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Preface

Copy-and-paste is inevitable for any software development project. Code clones are
generated by the copy-and-paste process and are one of the factors thatmake program
maintenance difficult. Since the 1990s, numerous studies on code clones have been
published, and many tools for code clone analysis have been developed. Code clone
analysis has been applied not only to software development but also to other areas
such as plagiarism detection and software evolution analysis. However, even with
the expansion of these researches and applications, there has been no comprehensive
book that summarizes the results. This book is the first attempt to make a collection
of research, tools, and applications on code clone analysis.

Purpose

One of the important purposes of this book is to archive important results on the
research, tools, and practices related to the code clone analysis. As shown in chapter
“Introduction to Code Clone Analysis”, there has been a great deal of interest in code
clones, but there was no book to collect the results. This book contains the achieve-
ment of important tools and researches. Also, some of the practical applications of
the code clone technologies are included. This book provides the reader with the
basis of the code clone analysis, as well as the pointers to the various publications
for the research and applications.

Code clone analysis is a very good topic to teach in university software engineering
courses. It relies heavily on computer science theories such as pattern matching,
source code analysis, and softwaremetrics. On the other hand, the code clone analysis
can be applied to a variety of tasks related to real-world software development and
maintenance such as bug finding and program refactoring. It is possible to design an
effective course that combines theory and application. We hope that this book will
help to do so.

v
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Organization

The study of code clones is very broad, and categorizing and organizing it all into
a book is similar to organizing a book on computer science as a whole. We have
therefore chosen to include in this book a selection of papers that have been published
in the past and that are important to the progress of this field. Although a great many
results related on code clone have been published so far, it was impossible to include
them all in one book. This book presents only a part of them, and many other results
are shown as references of each chapter.

The selected papers have been roughly categorized into three categories; tool,
research, and practice. Each of the selected papers has been made into a single
chapter with new results and future directions. In addition to these chapters, we
have included an introductory chapter as chapter “Introduction to Code Clone Anal-
ysis” for beginners in code clone analysis. It defines “clones” and related terms, and
discusses the type classification of clones. It also describes the process of code clone
analysis and introduces possible applications.

Chapters from “CCFinderX: An Interactive Code Clone Analysis Environment”
to “CCLearner: Clone Detection via Deep Learning” are mainly about code clone
analysis tools. CCFinderX, NiCad, and SourcererCC are popularly used tools in
researches and practices. Oreo and CCLearner are relatively new tools and have
been developed with new objectives and analysis methods.

Chapters from “BigCloneBench” to “A Summary on the Stability of Code Clones
and Current Research Trends” discuss the foundations and development of important
research results; BigCloneBench is an important database that has been used to
evaluate a number of tools.Clonevisualization, code clone search, and code similarity
are important research topics. Also, Late propagation and code clone stability are
critical issues for program maintenance.

Chapters from “Identifying Refactoring-Oriented Clones and Inferring HowThey
Can Be Merged” to “IWSC(D): From Research to Practice: A Personal Historical
Retelling” discuss applications to actual problems. Refactoring cloned code is a
problem that is often faced in practice. Projects need an efficient way to manage
clone evolution. An important discussion on the design of software and clones is
also presented. In addition, the experiences of a company actually providing the
clone analysis technology are shown.

Target Audience

As described above, this book is a collection of important results of code clone
analysis. Therefore, this book is a very good starting point for new research on code
clones. Important results and findings can be found in this book. Various approaches
to code clone analysis are described so that developers of new clone detectors can
easily recognize and compare their advantages and disadvantages.
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For practitioners who maintain old code and its consistency, code clone analysis
is one of the useful engineeringmethods. This book presents some valuable use cases
of code clone analysis.

This book is a good textbook for graduate-level software engineering courses,
especially program analysis and softwaremaintenance. In one lecture, each chapter is
presented by a teacher or student, followed by a discussion of features and limitations.
Most tools are provided as free software, and then experimenting with them is a good
exercise for getting a deeper understanding of code clone analysis.
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Introduction to Code Clone Analysis

Katsuro Inoue

Abstract Code Clone is a code snippet that has the same or similar code snippet
in the same or different software system. The existence of code clones is an issue
on software maintenance and a clue to understanding the structure and evolution of
software systems. A large number of researches on code clones have been performed,
and many tools for code clone analysis have been developed. In this chapter, we will
explain some of the terms that are important for understanding code clones, such as
definition, type, analysis granularity, and analysis domain. We will also outline the
approaches and applications of code clone analysis.

1 What Is Code Clone?

Code snippet is a part of the program code in a source code file of a software system.
Sometimeswe duplicate a code snippet by a copy-and-paste action,modify the pasted
snippet by changing the variable names, and execute both snippets inside the same
or different software systems.

An intuitive definition of code clone is a code snippet having the same or similar
code in the sameor different software systems. Figure1 is a part of the code generation
program of a simple compiler written in Python. The code snippet from line 1211
to 1217 is similar to one from line 1219 to 1225, and they are code clones. Both
snippets were probably made by a copy-and-paste action from one to another or
from a different original snippet to those, with small modifications made to some
identifiers and strings.

A pair of two code snippets that are the same or similar is called a code clone pair
or simply clone pair, and it is an element of a clone relation over a set of all code
snippets in the target software systems. Clone relation is reflexive and symmetric,
but the transitivity does not always hold. It depends on the similarity policy we
choose for the code snippet pair. When the transitivity of a clone relation holds, it is
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Fig. 1 An example of code clone

an equivalence relation and its equivalence class is called clone set, clone class, or
clone group. Any two code snippets in a clone set are in the clone relation.

The copy-and-paste practice is not only the reason for code clones. Frequently used
code patterns or idioms would make code clones unintentionally. Invocation (call)
to an Application Program Interface (API) might require a specific code pattern, and
the repeated invocation would create similar code snippets that are code clone pairs
each other. Also, machine-generated code from an automatic source-code generator
can generate a lot of the same or similar code snippets that are code clones.

A partial snippet (substring) X ′ of a code clone X of a clone pair (X,Y ) can be
also a code clone element of clone pair (X ′,Y ′) where Y ′ is a substring of Y . Since
there are many substrings from a code clone, we usually deal with themaximal code
clone pair (X,Y ) that has no surrounding code clone pair (X ′′,Y ′′) where X ′′ and
Y ′′ are superstrings of X and Y , respectively. In the example of Fig. 1, we mostly
focus on the maximal clone pair (1211–1217, 1219–1225), but we do not deal with
smaller pairs such as (1216–1217, 1224–1225). Also, we generally set the minimum
cutoff threshold for the length of the clones generated by the code clone detector and
investigated by the clone analyst. A lower threshold such as one line might generate
a lot of clones to handle, and a higher one such as 1000 lines might lose important
clues to make further investigation. We will discuss the issues on the granularity and
threshold of the analysis in Sect. 3.

Code clones composed of simple code structures such as repeated assignments
or repeated table initialization might be unimportant or sometimes might hinder a
further investigation. Some code clone detectors have a feature to identify and remove
such simple code structures. In such a sense, the output of the detectors might be
different from the set of all code clones in the original clone definition. Furthermore,
some repeated code patterns such as machine-generated code snippets could be code
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clones by definition, but they might be deleted by the clone analyst as meaningless
clones. It is important to note that some papers mention code clones as the ones after
the deletion, which might be a smaller part of the original definition of code clone.
We will discuss it in Sect. 3.

Code clone is sometimes called simply clone, or referred to software clone, dupli-
cated code, code duplication, copy-and-paste code, and so on. Aswe havementioned
above, code clones X and Y of a code clone pair (X,Y ) are identical or similar. Based
on the similarity policy, we will classify code clones into four types, type-1 to type-
4 as described in Sect. 2. Finding code clones in software systems is called (code)
clone analysis or (code) clone detection, the tool for code clone analysis is referred
to (code) clone analyzer, (code) clone detector, or simply detector here, and the
engineer for the clone analysis is named clone analyst or simply analyst here.

The notion of code clone can be seen as duplicated code in an early publication in
1992 by Baker [2], where important ideas in clone detection such as parameterized
matching, suffix tree algorithm, and dot plot visualization were already presented.
It is not well known who had really started to use the term “clone” for similar code
snippets, but we can see that “clone detection” was used by Carter et al. in their paper
in 1993 [6]. In this paper, they have proposed the classification of clones into four
types, which is very similar to the currently-used classification presented in Sect. 2.

From the mid 90s, important papers on the clone detection and visualization
methods have been published by Davey et al. [7], Lague et al. [19], Baxter et al. [5],
and Duccase et al. [9]. From ’00s, practically available clone detectors have been
developed by Kamiya et al. [14] and Jiang et al. [13], and a large number of clone-
related publications on the new detection methods, tools, applications, survey, and
so on have been published. As shown in Fig. 2, the number of academic publications
including the terms “code clone”, “duplicated code”, or “software clone” increases
very rapidly these days, showing the growth of interest in the code clone.

Along with the growth of interest, a meeting for discussing code clones had been
held as the First International Conference on Software Clones (IWSC) in Mon-
treal in October 2002, in conjunction with the International Conference on Software
Maintenance (ICSM) 2002. The first research paper with “clone” in its title in the
International Conference on Software Engineering (ICSE), which is the most influ-
ential leading conference in software engineering, was by Basit et al. in [3]. At ICSE
2007, four research papers and one tool paper were presented with the titles of clone,
and a research session entitled “Clone Detection and Removal” was settled for three
of those research papers. Several papers entitled with clone have been presented
annually as research papers in the ICSE series, which would indicate strong and
continuous interest in code clone research by academia.
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Fig. 2 Growth of publications with terms “code clone”, “duplicated code”, or “software clone”
associated with “software”, or “program” by Google Scholar

2 Classification of Code Clone Types

Here, we show a classification of a code clone pair (X,Y ) into four types as fol-
lows. This classification is well recognized and acknowledged by many code clone
researchers.

Type-1 X andY are syntactically identical code snippets, with possible differences
of non-executable elements such as white spaces, tabs, comments, and so on.

Type-2 X and Y are structurally identical code snippets, with possible differences
of identifier names, literals, and type names, in addition to the differences of
type-1.

Type-3 X and Y are similar code snippets, with possible differences of several
statements added, removed, or modified to another snippet, in addition to the
differences of type-2. The similarity structure and threshold θ are predetermined
by the clone analyst.

Type-4 X and Y are syntactically different code snippets, but their functionalities
are the same.

We may call a snippet X type-k (code) clone, without clearly specifying another
element Y of a clone pair (X,Y ).
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2.1 Type-1 Clones

Figure3 is a part of an editor program, and it contains similar while clauses. Inside
these, there are the same if-else clauses annotated by *, which form a type-
1 code clone pair. The computation of these if-else clauses are the same with
differently set variable p1 at lines 2789 and 2811, respectively. The author of this
code would intentionally duplicate the same computation. These clauses would be
potential targets of refactoring, and so they might disappear in a future revision of
this system.

Fig. 3 An example of type-1 code clone pair
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2.2 Type-2 Clones

Figure4 is a case of the type-2 clone pair that exists in two different files. These
are complete method definitions overriding a superclass method, and they have the
same program structure, but they use different type names such as Result and
CharSetParseState, and different identifiers such as type and mode. In the
case of the overriding methods, similar method definitions may be used, and they
frequently form clone pairs as in this example.

Consistent change of all names for the types and identifiers is called P-match
(parameterized match), which is more formally denoted in such a way that for a

Fig. 4 An example of type-2 code clone pair
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type-2 clone pair (X,Y ), all occurrences of names a in X are replaced with b in Y .
If one occurrence of a in X is replaced with c but others are replaced with b, it is
still a type-2 clone pair, but it is not P-match.

For the clones in Fig. 4, all occurrences of class name Result are replaced
with CharSetParseState, and in the sameway, variable name type tomode,
codePoint to inRange, propertyIntervalSet to prevCodePoint,
and parseLength to prevProperty. Thus, this is the case of P-match.

Analyzing the consistency of the name changes in the clone pairs is an important
method of finding bugs created under the copy-and-paste programming. The devel-
oper copies a code snippet from the original part and paste it into a different part,
and change the variable or type names to fit the new context. In this process, the
developer might forget to change a name and create a bug. Such a case could be
detected as an inconsistent change of the names.

2.3 Type-3 Clones

Figure5 contains a type-3 code clone pair of twomethod definitions (lines 58–63 and
lines 66–72) proceeded by the override declarations (lines 57 and 65), respectively.
The latter definition has an extra if statement at line 67 but other statements constitute
type-2 code clone for the former definition. Here, we assume that the similarity

Fig. 5 An example of type-3 code clone pair
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threshold θ is, say, two-line difference, so one-line addition to the former definition
clears the threshold and they are type-3 code clone pair.

Let’s see Fig. 3 again. If we see the overall clauses ofwhile (lines 2788–2801 and
2810–23), these snippets make a type-3 clone pair with the same similarity threshold
θ where all the statements are the same except the difference of line 2789 and 2811.

We can take various ways of the similarity threshold. One simple way is to give an
absolute value of the different statements, tokens, or characters, e.g., two statement
difference shown above. Instead of the absolute value, we would use a relative value
for the length of the snippets, like a 10% statement difference.Wemight employmore
sophisticated measure for the similarity, such as the edit distance of two character
or token sequences, or the cosine value of two vectors obtained from characteristic
values of the code snippets. Recently, machine learning techniques have been used
for this purpose [20].

Type-3 clones are created with a small modification after a copy-and-paste oper-
ation. Adding, deleting, or changing a few lines in a copied code snippet is very pop-
ular after the copy-and-paste. Sometimes we would move statements in the copied
fragment. These activities generate type-3 clones.

2.4 Type-4 Clones

It is theoretically infeasible to always determine the functional equivalence of any
two code snippets. However, we could identify functionally-equivalent code snippets
with specific coding patterns. For example, we sometimes use an array or a linked
list for sorting integers, and we can identify that they generate the same result. We
can think of various levels of difference, say, different algorithms (e.g., quick sort
or bubble sort), data structure (e.g., array or linked list), types (e.g., char or integer),
program statements (e.g., “for” or “while”), program structures (e.g., using many
copy-and-paste snippets or refactored method), programming languages (e.g., Java
or Python), or combination of these.

Figure6 is an example of a type-4 clone pair that performs the bubble sort algo-
rithm to sort the array element in increasing order. The upper one (Bubble Sort 1)
executes the inner loop of if statement for the checking and swapping of the neigh-
bor elements from lower to higher index, while the latter one (Bubble Sort 2) does it
from higher to lower. Another distinction is the declaration of the temporary variable
tmp that is explicitly declared at the beginning of the method in the upper one.

These two code snippets for the method definitions are syntactically different but
they compute the same result for the input array. In such a sense, these are a type-4
clone pair.

Compared to other types of code clone detection, type-4 clone detection is more
difficult. However, various algorithms for this purpose have been actively studied in
recent years. There has been also attempt to relax the condition of type-4 clones to
allow the code snippets with similar behavior or semantically similar ones; however,
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Fig. 6 An example of type-4 code clone pair

formally defining similarity of semantics would not be straightforward and the sim-
ilarity might be subjective or depend on a specific reference clone corpus that would
be used for the evaluation.

3 Factors Affecting Code Clone Detection

Clone detector takes a set of target source code files as its input, and reports code
clones, clone pairs, or clone sets as its output. Apart from the formal definition of
code clone and clone types, most clone detectors do not report all of the clones in the
target files, but they report code clones larger than a minimum report size threshold
t . Generally, a smaller t creates many code clones in the output of the clone detector,
which are mostly created not by the copy-and-paste operation but by unintentional
repeated typing of similar code patterns.

Figure7a, b show examples of two different threshold t for the same source code
in Linux USB device drivers. Figure7a is the CCFinderX’s dot plot of 50 tokens
(default) for t , and Fig. 7b is that of 25 tokens, where each dot shows existence of
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Fig. 7 Detected clones with different minimum token lengths

clone pair. The number of the total clone pairs reported in (a) is 1,631, and the one
in (b) is 5,907.

Since a smaller threshold t tends to create many code clones, the code clone
detector needs to handle all of those and then its performance in the sense of the
computation time and usage memory would drop drastically. Also, the huge output
might overwhelm further analysis for finding specific code snippets by the human
clone analyst. For such reasons, the clone detectors generally have default values
such as 50 tokens (CCFinderX) or 10 pretty-printed lines (NiCad) for the threshold
t , and the clone pairs smaller than t are discarded and not reported.

As discussed in Sect. 1, the definition of code clones is based on the similarity
of the syntactic structure of two code snippets, and it does not rely on the meaning
and semantics of those code snippets or the coding action such as copy-and-paste.
This might cause to generate many code clones that fit the code clone definition
but that are meaningless (or uninteresting, useless, boring, …) for the clone analyst.
For example, consecutive assignment statements for table initialization might be
repeated in several locations in a system and they would be reported as code clones
by clone detector. Machine-generated codes such as the parser generated by the
parser generator would contain similar code patterns that can be recognized as code
clones. However, these code clones might be meaningless for the clone analyst.

It is not intuitive to determine what are meaningful and meaningless code clones.
A code clone analyst would have her/his own subjective criteria for the meaningful
clones. Some code clone detectors equip filters to pick up only meaningful ones and
reduce the output report, whichwould help the clone analyst. However, it is important
to notice that such filteringwould change the statistics of the clone analysis, including
the recall and precision values for the evaluation of the clone detectors. Furthermore,
some research papers on code clones target the code clones with their subjective
filtering of the meaningless clones, which are far away from the formal and syntactic
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definition of clones. By such deviation of the code clone definition and the actual
output we obtain from the clone detector, special care is needed when we compare
clone detectors and their empirical evaluation data.

In addition to the discussion of the meaningfulness, it is important to recognize
the granularity of the code clone analysis and its effect to the analysis performance
and result. Analysis granularity is roughly categorized as follows.

• character
• token
• line or statement
• block
• method or function
• file
• subsystem

For example, a clone detector with the method-level granularity reports only code
clones of complete methods in the target language, and it discards similar code
snippets that do not form complete methods but parts of those. The fine-grained
granularity approach can report the smaller and more precise movement of code in
a system, and the coarse-grained one can overview the structure in a single system
or duplication among multiple systems.

Figure8 presents various factors to affect detectable code clones of interest by a
clone detector. For all possible pairs of code snippets in the target software system,
the analyst determines a clone detection algorithm associated with the similarity
threshold θ , the types of detectable clones, analysis granularity, and the minimum
size (length) threshold t . Based on these decisions, a code clone detector is exe-
cuted to get the raw output. For this raw output, the analyst determines what are the
meaningful clones in the context of analysis objectives, and she/he would discard the
meaningless output by hand or by a filter. The resulting output becomes the detectable

Fig. 8 Detectable code clones of interest



14 K. Inoue

code clones of interest. All of these factors, including this meaningful/meaningless
determination, strongly change the resulting code clones. Comparison and evaluation
of the empirical data on code clone without clear declaration of those factors might
be confusing and could mislead the discussion.

4 Analysis Domain

Figure9 shows a classification of the target of the clone analysis. As we have been
discussing on code clone in this chapter, the target of the code clone analysis is
mostly program text, or wemay say it software, or codewritten in some programming
language. Programs in popular programming languages such as C/C++ or Java, and
scripting languages such as Python or JavaScript are popular examples of the target.
Binary code such as X86 machine language and intermediate code such as Java
Bytecode are also the target of the code clone analysis [16].

Domain-specific languages (DSL) such as Verilog Hardware Description Lan-
guage (HDL), SQL, and Model In the Loop Simulation (MILS) are often targeted
for the investigation of duplication in those programs [1, 8, 33]. Non-executable
software artifacts such as HTML and XML are interesting targets to investigate their
redundancy [34]. All of these domains are targets of the code clone analysis here.

Analyzing plane text for finding duplicated strings is an important topic in com-
puter science, especially in the natural language processing area [21]. Also, finding
repeated parts in DNA sequence is one of the indispensable techniques in biolog-

Fig. 9 Classification of clone analysis target and examples
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ical science and engineering [30]. These areas are out of the scope in this book,
but they have developed various important analysis algorithms and methods that are
sometimes very important and useful for our code clone analysis.

5 Overview of Analysis Process

In this section, we overview the process of the code clone detection of a stand-alone
clone detector that analyzes the whole target source code and reports all of the code
clone pairs or clone sets. Recently, a feature for clone detection is popularly provided
as a plug-in or an extension of the feature-rich editors and Integrated Development
Environments (IDEs) such as Eclipse, Vscode, Visual-Studio, and so on. The process
for these is similar but handling the input and output could be simplified from the
stand-alone detectors. The discussion here assumes a stand-alone detector that works
independently without any editor, IDE, or other development tools.

Figure10 shows an overview of the process of the code clone detector. It analyzes
the overall input target source code and reports all of the code clone pairs or the
clone sets in the target. We may sometimes want to know the partial result, such
as an incremental difference of the analysis result from a previous one (incremental
clone analysis), or the matching result for a query snippet (code clone search). These
require different processes which would be probably lighter than the overall analysis
as Fig. 10, and are not discussed here.

5.1 Front End

The front end inputs the target source code, and it performs the necessary pre-process
and transformation to an internal representation of the code. The features include
comment removal, decomposition into atomic chunks (e.g., tokenization, function
extraction,…), various transformations (e.g., normalization of identifiers and literals,
parsing for tree construction, metrics measurement for chunks, …), and mapping
construction between the source and the internal representation.

Fig. 10 Overview of code clone analysis processes
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For the type-2 clone detection, user-defined names and literals are transformed
(normalized) into the special symbols that erase the difference between the names
and literals. These features are controlled by the parameters (e.g., similarity threshold
θ ) given by the clone analyst.

This process requires a language-depend tokenizer (lexical analyzer) or light-
weight parser. Sometimes we may want to use an existing fully-featured parser for
this purpose, but it would accept only complete and compilable source code and thus
the applicability of the clone analysis would be limited.

The output is an internal representation of the original source code, along with the
mapping information from the original source code to the internal representation.

5.2 Matching

The matching process is the core of the clone analysis, where the same or similar
code snippets in the internal representation of the target source code are identified.
There are many approaches to matching, and they are selected based on the analysis
granularity, clone types to detect, performance requirement, and so on. We would
roughly classify those approaches into the following three categories.

5.2.1 Sequence-Matching Approach

For the fine-grain granularity analysis such as the character level or token-level
ones, this approach has been well adopted. The source code is treated internally as
a character sequence or token sequence, and for this sequence s, an algorithm to
find all maximal repeats is applied [10, 30]. A maximal repeat is a subsequence a
of s, which has an exactly equal subsequence a′ in the different position of s, and
the equality cannot be held by extending the subsequences to the left or right of a
and a′. Maximal repeats can be found fairly efficiently in θ(n + z) time by using the
suffix tree algorithm where n is the size of the sequence and z is the number of the
maximal repeats.

