Iβ
unit cells of cellulose chains are arranged in parallel up configuration. This means
that the cellulose chains are arranged such that the 1!4 link points in the same
direction (Moon et al. 2011; Nishiyama 2009). Cellulose II comprises of monoclinic
configuration and are being utilized cellophane (transparent films) are Rayon and
Tencel™ (synthetic textile fibers) synthesis. Liquid ammonia treatments of cellulose
I and cellulose II yield cellulose III, while subsequent treatment of it results in
cellulose IV (Moon et al. 2011). The distinction in a bacterial strain, discussed in the
above section, not only impacts the morphology of BC but also affects the micro-
structure of resulting cellulose such as crystallinity index (CI), crystalline units, size,
Iα unit cell content, and mechanical characters (Yan et al. 2008). Another significant
parameter i.e., CI is often utilized to portray the relative abundance of crystalline
phase in cellulose (Park et al. 2010; Yang et al. 2013). The literatures stated that BC
comprises ~70% Iα polymorph, which is the highest for any cellulosic material
(Carrillo and Dobrynin 2007; Yamamoto et al. 1996). By changing the cultivation
conditions, the Iα/Iβ proportion can be modified by noticing a variation in the
dimensions of the resulting microfibrils (Tokoh et al. 1998; Yamamoto and Horn
1994). The presence of additives disturb the normal association of the subfibril
leading to BC microfibrils with a cross-section of ~6–10 nm, primarily loaded
with Iβ crystal structure (Brown and Laborie 2007; Tokoh et al. 1998; Yamamoto
and Horn 1994). In this manner, the openness of BC becomes greater (Park et al.
2010). The intramolecular and intermolecular H-bonding in sub elementary cellulose
fibrils can be influenced by the use of different strains that can modify their fibrillar
arrangement and its crystallization (Bi et al. 2014). BC of agitated culture shares a
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reduction in CI to that of the BC of stationary culture which is influenced by the
generation of high turbulence force inside the fermentation broth (Singhsa et al.
2018) (Fig. 10.3).

10.4 Applications

10.4.1 Food Industry

BC has found its application in the food industry and it is a much explorative field
due to its consumption on this planet. It can be exploited as intact membranes,
disassembled BC, and BC nanocrystals. The extraordinary characteristics of BC
such as porous, high mechanical strength, non-toxicity, and malleability enforce its
use in the food industry. Most of the time, BC is used as a reinforcement material,
accomplished by several processes such as impregnation, disassembly, acid hydro-
lysis, and in-situ nanocomposites. Food and drug administration (FDA) has

Fig. 10.3 XRD spectra of BC under static and agitated culture conditions. (Reproduced with the
permission from Lu et al. (2020). Characterization and optimization of production of bacterial
cellulosefrom strain CGMCC 17276 based on whole-genome analysis. Carbohydr Polym
232:1–14, Copyright (2020) Elsevier))
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approved it to be used as a dietary fiber as a food supplement (Shi et al. 2014). For a
long time, BC is being utilized as a primary source for production of Nata-de-coco, a
type of food from the Philippines, produced from enriched coconut water (Iguchi
et al. 2000) (Fig. 10.4a). BC acts as a fat replacer in food products containing fats to
reduce the calorific value thereby avoiding the fat-related health issues. To obtain the
matching shear viscosity (yield stress) of conventional commercial thickener such as
0.7% xanthan gum and 1% locust bean gum only 0.1% of BC concentration is
required. Hence, BC demonstrates a good alternative thickener in food processing.
BC has also been explored as an immobilizer for probiotics and enzymes
(Fig. 10.4b). Some enzymes that are available as immobilized forms for regulated
release from BC are lipase, laccase, and lysozyme (Azeredo et al. 2019).

10.4.2 Facial Mask

Cosmetic products related market is blooming in this era with launching of several
beauty products. The cosmetic active substances which are responsible for improv-
ing the beauty are combined with a carrier, aiding their passage to the target i.e., skin
(Manayi and Saeidnia 2014; Russell 2012). Some of conventional vehicles are
creams, gels, emulsions, and lotions. Furthermore, carriers for the active ingredients
must be biologically compatible, non-allergic, and non-toxic. The facial masks are
the traditional vehicle for cosmetics transport and are utilized for the most part to
give skin a quick, bottomless conditioning, epidermal restitution, and regulation on
sebum secretion due to its effectivity, fast application and easy to use (Fig. 10.5). An
appropriate substitute for a face pack may be BC, due to its film-like property and
appearance as well as high mechanical strength. 3D structure of entangled nanofiber
i.e., BC has profound mechanical strength, malleability, and effortless handling.

Fig. 10.4 Application of (a) BC as Nata-de-coco, (b) BC membrane for immobilization of
enzymes and probiotics
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Since BC has a membrane-like shape so it can be exploited as a potential material for
mask manufacturing (Pacheco et al. 2018).

10.4.3 Cartilage Scaffold

Tissue engineering is a branch of biomedical engineering which facilitates living
tissue or cells to go through repair. Tissue engineering involves knowledge of
developmental biology, tissue culture, cell differentiation and survival biology,
mechano-transduction, and nanofabrication technology (Ahn et al. 2013; Melrose
et al. 2008; Nasseri and Vacanti 2002). Cells, for example cartilage, tendon, liga-
ment, bone, and skin are very much prone to breakage because of accident injury,
illness, or may be surgical interventions (Gea et al. 2018). Chondrocytes, which
comprise the significant segment of cartilage, regulate the development of new
cartilage once any injury happens. Chondrocytes cannot reproduce themselves due
to the absence of blood vessels of cartilage. In the well known process, cells are
seeded over the synthetic matrix that functions as a scaffold, made from artificial
polymer foam such polyglycolic acid, polylactic acid, poly(vinyl alcohol),
polyhydroxyethylmethacrylate or poly N-isopropyl acrylamide (Lee and Mooney
2001; Sachlos et al. 2003). The foamy character of the matrix gives porous character.
An important step in cartilage tissue engineering is the selection of the scaffold
polymeric matrix so that the growth of cells or organs with desired shape and
function can take place easily (Gea et al. 2018; Hutmacher 2000). However, the
utilization of scaffolds made from synthetic polymers are limited because they lack
biocompatibility, also comprises chemical that is toxic to the seeded cells. BC is a
promising biopolymer that satisfies all necessities so it is projected scaffold candi-
date (cartilage, blood vessels) the same as collagen-mimicking in skeletons. (Gea
et al. 2018). It has been reported that the tendency of BC to be molded into 3-D
assemblies during production is facilitated due to its hydrophilic character

Fig. 10.5 Pictures of BC mask adhesion to the forehead (a) and hand (b, indicated by arrow)
(Reproduced with the permission from Pacheco et al. (2018). Bacterial cellulose skin masks—
Properties and sensory tests. J Cosmet Dermatol 17(5):840–847, Copyright (2018) John Wiley and
Sons))
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(Helenius et al. 2006). The optical microscopy observations, revealed that the cells
grow reasonably well in the BC scaffold so this biopolymeric matrix has good future
in tissue engineering (Gea et al. 2018).

10.4.4 Skin Tissue Repair

Important characteristics for a material to be used in skin tissue repair is that it must
be capable enough in locking exudate throughout bandage, accompanied by their
expulsion after the recuperation of injury. Cellulose derived from bacteria has
expanded commercially/consistently because of its potential for application in med-
ication care products (Fig. 10.6). Its capacity lies in the high mechanical quality of
the gel-like BC film, high fluid receptiveness, biocompatible and sterile nature. The
low solubility of BC compared to plant-derived cellulose may also prove one of the
important criteria for its use as skin tissue material. Apart from the solubility of BC
compared to plant cellulose, the BC pellicles are comprised of delicate web-like
nanofibrils, analogous to collagen of extracellular matrix which may prove one of the
advantageous features for skin tissue repair material (Lina et al. 2011). Experiment
results stated that when the co-cultivation of BC pellicles, fibroblasts, and
chondrocytes compositions were implanted into nude mice, it revealed well integra-
tion of BC co-culture compositions into the skin of nude mice (Wang et al. 2009).

Fig. 10.6 Bacterial cellulose dressing applied on a wounded hand. (Reproduced with permission
from Czaja et al. (2006). Microbial cellulose — the natural power to heal wounds, Biomaterials,
27:149, Copyright (2006) Elsevier))
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10.4.5 Bone Tissue Regeneration

Bone tissue engineering seeks to reestablish function concerned with physical and
biological properties, focusing on healing processes parallel to natural bone (Coelho
et al. 2019). Bone regeneration comprises necrotic tissue and clot reabsorption after
trauma. Trauma encourages the discharge of immune cells which ultimately favors
cellular differentiation that leads to subsequent growth of new bone tissue (Hing
2004). In most of the cases, bone tissue regeneration proceeds without any serious
pathological issues (Einhorn 1996). However, prolonged exposure to defects may
require latest technology for bone tissue regeneration. In this category, blend of bone
tissue alternates for example biopolymers with live cells or tissue can be suitable
approach (Kneser et al. 2006). The compatible biopolymers should have high
mechanical properties, liable to chemical modifications and also it should display a
delayed rate of in-vivo degradation. In comparison to other synthetic membranes, the
BC membrane displays several of the above mentioned properties that makes it a
suitable material in combination with hydroxyapatite (HA) for bone regeneration
(Geyer et al. 1994). The addition of HA with BC exhibits similarity to bone tissue
and improves the osteoconductive properties of the resulting biomaterial (Barud
et al. 2015). In periodontal lesions, BC membranes are utilized for guided bone
regeneration (GBR) in bone defects of significant and insignificant extent, and as a
resorbable membrane impending fibroblastic cells and fibrous connective tissue into
bone defects. Moreover being a low-cost treatment, the BC membrane promotes
effective and quick bone formation at the site of lesions (Batista et al. 1999; dos
Anjos et al. 1998; Simonpietri-C et al. 2000). Fang et al. 2009 reported the biocom-
patibility of developed BC-HA nanocomposite scaffolds that could stimulate in-vitro
cell proliferation and differentiation using stromal cells derived from human bone
marrow (hBMSC). Histological studies conclude BC-HA membrane effectivity with
bone regeneration in bone lesions of rat tibiae thereby accelerating the rate of new
bone formation (Saska et al. 2011). Also, solid spherical BC demonstrated reliable
cell viability assay when carried on human osteoblast cells, making it advantageous
for cultivating biomedical kit like bone-type tissue scaffolds. For biomimetic cal-
cium phosphate deposition, the modification of cellulose via chemical alteration of
the hydroxyl group of cellulose chains, seems to be the prerequisite step for the
mineralization process. Bioactivity to the resulting material should also be incorpo-
rated in the biomimetic calcium phosphate (de Olyveira et al. 2014).

10.4.6 Artificial Blood Vessels

Cardiovascular disease is major cause of death due to unhealthy life style. To counter
the risk of cardiovascular disease investigation of artificial blood vessels which can
coordinate with individual immune system re-establishing normal biological activity
can be a better option. Vascular graft and heart valves as artificial blood vessels can
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be fabricated from polytetrafluoroethylene (PTFE), expanded-PTFE, polyurethanes
and polyethylene terephthalate (PET) (Dacron®), synthetic fluorocarbon polymer
(Lee and Park 2017). PET comprises the ester functional group and its hydrophobic
nature that makes it suitable for the synthesis of woven large-diameter artificial
blood vessels (Lessim et al. 2015). The synthetic vascular grafts made from such
polymers were shown to be acceptable for an application that requires grafts>6 mm
of diameter in high stream and low-obstruction flow. However, cross-sectional
diameter of less than having 6 mm shows insignificant clinical advantages (Ravi
and Chaikof 2010). Vascular grafts fabricated from ultrafine fibers of BC are
non-toxic, homogenously pure and exhibit enhanced tensile properties. The BC
derived vascular grafts have a diameter less than 6 mm (Zang et al. 2015).
Gatenholom et al. demonstrated that by altering the fermentation environment and
techniques, the aggregation and assembly of BC tubes can be regulated (Bodin et al.
2007). Investigations on bacterial synthesized cellulose (BASYC®) prosthesis for
rodent blood vessels have demonstrated that the embedded BASYC® tube gets
integrated with the carotid artery and connective tissue (Wurdinger et al. 2000)
(Fig. 10.7). In-vivo biocompatibility examination of BC disclosed no macroscopic
signs of inflammation along with total endothelialization including the zone of
confluent endothelial layer around the implants (Zang et al. 2015). Scherner et al.
(2014) demonstrated, BC grafts as a suitable scaffold for cell proliferation along with
neoformation of a 3-layered vascular wall, validating it as an encouraging material
for small diameter vascular grafts (Scherner et al. 2014). Inflammation examination
of BC vascular graft revealed non-toxic and non-immunoreactive correlation with
the leukocytes (Kim et al. 2015).

Fig. 10.7 BASYC® tubes
with different inside
diameter, different wall
thickness, and different
lengths. Black lines
symbolize the bloodstream.
(Klemm et al. (2005) Angew
Chemie - Int Ed 44
(22):3358–3393, (Open
access))
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10.4.7 Drug Delivery

The discipline of medicine is emerging due to several number of drug delivery
options. Effective drug delivery relies on several variables, including the appropriate
choice of materials for research and engineering of new drug delivery systems. BC is
one such biopolymer that can be considered as a drug delivery vehicle (Abeer et al.
2014). The peculiar nanofibril structure of BC represents a reasonable macromolec-
ular support for the incorporation of drugs and the development of specific con-
trolled release systems (Almeida et al. 2014). BC membranes are proposed for
topical or transdermal drug delivery due to its ability to modulate the release and
bioavailability of model drugs for percutaneous administration (Trovatti et al. 2011,
2012). The relative abundance of free surface hydroxyl groups within BC structure
enabled it for macromolecular drug delivery and hydrogels (Silvestre et al. 2014).
However, BC has a neutral superficial charge due to which it faces limitations for
drug delivery applications over polysaccharide (Chandra and Rustgi 1998; Meyers
et al. 2008). There are several studies on unmodified BC that have been designed for
oral drug delivery in the form of matrices and capsule shells (Lenselink and
Andriessen 2011; Scuro et al. 2004). These products revealed immediate release
tendency regardless of the drug’s aqueous solubility and dose, due to profound
permeable structure resulting in free movement of gases, solvents, and small mole-
cules (Lenselink and Andriessen 2011). Chemical modifications of BC is required
for regulated drug delivery from BC based matrices and capsule shells (Amnuaikit
et al. 2011; Lenselink and Andriessen 2011). Chemical modifications of BC can be
carried out by esterification, oxidation, etherification, carbamation, and amidation of
BC (Lodén and Wessman 2001). These process generate reactive functional and
charged groups superficially and that is due to utilization of free hydroxyl group
(Fluhr et al. 1999). Surface modification in combination with freeze-drying can be
effective method to alter BC matrices that may be suitable for regulated drug release.
Effective surface modification is ongoing research area and drug sustaining effect
will depend on the effectiveness of the surface area of BC (Badshah et al. 2018).

10.4.8 Electronic Media

Today we live in the world of technological revolution which we see in all forms
around us. The types of displays we use include computer screens, TV screens, and
the most well-known showcase medium, the printed page on paper made up of
cellulose. The display technologies that we use for digital media are derived from
liquid crystal displays (LCDs), cathode ray tube displays, organic light-emitting
diode (LED) displays, and plasma screens. Besides the availability of such digital
medium individuals prefer to print articles instead of reading on a computer screen.
The properties which made preference of paper medium are their high reflectivity,
contrast, flexibility, lightweight, wide viewing angles. Above mentioned characters
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lead to the discovery of electronic paper also referred to as e-paper using microbial
cellulose. e-Paper in general contains clear liquid containing minuscule particles and
electrical charges. The dimensional stability, paper-like appearance, and unique
microfibrillar nanostructure of BC can be explored to manufacture e-paper. Trans-
parent probes are placed over and beneath capsules and also positive or negative
electric fields are applied resulting in display of specific color onto the surface of the
e-paper. Also to be noted that e-Paper consumes zero power (Shah and Brown
2005). BC has been also used to manufacture high-quality acoustic devices due to its
unmatching mechanical properties. The speaker diaphragm prepared of sodium
hypochlorite treated BC membranes exhibits 23.5 GPa Young’s modulus merged
with acoustic absorption property of 0.02 (tanδ), the sound velocity of 4522.67 m/s
and density between 1–1.5 g/cm3 (Indrati et al. 1998). The diaphragm prepared from
BC by hot-pressing and coated with gold-sputtered electrodes showed the optimum
acoustic properties had permittivity value (ε) of 10 and Young’s modulus of 10 GPa
(Markiewicz et al. 2004). Due to these properties of BC, many speaker manufac-
turers manufacture high-quality headphones.

10.5 Conclusion

BC is the purest form of cellulose produced via both static and agitated conditions
utilizing oxidative fermentation in both natural and synthetic medium by the several
bacterial strains. The produced BC membrane represents a 3D web-like network
structure along with the presence of numerous reactive groups, imparting tailor-
made properties. Under agitated culture, an ideal impeller rate favors BC assembly
without altering the nature of wild type bacterial cells. Properties such as morphol-
ogy, crystallinity index, mechanical, and water holding capacity can be modified by
varying the cultivation environment of oxidative fermentation and the bacterial
strain too. The biodegradability, biocompatibility, non-toxicity of BC led to incre-
ment in its demand ranging from the biological world to the electronic world. Still,
BC is one of the many explorative biopolymers in material science.
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Chapter 11
Bioremediation: Going the “Nano” Way

Abdul M. Kader, Karan K. Pahuja, Soma Mukherjee, Madhusudan Reddy,
and Debarati Paul

Abstract Owing to the persistence of chemical pollutants and increasing number of
environmental disasters, the public has become sensitive toward environmental
issues and policy makers are striving toward developing clean-up technologies
locally, as well as globally. Bioremediation is preferred because of its efficiency
and environment-friendliness above other methods of environmental cleanup. The
concept of utilizing microbial biofilm for bioremediation of contaminated environ-
ments has been accepted widely for its sensitivity, efficiency, and economy.
Nanomaterials have been evaluated for developing efficient matrices for
immobilizing the microbes capable of bioremediation, since they possess excep-
tional properties, e.g. high porosity and small pore size that are compatible with the
dimensions and needs of microbes. Surface morphology and biocompatibility also
allowed faster colonization of the nano fiber surface by microorganisms, thereby
reducing the cost. Various nanomaterials have been studied for their use in waste
water treatment and bioremediation but their toxicity and high costs have proven to
be a barrier. Advanced nanomaterials are being developed by combining them with
natural substances to improve their surface properties for efficient binding of cells.
Therefore, nanobioremediation is an emerging technology for use in the area of
environmental cleanup.
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11.1 Introduction

It is believed that the biological means for treatment of toxic waste effluents are more
effective and economic as compared to physico-chemical means (Dua et al. 2002;
Paul et al. 2005a). Sometimes, however, due to the minimal availability of contam-
inants for uptake by microbial cells, clean up is incomplete or inefficient (Lewis et al.
2004; Pieper and Reineke 2000). This problem may be sufficiently ameliorated by
using biofilms where bacteria act as a group to enhance bioremediation as compared
to free planktonic cells. Bioremediation mediated by biofilm formation is a proficient
and safer alternative to use of planktonic microorganisms, because cells in a biofilm
adapt and survive better owing to the protection provided by the matrix.

Stabilization of biofilms is one of the major challenges encountered in the process
of increasing the bioavailability of contaminants to bacteria. Advances in
nanomaterials and hybridized nanomaterials can significantly influence the stabili-
zation of biofilms for bioremediation purposes by increasing the ratio of exposed
surface area to volume. However, the challenges due to toxicity and cost have
deterred their use for abatement of pollution where only inexpensive and natural
measures are preferable. Biocomposites formed by integrating microbial strains and
nanoparticles or use of “combined” abiotic and biotic forces have been applied for
treating persistent pollutants in a cost-effective but rapid and dependable process.
Bioremediation and nano-biotechnology can potentially decrease the challenges
faced in using nanomaterials for bioremediation purposes in the near future. Over
the years, the levels and nature of pollution have changed and so have the means and
measures for abatement (Fig. 11.1). Here we highlight the issues faced by various
existing methods and compare with the upcoming methods of bioremediation.

11.2 Bioremediation: Application and Problems

Since the beginning of the industrial era in the nineteenth century, pollution and
contamination have become major threats to our ecosystem and human survival alike
(Guieysse et al. 2004; Lewis et al. 2004; Paul et al. 2005a). Use of chemical-based
pesticides and fertilizers above the permissible limits has contaminated several major
water bodies including the ground water for which physico-chemical treatment has
proved to be a failure; however, bioremediation has now proven to be an effective
and sustainable technique for environmental decontamination (Ritter 1990).

The major obstacles affecting the rate of bioremediation is the activity of bacteria,
availability of contaminants, nutrient availability, adaptation of the bacteria to the
complex environment, etc. Every biodegradation reaction depends on majorly three
factors: (1) properties and growth of the microorganism(s) in question,
i.e. concentration, diversity, activities, (2) properties of the pollutant (physical
state, structure, chemistry, concentration), and (3) environmental conditions (Ghosal
et al. 2016; Paul et al. 2005a, b). Bioavailability is one of the major factors that
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control the efficiency of bioremediation, mostly in case of hydrophobic hydrocar-
bons (Singh et al. 2006). The rate at which microbes convert contaminants during
bioremediation depends on mass transfer, i.e. the rate of uptake of the contaminants
followed by their transfer to degrading cells. Therefore, effective remediation is a
consequence of appropriate bioavailability of contaminants to the degrading micro-
organisms (Paul et al. 2006).

11.2.1 Importance of Bioavailability and Biofilm Stabilization
for Microbial Bioremediation

Hydrophobic organic hydrocarbons like PCBs and PAHs are the major contaminants
in bioremediation sites and their decontamination is significantly affected by bio-
availability. Severely polluted soils exhibit a distinct non-aqueous-phase liquid
(NAPL) (Paul et al. 2006) that is usually present as droplets or films on soil particles.
Bioavailability of hydrocarbons has been improved by using surfactants, e.g. Triton-
X 100, Tergitol NPX, Brij 35, Tween 20, etc. (Lawniczak et al. 2013; Ward 2010).
These are amphiphilic molecules that reduce the surface tension of the system and
reduce free energy causing easy dispersion of the molecules in the matrix, thereby
making them suitable solvents for dissolving and flushing down relatively insoluble
contaminants from soil (Nguyen-Ngoc and Tran-Minh 2007). While some research

Fig. 11.1 Technological progress in the area of treatment of pollutants over the past few decades
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groups have reported that the use of surfactants enhance biodegradation (Aronstein
and Alexander 1993; Tiehm 1994; Volkering et al. 1995a, b; Churchill et al. 1995;
Lantz et al. 1995), others report that these surfactants inhibit biodegradation (Laha
and Luthy 1992; Tiehm 1994; Grimberg and Aitken 1995; Churchill et al. 1995;
Wilson et al. 1995); therefore, the use of surfactants to increase the bioavailability is
quite contradictory.

Discrepancy about the use of biosurfactants makes it imperative to find alternative
techniques for increasing the bioavailability of contaminants. Uses and importance
of microbial biofilms have been assessed as an alternate strategy to improve the
bioavailability of contaminants to microbes. Apart from naturally occurring biofilms,
microbial biofilms may be developed by suitably immobilizing the cells on specif-
ically designed/fabricated surfaces, in “artificial systems.” The potential of biofilm
communities for bioremediation processes apart from industrial applications has
been realized (Davey and O’Toole 2000; Decho 2000; Paul et al. 2006) as a
prescient, effective, and safer alternative to using free cells. “Naturally occurring”
biofilms comprising of a consortia made of bacteria and microalgae, capable of
hydrocarbon degradation were exhibited on gravels found in the intertidal coastal
region of the Arabian Gulf (Radwan et al. 2002). The occurrence and success of such
natural biofilms encouraged their application in industries to facilitate the biodegra-
dation of pollutants (Lazarova and Manem 2000).

The advantages of biofilms for improving bioavailability thus motivated further
research to develop enhanced carrier material to create “artificial” biofilms using
suitable surfaces that can form a thin film (Lazarova and Manem 2000). This article
describes the immobilization of microbes as biofilms on various surfaces including
synthetic polymers, fibers, resins, and nanomaterials which can be used as surfaces
for bacterial adhesions.

11.3 Immobilization of Cells

11.3.1 Matrices

Japan, USA, and few other countries successfully utilized microbial cells in
immobilized state for adsorbing heavy metals from solutions (Gupta and Mohapatra
2003; Kamaludeen et al. 2003), for purification of sewage (Hunt et al. 2008) and for
strengthening bio-based technologies to produce antibiotics, fermented products,
organic acids, etc. (Akin 1987). Natural (activated C) and synthetic polymeric
matrices have been screened and used for immobilizing microbial cells. Takata
et al. (1977) tried natural polymers, e.g. κ-carrageenan, furcellaran, sodium and
calcium alginate, ethyl succinylated cellulose, etc., to immobilize the cells of
Streptomyces phaeochromogenes; κ-carrageenan was reported most suitable
amongst all. Alginate from Sargassum sinicolawas (macroalgae) was for
co-immobilization of Chlorella sorokiniana (microalgae) and Azospirillum
brasilense (bacterium) for waste water treatment (Yabur et al. 2007)
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11.3.2 Methods of Immobilization

New techniques for immobilization include the “Sol-gel entrapment method” (early
1990s) showed advantages over conventional immobilization methods. The Sol–gel
entrapment method was tested for immobilization of atrazine-degrading Pseudomo-
nas ADP in aqueous environments. The negative aspect of encapsulation was
growth limitations due to nutrient and O2 unavailability causing rapid aging of
cells leading to impaired activity. Degradation rates could be restored by supply
and amendment of nutrients to the trapped bacterium (Rietti-Shati et al. 1996).
Innovative studies on utilizing various immobilization matrices were developed by
researchers to increase degradation rates and enhance efficiency. Drizit (a matrix
designed for immobilization) was successfully tested for bioremediation of oil
contaminated saltwater using immobilized cells over free cells. Radwan et al.
(2002) discovered immobilized oil-utilizing bacterial biofilms coated on microalgae
found in the Gulf coast. This naturally induced method of bacterial immobilization
protected the cells from getting washed-away or diluted and also provided them with
a niche containing sufficient oxygen, nitrogenous/phosphorus, and vitamins. Kim
et al. discovered that calcium alginate immobilized Pseudomonas putidaMK1
(KCTC 12283) cells were better protected from co-contaminants (phenol) during
the biodegradation of pyridine as compared to free cells.

11.3.3 Mechanisms of Attachment

Designing matrices for bioremediation applications requires an understanding of
mechanisms involved in microbial attachments to various surfaces. Normally, dur-
ing the formation of a biofilm, cells follow a particular pattern while making contact
with the surface and with each other (Fig. 11.2). Van Loosdrecht et al. (1987)
indicated that attachment increases as both negative charge (electrophoretic mobil-
ity) and hydrophobicity (contact angle) increases. The surface hydrophobicity of the
matrix surface can be altered by acetylation and phosphorylation as suggested by
Olivia et al. They also suggested that increasing hydrophilicity subsequently
decreases the number of bacterial adhesions. Surface roughness is another parameter
that governs the adhesion of cells to various matrices, especially in the cases where
size of irregularities on the surface is similar to that of bacteria. The irregularities/
roughness much smaller than a bacterial cell may not impede initial attachment. The
number of bacteria adhering to the etched surface was observed to increase by a
factor of three according to Dineva et al. (2008).
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11.4 Nanobioremediation: Nanomaterials for Microbial
Immobilization to Aid Bioremediation

Nanomaterials (measuring 1–100 nm in dimension) have gained attention due to
their unusual properties that are more advantageous as compared to their bulk
counterparts (Daniel and Astruc 2004; Kato 2011). Nanomaterials are useful for
electronic, optoelectronic, biomedical, pharmaceutical, and cosmetic applications,
and they demonstrate significant prospects for environmental applications
(Table 11.1). It is well-known that nanoparticles interact with bacterial cells or the
community as a whole and enhance bioremediation by modifying the pathway(s) or
substrate specificity of the bacterial cells. Microbial cells can biosynthesize
nanoparticles under suitable conditions by enzymatically converting target metal
ions from their environment into elemental metal. Synthesis of extracellular gold
nanoparticles was possible using fungal cells of Fusarium oxysporum and actino-
mycete Thermomonospora sp., (Ahmad et al. 2003; Mukherjee et al. 2001), whereas
Verticillium sp. produced intracellular gold nanoparticles (Mukherjee et al. 2002).

