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Abstract Clone detection is an active area of research. However, there is a marked
lack in clone detectors that scale to very large repositories of source code, in par-
ticular for detecting near-miss clones where significant editing activities may take
place in the cloned code. SourcererCC was developed as an attempt to fill this
gap. It is a widely used token-based clone detector that targets three clone types,
and exploits an index to achieve scalability to large inter-project repositories using
a standard workstation. SourcererCC uses an optimized inverted-index to quickly
query the potential clones of a given code block. Filtering heuristics based on token
ordering are used to significantly reduce the size of the index, the number of code-
block comparisons needed to detect the clones, as well as the number of required
token-comparisons needed to judge a potential clone. In the evaluation experiments,
SourcererCC demonstrated both high recall and precision, and the ability to scale
to a large inter-project repository (250MLOC) even using a standard workstation.
This chapter reflects on some of the principle design decisions behind the success of
SourcererCC and also presents an architecture to scale it horizontally.

1 Introduction

With the amount of source code increasing steadily, large-scale clone detection has
become a necessity. Large code bases and repositories of projects have led to several
new use cases of clone detection including mining library candidates [11], detecting
similar mobile applications [3], license violation detection [14], reverse engineering
product lines [8], finding the provenance of a component [5], and code search [12].
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While presenting new opportunities for the application of clone detection, these
modern use cases also pose scalability challenges.

1.1 Motivation

To further illustrate the problem and its scale in practice, consider a real-life scenario
where a retail banking software system is maintained by Tata Consultancy Services
(TCS).A teamat TCSdeployed the banking system formany different banks (clients)
and maintained a separate code base for each of these banks. After following this
practice for a while, they decided to form a common code base for all these banks
to minimize expenses occurring due to (i) duplicated efforts to deliver the common
features and (ii) separately maintaining existing common parts of different code
bases.

As part of this bigger goal, the team decided to first identify common code blocks
across all the codebases. In order to assess the feasibility of using clonedetection tools
for this task, the team1 ran CloneDR, an AST-based commercial clone detection tool
on ML0000, a single COBOL program consisting of 88K LOC. The clone detection
process took around 8h on an IBM T43 Thinkpad default specification2 machine.
Each bank’s code base (8 of them) ran into multi-million lines of code spanning
across thousands of such COBOL programs in different dialects, posing a major
scalability challenge.

This situation at TCS is not unique and in fact represents the state of many com-
panies in the service industry that are now moving away from the greenfield devel-
opment model and adopting the packaging model to build and deliver software. In
fact, as Cordy points out, it is a common practice in industry to clone a module and
maintain it in parallel [4]. Similarly in open source development, developers often
clone modules or fork projects to meet the needs of different clients, and may need
large-scale clone detectors to merge these cloned systems toward a product-line style
of development.

While the above use cases are more pertinent to industry, researchers are also
interested in studying cloning in large software ecosystems (e.g., Debian), or in
open-source development communities (e.g.,GitHub) to assess its impact on software
development and its properties. However, very few tools can scale to the demands
of clone detection in very large code bases [20]. For example, Kim and Notkin [13]
reflected how they wanted to use clone detection tools for doing origin analysis of
software files but were constrained by its speed due to n-to-n file comparison. In his
work on using clone detection to identify license violations, Koschke [14] reflects
the following: “Detecting license violations of source code requires to compare
a suspected system against a very large corpus of source code, for instance, the
Debian source distribution. Thus, code clone detection techniques must scale in

1 The author was part of the team that carried out the analysis.
2 i5 processor, 8 GB RAM, and 500 GB disk storage.
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terms of resources needed”. In 2014, Debian had 43,0003 software packages and
approximately 323 million lines of code. In one of their studies to investigate cloning
in FreeBSD, Livieri et al. [16] motivate the need for scalable code clone detection
tools as follows: “Current clone detection tools are incapable of dealingwith a corpus
of this size, and might either take literally months to complete a detection run, or
might simply crash due to lack of resources”.

1.2 Challenges

While a few novel algorithms [10, 16] in the last decade demonstrated scalability,
they do not support Type-3 near-miss clones, where minor to significant editing
activities might have taken place in the copy/pasted fragments. These tools therefore
miss a large portion of the clones, since there are more number of Type-3 clones in
the repositories than the other types. Furthermore, the ability to detect Type-3 clones
is most needed in large-scale clone detection applications [18].