A suffix tree is a Patricia trie compactly embedding every suffix of the target
sequence on their edges [10]. Figure11 shows an overview of the construction of
the suffix tree, where the sequence is assumed ABCDABCBC and each path from
the root to the leaf represents a suffix including the terminate symbol $. An internal
node means a share of the preceding subsequence by the suffixes to the leaves, and
so a path from the root to an internal node corresponds to a maximal repeat (i.e.,
clone). The suffix tree algorithm was well used in early code clone detectors [2, 14],
but it generally requires large memory space to embed the input sequence and its
all suffixes. Thus, these days the suffix array algorithm has become popular, which
needs less memory space [3, 10]. Figure12 shows the suffix array representing the
same sequence as Fig. 11, where all the suffixes are sorted and the indices of the sort
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Fig. 11 An example of suffix tree

0: ABCDABCBC$
1: BCDABCBC$
2: CDABCBC$
3: DABCBC$
4: ABCBC$
5: BCBC$
6: CBC$
7: BC$
8: C$
9: $

9: $
4: ABCBC$
0: ABCDABCBC$
7: BC$
5: BCBC$
1: BCDABCBC$
8: C$
6: CBC$
2: CDABCBC$
3: DABCBC$

9 
4
0
7
5
1
8
6
2
3

Fig. 12 An example of suffix array

result are kept in the array. Clones can be identified by checking only the header part
of the neighboring suffixes.

By using the sequence-matching approach, clone pairs of type-1 and type-2 are
exhaustively identified and reported. Type-3 clones can be also identified by connect-
ing the type-1 and type-2 clones, allowing small gaps under the similarity threshold
θ . Type-4 clones are not identified by this approach.

This approach generally reports clones clearly defined by the matching algo-
rithm without ambiguity. However, the reported clones could include meaningless
sequences for the clone analyst such as the sequences of constant definitions, variable
declarations, table initialization, and so on, and the post-detection analysis process
for removing the meaningless pairs would be needed.
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Fig. 13 Overview of chunk comparison approach

5.2.2 Chunk-Comparison Approach

The original source code is decomposed into a sequence of chunks such as blocks of
statements, functions (methods), or files based on the analysis granularity. For each
chunk, signatures (or we may say features, hash, etc.) to represent the characteris-
tics of the chunk are extracted, and searching for chunks with the same or similar
signatures is executed (see Fig. 13).

There are many different implementations of this approach. A simple example
would be that we compute a few software metrics values of each function as the
signatures, say, Non-comment Lines Of Code (NLOC) and Cyclomatic complexity
of functions. Then, we find code clones at the function granularity by searching
functions with the same or similar NLOC and Cyclomatic complexity values. A
related method is to use techniques for the natural language processing such that we
extract keywords from the code and construct word vectors for each function, and
find functions with the same or closer vectors, where we can use a simple cosine
similarity value or other sophisticated techniques [36]. More sophisticated methods
such as Latent Semantic Indexing (LSI) could be employed for the improvement
of the matching accuracy for the type-3 and type-4 clones [4]. Various hashing
techniques are also used. A simple hash function may only detect type-1 and 2
clones. Locality-Sensitivity-Hashing is one of the methods to allow the type-3 or 4
clones to match [24].

For the chunkof block or function granularity, each chunkmaybe transformed into
a graph (or tree) such as an Abstract Syntax Tree (AST) or (Program Dependence
Graph (PDG), and searching for the same or similar graphs can be performed [5,
17]. This method generally requires a longer processing time for parsing the code
and constructing AST or PDG, and also for matching graphs. However, it would
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be easier to identify clone pairs with similar structures on the graph but different
representations on the code, and so it fits to detect type-3 and type-4 clones.

Recently, machine learning has been employed for the matching process in
research prototype systems. In one of these, the chunk is a single method, and the
word (token) frequency of the method is its signature [20]. From the word frequency
of two methods, a similarity vector of the method pair is determined. A Deep Neural
Net DNN is trained with the collection of the method pair data composed of the
similarity vector and a clone/non-clone label. The trained DNN is used to classify
a method pair into clone or non-clone. For detecting all clones of the method gran-
ularity in the target source code, each method is extracted and all method pairs are
enumerated and classified. We can consider various different strategies for the sig-
nature extraction, input data for DNN, and hyperparameter of DNN, based on the
objectives of the clone detection.

The merits of this approach include flexibility of the algorithm design such that
we can choose an appropriate method for the signature extraction and the compari-
son/clustering of the signatures based on the objectives and requirements of the clone
detection. For example, if we would be interested in the semantic similarity in the
type-4 function-granularity clone detection, we might extract user-defined names in
each function as the signatures and then they would be clustered by the word2vec
technique [22], where we can get semantically similar clones in the same cluster. If
we would want to have a high-performance clone detector, a light-weight signature
extraction, and the comparison algorithms might be chosen, where the accuracy of
the reported clones might be lower.

Another merit of this approach is that it is easy to execute the algorithms in
parallel. Constructing the chunks and extracting signatures are independent of each
other so that we can easily implement them with a multiple process/thread or cluster
environment.

To detect all clone pairs from the target, we might need the O(n2) comparisons
for n chunks using the naive approach; however, it would be reduced to the near
O(n) comparisons if filtering and optimization techniques are introduced.

It is important to note that a chunk is the finest granularity in the analysis, and
finer granularity snippets cannot be detected as clones by this approach. For example,
similar statements cannot be detected as clones if we would choose function as a
chunk.

5.2.3 Hybrid Approach

Mixing the sequence-matching and the chunk-comparison approaches is applied to
fine-grain granularity analyses such as token level, statement-level, or block-level
ones. The target source code is transformed into a sequence of the elements in the
granularity by the front end, and n-grams that is a chunk composed of consecutive
n elements in the sequence are constructed. Then, the search for the same or similar
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Fig. 14 An example of hybrid approach: 3-gram and hashing method

n-grams is performed using hashing or other fast matching methods. For the found
n-grams, expansion to the neighbor elements is tried to find maximal subsequences
of the elements.

We can see in Fig. 14 an example of this approach where the 3-gram and hash-
based comparison are used. In this case, only ABC with the starting position at 0
and 4 are identified as the same 3-grams, and using those as a core of a clone pair,
expansions to the left and right are tried but they will fail. Therefore, only a clone
pair ABC at 0 and 4 is reported; however, the smaller but identical pair BC at 1 and
7 is not identified.

This approach is simply implemented and fast for the type-1 and 2 clone analysis
[28]. For the type-3 analysis, we may use some techniques to allow gaps in the
sequence. Smaller snippets less than n cannot be detected by this approach.

5.3 Reporting

At this process, the matching result is extracted and reported to the clone analyst.
The internal representation of the source code at the matching process is generally
an abstracted form of the source code, and then a restoration to a human-readable
form is needed.

NiCad reports the clone set in an XML or HTML form that is easily browsed by
the browsers. On the other hand, CCFinderX reports the found clone pairs in a binary
form in the default setting, which is unreadable to the human. This is because the
clone detection output tends to become huge and a compact binary form would fit
the post-detection analysis.

At this process, theminimum size threshold t is identified, and the smaller snippets
than t which match other snippets are cut off and not reported in the output as clones.
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5.4 Post-detection Analysis

This process is optional and would be performed with the intention of the clone
analyst to extract the clones of interest and to understand the resulting clones properly.
Major tasks are as follows.

Measuring Measuring the metric values for the clones is an important basis.
The number of the clone pairs and the clone sets are fundamental metrics. Also, the
length of the clones is an important metric value to cut off the smaller ones. The code
complexity such as the McCabe metrics is a clue to extract meaningful clones. We
wouldwant to see the distribution of clone pairs or sets in the same file, different files,
different directories, or different systems. To see this, the distance of the clone pairs
or the elements in the clone sets is determined and measured. For a single source
code file, we might want to know the clone coverage of a file, which is the ratio of
the components (tokens, lines, statements, …) belonging to any clone in a file to the
overall elements in the file. It is an essential metric to observe the characteristics and
quality of the source code. For example, a very high clone coverage such as 80–90%
would show that the file may not be hand-crafted and would be generated by a source
code generator.

Filtering The output from the matching process is generally huge and hard to
understand intuitively. To reduce the output and take out only meaningful and inter-
esting clones, various kinds of filters using the metric values can be considered and
implemented. For example, we would remove a sequence of continuous assignment
statements by using theMcCabe complexity value and get only the clones with some
control structure as meaningful clones. Note that the resulting clones after the filter-
ing become less than the original ones from the matching process, and taking which
set of clones as an evaluation basis heavily affects the results of the evaluation of the
code clone detectors.

Visualizing One of the straightforward methods of visualization is to display the
source code of the clone information. This is an essential feature to analyze each
clone in a detailed statement level. On the other hand, if we would see an overview
of the distribution and structure of occurrences of clone pairs in the target software,
dot plots such as shown in Fig. 7 are frequently employed [2, 14]. There are many
other ways of visualization that will be discussed in another chapter.

6 Application of Code Clone Analysis

Various kinds of applications of the code clone analysis have been proposed and
performed as research trials and industrial practices.
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6.1 Program Maintenance

Same or Similar Bug Finding
One of the important use cases of the clone analysis is to find the same or similar
defects (bugs) in the same or different systems when we identify a bug in a source
code file. Since the copy-and-paste practice is very popular, we would guess that the
same or similar bugs propagate in the systems and they will eventually cause the
same or similar failures in the future. Thus, finding the same or similar code snippets
is crucial to prevent the failures again, and clone detection is a very effective method
for it. For this purpose, we would use a feature for finding the same or similar code
snippets to a query code snippet that contains a bug and could cause a failure to
the system. We expect that the query and a found snippet form a clone relation of
type-1, 2, or 3, where the code snippets of type-2 and 3 clones cannot be detected by
straightforward string matching tools such as grep effectively.

Vulnerability Detection
Similar to the bug finding, system-wide code clone search for the code patterns
with security risks in the libraries or reused code is a very important issue as a
vulnerability analysis method. For this purpose, a scalable clone search approach
has to be employed such as the chunk comparison one.

Refactoring
The existence of code clones in a system indicates redundancy of the source code
text and the clones are expected to be merged so that the system becomes slim and
easy to maintain. Merging the snippets in a clone set into a single method or function
is one of the major ways for the refactoring [11]. Type-1 clones are relatively easy
to merge, and type-2 and 3 clones need to work with some parameters to erase the
gap among the snippets. By the code clone analysis, refactoring opportunities can be
effectively sought.

6.2 Program Comprehension

Quality Indicator
There are many reports on the relationship between code clone and program quality
such that the existence of clones might be an indicator of program degradation and
low quality [23], or that considering clones harmful would be harmful [15]. Although
there is no general clue to relate clones to bugs, the existence of many clones in a
file or system would indicate the occurrence of the repeated copy-and-paste actions
on the file or system, and so the reason for it should be carefully investigated. In
such a sense, the clone coverage of each file in a system is computed, and the files
with high clone coverage will be specially analyzed. Also, we might have a standard
and expected range of the clone coverage of a system, say 10–30%, and if a system
that is developed by a subcontractor had the 80% clone coverage, we need to check
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the structure of the system and the process of its development. A very low clone
coverage such as less than 5% might be also a target of the special care.

Dependence Identification
Knowing the distribution of code clones in a system gives an important clue of the
dependence of the system. Sometimes unknown coupling between two subsystems
would be identified by finding a clone pair existing between them. We have experi-
enced a case of finding a hidden coupling in a large systemwhere several subsystems
had been developed independently by different subcontractors. By the clone analysis,
we had found clones between subsystems A and B, but the project managers of A
and B did not know why A and B share the code. The further analysis had revealed
that A and B use proprietary libraries whose origin was the same but evolution was
different.

6.3 Evolution and Provenance Analysis

Evolution Analysis
Clone analysis between two versions X and Y of a system shows the interesting
observation of the evolution of the system. The clone coverage of two systems X
and Y is the ratio of the sum of the sizes of the clone pairs existing between X and
Y over the total size of X and Y . The lower the clone coverage is, the greater the
distance between the two versions is. Thus, the clone coverage becomes a similarity
measure of two systems, and it can be used to identify the descendants and ancestors
of a system. We can construct a dendrogram (evolution tree) using it [35]. Figure15
shows the dendrogram of BSD Unix OS using the clone coverage as the similarity

Fig. 15 Dendrogram (evolution tree) of the BSD Unix OS using the clone coverage as similarity
measure



24 K. Inoue

measure. As we can see here, closer versions, e.g., FreeBSD 2.0.5 and 2.1, are
categorized into nearer clusters, and farther versions, e.g., FreeBSD 2.0 and NetBSD
1.5, are located in farther clusters.

Provenance Analysis
Aclone pair of snippets in a system and an old system is a valuable clue of identifying
the origin of code [12]. For this purpose, an approach to the code clone search is
employed for a corpus of source code which is a collection of Open Source Software
(OSS) and/or a proprietary one. For the effective search of the clones, it is important
to collect and maintain a sufficiently large and high-quality corpus, but it is not easy
for individuals. Companies such as Black Duck provide a service of identifying a
code origin in their OSS corpora [32].

6.4 Plagiarism Detection

Investigating clone pairs between two systems is an effective tool for identifying
plagiarism of code. The source-code level analysis is fairly easily performed by the
clone detectors. Figure16 shows a case of the clone analysis for the student exercise
of a simple compiler construction class. The source code for 5 students was analyzed,
and many clones between students S2 and S5 were found. The teacher of the class
had asked these students the reason for the many clones.

Considering opportunities for plagiarism detection, the binary-level analysis
might be useful more than the source-code level analysis, although the binary-level

Fig. 16 Clones in simple
compiler construction
exercise of 5 students
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analysis is relatively complex and difficult. A straightforward method for the binary
analysis is to decompile or disassemble the binary code into a high-level source code
or assembly code, and to perform the clone analysis on the source or assembly code
[27]. A threat of this approach is the difference of the binary code for the same source
code. Binary code generated by the compilation is heavily affected by the compiler
(e.g., gcc or clang), compile options (optimization level, debug, etc.), and execution
environment (OS, libraries, etc.). Automatic identification of these distinction has
been just explored [25].

7 Conclusion

Nowadays, clone detection is one of the important technologies in software engineer-
ing. In this chapter, we have introduced and overviewed the code clone, its analysis,
and application. The topics related to the code clone is widely spread now. Thus,
we cannot list all of those comprehensively, and so we only sketched some of the
important topics here. Comprehensive surveys on code clone researches can be seen
in [18, 26, 29, 31].

For the code clone analysis, the basic idea of finding the same or similar code
snippets is simple but we can consider many different implementations with new
ideas and new applications. We would expect that innovative new approaches might
be devised and implemented as new clone detectors in the future.
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CCFinderX: An Interactive Code Clone
Analysis Environment

Toshihiro Kamiya

Abstract CCFinderX is a successor tool that advances the concepts of CCFinder
(2002) and Gemini (2002), and is a standalone environment for code clone detection
and analysis. CCFinderX is designed as an interactive analysis environment that
allows users to switch between views of scatter plot, file, metrics, and source text,
for applying to large code bodies. This chapter describes the features of these views,
such as the display content, operations for coordination between views, metrics for
files and clone classes, and the revamped code clone detection algorithm.

1 Introduction

CCFinderX is an environment for interactive code clone detection and analysis, with
functions such as code clone detection, code clone metrics measurement, and code
clone visualization. It was developed to detect code clones from given source files
of up to several million lines and analyze the detected code clones, through a closed
environment without using other tools.

At the time CCFinderX was released, to the best of the author’s knowledge, there
were few tools available to interactively analyze code clones for application to large
code bodies with various visualization methods. Analyzing the code clones detected
by the code clone detection tool was a time-consuming task to do. In particular, when
code clones were detected for millions of lines of source code, thousands or tens of
thousands (or more) of code clones could be detected, and deciding which code
clones to analyze was important but difficult to do manually. For example, suppose
only a code clone detection tool and a tool to display a scatter plot of the code clones
are available. In that case, this task can be accomplished by creating and displaying
a scatter plot (image) of the entire product, picking up interesting directories and
detecting the code clones again using some of the directories as input, and then again
rebuilding and displaying the scatter plot. To examine the actual source code of the
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code clones shown in the scatter plot, we had to repeatedly find the file names and
open the files with a text editor or diff tool.

In this chapter, we will explain the purpose, features, design, and algorithms of
CCFinderX. The CCFinderX implementation referred to in this chapter is the last
version released in April 2010. All execution results and screenshots in this chapter
are based on this implementation.

2 Code Clone Detection and Analysis Tools

There several methods for detecting similar code in source code were proposed;
text-based methods such as [6], token-based methods such as [1, 7], AST-based
methods such as [2], metric-based methods such as [9] (similarity of metric values
of procedures), and dependency-graph-based methods such as [8, 10]. With the
emergence of many code clone detection tools, the benchmarking [3] of code clone
detection tools was about to start, which used the source code of actual products as
the input of the tools.

A view that visualizes similarities in a multi-million line text file utilizing a scatter
plot and interactively references the text was proposed by [4]. It is also used as a
visualization technique in [1].

CCFinder[7] was first introduced as a token-based code clone detection tool for
multiple programming languages. Then,Gemini [5, 13]was developed as aGUI code
clone analysis environment for CCFinder with interactive views such as a scatter
plot [4] and metrics tables. CCFinderX has been redesigned to revamp the detection
algorithm of its predecessor, CCFinder, and to enhance its integration with Gemini,
a GUI analysis tool, making it available as an integrated environment for code clone
detection and analysis.

3 Interactive Code Clone Analysis

A possible usage scenario of CCFinderX is to analyze code clones given a source file
of a target product (or products of a product line developed from one product). The
analyst has to decide in what order to analyze or proceed to deal with the many code
clones detected in the product. In this situation, not only the internal characteristics
of the cloned code fragment (whether it is complex code, long code, etc.), but also
the location where the code fragment appears (whether it is a code fragment that
appears only in a specific file, a similar code between files in different directories of
a product, or a code fragment that appears commonly among multiple products in a
product line) is an important clue.

CCFinderX has four views for interactive analysis, alternately examining the
contents of the cloned code fragments and the locationswhere the code clones appear.
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Fig. 1 Views and collaborations between the views

• Scatter Plot
• Clone Table with Clone Metrics
• File Table with File Metrics
• Source Text

Figure1 shows the views of CCFinderX and the operations of the views to collab-
orate (influence) each other. By manipulating and switching between these views,
the user can narrow down the code fragments to be focused on from the entire source
code. For example, the user can find a directory of interest in the scatter plot and then
proceed with the analysis by looking at the source files in that directory one by one.

3.1 Scatter Plot View

CCFinderX provides a scatter plot [4] as an overview to understand the distribution
of code clones within or between products.

The scatter plot’s vertical and horizontal axes consist of the indices of each token
in the token sequence extracted from the source files (Intuitively, imagine that all the
lines of all the source files are lined up on the vertical and horizontal axes). Each
square on the main diagonal in the scatter plot represents a directory. The nesting
of the squares directly indicates the tree structure of the directory. The descending
right line segments in the scatter plot indicate code fragments that are code clones. In
other words, the token sequence in the vertical axis range corresponding to the line
segment and the token sequence in the horizontal axis range is code clones (Table1).
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Table 1 Size statistics for source code of the three OSs

Product Files LOC Tokens

FreeBSD 42,396 22,290,241 68,768,315

Linux 50,497 26,336,521 71,956,559

NetBSD 71,698 28,328,173 84,493,290

Note The source files using C++ macros and could not be parsed properly had been removed

Figure2 shows a scatter plot of inner-product and inter-product clones detected
from three software products, FreeBSDOS,1 LinuxOS,2 andNetBSDOS,3 displayed
by CCFinderX. The size of each product is more than 22 MLoc of the source file.4

The code clones were detected from the source code tarball with the condition that
the length of the token sequence was 200 or more.

The three largest squares (not included by other squares) on the diagonal are
“free_bsd”, “linux”, and “net_bsd” in order from the top left to the bottom right.
These three squares are the root directories where the source files for of three OSs
are placed. From this scatter plot, we can see that there aremany code clones between
the two products, FreeBSD and NetBSD, and in comparison, there are not so many
code clones betweenLinux andFreeBSDorLinux andNetBSD. It can be inferred that
there would be many similar or the same source files between FreeBSD’s “contrib”
directory andNetBSD’s “external” directory, but these files are arranged in a different
order on the scatter plot axis due to the difference in directory structure.

As a reference for execution performance, Table2 shows the settings and the time
required for execution of detecting code clones from the source code of the three
operating systems.

3.2 Clone Table View

The clone table view displays the following metrics, called clone metrics, for each
of the detected clone classes. The clone table has the ability to filter these metrics by
specifying a range of values, which can be used to narrow down the code clones in
a code clone analysis.

• LEN: Length of code fragment.
• POP: The number of code fragments that the clone class contains.

1 Index of /pub/FreeBSD/development/tarballs/, http://ftp.freebsd.org/pub/FreeBSD/development/
tarballs/.
2 The Linux Kernel Archives, https://www.kernel.org/.
3 NetBSD Mercurial, https://anonhg.netbsd.org/.
4 A CCFinder paper from 2002 [7] also shows a scatter plot of the results of similar code clone
detection at that time. At that time, the size of each product was about 2M to 2.5M LOC of source
files, so we can see that the size has increased about 10 times in 20 years.

http://ftp.freebsd.org/pub/FreeBSD/development/tarballs/
http://ftp.freebsd.org/pub/FreeBSD/development/tarballs/
https://www.kernel.org/
https://anonhg.netbsd.org/
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Fig. 2 Scatter plot of code clones between three OSs (apporx. 73 MLOC in total)

Table 2 Setting up ccfx execution and resources required for execution

CPU 6 Core i7-6800K 3.4GHz (6 cores*)

Memory 128 GiB (32 GiB*)

OS Windows 10 in a virtual environment on Ubuntu host

Dependencies Python 2.6.6 32 bit, Java 1.8.0 32 bit

CCFinderX 10.2.7.2 for Windows XP/Vista 32 bit

Step (1) 91 minutes with peak memory usage less than 100 MiB

for running ccfx.exe d cpp -d . -p –threads=4

Step (2) to (4) 58 minutes with peak memory 1,470 MiB

for running ccfx.exe d cpp -b 200 -d . -v -j-

NoteThe valuemarkedwith an asterisk represents the value of the resource allocated to the guest OS
in the virtual environment. See Sect. 4.1 for steps (1) through (4). Peak memory usage is measured
as the maximum value of the log that records the memory used by the process every second, so
it may be smaller than the actual value. However, since the executable binary was 32-bit one, the
memory usage never exceeded 4 GiB.
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• NIF: Number of source files that contain code fragments of the clone class.
NIF(c) ≤ POP(c), because one file may contain multiple code fragments.

• RAD: Spread of source files containing code fragments of the clone class in the
directory. RAD(C) ≥ 0. When all code fragments of a clone class are contained
in a single source file, RAD is defined as 0.

• RNR: Percentage of tokens in the code fragment that are not part of the repetitions.
• TKS: Number of kinds of the tokens the code fragment contains.
• LOOP: Number of appearances of reserved words for loops in the code fragment.
• COND: Number of appearances of reserved words for conditional branch in the
code fragment.