Nanomaterials not only aid in parental remediation by microbes, but some of
them exhibit primary remediation properties, i.e. “nanoremediation.” Recently zeo-
lites, metal oxides, carbon nanotubes and fibers, noble metals [especially in the form
of bimetallic nanoparticles (BNPs)], and titanium dioxide have been explored for
remediation; of which, nanoscale zerovalent iron (nZVI) has been widely accepted
(Lowry and Johnson 2004).

The search for suitable matrices led to “nanomaterials” that promised distinct
advantages over other polymeric matrices for immobilization of cells for bioreme-
diation. Magnetite (Fe3O4) nanoparticles mixed with magnetic gellan gum beads
using traditional entrapment method for a carbazole-degrading strain Sphingomonas
sp. XLDN2-5 resulted in poor substrate availability to the bacteria due to stearic
hindrance. However, use of the same Fe3O4 magnetite nanoparticles for the immo-
bilization of Pseudomonas delafieldii for the degradation of dibenzothiophene
showed promising results (Shan et al. 2005).

Microbial cells are immobilized by entrapment or adsorption on nanomatrices,
but the limitation of entrapment is limited diffusion and problems associated with
mass transfer as discussed before. Table 11.1 shows various matrices and
nanomaterials used for the immobilization of microbial cells for diverse applications.

Research has shown that etched iron nanomaterial, surface acetylated and coated
with polyethyleneimine (cationic polymer) increases positive surface charge which
is very strong to increase the adhesion of bacterial cells with net surface negative
charge (D’Souza and Kamath 1988; Hsu et al. 2004; Chu et al. 2009). D’Souza and
Kamath (1988) reported that immobilized yeast cells on a cotton cloth coated with
PEI showed increased stability and higher enzyme activity. In contrast, Hsu et al.
(2004) compared PEI-coated cotton and untreated cotton for its immobilization
efficiency and xanthan production and reported that untreated cotton worked better.
Later on Chu et al. (2009), reported stable immobilization of bioluminescent E. coli
cells on PEI (0.667%) treated-viscose fiber including an increase in sensing time,
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quicker response, and improved reproducibility of signals (Chu et al. 2009). These
studies suggest that there is further need to explore and exploit various matrices for
immobilization and also select for a proper procedure that would allow high pro-
ductivity combined with extended operational stability.

Li et al. constructed an effective alternative, a “biocomposite” by accumulating
nanoparticles of Iron (III) oxide on Sphingomonas sp.XLDN2-5 cells with
45.5 emu g�1 saturation magnetization. The biocomposite comprising of microbial
cell and Iron (III) oxide retained its ability for biodegradation and also bestowed the
power of reusability as compared to free cells. Moreover, the microbial cell/Fe3O4

biocomposite could be easily separated and recycled by an external magnetic field
due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. The effi-
ciency and adsorption characteristics of nanostructured carbonized material for
microbial cells were analyzed and it was concluded that successful immobilization
of microbial cells was a result of electrostatic and hydrophobic properties of the
surface. The attachment of microbial cells to carbonized surfaces is mediated by a
range of interactions and the immobilization process of biocomposites is a fine
interplay of such versatile interactions leading to adaptation of biocomposite for
various.

Another interesting study on carbon nanotubes (CNT) showed that they possess
rare properties, e.g. miniscule size to high aspect ratio (>1000), and a wide range of
electrical properties (Baughman et al. 2002). Adsorption of E. coli cells on different
carbon nanoforms, including single walled carbon nanotubes (SWCNT), multi-
walled carbon nanotubes (MWCNT), graphite, and mixed fullerene was studied.
Diffusion of E. coli cells in SWCNT was determined to be the highest, that is about
3 times of MWCNT, double than for graphite and also approximately 1.5 times more
than fullerene aggregates. These experiments proved CNT to be the best candidate
for stable microbial adsorption (Choudhury et al. 2012). Several other studies on
remediation of pollutants using nanomaterials in combination with biological agents
have been tabulated in Table 11.2.

Utilizing nanoparticles in combination with microbes has the potential to produce
suitable alternatives for wastewater treatment (He et al. 2017). Due to their small size
the nano carbon particles are not susceptible to steric hindrance between the sub-
strate (pollutant) and cells and might also allow stronger immobilization and
decrease chances of cell wash out. Carbon nanoparticles coated with PEI would
provide stronger binding by increasing the positive charges (Fig. 11.3). Singh et al.
(2013) demonstrated degradation of γ-HCH in soil (99% cleanup in 6 days) using an
integrated use of nano CMC-Pd/Fe and Sphingomonas sp. strain NM05. The
nanoparticles promoted the growth of the cells and also increased the degradation
rate of γ-HCH by approx. 1.7–2.1 times with respect to the controls, i.e. system
containing either cells or the nanomaterial alone. Fe3O4/biochar nano-composites
loaded with photosynthetic bacteria for decreasing the COD of waste water (He et al.
2017) and PVDF/TiO2 nanocomposite membranes for immobilizing algal cells in
A-MBRs (algal-membrane bioreactors) for preventing fouling of membranes while
treating wastewater (Anjum et al. 2016), and bacterial cells magnetically
immobilized on iron oxide nanoparticles for environmental remediation and other
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applications (Ranmadugala et al. 2018) are promising upcoming technologies dem-
onstrating the use of nanomaterials for decontamination and treatment of pollutants.

11.5 Conclusion and Future Perspectives

In the field of bioremediation, the application spectrum for immobilized cells is very
large extending from the detection of toxic compounds, to waste water treatment,
adsorption of heavy metals, etc. Cells living in biofilms exhibit better adaptation and
survivability (during stress periods) due to the protection offered by matrices. Once
formed, biofilms influence the degradation of various compounds due to their innate
tendency to absorb water and inorganic/organic compounds (Paul et al. 2006), and
this property may be exploited for developing suitable bioremediation technologies.
The effective use of various types of matrices for artificially established biofilms is
currently under research where, nanomaterials have proved their worth. The special
properties of nanoparticles including particle aggregation, photoemission, electrical/
heat conductivities along with desirable chemical properties (catalytic activity) have
promoted their utility in drug delivery, diagnostics, whole cell biosensors, biochem-
ical engineering apart from environmental clean up. Research has shown that
addition of cationic polymers such as PEI or activated charcoal to nanomaterials

Table 11.2 The nanomaterials used for bioremediation purpose

S. no. Nanomaterial
Chemical/microbial
process involved Pollutant References

1 Pd/Fe(0) bimetallic
nanoparticle
(CMC-Pd/nFe(0))

Sphingomonas sp. strain
NM05

γ-HCH
degradation

Singh et al.
(2013)

2 Nano-sized Fe oxides Anaerobic
microorganisms

Several pollutants
including heavy
metals

Braunschweig
et al. (2013)

3 Nano-porous silica
beads

Microbial laccase
enzyme

2,4-dinitrophenol Dehghanifard
et al. (2013)

4 Nano-silica (NSi) Fusarium verticillioides Water treatment Mahmoud
et al. (2013)

5 Nano-sized magne-
tite particles

Chemical process Removal of Cr
(VI)

Nethaji et al.
(2013)

6 Magnetite
nanoparticles

Rhodococcus
erythropolis FMF and
R. erythropolis IGTS8

Desulfurization
activity

Baughman
et al. (2002)

7 Nano-copper
(II) oxide and
nanomagnesium
oxide

Biochemical process Activated sludge
treatment

Liu and Wang
(2012)
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efficiently increases cellular attachment and colonization on the matrix. There are
potential challenges to use nanomaterials alone for bioremediation owing to their
tendency to form aggregates when used in-situ, causing soil particles to deposit and
impeding transport across soil pores to reach the contaminated zones (Cecchin et al.
2017). Cost of the nanomaterials and toxicity also question the use of such constit-
uents for bioremediation. However, the sustainability, reproducibility, reusability,
and efficiency of the system are tremendously enhanced in cases where
nanomaterials have been used as matrices for microbial attachment during bioreme-
diation (He et al. 2017; Ranmadugula et al. 2018; Anjum et al. 2016; Singh et al.
2013). Few studies on nanobioremediation state the application of nanoparticles
(e.g., nZVI) for removal of the pollutant and further treat with a biological agent
(bacteria) and the combined effort (abiotic and biotic treatment) yielded enhanced
degradation and the nanoparticles used were not toxic to the microbes in question

Fig. 11.3 Concept for improved bioremediation using PEI in association with iron nanomaterials
for effective microbial attachment
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(Cecchin et al. 2017). Further studies are required to develop novel techniques for
the efficient removal of pollutants using a combination of microbial potential along
with nanoparticles.

References

Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of mono-
disperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora
sp. Langmuir 19(8):3550–3553

Akin C (1987) Biocatalysis with immobilized cells. Biotechnol Genet Eng Rev 5:319–367
Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using

various nano-materials. Arab J Chem 12:4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.
004

Aronstein BN, Alexander M (1993) Effect of a non-ionic surfactant added to the soil surface on the
biodegradation of aromatic hydrocarbons within the soil. Appl Microbiol Biotechnol
39:386–390

Baiget M, Constantí M, López MT, Medina F (2013) Uranium removal from a contaminated
effluent using a combined microbial and nanoparticle system. New Biotechnol 30:788–792.
https://doi.org/10.1016/j.nbt.2013.05.003

Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes- the route toward applications.
Science 297(5582):789–792

Boncel S, Zniszczoł A, Szymańska K, Mrowiec-Białoń J, Jarzębski A, Walczak KZ (2013)
Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus
oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the
synthesis of Solketal esters. Enzyme Microb Technol 53(4):263–270. https://doi.org/10.1016/
j.enzmictec.2013.05.003

Braunschweig J, Bosch J, Meckenstock RU (2013) Iron oxide nanoparticles in geomicrobiology:
from biogeochemistry to bioremediation. Nat Biotechnol 30(6):793–802. https://doi.org/10.
1016/j.nbt.2013.03.008

Callone E, Campostrini R, Carturan G, Cavazza A, Guzzon R (2008) Immobilization of yeast and
bacteria cells in alginate microbeads coated with silica membranes: procedures, physico-
chemical features and bioactivity. J Mater Chem 18:4839–4848

Cecchin I, Reddy KR, Thome A, Tessaro EF, Schnaid F (2017) Nanobioremediation: Integration of
nanoparticles and bioremediation for sustainable remediation of chlorinated organic contami-
nants in soils. Int Biodeterior Biodegrad 119:419–428

Choudhury MSH, Udding MA, Hasan MZ, Alam MS, Rashid MM (2012) Adsorption kinetics of
Escherichia Coli on different carbon nanoforms. Carbon Sci Tech 4(1):161–166

Chu YF, Hsu CH, Pavan KS, Lo YM (2009) Immobilization of bioluminescent Escherichia coli
cells using natural and artificial fibers treated with polyethylenimine. Bioresour Technol
100:3167–3174

Churchill PF, Dudley RJ, Churchill SA (1995) Surfactant-enhanced bioremediation. Waste Manag
15:371–377

D’Souza SF, Kamath N (1988) Cloth bioreactor containing yeast cells immobilized on cotton cloth
using polyethylenimine. Appl Microb Biotechnol 29:136–140

Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-
size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem
Rev 104(1):293–346

Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol
Mol Biol Rev 64:847–867

254 A. M. Kader et al.

https://doi.org/10.1016/j.arabjc.2016.10.004
https://doi.org/10.1016/j.arabjc.2016.10.004
https://doi.org/10.1016/j.nbt.2013.05.003
https://doi.org/10.1016/j.enzmictec.2013.05.003
https://doi.org/10.1016/j.enzmictec.2013.05.003
https://doi.org/10.1016/j.nbt.2013.03.008
https://doi.org/10.1016/j.nbt.2013.03.008


Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res
20:1257–1273

Dehghanifard E, Jonidi Jafari A, Rezaei Kalantary R, Mahvi AH, Faramarzi MA, Esrafili A (2013)
Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iran
J Environ Health Sci Eng 10(1):25. https://doi.org/10.1186/1735-2746-10-25

Dineva NM,Wang J, Mocanasu RC, Stoddart PR, Crawford RJ, Ivanova EP (2008) Impact of nano-
topography on bacterial attachment. Biotechnol J 3:536–544

Djambaski P, Aleksieva P, Emanuilova E, Chernev G, Spasova D, Nacheva L, Kabaivanova L,
Salvado IM, Samuneva B (2009) Sol-gel nanomaterials with algal heteropolysaccharide for
immobilization of microbial cells, producing α-galactosidase and nitrilase. Biotechnol Biotech
Eq 23(2):1270–1274

Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes
and limitations. Appl Microbiol Biotechnol 59:143–152

Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation
of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369. https://doi.org/
10.3389/fmicb.2016.01369

Grimberg SJ, Aitken MD (1995) Biodegradation kinetics of phenanthrene solubilized in surfactant
micelles. In: Hinchee RE, Brockman FJ, Vogel CM (eds) Microbial processes for bioremedi-
ation. Battelle Press, Columbus, OH, pp 59–66

Guieysse B, Viklund G, Toes AC, Mattiasson B (2004) Combined UV biological degradation of
PAHs. Chemosphere 55:1493–1499

Gupta R, Mohapatra H (2003) Microbial biomass: an economical alternative for removal of heavy
metals from waste water. Indian J Exp Biol 41(9):945–966

He S, Zhong L, Duan J, Feng Y, Yang B, Yang L (2017) Front Microbiol 8:823
Hsu CH, Chu YF, Argin-Soysal S, Hahm TS, Lo YM (2004) Effect of surface characteristics and

xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices. J Food
Sci 69:E441–E448

Hunt PG, Matheny TA, Ro KS, Stone KC, Vanotti MB (2008) Denitrification of agricultural
drainage line water via immobilized denitrification sludge. J Environ Sci Health A Tox Hazard
Subst Environ Eng 43(9):1077–1084

Kaibanova L, Dobreva E, Emanuilova E, Chernev G, Samuneva B, Salvado I (2006) Synthesis,
structure and application of new hybrid nanomaterials for cell immobilization. Minerva
Biotecnol 18(1):23–29

Kamaludeen SP, Arunkumar KR, Avudainayagam S, Ramasamy K (2003) Bioremediation of
chromium contaminated environments. Indian J Exp Biol 41(9):972–985

Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(3):139–140
Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of

phenanthrene in soil-water systems. Biotechnol Bioeng 40:1367–1380
Lantz S, Lin JE, Mueller JG, Pritchard PH (1995) Effects of surfactants on fluoranthene mineral-

ization by Sphingomonas paucimobilis strain EPA 505. In: Hinchee RE, Brockman FJ, Vogel
CM (eds) Microbial processes for bioremediation. Battelle Press, Columbus, OH, pp 7–14

Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or
induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

Lazarova V, Manem J (2000) Innovative biofilm treatment technologies for water and wastewater
treatment. In: Bryers JD (ed) Biofilms II-process analysis and applications. Wiley, New York,
pp 159–206

Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils with explosives. J Environ
Manag 70:291–307

Liu G, Wang J (2012) Effects of nano-copper(II) oxide and nanomagnesium oxide particles on
activated sludge. Water Environ Res 84(7):569–576

Lowry GV, Johnson M (2004) Congener-specific dechlorination of dissolved PCBs by microscale
and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38
(19):5208–5216

11 Bioremediation: Going the “Nano” Way 255

https://doi.org/10.1186/1735-2746-10-25
https://doi.org/10.3389/fmicb.2016.01369
https://doi.org/10.3389/fmicb.2016.01369


Mahmoud ME, Yakout AA, Abdel-Aal H, Osman MM (2013) Immobilization of Fusarium
verticillioides fungus on nano-silica (NSi-Fus): a novel and efficient biosorbent for water
treatment and solid phase extraction of mg(II) and ca(II). Bioresour Technol 134:324–330.
https://doi.org/10.1016/j.biortech.2013.01.171

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of
AuCl(4)(�) ions by the fungus Verticillium sp and surface trapping of the gold nanoparticles
formed. Angew Chem Int Ed Engl 40:3585–3588

Mukherjee P, Senapati S, Mandal D (2002) Extracellular synthesis of gold nanoparticles by the
fungus Fusarium oxysporum. Chembiochem 3(5):461–463

Nethaji S, Sivasamy A, Mandal AB (2013) Preparation and characterization of corn cob activated
carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresour Technol
134:94–100. https://doi.org/10.1016/j.biortech.2013.02.012

Nguyen-Ngoc H, Tran-Minh C (2007) Sol-gel process for vegetal-cells encapsulation. Mat Sci Eng
C 27:607–611

Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Böttcher H (2010) Biodegradation of fuel
oxygenates by sol–gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme Microb
Tech 47(6):291–296

Paul D, Pandey G, Jain RK (2005b) Suicidal genetically engineered microorganisms for bioreme-
diation: need and prospective. BioEssays 27:563–573

Paul D, Pandey G, Pandey J, Jain RK (2005a) Accessing microbial diversity for bioremediation and
environmental restoration. Trends Biotechnol 23:135–142

Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil.
Environ Microbiol 8:1797–1804

Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol
11:262–270

Radwan SS, Al-Hasan RH, Salamah S et al (2002) Bioremediation of oily sea water by bacteria
immobilized in biofilms coating microalgae. Int Biodet Biodeg 50:55–59

Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2018) Magnetic
immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40:237–248. https://
doi.org/10.1007/s10529-017-2477-0

Rietti-Shati M, Ronen D, Mandelbaum RT (1996) Atrazine degradation by Pseudomonas strain
ADP entrapped in sol-gel glass. J Sol-Gel Sci Technol 7(1-2):77–79

Ritter WF (1990) Pesticide contamination of ground water in the United States—a review. J
Environ Sci Health B 25(1):1–29

Rodríguez-Nogales JM, Crespo JV, Fernández-Fernández E (2013) Immobilization of Oenococcus
oeni in lentikats® to develop malolactic fermentation in wines. Biotechnol Progress 29:60–65

Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells
coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

Singh R, Manickam N, Mudiam MK, Murthy RC, Misra V (2013) An integrated (nano-bio)
technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258-259:35–41.
https://doi.org/10.1016/j.jhazmat.2013.04.016

Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol
14:389–397

Takata I, Tosa T, Chibata I (1977) Screening of matrix suitable for immobilization of microbial
cells. J Solid Phase Biochem 2:225–236

Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic
surfactants. Appl Environ Microbiol 60:258–263

Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) Electrophoretic
mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl
Environ Microbiol 53:1898–1901

Volkering F, Breure AM, Van Andel JG, Rulkens WH (1995b) Influence of nonionic surfactants on
bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ
Microbiol 61:1699–1705

256 A. M. Kader et al.

https://doi.org/10.1016/j.biortech.2013.01.171
https://doi.org/10.1016/j.biortech.2013.02.012
https://doi.org/10.1007/s10529-017-2477-0
https://doi.org/10.1007/s10529-017-2477-0
https://doi.org/10.1016/j.jhazmat.2013.04.016


Volkering F, Van de Wiel R, Breure AM, Van Andel JG, Rulkens WH (1995a) Biodegradation of
polycyclic aromatic hydrocarbons in the presence of nonionic surfactants. In: Hinchee RE,
Brockman FJ, Vogel CM (eds) Microbial processes for bioremediation. Battelle Press, Colum-
bus, OH, pp 145–151

Ward OP (2010) Microbial biosurfactants and biodegradation. Adv Exp Med Biol 672:65–74
Wilson BH, Hutchins SR, West CC (1995) Surfactant use with nitrate-based bioremediation. In:

Hinchee RE, Brockman FJ, Vogel CM (eds) Microbial processes for bioremediation. Battelle
Press, Columbus, OH, pp 25–31

Yabur R, Gustavo YB, Carmona H (2007) Alginate from the macroalgae Sargassum sinicola as a
novel source for microbial immobilization material in waste water treatment and plant growth
promotion. J Appl Phycol 19:43–53

11 Bioremediation: Going the “Nano” Way 257



Chapter 12
Recent Advances in Microbial Remediation
Techniques for Xenobiotics-Polluted Soil

Naga Raju Maddela , Marcos Raúl Heredia Pinos,
Chizoba Ignatius Ezugwu, Kondakindi Venkateswar Reddy, and
Pabbati Ranjit

Abstract Rapid industrialization, growth in the human population combinedly lead
to bulk release of xenobiotic substances (e.g. drugs, food additives, hydrocarbons,
pesticides and personal care products) into the environment. Global market projec-
tion rates strongly indicate that environmental burden posed by xenobiotics is in
increasing trend. Thus, there is a high level of global concern over these environ-
mental pollutants because of their human toxicity, ecotoxicity and long-term persis-
tence in the environment. One of the immediately available and the most viable
solutions for the removal of xenobiotics from environmental media (soil and water)
is microbiologically mediated approach, called ‘bioremediation’. Bioremediation
offers undisputable benefits in the restoration of contaminated sites, in terms of
cost, technology, operation. Keeping in view of the advantages of bioremediation,
this chapter has been designed to address the emerging techniques in the area of
bioremediation, and we are in opinion that such insights will decrease the gap
between laboratory and field-level execution of bioremediation. Besides these,
information related to the occurrence, impact and fate of xenobiotics in the environ-
ment, role of microorganisms in the degradation of xenobiotics has also been
included in this chapter. Towards the end, future directions of research in microbial
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removal of xenobiotics from the environment has been discussed. Overall, this
chapter can be a single source of information to understand the future threat posed
by xenobiotics and how to combat this problem through microbiological treatments.

Keywords Bioremediation · Xenobiotics · Petroleum hydrocarbons · Emerging
approaches · Microorganisms

Abbreviations

BES Bioelectrochemical system
CAGR Compound annual growth rate
CAT Catalase
DDD Defined daily dose
DDT Dichlorodiphenyltrichloroethane
DIMS Direct injection mass spectrometry
EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
FAO-STATS Food and Agriculture Organization of the United Nations Statistical

Database
FISH Fluorescence in situ hybridization
FT-IR Fourier-transform infrared spectroscopy
GC Gas chromatography
GPx Glutathione peroxidase
GST Glutathione S-transferase
HPLC High performance liquid chromatography
HRP Horseradish peroxidase
IUWS Integrated Urban Wastewater System
Lac Laccase
MFC Microbial fuel cell
MP Micro pollutants
MS Mass spectroscopy
mT million tons
NMR Nuclear magnetic resonance
N-P-K Nitrogen-phosphorous-potassium
OCI Organochlorine insecticides
PHs Petroleum hydrocarbons
PPCPs Pharmaceutical and personal care products
qPCR quantitative polymerase chain reaction
SIP Stable isotope probing
SOD Superoxide dismutase
TPHs Total petroleum hydrocarbons
UMBBD The University of Minnesota Biocatalysis/Biodegradation database
WW Wastewater
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12.1 Introduction

Any chemical substance which is foreign to the body or to an ecosystem is called a
‘xenobiotic’. Xenobiotic is not a naturally produced chemical, however, a natural
compound can become a xenobiotic if it is taken up by another organism. This can
happen (Mansuy 2013) when natural human hormones are entered into the fish body
at the downstream of sewage treatment plant outfalls, or natural chemicals produced
by some organisms as protection from the predators. However, the term ‘xenobiotic’
is very often used in the contest of environmental pollutants (e.g. dioxins,
polychlorinated biphenyls) which are not basically found in nature before they are
synthesized by humans. In Greek language, ‘xenos’means foreigner or stranger, and
‘bios’ means life. There are several compounds that come under the category of
xenobiotics, e.g. heavy metals, hydrocarbons, dyes, pharmaceuticals, petroleum
hydrocarbons, pesticides, etc. (Dhiman et al. 2020).

There is a vast release of xenobiotics into the environment. For example, regard-
ing antibiotics, a recent investigation has revealed that the antibiotic defined daily
dose (DDD) and antibiotic consumption rates (DDDs per 1000 inhabitants per day)
have been increased by 65% and 39%, respectively for the period of 2000 and 2015
(Klein et al. 2018). More importantly, this hike is mainly observed in the low- and
middle-income countries. Key xenobiotic compounds that have been identified in
this investigation were glycyclines, oxazolidinones, carbapenems, and polymyxins.
If there are no strict regulations on the antibiotic consumption, then consumption
rates in 2030 could be 200% higher than that in 2015 (Klein et al. 2018). Similarly,
global pesticide consumption (https://ourworldindata.org/pesticides) has also been
increased by 34% between 2000 (3.06 million tons) and 2017 (4.11 million tons).
According to the market projection rates (https://www.thebusinessresearchcompany.
com/report/pesticides-market), global pesticide market size is growing rapidly.
Global pesticide market size value in 2019 was US $ 84.5 billion, and the compound
annual growth rate (CAGR) for 2015 and 2019 was 4.2%, and CAGR is expected to
reach 11.5% with a market size value $ 130.7 billion by 2023. Global market size of
beauty and personal care products (Source: Fior Market, 24 January 2020) for the
year 2018 was US $ 493.34 billion, this value is expected to increase to $ 756.63
billion by 2026 with a CAGR of 5.81% for the period of 2019–2026. Also, world oil
consumption has been increased by 25% from 2000 (28.2 billion barrels per year) to
2016 (35.4 billion barrels per year) (https://www.worldometers.info/oil/). Though
these values indicate the consumption and market project rates of different xenobi-
otic compounds in the world, ultimately they are reached and accumulated in
different environmental media (such as soil, water and air) and damage not only
the ecosystem but also human health.

One of the ecologically viable techniques to clean up the polluted sites is
‘bioremediation’, which utilizes the natural biological (mostly by microorganisms)
activity for this purpose. Bioremediation approach is relatively cost effective,
low-technology technique, can be carried out on site, has been successfully used
to remove the xenobiotics for the polluted media (soil and water), and feasibly
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possible to achieve the limits set by global health and regulatory agencies (Gupta and
Pathak 2020). While removing the pollutant by microorganisms (mainly bacteria and
fungi) different forms reactions are possible, such as partial degradation, minerali-
zation, co-metabolic reaction etc. (Gouma et al. 2014). But it should be remembered
that, not in all cases, bioremediation is a preferable approach, as it is a relatively slow
process. For example, in certain incidences, pollutants need to be removed quickly
(e.g. petroleum hydrocarbons) from the polluted site as they rapidly damage the
health of human and environment, therefore, under these circumstances, bioremedi-
ation is not an immediate preferable option. Nevertheless, bioremediation is still
widely used approach in the remediation of xenobiotic polluted sites (Gouma et al.
2014), and this approach is being updated on regular basis with the emergence of
new insights, such as discovery of new pollutant degraders, identifying the optimum
reaction conditions, application of novel ‘omics’ tools and genetic engineering. One
strong evidence for this, scientific production (number of articles published as
tracked by using a keyword ‘bioremediation’ in ScienceDirect on 9th August
2020) in the 2010 and 2019 were 949 and 2524, respectively. These values strongly
suggest that bioremediation is a highly preferable approach for the restoration of
xenobiotic polluted sites.