Many techniques have also been proposed to achieve a few specific applications
of large-scale clone detection [3, 14], however, they make assumptions regarding
the requirements of their target domain to achieve scalability, for example, detecting
only file-level clones to identify copyright infringement, or detecting clones only for
a given block (clone search) in a large corpus. These domain-specific techniques are
not described as general large-scale clone detectors, and face significant scalability
challenges for general clone detection.

The scalability of clone detection tools is also constrained by the computational
nature of the problem itself. A fundamental way of identifying if two code blocks
are clones is to measure the degree of similarity between them, where similarity is
measured using a similarity function. A higher similarity value indicates that code
blocks are more similar. Thus we can consider pairs of code blocks with high simi-
larity value as clones. In other words, to detect all the clones in a system, each code
block has to be compared against every other code block (also known as candidate
code blocks), bearing a prohibitively O(n2) time complexity. Hence, it is an algo-
rithmic challenge to perform this comparison in an efficient and scalable way. This
challenge, along with modern use cases and today’s large systems, makes large-scale
code clone detection a difficult problem.

The above challenges can be characterized in the form of the following research
questions.

Research Question 1. [Design]—How can we be more robust to modifications
in cloned code to detect Type-3 clones?

Research Question 2. [Computational Complexity]—How can we reduce the
O(n2) candidate comparisons to O(c.n), where c << n?

Research Question 3. [Engineering]—How can we make faster candidate com-
parisons without requiring much memory?

3 https://en.wikipedia.org/wiki/Debian.

https://en.wikipedia.org/wiki/Debian
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ResearchQuestion 1 has a direct implication on the accuracy of the clone detection
technique, and Research Questions 2 and 3 focus on improving the scalability and
efficiency of the clone detection technique.

SourererCC [19] addresses the above challenges leading to an accurate and fast
approach to clone detection that is both scalable to very large software repositories
and robust against code modifications.

2 SourcererCC

The core idea of SourcererCC is to build an optimized index of code blocks and
compare them using a simple and fast bag-of-tokens4 strategy which is resilient
to Type-3 changes (Research Question 1). Several filtering heuristics are used to
reduce the size of the index, which significantly reduces the number of code block
comparisons to detect the clones. SourcererCC also exploits the ordering of tokens
in a code block to measure a live upper-bound on the similarity of code blocks in
order to reject or accept a clone candidatewithminimal token comparisons (Research
Question 2 and 3).

2.1 Bag-of-Tokens Model

SourcererCC represents a code block using a bag-of-tokens model where tokens are
assumed to appear independently of one another and their order is irrelevant. The
idea is to transform code blocks in a form that enables SourcererCC to detect clones
that have different syntax but similar meaning. Moreover, this representation also
filters out code blocks with specified structure patterns. Since SourcererCC matches
tokens and not sequences or structures, it has a high tolerance tominor modifications,
making it effective in detecting Type-3 clones, including clones where statements
are swapped, added, and/or deleted.

The overlap similaritymeasure simply computes the intersection between the code
fragments by counting the number of tokens shared between them. The intuition here
is simple. If two code fragments have many tokens in common, then they are likely
to be similar to some degree.

It is interesting to note that such a simple strategy could prove to be so effective in
a complex software engineering task of identifying code clones. The primary reason
for the effectiveness of bag-of-tokens and overlap similarity measure is rooted in the
program vocabulary used by the developers while writing code. While programming
languages in theory are complex and powerful, the programs that real peoplewrite are
mostly simple and rather repetitive and similar [9]. This similarity is manifested in
the source code in the form of tokens, and particularly in identifiers. In source code,

4 Similar to the popular bag-of-words model [22] in Information Retrieval.
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identifiers (e.g., names of variables, methods, classes, parameters, and attributes)
account for approximately more than 70% of the linguistic information [6]. Many
researchers have concluded that identifiers reflect the semantics and the role of the
named entities they are intended to label [1, 7, 15]. Therefore, code fragments having
similar semantics are likely to have similarities in their identifiers. Furthermore,
oftentimes, during copy-paste-modify practice, developers preserve identifier names
as they reflect the underlying functionality of the code that is copied. They seem
to be aware of the fact that different names used for the same concept or even
identical names used for different concepts reflect misunderstandings and foster
further misconceptions [6]. As a result, while copied fragments are edited to adapt to
the context in which they are copied, they often have enough syntactical similarity
associated with the original fragment. This similarity is effectively captured by the
bag-of-tokens model in conjunction with the overlap similarity measure.