• McCabe: McCabe(c) = LOOP(c) + COND(c).

These metrics are used to select the code clones to be focused on in the code
clone analysis. For example, code clones with a large RAD value are more likely to
be managed by different developers (or maintainers), especially for large products,
because the code fragments are contained in distant directories of the product source
files. Code clones with low RNR values are likely to be those with a sequence of
boilerplate code such as repetition of assignment statements, and such code clones
may not be considered as targets to be removed even if they are detected.

Figure3 shows the clone table view and the source text view (described in
Sect. 3.4). From the code clones displayed in the clone table, one was selected by
metrics and its code fragments were displayed.

3.3 File Table View

In the File Table view, for each of the input source files, in addition to the source file
path, the following metrics, called file metrics, are displayed. The file table has the
ability to specify and filter the values of these metrics, which can be used to narrow
down the source files in code clone analysis.

• CLN: The number of clone classes that contain at least one code fragment of the
source file.

• NBR: Number of other source files that have any code fragment of a clone pair
with a code fragment in the source file.

• RSA: Percentage of the tokens in the source file that are covered by a code fragment
of a clone pair with a code fragment of one of the other source files.

• RSI: Percentage of the tokens in the source file that are covered by a code fragment
of a clone pair with another code fragment of the same source file.

• CVR:Percentage of the tokens in the source file that are covered by a code fragment
of a code clone. By definition, max(RSA(F),RSI(F)) ≤ CVR(F) ≤ RSA(F) +
RSI(F).

These metrics are used to narrow down the files that should be focused on in
the code clone analysis. For example, a source file with an NBR of 0 has no code



CCFinderX: An Interactive Code Clone Analysis Environment 37

Fig. 3 Picking up a clone class in the clone table view and showing its code fragments in source
text view

clones between it and other source files, so even when a code fragment of the code
clone needs to be modified, such modification is limited to within that source file and
therefore is considered to be easier to modify and maintain than a code clone spread
over many directories of source files. While the metric CVR is useful for identifying
source files where a large percentage of the code is code clones, the metrics RSA and
RSI provide clues to identify more detailed situations. For example, when you copy
an entire source file to create another source file in a project, the RSA value of these
two source files will be close to 1. A source file with a sequence of boilerplate code
such as assignment statements and constructor calls will have an RSI value close
to 1.

The file table also has the ability to specify a directory at a relative depth from
a specified file, and select or filter only the files in that directory. Since directories
are often used as the unit of modules and packages in the software development
process, specifying a directory allows you to perform analysis on a specific module
or between specific modules.
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3.4 Source Text View

The source text view displays the text of two source files (or two different parts of
one source file) with line numbers, and shows the parts that are code clones with
a text background color and (in some text editors) a so-called minimap-like view.
In the minimap-like view, code fragments that are code clones are displayed as line
segments, and line segments that are code fragments belonging to the same clone
class are connected by a curve. Figure3 includes an example of the source view.

4 Structure of CCFinderX

Figure4 shows the structure of CCFinderX. The functions of detecting code clones
and calculating metrics values are implemented as a CLI tool ccfx. The four views
to analyze code clones introduced in Fig. 1 in Sect. 3 and the operations to switch
between these views for interactive analysis have been implemented in a GUI tool
gemx.

Fig. 4 Overall structure of CCFinderX
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The cooperation between gemx and ccfx is done by passing data as files and by
launching processes; gemx accesses source files and data files generated by ccfx,
i.e., code clones and metrics, and visualizes these data in a scatter plot, etc. On the
other hand, when the user selects a source file or a clone class directly on the GUI
and requests recalculation, or when the user requests filtering by the value of metrics
in the source file or clone class, gemx invokes a ccfx process to update the data files.

4.1 Code-Clone Detection

The code clone detection engine of CCFinderX is designed to detect Type I and II
code clones. Figure5 shows the structure of the code clone detection engine. Note,
however, that the code fragments of the detected clone classes may not match as a

Fig. 5 Structure of
code-clone detection engine
of CCFinderX
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sequence of tokens because the token sequence is pre-processed before the detection
algorithm (as marked “AST-based transformation” in the figure).

Each step of the code clone detection function is described below. Of these, step
(3) in particular is a new algorithm from CCFinder[7] that uses a more concise data
structure to improve the scalability to the input data.

(1) Tokenization and AST-based Transformation

From the input source file, it extracts the tokens and constructs the AST according to
the grammar of the programming language, and then transforms the AST according
to the transformation rules. For this parsing and AST transformation, we have imple-
mented our own routines for the programming languages: Java, C/C++, COBOL,
VB, and C#. The purpose of transforming the AST is to prevent trivial syntactic
differences making a difference in code clone detection by supplementing such as
missing “{” or “}” of code blocks, and to suppress detection code clones having code
fragments that would be of little interest to the analyst by removing token sequences
such as import statements or array initialization tables.

This step is done in parallel for each source file, and the output token sequence is
saved as a separate file (“*.ccfxprep”) for each source file. The output files act as a
kind of cache, allowing you to skip the tokenization and transformation process the
next time you detect a code clone for a set of input files including the same source
files.

(2) N-Gram Generation and Bucket Sorting

Extract n-grams from the token sequence generated from the source file with the
length of the minimum code fragment length specified in the code clone detection
parameters (as explained later, each n-gram is extended in later steps, so that this
n-gram is the shortest code fragment of the code clones to be detected). Bucket sort
the n-grams to find clone class; generate a hash map of key-value pairs, which has
a hash value of n-gram as a key and a list of positions where the n-gram appears
as the value, for each of n-gram occurrences in the input token sequences. When
the generation of the hash map is completed, each of the lists of n-gram positions
(as values of the hash map) is identified as a candidate of a clone class. That is,
each n-gram at the position represented by each element in the list represents a code
fragment that matches each other with at least the minimum specified length. When
a list of n-grams has two or more elements, make it be an n-gram clone.

Figure6 shows an illustrationof this step.Assume that the input is a token sequence
“ˆabababcabdabc$” extracted from some source file F . Here, “ˆ” is a special
token that represents the beginning of the file, and “$” is a special token that represents
the end of the file. The hashmap generated has a value of a list of positions of n-grams
of length 2.
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Fig. 6 Illustration of n-gram generation and bucket sorting

The resulting n-gram clones are follows:

• 2-gram <ab>s at positions 1, 3, 5, 8, and 11
• 2-gram <ba>s at positions 2 and 4
• 2-gram <bc>s at positions 6 and 12

Note that “ˆ” and “$” are treated as different tokens from each other or from any
other token, and are never included in an n-gram. In a more general case, when there
are multiple files as input, “ˆ” and “$” are prepared for each input file. That is, for
each input file Fj, we prepare special tokens ˆ j and $j, all of which are different
from each other or from any other token.

(3) Suffix-Array Generation and Clone Identification

For each n-gram clone (l), a suffix array is generated to identify clone classes. The
algorithm identifies clone classes having either maximal POP or maximal LEN.

Let f1, f2, …, fn be the code fragments in l. The attributes of each fi are its position
on the source file (i.e., file name and index in a token sequence from the file), and
length.

(3-1) If the size of l (the number of code fragments)≤ 1, exit the algorithm (Because
the clone class needs to have two or more code fragment). Otherwise, for each of
fi, let bi be the token immediately preceding it. If b1, b2,…, bn are tokens of the
same kind, exit the algorithm (By extending the preceding token to each of the code
fragments, we can create a clone class having longer code fragments from l′, and the
hash map includes such l′ as one of the other values).

(3-2) For each of fi, let ai be the token immediately following it. Extend the length
of all fi’s while all ai are all tokens of the same type. If a fi has reached the end of the
file and cannot be extended, remove such fi from l. By removing it, if the number of
elements in l decreases to ≤ 1, exit the algorithm.
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Fig. 7 Illustration of generating a suffix array and identifying clone classes

(3-3) Identify l, that is, code fragments f1, f2,…, fn, as a clone class.

(3–4) Divide l into sub-lists according to the kind of tokens of ai, and apply the
algorithm in (3) recursively to each of the sub-lists.

Figure7 shows an illustration of generating suffix arrays. The input is an n-gram
clone of the 2-gram<ab>, which is the first row of the table to the right of Fig. 6. As
a result, three clone classes are identified: a clone class (c1 in the figure) consisting of
code fragments starting at positions 1, 3, 5, 8, and 11 with length 2, a clone class (c2)
consisting of code fragments starting at positions 1 and 3 with length 4, and a clone
class (c3) consisting of code fragments starting at positions 5 and 11 with length 3.

Note that code fragments overlapping each other starting at position 1 are included
in the clone classes c1 and c2, but each of the clone classes contains the largest number
of code fragments (POP) for the length of code fragments (LEN), so that one clone
class is never completely “covered” by the other. For example, c1 and c3 have POP
and LEN values of (4, 2) and (2, 3), respectively, and neither clone class is larger
than the other in both metrics.

From Fig. 5, it might seem that step (3) can be executed in a parallel way, but since
the amount of memory required depends on the number of elements in the n-gram
clones, and the number could be large, the implementation uses a loop to process
each n-gram clone sequentially instead of executing in parallel.

(4) AST-Based Trimming

Trim the detected code fragments of the clone class by comparing them with the
nested structure of the blocks of source code, i.e., remove code fragments that start
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near the end of a code block and end just after the beginning of another code block.
This feature prevents the detection of many code clones, especially those that are
coincidental matches for short code fragments.

5 Summary and Last Words

In this chapter, we have introduced the code cloning analysis environment CCFind-
erX, including the situation at the time of its release, the targeted analysis workflow,
the functions and design to realize that workflow, and the detection algorithm that
has been renewed from CCFinder.

CCFinderXwas a code cloning analysis environment that was intended to be used
in a development environment beyond the framework of a research tool. Due to its
ease of use and good (for the time) performance, it was used by many companies
after its release, and we received verbal and e-mail comments/feedbacks. More than
5,000 user licenses were issued, and it was then transitioned to open source with no
license issuance process. Its successor tool, [11, 12], bearing the CCFinder name has
also been published and announced.

I would like to conclude this chapter by expressing my gratitude to everyone
who has been involved in CCFinderX collaborations and to everyone who has used
CCFinderX, whether in industry or academia.

References

1. B. Baker, On finding duplication and near-duplication in large software systems, inProceedings
of the 2nd Working Conference on Reverse Engineering (WCRE 1995) (1995), pp. 86–95

2. Baxter, I., Yahin, A., Moura, L., Anna, M., Clone detection using abstract syntax trees, in
Proceedings of the 14th International Conference on Software Maintenance (ICSM 1998)
(1998), pp. 368–377

3. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and evaluation of clone
detection tools. IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

4. K. Church, J. Helfman, Dotplot: a program for exploring self-similarity in millions of lines for
text and code. J. Am. Stat. Assoc. 2(2), 153–174 (1993)

5. Higo, Y., Ueda, Y., Kamiya, T., Kusumoto, S., Inoue, K., On software maintenance process
improvement based on code clone analysis, in Proceedings of the 4th International Conference
on Product Focused Software Process Improvement, (PROFES 2002) (2002), pp. 185–197

6. Johnson, J., Substring matching for clone detection and change tracking, in Proceedings of the
10th International Conference on Software Maintenance, ICSM 1994 (1994), pp. 120–126

7. T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: a multilinguistic token-based code clone detec-
tion system for large scale source code. IEEE Trans. Softw. Eng. 28(7), 654–670 (2002)

8. Komondoor,R.,Horwitz, S.,Using slicing to identify duplication in source code, inProceedings
of the 8th International Symposium on Static Analysis, SAS 2001 (2001), pp. 40–56

9. K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, M. Bernstein, Pattern matching for clone
and concept detection. J. Autom. Softw. Eng. 3(1–2), 77–108 (1996)

10. Krinke, J., Identifying similar code with program dependence graphs, in Proceedings of the
8th Working Conference on Reverse Engineering (WCRE 2001) (2001), pp. 301–309



44 T. Kamiya

11. Livieri, S., Higo, Y., Matsushita, M., Inoue, K., Very-large scale code clone analysis and
visualization of open source programs using distributed CCFinder, in Proceedings of the 29th
International Conference on Software Engineering (ICSE 2007) (2007), pp. 106–115

12. Y. Semura, N. Yoshida, E. Choi, K. Inoue, CCFinderSW: clone detection tool with flexible
multilingual tokenization, in Proceedings of the 24th Asia-Pacific Software Engineering Con-
ference (APSEC 2017) (2017), pp. 654–659

13. Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: code clone analysis tool,
in Proceedings of the 2002 International Symposium on Empirical Software Engineering
(ISESE2002), vol. 2 (2002), pp. 31–32



NiCad: A Modern Clone Detector

Manishankar Mondal, Chanchal K. Roy, and James R. Cordy

Abstract Code clones are exactly or nearly similar code fragments in the code-
base of a software system. Studies have revealed that such code fragments can have
mixed impact (both positive and negative) on software evolution andmaintenance. In
order to reduce the negative impact of code clones and benifit from their advantages,
researchers have suggested a number of different clone management techniques.
Clone management begins with clone detection. Clone detection has thus been a hot
research topic, resulting in many different clone detectors [26, 32] that have been
used in a range of applications, including clone analysis, refactoring, and tracking.
One of those that has been widely used and investigated is NiCad [3, 27]. What
follows is a brief overview of the NiCad detection mechanism and its application in
various studies of code clones.

1 A Brief Overview of NiCad

NiCad (Accurate Detection of Near-miss Intentional Clones) is a popular and widely
used modern clone detector. NiCad was originally developed by Chanchal K. Roy
as part of his PhD thesis work under the supervision of James R. Cordy at Queen’s
University in Canada. NiCad is a hybrid tool that uses a combination of parsing and
approximate text comparison to detect near-miss clones [3]. Svajlenko and Roy [33]

The original version of this chapter was revised. The affiliation of author “J. R. Cordy” has been
changed as “Queen’s University, Kingston, Canada”. An erratum to this chapter can be found at
https://doi.org/10.1007/978-981-16-1927-4_17

M. Mondal (B)
Khulna University, Khulna, Bangladesh
e-mail: mshankar@cseku.ac.bd

C. K. Roy
University of Saskatchewan, Saskatoon, Canada
e-mail: chanchal.roy@usask.ca

J. R. Cordy
Queen’s University, Kingston, Canada
e-mail: cordy@cs.queensu.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021,
corrected publication 2021
K. Inoue and C. K. Roy (eds.), Code Clone Analysis,
https://doi.org/10.1007/978-981-16-1927-4_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1927-4_3&domain=pdf
https://doi.org/10.1007/978-981-16-1927-4_17
mailto:mshankar@cseku.ac.bd
mailto:chanchal.roy@usask.ca
mailto:cordy@cs.queensu.ca
https://doi.org/10.1007/978-981-16-1927-4_3


46 M. Mondal et al.

showed that it can be a promising choice among the modern clone detection tools
on the basis of its measured accuracy in detecting each of the three major clone
types (Types 1, 2, and 3). Because of its high precision and recall, it has been used
as the clone detection engine in many studies of clones in both open source and
industrial software systems. NiCad’s high impact on the research community has
been recognized with a ten-year Most Influential Paper (MIP) award at ICPC 2018
[28], and its evaluation framework received the MIP award at SANER 2018 [29]. In
addition, the SimCad [35, 36] extension to NiCad received theMIP award at SANER
2021 [37].

1.1 The NiCad Method

NiCad works in four steps: parsing, normalization, comparison, and clustering. In
brief, each of these steps can be described as follows.

• Parsing: In this step, NiCad uses the TXL source transformation system [2] to
parse and extract all code fragments of a particular source granularity from the
entire source code base. Extracted fragments are converted to a standardized form
by removing noise such as spacing, formatting and comments, and reformatting
using pretty-printing. NiCad currently supports extraction of code fragments in
three granularities: functions, blocks, and whole source files. NiCad automatically
adapts to any programming language for which there exists a TXL grammar, and
currently comes pre-loaded with grammars and extractors for ATL, C, C#, Java,
PHP, Python, Ruby, Rust, Solidity, Swift, and WSDL.

• Normalization: In this second step, the extracted code fragments from the first step
can be further normalized, filtered, or abstracted using blind or consistent renaming
(to expose Type 2 similarity), filtering or abstraction of irrelevant features such as
declarations, and normalization of alternatives to remove irrelevant differences.

• Comparison: In the third step, the extracted and normalized code fragments are
compared using an optimized longest-common-subsequence (LCS) text compar-
ison algorithm to discover if they form clone pairs. The comparison uses a user-
specified difference threshold (0.0, 0.1, 0.2,…) to allow for detection of near-miss
(Type 3) clones. Identical (Type 1) code clones are detected using a difference
threshold of 0.0, and a difference threshold of 0.1 allows for clones with up to
10% dissimilarity (i.e., at least 90% similarity).

• Clustering: NiCad can report clone detection results either as clone pairs, or as
clone classes. Following comparison, clone pairs are clustered using a threshold-
sensitive transitive closure to expose clone classes.

NiCad works on a directory containing the source code of a software system and
outputs the code clones in the system as either clone pairs or classes, reported either
as an XML database or as an interactive HTML webpage that allows for side-by-
side viewing of original source fragments. While the XML form provides as easy
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form for further analysis, the HTML webpages allow for convenient browsing and
hand-analysis of results.

1.2 Cross-Clones and Extensibility

NiCad supports cross-clone detection, the detection of code clones between versions
of a single software system, or across different software systems, by reporting only
those clones that cross between the two versions or systems. For example, it can
be used to detect subtle differences between releases of a system in code evolution
analysis, to detect licensing violations and code borrowing between systems or code
bases, and to detect plagiarism in programming assignments. NiCad was designed to
be extensible, using a plugin architecture that allows for easy addition of other pro-
gramming languages and granularities. A detailed explanation of the NiCad plugin
architecture can be found in earlier work [27].

2 Clone Analysis and Management Using NiCad

Many studies [4, 5, 9–18, 20, 23–25] have used NiCad for detecting, analyzing, and
managing code clones. For example, Mondal et al. [9–15, 24, 25] used NiCad to
analyze the comparative stability of cloned and non-cloned code [14], for detecting
and analyzing clone-related bugs [5, 21], to investigate the impact of late propagation
in code clones [19], to identify clones that are important for refactoring and tracking
[16, 17, 20, 23], visualizing clone evolution [8], and for change impact analysis by
suggesting co-change candidates [12]. NiCad can easily detect all the three major
types of code clones (Types 1, 2, and 3) separately,making clone-type centric analysis
more convenient.

Tsantalis et al. [34] automatically assessed the refactorability of three types of
code clones detected by NiCad and found that Type 1 clones are more refactorable
compared to other clone-types. Fontana et al. [4] devised a clone refactoring advisor
by analyzing code clones detected by NiCad. Saha et al. [30] implemented a clone
evolution tracker, called gCad, which is capable of extracting genealogies of near-
miss code clones using NiCad.

NiCad has also been used for investigating micro-clones (code clones of at most
4 LOC) in software systems [25], and Mondal et al. [13] have detected and analyzed
near-miss micro-clones using it. Islam et al. [6] have compared the bug-proneness of
regular and micro-clones and have investigated bug-replication in micro-clones [7]
using NiCad.

Asaduzzaman et al. [1] developed a tool called visCad for flexible analysis of
code clones detected by NiCad. Mondal et al. [31] used NiCad for investigating
inconsistent changes in code clones. As NiCad helps us detect three types of code
clones separately, they performed their investigations on three clone-types separately.
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Mondal et al. [18] also investigated evolutionary couplings in three different types
of code clones using the NiCad clone detector.

NiCad has also been used for investigating change recommendation [22] by ana-
lyzing code clones. The latest version of NiCad, NiCad6, is scalable to very large
software systems consisting of tens of millions of lines of code. It can be installed
as a command line tool on Linux, Mac OS, Cygwin, and MinGW, and can be easily
integrated with IDEs and other environments.

3 Future Research Directions

Wang et al. [38] performed a rigorous study on different clone detectors in order to
find the best thresholds for detecting code clones using those detectors. According to
their study, the best minimum line threshold for detecting code clones using NiCad
from C and Java systems is 5 LOC. Most recent studies, however, analyze code
clones at a higher minimum-line threshold, such as NiCad’s default 10 LOC. Micro-
clones (code clones of at most 4 LOC) have become a recent concern in the clone
research community, and it is important to investigate whether NiCad is suitable for
detecting micro-clones as well. Although a number of studies [13, 25] have already
used NiCad for detecting and analyzing micro-clones, a comprehensive evaluation
of NiCad in detecting such small clones would be interesting, and future research
on tuning NiCad for better detection of micro-clones would add value for clone
detection research.

Currently, if we apply NiCad on the entire source code of a software system, we
get all the clone classes from the system. However, in a real-time coding environment
programmers often need to make a focused search of the code clones of a particular
target/seed fragment. NiCad does not directly provide such a targeted clone detec-
tion mode, and rather uses its cross-clone detection capability to allow for fragment
search by synthesizing a system containing only the fragment. Future research on
customizing NiCad to more efficiently support targeted clone search would be bene-
ficial to the programmers, and research in this direction might also play a significant
role in the wider industrialization of NiCad.
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SourcererCC: Scalable and Accurate
Clone Detection

Hitesh Sajnani, Vaibhav Saini, Chanchal K. Roy, and Cristina Lopes

Abstract Clone detection is an active area of research. However, there is a marked
lack in clone detectors that scale to very large repositories of source code, in par-
ticular for detecting near-miss clones where significant editing activities may take
place in the cloned code. SourcererCC was developed as an attempt to fill this
gap. It is a widely used token-based clone detector that targets three clone types,
and exploits an index to achieve scalability to large inter-project repositories using
a standard workstation. SourcererCC uses an optimized inverted-index to quickly
query the potential clones of a given code block. Filtering heuristics based on token
ordering are used to significantly reduce the size of the index, the number of code-
block comparisons needed to detect the clones, as well as the number of required
token-comparisons needed to judge a potential clone. In the evaluation experiments,
SourcererCC demonstrated both high recall and precision, and the ability to scale
to a large inter-project repository (250MLOC) even using a standard workstation.
This chapter reflects on some of the principle design decisions behind the success of
SourcererCC and also presents an architecture to scale it horizontally.

1 Introduction

With the amount of source code increasing steadily, large-scale clone detection has
become a necessity. Large code bases and repositories of projects have led to several
new use cases of clone detection including mining library candidates [11], detecting
similar mobile applications [3], license violation detection [14], reverse engineering
product lines [8], finding the provenance of a component [5], and code search [12].
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While presenting new opportunities for the application of clone detection, these
modern use cases also pose scalability challenges.

1.1 Motivation

To further illustrate the problem and its scale in practice, consider a real-life scenario
where a retail banking software system is maintained by Tata Consultancy Services
(TCS).A teamat TCSdeployed the banking system formany different banks (clients)
and maintained a separate code base for each of these banks. After following this
practice for a while, they decided to form a common code base for all these banks
to minimize expenses occurring due to (i) duplicated efforts to deliver the common
features and (ii) separately maintaining existing common parts of different code
bases.