In view of the environmental pollution caused by xenobiotics and importance of
bioremediation in the cleanup of polluted sites, the present chapter is intended to
provide following key issues such as distribution and fate of xenobiotics in the
environment, microbial degradation of xenobiotics with a special emphasis on
petroleum hydrocarbons, advances in the bioremediation technologies in different
areas such as bioelectrochemical system, microbial treatments, rhizoremediation,
algal based technologies, microbial enzymes and ‘omics’ tools. Finally, future
directions of research have been suggested along with conclusions.

12.2 Distribution and Fate of Xenobiotics

12.2.1 Occurrence

Growth in population, industrialization, industrial processes, agricultural activities
collectively lead to ever increasing xenobiotics in the environment (refer review
(Mudhoo et al. 2020)) (Fig. 12.1). Large industries such as pharmaceuticals, fossil
fuels, pulp and paper bleaching and agriculture-based industries are the principal
sources of xenobiotic contributors to the environment (Díaz 2004). Environmental
concentrations of different xenobiotics can be at high (μg L�1 to mg L�1) or low
(ng L�1 to μg L�1) (Meckenstock et al. 2015). Gradual accumulation and recalci-
trance nature of xenobiotics make them a major environmental concern. For exam-
ple, in agriculture, there is an extensive use of pesticides, and the global pesticide
consumption per annum is 3 � 109 kg, which is worth of US$ 40 b (Hussain et al.
2009). According to FAO-STATS, the major pesticide consumed counties in 2016
were found to be China, USA, Brazil, and Argentina (Khalid et al. 2020). Similarly,
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accumulation of microplastics in the ocean found to have significant threat to the
biological systems in the aquatic system (Parthasarathy et al. 2019).

Similarly, in the terrestrial environments also, there is vast accumulation of
plastic materials, attributed to the emergence of large usage of plastic bags and
waste generated from the plastic packaging material (Jambeck et al. 2015). It is not
surprising that the plastic film pollution in Chinese soil has been increased fourfolds
in the last two decades (Liu et al. 2014), and the residues of plastic films accounts for
the 10% of total area (Ramos et al. 2015). According to the estimations of trade
association PlasticsEurope, the plastic production in the world has been increasing
steadily, for example, plastic production (million tonnes, mT) in 1950, 2010 and
2018 were 1.5, 275 and 359, respectively (https://www.britannica.com/science/
plastic-pollution). It is important to note that nearly 4.8–12.7 mT of plastics are
thrown into the oceans. There were nearly, two million microplastics pieces per m2

area in Tyrrhenian sea (Charles 2020). These insights clearly indicate the severity of
the global plastic pollution, subsequently this situation demands to stiffen the
regulations over the indiscriminate usage and disposal of plastic materials. Plastic
materials are highly persistent, once they are released into the environment, they
never go away easily, therefore, great threat pose to human health, groundwater,
wildlife, food chain. Huan health disorders that are linked with the plastic pollution
include birth defects, cancers, endocrine disruption, impaired immunity etc.

Fig. 12.1 Occurrence of Xenobiotics in the environment (Embrandiri et al. 2016)
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12.2.2 Impact

The effects of xenobiotics on human health and environment are very serious. The
main intention of this section is to provide environmental damage posed by xeno-
biotics (Kuppusamy et al. 2020d, 2020f). The adverse effects of long-term accumu-
lation of xenobiotics in the environment are – (1) biomagnification (in terrestrial
plants/aquatic animals) and trophic transfer (Connell 2018), (2) reduction in the
fertility of the soil (Maddela and Venkateswarlu 2018; Mohiddin et al. 2015; Raju
and Venkateswarlu 2014). More specific effects of xenobiotics on the biotic system
are described in the following para.

There are several adverse effects posed by xenobiotics on the plant system.
Legume-rhizobium chemical signals are negatively affected by herbicides and
fungicides (Eberbach 2018), this has a significant impact on the crop yield. It should
also be remembered that pesticides exhibit several non-target effects, in this direc-
tion, pesticides can kill honeybees (Goulson et al. 2018), this subsequently reduces
the honey bees population and pollination rates. Growth and developmental, and
multiple toxicities were induced by Atrazine, desethylatrazine, hydroxyatrazine in
Arabidopsis thaliana (Alberto et al. 2017). Glyphosate did adversely affect the root
growth and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and shikimate
pathway in Fagopyrum esculentum (Silva et al. 2019) and Pouteria torta (Rezende-
Silva et al. 2019), respectively. A mixture of 17 PPCPs (pharmaceutical and personal
care products) were known to negatively affect the root activity in cucumber plants
(Sun et al. 2018). The other recent investigations (Alkimin et al. 2019; Bartucca et al.
2019; de Lima et al. 2017) revealed that xenobiotics (e.g. diclofenac, metribuzin,
diuron) showed negative effects on physiological, biochemical parameters, chloro-
phyll content, concentration of phytosiderophores, wax production in different plant
systems (e.g. Lema minor, Zea mays L, Bauhinia variegata). These insights clearly
suggest that the plant system is highly susceptible to xenobiotic pollution. Similarly,
experiments in animals revealed that different xenobiotic compounds (e.g. doxycy-
cline, dimethoate, chlorpyrifos, glyphosate-based herbicides) were known to
adversely affected the juvenile’s total number in earthworms (Litskas et al. 2019),
activities of enzymes (e.g. SOD, GST, GPx, CAT in freshwater amphipod
i.e. Gammarus pulex (Serdar 2019), antioxidant enzymes and DNA in freshwater
mussel i.e. Viviparus bengalensis (Al-Fanharawi et al. 2019), neurological and
antioxidant system in freshwater fish i.e. Rhamdia quelen (Sobjak et al. 2017),
neurons and other biomarkers in crustacean i.e. Gammarus kischineffensis (Demirci
et al. 2018), growth and development in marbled crayfish i.e. Procambarus fallax
f. virginalis (Velisek et al. 2017), etc. Also, there is several evidence for the adverse
effects of xenobiotics in humans. For example, reduced mean red blood cells upon
chronic exposure to airborn mercury (Faber et al. 2019), ROS-mediated neurotox-
icity by paraquat, dieldrin, organochlorines and organophosphates (Yan et al. 2016).
Exposure to pesticides also leads to childhood leukemia (Kumar et al. 2014), high
risk of miscarriages, low birth weight, hypospadias, cryptorchidism and micropenis
etc. (García et al. 2017). Furthermore, human exposure to pesticides is thought to be
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linked with Hodgkin’s and non-Hodgkin lymphoma (Luo et al. 2016), Parkinson’s
disease (Brouwer et al. 2017), endocrine disruption (Mazur et al. 2015) etc. With
these insights, it is clearly understood that xenobiotics have strong adverse effects on
plants, animals and human beings, therefore, removal of xenobiotic-based pollutants
from the environment and subsequent remediation of polluted sites is obligatory to
protect the human health as well as to restore the naturality of the ecosystem.

12.2.3 Fate

Terrestrial fate of xenobiotics is interesting (Fig. 12.2). Upon the release of xenobi-
otic molecules into the soil, they are mixed with the several thousands of natural
organic molecules, some of them are biodegradable and some are recalcitrant to
microbial degradation in the soil. According to short-term closed aerated laboratory
soil systems with 14C-compounds, xenobiotics (e.g. chlorinated benzenes,
non-chlorinated compounds, and pesticides) were subjected to different fates, such
as biomineralization, biotransformation, and formation of bound residues (Scheunert
1991). In the recent time, several models have been proposed to understand the fate
of xenobiotics. To describe their physicochemical properties and biodegradation,
several parameters are being used such as, sorption, volatilization, first-order kinetics

Fig. 12.2 Possible environmental fate of a xenobiotic compound (modified after (Malla et al.
2018))

12 Recent Advances in Microbial Remediation Techniques for. . . 265



rates. For example, IUWS_MP model library system (IUWS - Integrated Urban
Wastewater System; MP - Micro pollutants) is a dynamic model library system
(Vezzaro et al. 2014), which helps in the simulation of MPs fluxes across the
integrated WW systems, easy development of monitoring campaigns, evaluates the
risk-benefits of other strategies. There are multiple factors that influence the fate of
xenobiotics at the polluted site. For example, fate and distribution of a group of
insecticides namely organochlorine insecticides (OCIs,
e.g. dichlorodiphenyltrichloroethane (DDT), aldrin, dieldrin, endrin, chlordane,
nonachlor, heptachlor, heptachlor-epoxide) are influenced by multiple factors such
as climate, geochemistry of the site, nature of the chemical, magnitude of application
and exposure period (Gopalan and Chenicherry 2018). It is important to note that
understanding the fate of a pollutant is crucial in designing an effective remediation
strategy. According to earlier reports, soil pH (Fredrickson and Shea 1986) changing
humid climate (Ten Hulscher and Cornelissen 1996) have significant impact on the
fate of OCIs. Changes in the soil pH greatly affects the lipophilicity of xenobiotics
and subsequently affect their retention in the soil system.

On the other side, soil amendments are the additional factors that do affect the fate
of xenobiotics in the soil (Khalid et al. 2020). For example, the impact of wastewater
(WW) on pesticides fate and distribution has been reviewed in detail very recently
(Peña et al. 2020). According to this review, it is clearly known that WW can alter
the fate of pesticide in agriculture soils by impairing pesticide behavior and distri-
bution. Therefore, experiments with pure xenobiotics may not reveal the exact
picture of their fate since their fate is highly influenced by the coresident chemicals
(Kuppusamy et al. 2020e). This warrants the site-specific studies for understanding
the fate of xenobiotics, also such studies will aid the development of appropriate
remediation strategy.

12.3 Microbial Degradation of Xenobiotics

Microorganisms have a capacity to produce a wide range of enzymes, which are
responsible for the degradation, transformation, and mineralization of different
xenobiotic compounds. Several microorganisms like bacteria, fungi, algae have
the ability to degrade complex xenobiotic compounds through their enzymes.
Different groups of microorganisms do interact with the xenobiotics (Dhiman
et al. 2020) are as follows:

• Bacteria: Alcaligenes, Bacillus, Arthrobacter, Brevibacterium.
• Algae: Enteromorpha prolifera, Chlorella vulgaris, Nannochloris aculata.
• Fungi: Agaricus brasiliensis, Coriolus versicolor, Ganodermalucidum,

Hymenoscyphus ericae, Marasmius quercophilus, Phanerochaete chrysoporium,
Phanerochaete chrysosporium, Pichia pastoris, Pleurotus ostreatus, Pleurotus
ostreatus, Rhizopogon vinicolor, Rigidoporus sp., Sckerogaster pacificus,
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Trametes polyzona, Trametes versicolor, Trametes versicolor, and Trametes
versicolor,

Details of different microorganisms and their interactions with different xenobi-
otic compounds have been described in Table 12.1, and mechanism of microbial
cell-based bioremediation has been presented in Fig. 12.3.

12.3.1 Degradation of Petroleum Hydrocarbons

Xenobiotics degradation potential of microorganisms is confirmed in a series of
in vitro and in vivo experiments. In our recent investigations, we observed the
potential of bacteria and fungi to degrade petroleum hydrocarbons in the medium
and soil (lab and land conditions). Two bacteria (Bacillus cereus and
B. thuringiensis) and two fungi (Geomyces pannorum and Geomyces sp.) were
isolated from the crude oil-polluted soils in Ecuadorian Amazon rainforest (Maddela
et al. 2015a). When these cultures were tested in the laboratory conditions using
using microbiological medium containing 1% diesel oil, removal efficiencies of
4 cultures were continuously 77.34% (G. pannorum), 68.55% (Geomyces sp.),
62.62% (B. cereus), and 49.71% (B. thuringiensis), and such results were might be
due to the rapid utilization of petroleum hydrocarbons by fungi than bacteria. When
two fungal strains were tested for the removal of crude oil from the medium
(Maddela et al. 2015c), the per cent of removal was in the range of 24.0 to 43.4
after 30 days. However, a mixed culture of two fungal strains could remove 79.9% of
TPHs from the soil in 30 days of post-treatment (Maddela et al. 2015c). We also
found the optimum conditions for the sporulation of fungi in the medium containing
PHs, for example, pH 5.0, 25 �C, 1-1.5% substrate (crude oil) and 4-6 g L�1 N-P-K
were found to stimulate optimum sporulation by fungi used in this study. It implies
that cultural conditions in terms of pH, temperature and nutrients have the greatest
impact on the degradation of pollutants by microbial cultures. When a mixed culture
of two bacterial strains (B. cereus and B. thuringiensis) were tested for 30 days, they
found to remove 84% and 28% of TPHs from crude oil- and spent lubricating
oil-polluted soils, respectively (Raju et al. 2017), this could be attributed to the
complex chemical nature of spent lubricant oil. When we mix all the above 4 strains,
a higher per cent of crude oil (from soil in 30 days under laboratory conditions) was
removed in the slurry phase (87.77%) than in the solid phase (79.47%) (Maddela
et al. 2016). In general, slurry phase treatments provide optimum conditions for the
interaction between pollutant and microbial cells. When soil slurry is mixed with
nutrients and oxygen and subjected to stirring, microbial cells come in contact with
the soil components very easily and there is a high-level possibility for the degra-
dation of pollutants by microorganisms. The efficiency of these strains for the
degradation of PHs at field-level has also been evaluated, results indicated that a
mixed culture of 4 strains (B. cereus, B. thuringiensis, G. pannorum, Geomyces sp.)
could remove 87.45% of TPHs after 90 days from crude oil polluted soil in an open
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low-land area of Amazon rainforest (Maddela et al. 2017). Importantly, during this
90-day field-scale experiment, there was 631.6 mm of rainfall and the lowest and
highest air temperatures recorded were 6 and 29 �C, respectively. Furthermore, two
fungal strains (G. pannorum andGeomyces sp.) have shown 97-100% of biosorption
of Cu from the medium (contained 5 mg L�1 CuSO4.5H2O) in 7 days (Maddela et al.
2015b). Above results firmly confirm that microorganisms have potential to degrade
PHs, thus the biodegradation is a key point in any bioremediation strategy (Raju and
Scalvenzi 2017), however, environmental conditions cannot be ignored in the
biodegradation studies. Site specific studies are obligatory before designing an
effective remediation strategy. Also, bioavailability of the fractions of PHs is also
an important factor which influences the biodegradation (Kuppusamy et al. 2020b),
the rate of biodegradation is usually high when a pollutant has a high bioavailable
fraction, and vice versa.

12.3.2 Degradation of Other Xenobiotics

Likewise, microorganisms can interact with several types of xenobiotic compounds.
For example, in a very recent investigation, microbial degradation of antiepileptic
drug (e.g. carbamazepine) and antimicrobials (e.g. triclocarban and triclosan) was

Fig. 12.3 Mechanism of microbial cell based bioremediation (Modified after (Malla et al. 2018))
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observed in 4 different agricultural soils (Thelusmond et al. 2019), where biodegra-
dation of carbamazepine and triclocarban were degraded slowly (�50% degradation
occurred in 80 d) and triclosan was degraded rapidly (~80% degradation occurred in
25 d). Principal bacterial species that have identified in the degradation of above
three xenobiotic compounds in this study (Thelusmond et al. 2019) were
Methylobacillus, Pseudomonas, Rhodococcus, Sphingomonas, Stenotrophomonas,
and Streptomyces. In fact, all these bacterial species have been reported for the
degradation of carbamazepine, triclocarban and triclosan previously, where Pseudo-
monas has been identified as a potential bacterium due to its degradation potential of
all three compounds. There are several genes and enzymes responsible for the
degradation of xenobiotic compounds, as determined by emerging methods such
as metatranscriptome analysis (Singh et al. 2018) and other OMIC tools (Kucharzyk
et al. 2019). Various xenobiotic compounds are degraded by microbial enzymes
such as microbial oxidoreductases, microbial oxygenases, monooxygenases, micro-
bial dioxygenases, microbial laccases, microbial peroxidases, microbial lignin per-
oxidases, microbial manganese peroxidases, microbial lipases, esterase etc.
(Gangola et al. 2019). These emerging techniques are also available to quantify
either pollutant-degrading microorganisms or their enzymes. For example, methyl
tertiary-butyl ether-degrading bacterium (e.g. Methylibium petroleiphilum PM1) or
ETBE degradation gene (ethB) can be quantified by qPCR. Though this approach
gives about the abundance information, does not tell about the degradation activity,
therefore, advanced metagenomic analysis coupled with proteomics provide much
more useful information about the abundance and activity of biodegradation
(Kucharzyk et al. 2019). Thus, now-a-days, culture-independent methods have a
key role in the determination of either abundance or activity of microorganisms
involved in the degradation of xenobiotic compounds in various environments.

It should be remembered that the xenobiotic compounds are degraded by micro-
organisms by both aerobic and anaerobic mechanisms (Gangola et al. 2019). How-
ever, there is vast information available for aerobic pathways comparatively over
anaerobic pathways, which is attributed to the effectiveness of aerobic pathways in
the biodegradation of xenobiotics by microorganisms. This para provides key points
of aerobic and anaerobic approaches in the degradation of xenobiotics. Key elements
of aerobic degradation are – (1) incorporation of oxygen atom into pollutant by
oxygenases and peroxidases; (2) formation of intermediates from the pollutant
step-by-step, and subsequent entry of intermediates into tricarboxylic acid cycle;
(3) Central precursor metabolites (e.g. acetyl-CoA, succinate, pyruvate) help in the
formation of cell biomass. On the other side, key aspects of anaerobic degradation
are methylation, hydroxylation, direct carboxylation, aromatic succinate production,
β-oxidation (ring saturation) and fumerate addition.
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12.4 Advances in the Bioremediation Technologies

There are several conventional approaches available for the remediation of xenobi-
otic polluted sites, but the important thing is a method which is effective at one site
may not be effective at another site. Also, several things need to be remembered for
the best selection of bioremediation approaches. For example, site background,
receptors, contaminant’s biotransformation, geochemistry, fate and transport, hydro-
geology etc. are some of the important factors to consider while choosing the
bioremediation approach. Bioremediation approaches offer certain undisputable
benefits – (1) they are natural processes and eco-friendly with least side-effects,
(2) is suitable for in situ method, therefore, there is excavation of pollutants to other
sites, (3) there is less restoration time for the reuse of polluted sites, (4) there is high
acceptability the public, regulatory and health agencies, (5) cost effective, and
(6) these approaches consume less energy. However, in most occasions, bioremedi-
ation approaches are used in association with one or two physicochemical remedi-
ation approaches in order to get the even better results in a shortest time (Kuppusamy
et al. 2020c). Traditional bioremediation approaches include bioventing,
bioaugmentation, biostimulation, biopiling, compositing, slurry bioreactors,
phytoremediation, etc. (Kuppusamy et al. 2020a; Raju and Scalvenzi 2017). Poten-
tial of these methods in the removal of xenobiotic compounds from the polluted sites
have been furnished in the Table 12.2. Details of emerging bioremediation tech-
niques have been provided below.

12.4.1 Bioelectrochemical System

Bioelectrochemical systems (BES) has significant importance in the field of biore-
mediation, especially in the removal of pollutants from the wastewater and sedi-
ments (Li et al. 2017). There is a stimulation of pollutant-degrading bacteria through
electrochemical reactions, which results in removal of contaminants by an enhanced
metabolic activity of bacteria. It should be remembered that, in BES, pollutant’s
degradation efficiency of a bacterium is directly linked with the amount of electrons,
there is a high rate of pollutant removal by bacterium in the presence of a high
amount of electrons and vice versa (Li et al. 2020). Interestingly, pollutants will act
as a electron donors (e.g. petroleum hydrocarbons) and carbon electrodes will
function as electron acceptors, and such system has degraded 46% of PHs in three
rounds of operations, the removal efficiency was 40% higher over the treatment done
without electrodes (Mohanakrishna et al. 2019). In other words, this system can also
be called as a microbial fuel cell (MFC). BES is also suitable for the removal of low
biodegradability xenobiotics (such as dyes, polymers) (Zhang et al. 2015), metals
(e.g. Cu (II) (Wang et al. 2016)), besides having in situ applications. However, future
research is necessary in order to improve the overall process efficiency, and to
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resolve technological and economical barriers (Chandrasekhar et al. 2020) for the
wide implications of BES in the field of bioremediation of xenobiotic polluted sites.

12.4.2 Novel Microorganisms

It is necessary to search for the new microorganisms having capacity to degrade
xenobiotic compounds for the successful bioremediation in diversified environ-
ments. In recent investigations, several novel microflora have been identified, for
example, extremophiles (Giovanella et al. 2020), Penicillium spp. DC-F11 (Chang
et al. 2020), Gordonia sp. QH-11 (Kong et al. 2019), Marinobacter sp. (Lopes et al.
2020), algal-bacterial consortium (Chlorella sp. MM3 and Rhodococcus
wratislaviensis strain 9) (Subashchandrabose et al. 2019), Sargassum
sp. (Saldarriaga-Hernandez et al. 2020) etc.

12.4.3 Rhizoremediation

Rhizoremediation, also called rhizodegradation is a process where pollutants are
degraded in the root zone (rhizosphere) of plants. Rhizoremediation has got wide
acceptance as pollutants are mineralized in this process (Correa-García et al. 2018;
Kiamarsi et al. 2020). Usually, certain pollutants (e.g. PHs) are less bioavailable due
to their high hydrophobic nature. However, root exudates will change these equa-
tions, and make the pollutant more accessible to the microorganisms through their
chemical nature. It is widely known that root exudates are rich in several substances
(e.g. organic acids, enzymes, protons, sugars) which do support the activity and
luxuriant growth of the rhizosphere microorganisms, and subsequently activated
rhizosphere microorganisms can easily mineralize the pollutants (Hoang et al. 2021).
Principally, there are 4 mechanisms by which root exudates favors the removal of
pollutants (Martin et al. 2014) – (i) direct degradation of pollutants, (ii) enhanced
bioavailability of pollutants due to presence of surfactants, (iii) stimulation of
co-metabolic activities, and (iv) microbial activation via nutrient supply. Net result
of rhizoremediation is, there is a plant resilience to pollutants, and there is reduced
oxidative stress in the plants (Gkorezis et al. 2016). Thus, rhizoremediation of
polluted sites is feasibly possible through a high-level synergistic relation between
plant and rhizosphere microflora. With respect to rhizoremediation, research has
been carried out in limited directions, such as worked with a specific pollutant
(Turkovskaya and Muratova 2019), plant (Martin et al. 2014) and microbial group
(Correa-García et al. 2018), or studying bioremediation in plant-independent condi-
tion (Hussain et al. 2018). It should not be ignored that there is application of several
microbial inoculants to the soil as a part of sustainable agriculture, and least is known
about the role of these inoculants in the rhizoremediation, therefore, future studies
should investigate into the understanding the role of externally introduced microbial
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inoculants in the rhizoremoval of pollutants from the soil in the vicinity of plant
system.

12.4.4 Algal Based Technologies

In the present days, microalgae (Chlorella vulgaris) and macroalgae (seaweeds) are
the promising tools in the bioremediation of several microenvironments
(e.g. sediments, effluents and sea surfaces) in marine environments (Chen et al.
2019; Sepehri et al. 2020). Seaweeds are the potential agents in the removal of
several pollutants either by uptake (e.g. metals such as Fe, Zn, Ni, Cu, Mn and Co) or
by positive attachment to its surfaces (e.g. oils such as Hg, Pb, Cd, Zn etc.) (Bilal
et al. 2018). Surprisingly, algal members can concentrate metals 1000 times more
than their biomass, which implies that algal cells are the good biosorbents, and
subsequently metal recovery from the algal biomass is highly possible (Naja and
Volesky 2009). Important factors those do govern the biosorption capacity of algae
are pH, alkalinity, concentration of ions, contact period and temperature
(Saldarriaga-Hernandez et al. 2020). The above insights clearly suggest that algal
agents are the suitable tools for the sorption, desorption and recovery of several toxic
metals, therefore, algal remediation could be an emerging approach if further
integrated algal agents with industrial and land processes.

12.4.5 Microbial Enzymes

Now-a-days, there is much importance to enzyme-based bioremediation (Bilal et al.
2017; Sharma et al. 2018), this might be attributed to the effectiveness and specificity
of enzyme treatment in the removal of pollutants from the contaminated media. Up
ahead, enzymes are considered to be better tools than whole microbial cells, as
enzymes show much better activity than the cells (Ye et al. 2019). Two most widely
used enzymes in the bioremediation process are horseradish peroxidase (HRP) and
laccase (Lac) (Zdarta et al. 2018), this might be due to their broad range of reactivity
with different pollutants. Enzyme-based treatment has already been implicated in
various environments, e.g. treatment of municipal wastewaters (Melo et al. 2016),
however this treatment serious problems such as low stability of enzymes, econom-
ically unprofitable, less reuse and difficulty in the separation of enzymes from the
reaction system (Liu et al. 2018). To overcome these problems, the trend has been
shifted towards treatment with immobilized enzymes, where HRP and Lac enzymes
are immobilized by different mechanisms such as adsorption (noncovalent), cova-
lent, cross-linking, encapsulation, entrapment etc. For example, immobilized Lac
has been tested for the removal of several xenobiotic compounds such as triclosan
(Xu et al. 2014), diclofenac (Xu et al. 2015), carbamazepine (Ji et al. 2016),
tetracycline (Yang et al. 2017), bisphenol A (Brugnari et al. 2018), malachite
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green coexistence with Cd (Wen et al. 2019) etc. Currently, investigations are
focusing on the development of new substrate materials and methods for the
effective immobilization of enzymes (Shakerian et al. 2020). Such developments
are expected to improve the efficiency of enzyme (immobilized)-based bioremedi-
ation by improving the efficiency of degradation and immobilized enzyme properties
(e.g. stability, reusability, easy separation).

12.4.6 Recombinant Technology

Microbial degradation of xenobiotic compounds is made easy with the emergence of
several biotechnological approaches such as natural gene transfer or genetic engi-
neering methods. These approaches allow the microorganisms to promote the
production of specific enzymes to degrade the toxic xenobiotics (Pandotra et al.
2018). Genetic engineering is not new in the area of bioremediation (Chauhan et al.
2008; Magazine 1975), however this approach is still in practice (Ezezika and Singer
2010), this might be due to undisputed advantages offered by recombinant technol-
ogy in the bioremediation.

For in situ monitoring of microbial community structure and function, there are
several molecular techniques now available (Desai et al. 2010), for instance, fluo-
rescence in situ hybridization (FISH), nucleic acids-based stable isotope probing
(SIP), molecular biosensors/bioreporters etc. Dual benefits are offered by FISH
technique, as it allows simultaneous phylogenetic classification plus gives abun-
dance of active microbial population in the environmental sample. SIP permits the
analysis of microbial community structure and function in a culture-independent
manner. Whereas biosensors or bioreporters are the integrated devices, which do use
different biomolecules (e.g. enzymes, antibodies, organs, tissues etc.) for measuring
the interactions between pollutant and biological systems.

On the other side, “omics” techniques (e.g. genomics, transcriptomics,
metatranscriptomics, proteomics, metaproteomics, metabolomics and fluxomics)
playing a vital role in the characterization and monitoring of pollutant degraders,
and identification of new pathways of biodegradation. Genomics relies on
metagenomic libraries, pyrosequencing and DNA microarrays for the analysis of
complete genetic information of a microbial cell (so called pollutant degraders).
Transcriptomics and metatranscriptomics reveal the information about the mRNA
transcriptional profiles of microbial communities which help us to understand more
about the activities of microbial cells in the polluted environments. Whereas, protein
composition and abundance in the microbial community can be revealed by prote-
omics and metaproteomics. Beyond all these, a new approach has emerged in the
analysis of the complete repertoire of metabolites of a single microbial cell for the
quantification of functional roles, the so-called approach is ‘metabolomics’.
Metabolomics relies on several analytical techniques (e.g. NMR, DIMS, FT-IR,
HPLC, GC, capillary electrophoresis based MS (Mapelli et al. 2008)). It should also
be remembered that several bioinformatics tools are available for the interpretation
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or correlation of -omics data, e.g. in silico software, pipelines, web resources,
algorithms etc. There is one database, called The University of Minnesota Biocatal-
ysis/Biodegradation database (UMBBD), is an important and freely available (http://
umbbd.msi.umn.edu/) web resource of following microbial bioremediation informa-
tion: Pathways ¼ 187; Reactions ¼ 1,287; Compounds ¼ 1,195; Enzymes ¼ 833;
Microorganisms entries ¼ 491; Biotransformation rules ¼ 259 (Ellis et al. 2006).
Nevertheless, emergence of molecular and “omics’ techniques in the area of micro-
bial remediation of polluted sites is a strong positive sign for the rapid restoration of
contaminated sites and development of cleaner environment.