Of course, there are scenarioswhen programmersmay deliberately obfuscate code
to conceal its purpose (security through obscurity) or its logic, in order to prevent
tampering, deter reverse engineering, hide plagiarism, or as a puzzle or recreational
challenge for someone reading the source code. The simple bag-of-tokens model of
SourcererCC may not be effective in detecting clones in such cases. Other tools like
Deckard that rely on AST, or NiCad that uses heavy normalization, may be effective
under such scenarios.

2.2 Filtering Heuristics to Reduce Candidate Comparisons

In order to detect all clone pairs in a project or a repository, the above approach of
computing the similarity between two code blocks can simply be extended to iterate
over all the code blocks and compute pairwise similarity for each code block pair.
For a given code block, all the other code blocks compared are called candidate code
blocks or candidates in short.While the approach is very simple and intuitive, it is also
subject to a fundamental problem that prohibits scalability—O(n2) time complexity.
Figure1 describes this by plotting the number of total code blocks (X-axis) versus
the number of candidate comparisons (Y-axis) in 35 Apache Java projects. Note that
the granularity of a code block is taken as a method. Points denoted by ◦ show how
the number of candidates compared increases quadratically5 with the increase in
the number of methods. SourcererCC uses advanced index structures and filtering
heuristics—sub-block overlap filtering and token position filtering—to significantly
reduce the number of candidate comparisons during clone detection. These heuristics
are inspired by the work of Chaudhuri et al. [2] and Xiao et al. [21] on efficient set
similarity joins in databases. Sub-block overlap filtering follows an intuition that
when two sets have a large overlap, even their smaller subsets should overlap. Since

5 The curve can also be represented using y = x(x − 1)/2 quadratic function where x is the number
of methods in a project and y is the number of candidate comparisons carried out to detect all clone
pairs.
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Fig. 1 Growth in the number of candidate comparisons with the increase in the number of code
blocks. ◦ show quadratic increase in candidate comparisons; � denote the number of candidate
comparisons after applying the sub-block overlap filtering; + denote the number of candidate
comparisons after applying the token position filtering

we represent code blocks as bag-of-tokens (i.e., a multiset), we can extend this
idea to code blocks, i.e., when two code blocks have a large overlap, even their
smaller sub-blocks should overlap. This constraint allows one to reduce the number
of candidate comparisons by eliminating candidates that do not share a similarity
in their sub-blocks. Revisiting Fig. 1, the points denoted by � show the number
of candidate comparisons after applying the sub-block overlap filtering. The large
difference from the earlier curve (◦) shows the impact of filtering in eliminating
candidate comparisons. It turns out that if the tokens in the code block are further
arranged to follow a pre-defined order (e.g., order of popularity of tokens in the
corpus), we can further reduce the number of token and candidate comparisons by
computing a safe upper-bound (without violating the correctness). This filtering is
termed token position filtering. The points denoted by + in Fig. 1 show the number
of candidate comparisons after applying the token position filtering. The reduction is
so significant that empirically on this dataset, the function seems to be near-linear.
This is a massive reduction in the number of comparisons when compared to the
quadratic number of comparisons shown earlier without any filtering.
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3 Distributed SourcererCC: Scaling SourcererCC
Horizontally

SourcererCC advances the state of the art in code clone detection tools that can scale
vertically using high-power CPUs andmemory added to a singlemachine.While this
approach works well in most of the cases, in certain scenarios using vertical scalable
approaches may not be feasible as they are bounded by the amount of data that can
fit into the memory of a single machine. In such scenarios, timely computing clones
in ultra-large datasets are beyond the capacity of a single machine.