As part of this bigger goal, the team decided to first identify common code blocks
across all the codebases. In order to assess the feasibility of using clonedetection tools
for this task, the team1 ran CloneDR, an AST-based commercial clone detection tool
on ML0000, a single COBOL program consisting of 88K LOC. The clone detection
process took around 8h on an IBM T43 Thinkpad default specification2 machine.
Each bank’s code base (8 of them) ran into multi-million lines of code spanning
across thousands of such COBOL programs in different dialects, posing a major
scalability challenge.

This situation at TCS is not unique and in fact represents the state of many com-
panies in the service industry that are now moving away from the greenfield devel-
opment model and adopting the packaging model to build and deliver software. In
fact, as Cordy points out, it is a common practice in industry to clone a module and
maintain it in parallel [4]. Similarly in open source development, developers often
clone modules or fork projects to meet the needs of different clients, and may need
large-scale clone detectors to merge these cloned systems toward a product-line style
of development.

While the above use cases are more pertinent to industry, researchers are also
interested in studying cloning in large software ecosystems (e.g., Debian), or in
open-source development communities (e.g.,GitHub) to assess its impact on software
development and its properties. However, very few tools can scale to the demands
of clone detection in very large code bases [20]. For example, Kim and Notkin [13]
reflected how they wanted to use clone detection tools for doing origin analysis of
software files but were constrained by its speed due to n-to-n file comparison. In his
work on using clone detection to identify license violations, Koschke [14] reflects
the following: “Detecting license violations of source code requires to compare
a suspected system against a very large corpus of source code, for instance, the
Debian source distribution. Thus, code clone detection techniques must scale in

1 The author was part of the team that carried out the analysis.
2 i5 processor, 8 GB RAM, and 500 GB disk storage.
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terms of resources needed”. In 2014, Debian had 43,0003 software packages and
approximately 323 million lines of code. In one of their studies to investigate cloning
in FreeBSD, Livieri et al. [16] motivate the need for scalable code clone detection
tools as follows: “Current clone detection tools are incapable of dealingwith a corpus
of this size, and might either take literally months to complete a detection run, or
might simply crash due to lack of resources”.

1.2 Challenges

While a few novel algorithms [10, 16] in the last decade demonstrated scalability,
they do not support Type-3 near-miss clones, where minor to significant editing
activities might have taken place in the copy/pasted fragments. These tools therefore
miss a large portion of the clones, since there are more number of Type-3 clones in
the repositories than the other types. Furthermore, the ability to detect Type-3 clones
is most needed in large-scale clone detection applications [18].

Many techniques have also been proposed to achieve a few specific applications
of large-scale clone detection [3, 14], however, they make assumptions regarding
the requirements of their target domain to achieve scalability, for example, detecting
only file-level clones to identify copyright infringement, or detecting clones only for
a given block (clone search) in a large corpus. These domain-specific techniques are
not described as general large-scale clone detectors, and face significant scalability
challenges for general clone detection.

The scalability of clone detection tools is also constrained by the computational
nature of the problem itself. A fundamental way of identifying if two code blocks
are clones is to measure the degree of similarity between them, where similarity is
measured using a similarity function. A higher similarity value indicates that code
blocks are more similar. Thus we can consider pairs of code blocks with high simi-
larity value as clones. In other words, to detect all the clones in a system, each code
block has to be compared against every other code block (also known as candidate
code blocks), bearing a prohibitively O(n2) time complexity. Hence, it is an algo-
rithmic challenge to perform this comparison in an efficient and scalable way. This
challenge, along with modern use cases and today’s large systems, makes large-scale
code clone detection a difficult problem.

The above challenges can be characterized in the form of the following research
questions.

Research Question 1. [Design]—How can we be more robust to modifications
in cloned code to detect Type-3 clones?

Research Question 2. [Computational Complexity]—How can we reduce the
O(n2) candidate comparisons to O(c.n), where c << n?

Research Question 3. [Engineering]—How can we make faster candidate com-
parisons without requiring much memory?

3 https://en.wikipedia.org/wiki/Debian.

https://en.wikipedia.org/wiki/Debian
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ResearchQuestion 1 has a direct implication on the accuracy of the clone detection
technique, and Research Questions 2 and 3 focus on improving the scalability and
efficiency of the clone detection technique.

SourererCC [19] addresses the above challenges leading to an accurate and fast
approach to clone detection that is both scalable to very large software repositories
and robust against code modifications.

2 SourcererCC

The core idea of SourcererCC is to build an optimized index of code blocks and
compare them using a simple and fast bag-of-tokens4 strategy which is resilient
to Type-3 changes (Research Question 1). Several filtering heuristics are used to
reduce the size of the index, which significantly reduces the number of code block
comparisons to detect the clones. SourcererCC also exploits the ordering of tokens
in a code block to measure a live upper-bound on the similarity of code blocks in
order to reject or accept a clone candidatewithminimal token comparisons (Research
Question 2 and 3).

2.1 Bag-of-Tokens Model

SourcererCC represents a code block using a bag-of-tokens model where tokens are
assumed to appear independently of one another and their order is irrelevant. The
idea is to transform code blocks in a form that enables SourcererCC to detect clones
that have different syntax but similar meaning. Moreover, this representation also
filters out code blocks with specified structure patterns. Since SourcererCC matches
tokens and not sequences or structures, it has a high tolerance tominor modifications,
making it effective in detecting Type-3 clones, including clones where statements
are swapped, added, and/or deleted.

The overlap similaritymeasure simply computes the intersection between the code
fragments by counting the number of tokens shared between them. The intuition here
is simple. If two code fragments have many tokens in common, then they are likely
to be similar to some degree.

It is interesting to note that such a simple strategy could prove to be so effective in
a complex software engineering task of identifying code clones. The primary reason
for the effectiveness of bag-of-tokens and overlap similarity measure is rooted in the
program vocabulary used by the developers while writing code. While programming
languages in theory are complex and powerful, the programs that real peoplewrite are
mostly simple and rather repetitive and similar [9]. This similarity is manifested in
the source code in the form of tokens, and particularly in identifiers. In source code,

4 Similar to the popular bag-of-words model [22] in Information Retrieval.
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identifiers (e.g., names of variables, methods, classes, parameters, and attributes)
account for approximately more than 70% of the linguistic information [6]. Many
researchers have concluded that identifiers reflect the semantics and the role of the
named entities they are intended to label [1, 7, 15]. Therefore, code fragments having
similar semantics are likely to have similarities in their identifiers. Furthermore,
oftentimes, during copy-paste-modify practice, developers preserve identifier names
as they reflect the underlying functionality of the code that is copied. They seem
to be aware of the fact that different names used for the same concept or even
identical names used for different concepts reflect misunderstandings and foster
further misconceptions [6]. As a result, while copied fragments are edited to adapt to
the context in which they are copied, they often have enough syntactical similarity
associated with the original fragment. This similarity is effectively captured by the
bag-of-tokens model in conjunction with the overlap similarity measure.

Of course, there are scenarioswhen programmersmay deliberately obfuscate code
to conceal its purpose (security through obscurity) or its logic, in order to prevent
tampering, deter reverse engineering, hide plagiarism, or as a puzzle or recreational
challenge for someone reading the source code. The simple bag-of-tokens model of
SourcererCC may not be effective in detecting clones in such cases. Other tools like
Deckard that rely on AST, or NiCad that uses heavy normalization, may be effective
under such scenarios.

2.2 Filtering Heuristics to Reduce Candidate Comparisons

In order to detect all clone pairs in a project or a repository, the above approach of
computing the similarity between two code blocks can simply be extended to iterate
over all the code blocks and compute pairwise similarity for each code block pair.
For a given code block, all the other code blocks compared are called candidate code
blocks or candidates in short.While the approach is very simple and intuitive, it is also
subject to a fundamental problem that prohibits scalability—O(n2) time complexity.
Figure1 describes this by plotting the number of total code blocks (X-axis) versus
the number of candidate comparisons (Y-axis) in 35 Apache Java projects. Note that
the granularity of a code block is taken as a method. Points denoted by ◦ show how
the number of candidates compared increases quadratically5 with the increase in
the number of methods. SourcererCC uses advanced index structures and filtering
heuristics—sub-block overlap filtering and token position filtering—to significantly
reduce the number of candidate comparisons during clone detection. These heuristics
are inspired by the work of Chaudhuri et al. [2] and Xiao et al. [21] on efficient set
similarity joins in databases. Sub-block overlap filtering follows an intuition that
when two sets have a large overlap, even their smaller subsets should overlap. Since

5 The curve can also be represented using y = x(x − 1)/2 quadratic function where x is the number
of methods in a project and y is the number of candidate comparisons carried out to detect all clone
pairs.
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Fig. 1 Growth in the number of candidate comparisons with the increase in the number of code
blocks. ◦ show quadratic increase in candidate comparisons; � denote the number of candidate
comparisons after applying the sub-block overlap filtering; + denote the number of candidate
comparisons after applying the token position filtering

we represent code blocks as bag-of-tokens (i.e., a multiset), we can extend this
idea to code blocks, i.e., when two code blocks have a large overlap, even their
smaller sub-blocks should overlap. This constraint allows one to reduce the number
of candidate comparisons by eliminating candidates that do not share a similarity
in their sub-blocks. Revisiting Fig. 1, the points denoted by � show the number
of candidate comparisons after applying the sub-block overlap filtering. The large
difference from the earlier curve (◦) shows the impact of filtering in eliminating
candidate comparisons. It turns out that if the tokens in the code block are further
arranged to follow a pre-defined order (e.g., order of popularity of tokens in the
corpus), we can further reduce the number of token and candidate comparisons by
computing a safe upper-bound (without violating the correctness). This filtering is
termed token position filtering. The points denoted by + in Fig. 1 show the number
of candidate comparisons after applying the token position filtering. The reduction is
so significant that empirically on this dataset, the function seems to be near-linear.
This is a massive reduction in the number of comparisons when compared to the
quadratic number of comparisons shown earlier without any filtering.
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3 Distributed SourcererCC: Scaling SourcererCC
Horizontally

SourcererCC advances the state of the art in code clone detection tools that can scale
vertically using high-power CPUs andmemory added to a singlemachine.While this
approach works well in most of the cases, in certain scenarios using vertical scalable
approaches may not be feasible as they are bounded by the amount of data that can
fit into the memory of a single machine. In such scenarios, timely computing clones
in ultra-large datasets are beyond the capacity of a single machine.

Under such scenarios, efficient parallelization of the computation process is the
only feasible option. Previously, research in this direction was limited due to the lack
of the availability of resources and the cost of setting up the infrastructure. But the
recent developments in the field of cloud computing and the availability of low-cost
infrastructure services like AmazonWeb Services (AWS), Azure, and Google Cloud
have enabled the research in this area.

However, it is important to note that simply dividing the input space and par-
allelizing the clone detection operation do not solve the problem, because running
tools on projects individually, and then combining the results in the later step, would
lead to a collection of common clones, but would not identify clones across divi-
sion boundaries [16]. Thus, efficient parallelization of the computation process is
necessary.

SourcererCC’s extensible architecture can be easily adapted to horizontally scale
to multiple processors and efficiently detect the first three types of clones on large
datasets preserving the same detection quality (recall and precision). We call this
extension of SourcererCC Distributed SoucererCC or SoucererCC-D.

SourcererCC-D operates on a cluster of nodes by constructing the index of the
entire corpus that is shared across all the nodes, and then parallelizes the clone
searching process by distributing the tasks across all the nodes in the cluster. In
order to achieve this, SourcererCC-D follows a standard Shared disk (see Fig. 2) or
a Shared memory (see Fig. 3) architecture style.

A shared disk architecture (SD) is a distributed computing paradigm in which all
disks are accessible from all the cluster nodes. While the nodes may or may not have
their own private memory, it is imperative that they at least share the disk space. A

Fig. 2 Shared disk
architecture style



58 H. Sajnani et al.

Fig. 3 Shared memory
architecture style

shared memory architecture (SM) is a distributed computing paradigm in which the
cluster nodes not only share the disks but also have access to global shared memory.

Figure4 describes SourcererCC-D’s clone detection process. Let us assume a
cluster of N + 1 nodes.6 Initially, a master node (any one of the cluster nodes) runs
the parser on the entire corpus and produces a parsed input file containing code blocks
according to the granularity set by the user. Next, themaster node runs SourcererCC’s
Indexer on the parsed input file to build an index. The constructed index, also known
as a global index, resides on the shared disk and hence is accessible by all the nodes
in the cluster. After the global index is constructed, the master node splits the parsed
input file into N different files namely Q1, Q2, Q3,…QN and distributes them to
each node in the cluster. Each node is now responsible to locally compute clones
of code blocks in its respective query file using SourcererCC’s Searcher. Note that
since each node has access to the global index, it can find all the clones in the entire
corpus for its given input, i.e., clones present across other nodes. It is for this reason,
nodes must have a shared disk space to store the global index. When all the nodes
finish executing the Searcher, all the clones in the corpus are found.

Note that in the above design, while the search phase is distributed and happens
in parallel, the index construction phase is not parallelized (only the master node
constructs the index). However, this hardly impacts the overall clone detection per-
formance because we found that index construction takes less than 4% of the total
time to detect clones.

SourcererCC-D can be deployed on in-house clusters, cloud services like AWS,
Azure, or even in-house multi-processor machines. The ability to scale to multiple
machines enables SourererCC to be effectively used for ultra-large datasets (e.g.,
entire corpus of GitHub) as demonstrated in [17].

6 In case of a single high-performance multi-processor machine, N + 1 is the number of processors
available on that machine.
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Fig. 4 SourcererCC-D’s clone detection process

4 Lessons Learned During Implementation

There were many lessons learned during the design, development, and testing of
SourcererCC. While these lessons are not new, this section reflects upon them, as
they played an important role in the successful development and adoption of the
SourcererCC tool in the academic community.Webelieve tool designers could benefit
from our experience and reflection.

Everything breaks at scale. One of the key lessons during SourcererCC’s devel-
opment can be aptly described in a phrase—“Everything breaks at scale, so expect
the unexpected”. We realized that at scale, we cannot test for every error. As a result,
we used assertions and exception handlers for things that can’t happen. We added
diagnostic code, logging, and tracing to help explain what is going on at run-time,
especially when we ran into problems during development. The philosophy—if this
failed, look forwhat else can fail—played a very important role duringSourcererCC’s
development.

Fault Tolerance. During the initial stages of the development, SourcererCC
crashed at times while running on large datasets after several hours of execution
due to unexpected reasons. Since SourcererCC did not have the mechanism to pre-
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serve its execution state during that time, such failures resulted in a loss of several
hours of computation time and effort, not tomention the frustration that comes along.
Based on these experiences, we realized that SourcererCC’s exception handler must
preserve its state of the execution (i.e., keeping track of howmuch data is already pro-
cessed), sowhen interrupted, SourcererCC’s execution can resume correctly from the
point of failure at a later time. The necessity of logging how much data is processed
by the tool is an important lesson that we learned the hard way.

Memory Leaks. SourcererCC is written in Java programming language which
has its own garbage collection mechanism. However, we encountered bugs related
to memory leaks while testing SourcererCC on large datasets. What I learned from
debugging memory leak issues is that while there are simple solutions to detect
and deal with memory leaks (e.g., logging the size of your data structures when
you modify them, and then searching the logs for data structures that grow beyond
a reasonable size), a tool is undoubtedly a big help. In the absence of the right
tools, debugging such issues could take unreasonable time and effort. We were able
to resolve these issues much faster using open-source tools like VisualVM7 and
Profiler4J.8

The problem could be in the data too. Oftentimes when we noticed anomalies
in the execution of SourcererCC, we thought that the issue would be in the code.
However, itwas not unusual tofind issueswith either the input data or our assumptions
about the input data. As a result, we realized that it is always useful to check for data
consistency and integrity even before any experimentation.

Tuning parameters to optimize SourcererCC’s performance. SourcererCC
has a few parameters (e.g., similarity threshold, tokenization strategies, and mini-
mum size threshold of a code block) that had to be tuned to optimize for accuracy,
scalability, and efficiency. This resulted in countless experiments, and keeping track
of these experiments and their settings posed a severe challenge.

To do this exercise systematically, we adopted the following process that indeed
turned out to be very effective.

We created a smaller dataset for parameter tuning experiments. Apart from the
smaller size, this dataset had characteristics very similar to the large datasets on
which SourcererCC is intended to be used. Executing SourcererCC on a smaller
dataset took less time, thus giving us more freedom to experiment.

In order to better keep track of SourcererCC’s performance on different parameter
configurations, we created a SourcererCC revision (using Git) for each configuration
of parameters. This not only enabled us to run several experiments in parallel but
also helped to easily switch back-and-forth across various parameter configurations.

To summarize, creating SourcererCC’s revisions for various parameter configura-
tions and running them in parallel on a smaller dataset greatly reduced the turnaround
time for performing experiments to tune SourcererCC.

SourcererCC is publicly available and actively maintained. It can be downloaded
from https://github.com/Mondego/SourcererCC.

7 https://visualvm.java.net/.
8 http://profiler4j.sourceforge.net/.

https://github.com/Mondego/SourcererCC
https://visualvm.java.net/
http://profiler4j.sourceforge.net/
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5 Going Forward

Code Clone detection research has come a long way in the last couple of decades.
We conclude by identifying some of the relevant areas that might shape the future
research in this field. There are many tools available for clone detection. In contrast,
there are relatively few tools that help in removing or effectively managing clones.
Identifying various means of eliminating harmful clones through automated tool
support is an interesting venue to explore in the future. Large-scale clone detection is
often faced with the challenge of how tomake sense of the large data produced by the
clone detection tools. Visual and interactive representations of the output to reinforce
human cognition and produce actionable insight is another useful direction for the
future. The utility of clone detection is not just limited to source code. Clone detection
in other software artifacts, including models, bug-reports, requirement documents,
and binaries, is turning out to be a necessity for several use cases. For example,
the ability to detect clones in software binaries is necessary for effectively detect-
ing Malwares and License Infringement. Therefore, extending code clone detection
research to other software artifacts is a promising area for the future. Clone research
should also focus on clone management by (i) identifying and prioritizing the clones
that are of interest to the developers for a given task, (ii) helping developers pro
actively assess the negative consequence of cloning, and (iii) categorizing clones as
harmful and harmless after detection. With the several new use cases of clone detec-
tion emerging, a reorientation of research focus toward application-oriented clone
detection might be useful. In many cases, state-of-the-art clone detection tools do not
behave well for these specific use cases. These observations point to the new research
opportunities to enhance clone detection technologies. Moreover, use case-specific
benchmarking to evaluate various tools and techniquesmight be another area to focus
on in the future.
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Oreo: Scaling Clone Detection Beyond
Near-Miss Clones
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Abstract With recent advancements in the field of code clone detection, researchers
havemade it possible to scale large datasets. The scope of scalable and accurate clone
detection, however, was limited to Type-1, Type-2, and near-miss Type-3 clones.
Most clone detectors fail to detect clones beyond the near-miss Type-3 category as
it becomes hard to detect such clones in a scalable manner. There are two main
challenges in identifying clones beyond the Type-3 category: (1) Syntactical simi-
larity is low between such complex clones and (2) comparing code snippets leads to
prohibitive quadratic comparisons, which causes candidate explosion and leads to
scalability issues. Oreo introduces a novel semantic filter named Action filter which
filters out a large number of code pairs that do not share semantic similarities, thereby
addressing the candidate explosion issue.Moreover, the candidates that pass this filter
have high semantic similarity which leads to the detection of complex and seman-
tically similar clones. As many semantically similar candidates may not be clones,
Oreo uses a deep learning model to validate the structural similarity between the
semantically similar candidates, which leads to greater accuracy in clone detection.
Oreo demonstrated broader range of clone detection, high recall, precision, speed,
and ability to scale to a large inter-project repository (250MLOC) using a standard
workstation. This chapter aims to describe the design decisions and concepts which
enabled Oreo to take scalable and accurate clone detection beyond the near-miss
clones.
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1 Introduction

Most clone detectors in the literature tend to aim for detecting specific types of
clones, usually up to Type-3. Very few of them attempt at detecting pure Type-4
clones, since it requires analysis of the actual behavior, which is a hard problem in
general. As we move from Type-3 to Type-4 clone categories, there lies a spectrum
of clones, which, although are within the reach of automatic clone detection, are
increasingly difficult to detect. Reflecting the vastness of this spectrum, the popular
clone benchmark BigCloneBench [12] includes subcategories between Type-3 and
Type-4, namely Very Strongly Type-3, Strongly Type-3, Moderately Type-3, and
Weakly Type-3, which merge with Type-4.

Listing 1.1 Different Clone Categories [7]

1

2 // Original method
3 String sequence(int start, int stop) {
4 StringBuilder builder = new StringBuilder();
5 int i = start;
6 while (i <= stop) {
7 if (i > start) builder.append(’,’);
8 builder.append(i);
9 i++;

10 }
11 return builder.toString();
12 }
13

14 ------------------------------------------------------------
15 // Type-2 clone of Original method
16 String sequence(int begin, int end) {
17 StringBuilder builder = new StringBuilder();
18 int n = begin;
19 while (n <= end) {
20 if (n > begin) builder.append(’,’);
21 builder.append(n);
22 n++;
23 }
24 return builder.toString();
25 }
26

27 ------------------------------------------------------------
28 // Very strongly Type-3 clone of Original method
29 String sequence(short start, short stop) {
30 StringBuilder builder = new StringBuilder();
31 for (short i = start; i <= stop; i++) {
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32 if (i > start) builder.append(’,’);
33 builder.append(i);
34 }
35 return builder.toString();
36 }
37

38 ------------------------------------------------------------
39 // Moderately Type-3 clone of Original method
40 String seq(int start, int stop){
41 String sep = ",";
42 String result = Integer.toString(start);
43 for (int i = start + 1; ; i++) {
44 if (i > stop) break;
45 result = String.join(sep, result, Integer.toString(i));
46 }
47 return result;
48 }
49

50 ------------------------------------------------------------
51 // Weakly Type-3 clone of Original method
52 String seq(int begin, int end, String sep){
53 String result = Integer.toString(begin);
54 for (int n = begin + 1; ;n++) {
55 if (end < n) break;
56 result = String.join(sep, result, Integer.toString(n));
57 }
58 return result;
59 }
60

61 ------------------------------------------------------------
62 // Type-4 clone of Original method
63 String range(short n, short m){
64 if (n == m)
65 return Short.toString(n);
66 return Short.toString(n)+ "," + range(n+1, m);
67 }

In order to illustrate the spectrum of clone detection and its challenges, Listing 1.1
shows one example method followed by several of its clones, from Type-2 to Type-4.
The original method takes two integers as parameters start and end and returns a
comma-separated sequence of integers in between the two numbers, as a string. The
Type-2 clone (starting in line #15) is syntactically identical to the original method
but differs only in the identifiers used (e.g. the parameter start has been replaced
by begin). It is easy for clone detectors to identify such clones. The very strong
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Type-3 clone of the original method (starting in line #28) has some lexical as well
as syntactic differences. It uses a for-loop instead of a while-loop. Although harder
than Type-2, modern clone detectors can detect this subcategory of Type-3 relatively
easily. The moderate Type-3 clone (starting in line #39) differs even more from
the original method. Here, the method’s name is different (seq vs. sequence), the
comma is placed in its own local variable named sep, and instead of using the type
StringBuilder, this method uses the type String. Modern clone detectors find it much
harder to detect this subcategory of Type-3 clones than the previous ones. The weak
Type-3 clone (starting in line#51) differs from the original method by a combination
of lexical, syntactic, and semantic changes. The differences here includeString versus
StringBuilder, a conditional whose logic has changed, and the use of an additional
input parameter, which lets the caller of the method decide what separator to use. The
similarities here are weak and very hard to detect. Finally, the Type-4 clone (starting
in line #62) implements a similar but not the exact same functionality in a completely
different manner. This clone variant uses recursion instead of iteration, and it has
almost no lexical or syntactic similarities to the original method. Detecting Type-4
clones, in general, requires a deep understanding of the intent of a piece of code,
especially because the goal of clone detection is similarity, and not exact equivalence
in structure and semantics.