12.5 Future Research Directions

It is a well-known fact that microorganisms have a wider range of capabilities either
to degrade or detoxify different types of xenobiotic compounds. However, most of
these studies have been conducted at lab and small-scale level, therefore, bringing
these technologies to field-level is always challenging. Following are some of the
future research directions in the areas that have been discussed in Sect. 4.

1. BES-based bioremediation is known to be influenced by several factors such as
type of contaminant, microbial community structure, distribution of electron
donors and acceptors, nutrients, and hydraulic flow dynamics. As most of these
insights are known through the lab-based experiments, still it is not known how to
optimize the electrochemical simulation at in situ bioremediation. Suggested
areas in this field (Li and Yu 2015) are, monitoring of microbial community
using molecular approaches (e.g. Catalyzed Reporter Deposition-FISH,
metagenomics, proteomics analysis). Modeling of contaminant flow and reaction
under specific electrochemical stimulation scenarios. Modeling studies greatly
help in the design of effective and optimal remediation strategies in the future.
There should be proper emphasis on remediation efficiency, ecotoxicity, cost
benefits of BES-based bioremediation. Field-level electro-bioremediation studies
are obligatory in order to have reliable results.

2. In rhizoremediation, existing limiting factors (soil conditions, temperature, pH,
soil organic matter, plant species and microbes involved, pollutants availability to
microbes) can be overcome through biostimulation and bioaugmentation pro-
cesses (Saravanan et al. 2020). Soil treatment with fertilizers, minerals and
biosurfactants (so called biostimulation) will enhance the efficiency of
rhizoremediation by modifying the soil physicochemical properties.
Bioaugmentation is also a suitable process to enhance the rate of degradation of
contaminants in the rhizosphere region, and possible routes for the introduction of
microbial inoculants into soil are seed coating, soil drenching and root dipping.
Another promising approach for the enhancement of efficiency of
rhizoremediation in the removal of pollutants is use of transgenic plants, which
have ability to produce more diverse root exudates for the establishment of better

12 Recent Advances in Microbial Remediation Techniques for. . . 283

http://umbbd.msi.umn.edu/
http://umbbd.msi.umn.edu/


plant-microbial interactions, which could have significant impact on the pollutant
degradation subsequent removal.

3. As microalgae provide multiple advantages in the area of heavy metal bioreme-
diation, more emphasis is needed to bring algal-based bioremediation closure to
the field-level. Efforts should be made in the area of genetic, metabolic and
molecular fields to increase the adaptability, specificity and robustness of
microalgae in heavy metal removal (Leong and Chang 2020). Equilibrium
constant and kinetics of heavy metal biosorption and bioaccumulation by
microalgae are poorly understood. To make the algal-based bioremediation
approach cost effective, innovation of harvesting technologies is greatly
warranted. It is important to note that microalgae are the important sources of
producing valuable products such as lipids, exopolymers, pigments,
phytochelatin, and phytohormones, however, heavy metal bioaccumulation has
significant interference at downstream purification level. Therefore, additional
research is still needed in adapting effective downstream purification processes
and for further production of value-added products.

4. Owing to the advantages (such as good and cost-effective alternatives) of
enzyme-based bioremediation, future studies should emphasize on different
microorganisms and their enzymes potential in the degradation of xenobiotic
compounds. There are certain enzymes (e.g. nanozymes) which can perform the
biodegradation even at remote conditions (Sharma et al. 2018), therefore, proper
emphasis should be made on this type of enzymes. Metagenomics,
metatranscriptomics and metaproteomics techniques should be implemented in
the screening of novel microorganisms and enzymes in a culture-independent
manner.

5. With respect to the molecular and ‘omics’ techniques, appropriate statistical
algorithms and bioinformatics tools should be explored for the proper interpreta-
tion of massive data generated by molecular and ‘omics’ tools (Desai et al. 2010).
There are certain gene editing tools (e.g. TALEN, ZFNs, CRISPR Cas 9) which
allow us to identify and isolate desired microorganisms with special functions and
genes encoding desirable functions (so called xenobiotics degradation) (Jaiswal
et al. 2019). Possible implications of omics tools must be searched in depth as
these tools contribute to the logical identification of pollutant degrading micro-
organisms. Multi-omic tools also provide an undisputable advantage in the
selection of suitable hosts for the gene expression. Tailoring of gene expression,
decrease in metabolic burden, optimization of degradation pathways are feasible
by modeling studies (e.g. genome-scale and kinetic models) (Dvořák et al. 2017).

12.6 Conclusions

The main conclusions that have been drawn from the above insights are as follows:
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• Global consumption and market projection rates are clearly in increasing trend.
As a result, environmental concentrations of xenobiotics are in the range of ng
to mg.

• Bioremediation is yet a promising approach for the clearance of xenobiotic
substances from the contaminated environmental media as indicated by scientific
production in the last decade.

• Biomagnification, trophic transfer, reduction of soil fertility, serious human
health risks are the principal consequences of xenobiotics in the environment.

• Optimum reaction conditions are obligatory for the removal of pollutants from
laboratory medium or soil (in vitro and in vivo) as discussed in the case of
biodegradation of petroleum hydrocarbons.

• There should be more emphasis on the emerging bioremediation techniques such
as Bioelectrochemical system, rhizoremediation, algal based technologies, impli-
cations of enzymes and omics tools. Such studies may take the bioremediation
approach much nearer to the real and large-scale level.
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Chapter 13
Microbial Enzymes as Thrombolytics

Prakash Kumar Sinha and Eshu Singhal Sinha

Abstract An imbalance between blood coagulation and thrombolysis is known to
disturb haemostasis in body resulting in thrombosis or blood clot formation which is
a major cause of myocardial infarction and stroke. As a therapeutic measure, the
enzymes that can dissolve blood clot are administered as thrombolytic agents in the
patients. Fibrinolytic enzymes derived from different microbes including bacteria
and fungi have gained considerable attention than physiological thrombolytic agents
such as urokinase and tissue plasminogen activator because of their cost effectivity.
This chapter focuses on different microbial proteases including Nattokinase, Strep-
tokinase, Staphylokinase, Streptococcus uberis plasminogen activator and several
fungi-derived proteases that are reported to exhibit potent thrombolytic activities.

Keywords Plasmin · Plasminogen activators · Nattokinase · Streptokinase ·
Staphylokinase

13.1 Introduction

Microorganisms are used for hundreds of years for the isolation of commercially
useful organic products of industrial value. Besides being used for the production of
herbicides, insecticides, plant hormones, enzymes, and vitamins; these organisms
are also used for the production of therapeutics. For instance, antibiotics are isolated
from fungi such as Penicllium and Cephalosporium and from some species of
bacterium Streptomyces. A wide number of microbial species infect human beings
by exploiting the ligand receptor interaction. These microbes either secrete specific
molecules or express those molecules on their surfaces which have similarity or
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affinity for receptor expressed on the host cell surface. These molecules are exploited
for many years as therapeutic molecules as anticoagulants, antidepressants, vasodi-
lators etc. In USA alone, microorganisms are used for the production of billion
dollars of drugs annually. Many of these drugs are natural, but several are modified
form of these molecules. Established knowledge of microbial genomes, simple
culture conditions and cost effectiveness make microbes the first choice of organ-
isms to produce molecules of commercial and therapeutic importance.

To invade the host, the microbes need to invade the tissue barrier by degrading
extracellular matrix and basement membrane. It requires the lysis of collagen fibrins,
elastin, fibronectin, and proteoglycans, which occurs through proteinases. This
property makes some specific microbial proteins efficient thrombolytics. Thrombo-
lytic molecules are required for the treatment of coronary thrombosis for the
dissolution of blood clots through degradation of fibrin present in blood clots.

When blood vessels are injured, platelets aggregate at the site of injury and
stimulate coagulation pathway which eventually ends in the formation of a fibrin
clot that can stop minor bleeding. Once the bleeding stops and the injured vessel is
repaired; the growth of the thrombus is arrested, physiologically. Finally, the formed
clot is dissolved by the action of intrinsic fibrinolytic system of the body (Riddel
Jr. et al. 2007). Thus, a balance between thrombus formation and thrombolysis
regulates hemostasis. When this physiological balance is disturbed due to altered
physiology or pathological condition, blood clot/thrombus formation leads to block-
age of blood flow that results in unavailability of oxygen and nutrient supply to
respective tissue leading to ischemia. If thrombus formation occurs in blood vessels
of heart muscles, restriction of blood flow to cardiac muscle results in myocardial
infarction which may even lead to death (Peng et al. 2005). According to WHO
report, 31% of all global deaths (17.9 million people) occur due to circulatory
disorders (Sinha et al. 2019). Out of these 85% of deaths take place in low and
middle income countries, and occur equally in men and women. An effective therapy
is rapid clot dissolution to minimize tissue damage.

There are four therapy options for thrombosis: surgical removal of the clot, usage
of anticoagulants, antiplatelet therapy, or administration of fibrinolytic enzymes.
Generally, thrombolytic treatment through administration of fibrinolytic enzymes is
preferred clinically to retrieve the function of clot affected tissue. Of the several
known fibrinolytic enzymes, microbial fibrinolytic enzymes have attracted much
more attention because of their cost-effectiveness and comparatively lesser side
effects than other thrombolytic agents. Several fibrinolytic enzymes have been
discovered from different microorganisms, especially from the genus Bacillus.

Before going in details about the microbes and their products, clot formation and
clot lysis need to be understood first.
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13.1.1 Clot Formation

The aggregation of platelets at the site of injury stimulates the coagulation pathway,
which results in formation of a fibrin clot. Fibrinogen, a glycoprotein of Mr
~340 kDa is the precursor of fibrin and is present in plasma as well as platelet
granules (Weisel 2005). Platelet aggregation provides the surface for the assembly
and activation of coagulation complexes and generation of thrombin. Thrombin
converts fibrinogen to fibrin and the fibrin strands thus generated, bind aggregated
platelets (Riddel Jr. et al. 2007). Thrombin acts on the central domain of fibrinogen
and liberates fibrinopeptides (Mosesson 2000). This is followed by non-covalent
fibrin assembly involving progressive longitudinal and lateral elongation of polymer
chains to form fibrin strands (Hermans and McDonagh 1982). At the end, cross-
linking of factor XIIIa with fibrin further stabilizes fibrin (Weisel and Litvinov
2013). The fibrin mesh further recruits more platelets through receptor glycopro-
teins, fibronectin and platelet fibrinogen (Zucker et al. 1979). All these events
contribute to formation of thrombus/blood clot. Additionally, factor XIIIa binds
α2-plasmin inhibitor to make it mechanically more robust and more resistant to
chemical and enzymatic degradation (Shen et al. 1975, 1977).

13.1.2 Thrombolysis

The thrombolytic pathway is a key component of haemostasis that serves to restrict
the clot formation. It involves degradation of fibrin present inside blood clot.
Therefore, it is alternatively referred to as fibrinolysis. This cascade involves
zymogen-enzyme activation (LIJNEN 2006). Physiologically, fibrinolysis is done
by the non-specific serine protease plasmin (PN). This requires activation of plas-
minogen (PG) to plasmin (PN) (Parry et al. 2000). PG is synthesized in liver and is
converted to its active form PN with the help of PG activators (Rakoczi et al. 1978).

Fibrinolysis is regulated by two regulatory components; activators and the inhib-
itors. The activators include serine proteases: tissue type plasminogen activator
(tPA) and urokinase type plasminogen activator (uPA) and the inhibitors include
α2-antiplasmin and plasminogen activator inhibitor-1 (PAI-1). The activators are
synthesized by endothelial cells while the inhibitors are mainly localized on the
fibrin strands. These directly influence the degree of clot dissolution. A cardinal
feature of both physiological fibrinolysis and therapeutic administration of PG
activators is targeted generation of PN activity at the surface of the clot (fibrin
selectivity) (Marder and Sherry 1988; Kiernan and Gersh 2007). PN degrades
insoluble fibrin to small soluble fibrin degradation products (Fig. 13.1) that are
swept into the circulation (Parry et al. 2000). PN activity is tightly regulated by
α2-antiplasmin inhibitor which prevents widespread fibrinolysis.
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13.1.3 PG Activators

The activation of PG to PN by PG activators is the central event in the fibrinolytic
cascade. PG activators can be broadly divided into two categories:

13.1.3.1 Direct PG Activators

These are generally intrinsic PG activators and show high degree of substrate
specificity. They activate PG by direct cleavage of the Arg 561- Val 562 scissile
peptide bond. These activators include tPA and uPA and their mutated or protein
engineered derivatives.

13.1.3.2 Indirect PG Activators

These activators do not possess any enzymatic activity of their own. They form
complexes with PG or PN and these complexes then act as PG activators. Indirect

Fig. 13.1 Schematic representation of fibrinolysis. Upon injury, vascular endothelial cells release
plasminogen activators (tissue plasminogen activator and urokinase) which convert plasminogen to
plasmin. Plasmin thus generated, degrades fibrin present in clots to fibrin degradation products.
Fibrinolysis is negatively regulated by plasminogen activator inhibitor-1 (PAl-1) and plasmin
inhibitor, α2-antiplasmin
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PG activators include staphylokinase, Streptococcus uberis PG activator and strep-
tokinase. Being bacterial in origin, the non-physiological PG activators are immu-
nogenic in nature.

PN itself is a non-specific serine protease which is involved in tissue remodelling
during development and can degrade various extracellular matrices and membranes
(Lahteenmaki et al. 2001a). Some pathogenic microbes (Streptococcus and Staph-
ylococcus) secrete PG activators which bind to PG/PN and inhibit its inactivation by
α2-antiplasmin inhibitor (Lahteenmaki et al. 2001b). The bound PN can degrade
metallo-protein and collagens which enables microbes to invade host (Boyle and
Lottenberg 1997). This property of microbe’s secretory protein is exploited by
clinicians as thrombolytic drugs (Banerjee et al. 2004).

13.2 Bacterial Proteins as Thrombolytic Agents

Bacteria are a very important source of thrombolytic agents. Nattokinase (NK) from
Bacillus natto, Streptokinase from Streptococcus hemolyticus and Staphylokinase
from Staphylococcus aureus have proved to be very effective thrombolytic agents.
Over the years, fibrinolytic enzymes from other bacteria have also been discovered
such as subtilisin DFE and substilisin DJ-4 from Bacillus amyloliquefacien. How-
ever, the clinical implications of the latter enzymes is not fully established yet.

13.2.1 Nattokinase

Nattokinase (NK) is produced by bacterium Bacillus subtilis during the fermentation
of soyabeans to produce natto which is a traditional fermented food of Japan
(Meruvu and Vangalapati 2011). It was the outcome of search for natural agent
that could successfully dissolve thrombus. As a result, a Japanese researcher
Hiroyuki Sumi discovered that natto has the capacity to degrade artificial fibrin. In
1987, he isolated an enzyme from natto that acted as a fibrinolytic enzyme which
was then named “Nattokinase” (Sumi et al. 1987). Like most of the thrombolytic
enzymes, NK is also serine protease in nature and belongs to subtilisin family of
proteases. Mature NK protein has a molecular weight of 27.7 kDa, comprises of
275 amino acid residues and is devoid of cysteine residues (Chen and Chao 2006).
Like other serine proteases, NK has a catalytic triad (D32, H64, and S221) and
oxyanion hole (N155).

Unlike other thrombolytic enzymes such as tPA and uPA which are associated
with various side effects including bleeding/haemorrhage, NK exhibits little to no
side effects. Interestingly, NK can be taken orally as it is absorbed by intestine and
exhibits strong fibrinolytic activity after its oral administration. It is a very potent
thrombolytic enzyme that (1) acts directly on clots and degrades fibrin inside blood
clot, (2) converts PG to PN (Fujita et al. 1993), (3) enhances fibrinolysis by
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increasing the production of PG activators, uPA and tPA (Sumi et al. 1987; Fujita
et al. 1993; Weng et al. 2017), and (4) enhances the half-life of tPA and uPA via
inactivating PAI-1 (Fujita et al. 1993; Urano et al. 2001) (Fig. 13.2). Besides these
NK leads to decrease in blood viscosity and decrease in RBC aggregation (Pais et al.
2006). It also reduces blood pressure via reducing systolic and diastolic pressure
(Kim et al. 2008; Jensen et al. 2016).

13.2.2 Streptokinase

Streptokinase (SK) is a single chain multi-domain protein cofactor secreted by
various haemolytic Streptococci (Banerjee et al. 2004). It is composed of
414 amino-acids and has a molecular weight of ~47 kDa (Malke and Ferretti
1984). SK isolated from different microbes, differ in their sequences, structure and
in their target host (Malke 1993; Huang et al. 1989). For therapeutic purpose, SK is
isolated from Streptococcus hemolyticus.

SK is a fibrin-independent activator of PG/ PN (Reed et al. 1999) and therefore,
can lead to activation of PG in blood (outside clot) where haemorrhage is regulated
by α2-antiplasmin. SK is devoid of cystines and cysteines (Morgan and Henschen

Fig. 13.2 Mechanism of action of Nattokinase. Nattokinase dissolves blood clots by directly
hydrolyzing fibrin to fibrin degradation products. It also converts plasminogen to plasmin which
further degrades fibrin. Nattokinase increases level of tissue plasminogen activator and also
converts endogenous prourokinase to urokinase. Being plasminogen activators, tissue plasminogen
activator and urokinase convert plasminogen to plasmin. Nattokinase further supports fibrinolysis
by inhibiting plasminogen activator inhibitor.
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1969) and does not have any proteolytic or esterase activity of its own (Dahiya et al.
2005). It acts as a protein cofactor to PG or PN. PN is a wide-spectrum non-specific
protease. However, when SK binds with PG/PN, it modulates PN’s specificity to
using only PG as a substrate (Davidson et al. 1990). SK can act as a PG activator by
two pathways (Fig. 13.3):

13.2.2.1 Pathway 1

SK first forms a 1:1 molar complex with PG (SK.PG) to form a transition complex,
SK.PG* that bears an active site in the zymogen (Summaria et al. 1982). In this step
SK.PG gets converted to SK.PG* by undergoing a conformational transition without
any proteolytic cleavage. This SK.PG* forms a ternary complex (SK.PG*.PG) upon
binding to free PG as a substrate. The substrate PG gets cut at Arg561-Val562 scissile
peptide bond, and it gets converted to active form of PG i.e. PN. The PN thus
generated by SK.PG* either binds free SK or replaces the PG* from the SK.PG*
complex to form SK.PN catalytic complex, as PN has ~11,000 fold higher affinity
for SK in comparison to PG (Covarsi et al. 1978).

Fig. 13.3 Mechanisms of plasminogen activation by Streptokinase. In pathway 1, SK forms an
equimolar complex with PG (SK.PG*) which binds free PG molecule as a substrate forming SK.
PG*.PG complex. PN is generated from the ternary complex (SK.PG*.PG) due to proteolytic
cleavage of PG. PN thus generated, either binds free SK (in pathway 2) or replaces the PG* from the
SK.PG* binary complex to form SK.PN catalytic complex. In pathway 2, SK forms a high affinity
complex with PN (SK.PN) that binds free PG substrate to form SK.PN.PG, from which free PN is
generated and liberated. SK Streptokinase, PG Plasminogen, PN Plasmin
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13.2.2.2 Pathway 2

SK first forms a high affinity complex (SK.PN) with PN. This complex binds free PG
in the substrate mode to form SK.PN.PG thus initiating the direct proteolytic
catalytic cycle, due to which free PN is generated (Boxrud and Bock 2004).

SK causes the activation of PG to its active form PN (Murray et al. 2010) and is
used as a thrombolytic agent for more than five decades. This is because the
thrombolytic capacity of SK is comparable to tPA (Dahiya et al. 2005). Additionally,
SK is cost effective than tPA (Baker Jr. 2002). Hence, it has been used in the clinical
treatment of acute myocardial infarction following coronary thrombosis.

13.2.3 Staphylokinase

Staphylokinase (SAK) is produced by Staphylococcus aureus and is a single domain
protein devoid of cysteines. It is composed of 136 amino acids and has a molecular
weight of ~15.5 kDa (Collen 1998; Collen and Lijnen 1994). Although it structurally
matches with serine proteases, SAK is devoid of any enzymatic activity (Bokarewa
et al. 2006). SAK acts as co-factor similar to SK (Collen et al. 1992). It is a
thrombolytic molecule and forms 1:1 stoichiometry complex with PN. After forming
SAK.PN complex, SK modulates the specificity of PN by generating PG activator
complex which now acts on substrate PG. This leads to activation of substrate PG to
PN which causes lysis of fibrin. N-terminal residues of SAK help in formation of
SAK-PN complex. In contrast to SK-PG complex, the SAK-PG complex remains
inactive until it gets converted to SAK-PN complex, which has specificity for PG
activation (Grella and Castellino 1997). SAK has a great similarity with α and β
domains of SK (Parry et al. 2000). Individual domains of SK are highly attenuated
PG activators, whereas SAK is a single domain protein which is fully functional PG
activator and has fibrin specificity (Dahiya et al. 2011). Inside circulatory system, α2-
antiplasmin inhibits SAK-PN complex, but once SAK-PN complex gets attached to
fibrin, it becomes resistant to α2-antiplasmin (Sakharov et al. 1996). Thus, unlike
SK, SAK primarily activates fibrin-bound PG (Parry et al. 2000).

13.2.4 Streptococcus uberis PG Activator

As the name suggests, Streptococcus uberis PG Activator (SUPA) is isolated from
Streptococcus uberis, a causative agent for bovine mastitis. SUPA has a two domain
structure with molecular weight ~29 kDa which is an intermediate between single
domain SAK (Mr ~15.5 kDa) and three domain structure of SK (Mr ~47 kDa). It
cannot activate human PG but forms an activator complex with human PN (Zhang
et al. 2012). SUPA shows activation kinetics similar to SK (Johnsen et al. 2000). In
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presence of fibrin the activity of SUPA-PN complex gets enhanced. Unlike SAK-PN
complex, SUPA-PN complex is resistant to inhibition by α2-antiplasmin even in the
absence of fibrin (Zhang et al. 2012). Similar to SK, SUPA generates non-proteolytic
active site in host PG but at a slower pace as compared to SK. Catalytic efficiency of
SUPA-PN is approximately 33% of SK-PN (Sazonova et al. 2001).

13.3 Fungal Proteins as Fibrinolytic Agents

Apart from bacterial sources, fungal proteases possessing fibrinolytic activity have
also been reported. However, these are not used clinically as thrombolytics yet.

13.3.1 Proteases from Fusarium sp

Fusarium, a filamentous fungi causes various diseases in plant and animals. Some
novel enzymes with fibrinolytic activities have been isolated from different species
of Fusarium. For instance, a novel protease, FP is produced Fusarium sp. BLB. The
FP protease was firstly isolated in 2007 from tempeh which is a traditional Indone-
sian food produced by fermentation of soyabean by filamentous fungi, Rhizopus sp.
and Fusarium sp. (Sugimoto et al. 2007). FP is a serine protease and has a molecular
weight of 27 kDa, with maximal fibrinolytic activity at 50 �C and optimum pH of
9.5. This protease is a direct activator of PG, and thus forms PN from PG and
dissolves the blood clot. The fibrinolytic activity of FP towards synthetic peptide is
higher than that of Nattokinase and commercially available PN (Sugimoto et al.
2007).

Fusarium oxysporum N.R.C.1 also secretes a novel thrombolytic which acts
optimally at 37 �C and at a pH of 7. It is a metallo-protease which requires Co+2

as a cofactor for its activity. This protease can be inhibited by divalent chelator,
ethylene diamine tetra acetic acid (EDTA) (Abdel-Fattah et al. 1993). Additionally, a
fibrinolytic enzyme Fu-P was isolated from Fusarium sp. CPCC 480097. Fu-P has a
molecular weight of 28 kDa, with optimum activity at 45 �C and at a pH of 8 (Wu et al.
2009). It is a direct thrombolytic enzyme and does not require PG for the dissolution
of blood clot.

13.3.2 Proteases from Rhizopus sp.

Rhizopus sp. are usually found in the organic rich soil. A serine metalloprotease
enzyme was isolated in 2005 during brewing of rice wine which is fermented by
Rhizopus chinenesis 12 in China. This protease has a molecular weight of 16–18 kDa
and hydrolyzes fibrin clot directly without activation of PG activators. This novel
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fibrinolytic enzyme from Rhizopus chinenesis 12 degrades α, ß and γ chains of
fibrin, simultaneously (Xiao-Lan et al. 2005). The fibrinolytic activity of this enzyme
is comparable to Nattokinase. This makes it a promising therapeutic drug for
thrombosis in future.

13.3.3 Proteases from Pleurotus sp.

Pleurotus sp. are generally common edible oyster mushrooms. Some species of
Pleurotus produce enzymes that can degrade fibrin. A fibrinolytic protease, PoFE
(Mr 32 kDa) composed of 288 amino acid residues was isolated from Pleurotus
ostreatus mycelia. The activity of this metalloprotease increases in the presence of
Ca+2, Mg+2 and Zn+2. PoFE is a direct fibrinolytic enzyme and does not need any PG
activator. However, it hydrolyzes γ chain much slower than α and β chains of fibrin
(Shen et al. 2007). Similar hydrolysis preference for α and β chains over γ chain of
fibrin was also observed in case of a 14 kDa protease isolated from Pleurotus
eryngii, which is also a direct fibrinolytic protease (Cha et al. 2010).

Potent thrombolytic enzymes have also been isolated from some other fungal
species such as Aspergillus species, Armillaria mellea, Cordyceps miltaris, etc.
Some novel fibrinolytic enzymes are isolated from Fomitella fraxinea mycelia
(Lee et al. 2006). However, most of these enzymes are not completely studied to
be established as clinically applicable thrombolytic drug candidates.

13.4 Comparison of Intrinsic PG Activators with Clot
Busters of Microbial Origin

The choice of thrombolytic therapy depends on several factors including the
stability/half-life of the agent, specificity for fibrin dissolution, immunogenicity,
side effects associated with the therapy and cost of the thrombolytic agent. Thus,
till today streptokinase, remains the preferred agent for thrombolytic therapy due to
its cost-effectiveness especially in the developing countries.