Under such scenarios, efficient parallelization of the computation process is the
only feasible option. Previously, research in this direction was limited due to the lack
of the availability of resources and the cost of setting up the infrastructure. But the
recent developments in the field of cloud computing and the availability of low-cost
infrastructure services like AmazonWeb Services (AWS), Azure, and Google Cloud
have enabled the research in this area.

However, it is important to note that simply dividing the input space and par-
allelizing the clone detection operation do not solve the problem, because running
tools on projects individually, and then combining the results in the later step, would
lead to a collection of common clones, but would not identify clones across divi-
sion boundaries [16]. Thus, efficient parallelization of the computation process is
necessary.

SourcererCC’s extensible architecture can be easily adapted to horizontally scale
to multiple processors and efficiently detect the first three types of clones on large
datasets preserving the same detection quality (recall and precision). We call this
extension of SourcererCC Distributed SoucererCC or SoucererCC-D.

SourcererCC-D operates on a cluster of nodes by constructing the index of the
entire corpus that is shared across all the nodes, and then parallelizes the clone
searching process by distributing the tasks across all the nodes in the cluster. In
order to achieve this, SourcererCC-D follows a standard Shared disk (see Fig. 2) or
a Shared memory (see Fig. 3) architecture style.

A shared disk architecture (SD) is a distributed computing paradigm in which all
disks are accessible from all the cluster nodes. While the nodes may or may not have
their own private memory, it is imperative that they at least share the disk space. A

Fig. 2 Shared disk
architecture style
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Fig. 3 Shared memory
architecture style

shared memory architecture (SM) is a distributed computing paradigm in which the
cluster nodes not only share the disks but also have access to global shared memory.

Figure4 describes SourcererCC-D’s clone detection process. Let us assume a
cluster of N + 1 nodes.6 Initially, a master node (any one of the cluster nodes) runs
the parser on the entire corpus and produces a parsed input file containing code blocks
according to the granularity set by the user. Next, themaster node runs SourcererCC’s
Indexer on the parsed input file to build an index. The constructed index, also known
as a global index, resides on the shared disk and hence is accessible by all the nodes
in the cluster. After the global index is constructed, the master node splits the parsed
input file into N different files namely Q1, Q2, Q3,…QN and distributes them to
each node in the cluster. Each node is now responsible to locally compute clones
of code blocks in its respective query file using SourcererCC’s Searcher. Note that
since each node has access to the global index, it can find all the clones in the entire
corpus for its given input, i.e., clones present across other nodes. It is for this reason,
nodes must have a shared disk space to store the global index. When all the nodes
finish executing the Searcher, all the clones in the corpus are found.

Note that in the above design, while the search phase is distributed and happens
in parallel, the index construction phase is not parallelized (only the master node
constructs the index). However, this hardly impacts the overall clone detection per-
formance because we found that index construction takes less than 4% of the total
time to detect clones.

SourcererCC-D can be deployed on in-house clusters, cloud services like AWS,
Azure, or even in-house multi-processor machines. The ability to scale to multiple
machines enables SourererCC to be effectively used for ultra-large datasets (e.g.,
entire corpus of GitHub) as demonstrated in [17].

6 In case of a single high-performance multi-processor machine, N + 1 is the number of processors
available on that machine.
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Fig. 4 SourcererCC-D’s clone detection process

4 Lessons Learned During Implementation

There were many lessons learned during the design, development, and testing of
SourcererCC. While these lessons are not new, this section reflects upon them, as
they played an important role in the successful development and adoption of the
SourcererCC tool in the academic community.Webelieve tool designers could benefit
from our experience and reflection.

Everything breaks at scale. One of the key lessons during SourcererCC’s devel-
opment can be aptly described in a phrase—“Everything breaks at scale, so expect
the unexpected”. We realized that at scale, we cannot test for every error. As a result,
we used assertions and exception handlers for things that can’t happen. We added
diagnostic code, logging, and tracing to help explain what is going on at run-time,
especially when we ran into problems during development. The philosophy—if this
failed, look forwhat else can fail—played a very important role duringSourcererCC’s
development.