Clones that are moderately Type-3 and onward fall in the Twilight Zone of clone
detection. The reported precision and recall of existing clone detectors drop dramat-
ically in this spectrum. Oreo aims to improve the performance of clone detection for
these hard-to-detect clones.

The goals driving the design of Oreo [7] are twofold: (1) Oreo wants to detect
clones in the Twilight Zone without hurting precision and (2) Oreo should be able
to process very large datasets consisting of hundreds of millions of methods. To
accomplish the first goal, Oreo introduces the concept of semantic signature based
on actions performed by that method. To analyze structural similarity, Oreo uses
machine learning based on features generated from methods’ software metrics. By
comparing semantic signature and structural similarities ofmethods,Oreo ensures the
detectionof complex cloneswhich are in theTwilightZone. In order to accomplish the
second goal, Oreo uses a simple size-based heuristic that eliminates a large number
of unlikely clone pairs. Additionally, the use of semantic signatures also allows it to
eliminate unlikely clone pairs early on, leaving the machine learning-based metrics
analysis to only the most likely clone pairs.

Table 1 shows the reported recall and precision numbers for Oreo. It has near-
perfect recall in T1, T2, VST3, and ST3 clone categories. In the harder to detect clone
categories (the Twilight Zone), namely MT3 and WT3, Oreo pushes the boundaries
of clone detection as it detects a large number of clones while maintaining a healthy
precision of 89.5%. To give some perspective, SourcererCC, which is not designed
to detect clones in the Twilight Zone, detects 5% clones in MT3 and almost 0% in
WT3 categories. Oreo is a scalable clone detector which was reported to scale the
entire IJaDataset, a large inter-project Java repository containing 25,000 open-source
projects [1]. There are around 3 million source files and around 250 million lines
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Table 1 Oreo’s reported recall and precision measurements on BigCloneBench

Recall Precision

T1 T2 VST3 ST3 MT3 WT3 Sample size
= 400

100 99 100 89 30 0.7 89.5

of code in this dataset. At the time of publication of Oreo, only two other clone
detectors, SourcererCC and CloneWorks, have been shown to scale to this dataset.

2 Overview

Figure 1 gives an overview of Oreo. To find out if a method M1 is a clone of another
methodM2, Oreo first applies a size filter where it compares the size of bothmethods.
If one method is significantly smaller than the other method, Oreo rejects the pair.
The intuition is that two methods with considerably different sizes are very unlikely
to implement the same, or even similar, functionality. It is important to note that this
heuristic can lead to some false negatives, specifically in the case of Type-4 clones.

Oreo uses the number of tokens in the method as a metric of size where tokens
are language keywords, literals (strings literals are split on whitespace), types, and
identifiers. This is the same definition used in other clone detection work (e.g. [9]).
Given a similarity threshold T between 0 and 1, and a method M1 with x tokens,
if a method M2 is a clone of M1, then its number of tokens, y, should satisfy the

inequation x × T ≤ y ≤ x

T
.

If a method pair satisfies the size filter, the semantic signatures of the two meth-
ods are then compared. Oreo captures the semantics of methods using semantic
signature consisting of Action tokens. The Action tokens of a method are the tokens
corresponding to methods called and fields accessed by that method. Additionally,
Oreo captures array accesses (e.g. student[i] and student[i+1]) as ArrayAccess and

Similarity: Size Similarity: Semantic Similarity: Structural
Method Pair:

[M1, M2]
Clone Pair:
[M1, M2]

Reject

No No No

Yes Yes YesInput

Metrics FilterAction FilterSize Filter

Fig. 1 Overview of Oreo



68 V. Saini et al.

ArrayAccessBinary actions, respectively. This is to capture this important semantic
information that the Java programming language encodes in its syntax.

As an example ofAction tokens found in amethod, consider the code inListing 1.2,
which converts its input argument to an encrypted format. The resulting Action
tokens are getBytes(), getInstance(), update(), digest(), length, append(), toString(),
translate(), ArrayAccess, and toString(). The ArrayAccess action token stands for
hashedPassword[i]. TheAction tokens contains semantic informationwhich is robust
against changes in variable names or types used by developers. Action tokens exploit
the intuition that if two methods perform the same function, they likely call the
same library methods and refer to the same object attributes, even if the methods
are syntactically and lexically different. The use of libraries is common in modern
software and these libraries provide basic semantic abstractions. Oreo assumes the
use of these abstractions by developers. Hence, Oreo utilizes these tokens to compare
semantic similarity between methods. This is done in the Action filter, as shown
in Fig. 1. Oreo uses overlap-similarity, calculated as Sim(A1, A2) = |A1 ∩ A2|, to
measure the similarity between the Action tokens of two methods. Here, A1 and A2

are sets of Action Tokens in methods M1 and M2, respectively. Each element in these
sets is defined as <t, f req>, where t is the Action Token and f req is the number
of times this token appears in the method.

Listing 1.2 Action Filter Example [7]

1 public static String getEncryptedPassword(String password,
String algorithm) throws InfoException {

2 StringBuffer buffer = new StringBuffer();
3 try {
4 byte[] encrypt = password.getBytes("UTF-8");
5 MessageDigest md = MessageDigest.getInstance(algorithm);
6 md.update(encrypt);
7 byte[] hashedPassword = md.digest();
8 for (int i = 0; i < hashedPassword.length; i++) {
9 buffer.append(Byte.toString(hashedPassword[i]));

10 }
11 } catch (Exception e) {
12 throw new

InfoException(LanguageTranslator.translate("474"),
e);

13 }
14 return buffer.toString();
15 }

Clones in the Twilight Zone have low syntactic and lexical similarity, but they
still perform similar functions. To detect clones in this zone, a semantic comparison
is necessary. Oreo uses Action Filter to measure the semantic similarity between the
two methods. If the two methods satisfy the Action Filter, they are then passed on to
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the next stage, where their structural similarity is compared. This stage is labeled as
“Metrics similarity” in Fig. 1. To compare the structural similarity, Oreo compares 24
software metrics of the two methods. Table 2 shows these metrics. The method pairs
that reach the metrics filter are already known to be similar in size and their actions.
The intuition for usingmetrics as the final comparison is thatmethods that are of about
the same size and that do similar actions, but have quite different software metrics
characteristics, are unlikely to be clones. The use of metrics requires fine-tuning over
a large number of configurations between the thresholds of each individual metric.
This makes manually finding the right configuration of these thresholds a hard task.
For example, it is not easy to decide manually if the “number of conditionals” should
have more weight over the “number of arguments” while comparing the structural
similarity of the two methods. To address this issue, Oreo uses a supervised machine
learning approach. If the machine learning model finds the input methods to be
structurally similar, then Oreo classifies the method pair as a clone pair because by

Table 2 Method-level software metrics

Name Description

XMET # external methods called

VREF # variables referenced

VDEC # variables declared

NOS # statements

NOPR # operators

NOA # arguments

NEXP # expressions

NAND # operands

MDN maximum depth of nesting

LOOP # loops (for,while)

LMET # local methods called

HVOC Halstead vocabulary

HEFF Halstead effort to implement

HDIF Halstead difficulty to implement

EXCT # exceptions thrown

EXCR # exceptions referenced

CREF # classes referenced

COMP McCabes cyclomatic complexity

CAST # class casts

NBLTRL # Boolean literals

NCLTRL # Character literals

NSLTRL # String literals

NNLTRL # Numerical literals

NNULLTRL # Null literals
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this time size, semantic, and structural similarities have been compared which gives
Oreo enough confidence to declare a method pair as a clone pair.

3 Machine Learning Model

Oreo uses deep learning to detect clone pairs. Neural networks, or deep learning
methods, are among the most prominent machine learning methods that utilize mul-
tiple layers of neurons (units) in a network to achieve automatic learning. Deep neural
networks (DNN) provide effective solutions due to their powerful feature learning
ability and universal approximation properties. DNNs scale well to large datasets
and can take advantage of well-maintained software libraries and can compute on
clusters of CPUs, GPUs, and on the cloud. DNNs have been successfully applied
to many areas of science and technology [10], such as computer vision [4], natural
language processing [11], and even biology [3].

Oreo uses a Siamese architecture neural network [2] to detect clone pairs. Siamese
architectures are best suited for problems where two objects are compared to assess
their similarity. An example of such problems is comparing fingerprints. Another
important characteristic of this architecture is that it can handle the symmetry [5] of
its input vector, therefore, an input pair (m1,m2) to the model will be the same as
the input pair (m2,m1). This ability is achieved by applying the same operation to
each component of the pair by using two identical sub-neural networks. The other
benefit brought by Siamese architectures is a reduction in the number of parameters;
the weight parameters are shared within two identical sub-neural networks making it
require fewer number of parameters than a plain architecture with the same number
of layers.

Figure 2 shows the Siamese architecture model used by Oreo. The input to the
model is a 48-dimensional vector created using the 24 metrics. The input vector is
split into two input instances corresponding to the two feature vectors associatedwith
the two methods for which we want to assess structural similarity. The two identical
subnetworks then apply the same transformations on both of these input vectors.
These two subnetworks have the same configuration and share the same parameter
values while the parameters are getting updated. Both have 4 hidden layers of size
200 neurons, with full connectivity, which means that each neuron’s output in layer
n − 1 is the input to neurons in layer n.

The outputs of the two subnetworks are then concatenated and fed to the com-
parator network which has 4 layers of sizes 200, 100, 50, and 25 neurons with full
connectivity between the layers. The comparator network’s output is then fed to the
Classification Unit which outputs a value between 0 and 1. Oreo claims that a clone
pair is detected if this value is above 0.5.

To train a model, Oreo used a training dataset of clone and non-clone pairs which
was generated using SourcererCC clone detector. Oreo used SourcererCC because
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Fig. 2 Siamese architecture model

it has been shown to have a high recall in Type-1, Type-2, and Type-3 clone types
[9]. Oreo’s approach is not tied to SourcererCC. Any other clone detector which has
a good Recall and Precision can be used to create this training dataset.

4 Power of Action Filter: Detecting Complex Clones
at Scale

Previous clone detection techniques using software metrics and machine learning
were found to be not scalable to large datasets. In previous metric-based clone detec-
tion approaches, the software metrics of each piece of code are required to be com-
pared against the software metrics of every other piece of code in a given dataset.
This leads to a large number of metric comparisons, which causes scalability issues,
also known as the “candidate explosion problem”. Moreover, metrics-based clone
detection captures the structural properties of code snippets but is unable to capture
semantic properties, which results in incorrectly reportingmany similar-looking code
pairs as clones that have different functionalities. This leads to a higher false positive
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rate, which is an undesirable outcome of such approaches. Action filter addresses
both of these problems and enables Oreo to scale large datasets while maintaining
acceptable precision.

4.1 Scalability Using Action Tokens

Similar to SourcererCC, Oreo also uses a bag of words model where instead of using
all of the language tokens, Oreo focuses only on the Action tokens. Using Action
filter, Oreo compares Action tokens of two methods to determine if they share a
semantic similarity. In order to speed up comparisons, Oreo uses an inverted index
of all themethods in the dataset usingAction tokens. To detect clones for anymethod,
say M, Oreo queries this inverted index for the Action tokens of M. Any method,
say N, returned by this query becomes a candidate clone of M provided the overlap-
similarity between M and N is greater than a preset threshold. We call M the query
method, N a candidate of M, and the pair <M, N> is called a candidate pair. The
inverted index makes it possible to retrieve, in a time linearly proportional to the
number of Action tokens in M, all semantically similar candidate clone methods of
M. Action filter removes a large number of false candidates thereby addressing the
candidate explosion issue.

Table 3 shows the impact of Action filter on the number of candidates which are
needed to be compared by the machine learning model in order to report clones.
These are the reported numbers where Oreo used 1,000 methods as a query to find
their clones in the entire IJaDataset. The threshold for Action filter was set to 55%.
The numbers demonstrate that the Action filter has a strong impact on reducing the
number of candidate pairs.

4.2 Semantics Captured by Action Tokens

The Action tokens contains semantic information which is robust against changes
in variable names or types used by developers. Consider a case where a developer
clones a method because they wanted to implement similar functionality. In order
to fit the copied code in their context, the developer will most probably modify the
identifiers and remove or add a few statements. Unless the developer doesn’t need
a particular library function, none of these changes will impact the library calls this
methoddepends upon.ThismakesAction tokens robust against Type-3modifications.

Table 3 Impact of action
filter

Action filter Num-candidates

No filter 2,398,525,500

55% 260,655
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Moreover, since the library methods encapsulate some functionalities, the Action
tokens of a method captures the actions this method needs to take in order to encode
a functionality.

Action tokens exploit the intuition that if two methods perform the same function,
they likely call the same library methods and refer to the same object attributes, even
if the methods are syntactically and lexically different.

5 Successful Applications of Oreo

Oreo introduced a powerful semantic filter which is robust against Type-3 modifi-
cations. Oreo also demonstrated how a Siamese DNN model can be used to detect
structural similarities between two methods. When used together, these two enable
Oreo to identify complex clones in the Twilight Zone. Nafi et al. used these con-
cepts to detect cross-language clones [6]. In their technique to detect clones across
different programming languages, they use the Action filter and the feature vectors
from the machine learning model introduced in Oreo. The Action filter identified the
cross-language clone-candidates with semantic similarities. These candidates were
then validated by the machine learning model to report cross-language clones with
high precision.

In another work, Saini et al. introduced InspectorClone, a novel semi-automatic
technique to evaluate the precision of clone detection tools [8]. Calculating the pre-
cision of clone detection tools is important to compare the detection capabilities of
different clone detectors. Automatic calculation of precision is still an open research
problem and therefore, researchers spend many hours manually calculating the pre-
cision of their techniques. InspectorClone builds upon the concepts such as Action
tokens and Siamese DNN introduced in Oreo and is shown to be very precise in
identifying true clone pairs. They used InspectorClone to calculate the precision of 8
different state-of-the-art clone detectors and demonstrated that on an average, there
is a 39% reduction in the manual work needed to calculate the precision of these
clone detectors. In some cases, InspectorClone was able to reduce the manual work
needed by more than 70%.

6 Adapting Oreo Architecture to Different Scenarios

Oreo presents a clever approach to generalize the detection capabilities of other clone
detectors. It makes it possible to use slower and precise clone detectors for training
purposes and presents a clever approach to generalize their detection capabilities
while addressing scalability and speed of execution. Oreo used SourcererCC to train
the DNN used in the metrics comparison stage. However, Oreo is not tied to Sourcer-
erCC. Any other clone detector can be used based on what kind of clones a user is
interested in. Because SourcererCC has a low recall on ST3 and MT3 clone pairs,
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one can choose a clone detector with better performance on these clone categories
to create a training dataset for Oreo’s DNN model. Moreover, one can lower the
threshold of SourcererCC while creating the training dataset if one is interested in
creating a dataset with more examples of ST3 clone pairs. Another approach might
be to use a manually tagged dataset for training purposes. It should also be possible
to improve the precision of Oreo by training it with a more precise clone detector
than SourcererCC.
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CCLearner: Clone Detection via Deep
Learning

Liuqing Li, He Feng, Na Meng, and Barbara Ryder

Abstract To facilitate clone maintenance, various automated tools were proposed
to detect code clones by identifying similar token sequences or similar program
syntactic structures in source code. They achieved different trade-offs between pre-
cision and recall. Inspired by prior work, we developed a new approachCCLearner,
a solely token-based clone detection approach using deep learning. Given known
clone pairs and non-clone pairs, CCLearner extracts features from each code pair
and leverages the features to train a classifier. The classifier is then used to compare
methods pair-by-pair in a given codebase to detect clones.We evaluatedCCLearner
by reusing an existing benchmark of real clone code—BigCloneBench. We split
the benchmark such that some data was used for classifier training, and some data
was used for testing. With the testing data, we evaluated CCLearner’s effective-
ness of clone detection, and also assessed three existing popular clone detection
tools: SourcererCC, NiCad, and Deckard. CCLearner outperformed existing tools
by achieving a better trade-off between precision and recall. To further investigate
whether othermachine learning algorithms can perform comparatively as deep learn-
ing, we replaced deep learning with five alternative machine learning algorithms in
CCLearner, and observed that CCLearnerworked best when using deep learning.
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1 Introduction

In software development, developers copy and paste code to quickly reuse already
implemented functionalities in multiple program contexts. However, the produced
code clones may be challenging to track and maintain. To overcome the challenge,
researchers built various automated clone detection tools [1–6]. For instance, Soucer-
erCC indexes code blocks with the least frequent tokens they use, in order to quickly
retrieve potential clones of a given code block [5]. NiCad leverages TXL [7] to
parse source code, and to convert the parsed syntax trees to a user-specified nor-
malized code representation [3]. NiCad then detects clones by comparing the token
sequences of normalized representations of different code. Both SourcererCC and
NiCad mostly identify Type-1 (T1) and Type-2 (T2) clones. Deckard parses syntax
trees from code, characterizes subtrees with numerical vectors, and detects similar
code by comparing numerical vectors [2]. Different from SourcererCC and NiCard,
Deckard detects more Type-3 (T3) clones [5].

Inspired by prior work, we designed and implemented CCLearner [8]1, a novel
deep learning-based approach to detect clones solely based on tokens. Our insight is
that tokens (e.g., reserved words, type identifiers, method identifiers, and variable
identifiers) provide good indicators of program implementation. If two code blocks
use the same tokens in identical or similar ways, the blocks are likely to be clones
and may realize identical or similar features. Furthermore, by treating the clone
detection problem analogous to a classification problem that decides whether two
blocks are clones or not, we can leverage machine learning (including deep learning)
to identify clones. In comparison with former approaches whose clone detection
algorithms were manually designed, CCLearner exploits deep learning to train a
classifier based on known clones and non-clones. With the classifier automatically
characterizing any commonality and variation between clone peers, CCLearner
detects clones by enumerating all method pairs in a given codebase and determining
which pair has the cloning relationship.

In our evaluation, we experimented with CCLearner and three existing clone
detection tools: Deckard [2], NiCad [3], and SourcererCC [5]. We constructed the
evaluation dataset based onBigCloneBench [9].CCLearner achieved the best trade-
off between precision and recall among all tools. To further evaluate CCLearner’s
effectiveness when it uses machine learning (ML) algorithms other than deep learn-
ing, we also experimented with five alternative ML algorithms in addition to deep
learning: AdaBoost [10], Decision Tree [11], Naïve Bayes [12], Random Forest [13],
and Support Vector Machine (SVM) [14]. We observed that CCLearner’s clone
detection effectiveness varied a lot between the adopted ML algorithms.

This chapter extends our recent research publication on CCLearner [8]. In the
following sections, we will first overview the published work (Sects. 2–4), and then
introduce our newexperiment andobservations after the publication (Sect. 5). Finally,
we will discuss the lessons learned from our investigation and share our thoughts on
future research directions.

1 Download link: https://github.com/liuqingli/CCLearner.

https://github.com/liuqingli/CCLearner
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Fig. 1 The DNN
architecture

2 Background

This section first introduces deep neural network (DNN)—the deep learning algo-
rithm used in CCLearner, and then clarifies our terminology.

Deep Learning (DL) includes a set of algorithms that can be used to model high-
level abstractions in data. Among various DL algorithms, the deep neural network
(DNN) [15] is a representative algorithm that demonstrated impressive performance
in a variety of classification tasks. DNN is an artificial neural network (ANN) that
has one input layer, one output layer, and two ormore hidden layers between the input
and output layers (see Fig. 1). Each layer has multiple nodes (i.e., artificial neurons).
Every node combines its inputs with the corresponding weights or coefficients to
either amplify or dampen those inputs. During the learning process, all weights of
nodes in DNN are optimized through backpropagation to minimize the loss between
predicted labels and true labels. In this way, each node infers which inputs are more
helpful for the overall learning task, and how each input progresses through the
network to affect the ultimate outcome, say, an act of classification [16].

In our research, a clone method pair or true clone pair represents two methods
or functions that have similar code. Each method in a true clone pair is denoted as a
clone peer of the other. Similarly, we define non-clone method pair or false clone
pair to represent any two methods that have very different code from each other.
Each method in the false clone pair is called a non-clone peer of the other method.

3 Approach

As shown in Fig. 2, CCLearner consists of two phases: training (Sect. 3.2) and
testing (Sect. 3.3). The Feature Extraction procedure (Sect. 3.1), performed in
both phases, extracts eight features from token sequences. In the training phase,
CCLearner takes in both clone and non-clone method pairs to train a deep learning-
based classifier. In the testing phase, given any codebase, CCLearner uses the
trained classifier to detect clones.
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3.1 Feature Extraction

CCLearner extracts features that characterize the clone (or non-clone) relation-
ship of any method pair (methodA,methodB). For each method, CCLearner first
tokenizes the code to identify all tokens, and uses a token-frequency list to record
the occurrence count of each token. In Fig. 2, token_freq_listA and token_freq_listB
separately represent such token information of methodA and methodB. We believe
that different kinds of tokens provide distinct signals to indicate code (dis)similarity,
so we classified tokens into eight categories, and CCLearner splits each method’s
token-frequency list into eight sublists accordingly. Next, CCLearner computes a
similarity score for each pair of token sublists between methodA and methodB. The
resulting eight similarity scores are then used as features to represent the relationship
between methods.

Token Categorization and Extraction. Different types of tokens may have dif-
ferent capabilities to characterize clones. For instance, clone peers are more likely
to share reserved words (e.g., “for” and “if”) rather than operators (e.g., “+” and
“&”), because they usually have identical program structures but may use slightly
different arithmetic or logic operations. Therefore, we classified tokens into eight
categories based on their syntactic or semantic meanings. Table 1 presents all token
categories and the related exemplar token-frequency sublists.