The intrinsic PG activators, tPA and uPA are non-immunogenic but costly
molecules. tPA is often accompanied with side effect of haemorrhage (Miller et al.
2011). Hence, alternative and safer thrombolytic molecules which are cost effective
are sought. Despite being immunogenic, fibrinolytic proteins of microbial origin are
preferred as these are easy to express and are cost-effective in nature. Thrombolytics
of bacterial origin which are clinically used as therapeutic agents include
nattokinase, staphylokinase and streptokinase. The administration of these bacterial
proteins requires partial neutralisation of circulatory inhibitors (Roschlau 1972).
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13.5 Advantages of Direct-Acting Thrombolytic Molecules
over PG Activators

PG directed fibrin lysis is done by active form of PG i.e. PN. This property is
exploited by PG activators. However, PG activators work efficiently on relatively
small clots, i.e clot inside coronary artery in acute myocardial infarction
(Novokhatny 2008). But in case of big, retracted clots present inside peripheral
arterial occlusion, deep-vein thrombosis, and patients with deficiency in PG, direct
fibrinolytic proteases or external supplementation of PN is required (Robbie et al.
1996; Potter Van Loon et al. 1992). In vitro study of tPA, PN and saline control on
retracted clot suggests that tPA exhibits similar response as of saline, whereas PN
shows dose dependent clot lysis (Novokhatny et al. 2003). The probable explanation
of this experiment could be the limited or no availability of PG inside retracted clot
(Robbie et al. 1996; Potter Van Loon et al. 1992). Therefore, direct fibrin lysis
should be preferred, at least in cases where size of clot is large and unavailability of
PG is there. One such example of direct fibrin lytic enzyme which is expressed in
E. coli. is a truncated derivative TAL6003, developed by Talecris Biotherapeutics
Inc., Research Triangle Park, NC. This derivative contains just one domain of PG
covalently attached to serine protease domain of PN. It retains the fibrinolytic
function, inhibition by α2-antiplasmin, and fibrin affinity as of full-length PN
(Hunt et al. 2008). As this derivative has no glycosylation site and is composed of
only two domains (as compared to seven domains in PG/PN), it is relatively easier to
express in E. coli.
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Chapter 14
Plant Growth Promoting Microbes
and their Potential Application
in Biotechnology

Hafida Baoune, Mabrouka Bouafiane, and Thinhinane Fecih

Abstract In the last decades, quite a number of plant associated microbes have been
intensively studied. Those microbes can benefit their host plant directly or indirectly.
Direct mechanisms could be by helping plants with nutrient acquisition and uptake,
alleviating environmental stress and regulating related phytohormones. Indirectly,
they are able to suppress the growth of plant pathogens with the production of
antibiotics, anti-fungus, hydrolytic enzymes, nutrients competition, and stimulation
of plant defense system. Plant growth promoting microbes and their metabolites
have been used to improve world food production, soil fertilization, environment
clean-up, etc. Consequently, these emerged microbes can serve the same purpose or
even do better than the chemical approaches. In this chapter, we introduce plant
growth promoting microbes, their metabolites and the potential to be used in
different ecosystems. Plant associated microbes are a most promising microbial
resource to be exploited as a sustainable alternative technology.

Keywords Plant growth promoting microbes · PGP metabolites · Phytohormones ·
Endophytes
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NH4
+ Ammonium

PGPB Plant growth promoting bacteria
PGPM Plant growth promoting microbes
PGPR Plant growth promoting rhizobacteria
SAM S-adenosyl methionine

14.1 Introduction

Some of the microorganisms present in the soil can develop beneficial associations
with members of their ecosystems such as plant. Such microorganisms are a class of
bacteria or fungi that provide several benefits to their host plant and vice versa. These
microbes can live in the extern or the intern ecosystems of their host plant, those
living externally are either epiphytic, or rhizospheric, whereas, those living inside
plants are called endophytes (Afzal et al. 2019). Enormous variety of those micro-
organisms play a significant role in the growth, tolerance, and disease protection of
plants (Rilling et al. 2019). These microbes can enhance plant growth directly by
either facilitating resource acquisition (fixing nitrogen, iron uptake, phosphate sol-
ubilize) or modulating phytohormone levels, or indirectly by reducing the inhibitory
effects of phytopathogens on plant growth and development, acting as biocontrol
agents (Glick 2012).

The increase of both environmental damage and human population pressure has
negative effect on the ecosystem, therefore, many studies have been published on the
use of plant growth promoting microbes as bioinoculants or their products not only
to increase plant growth but also to improve nutrients uptake and to reduce the
environmental damages (Barac et al. 2004; Afzal et al. (2014a, b); Basu et al. 2018;
Baoune et al. 2019). The positive results obtained of plant growth promoting
microbes (PGPM) studies at laboratory scale have encouraged their use in diverse
aspects of biotechnological axes (Rilling et al. 2019). Furthermore, the use of PGPM
to mitigate the environmental stress is eco-friendly and cost effective strategy
comparing to physico-chemical approaches (Singh et al. 2018). PGPM serve as
bio-fertilizers, biocontrol, phyto-stimulator, which enhance the fertility of the soil,
protect plants from phytopathogens, and enhance the growth of plants (Barac et al.
2004). This chapter is divided into the following sections: First, we briefly introduce
plant associated microbes, in the second section, we summarize some metabolites
produced by those microbes. Finally, we focus on their potential use in
biotechnology.
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14.1.1 Rhizospheric Microbes

Rhizo-microbes are classified according to their proximity to the roots to four types;
(1) microbes living near the roots (rhizosphere), (2) microbes colonizing the root
surface (rhizoplane), (3) microbes residing in the root tissue (endophytes), and
(4) microbes residing inside cells in specialized root structures or nodules; the latter
category is further divided into two groups: Rhizobia associated with leguminous
and Frankia associated with woody plants. Microbes belonging to any of these
groups are able to enhance plant growth either directly by developing volatile
stimulating compounds and phytohormones, reducing plant ethylene levels, enhanc-
ing plant nutrient status (solubilizing phosphates from insoluble sources; fixing
nitrogen), and activating pathways for disease resistance (induced systemic
resistance) (Korpi et al. 2009). On the other hand, other mechanisms are applied
by some rhizobacteria such as the induction of host plant resistance to phytopatho-
gens and abiotic stress alleviation, the activation of other beneficial symbioses, or the
protection of the plant through inhibitory degradation of xenobiotics, those traits are
referred as plant growth promoting rhizobacteria (PGPR). Several rhizobacteria have
been reported to have those features as, the genera Bacillus, Pseudomonas, Erwinia,
Caulobacter, Serratia, Arthrobacterium, Flavobacterium, Chromobacterium,
Agrobacterium, Rhizobium, Streptomyces, and Rhodococcus (Egamberdieva et al.
2015; Ponmurugan et al. 2016).

14.1.2 Endophyte Microbes

Endophytes are defined as microorganisms that live asymptomatically within a plant
at least for a part of their life cycle. Those microbes grow inter- or intracellularly
without causing visible manifestations of disease (Afzal et al. 2014a, b). It was
demonstrated that every single plant is able to harbor endophytes and their diversity
depends on several factors, such as plant species, plant density, plant age, nutrient
availability, abiotic conditions, and interactions with soil microbiota (De Silva et al.
2019).

Endophytic bacteria have been isolated and characterized from different type of
host plants, including agronomic crops, prairie plants, plants growing in extreme
environments, and wild and perennial plants (Afzal et al. 2019). Further, endophytes
can be considered as a subset of rhizospheric bacteria with the ability to invade plant
roots after establishing in the rhizosphere. This colonization is determined by
different bacterial traits which resumed in a complex communication process
between the two partners, involving the recognition of some specific compounds
in the root exudates by the endophytic bacteria (Compant et al. 2010). Apart from
bacterial colonization, a variety of factors could determine the diversity of a partic-
ular plant species, including host plant age, genotype, geographical location as well
as the changes in climate (Peng et al. 2013). Endophytic bacteria diversity has been
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reported in several studies. Generally, Proteobacteria is the most predominant
phylum including α, β, and gamma proteobacteria. Members of Actinobacteria
Bacteroidetes, and Firmicutes are also among the most commonly found as endo-
phytes (De Silva et al. 2019).

14.1.3 Plant Growth Promoting Metabolites

Plant associated microbes have demonstrated positive effects on plant growth and
development when applied as bioinoculants for the seeds. Endophytes are able to
thrive the plant interior tissue, and benefiting their host by providing nutrients. Both
rhizomicrobes and endophytes may enhance plant development directly or indi-
rectly. Direct mechanisms include assisting resource acquisition and modulating
plant hormone levels. While, the indirect mechanisms involved the inhibition of the
growth of various plant pathogens (Ramakrishna et al. 2019). The metabolites
produced by PGPM are the following:

14.1.3.1 Siderophores

In the environment, iron is an insoluble element (ferric oxide/hydroxide complexes),
it is required as a cofactor of many enzymes. Some bacteria produce small molecules
called siderophores with high affinity for ferric form (Fe3+) of iron (Scavino and
Pedraza 2013). Insoluble iron binds with siderophores outside the cell, the complex
transported into the cell and converted into soluble ferrous iron form (Fe2+). As well
as, siderophores are involved in the acquisition of ferric citrate (Ghosh et al. 2020).
Siderophores producing bacteria can suppress pathogen proliferation by reducing the
amount of iron available in the environment and therefore enhancing plant growth
and development (Dimkpa et al. 2009).

14.1.3.2 Phosphate Solubilization

One of the essential elements for the plant growth is phosphorus. Although many
strategies have been applied to fertilize soil, soil phosphorus still not available for the
plant (Jog et al. 2014). Some plant associated bacteria are able to solubilize and
mineralize insoluble soil phosphate and release soluble phosphorus and increasing
its availability to plants as well as improving the fertility and the agriculture of soils
(Han and lee 2005; Alori et al. 2017).
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14.1.3.3 Phytohormones

Ethylene is a plant hormone regulates growth, senescence plant at low concentration,
its production more than its threshold level causes stress which affect negatively the
plant growth (Glick 2005). This hormone is produced from 1-aminocyclopropane-1-
decarboxylate (ACC). PGP bacteria produce ACC deaminase which is a key hor-
mone to reduce plant stress by uptake of the ACC and metabolize it to α-ketobutyrate
and NH3 (Naik et al. 2019). Additionally, the indole-3-acetic acid is an auxin
hormone produced by PGPB may improve the growth of roots, or activate the
transcription of the enzyme ACC synthase which increases the level of ethylene.
However, the presence of ACC deaminase producers decreases the plant ethylene
level and the IAA continues as plant growth promoting hormones (Orozco-
Mosqueda et al. 2020). IAA is synthesized from the amino acid tryptophan present
in plant root exudates at a different concentration based on the genotype of the plant.
Furthermore, it functions in root initiation (lateral and adventitious), cell division,
stem and root elongation (Olanrewaju et al. 2017). The mechanisms of ACC
deaminase and IAA are illustrated in Fig. 14.1.

14.1.3.4 Nitrogen Fixation

Some of PGPM found in the rhizosphere can contribute in the fixation of atmo-
spheric nitrogen by symbiotic or non-symbiotic processes. Rhizospheric microbes

Fig. 14.1 Schematic representation of the role of IAA and ACC deaminase to enhance the plant
growth. SAM (S-adenosyl methionine), IAA (indole-3-acetic acid), ACC (1-aminocyclopropane-1-
decarboxylate) (Baoune 2021)
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have been well known for their ability of symbiotic nitrogen fixation such as
Azotobacter spp., Bacillus spp., Beijerinckia spp., whereas free-living diazotrophs
like Azospirillum, Pseudomonas, and Burkholderia are known for non-symbiotic
nitrogen fixation (Choudhary et al. 2016). Free-living diazotrophs can improve the
agricultural crops with their ability to fix small amount of atmospheric nitrogen.
Symbiotic nitrogen-fixing microorganisms are those diazotrophs that live in close
proximity to plant roots (i.e., in the rhizosphere or in plants) and can gain plant
energy materials. It was demonstrated that the genus Rhizobia associated to legumi-
nous can provide large quantities of nitrogen, the total amount of fixed N from this
association in terrestrial ecosystem is 70 million tons per year (Werner and Newton
2005). This kind of symbiosis produces specific organs called nodules which appear
on the root or on the stem (Nieder and Benbi 2008).

Nitrogen-fixing microorganisms have specific enzymes which are called nitroge-
nases that transform the atmospheric nitrogen into bioavailable ammonium (NH4

+).
Nitrogenase biosynthesis is encoded by the set of nif genes, which are arranged in a
single cluster of approximately 20–24 kb in many diazotrophic bacteria with seven
separated operons which encode for around 20 different proteins. The gene nifHDK
encodes for the structural components of the complex enzyme molybdenum nitro-
genase. The NifH protein is synthesized by the nifH gene, it is also reported that the
nifDK gene and the Fe Protein of the nitrogenase enzyme codes for the FeMo protein
(Antonio Castellano-Hinojosa and Bedmar 2017).

14.1.3.5 Other Metabolites

The indirect mechanisms used by PGPM to promote plant growth could be resumed
in the production of antibiotics, nutrient competitions. Some plant growth promoting
microbe produces antibiotics to inhibit the growth of phytopathogens and therefore,
preventing plant damages. Additionally, the competition between PGPM and
phytopathogenes for nutrients or for biding sites on the plant root is considered as
an indirect mechanism to promote plant growth (Olanrewaju et al. 2017).

Other PGPM produce hydrogen cyanide (HCN) which suppresses the prolifera-
tion of phytopathogens, inhibiting cytochrome c oxidase and other metallo-enzymes.
Other produce cell wall degrading enzymes such as chitinase, peroxidases, and
β-1,3-glucanase (Olanrewaju et al. 2017). Under different conditions in greenhouse
studies, PGPM were found to be able to apply different effects on the plants, such as
increasing the root and shoot length, absorption of mineral elements, fresh and dry
biomass (Singh et al. 2018).
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14.2 Biotechnological Uses of Plant Promoting Products

Microbial secondary metabolites are low-molecular-mass organic compounds pro-
duced by the most groups of microbes during the idiophase (stationary phase),
including antibiotics, pigments, toxins, and others. The role of the secondary metab-
olites is poorly recognized in comparison with the primary metabolites which are
known as essential for growth of microorganisms. Some studies were able to
determine the role of the secondary metabolites as antibiotics agents, herbicides,
insecticides, and plant growth promoters (Singh et al. 2019). Different environmen-
tal stress conditions can be found, such as the presence of phytopathogens, salinity,
drought, presence of contaminants (Singh et al. 2018). Lately, great attention has
been focused on the use of PGPM to reduce the stress produced from external
factors.

14.2.1 Plant Growth Promoters

In agriculture, plant growth promoting microbes have become a safe alternative
technology comparing with chemical pesticides (Shiva et al. 2018). Microorganisms
can promote plant growth by several direct and/or indirect mechanisms as mentioned
below. The direct mechanisms include nutrient acquisition enhancement or stimu-
lation of plant defense mechanisms against pathogens, which are known as
biofertilization and phytostimulation (Hossain et al. 2017), whereas the indirect
mechanisms comprise the inhibition of phytopathogenic agents growth (Vacheron
et al. 2013). Some studies have reported that the secondary metabolites produced by
cyanobacteria are low molecular weight organic molecules, the polyketides and
nonribosomal peptides are the important classes of cyanobacterial secondary metab-
olites, which have a significant activity for plant growth promoting (Davies and
Ryan 2011; Kumar et al. 2019). Also, plant associated actinobacteria isolated from
different environment produce around 45% of microbial secondary metabolites,
which play interesting role in plant growth promotion. Many studies have been
conducted on the isolation and the characterization of secondary metabolites from
actinobacteria. El-tarabily et al. (1997) have isolated seven actinobacteria from
carrot rhizosphere, with the ability to produce non-volatile antifungal metabolites,
those strains belonged to different genera; Streptomyces, Streptoverticillium,
Actinomadura, Actinoplanes, Micromonospora, and Streptosporangium. In the
study of Gopalakrishnan et al. (2014), six actinobacteria isolated from herbal
vermicomposting were able to produce hydrogen cyanide (HCN), IAA indole-3-
acetic acid (IAA), siderophore, and ß-1,3-glucanase. Several studies have reported
that 80% of rhizospheric microorganisms promote plant growth by producing
phytohormones such as auxins, cytokinins, and gibberellins. Bacteria from the
genus of Azospirillum, Paenibacillus, Pseudomonas, Streptomyces have been
reported to be an efficient candidate to improve plant growth (Patten and Glick
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2002; Fuentes-Ramirez and Caballero-Mellado 2005). Furthermore, the indole-3-
acetic acid (IAA) and the cytokinins produced by Pseudomonas fluorescens
enhanced root elongation of canola (Brassica napus L.), in pure culture and in the
rhizosphere of canola under gnotobiotic conditions (Pallai et al. 2012). Salisbury
(1994) demonstrated that the indole-3-acetic acid is involved in root initiation, cell
division, and cell elongation. Besides that, studies conducted in saline stress condi-
tions reported that PGPM stimulate plant antioxidant defense mechanisms, regulat-
ing the activity of superoxide dismutase (SOD), catalase, and peroxidase. While, in
drought conditions, those microbes produce some phytohormones, proteins, and
polysaccharides to adjust the physiological and biochemical levels in plants such as
changes in phytohormones concentrations and antioxidant defense systems (Singh
et al. 2018).

14.2.2 Biocontrol

Plant disease could be caused by various organisms like viruses, bacteria, fungi,
insects, nematodes, etc., which become serious issue worldwide due to the major
threat to food security (Agrillo et al. 2019). One of the tools to control plant diseases
with minimal impact on the environment is the use of beneficial microbes, their
genes, and/or products (De Silva et al. 2019). The use of endophytes as biocontrol
agent has gained a strong attention as a friendly approach (Hardoim et al. 2008). As
well as, rhizobacteriaare known by their capability to produce a variety of secondary
metabolites such as lytic enzymes, toxins, gases, volatile organic compounds, and
other metabolites which play a role in controlling nematodes (Marin-Bruzos and
Grayston 2019). It the study of Oliveira et al. (2014), a metabolites called Uracil,
9H-purine which is a dichloromethane soluble metabolite identified by high perfor-
mance liquid chromatography (HPLC) coupled to mass spectrometry and produced
by Bacillus cereus and Bacillus subtilis, was reported as an active compound against
nematodes. In other study, it was reported that Pseudomonas fluorescens is able to
produce some compounds such as HCN, siderophores, and mainly pyoverdine and
pyochelin which contribute to suppress several plant diseases such as black root rot
of tobacco caused by the fungus Thielaviopsis basicola (Nandhini et al. 2012).

In the family of actinobacteria, the genus Streptomyces has been well known as
active producers of antibiotics and volatile organic compounds with great potential
for controlling various fungal and bacterial phytopathogens (Shiva et al. 2018).
Besides that, Fungi have been well known by their enormous production of a variety
of metabolites which can be used in different area (Keller et al. 2005; Nawar, 2016).
This attribute might be due to their versatility and their huge enzymatic language to
produce a wide range of bioactive natural compounds (Sidorova and Voronina
2019). It has been reviewed that about 17% of natural bioactive compounds are
produced by fungi (Bérdy 2012). α-Pyrones, viz. fusapyrone (FP) and
deoxyfusapyrone (DFP) are two secondary metabolites produced by the rhizofungi
Fusarium semitectum, inhibit the growth of many pathogen filamentous fungi such

316 H. Baoune et al.



as Cladosporium cucumerinum, Alternaria alternata, Ascochyta rabiei (Evidente
et al. 1999; Altomare et al. 2000). The endophyte Fusarium is well known as a
producer of some toxins such as nivalenol, T-2, neosolaniol, HT-2, and
diacetoxyscirpenol that inhibit the growth of plant parasites of Orobanche ramosa,
weed plant (Zonno and Vurro 2002). Plant growth promoting Bacillus
amyloliquefaciens produces some secondary metabolites belonging to the chemical
family of aldehydes, ketones, and benzenes which are active against Fusarium
oxysporum (Yuan et al. 2012). Moreover, some members of the family
Clavicipitaceae produce a mycotoxin called ergot alkaloids which improve host
plant resistance to herbivores and cause toxicity to consuming livestock (Schardl
et al. 2013a, b). Bacteria isolated from different type of environment might be a
promising source for the production of metabolites involved in biocontrol of plant
disease (Table 14.1) (Agrillo et al. 2019). Taken together all the data, we conclude
that several plant growth promoting microbial secondary metabolites are involved in
the promotion of plant growth indirectly by the suppression of plant pathogens
growth.

Table 14.1 Examples of microorganisms and their secondary metabolites

Microorganisms

Groups of
secondary
metabolite

Secondary metabolites
names References

Fungus Flammulina velutipes
(Curtis) singer
(macrofungi)

Terpenoids Enokipodins A–D Ishikawa
et al. (2001)

Fusarium semitectum Heterocyclic
compounds

Deoxyfusapyrone Evidente
et al. (1999)

Trichoderma viride Lactone 6-pentyl-α-pyrone Prapulla et al.
(1992)

Trichoderma sp. Volatile
compounds

1β-vinylcyclopentane-
1α,3α-diol

Yang et al.
(2012)

Verticillium biguttatum Phenol Bigutol Morris et al.
(1995)

Bacteria Pseudomonas aurantiaca Aromatic car-
boxylic acid

Phenazine-1-carbox-
ylic acid

Shahid et al.
(2017)

Pseudomonas
fluorescens

Polyketide 2,4-
diacetylphloroglucinol

Siddiqui and
Shaukat
(2003)

Pseudomonas putida Nonribosomal
peptide

Pyoluteorin Hassan et al.
(2011)

Nostoc sp. Depsipeptide Cryptophycin Biondi et al.
(2004)
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14.2.3 Phytoremediation

The presence of both organic and inorganic xenobiotics in the environment presents
a serious issue which has a negative effect on the ecosystem. Their degradation
might occur within the plant or in the rhizosphere (Barac et al. 2004). Plant
associated microbes can enhance the phytoremediation of contaminants. The capa-
bility of endophytes to thrive the plant tissue makes those microbes protected from
the stress caused by the presence of xenobiotics. Plant growth promoting bacteria
improve the nutrient acquisition during phytoremediation which increase the
bioaccumulation of contaminants (Agnello et al. 2016; Cristaldi et al. 2017). It
was demonstrated that endophytes enhance the phytoextraction of metals by using
siderophores which can bind to some metals such as copper, zinc, and cadmium,
increasing their solubility (Li et al. 2012). As well as, they can reduce ethylene levels
by the production of ACC deaminase. Afzal et al. (2011) showed that the inoculated
plants with bacteria having ACC deaminase exhibit a massive gene expression acdS
responsible of ACC cleavage, thus reducing stress caused by the presence of
contaminants. Many studies have been outlining the beneficial effect of endophytes
in the enhancement of plant growth and improvement of phytoremediation due to
their plant growth promoting or/and xenobiotic mineralization or degradation ability
(Polti et al. 2011; Afzal et al. 2014a, b; Baoune et al. 2019). Successful laboratory
experiments have emphasized the importance of plant associated bacteria in
phytoremediation, however, we still lack an integrated understanding of in situ
studies level.

14.3 Conclusion

The use of plant growth promoting microbes is an integral component of ecosystems
as it is a technology whose time has come to be applied. Those microbes are already
known a success in different field as it expected to grow. Thus, it is logic to expect
their increase use in various strategies. However, their vast use in the worldwide and
the need to study different factors that might be taken in consideration while going
from laboratory scale to field trails, but the future of this approach looks extremely
bright.
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Chapter 15
Advances in the Bioremediation
of Pharmaceuticals and Personal Care
Products (PPCPs): Polluted Water and Soil

Mahendar Porika, Pabbati Ranjit, Radhika Tippani, and
Kondakindi Venkateswar Reddy

Abstract Pharmaceutical and personal care products (PPCPs) comprising a variety of
organic categories, like antibiotics, hormones, antimicrobials, synthetic musks, etc., have
promoted significant interest in recent times that their constant input of such substances
has become a serious threat to the public and the environment, extending from surface
water, sludge, sewage, aquatic bodies, treatment plants, sediments, soil, humans, and
wildlife. In recent years, the existence of PPCPs has been attracting growing focus,
leading to considerable concern about their frequency, development, fate, and danger in
the ecosystems. However, in recent years the substantial use of such molecules has
contributed to their accumulation in our ecosystem, and they are now observed in living
organisms via their intervention in food chains and food webs. As bioactive in nature,
these substances have significant toxicological and precarious impacts on ecological
systems, environments, and human health. A number of methodologies have been
widely studied for eliminating PPCPs from the environment, including physical, bio-
logical, and chemical methods. The categories, functions, and representatives of the
commonly observed PPCPs within the environments were stated in this chapter. This
chapter also structured to explicate the incidence, fate, and bioremediation (BR) of
PPCPs from waste water and soil utilizing microorganisms (MOs) and plants, and also
the experimental methods used to assess the PPCPs in nature.

Keywords Bioremediation · Gas chromatography · High-performance liquid
chromatography (HPLC) · Microorganisms · PPCPs · Phytoremediation · Toxicity ·
Wastewater
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Abbreviation

ACC 1-Aminocyclopropane-1-carboxylate
AChE Acetylcholinesterase
ATN Artemisine
BTF Biotransformation
CBZ Carbamazepine
CDN Codeine
CFN Caffeine
CSCM Circular supply chain management
CWs Constructed wetlands
DFC Diclofenac
DOS Dioctyl sebacate
E2α 17α-Ethinylestradiol
EROD Ethoxyresorufin-O-deethylase
EST Estradiol
FLU Flumequine
GC Gas chromatography
GFZ Gemfibrozil
HPLC High-performance liquid chromatography
HRAP High rate algal pond
HRT Hydraulic retention time
IBU Ibuprofen
LLE Liquid–liquid extraction
LLME Liquid–liquid micro-extraction
MBR Membrane bioreactors
MCs Mixed cultures
NP Nonylphenol
NPX Naproxen
PGPH Plant growth-promoting hormone
PPCPs Pharmaceuticals and personal care products
ROS Reactive oxygen species
SDG Sustainable development goal
SMX Sulfamethoxazole
SPE Solid-phase extraction
SPME Solid-phase micro-extraction
STP Sewage treatment plants
TCS Triclosan
UV Ultraviolet
WRF White rot fungi
WWTP Wastewater treatment plants
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15.1 Introduction

Bioremediation (BR) is an evolving and ground breaking technology due to its
economic viability, enhanced expertise, and friendliness with the legitimate habitat.
The system uses numerous eco-friendly microbial techniques to cope with the
ever-growing issue of environmental contamination (Singh et al. 2020). In these
strategies, microbes adjust upon toxic wastes and naturally grow environmentally
acclimated microbial strains that eventually turn an extensive range of noxious
substances into non-harmful forms. Microbial xenobiotic degradation/decadence is
dependent on the activity of enzymes (Singh et al. 2020). Nutrients are provided to
the polluted zone during the BR process to accelerate the growth of the suitable
microorganisms (MOs) which promote the BR of the contaminating noxious sub-
stances. For cases where no present MO is capable of breaking down a pollutant,
scientists incorporate a MO proven to eliminate the noxious substances. BR has been
effectively utilized to clean up pollutants such as, pesticides, crude oil, sewage,
gasoline, and chlorinated solvents utilized in cleaning supplies etc.

15.2 Importance of Bioremediation

In recent decades, rapid industrialisation, urbanization, and indiscriminate use of
resources by an ever-growing population of human has intensified contamination of
the surface and ground waters, ambience, and land surfaces. The widespread deca-
dence of natural resources poses a major threat to global public health. Pesticides,
heavy metals, synthetic hydrocarbons, and vast quantities of harmful industrial
effluents are the main pollutants affecting the soil and water system. Such anthro-
pogenic xenobiotics are inherently recalcitrant. The regeneration of water, soil
resources, degraded land is only feasible through safe and environmentally sensitive
approaches in the current scenario. Among the numerous recent methods used, BR is
known as an emerging technique for the regeneration of degraded habitats to reduce
pollution. Nevertheless, its applicability at ground level is restricted due to various
climatic factors. Different MOs kill obstinate contaminants under aerobic or anaer-
obic conditions by using contaminants as their carbon sources by full mineralization
or co-metabolism. Bacteria and fungi were noticed as advantageous and worthy
target for decadence of organic pollutants found in polluted areas both in situ and ex
situ. In addition, the microbes may be genetically engineered to effectively degrade
environmental contaminants. Moreover, the wide-ranging applicability of geneti-
cally engineered organisms is restricted by broad political and ethical concerns. New
prospects in BR development are emerging biotechnological developments include
the use of qualified indigenous microbes, application of unique enzymes, microbial
consortia, biosurfactant, and rhizoremediation.
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15.2.1 Classes of Bioremediation

BR lists in two classes.