Fault Tolerance. During the initial stages of the development, SourcererCC
crashed at times while running on large datasets after several hours of execution
due to unexpected reasons. Since SourcererCC did not have the mechanism to pre-
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serve its execution state during that time, such failures resulted in a loss of several
hours of computation time and effort, not tomention the frustration that comes along.
Based on these experiences, we realized that SourcererCC’s exception handler must
preserve its state of the execution (i.e., keeping track of howmuch data is already pro-
cessed), sowhen interrupted, SourcererCC’s execution can resume correctly from the
point of failure at a later time. The necessity of logging how much data is processed
by the tool is an important lesson that we learned the hard way.

Memory Leaks. SourcererCC is written in Java programming language which
has its own garbage collection mechanism. However, we encountered bugs related
to memory leaks while testing SourcererCC on large datasets. What I learned from
debugging memory leak issues is that while there are simple solutions to detect
and deal with memory leaks (e.g., logging the size of your data structures when
you modify them, and then searching the logs for data structures that grow beyond
a reasonable size), a tool is undoubtedly a big help. In the absence of the right
tools, debugging such issues could take unreasonable time and effort. We were able
to resolve these issues much faster using open-source tools like VisualVM7 and
Profiler4J.8

The problem could be in the data too. Oftentimes when we noticed anomalies
in the execution of SourcererCC, we thought that the issue would be in the code.
However, itwas not unusual tofind issueswith either the input data or our assumptions
about the input data. As a result, we realized that it is always useful to check for data
consistency and integrity even before any experimentation.

Tuning parameters to optimize SourcererCC’s performance. SourcererCC
has a few parameters (e.g., similarity threshold, tokenization strategies, and mini-
mum size threshold of a code block) that had to be tuned to optimize for accuracy,
scalability, and efficiency. This resulted in countless experiments, and keeping track
of these experiments and their settings posed a severe challenge.

To do this exercise systematically, we adopted the following process that indeed
turned out to be very effective.

We created a smaller dataset for parameter tuning experiments. Apart from the
smaller size, this dataset had characteristics very similar to the large datasets on
which SourcererCC is intended to be used. Executing SourcererCC on a smaller
dataset took less time, thus giving us more freedom to experiment.

In order to better keep track of SourcererCC’s performance on different parameter
configurations, we created a SourcererCC revision (using Git) for each configuration
of parameters. This not only enabled us to run several experiments in parallel but
also helped to easily switch back-and-forth across various parameter configurations.

To summarize, creating SourcererCC’s revisions for various parameter configura-
tions and running them in parallel on a smaller dataset greatly reduced the turnaround
time for performing experiments to tune SourcererCC.

SourcererCC is publicly available and actively maintained. It can be downloaded
from https://github.com/Mondego/SourcererCC.

7 https://visualvm.java.net/.
8 http://profiler4j.sourceforge.net/.

https://github.com/Mondego/SourcererCC
https://visualvm.java.net/
http://profiler4j.sourceforge.net/
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5 Going Forward

Code Clone detection research has come a long way in the last couple of decades.
We conclude by identifying some of the relevant areas that might shape the future
research in this field. There are many tools available for clone detection. In contrast,
there are relatively few tools that help in removing or effectively managing clones.
Identifying various means of eliminating harmful clones through automated tool
support is an interesting venue to explore in the future. Large-scale clone detection is
often faced with the challenge of how tomake sense of the large data produced by the
clone detection tools. Visual and interactive representations of the output to reinforce
human cognition and produce actionable insight is another useful direction for the
future. The utility of clone detection is not just limited to source code. Clone detection
in other software artifacts, including models, bug-reports, requirement documents,
and binaries, is turning out to be a necessity for several use cases. For example,
the ability to detect clones in software binaries is necessary for effectively detect-
ing Malwares and License Infringement. Therefore, extending code clone detection
research to other software artifacts is a promising area for the future. Clone research
should also focus on clone management by (i) identifying and prioritizing the clones
that are of interest to the developers for a given task, (ii) helping developers pro
actively assess the negative consequence of cloning, and (iii) categorizing clones as
harmful and harmless after detection. With the several new use cases of clone detec-
tion emerging, a reorientation of research focus toward application-oriented clone
detection might be useful. In many cases, state-of-the-art clone detection tools do not
behave well for these specific use cases. These observations point to the new research
opportunities to enhance clone detection technologies. Moreover, use case-specific
benchmarking to evaluate various tools and techniquesmight be another area to focus
on in the future.
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