To create token-frequency (sub)lists based on source code,CCLearner uses both
the ANTLR lexer [17] and Eclipse ASTParser [18]. Given a code block, the ANTLR
lexer extracts all tokens in sequence. As the token sets of reserved words, operators,
and markers are well defined, CCLearner recognizes C1–C3 tokens purely based
on the lexer’s outputs. The token sets of literals, type identifiers, method identifiers,
qualifier names, and variable identifiers vary with codebases, so the ANTLR lexer
cannot identify C4–C8 tokens precisely. To overcome the lexer’s limitation, we used
Eclipse ASTParser to generate an Abstract Syntax Tree (AST) for each method, and
implemented several ASTVisitors to traverse trees and to retrieve tokens contained

Fig. 2 The overview of CCLearner
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Table 1 Token categories and related token-frequency sublists

Index Category name An exemplar token-frequency sublist

C1 Reserved words <if, 2>, <new, 3>, <try 2>, …

C2 Operators <+=, 2>, <!=, 3>, …

C3 Markers <;, 2>, <[, 2>, <], 2>, …

C4 Literals <1.3, 2> , <false, 3>, <null, 5>, …

C5 Type identifiers <byte, 2>, <URLConnection, 1>,…

C6 Method identifiers <read, 2>, <openConnection, 1>, …

C7 Qualified names <System.out, 6>, <arr.length, 1>, …

C8 Variable identifiers <conn, 2>, <numRead, 4>, …

by certain types of AST nodes. For instance, one of the ASTVisitors extracts method
identifiers (C6 tokens) by locating and processing all method-relevant AST nodes,
including MethodDeclaration and MethodInvocation. Notice that ASTParser com-
plements instead of replacing theANTLR lexer, because the parser is unable to reveal
all tokens that the lexer detects (e.g., reserved words).

Similarity Computation. When two methods are characterized with vectors of
token-frequency sublists, we rely on vector-wise similarities to capture the similarity
of method bodies. Intuitively, the more similar vectors there are between two meth-
ods, the more likely those methods are clones to each other. Specifically for each
token category Ci(1 ≤ i ≤ 8), CCLearner computes a similarity score sim_scorei
between methods’ corresponding token-frequency sublists LAi and LBi as follows:

sim_scorei = 1 −
∑

x
|freq(LAi, x) − freq(LBi, x)|

∑

x
(freq(LAi, x) + freq(LBi, x))

. (1)

Here x is a token contained by LAi or LBi, freq(LAi, x) represents the occurrence count
of x in methodA, and freq(LBi, x) denotes x’s frequency in methodB. The computed
similarity score varies within [0, 1]. In general, the more tokens shared between lists
and the less frequency difference there is for each token, the higher the similarity
score becomes. In particular, when the token-frequency sublists of a certain category
share no token in common,we set the corresponding similarity score to 0.5 by default.
We tried to set the default value as 0 or 1, but none of these values worked as well as
0.5 during the experiment. This may be because when no token is commonly shared
between sublists, the frequency distributions may be similar or not; 0.5 does not
suggest any bias toward either similarity or dissimilarity.
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3.2 Training

We need both positive and negative examples to train a classifier for binary classifica-
tion.CCLearner takes feature vectors extracted from clonemethod pairs as positive
examples and feature vectors derived from non-clone pairs as negative examples.
Each data point for training is represented as < similarity_vector, label >, where
similarity_vector is an eight-dimensional vector of similarity scores, and label is
either 1 (“CLONE”) or 0 (“NON_CLONE”). To avoid any confusion caused by
small clone methods, we refined our training data with methods that contained at
least six lines of code. As our approach is built on the token-frequency list compari-
son between methods, when method bodies are small, any minor variation of token
usage can cause significant degradation of similarity scores, making the training
data noisy. We used DeepLearning4j [19] to train a DNN classifier. The input layer
contains eight nodes, with each node taking one feature value in similarity_vector.
The output layer predicts whether a method pair is “CLONE” or “NON_CLONE”.
CCLearner configures DNN to include 2 hidden layers and to run 300 iterations for
training, asCCLearnerworked bestwith these parameter settings in our experiment.
Each hidden layer is configured to have 10 nodes, as suggested by the literature [20].

3.3 Testing

Given a codebase, CCLearner first detects methods from source files with Eclipse
ASTParser, and then enumerates all possible method pairs. CCLearner feeds each
enumerated method pair to the trained classifier for clone detection. Theoretically,
when n methods are extracted from a codebase, the clone detection algorithm com-
plexity should be O(n2). To reduce the comparison runtime overhead, we developed
two heuristics to filter out some unnecessary comparisons. One filter was applied to
examine two methods’ lines of code (LOC). If one method’s LOC is more than three
times the other method’s LOC, it is very unlikely that the methods are clones, so we
simply conclude that they compose a non-clone method pair and skip any further
processing. Another filter removes any candidate method having less than six LOC
for two reasons. First, small methods may contain so few tokens that CCLearner
cannot effectively perform clone detection. Second, the six-lineminimum is common
in clone detection benchmarks mentioned in prior research [5, 21]. In CCLearner,
the output layer has two nodes to separately predict the likelihood of clones and non-
clones: lc and lnc, where lc + lnc = 1. We set lc ≥ 0.98 to detect clones as precisely
as possible without producing many false alarms.
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4 Empirical Comparison with Existing Tools

To assess how CCLearner compares with existing tools, we created training and
testing sets based on a large-scale clone benchmark (Sect. 4.1). We also defined
metrics to measure the effectiveness of automatic clone detection (Sect. 4.2). By
applying CCLearner and three alternative tools on the datasets, we quantitatively
evaluated different tools’ capabilities of clone detection (Sect. 4.3).

4.1 Dataset Generation

BigCloneBench [9] is a large-scale code clone benchmark. It consists of two parts:
a codebase and a database. Table 2 summarizes the clone data contained by our
downloaded reduced version of BigCloneBench [22]. As shown in the table, Big-
CloneBench’s codebase has 10 source folders. Each folder hasmultiple Java files, and
each file contains various Java methods. Every method independently implements
one functionality (e.g., sorting). BigCloneBench’s database stores clone information
related to the codebase. It records over 6 million recognized true clone pairs and
260 thousand false clone pairs in the codebase. For each method pair, the database
records their code locations and clone type information. Specifically, VST3, ST3,
MT3, andWT3/4, respectively, represent “Very Strong T3”, “Strong T3”, “Medium
T3”, “Weak T3 or T4” clones.

Compared with other folders, Folder #4 has the largest number of both true and
false clone pairs. Therefore, we leveraged the data in this folder for training and the
data in all other folders for testing. As MT3 and WT3/4 clones can contain totally
different implementations of the same functionality, training a classifier with such

Table 2 Data in the downloaded BigCloneBench
Folder Id. # of Files LOC # of True Clone Pairs # of False

T1 T2 VST3 ST3 MT3 WT3/4 Clone
Pairs

#2 10,372 1,984,327 1,553 9 22 1,412 2,689 404,277 38,139

#3 4,600 812,629 632 587 525 2,760 24,621 862,652 4,499

#4 22,113 4,676,552 13,802 3,116 1,210 4,666 23,693 4,618,462 197,394

#5 56 3,527 0 0 0 0 1 34 12

#6 472 83,068 4 0 14 50 124 24,338 4,147

#7 1,037 299,525 39 4 21 212 1,658 11,927 15,162

#8 131 18,527 3 7 5 0 2 259 78

#9 669 107,832 0 0 0 0 0 55 1,272

#10 1,014 286,416 152 64 285 925 2,318 236,726 1,762

#11 64 6,736 0 0 1 6 0 245 0

Total 40,528 8,279,139 16,185 3,787 2,083 10,031 55,106 6,158,975 262,465
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Table 3 Datasets for training and testing

Dataset # of True Clone Pairs # of False Clone Pairs

T1 T2 VST3 ST3 MT3 WT3/4

Training 13,750 3,104 1,207 4,602 0 0 22,663

Testing 2,383 671 873 5,365 31,413 1,540,513 0

noisy data can cause the resulting classifier to wrongly report a lot of clones and
produce many false alarms. Therefore, we excluded MT3 and WT3/4 clones from
the training data. We also removed all methods that have five or fewer LOC to reduce
data noise. As Folder #4 has a lot more false clone pairs than true clone pairs, we
randomly sampled a subset of false clone pairs to achieve a count balance between
the positive examples and negative examples used in training. Table 3 presents the
resulting datasets we created based on BigCloneBench.

4.2 Evaluation Metrics

We defined three metrics to evaluate the effectiveness of automatic clone detection:
Recall measures a tool’s ability to retrieve true clones; it is the fraction or per-

centage of known true clone pairs that are detected by any clone detection approach.
Taking the labeled clones in BigCloneBench as known true clones, we could auto-
matically evaluate an approach’s recall for individual clone types. Since many tools
cannot effectively retrieve MT3 and WT3/4 clones, as with prior work [5], we eval-
uated the overall recall for T1, T2, VST3, and ST3 clones as follows:

RT1−ST3 = # of true clone pairs (of T1-ST3)

Total # of known true clone (of T1-ST3)
. (2)

Precisionmeasures a tool’s ability to correctly report true clones; it is the fraction
of true positives among all clone pairs reported by a tool. The labeled clones in
BigCloneBench cannot be used to automatically compute precision, because based
on our experience, the labeled dataset misses some true clones actually existing in
the codebase. Instead, we need to manually inspect all clones reported by any tool
to decide the precision rates. When a clone detection tool reports thousands of clone
pairs, we cannot afford the manual effort to inspect every pair. Therefore, in our
evaluation, we manually examined a sample set of clones reported by each tool. To
ensure that our sampled data is representative, we chose 385 reported clones among
all clone types for each approach. The number 385 is a statistically significant sample
size with a 95% confidence level and ±5% confidence interval, when the population
size is larger than 200,000. With the manual inspection of 385 sampled clone pairs,
we estimated precision as follows:
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Pestimated = # of true clone pairs

385 detected clone pair samples
. (3)

C score combines precision and recall to measure the overall accuracy of clone
detection. It is calculated as the harmonic mean of RT1−ST3 and Pestimated :

C = 2 ∗ Pestimated ∗ RT1−ST3

Pestimated + RT1−ST3
. (4)

4.3 Effectiveness Comparison of Clone Detection Approaches

To evaluate CCLearner’s capability of clone detection, we compared it with three
popular tools: SourcererCC [5], NiCad [3], and Deckard [2]. We applied all three
existing tools to CCLearner’s testing data with their default tool configurations.

Recall. As shown in Table 4, CCLearner achieved the highest recall among
all tools when detecting T1-ST3 clones; it was unable to detect as many MT3 and
WT3/4 clones as Deckard did. Specifically, CCLearner identified all T1 clones,
98% of T2 and ST3 clones, and 89% of ST3 clones. From T1 to WT3/4, as clone
peers become less similar, CCLearner’s recall decreased. The same trend was also
observed for other tools, which could be explained by the increased difficulty of
clone detection as clone peers become more dissimilar to each other. CCLearner
was unable to achieve 100% recall for all clone types, mainly because it relies on
the exactly same terms used in method pairs to compute similarity vectors. When
two clone methods share few identifiers and contain significantly divergent program
structures, CCLearner cannot reveal the clone relationship. In the future, we plan
to devise supplementary techniques for these specialist clones.

Precision. Table 5 shows the Pestimated , the number of reported clone pairs, and
the number of estimated true clone pairs for all tools. Notice that the number of true
clones was calculated as the product of Pestimated and the total number of reported
clones. Compared with SourcererCC and NiCad, CCLearner reported more true
clone pairs. Deckard had a lower Pestimated of 71% but reported more clones than

Table 4 Recall comparison among tools (%)

Tool T1 T2 VST3 ST3 MT3 WT3/4 Average
(RT1−ST3)

CCLearner 100 98 98 89 28 1 93

SourcererCC 100 97 92 67 5 0 80

NiCad 100 85 98 77 0 0 85

Deckard 96 82 78 78 69 53 83
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Table 5 Comparison among tools for the sampled precision, and the number of reported and true
clone pairs

Tool Pestimated (%) # of reported clone
pairs

# of estimated true
clone pairs

CCLearner 93 548,987 510,558

SourcererCC 98 265,611 260,299

NiCad 68 646,058 439,319

Deckard 71 2,301,526 1,634,083

Table 6 Tool comparison for C scores and runtime costs

Tool C (%) Runtime Cost (min)

CCLearner 93 47

SourcererCC 88 13

NiCad 76 34

Deckard 77 4h 24

any other tool. These numbers indicate that Deckard retrieved more true clones
and produced more false alarms (wrongly reported clones). This may be because
Deckard’s flexibly matches code snippets by tolerating more differences in the token
usage and program structures.

C Score and Time Cost. Table 6 lists different tools’ C scores and execution
time. CCLearner obtained the highest C score, which implies that CCLearner
detected clones more accurately by achieving both high estimated precision and
high T1-ST3 recall. Regarding tools’ runtime overhead, SoucererCC ran the fastest
(spending 13min). NiCad was slower than SourcererCC (spending 34min). Deckard
worked the most slowly (spending 4h and 24min), because it used an expensive tree
matching algorithm. Our observations on the above results align with the findings in
prior work [5]. CCLearner took 47min to detect clones. Similar to SourcererCC
and NiCad, CCLearner worked faster than Deckard since it did not reason about
program structures. However, CCLearner was slower than NiCad and Sourcer-
erCC, because it calculated similarity_vector and compared methods pair-by-pair
to find clones. In addition, CCLearner spent another 5 minutes on training, which
could be considered as one-time cost and ignored. Due to the pair-wise comparison
mechanism, CCLearner’s clone detection is an embarrassingly parallel task [23],
indicating that we can easily parallelize the task to further reduceCCLearner’s time
cost in the future.
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5 CCLEARNER Sensitivity to Machine Learning
Algorithm Used

By default,CCLearner usesDNN to train a classifier for clone detection. To explore
how well CCLearner works when it adopts different machine learning (ML) algo-
rithms, after the published work [8], we also experimented with five alternative ML
algorithms: AdaBoost [10], Decision Tree [11], Naïve Bayes [12], Random For-
est [13], and Support Vector Machine (SVM) [14]. Specifically for algorithm imple-
mentation, we usedWeka [24] because it is a software library implementing a collec-
tion of ML algorithms (including all five algorithms mentioned above). By replac-
ing DNN with each alternative, we trained five distinct learners and thus obtained
five tool variants: CCLearnera, CCLearnerd , CCLearnern, CCLearnerr , and
CCLearners. For fair tool comparison, when exploiting each alternative ML algo-
rithm, we reused the training and testing data shown in Table 3 to train a classifier
and to evaluate the resulting clone detection effectiveness.

Effectiveness Comparison between CCLEARNER and Its Variants. Table 7
presents the evaluation results byCCLearner and its five variants. For instance, row
CCLEARNER corresponds to the results by the default implementation using DNN,
and row CCLEARNERa shows results by the AdaBoost-based implementation. We
observed an interesting phenomenon in Table 7. Compared with CCLearner, all
variant approaches obtained higher recall rates, lower precision rates, and lower C
scores. Specifically, all variants’ overall recall rates are surprisingly identical: 97%.
This number is higher than CCLearner’s recall: 93%. All variants retrieved MT3
andWT3/4 clones much more effectively than CCLearner. For instance, both Ran-
domForest and SVM led to the same highestMT3 andWT3/4 recall rates (i.e., 62 and
5%). Meanwhile, the variants’ precision rates are much lower than CCLearner’s,
ranging from 46 to 70%. Overall, CCLearner acquired the highest C score—93%,
while CCLearnern obtained the second highest C score: 81%. SVM produced the
lowest C score: 63%. Although different ML algorithms were applied to the same
data, they presented distinct trade-offs between precision and recall. The variants
often found more true clones, but those true clones were always mixed in with a
larger number of false clones than would be reported by CCLearner.

Table 7 The effectiveness of CCLearner and its variants (%)
Tool ML Algorithm Recall Per Type RT1−ST3 Pestimated C

T1 T2 VST3 ST3 MT3 WT3/4

CCLearner DNN 100 98 98 89 28 1 93 93 93

CCLearner a AdaBoost 100 98 98 95 58 4 97 63 76

CCLearner d Decision Tree 100 98 98 96 61 4 97 59 74

CCLearner n Naïve Bayes 100 98 98 95 59 4 97 70 81

CCLearner r Random Forest 100 98 98 96 62 5 97 56 71

CCLearner s SVM 100 98 98 96 62 5 97 46 63
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Fig. 3 An MT3 clone pair detected by all variants but missed by CCLearner

A Case Study. To understand how CCLearner’s variants detect clones differ-
ently from CCLearner, we sampled 10 reported clone pairs for manual inspection.
Among the 10 pairs, 5 pairs were identified by CCLearner but missed by some
of its variants, while the other 5 pairs were revealed by all variants but missed by
CCLearner. We observed that each of the variants achieved higher recall and lower
precision because they tolerated more differences between clones. Figure 3 presents
a clone pair detected by all variants but missed by CCLearner. The clone peers
invoke different methods (e.g., HttpGet() and URL()) and use different types (e.g.,
HttpClient and InputStreamReader). The tool variants reported this clone pair by
matching code more flexibly than CCLearner. They achieved different trade-offs
between precision and recall, and all outperformed CCLearner in terms of recall
at the cost of sacrificing precision.

Effectiveness Comparison between Learning-Based and Non-Learning-Based
Approaches. We compared the effectiveness of variant approaches with the results
of non-learning-based tools shown in Tables 4, 5, and 6. We found that the learning-
based approaches obtained higher recalls but lower precisions. Specifically, all
CCLearner’s variants achieved the sameRT1−ST3: 97%.This number ismuch higher
than the recall rates of non-learning-based approaches (i.e., SourcereCC, NiCad, and
Deckard), which were 80–85%. All variants’ MT3 and WT3/4 recall rates are lower
than Deckard’s but higher than those rates of SoucererCC and NiCad. On the other
hand, the learning-based variants obtained relatively lower precision rates (46–70%)
than non-learning-based approaches (68–98%). Although the Naïve Bayes-based
approach (CCLearnern) achieved the highest precision rate (70%) among all vari-
ants, the rate is only comparable to that of NiCad (68%) or Deckard’s (71%). Overall,
CCLearnern worked better than the other variants, but its C score (81%) is much
lower than SourcereCC’s 88%—the highest C score obtained by the explored non-
learning-based approaches.
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Table 8 Time cost
comparison

Tool Time Cost (min)

CCLearner 47

CCLearnera 49

CCLearnerd 49

CCLearnern 50

CCLearnerr 49

CCLearners 52

Table 8 presents the time cost comparison between CCLearner and its variants.
All variants have similar time costs to CCLearner, with slightly higher runtime
overhead. According to Table 6, all these variants are slower than SourcererCC and
NiCad, but faster than Deckard.

6 Conclusion

We designed and implemented a deep learning-based clone detection approach—
CCLearner. Different from traditional clone detection tools, CCLearner does not
containmanually defined rules or algorithms to specially characterize clones. Instead,
it computes token-level similarity vectors between given code blocks, and relies on
DNN to characterize the similarity vectors for both clone pairs and non-clone pairs.
More learning-based clone detection tools have been recently proposed [25–29].
These tools process source code to extract tokens, ASTs, control flows, and/or data
flows, and to create vectorized program representations accordingly; they also adopt
more complex neural networks (e.g., recurrent neural network [30], recursive neural
network [31], and convolutional neural networks [32]) to take in the vector repre-
sentations and to better learn the characteristics of clone pairs. All these approaches
demonstrate the nice fusion of static program analysis and deep learning. They also
evidence that to better interpret the syntax or semantics of programs, we need to
improve both program representations and machine learning architectures.

We foresee that more and more learning-based approaches will be proposed in
the future to detect clones, analyze code, locate bugs, and repair code. As the future
research directions, we plan to conduct an empirical comparison between similar
tools and understand which learning-based approach design is superior to others.
Additionally, we are also curious about the limitation of deep learning (DL)-based
approaches. It seems that DL is good at performing certain tasks and perhaps bad at
doing other things. Although it is still unclear what is the domain where DL does
not quite fit, we will explore more usage of DL in Software Engineering research to
better characterize its application scope.
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BigCloneBench

Jeffrey Svajlenko and Chanchal K. Roy

Abstract Many clone detection tools and techniques have been created to tackle
various use-cases, including syntactical clone detection, semantic clone detection,
inter-project clone detection, large-scale clone detection and search, and so on.
While a few clone benchmarks are available, none target this breadth of usage. Big-
CloneBench is a clone benchmark designed to evaluate clone detection tools across a
variety of use-cases. It was built by mining a large inter-project source repository for
functions implementing known functionalities. This produced a large benchmark of
inter-project and intra-project semantic clones across the full spectrum of syntactical
similarity. The benchmark is augmented with an evaluation framework named Big-
CloneEval which simplifies tool evaluation studies and allows the user to slice the
benchmark based on the clone properties in order to evaluate for a particular use-case.
We have used BigCloneBench in a number of studies that demonstrate its value, as
well as show where it has been used by the research community. In this chapter, we
discuss the clone benchmarking theory and the existing benchmarks, describe the
BigCloneBench creation process, and overview the BigCloneEval evaluation pro-
cedure. We conclude by summarizing BigCloneBench’s usage in the literature, and
present ideas for future improvements and expansion of the benchmark.

1 Introduction

BigCloneBench is a dataset of nearly nine million clone pairs found within an
inter-project Java source code dataset named IJaDataset [1] (2.5M source files, 25K
projects, 250M lines of code). It contains both intra- and inter-project clones of the
first four clone types, and all of the clones it contains have beenmanually validated to
be similar by an implemented functionality. BigCloneBench is publicly available [2],
including an implementation of an evaluation framework called BigCloneEval [3].
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We were motivated to build BigCloneBench after building our synthetic clone
benchmark, the Mutation and Injection Framework [4]. We had found success with
this benchmarking strategy [5, 6], but knew we needed to complement it with a real-
world benchmark to overcome the limitations of synthetic benchmarking. We had
investigated the use of Bellon’s benchmark for this purpose but had found it to not
be reusable [6]. While a number of alternate benchmarks have been introduced [4,
7–9], none could evaluate tools for the large-scale inter-project clone detection and
code search scenario for which interest was emerging [10–12].

There has been a lack of clone benchmarks due to the difficulty in building one.
Any source code dataset large enough to contain a large and diverse set of clones is
far too large to manually inspect for clones. A mining approach is needed to reduce
the validation space to make benchmark construction feasible. Classically, the clone
detectors themselves have been used for this after manual validation [13], however,
this leads to a benchmark biased toward the clone detectors used to build it [6,
14], while research has shown that clone-pair validation is unreliable for building
benchmarks [7, 15, 16].

BigCloneBench was built by mining IJaDataset for functions implementing spe-
cific functionalities using automated techniqueswithmanual validation. This process
efficiently creates large clone classes of functions similar by functionality,which gen-
erates a large number of reference clone pairs for the benchmark. Since functions are
validated for target functionalities to build the reference clones, it avoids the manual
clone pair validation that is known to be subjective and error-prone.