15.2.1.1 In Situ

In situ BR corresponds to the handling of hazardous waste at their source point. Soil
may be contaminated, for instance. Instead of removing the soil from its place of
origin, it is contained right as it is. The lead for in situ treatment is that during the
removal and transfer of the infected material, it stops contaminants from spreading.

15.2.1.2 Ex Situ

Ex situ BR corresponds to treatment that takes place after removal of the polluted
waste to a treatment area. The soil can be collected and transferred to a region where
the BR can be implemented to use the soil as an example again. The key benefit of
this is that it helps to isolate and monitor the goods for BR and makes available the
region that was polluted.

15.3 Pharmaceuticals and Personal Care Products (PPCPs)

In recent decades, unparalleled developments in the medicine, livestock, aquacul-
ture, and cosmetics industries have modernized beautification services and
healthcare, leading to a wide variety of PPCPs being developed (Petryna et al.
2006; Wang and Wang 2016). Because of their wide application and inadequate
elimination via traditional biological wastewater treatment plants (WWTPs), they
are pervasive in the ecosystems. Table 15.1 listed the specific classes, corresponding
motive, and principal properties of PPCPs. Since the 2000s PPCPs have received
increasing attention (Wang and Wang 2016). PPCPs were initially contemplated
micro-pollutants (i.e., orders of ng/L up to several μg/L), although their persistent
discharge into the habitat is of huge importance to ecologists and environmentalists
(Nikolaou et al. 2007). Contemporary investigations have demonstrated enormous
amount of PPCPs in the habitat and their possible implications on lifeforms
(Kummerer 2009; Corcoran et al. 2010; Brausch and Rand 2011; Blair et al. 2013;
Munze et al. 2017). The United States Environmental Protection Agency (USEPA)
monitors all of the PPCPs in terms of the quality of potable water; furthermore, one
antibiotic and eight hormones were proposed but are still uncontrolled, which may
pose significant health issues in the future (Nguyen et al. 2019a, b). After rainfall
incidents, the USEPA and the European Union (EU) have already identified a list of
priorities of harmful substances found in wastewater and runoff water, which can
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Table 15.1 The classification, functions, and main properties of PPCPs. Reproduced from (Wang
and Wang 2016). Copyright © 2016 with permission from Elsevier

Classification of
PPCPs Functions

Representatives frequently
detected

Molecular
weight LogKow

Pharmaceuticals

Antibiotics Kill bacteria Sulfamethoxazole 253.3 0.89

Trimethoprim 290.3 0.91

Amoxicillin 365.4 0.87

Erythromycin 733.9 3.06

Ofloxacin 361.4 �0.39

Ciprofloxacin 331.3 0.28

Ampicillin 349.4 1.45

Doxycycline 444.4 �0.02

Difloxacine 399.4 n.a.

Tylosin 916.1 1.63

Enoxacin 320.1 �0.2

Sulfapyridine 250.3 0.35

Cefalexin 347.4 0.65

Cefaclor 367.8 0.4

Mecillinam 325.4 1.3

Tetracycline 444.4 �1.37

Anticonvulsants Treat mood
disorders

Carbamazepine 236.3 13.9

Primidone 218.3 1.12

Dilantin 252.3 2.47

Phenobarbital 232.2 1.47

Cabapentin 171.2 �1.1

Antidepressants Improve the physi-
cal disorders

Diazepam 284.7 3.08

Doxepin 279.4 3.84

Imipramine 280.4 4.28

Amitriptyline 277.4 4.81

Fluxetine 309.3 3.96

Meprobamate 218.3 0.93

Oxazepam 286.7 2.92

Thioridazine 370.6 n.a.

Antineoplastics Control or kill neo-
plastic cells

Epirubicin 543.5 1.85

Ifosfamide 261.1 0.86

Methotrexate 454.4 �1.28

Tamoxifen 371.5 6.3

Cyclophosphamide 261.1 0.73

Beta-blockers Inhibit the hormone
adrenalin and the
neurotransmitter
noradrenalin

Atenolol 266.3 0.16

Metoprolol 267.4 9.7

Nadolol 309.4 �0.6

Pindolol 248.3 1.75

Acebutolol 336.4 1.71

Propranolol 259.3 3.48

Sotalol 272.4 0.24

(continued)
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Table 15.1 (continued)

Classification of
PPCPs Functions

Representatives frequently
detected

Molecular
weight LogKow

Diagnostic con-
trast media

Enhancement of
vascular on mag-
netic resonance
(MR)

Iopromide 791.1 �2.1

Iomeprol 777.1 n.a.

Diatrizoate acid 613.9 1.37

Hormones Regulation of
metabolism; con-
trol of the sexual
development; keep
homeostasis

Estriol 288.4 2.45

Mestranol 310.4 4.68

Estrone 270.4 3.13

17-b estradiol 272.4 4.01

Testosterone 288.2 3.32

Androstenedione 286.2 2.75

Lipid regulators Regulation of tri-
glycerides and cho-
lesterol in blood

Clofibrate 242.7 3.02

Benzafibrate 361.8 3.61

Clorfibric acid 214.6 2.88

Gemfibrozil 250.3 4.77

Simvastatin 418.6 4.68

Furosemide 330.7 1.51

Bendroflumethiazide 421.4 1.89

Nonsteroidal
anti-
inflammatory
drugs

Reduce pain and
inflammation

Ibuprofen 206.3 3.97

Diclofenac 296.1 4.5

Acetaminophen 151.2 0.46

Aspirin 180.2 1.19

Indomethacin 357.8 4.27

Naproxen 230.3 3.18

Nimesulide 308.3 2.6

Phenazone 188.2 0.38

Salicylic acid 138.1 2.26

Paracetamol 151.2 0.33

Ketoprofen 254.3 2.8

Personal care products

Disinfectants Destroy and kill
unwanted germs
and parasites

Triclosan 289.5 4.76

2-Phenylphenol 170.2 3.09

4-chlorocresol 520.2 n.a.

Chloroprene 88.5 2.2

Bromoprene 132.9 n.a.

4-chloroxylenol 156.6 3.27

Fragrances Create a pleasant
odour

Musk xylene 297.3 4.4

Musk ketone 294.3 4.3

Preservatives Prevent decompo-
sition by microbial
growth or by unde-
sirable chemical
changes

2-phenoxyethanol 138.2 1.16

Ethyl 4-hydroxybenzoate 166.2 2.47

Propyl 4-hydroxybenzoate 180.2 3.04

Isopropyl 4-hydroxybenzoate 180.2 n.a.

Butyl 4-hydroxybenzoate 194.2 3.57

Isobutyl 4-hydroxybenzoate 194.2 n.a.

(continued)
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pose a dangerous hazard to water reception. The EUWater System Directive (WFD)
primarily specified 33 substances in 2000 as a control/guide in the next 20 years.
Many PPCPs, namely iopamidol, carbamazepine (CBZ), diclofenac (DFC), and
musks, were later identified as potential targets for future surveillance in 2007. So
it was proposed that triclosan (TCS), bisphenol A, ibuprofen (IBU), phthalates, and
clofibric acid be included in the existing list of PPCPs (Ellis 2008; Nguyen et al.
2019a, b). Based on criteria of persistence, bioaccumulation, and toxicity (PBT), the
English and Wales Environment Agency (EA) have also listed ten compounds as
potentially hazardous substances: aminophylline, clotrimazole,
dextropropoxyphene, lofepramine, paracetamol, procyclidine, thioridazine,
tramadol, tamoxifen, and mebeverine (Ashton et al. 2004). Traditionally, safety
risks of PPCPs date back to the USA in the 1970s, and England in the 1980s.
Nevertheless, the subject remained controversial unless significant damage has been
reported by estrogens in the fish inhabitants and by DFC in vultures (Hignite and
Azarnoff 1977; Richardson and Bowron 1985; Aherne et al. 1990). An extensive
range of PPCPs have since been identified in various ecological systems around the
globe (Cizmas et al. 2015; Munze et al. 2017). PPCPs typically contain drugs
(prescription and non-prescription), anticonvulsants, antidepressants, antihyperten-
sives, fragrances (e.g., nitro- and polycyclic-musks), hormones, insect repellent,
lipid regulators, moisturizers, nonsteroidal, opioids, soaps, UV blockers, veterinary
medications, and their ensuing metabolites/conjugates (Daughton and Ternes 1999;
Loraine and Pettigrove 2006; Cizmas et al. 2015). Annually thousands of PPCPs are
generated globally and therefore their release into the atmosphere becomes an
inevitable result of modern life (Nikolaou et al. 2007; Caldwell et al. 2014). As
per a survey, in 2014, the USA solely distribute more than 76.9 million metformin
prescription medications, likely to result in contamination of all surface water
resources, inclusive of tap water at levels that exceed 50% of the permissible limits
recommended by the Rhine River Basin Agency (Trautwein et al. 2014). The
condition is mastering worse as the use of PPCPs is predictable to increase every
day, with annual revenue projected to rise by 5% (Scudellari 2015). PPCPs have
been detected worldwide continually since the 1990s in drinking water, groundwa-
ter, surface water, and wastewater (Cai et al. 2015). The PPCPs can introduce surface
water by releasing it directly into the surface water by hospitals, households,

Table 15.1 (continued)

Classification of
PPCPs Functions

Representatives frequently
detected

Molecular
weight LogKow

Sunscreen
agents

Protect the skin
from the sun’s
ultraviolet radia-
tion, and reduces
sunburn and other
skin damage

Octocrylene 361.5 6.9

Ethylhexylmethoxycinnamate 290.4 6.1

Oxybenzone 228.2 3.79
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industries, and WWTPs and by land runoff in the case of biosolids distributed over
farm land that can enter the surface by leaching or filtration by banks (Mompelat
et al. 2009). Sediment can accumulate PPCPs within the container of surface water,
because it has an assortment of binding sites (Kastner et al. 2014). Soil also could be
a sink for PPCPs. PPCPs may be transferred to the soil through irrigation with treated
or untreated wastewater that contains PPCPs. PPCPs are accepted as pseudo insistent
organic contaminants in the habitat, which are capable of posing the same hazard to
the habitat as genuinely insistent organic contaminants due to their continued
emergence into the surroundings by various ways like STPs. Even though concen-
tration levels of PPCPs in the habitat are quite low as noted above, they can still
influence the quality of water and the equilibrium of the ecosystems, and even affect
the portable water supplies. It is important to elimination of the PPCPs from
wastewater to reduce the possible danger of the PPCPs. As a result, numerous
approaches have been developed to eliminate the PPCPs during WWTPs, such as
physical, chemical, and biological methods.

15.3.1 PPCPs in the Environment/Ecosystems

PPCPs may attain the habitat by various routes (Fig. 15.1). In the field the origins of
PPCPs are of two forms (point and diffuse). PPCPs persist in the habitat as
components of human and/or animal waste (e.g. discharge and also residential,
industrial wastewater, and hospital) in point source pollution. While most PPCPs
are intended to evoke a biological reaction in their original forms, large percentages
of these molecules are discharged from human and animal bodies without decadence
(Carballa et al. 2004). In addition, PPCPs can also reach the habitat as disseminated
origins, like industrial, medical, agricultural, and/or household waste leftovers, thus
providing another pervasive explanation for their presence in the habitat (Taylor and
Senac 2014). Water and sludge are generally subjected as a source of nutrients to
agricultural land after treatment. Thus, PPCPs can join groundwater explicitly
through leaching or runoff from sludge-treated farming land (Nikolaou et al. 2007;
La Farre et al. 2008). The PPCP metabolites are often commonly found in the
atmosphere and also exist at concentration greater than those of their original
compounds. Weigel et al. (2004), for example, analyzed the anti-inflammatory
medication IBU and its hydroxyibuprofen and carboxyibuprofen metabolites in
various samples of sewage. Carboxyibuprofen was determined to be more prevalent
in the influent samples than hydroxyibuprofen and IBU. Among the PPCPs, the
antibiotics, anticonvulsants, antidepressants, antineoplastics, Beta-blockers, diag-
nostic contrast media, disinfectants, fragrances, hormones, lipid regulators, nonste-
roidal anti-inflammatory drugs, preservatives, and sunscreen agents are common
groups excreted into the habitat (Wang et al. 2016). When in the atmosphere, PPCPs
adopt various paths, such as dissolution, decadence, photolysis, and/or binding to the
solid substrates, depending on their physicochemical properties and the environ-
mental compartment characteristics through which these contaminants are released
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(La Farre et al. 2008). As per figures, America alone generates 8–106 tons of dry
sludge annually, approximately 50% added specifically to agronomic land (Kinney
et al. 2008). Most of the medicines in biosolids worldwide were identified at elevated
levels. Roughly 5000 mg/kg thiabendazole and equivalent quantities of other med-
ications, like CBZ and caffeine (CFN), are tested in sewage sludge, as reported
previously (Diaz-Cruz and Barcelo 2008; Lapworth et al. 2012). In agriculture, the
use of biosolids and treated wastewater is a significant source of PPCPs that can
pollute groundwater (Heberer 2002; Pedersen et al. 2005). Several experiments have
shown that certain PPCPs in sediments, like TCS, sulfamethoxazole (SMX), cipro-
floxacin, and CBZ, are more soluble when compared to water (Conkle et al. 2012).

Antibiotic transmission to the atmosphere will produce antibiotic resistance
genes, resistance genes, and multiple antibiotic resistant super-integrates that present
significant risks to the ecosystem (Pruden et al. 2006; Kemper 2008). The hormones
are also known to induce detrimental consequences of endocrine disorders, partic-
ularly reproductive system disorders (Khanal et al. 2006). Investigations have
indicated that, severe reproductive disorders in trout, minnow, medaka, carp, and
turtle due to estrogen exposure in aquatic environments (Tabata et al. 2001; Irwin
et al. 2001; Zha et al. 2008; Liu et al. 2011). Additionally, these pollutants are more
likely to impact benthic ecosystems as they are continuously exposed to toxins in
sediments and overlying water (Gilroy et al. 2012). Recent investigation revealed
important effects on macro-invertebrate populations of the pollutants found in
WWTP effluents (Munze et al. 2017). While research into the consequences of
field-relevant pharmaceutical application to the aquatic environment is scarce, sub-
stantial impacts have been described on ecosystem services (Bundschuh et al. 2009;
Painter et al. 2009; Wilson et al. 2004). Daphnia magna was reported to have the
greater toxicological effects when exposed to CBZ, DFC, and IBU simultaneously
(Cleuvers 2008). Munz et al. (2017) also identified adverse impact of diazinon and
DFC in rivers affected by storm water. The toxicity of the PPCPs in the food supply
chain has adverse consequences by trophic stage transmission. For example, the
decline in population of the white-backed vulture (by 95 percent) was linked with
renal collapse due to DFC, an anti-inflammatory medicine (Oaks et al. 2004). The
studies on the decrease in population of the vulture across South Asia confirmed
these results (Swan Gerry et al. 2006; Taggart et al. 2007). Because most PPCPs are
found in an open space, they may endure chemical changes and interfere with each
other and with the biotic and essential environmental elements. A host of processing
products with new chemical properties can result in chemical and biological reac-
tions. Few bacteria convert these compounds and generate new metabolites that are
either biocompatible or stable on the atmosphere. Garcia-Galan et al. (2012) indi-
cated that the compound of N4-acetylsulfapyridine, sulfapyridine metabolites, is
higher toxic than the original molecule in algae. Likewise, the metabolites of CBZ
(i.e., acridine) and naproxen photodegradation have been revealed to be not only
higher hazardous than the original substance, and also possess cancer causing and
mutation inducing effects (Chiron et al. 2006; Isidori et al. 2005). Such findings
illustrate the significance of bioassay and check of the environment when detecting
toxic chemicals.
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15.3.2 Environmental and Health Risks

The prevalent incidence of PPCPs in water sources is a growing issue because of
their effect on the atmosphere and public health. PPCPs are commonly found in
drainage, rivers, reservoirs, and groundwater. These may harm health of human and
animal as their residues will potentially reach and persist in the food chain by effluent
release and the rehash of treated wastewater and sludge for agronomic applications
(Rajapaksha et al. 2014; Vithanage et al. 2014). Even though a small amount of
PPCPs are present in WTPs ranging from ng/L to μg/L, residues of PPCPs can have
significant detrimental health effects and human acquaintance to these substances
has unfamiliar long-term consequences (Boxall et al. 2012). Most PPCPs dissipate
quickly in the atmosphere, however, their prolonged use leads to water pseudo-
persistence and major impacts on water living things on the ecosystem (Kostich et al.
2014). Identification of high level PPCPs in STPs from untreated effluent and treated
water (Chen et al. 2013) is induced by worldwide usage (Liu and Wong 2013), little
human metabolic ability (Borova et al. 2014), inadequate disposal (Ternes et al.
2004), and bioactive structures (McClellan and Halden 2010). When recycled water
and organic manures from waste sludge are used, other plant species take up
different PPCPs. There have been earlier reports on detrimental impact of PPCPs
on health and the environment (Tanoue et al. 2012; Jiang et al. 2013; Rajapaksha
et al. 2015). PPCP residues were identified in plant eatable parts when biosolids or
manure-amended soils were utilized or waste water was used for irrigation
(Rajapaksha et al. 2014). In 28% of 27,000 PCPs, the United States Environmental
Working Group (EWG 2008) erect 1,4-dioxane, a recognized cancer causing com-
pound. They also supervised a study that involved 20 girls aged 14–19. The EWG
decisive that 16 toxic chemicals were prevalent in the females’ parts of the body
because of the use of cosmetics, such as synthetic musk, 2-benzenedicarboxylic salt,
and TCS. A report by the United States Environmental Protection Agency (USEPA)
identified some types of drugs of interest in US water supplies, like antibiotics,
antimicrobials, estrogenic steroids, and anti-epileptic drugs (EWG 2009).

Some PPCPs may result in bioaccumulation in fish and other aquatic creatures,
triggering several unforeseen interferences with them. Individual and mixed PPCP
substances have therefore been reported to induce adverse reproductive effects and
histological changes in zebrafish (Galus et al. 2013a, b; Overturf et al. 2015). PPCPs
also exert harmful aggregate impact on terrestrial and aquatic ecosystems (Hernando
et al. 2004, 2006). The adverse effects of PPCPs on habitats are important for human
health, as traces of PPCPs were found in our food chain (fruits, vegetables and
potable water) (Hernando et al. 2006; Carmona et al. 2014; Awad et al. 2016).
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15.3.3 Analytical Methods of PPCPs

Analytical techniques are essential for explore the destiny of PPCPs in the habitat.
The investigation of focused mixes generally involves three stages. The initial step is
to choose the appropriate analytical instrument. The more commonly used instru-
ments are gas chromatography (GC) and high-performance liquid chromatography
(HPLC). For HPLC, the sample preparation requirement is simpler than for
GC. Water samples may be directly injected into the HPLC after filtration (usually
0.45 mm filter). The collection of instruments for the specific compound depends on
the physicochemical properties of the intended compounds or molecules. HPLC can
usually be used to determine compounds vulnerable to heat and non-volatile,
whereas GC can evaluate volatile compounds. Certain organic compounds like
dioctyl sebacate (DOS) can be tested by both HPLC and GC, however, introduced
various sensitivities. Earlier reviews mentioned the mechanism and application of
the three analytic methods (Carr and Purcell 1954; Stahl 1967; Efremov et al. 2008).
Upon filtration the next step for the particulate fractions is to isolate and purify the
samples upon deciding which instruments to choose. Solid-phase extraction (SPE),
liquid–liquid extraction (LLE), liquid–liquid micro-extraction (LLME), and solid-
phase micro-extraction (SPME) are the most extensively utilized procedures until
now. The detailed knowledge on the use of every extraction process was added in
previous studies, respectively (Huddleston and Rogers 1998; Thurman and Mills
1998; Lord and Pawliszyn 2000; Mohammadhosseini et al. 2006). The final step is to
refine the measuring parameters to get the best execution. This move a tedious
procedure, however, it must be finished. Recently, advancements in combination
of chromatography with mass spectrometry, for example, liquid chromatography-
mass spectrometry/mass spectrometry (LC-MS/MS), and gas chromatography-mass
spectrometry/mass spectrometry (GC-MS/MS) extend the spectrum of confirmation
and detection of PPCPs. LC-MS/MS and GC-MS/MS will achieve the detection
limit of ng/L. The investigative strategies of PPCPs reported in references are
outlined in Table 15.2. With improved awareness of people’s health, the analytical
techniques ought to be additionally enhanced to expand the detection limit of PPCPs,
which first needs to remove the influence of complicated matrix on the environment.
The sampling protocols could also be improved, in addition to analytical techniques.
Sampling procedures are very important in assessing the true environmental vari-
ability of PPCPs. The measurement of PPCPs in nature requires refined scientific
strategies as well as sufficient testing conventions.

15.3.4 Microbial Remediation

Although MOs may be an essential biological system of environment and provide
eco-friendly solutions against pollution of PPCPs, little work has been done on the
depletion of PPCPs byMOs in water and soils. The most extensively utilized method
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for the elimination of such substances/pollutants is the application of physicochem-
ical techniques (Molina et al. 2020). BR, however, has the sign of efficient and
affordable ways to eliminate PPCPs, such that a well-directed and systemic method
is erect to research and incorporate these diverse processes in existing or new
WWTPs and aquatic and in situ water and earthly systems. The comfort of utilizing
consolidated physical, chemical, and biological procedures ought to be assessed.

15.3.4.1 Remediation by Bacteria

The prokaryotes have been utilized in advanced systems of remediation, like active
sludge, bioreactors or built wetlands. Majority of the medications are noxious to
strains of bacteria (especially antibiotics), but other naturally happening bacteria can
biodegrade these pollutants. The commonly identified PPCPs were removed using
bacteria isolates from water, soil, and sediment (usually polluted) (Wang and Wang
2016). The pollutants can be removed by aerobic and anaerobic oxidative deca-
dence, intracellular and extracellular decadence, and biosorption (absorption and

Table 15.2 The analytical methods of PPCPs presented in the literatures. Reproduced from (Wang
and Wang 2016). Copyright © 2016 with permission from Elsevier

HPLC Estriol; Mestranol; Sulfamethoxazole, Thioridazine; 4-chlorocresol

LC-MS/MS Androstenedione; Difloxacin; Clorfibric acid; Doxepin; Imipramine;
Amitriptyline; Fluxetine; Oxazepam; Dilantin; Epirubicin;
Ifosfamide; Tamoxifen; Iomeprol; Diatrizoate acid; Gabapentin

HPLC-MS/MS Testosterone

GC-MS/MS Musk xylene; Musk ketone

HPLC, LC-MS Trimethoprim; Amoxicillin; Metoprolol

HPLC, LC-MS/MS Estrone; 17-b Estradiol; Enoxacin; Sulfapyridine; Cephalexin;
Cefaclor; Gemfibrozil; Simvastatin; Diclofenac; Acetaminophen;
Aspirin; Indomethacin; Nimesulide; Phenazone; Paracetamol;
Atenolol; Nadolol; Pindolol; Acebutolol; Sotalol; Iopromide

LC-MS, LC-MS/MS Ofloxacin; Methotrexate; Cyclophosphamide

HPLC, GC-MS Clofibrate; 2-phenoxyethanol; Salicylic acid

GC, GC-MS Chloroprene

GC-MS, LC-MS/MS Methylparaben; Ethyl 4-hydroxybenzoate; Propyl
4-hydroxybenzoate; Isopropyl 4-hydroxybenzoate; Butyl
4-hydroxybenzoate; Isobutyl 4-hydroxybenzoate

GC-MS/MS, LC-MS/MS Ethylhexylmethoxycinnamate; Meprobamate

HPLC, LC-MS, LC-MS/
MS

Erythromycin; Ciprofloxacin; Ampicillin; Tylosin; Mecillinam;
Benzafibrate; Furosemide; Bendroflumethiazide

HPLC, GC-MS, LC-MS/
MS

Doxycycline; Chloramphenicol; Naproxen; Propanolol; Diazepam;
Carbamazepine; Primidone; Phenobarbital; Triclosan; Oxybenzone

HPLC, GC-MS/MS,
LC-MS/MS

Octocrylene

HPLC, LC-MS, GC-MS,
LC-MS/MS

Ibuprofen
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adsorption) (Fig. 15.2). Prokaryote adaptation is a fundamental consideration to
increase the efficiency of method. Several enzymes interfered in extracting PPCPs
are inducible so that prior interaction with PPCPs with the MOs is necessary. For
instance, the incidence of TCS induces ammonia monooxygenase production, that
can degrade this substance (Roh et al. 2009). However, fundamental mechanisms,
like oxidation through cytochrome P450 (Barth et al. 2004; Shrestha et al. 2008) or
bacterial aerobic lignocellulolytic enzymes (Popa et al. 2014; Woo et al. 2014), are
also implicated in bacterial decadence methods. Many pathways have been proposed
for the reduction of PPCPs, for example, desorption and mobilization by
biosurfactants (Guo et al. 2018), photodegradation coupled to biodegradation
(Norvill et al. 2016; Bai and Acharya 2019; Huang et al. 2016), and a degradative
pathway by biogenic manganese oxides (Furgal et al. 2014; Tran et al. 2018). A large
portion of the PPCPs-degrading bacteria belong to the Proteobacteria or
Actinobacteria group even less frequently utilized are Planococcus (little used) and
Bacillus genera both Firmicutes (Molina et al. 2020). Overall, once the decadence
ability of a MO is observed under in vitro conditions, it is assessed as being
incredibly valuable in biotechnology. Thus, bacterial taxa were first investigated
under in vitro condition and then applied in situ, with the exception of Actinobacteria
which were often identified directly in active sludge or bioreactors (Fig. 15.3a).
Among the most utilized, Pseudomonas spp. can be emphasized subsequently they
are capable to degrade, among other molecules, CBZ, TCS, cephalexin, CFN, SMX,
and diagnostic contrast media (Quandt et al. 2015; Thelusmond et al. 2019; Devatha
and Pavithra 2019; Kumari and Ghosh Sachan 2019; Mahmoud et al. 2020;
Gonzalez-Benitez et al. 2020). Pseudomonas spp. reported a 47% decadence of
CBZ in 20 days (Li et al. 2013). P. putida activates effective decadence of 17-
α-ethinylestradiol (E2α) through redox reactions intervened by biogenic manganese
oxide (Furgal et al. 2014; Tran et al. 2018) (Fig. 15.2). The synergistic activity of
these techniques with genetically modified Escherichia coli cells transformed with a
P. syringae guiding motif allows bisphenol A and NP to be totally mineralized
(Zhang et al. 2019a, b). Recently, 17β-hydroxysteroid dehydrogenase and its regu-
lators were characterized (Wang et al. 2019). Bacillus thuringiensis is adequate for
degrading naproxen (NPX), IBU, sulfonamides, trimethoprim, NP, TCS, and GFZ,
among others (Grenni et al. 2014; Bai and Acharya 2019; Kjeldal et al. 2016;
Marchlewicz et al. 2016; Liu et al. 2018; Zheng et al. 2018; Wang et al. 2018a, b).
A new route for NPX utilization by B. thuringiensis has been depicted recently
(Gorny et al. 2019). Numerous Sphingomonas are linked with effective biodegrada-
tion of PPCPs (Murdoch and Hay 2013; Thelusmond et al. 2016; Zhou et al. 2014;
Kim et al. 2011; Bai et al. 2018). They were utilized as bioinoculants with successful
results in recovery processes (Cirja et al. 2009; Zhou et al. 2014). The utilization of
nanoparticles (NPs) in Sphingomonas spp. may be a possible approach for enhanc-
ing decadence (Murugesan et al. 2011). It has recently been immobilized on
polydopamine-coated Fe3O4 iron NPs, demonstrating great effectiveness in the
removal of NP polyethoxylates and through a more prominent amount of cycles.
Moreover, separation and recycling for immobilized cells were more promptly
accomplished compared with free cells. Other bacteria like Stenotrophomonas
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maltophilia can degrade CBZ, triclocarban, TCS (Thelusmond et al. 2019), and NP
(Wang et al. 2015), are less commonly used but with greater ability. S. Maltophilia
can degrade NPX by enzymatic induction and co-metabolism (Wojcieszynska et al.
2014). Acinetobacter sp. may degrade sulfadiazine, sulfamethazine (SMT), and
SMX but with varying mineralization efficiencies (Wang et al. 2018a, b) and
degrade E2α in cometabolization with other hormones (Pauwels et al. 2008).
Arthrobacter denitrificans BTF of sulfonamides yielded high decadence values
(Reis et al. 2014; Reis et al. 2018).