2 Clone Benchmark Theory

Clone detection tools are evaluated using information retrieval metrics such as recall
and precision. While time-consuming, precision is not too challenging to measure,
and typically involves executing the tool for a variety of software systems and man-
ually validating a random sample of the detected clones. Recall has been very chal-
lenging to measure as it requires foreknowledge of the clones that exist within a
subject source code dataset independently of the clone detector under evaluation.

A clone benchmark is simply a reference set of known (true) clones within a
dataset of source code. The clone detector is executed for the dataset, and its recall
is measured as the ratio of the benchmark clones that are sufficiently detected by
the tool, accounting for reasonable differences in how the tool and benchmark may
report the clone (e.g. line boundaries). While a benchmark may help in measuring
precision, this is not typically the goal as precision can be measured independently.
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2.1 Idealized Benchmark

Given a collection of source code files S, where U is the universe of all potential
clones in the source code, an (idealized) clone benchmark is the set of true clones C ,
whereC ⊂ U . This implies a set N of all non-clones defined as N = U − C . SetsU ,
C , and N may be expressed in terms of clone pairs or clone classes for standard clone
detection benchmarking, or even as a mapping of search code fragment to result set
in the case of code clone search.

A clone detection tool outputs a collection D as its detected clones, which using
the benchmark can be decomposed into it’s set of true positives—TP = D ∩ C ,
true negatives—TN = (U − D) ∩ (U − C), false positives—FP = D ∩ (U − C),
and false negatives—FN = C − D. The tool’s recall, r , and precision, p, are then
defined as follows:

r = |TP |
|TP | + |FN | (1) p = |TP |

|TP | + |FP | (2)

2.2 Practical Benchmarking

There are two major obstacles preventing the creation and use of an idealized bench-
mark. Firstly, for a subject source dataset large and varied enough to produce a quality
benchmark, it is not practical to manually identify all clones within it [17]. Even if
this were not the case, experts often disagree on what is a true clone [14–16], which
may be user-case specific [18].

A (practical) clone benchmark is therefore a collection CB of known true clones
and FB of known false clones in a subject source dataset. CB is a subset of C , and
should be built in such a way that CB is a convincing approximation of C and can
thereby be used to estimate recall.

A limitation in most clone benchmarks is CB and FB are not sufficient to estimate
precision. Typically the benchmark creation process aims to create a high-quality
CB as recall cannot be measured without a benchmark, while the FB produced is too
small and unvaried to estimate precision. While CB can be used to measure an upper
and lower bound on precision, the range is typically too broad to be useful. However,
this is not a major obstacle as precision can be estimated by manually validating a
statistically significant random sample of a tool’s output for the benchmark subject
dataset, which is why the focus of benchmarks has been to measure recall.

The second obstacle is that clone detection tools often do not report clones per-
fectly, or there may be different (but equally legitimate) reporting styles for the
detection of a given clone [14]. The consequence is it is not as simple to compute the
intersection of the benchmark and the detection clone sets to measure recall. To use
a benchmark, a clone-matching algorithm must be defined that converts the set of
reported clones, R, into the set of detected clones, D, as defined in the benchmark:
D = m(R,CB). A common and simple matching algorithm is to consider a bench-
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mark clone in CB as detected if R contains a reported clone that covers a minimum
ratio of the benchmark clone by source line or token.

Therefore, with a (practical) clone benchmark, we can estimate recall and preci-
sion as follows, where Rs is a statistically significant random sample of R, and v(Rs)

is the clones in this sample manually validated as true positives:

r ≈ |m(R,CB)|
|CB | (3) p ≈ |m(R,CB)|

|m(R,CB ∪ FB)| (4)

While the bounds on precision can bemeasured solelywith the benchmark as follows:

�p� = |m(R,CB)|
|R| (5) �p	 = 1 − |m(R, FB)|

|R| (6)

3 Previous Benchmarks

One of the fundamental works in clone detection benchmarking was a tool evaluation
and comparison study conducted by Bellon et al. [13, 19, 20] in 2002. This study
challenged the creators of six contemporary clone detection tools to detect clones
in four C and four Java software systems. A total of 325,935 detected clones were
submitted to Bellon who performed a random blind validation of 2% of these clones
(a total of 6,528 clones requiring 77h of manual inspection) to produce a benchmark
containing 4,319 true clones. This dataset, along with a tool evaluation framework
implementing multiple clone-matching algorithms, was released to the community
and referred to as Bellon’s Benchmark. Multiple extensions of this benchmark have
been proposed, including Murakami’s [21] extension for gap-clone detectors, and
our extension [6] with tweaked clone-matching algorithms.

However, as a generalized benchmark there has been some criticism of Bellon’s
Benchmark. Baker [14] found inconsistencies in the clone types and validation pro-
cedure. Svajlenko et al. [6] found significant anomalies in recall measurements for
tools that did not participate in the original experiment, suggesting the need for an
updated benchmark dataset. The primary cause is that the benchmark only contains
clones the originating tools could detect, which differs from what the modern tools
can detect, and their style of clone reporting. Charpentier et al. [15] re-validated the
clones using multiple judges and found significant disagreement. In another work,
Chapentier et al. [16] show that non-experts in a particular software system are not
reliable in validating its clones. Studies have shown that manual clone validation is
unreliable in building benchmarks [15, 16, 18]. While Bellon’s Benchmark may not
be suitable as a general benchmark outside of its original tool comparison study, it
laid the groundwork for clone benchmarking studies.

Kurtz and Le [9] also built a benchmark based on manual clone validation. They
randomly sampled 1536 function pairs from three C software systems for manual
validation by multiple expert judges. This yielded a benchmark of 66 true clones.
While this benchmark has high confidence and was built independently of any clone
detection tool or methods, it is too small to provide generalized results.
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Lavoie and Merlo [8] present an approach for automatically building idealized
benchmarks. They use Levenshtein distance as a ground truth for discerning true
versus false clones, and implement an algorithm for computing a clone benchmark
given a configuration of the metric. The advantage of this approach is an ideal bench-
mark that can measure both recall and precision with no manual validation effort and
no introduced subjectivity. The disadvantage of this approach is it can only measure
the performance of a clone detector in comparison to Levenshtein distance, so it may
be best for approaches aiming to efficiently approximate this approach.

Our Mutation and Injection Framework [4, 17] is a synthetic clone benchmarking
framework based onmutation-analysis. Clone-producingmutation operators are used
to introduce a copy and paste (with edits) clone to a subject system, and the clone
detectors are evaluated for the detection of this clone. This is repeatedmany thousands
of times across operators implemented based on a taxonomy [22] of the kinds of edits
developers make on cloned code. The advantage of this benchmark is it allows the
capabilities of a tool to be explored for each kind of clone edit [6, 23], evaluated in a
controlled environment that prevents experimental biases and is particularity effective
in debugging clone detectors [24–26]. Its disadvantage is its results may not reflect
real-world performance, as the framework only produces simple clones, and has an
even distribution across the clone types. We have shown that combining synthetic
and real-world benchmarks reveals more about clone detection performance [23],
and have explored using high-level mutations to produce benchmarks for variant
analysis [5].

Yuki et al. [7] build a benchmark by automatically searching the history of a source
control system for changes that match clone refactoring patterns. Heuristics and
metrics are used to decide if an editing pattern is a true clone refactoring change. The
authors executed this approach for three Java projects (15K revisions), identifying 19
refactored clones. The advantage of this approach is it builds a benchmark validated
(indirectly) by the developers of the software system, which is considered the most
reliable [16]. It is a good example of a benchmark targeting a particular use-case,
as it has clones developers found worth removing by refactoring. The disadvantage
is the scalability required to build a sizeable and diverse benchmark. A risk in this
approach is that it may create a benchmark of the kinds of clones developers do
not need clone detectors to detect, or ones that were detected by an existing clone
detector. This is a promising work toward mining developer artifacts to indirectly
locate and validated clones.

4 Building BigCloneBench

We built BigCloneBench by mining IJaDataset for functions implementing vari-
ous target functionalities. We designed a semi-automatic approach that used search
heuristics to identify candidate functions implementing functionality with manual
validation to accept or reject the candidates. This yielded a large clone class of func-
tions similar by their shared functionality, which yielded a large number of clone
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pairs across the first four clone types. We repeated this process for over 40 function-
alities to build a diverse benchmark of nearly 9 million clone pairs. The procedure
is shown in Fig. 1.

(A1) Select Target Functionality. We select a functionality we expect to appear
frequently in open-source Java code, and which may yield many benchmark clones.
Inspiration comes from the investigation of StackOverflow, online tutorials, popular
third party libraries, and other Internet sources.

(A2) Identify Implementations.We research commonways of implementing the
target functionality in Java. We consider our own experience in these functionalities,
as well as explore common online sources such as StackOverflow and GitHub for
implementations. We consider how an algorithm can be expressed in different ways
(e.g. different control-flow statements), or how different first and third party libraries
may be utilized. From this, we compose a handful of minimum working examples
of the functionality that are then injected into IJaDataset as additional code.

(A3) Create Specification. We create a specification capturing the minimum
steps or features of a function to be considered a true implementation of the func-
tionality. The specification is designed to be permissive to any implementation of the
functionality, even ones we had not identified.

(A4) Search Heuristic. From the exemplar implementations and specifications,
we design a search heuristic that can be used to identify candidate functions that
might implement the target functionality. The heuristic consists of a set of keywords
and source-code patterns, which we expect to appear in implementation in various
logical combinations. We design the heuristic to balance two requirements: (1) it
should identify as many true positives as possible, but (2) it should not identify so
many false positives that it is cumbersome to validate.

(A5) Build Candidate Set. The heuristic is then executed for every function in
IJaDataset to identify the set of candidate functions.

(B) Tag Functions. The candidate functions are then manually validated by one
or more judges. The judges are provided with the specification and exemplar imple-
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mentations, and asked to mark a candidate as a true positive if it meets or exceeds
the specification. The judges use an application designed to improve their accuracy
by displaying the candidate with proper syntax highlighting, and by displaying the
exemplar functions and specification beside the candidate for reference. The judge
is able to example the candidate function in isolation as well as within the context of
its original source file.

(C) Final Judgment. Once the functions are tagged by the judges, the final judg-
ment is performed by summing the tags. When multiple judges have inspected a
function, the final judgment is decided by the winning vote. In the case of a tie, the
function is not included in the benchmark.

(D) True Clone Pairs. The set of exemplar functions and true positive functions
for a target functionality are assembled into a large clone class from which the clone
pairs are extracted and added to the benchmark. Automatic processing labels the
clones with their syntactic clone type (Type-1, Type-2, or Type-3). While all of the
clone pairs have semantical similarity due to their shared functionality, we find no
agreement in the literature on when Type-3 ends and Type-4 begins for this case.
Instead, we augment the clones with measures of syntactical similarity (by line and
by token after normalizations) which the benchmark users can use to separate Type-3
and Type-4as per their preference.

(E) False Clone Pairs. The exemplar functions (implementing only the function-
ality) are paired with each of the mined functions judged as false positives and added
to the benchmark as false clones. These false clones are not to share functionality, at
least as defined by the specification.

In total, nearly 80 thousand functions were tagged for 43 target functionalities
building a benchmark of nearly 9 million true clone pairs and nearly 29 thousand
false (semantic) clone pairs. This includes 48 thousand Type-1 clones, 4.2 thousand
Type-2 clones, and 8.9 million Type-3/Type-4 clones. If we split the Type-3 and
Type-4 clones by their measured syntactical similarity, we find we have 34 thousand
with 70–90% similarity, 329 thousand with 50–70% similarity, and 8.5 million with
0–50% syntactical similarity. In this case, we measure similarity as the minimum
ratio of lines or tokens the code fragments of a clone pair share after Type-1 and
Type-2 differences are removed by normalizations. This separation of the Type-
3/Type-4 clones is not enforced in the benchmark, but we have found it to be good
summarization categories in our studies [23, 25, 26, 28].

To create this benchmark, 78 thousand functions were manually tagged by 9
judges over 514 combined validation hours. In order to measure the subjectivity in
our validation efforts, 9,533 of these functions were examined by multiple judges.
For only 14.5% of these functions did at least one judge disagree with the others,
either due to subjectivity or validation error. Disagreement was less likely for code
fragments examined by only two judges (10.8%), but higher for validation performed
by three (20.4%) and four (18.8%) judges. While more judges increase the chance
to discover subjectivity, it also increases the likelihood one of the judges made a
validation error. We extrapolate the average disagreement to estimate that at least
15% of the clones across the benchmark are subjective or have validation errors.
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5 Using BigCloneBench

The clones inBigCloneBench havemetadata including functionality, clone type, size,
syntactical similarity, andwhether the clone is an intra- or inter-project clone.Users of
the benchmark can and should slice the benchmark by combinations of this metadata
to evaluate clone detection tools for particular clone properties. We demonstrated the
use of BigCloneBench in an experiment evaluating ten clone detectors [23].

In this experiment, we evaluated the tools usingBigCloneBench sliced by a variety
of properties and compared the results against our synthetic benchmark (the Muta-
tion Framework) [4]. The Mutation Framework showed us the precise capabilities of
these tools against the kinds of differences that can occur between clones, while Big-
CloneBench showed us how these capabilities translate into real-world performance.
Generally,we found that good performance in synthetic benchmarking translated into
good real-world performance, with some exceptions.

TheMutationFramework correctly identified that theType-2 clonedetectors could
not detect clones with Type-3 edits—its clone-matching algorithm rejects detected
clones that do not contain the introduced edit. However, BigCloneBench identified
that these tools are approximately able to detect very similar Type-3 clones that have
largeType-1/Type-2 regions.However, this detection is not ideal as it requiresmanual
efforts by the tool user to correct the clone boundaries. We found that tools may be
missing some Type-2 normalizations which resulted in poorer performance with
the Mutation Framework, but that these types of edits are less common in real-world
clones and therefore had better Type-2 recall with BigCloneBench. Conversely, there
were cases where the tools performed very well for synthetic clones in a controlled
environment, but then performed much poorer with BigCloneBench where the tools
experienced more challenges in parsing edge-cases. In summary, our finding was
that both synthetic and real-world benchmarks are needed to fully understand the
tools.

We were able to use BigCloneBench to measure Type-3 recall across the range of
syntactical similarity, with a focus on those with 50–100% similarity. We observed
that tools which use a similarity metric with a minimum threshold typically had a
hard drop-off in Type-3 recall. In contrast, tools that used techniques that were more
independent of straight syntactical comparison were able to maintain a small level
of recall even when the Type-3 similarity was much lower.

Unique to BigCloneBench is the ability to evaluate tools for both intra-project and
inter-project clones separately. The tools we evaluated were primarily designed for
the intra-project use-case, but there is interest in re-using these tools and algorithms
for inter-project use-cases. We were able to compare recall per clone type of the
tools for both use-cases, and we found that most of the tools had significantly weaker
recall performance for one of these use-cases for at least one clone type. However,
this was not uniformly in favor of intra-project clones, and in a little over half the
cases the tools were performing better for inter-project clones. We concluded that
the difference in performance was likely due to other factors, and that the tools are
appropriate for the inter-project use-case.
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We extended this experiment in our tool publications, includingSourcererCC [25],
CloneWorks [24, 29], and CCAligner [26]. These tools are designed for large-scale
clone detection, so we took random samples of IJaDataset of sizes at each order of
magnitude from one thousand lines of code to 100million lines of code (including the
full dataset at 250MLOC). In this way, BigCloneBench can also be used to evaluate
and compare the execution performance and scalability of clone detection tools for
large datasets. As well, it is a good target for evaluating precision for the inter-project
detection scenario.

6 BigCloneEval

We introducedBigCloneEval [3], a clone detection tool evaluation framework, which
is based on our tool comparison studies [23–26]. The procedure enabled by Big-
CloneEval is shown in Fig. 2, with each step implemented as a command-line tool.
The user registers the tools to be evaluated, which creates entries for them in the tools
database. They then execute the tools for IJaDataset and import the clones into the
framework. Many tools are unable to scale to IJaDataset, so BigCloneEval includes
a reduced and partitioned version of IJaDataset which is within the scalability limits
of most tools. For tools with significant scalability challenges, BigCloneEval can
dynamically further partition the datasets down to any size. Users can either exe-
cute their tool for these partitions manually, or implement a simple plugin to let
BigCloneEval automate tool execution for each partition.

Once the detection results are imported, the user can run the evaluation which
outputs a summary of the tools’ recall performance. This is measured per clone type,
per functionality, for ranges of syntactical similarity with summary aggregates across
these dimensions. The evaluation step is highly configurable so that the user can
measure recall for different slices of BigCloneBench by features such as clone size
and similarity. BigCloneEval includes multiple common clone-matching algorithms,
and supports a plugin system for custom clone matchers.

1. Register  Tool 2. Detect Clones 3. Import Clones 4. Evaluate Tool

BigCloneBenchDBIJaDataset
Clone

Detection Tool
Detected 
Clones

Tool Evaluation
Report

Tool
ID

ToolsDB

Config.

Clone
Detection

Tool

Fig. 2 BigCloneEval procedure [3]



102 J. Svajlenko and C. K. Roy

BigCloneEval is publicly available1 and open-sourced. It is written in Java and
uses embedded file-based databases for portability.

7 BigCloneBench in the Literature

We have used BigCloneBench in a number of clone detection tool evaluation stud-
ies [4, 23]. It has been adopted by various authors for evaluating their clone detec-
tion [24–26, 30–32, 32–37] and code search techniques [38, 39]. It has been adopted
as a training dataset for clone machine-learning studies. Keivanloo et al. [40] per-
formed unsupervised clustering for threshold-free near-miss clone detection in order
to overcome the configuration problem [41]. Li et al. [42] trained a token-based
clone classifier. Zhou et al. [43] trained a real-time code example recommender sys-
tem called Lancer. Guo et al. [44] trained amodel that uses clone detection to perform
review sharing across software projects.

8 Looking Forward

The first release of BigCloneBench included ten functionalities and demonstrated the
methodology. The second release greatly expanded on the breadth of the benchmark
by expanding to over 40 functionalities. It has been demonstrated that the benchmark
is effective in measuring recall for near-miss clone detectors for intra- and inter-
project clones [23], for the large-scale inter-project clone detectors [24–26] as well
as for clone-search [38, 39]. BigCloneEval has made the benchmark more accessible
and helped adoption in the literature. For future releases of BigCloneBench, our focus
will be on improving validation accuracy and supporting additional use-cases.

We would like to expand the function validation to have multiple judges for each
decision. Ideally, an even number of judges should be used so that high subjectivity
(split vote) can be used to reject candidates from the benchmark.

During the function validation process, the judges mark a function as a true pos-
itive of a functionality if it meets the minimum specification of that functionality,
regardless of if the function also performs other functionality. The implementation
may be the primary purpose of the function, or a piece of a larger functionality. This
can lead to clones that are similar by a shared piece of functionality, but on the whole
may appear otherwise dissimilar. These clones are ideal for the semantic code search
benchmark, as well as the use of clone detection for identifying cross-cutting con-
cerns. However, these clones may be undesirable to detect in other clone detection
use-cases. In order to identify these clones, we would augment the validation phase
to also ask the judges to indicate whether the functionality is the primary purpose
of the function or the part of a larger functionality. Users of the benchmark can then

1 https://github.com/jeffsvajlenko/BigCloneEval.

https://github.com/jeffsvajlenko/BigCloneEval
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include or omit these clones from their experiments as per their evaluation require-
ments. This has not impacted the near-miss clone detection benchmarking as we have
focused on the clones that both share functionality as well as are at least 50% similar
by syntax. This scenario is more likely with the simpler functionalities (e.g. “copy a
file”) and less-so with the more complex functionalities (e.g. “database update with
rollback”).

Other opportunities for expansion of BigCloneBench are to investigate other clone
mining approaches to build additional benchmark datasets in IJaDataset, evolving
BigCloneBench into a suite of benchmarks. Our previous studies have shown that
a multi-benchmark evaluation experiment provides the most complete evaluation
[6, 23]. For example, we could use our Mutation Framework [4] to seed synthetic
clones into BigCloneBench. The clones identified by BigCloneBench could also be
mined to classify them by different target use-cases for supporting more use-case-
specific benchmarking scenarios.
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Visualization of Clones

Muhammad Hammad, Hamid Abdul Basit, Stan Jarzabek,
and Rainer Koschke

Abstract Identifying similar code fragments, referred to as code clones, is beneficial
in software re-engineering and maintenance. Various visualization techniques have
been developed to present cloning information for programmers in a more useful
and comprehensible manner. This chapter provides a summary of state of the art in
visualizing software clones, along with a classification of visualizations according
to the supported user goals, and the relevant information needs to achieve the user
goals.Moreover, it further presents an assessment of clone visualizations on the basis
of clone relations and clone granularity.

1 Introduction

Similar code fragments known as software clones frequently exist in software appli-
cations. Cloning rates of 5–50% have been reported in the literature [13]. Many
clone detection and analysis tools have been developed, supporting different visu-
alizations to help developers in comprehending various aspects of cloning data.
In our previous publications [1, 2, 7], we presented a systematic mapping study
[3, 11] on clone visualizations. We classified those visualizations according to dif-
ferent criteria such as clone data, data facets, and human-vision characteristics, fol-
lowing the guidelines ofCard andMackinlay [4] andShneiderman [15].Wepresented
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a framework relating user goals with information needs and clone visualizations. We
also provided statistics on clone visualization research publications, identified gaps
in visualizations, information needs, and user goals, presented the state of empirical
evaluations in this field, and described the status quo and challenges in industrial
adoption. In this chapter, we summarize all our previous contributions, together with
an assessment of clone visualizations, on the basis of clone granularity and clone
relations.

2 User Goals and Information Needs

Clone detection tools identify clones and present cloning data with different visual-
izations to assist developers in completing software development tasks—referred to
as user goals in this chapter—such as bug detection, refactoring, and program com-
prehension. Each user goal requires some specific clone-related information—called
information needs—that can assist developers to attain that goal. We have identified
a list of information needs from the literature, as shown in Table1. The process of
searching for user goals and information needs is documented in our previous pub-
lications [1, 2, 7]. We have made the list as comprehensive as possible, but new user
goals or information needs can be discovered and added to it. We have identified a
total of 24 user goals and 38 information needs from the literature. Figure1 maps
user goal with information needs as a Dot plot. A colored cell indicates that the user
goal in that column requires the information listed in that row. The color gradient
above and on the left side of the matrix represents the extent to which a user goal is
supported by existing visualizations and how many alternative visualizations exist
for the listed information needs.

3 Facets of Visualization

We have introduced a taxonomy or classification of clone visualizations as per the
guidelines of Card and Mackinlay [4] and Shneiderman [15]. The objective is to
describe the visualizations more coherently and group them on the basis of similari-
ties. To differentiate what is visualized from how it is visualized, we considered two
types of similarities: similarities in the aspects of human vision (human-vision facets)
and similarities in the structure of the data (data facets) shown in the visualizations.
Figure2a, b show the two taxonomies, respectively. Further details can be found in
the original publication [7].
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Table 1 Information needs

N1 Where are clones in a given program unit located?