In a metagenomic strategy, the draft genome of two sulfadiazine Arthrobacter
bacteria was compared with other bacterial genomes which could help identify the
functional genes involved in the decadence of these PPCPs (Deng et al. 2016).
Bioaugmented Achromobacter denitrificans into bioreactors of membranes on a
laboratory scale increases the rate of decadence of SMX (Nguyen et al. 2019b).
Nitrosomonas europaea is an ammonia-oxidizing bacterium often linked to hor-
mone decadence (Khunjar et al. 2011). Research on the emergence of microbial
species with 17β-estradiol has identified a link between the involvement of certain
bacteria (Nitrosomonas, Bacillus, Pseudomonas, Sphingomonas, Novosphingobium,
Alcaligenes, Rhodanobacter, and Mycobacterium) and pollutant biomineralization
(Navrozidou et al. 2019; Zhang et al. 2019a, b). Total sequencing of various species
of Sphingobium is being performed to classify and juxtapose the expression behav-
iours of NP-degrading genes (Ootsuka et al. 2018). Recently, the full genome of
Cupriavidus sp. have been sequenced, a caffeine-using bacterium (Watahiki and
Kimura 2017) and other PPCPs such as CBZ (Gonzalez-Benitez et al. 2020). Purple
phototrophic bacteria were identified as predicament pollutant degraders (Fig. 15.2)
and have a greater value added as they generate ingredients of profitable attention
from pollutants (de las Heras et al. 2017; Puyol et al. 2017). Rhodobacter
sphaeroides have been shown to be efficacious in ameliorating toxic contaminants
found in medicinal wastewater (Madukasi et al. 2010). Rhodopseudomonas palustris
and Rhodobacter capsulatus are also worthy of attenuating evolving chemical
molecules in domestic wastewater, creating efficiencies or interactions of rivalry
based on organic oxides (Wang et al. 2014; Merugu et al. 2014). A recent study
reveals that Rhodopseudomonas contained genes linked to xenobiotic degrading
pathways (Thelusmond et al. 2019).

15.3.4.2 Remediation by Fungi

The fungi, or their elements, are a BR tool and have been used in complex processes
in 40 percent of them. The most frequently, white rot fungi are used. They belong to
Basidiomycota and are known for their tolerance to great pollutant ranges (Tortella
et al. 2015) and for their capability to metabolize and degrade a vast diversity of
obstinate organic molecules. This outstanding capability has been associated to
extracellular enzymes (ligninolytic enzymes) with low substrate precision (Tortella
et al. 2015), and they can be amplified an 80% using redox mediators (Yang et al.
2018; Vasiliadou et al. 2019). The extracellular matrix of fungi consists of three
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enzymes: laccase, manganese peroxidase, and lignin peroxidase, the relative impor-
tance of which is species-specific in the decadence processes (Vasiliadou et al. 2016;
Yang et al. 2013). It also described bioabsorption and intracellular decadence, as
well as bioadsorption (Asif et al. 2017; Olicon-Hernandez et al. 2017; Lucas et al.
2018) (Fig. 15.2). Some of them have been effectively used in the decadence of
PPCPs (Camacho-Morales et al. 2017). Key reactions are intricate in these white rot
fungi medicinal alterations include formylation, hydroxylation, dehalogenation,
deamination, conjugation, and polymerization (Olicon-Hernandez et al. 2017;
Cruz-Morato et al. 2013). Many applications have been documented in the literature
about white rot fungi (Tortella et al. 2015). The most widely studied basidiomycete
is Trametes versicolor, which displays a high oxidative capacity to fully degrade
PPCPs (Yang et al. 2013). More than 20 PPCPs susceptible of decadence were
described by Trametes versicolor (Kumari and Ghosh Sachan 2019; Marchlewicz
et al. 2016; Liu et al. 2018). Because Trametes laccases are more effective than other
fungi and bacteria (Margot et al. 2013), they have been used in many biotechnolog-
ical and commercial applications (Rodarte-Morales et al. 2012). Phanerochaete
chrysosporium also can degrade numerous PPCPs under varying conditions of
aeration. Isolated laccases of Trametes versicolor and Phanerochaete
chrysosporium is used to form hybrid NPs that can remove both inorganic and
drug molecule from polluted water (Maryskova et al. 2016; Ardao et al. 2015). Other
extensively described white rot fungi are Phanerochaete sordina, Pleurotus
ostreatus, and Bjerkandra species. White rot fungi, like Panus tigrinus and
Dichomitus squales, are being assessed as effectively degrading fungi in recent
years. Ganoderma lucidum was evaluated as a degrader of various drugs, with
good DFC and ifosfamide results (Castellet-Rovira et al. 2018). Irpex lactatus is
an appropriate white rot fungi in the biotransformation (BTF) of PPCPs like FLU
(Cvancarova et al. 2013), hormones (Prenosilova et al. 2013; Loffredo et al. 2016)
NP, TCS (Cajthaml et al. 2009; Moon and Song 2012), CBZ, and DFC (Castellet-
Rovira et al. 2018). Recently, other white rot fungi like Stropharia rugosoannulata,
Gymnopilus luteofolius, Agrocybe erebia (Castellet-Rovira et al. 2018), and
Moniliophra roreri (Bronikowski et al. 2017) have recently been evaluated for
their capability as PPCPs-degraders. Strains of Rhodococcus rhodochrous and
Aspergillus niger have described the elimination of CBZ up to 10% (Gauthier
et al. 2010). Aspergillus species biotransform DFC, TCS, estradiol, CFN, NP
(Yang et al. 2018; Asif et al. 2017; Zhou et al. 2018; Aracagok et al. 2018; Ertit
Tastan and Donmez 2015; Pai et al. 2013; Hussain et al. 2011).

Genetically manipulated Aspergillus escalates production of laccase that can be
used for biotechnological purposes (Rodriguez et al. 2008; Nguyen et al. 2016; Asif
et al. 2017). Some Penicillium species used successfully in TCS, NP, and hormones
decadence (Tian et al. 2018; Kuzikova et al. 2017; Zhang et al. 2016; Tastan et al.
2016; Shan et al. 2016). The yeast Yarrowia lipolytica has been investigated for the
countenance of cytochrome P450 and capability of degrading DFC and NPX
(Aracagok et al. 2017, 2018). Trichoderma harzianum is able to degrade 17 β-estra-
diol (Chatterjee and Abraham 2019) and CBZ with a similar performance to that of
Pleurotus ostreatus (Buchicchio et al. 2016). Estrogens (Eldridge et al. 2017; Lloret
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et al. 2012), DFC, NPX (Lloret et al. 2010), and antibiotics (Garcia-Delgado et al.
2018) are removed by Free laccase fromMyceliophthora thermophile and Lentinula
edodes.

Regarding Mucoromycota, Cunninghamella elegans can transform ATN
(Parshikov et al. 2004), GFZ (Kang et al. 2009), NPX (Zhong et al. 2003). Fusarium
species degrade estrogens and NP (Shi et al. 2002; Dubroca et al. 2005).
Umbellopsis isabellina can degrade and decrease the hormones and NP toxicity
(Janicki et al. 2018; Janicki et al. 2016). Several Ascomycota and Mucoromycota
may be stronger degrading PPCPs than basidiomycetes, not just because of their
strong resistance to severe conditions, but also because of the great prevalence of
cytochrome P450 family (CYP) epoxidases and transferases intricate in xenobiotics
metabolism in both classes (Olicon-Hernandez et al. 2017). However, the advance-
ment of such filamentous fungi by commercial product development, biotechnolog-
ical advances or industrial-scale applications is in its infancy.

15.3.4.3 Remediation by Algae

Microalgae cultures have historically not been used to remove PPCPs, as these
molecules are also poisonous to photosynthetic species (Czarny et al. 2019; Gosset
et al. 2019; Gojkovic et al. 2019). In addition, due to their vulnerability to toxins
some of them are used as species checking for ecotoxicity. Scenedesmus obliquus
and Chlamydomonas mexicana are capable of eliminating CBZ at low levels, but
higher levels supressed the growth of algae (Xiong et al. 2016). Navicula sp. has
induced algal production by the IBU at lesser concentrations, but at high concentra-
tions growth declined dramatically (Fig. 15.3). Further, Navicula sp. inoculation
into water systems can inhibit IBU decadence, implying this anti-inflammatory drug
could prolong the stress time (Ding et al. 2017).

Several experiments have demonstrated that algal treatment of wastewater dra-
matically decreases a large number of PPCPs, but the harmfulness of the water
perseveres, due to the incidence of ammonium, a metabolism toxic derivative (Shi
et al. 2010; Hamjinda et al. 2018; Escapa et al. 2017). While this toxic agent has been
removed at a laboratory scale in certain experiments (Matamoros et al. 2016), the
number of experimental studies will be expanded to validate these findings. Many of
the research rely primarily on persistent open ponds (Lopez-Serna et al. 2019; de
Godos et al. 2012). Extracellular pathways, like the fungi and bacteria, seem to be
mediated by laccases. But, in the presence of a redox mediator, Tetracystis laccase
transforms bisphenol A, 17α-ethinylestradiol, NP, and TCS (Otto et al. 2015). The
intracellular degrading metabolic pathway will be regulated by cytochrome P450
and coupled with the inference of numerous other enzymes (Xiong et al. 2016;
Fig. 15.2). Laccases and other extracelluar enzymes may perform external digestion
(Otto et al. 2015; Matamoros et al. 2016). Metabolic pathways for SMT and SMX
phycodegradation were advocated elsewhere (Xiong et al. 2019a, b). Degradation of
such antibiotics has been greater at higher levels, implying that biodegradation may
be an effective mechanism for acclimatizing microalgae to antibiotics (Xiong et al.
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2019a, b).Desmodesmus subspicatus takes over and biotransforms the E2α, forming
a highly toxic brominated compound (Maes et al. 2014). Desmodesmus sp.: Green
algae and Scenedesmus obliquus was utilized for TCS hydrolysis and reduction
dechlorination, indicating that these algae may be mineralized (Wang et al.
2018a, b). Likewise, (Escapa et al. 2018) not just to describe the BR of DFC utilizing
Chlorella sorokiniana, Chlorella vulgaris, and Scenedesmus obliquus, but also
demonstrate a significant decrease in effluent toxicity, particularly with
S. obliquus. Particularly non-living S. obliquus may be an efficient alternative in
bioadsorption removal of DFC and other PPCPs (Coimbra et al. 2018; Ali et al.
2018), as compounds with cationic groups are strongly drawn to the cell wall by
electrostatic interactions (Xiong et al. 2018). The accumulation of PPCPs in
microalgae cells will induce the formation of reactive oxygen species (ROS) linked
to mechanisms of defence and adaptation (Gao et al. 2017). In addition, natural-
isolated Nordic microalgae can eliminate lipophilic active medicinal components
equally or more effectively than the culture collection strains under investigation.
While Coelastrella sp. and Coelastrum astroideum was maximum effective in the
aggregation of such molecules in its biomass, two species of algae, Chlorella
vulgaris and Chlorella saccharophila, were not only exceptionally productive in
the elimination of all 19 medicinal compounds, but even low quantities of mentioned
molecules stored in their biomass for further application (Gojkovic et al. 2019).
Nannochloris sp. mediated photo and biodegradation were the primary pathways for
the elimination of 17α-, 17β-estradiol and salicylic acid, but the inadequate elimi-
nation of all steroid hormones shows that the potential for endocrine disruption in the
ecosystem remains (Bai and Acharya 2019).

15.3.4.4 Remediation by Mixed Culture

Full mineralization of raising pollutants is accomplished by the use of mixed cultures
(MCs), as the synergistic enzymatic actions of consortium members are always great
successful than each single action. Though, the reaction of MCs depends upon many
factors, so the results may not be good if synergistic interactions are not produced or
if competitive connections arises (Ha et al. 2016). Our knowledge has been broad-
ened by controlled co-cultures. Trametes versicolor and Ganoderma lucidum were
therefore used to eliminate 13 various medicinal compounds and to produce biodie-
sel from the sludge produced. Joining of both strains escalate the efficacy of
elimination because of the interactions established between them (Vasiliadou et al.
2016). The antibacterial property of antibiotics can be eradicated after treatments
with pure and co-culture of P. chrysosporium and Pycnoporus sanguineus (Gao and
Shi 2018). Co-culture of Alcaligenes faecalis and P. sanguineus degrade SMX well
(Li et al. 2016). Cunninghamella sp. a MC of WRF may be implicated in the
depletion of the endocrine damaging compounds (Cabana et al. 2007). The total
mineralization of E2α by metabolization was accomplished by ammonia-oxidizing
bacteria and heterotrophic bacteria (Khunjar et al. 2011). The interactions among
Arthrobacter sp. and Pimelobacter sp. also permit for the whole mineralization of
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sulfadiazine. Synergistic results were noted in mixed bacterial and fungal cultures,
which could efficiently and exclusively eliminate some PPCPs (Mikeskova et al.
2012; Hai et al. 2012). Compared with the individual MOs, the consortia of
cyanobacteria/microalgae and bacteria can be effective in detoxifying organic con-
taminants from wastewaters. Seven pharmaceutical molecules were analyzed for
decadence by chlorella-Aspergillus pellets. In this laboratory examination, only one
was degraded, and in the final degradation, the incidence of algae did not presume an
advantage (Bodin et al. 2016). One of the problems relating to the utilization of
microalgae in WWTP is their successive assortment. The association of microalga-
duckweeds can eradicate estrogens completely from wastewater procedures that
mediate sorption and biodegradation (Shi et al. 2010). Hydrophobic bioabsorption
(Huang et al. 2019a, b) and bioaccumulation in PPCPs can result in biomass
stabilization, white bioabsorption and biodegradation up to mineralization
(CO2 + H2O) being able to eliminate pollutants from the ecosystem completely.
Essentially, bacteria (Sarmah and Halling-Sørensen 2007; Combalbert and
Hernandez-Raquet 2010) and also microalgae (Shi et al. 2010) generally implement
intracellular decadence, while fungi metabolize this molecule by extracellular dec-
adence that is regulated by laccase. No description has yet been given of the
interference of other lignolithic enzymes (Eldridge et al. 2017). A string of syner-
gistic reactions mediated by other MOs may naturally produce intermediate metab-
olites into the medium and biodegrade them (Wang and Wang 2016; Khunjar et al.
2011). Natural adsorbents, like activated carbon, promote the decadence of hormone
(Rovani et al. 2014) and assist with its mobilization and eventual removal by
biosurfactants (Guo et al. 2018). A biogenic manganese oxide degrading pathway
has been identified (Furgal et al. 2014; Tran et al. 2018).

15.3.4.5 Remediation by Plants

Plants can accumulate PPCPs in their roots by adsorption, or by hydrophilicity-
regulated transport by xylems translocate soluble pollutants into the water (Wu et al.
2013). Plant uptake of over 100 PPCPs has been documented in both soil and water
systems (Al-Farsi et al. 2017). Vegetables are documented to effectively eliminate
gaseous contaminants like benzene (Treesubsuntorn and Thiravetyan 2018)
although systems must be improved (Treesubsuntorn et al. 2017). Many plants can
absorb, stabilize, and retain contaminants (Fig. 15.4a), metabolize, mineralize,
volatilize, secrete, or detoxify pollutants (Fig. 15.4b) via in situ treatments
(Bhatnagar and Bhatnagar 2013). Because of such methods, certain plants may use
these contaminants as nutrients (source of carbon, nitrogen, and phosphorus) which
produce an improvement in their biomass and eliminate the noxious impact which
have on other ecosystem species (Fig. 15.4b).

Though phytoremediation is an outstanding biotechnology technique in soil and
water environments, it does not restore 100% of the polluted area and involves
additional approaches to minimize the amount of toxins in the field prior to planting.
Furthermore, when choosing a plant for phytoremediation, it is essential to
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Fig. 15.4 A. Towards the reactivation of circular supply chain management (CSCM) (Molina et al.
2020). (a). Taking and bioaccumulation of PPCPs in plants (roots, leaves, and endophytes) and
chemical adsorption on substrates. Biomass harvest of macrophytes, use in secondary usages. (a)
(Kouki et al. 2016); (b) (Sanchez-Galvan and Bolanos-Santiago 2018). (b). Road of PPCPs taking
up and full mineralization (metabolic interactions between plants and related MOs), air and plant
volatilization in built wetlands. B. Biomass harvest of macrophytes, including of secondary
applications. (a) (Matamoros et al. 2016); (b) (Kouki et al. 2016); (c) (Sanchez-Galvan and
Bolanos-Santiago 2018); (d ) (da Luz et al. 2013; Hultberg et al. 2018); (e) (Calheiros and Bessa
2015; Macci et al. 2015)

344 M. Porika et al.



contemplate its physiological needs for growth, its position as a native or introduced
plant (Salamanca et al. 2015), and also its efficacy towards a distinct contaminant,
and also the secondary added value of the plants (Fig. 15.4), (Kouki et al. 2016;
Hultberg et al. 2018; Sopajarn and Sangwichien 2015). Microbiome (endosphere,
rizhosphere, and phylosphere) is composed mostly of prokaryotes and fungi. Endo-
phytes play a significant role mostly in detoxification process. Adequate studies
concentrated on heavy metals, metalloids, and organic pollutants (Mallick et al.
2018; Barac et al. 2004; Afzal et al. 2014; Feng et al. 2017; Dolphen and Thiravetyan
2019; Ma et al. 2016; Molina et al. 2019). The Burkholderia kururiensis and
Agrobacterium rhizogenes are phenolic resistant and decaying bacteria with respect
to organic compounds. Some of the rizhophytic and endophytic MOs associated
rhizosphere bacteria greatly improve the decadence of certain PPCPs (Toyama et al.
2011; Toyama et al. 2013). A further study explained a successful BTF of anti-
inflammatory drugs by Plantago lanceolata isolated endophytic and epiphytic fungi
(Gonda et al. 2016). A fascinating research done by Hurtado et al. (2016) suggested
that the enatiometric ibuprofen phytodegradation by endophytic bacteria could
implicate in its metabolism through lettuce. Rhizobium radiobacter and
Chriseobacterium nitroreducens, endophytes in horseradish, improve CBZ elimina-
tion plant. Of the four metabolic pathways discussed for CBZ decadence in plants
(Klampfl 2019), at least one (acridine pathway) is activated by endophyte presence
(Sauvetre et al. 2018; Sauvetre and Schroder 2015). The need for more detailed
research on the synergistic impact between plants and PPCPs-degrading endophytic
bacteria needs to be highlighted (Klampfl 2019); but, as far as we know, only the
results alluded to in this chapter are accessible.

15.4 Conclusion and Future Prospectives

According to its complex chemical compositions, steady release into the atmosphere
and low environmental concentrations, the biodegradation of PPCPs poses many
challenges. Nevertheless, substantial progress has been made in recognizing the role
of microbial metabolism and plants in converting and eliminating PPCPs in
WWTPs, natural aquatic environments, and wetlands. Microbes (aerobic and anaer-
obic bacteria, basidiomycete and ascomycete fungi, and certain resistant algae) may
serve as eco-factories, able to restore environments by clean, low-cost technologies.
Since PPCP’s pathways of mineralization can be complex, more work is required to
systematically develop mutual relationships between MOs. Such studies, on a meso-
and macro-scale basis, may allow full metabolization while preventing intermediate
metabolites that are also often ecotoxic substances with numerous target cells (Leng
et al. 2020). In addition, the integration of these MOs with macroorganisms (plants
and fungi) in sequence systems improves the mechanisms of decadence and exac-
erbates the potentials for development (Chen and Wong 2016). The engineering
of the systems and also the development of the techniques in the field are lines of
investigation that can be ameliorated in the coming years. In addition, in this kind of

15 Advances in the Bioremediation of Pharmaceuticals and Personal Care. . . 345



process, rhizo and endophytes not only specifically degrade PPCPs but also promote
plant growth by developing growth-promoting enzymes and, thus, the capacity for
remediation of CWs (Nguyen et al. 2019a, b), a study line in the initial phases of
development. On the other side, some microalgae have been advocated as good
eco-factories, not only because of their capability as pollutant molecule degraders,
and also as a basis of bioenergy and natural pigments, particularly in circumstances
of saline stress, i.e. for the treatment of contaminated seawater. These must be
improved in their effectiveness and profitability (Vo et al. 2020). Finally, it should
be mentioned that many reports merely focus on eliminating the parental molecules
by nursing the levels of PPCPs in influent and effluent. The pathway to decadence
and the PPCP intermediates are still not explicit. Further attempts should also be
made to study the decadence mechanism and PPCP intermediates, which will lead to
a deeper understanding of the environmental condition and vulnerability of PPCPs.
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Chapter 16
Screening of Microbial Enzymes and Their
Potential Applications
in the Bioremediation Process

Raj Saini, Varsha Rani, Sneh Sharma, and Madan L. Verma

Abstract Industrialization and the faster urbanization lead to the release of hazard-
ous substances in our ecosystem which is affecting our health and the environment.
Bioremediation technology utilizes the microorganisms for removing these hazard-
ous chemicals from our ecosystem in an eco-friendly way. Enzymes of microbial
origin have proved to be powerful tools for the process of bioremediation. Microbial
enzymes showed higher specificity for a broader range of pollutants, higher activity
in the presence of inhibitors and higher effectiveness at low pollutant concentration.
Process of bioremediation uses recombinant as well as natural microorganisms to
degrade the toxic and hazardous substances by aerobic and anaerobic means.
Microorganisms availability, contaminants accessibility, and the conducive environ-
ment are the factors which governs the success of bioremediation process.

Keywords Bioremediation · Hazardous · Industrialization · Contaminants ·
Ecosystem
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16.1 Introduction

Pollution of our environment is increasing day by day with the development of
industries. Efforts are being made to develop new, eco-friendly and cost-effective
technology for the reduction as well as the elimination of pollutants from the soil,
water and air. Microorganisms, particularly enzymes, have been found to detoxify
and transform the pollutants effectively from the environment, and also recognized
to transform the pollutants at detectable rates as well as suitable for restoring the
polluted environment. Bioremediation is a microorganism mediated process of
transforming or degrading the pollutants into non-hazardous substances
(Fig. 16.1). Pollutants are enzymatically transformed by microorganisms, and thus
converting these contaminants into harmless products via the process of bioremedi-
ation. Conversion of harmful pollutants into harmless substances via the process of
bioremediation is a very slow process and is shown by certain strains of microor-
ganisms. Bioremediation of pollutants can be performed in aerobic as well as
anaerobic environmental settings (Karigar and Rao 2011).

Bioremediation process is using the diverse type of microorganisms and their
specific enzymes, plants and living organisms. It has appeared as an appealing
technology for treating the pollutants. Enzymes act as the main effectors for the
biotransformation occurring in the biota. Enzymes can be applied to the larger range
of different compounds because of their broader specificity. Extensive

Fig. 16.1 Conversion of contaminated sites into the green earth with the intervention of environ-
mental microorganisms
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transformations can be done by using enzymes such as toxicological as well as the
structural properties of various contaminants can be transformed and harmless
products can be formed by complete conversion of various contaminants into safer
compounds. Enzymes have been found to show their effects at lower pollutants
concentrations and are active even in the presence of microbial predators. Because of
the presence of all these characteristics in enzymes, enzymatic techniques are
eco-friendly and safe. The most representative classes of enzymes for the treatment
of contaminants are dehalogenases, hydrolases, oxidoreductases and transferases.
This chapter deals with the microbial enzymes and their potential applications in the
bioremediation of the environmental pollutants.

16.2 Screening of Microbial Enzymes

Microbial enzymes are nature’s biocatalysts catalysing different types of chemical
reactions at higher rate, under mild temperature conditions and with greater speci-
ficity in environment friendly way. Applications of commercial enzymes are con-
tinuously increasing, despite the suboptimal performance of many enzymes
occurring naturally under the industrial conditions (Leemhuis et al. 2009). A vast
number of microbial enzymes are provided by nature. Biodiversity is widespread
among the natural microbial populations. Isolation, recognition and screening of
microbes in pure cultures are very important to conserve the gene pools of these
microorganisms as well as contributing towards the biotechnological progress
(Srinivasan 1994). Increased efforts in the screening of microbes and their
biocatalysts (enzymes) provide a higher range of novel biocatalysts with different
enzyme activities, suitable for use under the harsh industrial conditions like extreme
pH, high temperature, and organic solvents resistance as well as more catalysts with
improved characteristics would be discovered. Improved efforts and expertise in the
process of screening would supplement the other emerging techniques such as
protein engineering, and thus reducing the manpower and other resources needed
to carry out the screening process (Cheetham 1987). The study of immense biodi-
versity among the biocatalysts depends upon the tools available for searching new
enzymes. Meta-genomic approach-basedpowerful screening has been emerged as a
high throughput microbe screening process by which a genome library has been
prepared from environmental DNA. This genomic library will be screened for the
open reading frames present in this library, encoding putative novel enzymes
(Gilbert and Dupont 2011). Meta-genomic screening is based on either sequence
or function approaches.

Function-based screening is a straightforward way for isolating genes which
shows a desirable function by phenotypic detection, induced gene expression and
heterologous complementation (Li et al. 2012). While sequence-based screening has
been performed either by hybridization process or by polymerase chain reaction.

Success in the genome sequencing programs has resulted in various sequence
databases which provides information about the newly discovered natural products

16 Screening of Microbial Enzymes and Their Potential Applications in the. . . 361



including enzymes by database mining (Van Lanen and Shen 2006). Next generation
sequencing programs are holding the promise to reduce the cost as well as the time of
genome sequencing. Two approaches are being followed for the discovery of new
enzymes, genome hunting and data mining. Open reading frames have been
searched in a genome of microorganism in the genome hunting. Annotated
sequences are subjected to cloning, over expression and screening for activity.
Data mining is based on the homology among the sequences deposited in the
databases. Different bioinformatics tools can be used to search the conserved regions
between the sequences. Blast is, an example of such bioinformatics tool, used to find
the conserved regions among the protein as well as nucleic acid sequences (Luo et al.
2012; Adrio and Demain 2014).

Extremophiles are the microorganisms which are living in the extreme conditions
like temperature upto 110 �C, pH of lesser than 2 and greater than 9, higher salt
conditions, higher pressure and radiations. So, extremophiles are great source of
extremozymes (enzymes present in the extremophiles) which are stable at extreme
conditions (Kumar et al. 2011; Pikuta et al. 2007). Thermophilic lipases, amylases,
proteases and cellulases are being used in different industrial applications. Taq DNA
polymerase is the example of such enzymes which is isolated from Thermus
aquaticus used for amplifying the DNA in polymerase chain reaction (de Carvalho
2011; Verma and Kanwar 2012).

Applications of enzymes are continuously expanding sector and creating a
demand of new and improved biocatalysts (de Carvalho 2011). Enzyme necessarily
does not fulfil all the process requirements to achieve the industrial scale production.
The problems faced while working with the enzymes are, stability, substrate/product
inhibition and narrow substrate specificity (Marrs et al. 1999). To overcome these
hurdles while working with enzymes, recombinant DNA technology and genetic
modifications can be done. There are two different ways namely, rational redesign
and combinatorial methods by which enzymes can be modified (Singhania et al.
2010). Rational design approach includes site directed mutagenesis by which target
amino acid substitutions are performed. Three-dimensional structure of the protein
as well as the reactions performed by the protein should be well known to perform
the site directed mutagenesis. Sequence of the new biocatalyst can be compared with
thousands of related proteins in the databases and structurally as well as functionally
related proteins can be found (Cedrone et al. 2000). Combinatorial method such as
directed evolution does not required extensive knowledge about the enzyme
concerned. Directed evolution creates multiple variants based on catalytic efficiency,
enantioselectivity, solubility, catalytic rate, enzyme stability and specificity.
Directed evolution is an inexpensive and faster way tofind enzyme variants which
work better than the naturally occurring enzymes under specific conditions (Kumar
and Singh 2013; Schmidt et al. 2010; Dalby 2011). Genetic diversity can be
achieved through a range of molecular biology techniques via directed evolution.
Random mutagenesis of the protein encoding gene can be achieved by different
techniques including errorprone polymerase chain reaction, chemical agents, and
repeated oligonucleotide directed mutagenesis. Random point mutations can be
accomplished via error prone polymerase chain reaction in a population of enzymes.
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In vitro random homologous recombination is allowed by such molecular breeding
techniques between the parent genes having more than 70% homology (Ness et al.
2000).

A large collection of enzyme variants is available after cloning and expression of
the concerned enzymes and further subjected for screening and selection. Directed
evolution techniques make use of smaller enzyme variant libraries designed by semi
rational or rational methods to reduce the screening efforts without the likelihood of
getting better variants (Dalby 2011).

Screening of large number of populations or cells and genetic engineering are
crucial bottleneck in today’s applied microbiology and system biology. Scientist are
relying on high-throughputstrategies which are minimizing the experiments to nano-
and pico-liter scales as well as single cell level instead of using the standard methods
in flasks, bottles, or 96 well plates. Throughput of the genome editing has been
increased significantly as more individuals and genes can be engineered simulta-
neously via multiplex automated genome evolution (MAGE) and CRISPR/Cas
systems (Vervoort et al. 2017).Ultra-low volume nano reactors use increased the
genotyping and phenotyping of single cells as well as populations. Thousands or
millions of variants can be screened by using ultra-low volume nanoreactors.
Generation of billions of mutants by repeated deletion, insertion or DNA mutations
at multiple chromosomal sites has been made by multiplex automated genome
evolution systems (Wang et al. 2009).

Testing and production of a wider range of mutations in specific genes or
pathways without changing other genes is the major application of multiplex auto-
mated genome evolution. Multiplex automated genome evolution can this way
create genetic diversity with greater possibilities to find more efficient microorgan-
isms as well as improved synthetic pathways can be created. One of the pioneer
studies which used multiplex automated genome evolution had been carried out in
Escherichia coli showing increased production of lycopene via fine tuning of several
genes (Wang et al. 2009). Lycopene or L-DOPA is an aromatic compound used to
treat Parkinson’s disease (Wei et al. 2016).

CRISPR/Cas revolution in high-throughput microbial genome engineering is
well known. CRISPR/Cas technique causes alteration in genomes at specific sites
by using RNA- guided nuclease activity and allows cheaper, faster and more
efficient genome engineering as compared to the traditional techniques (Wright
et al. 2016; Kim 2016). Genome of Sacchromyces cerevisiae was altered using
CRISPR/Cas technique to increase mevalonate or (R-R)-2,3-butanediol production
and also enhances xylose utilization (Shi et al. 2016).
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16.3 Applications of Microbial Enzymes towards
Bioremediation Process

As the quality of life is concerned on the planet earth, it is dependent on the quality of
environment in which we are residing. Progress in technology, science and at the
industrial level, a large amount of sewage to the nuclear waste is dumped in the
ecosystem which is a serious threat to the survival of mankind on earth. Large
number of microbial enzymes has been reported for the biodegradation of these toxic
organic pollutants. Bioremediation is aneco- friendly and cost-effective biotechnol-
ogy empowered by the enzymes of microbial origin. A number of research activities
are being carried out for the development of such bioprocess technologies which can
reduce the toxicity of pollutants (Karigar and Rao 2011).

Degradation of toxic substances as well as the management of waste has been
reported via a number of microbial enzymes. Effluent from various industries and the
domestic waste contains so many chemical commodities which are producing
harmful effects on our health as well as our ecosystem. Enzymes of microbial origin
alone or in combinations are being utilized for treating the effluents obtained from
various industries containing aromatic amines, phenols, nitriles etc. (Raj et al. 2006;
Rubilar et al. 2008; Pandey et al. 2011). Waste treatment has been reported via using
enzymes like, amidases, cellulases, proteases, lipases, nitrile hydratases and
amyloglucosidases (Karigar and Rao 2011). Industrial effluents containing chlori-
nated phenolic compounds has been reported to be removed via using enzymes such
as tyrosinases, laccases, manganese peroxidases, and lignin peroxidases (Piontek
et al. 2001; Le Roes-Hill and Prins 2016). Wei and Zimmermann (2018) reported
that biocatalysts from microorganisms are involved in the process of degradation
synthetic plastics polystyrene, polyurethane, polyethylene terephthalate and poly-
ethylene. As depicted in Table 16.1, these microbial enzymes are playing a very
important role in the development of green environment (Singh et al. 2016).

Oxidoreductases from the microorganisms detoxify the toxic organic compounds
via the process of oxidative coupling (Gianfreda et al. 1999). Microorganisms
extract energy by using their enzymes via the energy yielding reactions for cleaving
the chemical bonds and assist the transfer of electrons from the organic substrate
which is reduced to another chemical compound. Contaminants are oxidized via
these oxidation reduction reactions into the harmless substances. Oxidoreductases
also take part in the process of humification of different phenolic substances which
are produced in the soil via decomposition of lignin. Xenobiotics such asanilinic and
phenolic compounds can be detoxified by oxidoreductases via the process of
coploymerization, polymerization with other substrates or by binding with the
humic substances (Park et al. 2006). Enzymes of microbial origin are reported to
degrade as well as in the decolorization ofazo dye (Williams 1977; Husain 2006).
Effluents from the paper and pulp industry generates large amount of recalcitrant
wastes such as chlorinated phenolic compounds. Partial degradation of lignins,
produces thesechlorinated phenolic compounds during the bleaching of pulp in the
paper and pulp industry. Oxidoreductases like, lignin peroxidase, manganese
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peroxidases and laccases from fungal species are reported to be suitable for remov-
ing chlorinated phenolic compounds from the contaminated environments (Rubilar
et al. 2008). Microbial oxygenases are found to play a key role in metabolizing the
organic compounds via increasing their solubility in water, enhancing their reactivity
as well as by the cleavage of their aromatic ring. Oxygenases belong to broader
substrate range enzymes and are found active against a wider range of compounds
which includes chlorinated aliphatic. The aromatic rings present in the organic
pollutants are cleaved by introducing oxygen via oxygenases. Mono- and
dioxygenases of microbial origin are among the most studied enzymes for bioreme-
diation process (Arora et al. 2009; Fetzner and Lingens 1994; Fetzner 2003).
Halogenated organic compounds are among the largest group of compounds
which are polluting our environment and are produced by the widespread use of
insecticides, herbicides, fungicides, plasticizers, heat transfer fluids, and hydraulic
fluids. Degradation of theses halogenated organic compounds has been achieved by
using oxygenases. Oxygenases in the association of other multifunctional enzymes,
mediate the dehalogenation of halogenated ethylene, ethane and methane (Fetzner
and Lingens 1994). Due to versatile nature of monooxygenases, theses can catalyse
the oxidative reactions of simple alkanes to the complex molecules like fatty acids
and steroids. Monooxygenases have high region selectivity, thus acting like
biocatalysts for the process of bioremediation. Monooxygenases are the enzymes
which require only molecular oxygen to catalyse the reaction and substrate is utilized

Table 16.1 Applications of microbial enzymes in the bioremediation process

S. No. Enzymes Functions Microorganisms

1. Amidase Degradation of nitriles
containing wastes

Rhodococcuserythropolis

2. Lipase Degradation of crude oil
hydrocarbons

Aspergillus oryzae, Candida
tropicalis

3. Amylase Bioremediation of vegetables
wastes

B. licheniformis, Aspergillus sp

4. Nitrile hydratase Degradation of nitriles
containing wastes

Rhodococcus sp.

5. Amyloglucosidase Starch hydrolysis for
bioremediation

Aspergillus niger

6. Protease Bioremediation of keratinic
wastes

Chrysosporiumkeratinophilum

7. Cutinase Degradation of plastics,
Polycaprolactone

Fusarium solani f. Pisi

8. Laccase Degradation of waste containing
olefin unit, polyurethane and
phenolic compounds

Trametes versicolor

9. Oxygenase Degradation of halogenated
contaminants

Pseudomonas sp.,
Rhodococcus sp.

10. Lignin peroxidise Degradation of phenolic
compounds

Phanerochaetechrysosporium,
Coprinus cinereus11. Manganese

peroxidise
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as a reducing agent (Arora et al. 2010; Cirino and Arnold 2002). Monooxygenases
catalyses biotransformation, biodegradation, denitrification, dehalogenation, desul-
furization, hydroxylation and ammonification reactions (Arora et al. 2010). Oxida-
tive dehalogenation reactions are carried out by monooxygenases under the oxygen
rich environment while reductive dechlorination takes place under lower oxygen
concentration (Fetzner 1998; Jones et al. 2001). Catechol dioxygenases participates
in the nature’s strategy in the degradation of aromatic compounds and are present in
the bacteria present inside the soil (Que and Ho 1996).

Microbial laccases are reported to catalyse oxidation of wider range of aromatic
and phenolic compounds (Mai et al. 2000). Intracellular and extracellular laccases
produced from microorganisms are known to oxidise theaminophenol, ortho and
diphenols, aryl diamines, lignins, polyamines, polyphenols and some inorganic ions
(Ullah et al. 2000; Rodrıguez Couto and Toca Herrera 2006). Laccases perform
demethylation and decarboxylation of methoxyphenolic and phenolic acids along
with the oxidation of these compounds. Laccases represents an interesting group of
biological agents offering great potential in bioremediation and biotechnological
applications (Gianfreda et al. 1999; Kim et al. 2002). Reagents like cyanide, azide,
halides and hydroxides are known to inhibit the activity of laccases (Xu 1996).
Production of laccases is found sensitive to the nitrogen concentration. Higher
amount of laccase production requires higher nitrogen concentrations (Gianfreda
et al. 1999).

Oxidation of phenolic compounds and lignin has been reported by expanding
hydrogen peroxide via peroxidases of microbial origin (Hiner et al. 2002). Peroxi-
dases are of different types based on their activity and source of production.
Manganese dependent peroxidise, lignin peroxidase and versatile peroxidase are
among the most studied peroxidases and have higher potential of degrading the toxic
substances present in the environment. White rot fungus is found to secrete lignin
peroxidases containing heme as a secondary metabolite. This lignin peroxidise is
reported to degrade lignin and other phenolic compounds in the presence of hydro-
gen peroxide as a co-substrate and veratryl alcohol LiP as a mediator. Hydrogen
peroxide got reduced by the gain of electron from LiP into water and LiP return to its
native state via gaining electron from veratryl alcohol; thus, forming veratryl alde-
hyde. This reaction leads to the oxidation of polycyclic aromatic compounds,
halogenated phenolic compounds and some aromatic compounds (Yoshida 1998;
Ten Have and Teunissen 2001). Manganese peroxidases are the lignin degrading
enzymes produced via basidiomycetes fungus. Manganese peroxidase is an heme
containing extracellular enzyme which oxidizes Mn2+ into Mn3+. Production of
manganese peroxidase has been stimulated by Mn2+and also act as a substrate for
manganese peroxidise. During the process of oxidation of phenolic compounds, Mn3
+acts as a mediator (Ten Have and Teunissen 2001). Versatile peroxidases of
microbial origin are the enzymes which directly oxidizethe phenolic compounds,
Mn2+, aromatic substrates and methoxybenzenes. Versatile peroxidases do not need
the presence of manganese like other peroxidases for the oxidation of its substrates.
Versatile peroxidases not only oxidise the phenolic compounds but are able to
oxidize the non-phenolic lignin model dimmers (Ruiz-Dueñas et al. 2007). So, it
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can be concluded that among the peroxidases, versatile peroxidases are the enzymes
having extraordinarily broader substrate specificity and desired for the process of
bioremediation of contaminants in the environment (Tsukihara et al. 2006).

Industrial chemicals and hydrocarbons from petroleum are polluting our envi-
ronment and is a serious problem. Using bioremediation process to remove these
contaminants from our environment is proved as a best technology as compared to
the physical chemical treatments which are commonly used for the removal of
pollutants from our ecosystem. Microorganisms are used as the main agents for
hydrolysing the organic pollutants (Table 16.2). Extracellular microbial biocatalysts
play a key role in the degradation of the organic pollutants (Vasileva-Tonkova and
Galabova 2003). The main chemical bonds of the toxic compounds have been
disrupted by the hydrolytic enzymes which resulted in the reduction of the toxicity
of these toxic compounds. This kind of the mechanism is found effective for
degrading the oil spill, carbamate and organophosphate insecticides. Insecticides
like heptachlor and DDT can be degraded in the absence of air because they are
found stable under the aerobic conditions in the soil (Vasileva-Tonkova and
Galabova 2003; Lal and Saxena 1982). Alcoholysis and condensation are the
reactions catalysed by the hydrolases for removing the pollutants from our environ-
ment. Hydrolases are the biocatalysts having the properties like easy availability,
tolerate the addition of water miscible solvents and lacking cofactor stereoselectivity
(http://www.wiley-vch.de/publish/dt/). Glycosidases, cellulases, and hemicellulases
are the enzymes which find applicability for degrading the biomass (Schmidt 2006).

Lipases are the enzymes which degrade lipids derived from plants, animals and
microorganisms (Verma 2019; Verma et al. 2008, 2009; Verma and Kanwar 2008,
2010). These lipases are found to be closely related with the organic pollutants of the
soil. Hydrocarbons present in the contaminated soil have been drastically reduced
via the action of lipases (Margesin et al. 1999; Riffaldi et al. 2006). Lipases isolated
from the microbial sources are found more versatile as compared to the lipases
isolated from the other sources. Reactions performed by lipases are esterification,
hydrolysis, interesterification, aminolysis and alcoholysis (Prasad and Manjunath
2011). Reaction catalysed by the lipases is the hydrolysis of triacylglycerol into
glycerol and free fatty acids. Main component of the natural fat or oil is the
triglyceride. Triglyceride has been hydrolysed via the action of lipases into glycerol,
monoacylglycerol, diacylglycerol and the fatty acids (Hermansyah et al. 2007;
Sharma et al. 2011). Activity of the lipases has been found to be most useful
parameter which indicates the degradation of hydrocarbons in the contaminated
soil (Margesin et al. 1999; Riffaldi et al. 2006). Besides, the various uses of lipases
in chemical, detergent manufacturing, food, paper and cosmetics, lipases are found
useful in the process of bioremediation of pollutants in the soil (Sharma et al. 2011;
Joseph et al. 2006).

Cellulases from the microbial origin have the potential to convert the waste
cellulosic materials into the food which is a subject of concern because of the
increasing population (Bennet et al. 2002). Some bacteria and fungi are reported to
show the expression of cellulases, pectinases and hemicellulases at very lower levels
(Adriano-Anaya et al. 2005). Cellulases are the mixture of various enzymes which
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Table 16.2 Applications of microbial enzymes in the process of bioremediation of pollutants

S. No. Enzyme Substrate Reaction

1. Oxidoreductases
family

1.1 Oxygenases

1.1.1 Monooxygenases Aromatic compounds, steroids,
alkane and fatty acids

Incorporating oxygen atom to
the substrate and utilize the
substrate as a reducing agent.
Desulfurization, denitrification,
dehalogenation, hydroxylation
of substrate and ammonification

1.1.2 Dioxygenases Aromatic compounds Introducing two oxygen atoms
to the substrate which results in
extradiol cleaving and intradiol
cleaving thereby forming ali-
phatic compounds.

1.2 Peroxidases

1.2.1 Mangnese
peroxidase

Phenolic compounds and lignin In the presence of Mn2+ and
hydrogen peroxidethe
co-substrate catalyses the oxi-
dation of Mn2+into Mn3
+resulting in an Mn3
+chelateoxalate, which in turn
perform the oxidation of the
phenolic substrates.

1.2.2. Lignin
peroxidase

Polycyclic aromatic compounds,
halogenated phenolic com-
pounds and other aromatic
compounds

Oxidation of substrate in the
presence of
cosubstratehydrogen peroxide
and veratrylalcohol as a
mediator.

1.2.3. Versatile
peroxidase

Phenolic, aromatic compounds
and methoxybenzenes

This enzyme catalyses the
transfer of electron from an
oxidizable substrate, by
forming and reducingthe com-
pound I and compound II
intermediates.

1.3 Laccases Aminophenols,polyphenols,
ortho and paradiphenols, lignins,
polyamines and aryldiamines

Oxidation, demethylation and
decarboxylation of the
substrate.

2. Hydrolases
family

2.1. Cellulase Cellulosic substances Hydrolyses the substrate into
simple carbohydrates

2.2. Lipases Organic pollutants like oilspill The hydrolysis of
triacylglycerols to glycerolsand
free-fatty acids

2.3. Pectinases Proteins Enzymes which hydrolyse pep-
tide bonds in aqueous
environment
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act together to perform their functions. Hydrolysis process involves the use of three
major groups of cellulases, endoglucanase, β glucosidase and exoglucanase. Regions
of low crystallinity have been attacked by endoglucanase in the cellulose fiber
thereby creating the free chain ends. Exoglucanase or cellobiohydrolase removes
the cellobiose units from the ends of free chains thus degrading the cellulose
molecule. β glucosidase is the third one which hydrolysis the cellobiose into the
glucose units. Cellulasesdegrade the cellulose into the reducing sugars by enzymatic
hydrolysis and these reducing sugars are further fermented by bacteria and yeast into
ethanol (Sun and Cheng 2002).

George Robinson has reported the use of microorganisms in the process of
bioremediation and uses microorganisms for the consumption of oil spill
(USMicrobics 2003). The process of bioremediation is removing the soil contami-
nants by using microorganisms and the products of microorganisms (USEPA Mine
Waste Technology Program 2002; Leung 2004). Native soil microorganisms are
found to play a key role in the bioremediation of the soil for transforming the
complex organic compounds into the simpler inorganic compounds. Technology
of bioremediation utilizes the microorganisms for eliminating, reducing and
transforming the benign pollutants present in the water, soil, air and sediments
(Shanahan 2004). Detoxification of pollutants via the process of bioremediation
targets the harmful chemicals by transformation, mineralization or alternation (Shan-
non and Unterman 1993). In the past, civilizations had used natural bioremediation
for treating the waste water but the reduction of harmful wastes intentionally is a
recent development. There is the production of energy via the redox reactions within
the cells of microorganisms. One electron acceptor, a source of energy and nutrients
are required by the delivery system in the process of bioremediation. Microbial
electron acceptor classes of various types involved in the process of bioremediation
are manganese, oxygen, iron (III), nitrate, carbon dioxide reducing and sulphate
(Adams et al. 2015). Venosa et al. (2002) reported that the most important require-
ment for the bioremediation of oil spills is the appropriateness of the metabolic
capabilities of the microorganisms used. Microbial communities exposed to the
hydrocarbons become selectively enriched, genetically modified and adapted to
the environment present. These adapted communities of microorganisms respond
to the hydrocarbon presence within hours and possess higher rates of biodegradation
as compared to the microbial communities which never face the hydrocarbon
contamination (Leahy and Colwell 1990). The most active oil degrading microor-
ganisms can be isolated from that particular environment and these microbes can be
utilized for the bioremediation of petroleum polluted sites. Crude oil is made up of a
mixture of compounds; thus, requires a mixture of bacterial consortia for the process
of bioremediation of petroleum hydrocarbons because individual microorganisms
can only metabolize a limited hydrocarbons range (Al-Saleh and Drobiovaand
Obuekwe 2009; Bordenave et al. 2007). This process of bioremediation depends
on the availability of nutrients and optimum conditions such as temperature, con-
centration of contaminants, bioavailability, redox potential and oxygen content and
moisture content which supports the biological functions (Adams et al. 2015).
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Joergensen et al. (1995) has reported the use of catalase enzyme of microbial
origin for the process of bioremediation in which enzyme act as an indicator of
hydrocarbon degradation of the soil contaminated by crude oil. This catalase
enzymes have also been reported to remove the reactive oxygen species hydrogen
peroxide from textile industries effluents and also provide oxygen for the process of
aerobic bioremediation by breaking the hydrogen peroxide into carbon dioxide and
water (Rila 2008; Achuba and Okoh 2014). Metabolism of hydrogen peroxide is
being regulated by the catalase enzyme. Catalase enzyme is found to have the
highest turnover among all enzymes as it can decompose one million molecules of
hydrogen peroxide per molecule of the catalase enzyme (Kaushal et al. 2018).
Kaushal et al. (2018) has reported that catalase enzyme of microbial origin act as
an indicator of hydrocarbon degradation in the soil contaminated from the crude oil
and provides oxygen for the occurrence of aerobic bioremediation process as well as
for the removal of hydrogen peroxide from the effluent of bleaching industry.

Achuba and Okoh (2014) had reported that Cr (VI) is a pollutant of environment
because of the use of chromium compounds in the tanning process and other
industries. Glutathione reductase enzyme is found to reduce Cr(VI) and forms Cr
(V), which is a highly unstable radical thus forming reactive oxygen species. Garcia-
Arellano et al. reported the use of chromate reductase enzyme which reduces the
highly toxic Cr(VI) to insoluble Cr(III) which is less toxic. Enzymatic treatments for
the removal of pollutants from the contaminated sites have the minimal impact on
our ecosystem as there is no risk of biological contamination. Furthermore, enzymes
work on a wider range of temperature, pH and ionic strength and also found active in
the presence of organic solvents of higher concentrations which has soluble pollutant
molecules (Torres et al. 2003). Nowadays researchers are very interested to face the
problem of contaminants in our environment by using the enzymes based on the
bioremediation techniques (Bilal et al. 2017a, 2017b; Ashrafi et al. 2013; Sharma
et al. 2018). Degradation of contaminants can be better performed via using enzymes
instead of using the microorganisms (Ye et al. 2019). Reactions performed by the
enzymes requires mild conditions in water and lower activation energy is needed
(Sheldon and van Pelt 2013). Thus, enzymes are playing very important role in
developing the complementary oralternative biotechnological processes which have
applications in the polluting industries. Despite the potential applications of micro-
bial enzymes in the process of bioremediation and the clean processes, the oxidative
enzymes activity is limited by the environmental conditions. Strategies to enhance
the catalytic activity of enzymes has been reported in case of peroxidases which
includes the chemical modifications of the enzymes (Vandertol-Vanier et al. 2002;
Tinoco and Vazquez-Duhalt 1998) and via the genetic tools (Harford-Cross et al.
2000). Desired enzymes can be produced via the cloning and expression in the
suitable host to facilitate the enzymatic characteristics as well as use of enzymes for
environmental applications (Arnold 2001).

Shakerian et al. (2020) has reported that laccases and horseradish peroxidase are
the enzymes which are most widely used for degrading the chemical pollutants
because of their low substrate specificity as well as these enzymes catalysis the
oxidation of a wider range of compounds as compared to the specific oxidative
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enzymes. Horseradish peroxidases are the enzymes which work on a broader range
of temperature and pHin the presence of other compounds present in municipal
waste water (Melo et al. 2016). Laccases are the oxidoreductases which contains
copper and are found in various plants and microorganisms including fungi (Zdarta
et al. 2018). The major disadvantage of using these enzymes are lower stability, low
possibility of reuse, higher price and their separation is also difficult from the
reaction media (Liu et al. 2018). Enzyme immobilization is a technique used for
improving these problems via the fixation of enzymes in solid supports which makes
their separation easy and also improves the reusability and stability (DiCosimo et al.
2013; Verma and Kanwar 2012).

Property of stability should be higher in case of enzymes if we want to reuse
them. Immobilized enzymes can be economic, stable and reusable as compared to
the free enzymes (Liu et al. 2018). Horseradish peroxidases and laccases are the most
popular and nonspecific biocatalysts used for degrading the chemicals (Becker et al.
2016; Varga et al. 2019). Covalent immobilization makes stronger binding between
the support and enzymes as well as represents good efficiency (Maryskova et al.
2016; Bayramoglu et al. 2018). But most of the cases in the covalent binding need
additional pre-treatment steps as compared to the adsorption which is very compli-
cated. Binding between the enzyme and support is weaker in adsorption methods as
compared to the covalent immobilization but usually, adsorption methods are
simpler, faster, economic and in many cases adsorbed enzymes showed good
performance and reusability when compared with the covalently immobilized
enzymes. Methods based on new materials like nano-particles, magnetic particles,
biopolymers and composite have been developed. García-Morales et al. (2018)
immobilized laccase by using titania nanoparticles. It is reported that titania
nanoparticles use for immobilization provides larger surface area, reduces mass
transfer resistance for the substrates and also allows higher enzyme loading. Titania
has found to have higher chemical stability. Use of bifunctional crosslinking
reagents can make covalent binding in it. Biotransformation of acetaminophen and
diclofenac has been achieved via using laccases immobilized with titania
nanoparticles. Immobilization of horseradish peroxidise with PEGylated magnetic
composite microsphere has been reported by Xie et al. (2019). Immobilization of
horseradish peroxidase with PEGylated magnetic composite microsphere showed
excellent improvement in the storage ability, stability as well as reusability of the
enzyme. This immobilized horseradish peroxidase has been utilized to degrade
phenol. Horseradish peroxidise had immobilized onto the self-fabricated polyvinyl
alcohol-alginate beads by the use of sodium nitrate as a cross linker. Degradation of
azo dye i.e. methyl orange has been achieved by using immobilized horseradish
peroxidase onto the self-fabricated polyvinyl alcohol-alginate beads (Bilal et al.
2017a, 2017b). Olajuyigbe et al. (2019) immobilized laccases on copper and calcium
alginate beads via entrapment method and thus used for the degradation of biphenol
A. Calcium alginate beads exhibited better storage stability as compared to the
copper alginate beads. Higher thermal stability with good kinetic parameters has
been reported by this kind of immobilization. Immobilization of the laccase on the
hollow mesoporous carbon nanospheres has been achieved by Shao et al. (2019);
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and they used this immobilized laccase for the antibiotic degradation. Immobilized
laccase with mesoporous carbon nanospheres showed higher activity in acidic as
well as basic pH conditions when compared with the free enzyme laccase. This
immobilization also enhanced the laccases storage stability. Shakerian et al. (2020)
showed that higher amount of micropollutants can be faced by immobilized oxida-
tive enzymes and these enzymes are broadly accepted as a green way to tackle the
problem of micropollutants present in our environment. Manganese peroxide
enzyme isolated from fungi, Anthracophyllum has been reported to be used for the
waste water treatment. This manganese peroxidise has been immobilized on the
surface of magnetic nanocomposite Fe3O4/chitosan. The prepared MnP/Fe3O4/
chitosan nanocomposite has proved to show promising results for the textile waste-
water bioremediation (Siddeeg et al. 2019).

16.4 Conclusion and Future Directions

Bioremediation process has proved as an excellent approach to remove the pollutants
of our ecosystem. It is a natural and safer way for removing the contaminants which
produces no side effects. A variety of microbial enzymes are being utilized for the
removal of pollutants from our environment but still there are certain factors which
are limiting the enzymatic activities. So, the current goal of research should be on
enhancing the activity and the performance of these biocatalysts. Researchers should
develop highly stable, efficient and less time-consuming technologies for treating the
pollutants.
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