N2 Where are the instances of a given clone class located?

N3 Which clones exist across programs or program variants?

N4 How many instances are in a clone class?

N5 How large is a cloned fragment?

N6 How much is cloned in a given program unit?

N7 How much code is contained in a clone class (volume: the total sum over the size of all
instances of a clone class)?

N8 What types of syntactic structures are contained in a clone?

N9 What are the differences among the instances of a clone class?

N10 How different are the clones?

N11 What is the relevance ranking of clones for a particular task at hand?

N12 What are the differences in the context of clones (e.g., the units containing the clone
instances)?

N13 How much code of one program unit is cloned in another program unit?

N14 How much code of one program unit is cloned across a particular given group of
program units?

N15 What is the size of the program unit containing clones?

N16 Is there a clone in the current scope of the program?

N17 Which clones are present across versions of the evolving system and which clones
disappeared?

N18 How has the location of a clone changed in different system versions?

N19 How has a clone changed from one version to another?

N20 What is the overall trend of cloning across versions?

N21 What is the spread of cloning across versions?

N22 What are the effects of a clone onto quality and maintenance costs?

N23 Who is the owner of original and copied code?

N24 What is the license of the clone?

N25 Is the code private?

N26 How much code can be eliminated when clones are removed?

N27 How much code can be eliminated when a clone class is removed?

N28 What is the reduction of maintenance effort?

N29 Which clones can be removed?

N30 How can a given clone be removed?

N31 What are the costs and risks of removing a given clone?

N32 How are the clone classes related to each other (e.g., are their instances contained in
the same files)?

N33 How are clones related to formal and non-formal system artifacts other than code?

N34 What is the higher level abstraction/concept behind the clones or clone classes?

N35 What is the reason for the clones?

N36 Which other instances of a clone class need to be updated?

N37 How to update other instances of a clone class?

N38 Which (inconsistent) type-2 or type-3 clones must be re-synchronized?
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Fig. 1 Relation of
information needs and user
goals
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4 Clone-Visualization Techniques

In this section, we briefly summarize the existing categories of visualizations along
the facets described in Sect. 3. We also summarize the description of all the identified
visualizations in Table2. More details including the references to the original papers
can be found in our previous publications [2, 7].
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Table 2 Visualization descriptions and their evaluation on the basis of clone granularity and clone
relations (S = subsystem or sub-directory, F = file, C = code segment, P = clone pair, G = clone
class, Sc = super-clone)

Visualization Clone
granularity

Clone
relations

Description

Textual bm F, C P, G It is a visual component of code inspection view that
presents the relative positions and sizes of specific
code sections with bars

tmv F, C G It uses triangles to decorate regions with code clones,
and displays the frequency of a clone in those regions

ss F, C G It is used to visualize code clones in a large volume of
source code, where files are shown as vertical bars and
code lines as thin horizontal rows within bar segments
(stripes) representing clones

tcv F, C P It is used to display the set of identifier names in the
cloned source code to help a user to more quickly
grasp the semantics of a clone, where size and color
may denote the frequency of those words

civ F, C P, G It is similar to the visual diff [18] tools and used to
distinguish and highlight cloned and non-cloned code
in the source code of two or more files

Attribute
measure

pc S, F, C P, G, Sc It is a circle partitioned into typically distinctly colored
segments reflecting the proportions of clone
information such as clone pairs, clone classes, and
super-clones at various levels of granularity such as
subsystems, files, code segments, and clone types

bc S, F, C P, G, Sc It consists of rectangular bars, which are used to
represent and compare clones according to the selected
metrics

lc S, F, C P, G, Sc It displays the relationship between two variables to
display a trend in clones over intervals of time. It is
plotted along the x and y axes of a grid, as a series of
data points connected by straight line segments

pcv C G It is used to analyze n-dimensional data such as various
clone-class metrics. The n-dimensional space is drawn
by n parallel and evenly spaced vertical axes—one axis
for each variable

rsp S, F, C P, G It graphically depicts the similarity of clone instances
relative to a given instance called the leading node,
which is determined by using some similarity criteria

hm C P It is a mini-map representing whole clone instances,
where a color gradient is used to encode the number of
copies of clone instances

Temporal ts S, F, C G It is a special case of line chart which is used to display
the evolution of single or multiple clone metrics over
time

cev C P, G It displays clone classes for each version of the
software and links the clones across versions through
edges to display their evolution as clone genealogies

Bipartite ccfe F G It is used to display the bipartite relation among
clone-class families and source files, where smaller
nodes represent clone-class families, whereas larger
nodes represent source files

cccg S S, C, G It provides a summary about the extent of clone
coupling and cohesion in a software system at a higher
level of cloning through super-clones

(continued)
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Table 2 (continued)
Visualization Clone

granularity
Clone
relations

Description

Tree ntv S, F P, G, Sc It is used to present a hierarchical view of various
clone-related elements, up to the level of files and
subsystems. The hierarchy is shown as a list with
increasing indentation at each level of the tree

htv S, F P, G It is used to display cloning as well as the evolution of
clones over time at various levels of granularity as a
node-link diagram where a link represents containment

tm S, F P, G It typically represents clone information at various
granularity levels such as files and subsystems in the
form of a tree. The tree contains a group of nested
rectangles, where their sizes and colors can depict
certain clone information

es S, F P It is used to visualize cloning at the system level in
virtual reality as road junctions. The streets represent
the subsystem hierarchy in terms of directories and the
buildings depict files

Acyclic hd F G It is used to display cloning relationships between
clusters of files as a partially ordered set in the form of
a directed acyclic graph

ccd C G It is a graph-based visualization of clones that
describes both the content and the context of a single
given clone class

Cyclic dp S, F, C P It shows cloning as a matrix, where rows and columns
are the entities (lines, files, directories, etc.), while a
dot indicates cloning between the corresponding
entities. The rows may present entities different from
those in the columns

wv S, F P It is used to display internal and external clones along
with their relationship in the form of a tree as nested
circle segments. These segments represent an entity,
which are placed in concentric rings representing the
hierarchy

db S P It is a node-link diagram showing relations between
cloned code fragments and code entities such as
methods, classes, and packages

dwv F P It is used to display all files in the system as nodes
arranged in a circle and connected with each other as
edges based on shared clones

cs F P It consists of nodes and edges representing files and
clone connections

sg S P, G It is a node-link diagram, in which the nodes represent
clones, and their distances depend upon their similarity

ng S P It is a node-link diagram with composite nodes in
which edges are annotated by the extent of cloning

crvw C G It visualizes refactoring edits and anomalies in the
history of a clone class as a node-link diagram
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Fig. 2 Facets of visualization

4.1 Visualization of Attribute Measures

Visual attributes such as shape, color, and pattern are used to represent quantified
attributes of cloning, such as the degree of redundancy. Visualizations of attribute
measures include Pie Charts, Bar Charts, Line Charts, Parallel-coordinate Charts,
Relative Similarity Plot View, and Heatmap. Figure3 shows an example Heatmap,
where the number of clones of a code segment is encoded with a color gradient.

4.2 Textual Visualizations

Textual visualizations are used to display the source text, which helps developers to
analyze what is cloned and what changes have been made at the textual level and can
also show other characteristics of the text. Visualizations of text include Bar Maps,
Seesoft, Tag Cloud View, and Code Inspection View. Figure4 displays an example
Tag Cloud View to represent the relative significance of key identifiers contained in
cloned (in red) and non-cloned code (in black).
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Fig. 3 Left: Source view with highlighted duplicate lines; middle: Heatmap; right: differences
between code snippets selected in the Source view [10] (Example of Attribute Measure)

Fig. 4 Tag cloud view [14]
(Example of Textual
Visualization)

4.3 Temporal Data Visualizations

Temporal data visualizations are used to display how software clones are evolved
from one version of the software to another. A Time Series is a classic example of
temporal data visualization which displays the change of one or more variables of at
least ordinal scale over time, represented as a chart where the x-axis is time and the
y-axis are the evolving data of interest. Clone Evolution View is another visualization
that can be used to visualize the evolution of clone classes by linking the various
evolved versions of a clone as clone genealogies (Fig. 5a).1

1 http://softwareclones.org/cyclone.php Last accessed January 17, 2021.

http://softwareclones.org/cyclone.php
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Fig. 5 Example of temporal and bipartite visualizations

4.4 Bipartite Graph Visualization

Binary relations can be modeled as graphs with nodes representing entities and
edges representing relationships between entities. Bipartite graphs are a special kind
of graphs in which the set of nodes form two disjoint sets, such that there is no edge
connecting two nodes of the same set. These graphs are used to model situations
when there are two different concepts in a domain and it is required to model only
the relations between those two concepts. In the cloning domain, these graphs can be
used to display the containment of clones in various containers like files and directo-
ries. Clone Cohesion and Coupling Graph and Clone-Class Family Enumeration are
examples of bipartite graphs applied to cloning data. Figure5b shows a Clone-Class
Family Enumeration, where smaller nodes represent clone class families and larger
nodes represent source files. The edges express containment between the two. The
location of the nodes in the two stacked two-dimensional charts (one for clone-class
families and one for source files) depict two metrics for each of those nodes.

4.5 Tree Data Visualization

Hierarchies are frequently found in modeling software data and clone data is no
exception: clone instances are contained in files, which are contained in directo-
ries, which may be contained in other directories. Trees are a natural visualization
for hierarchies. Navigation Tree View, Hierarchical Tree View (Fig. 6a), Tree Map,
and EvoStreets are different types of tree-data visualization. Figure6a displays an
example Hierarchical Tree View [12], with leaf nodes representing files and internal
nodes representing directories. As in polymetric views, the width, height, and color
of nodes can describe different metrics. As one can see in this example, the tree
formed by the containment relation may be overlaid with other kinds of edges. In
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Fig. 6 Example of tree and acyclic visualizations

the example, those edges connect files sharing code. The thickness of those edges is
proportional to the amount of shared code.

4.6 Acyclic Graph Data Visualization

An acyclic graph represents a parent-child hierarchy between items such that each
item has exactly one parent item (except for root items that do not have any parent
and at least one root must exist in the graph). In other words, the graph is directed
and has no cycles. The total or partial containment (overlap) between cloned code
fragments is an example of such an acyclic relation. Visualizations for acyclic graphs
include Content-Context Diagram and Hasse Diagram. Figure6b displays a Hasse
Diagram [9], where a parent node (cm) represents the cloned code shared between
its children (files c and m). The width and height of the nodes can be used to depict
two different metrics, one of which, for instance, could be the number of cloned
lines.

4.7 Cyclic Graph Visualization

Visualization of type-2 clones results in cyclic graphs because the relation is reflex-
ive, commutative, and transitive. Hence, the resulting graph representing three code
fragments that are all type-2 clones of each other is a fully connected graph with
cycles. Cycles can also arise when clone data is enriched with additional static
dependency edges (e.g., method calls, which can be cyclic). There are various kinds
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Fig. 7 Clusters of similar
files (Example of Cyclic
Visualization) [16]

of visualizations of arbitrary graphs such as Dot Plot,Wheel View, Duplication Web
View,Dependency Browser,Clone Scatterplot,Similarity Graph,Exploration Graph,
Nested Graph, andClone Refactoring Visualization View. Figure7 displays an exam-
ple Similarity Graph in which nodes represent files, such that the area of the nodes is
proportional to their sizes and the edges indicate cloning across files. Interestingly,
the edges are not actually shown. Instead, they are used by a force-directed layout
algorithm to form clusters of connected nodes. Nodes in the same fully connected
components in the graph receive the same color and are placed next to each other
by the layouter (colors may be re-used for other clusters farther away). This way,
drawing the edges can be avoided.

5 Evaluation on the Basis of Clone Granularity and
Relations

Jiang et al. [8] and Zibran [17] have categorized clone visualizations based on clone
granularity and clone relationships.Clone granularity refers to a type of cloned entity
a particular visualization can display such as a code segment, file, and a subsystem.
Visualizations showing a higher granularity are particularly useful in visualizing
clones in large software systems.Clone relations refer to clone pairs, clone classes, or
super-clones. A super-clone or clone class family is a group of multiple clone classes
which exist in the same code entity (e.g., file) [13]. All these cloning situations can
be viewed from multiple perspectives, depending on the specific goal of the clone
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Fig. 8 Relation of visualizations and information needs

analysis at hand. Typically, a user will initially want to get a global view of cloned
modules or subsystems and then zoom in to the detailed views of specific regions of
the system. There is a rich set of visualization techniques that can help users analyze
clones from global and detailed perspectives.

We enhanced the proposed list, as shown in Table2. The second column describes
the level of granularity. The third column describes the type of clone relationship
a particular visualization can address. The last column gives a brief description of
each visualization. In order to interpret Table2, we are mentioning some examples.
The hierarchical tree view can visualize clones at the subsystem level, which allows
dealing with huge software systems. Similarly, navigation tree view can visualize
clones not only at the clone pair level but also at clone class or super-clone level. Dot
plot and code inspection view are good in visualizing clones at the clone pair level.
We further notice that there are only a few visualizations such as navigation tree
view, designed to display clones at the super-clone class level. New visualizations
or user interface features are required in the future.
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6 Discussion

We have related clone visualizations with their supported user goals through the
information needs addressed by them. This allows us to analyze the availability of
visualizations for each information need and user goal, and to identify the gaps
in terms of the information needs of user goals that are currently not addressed
by any visualizations. Figure8 provides a mapping between information needs and
visualizations in the form of a grid. The rows of the grid represent the visualizations
while the columns represent information needs in abbreviated form. Colored cells of
the grid indicate that the given visualizations support the corresponding information
need. We analyze the gaps present in Fig. 8 which can lead to three cases: (i) the
information describes abstract concepts for which we do not find visualizations in
the literature (e.g., N25 and N33), (ii) the information can be addressed with simple
extensions into existing visualizations (e.g., N26 and N27), or (iii) the information
requires exploration of new visualizations (e.g., N35). Similarly, Fig. 1 provides a
mapping of user goals onto information needs. By combining the two mappings, we
can assess the extent to which user goals are supported by existing visualizations [7].

Clone detection and analysis has steadily moved from research to practice,
although not all proposed work in the scientific literature has been adopted by the
software industry. There can be many reasons for the slow adoption. Most of the
clone analysis tools are not yet an integral part of software development tool suites.
Developers may not be aware of available clone tools or problems associated with
cloning. Cordy [5] stated several other reasons for industrial resistance in adopting
software maintenance automation in general. Despite these obstacles, some of the
clone visualizations are now actually part of industrial tools. For instance, XIAO [6]
is part of Microsoft Visual Studio where users can perform clone-management tasks
with the help of various visualizations. We hope that our classification framework
of clone visualizations will help to further close the gaps between practical needs in
the industry and the state of the art in clone-visualization research.

7 Conclusions

In this chapter, we have summarized our contributions of previous publications
[1, 2, 7]. We have described our classification of clone visualizations in terms of
visual attributes (how data is presented) and the information needs that they address
(what data is presented). We have shown a mapping of visualizations with informa-
tion needs and also a mapping of information needs with user goals. These mappings
allow us to identify information needs and user goals with multiple alternative visu-
alizations and those with currently insufficient support. We believe our classification
of visualizations will be useful for programmers, clone-analysis tool users, tool ven-
dors, and clone researchers. Users can evaluate the capabilities of clone tools in light
of their needs for clone detection and analysis. Based on the goals of tool users,
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tool vendors can decide which visualizations to include in their tools. Researchers
can use this work as a reference point for exploring open problems that are worth
further investigation. We do not claim that our list of clone visualizations, user goals,
and information needs presented in this work is complete, but at least it provides a
solid starting point and a useful framework for conducting further studies on clone
visualizations.
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Source Code Clone Search

Iman Keivanloo and Juergen Rilling

Abstract Identifying similarities in source code is the main challenge for reuse,
plagiarism, and code clone detection. Code clone search has emerged as a new
research branch in clone detection, aiming to provide similarity search functionality
for code snippets. While clone search shares its fundamentals with clone detection,
both its objective and requirements differ significantly. Clone search focuses on
search engines that are designed to find clones of a single input code snippet (i.e.,
query) from a large set of code snippets (i.e., corpus). Scalability, short response time,
and the ability to rank result sets among the major challenges have to be dealt with by
a clone search engine. In this chapter, we identify and define major concepts related
to clone search. We then present a framework that summarizes the architecture of a
clone search engine and enables us to provide a systematic view of the internals of
such an engine. Finally, we discuss how to benchmark and evaluate the performance
of clone search engines. The discussion includes a set of measures that are helpful
in evaluating clone search engines.

1 Introduction

The term clone dates back to 1903, referring to the outcome of a derivation activity
in living species [1]. In computer science, derivation and reuse are unavoidable
parts of programming and are known as cloning. The potential harms caused by
cloning in software development became a major motivation for computer scientists
to investigate this problem further, and a research discipline—clone detection—has
emerged.
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“Source Code Clone Search”, also known as just-in-time [2] or “clone search”
[3], has emerged in the last decade as a sub-branch of the traditional clone detection.
While clone search shares its fundamentals with clone detection, both its objective
and requirements differ significantly fromclonedetection.Clonedetection focuses on
offline processes to find all possible clone pairs within a static source code repository.
In contrast, clone search focuses on search engines that are designed to find clones
of a single code snippet (i.e., query) from a large set of code snippets (i.e., corpus).

There are a few common requirements for clone search engines. Responsiveness
is one of these common aspects of clone search engines. In the literature, several
terms have been used to emphasize the importance of response time in this area, e.g.,
just-in-time [2] search. Ranking result sets is another major functionality of clone
search engines. Similar to other search domains (e.g., Web search), clone search
engines are dealing with large search spaces [3]. As a result, for a given query (i.e.,
code snippet), a clone search engine may return hundreds of matches (i.e., clones)
[4]. The ability to provide a meaningful ranking of result sets (prior to showing it to
the end-user) is yet another common functionality provided by clone search engines.

A clone search engine requires several components and algorithms that work
together to provide its end-to-end functionality. In this chapter, first, we will start
by defining major concepts related to clone search. Then, we present a framework
that provides an overview of the architecture of a clone search engine, and its major
internal components.

Benchmarking and evaluation of clone search engines is challenging, e.g., [4].
First, we discuss the requirements prior to evaluation. Then, we present a set of
measures that can be used for evaluating clone search engines.We provide guidelines
for when and how to use each measure to avoid common pitfalls.

The remainder of the chapter is organized as follows. In Sect. 2, concepts and
components of a clone search engine are defined. Section3 describes how to evaluate
clone search engines and avoid common pitfalls. Finally, in Sects. 4 and 5, we review
the past, present, and future of clone search research.

2 A Framework for Code Clone Search

In this section, we introduce the details of a search engine that supports source code
clone search. First, we review major concepts related to code search engine which
is followed by an overview of the major logical components of such search engines.
The goal of this section is to provide a general framework that can be adopted and
extended in the future by the research community.
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2.1 Key Concepts

A source code clone search engine is responsible for finding similar code snippets
(e.g., code clones) matching a given code snippet. The engine searches through a
collection of code snippets for finding the matches. We refer to this collection as
corpus. We also refer to the input code snippet as query. The output of the search
process is a ranked list of code snippets. This list is sorted based on a relevancy
measure.

To serve a query, the engine has two responsibilities: (1) retrieval and (2) ranking.
The retrieval stage is responsible for returning as many relevant code snippets as
possible from the corpus. We refer to the output of the retrieval stage as candidate
list. The ranking stage sorts the candidate list based on specified relevancy measures.
The goal of the ranking stage is to identify and place the most relevant code snippets
at the top of the ranked list. As part of this ranking process, certain code snippets
might be removed from the candidate list before returning the final ranked list to the
end-user.

Figure1 shows a sample query. This query is a code snippet written in Java. The
intent of the code snippet, used in the search query, is to print the size of a list of
files. Using a clone search engine, our goal is to find code snippets in the corpus that
are similar to the search query. Figure2 shows a sample output returned by a code
search engine. In this example, the first code snippet in the result set corresponds to a
Type-1 clone, whereas all other items in the result set can be considered only Type-3
clones. For example, the second item is identical to the original search query, except
it deletes files (instead of printing the content size). In this example, the ranking
of the Type-3 clone results is based on their degree of dissimilarity with the search
query.

2.2 Framework Overview

In this section, we introduce the main components of a typical code clone search
engine. These components enable the engine to perform its two main responsibilities
(i.e., retrieval and ranking) of code snippets. Figure3 provides an overview of the
architecture of code clone search engines and their major components. We can split
these components into two groups: (1) offline and (2) online. The offline components

Fig. 1 An example of a
query for a source code clone
search engine. The main part
of the query is a computer
program, e.g., a code snippet
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Fig. 2 A ranked list of code
snippets generated by a code
clone search engine for a
given query, i.e., query
shown in Fig. 1

refer to processes that are required to prepare and initialize the search engine, before it
can process any incoming search queries.Among the offline components are crawling
and preprocessing as well as an indexing component. The online components are
processes that are triggered and executed once a search query is received and include
a retrieval and a ranking component. In the following, we discuss these components
with some examples.

2.2.1 Crawling and Preprocessing

Crawling the Internet (or internal resources) is the first step of offline processing. The
crawling step creates a comprehensive corpus of source code. This can be achieved by
direct access to source code repositories or by crawling off-the-shelf datasets. After
crawling, some form of source code preprocessing is required. For example, source
code normalization and style unification via abstract syntax tree (AST) construction
are common methods of preprocessing. The crawled source code in the corpus is the
content that can be searched by the clone search engine.
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Fig. 3 Components of a source code clone search engine. For each component, some examples
are provided. For example, code normalization and style unification are sample methods of prepro-
cessing in this figure

During preprocessing, a uniform representation of source code is generated by
transforming code tokens (e.g., from AST) using transformation rules. This includes
annotating token types and data cleaning by removing unnecessary information from
the content. In Fig. 3, two sample transformation rules are shown: Pattern-oriented
and Content-oriented.

2.2.2 Indexing

The indexing component is responsible for preparing the code corpus for fast and
efficient retrieval. Without this indexing, the search engine would have to iterate
through the complete corpus of code snippets in order to find matching query results.
An indexing method is therefore key for generating query results effectively.
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A multi-level indexing approach is recommended for large-scale code search [3].
Using amulti-level index, the source code is fingerprinted and indexed from different
angles and granularity. For example, one might consider both pattern- and content-
oriented fingerprints (introduced in the preprocessing stage) to create a multi-level
index. Another example is to create fingerprints at two or more levels of granularity,
such as line level and function level.

2.2.3 Retrieval and Ranking

At run-time, the given query is passed to the retrieval component to find and retrieve
all indexed code fragments in the corpus that are similar to the encoded code pattern
or fingerprint of the search query. The union of all candidate lists retrieved across all
indexes forms the final candidate list.

However, not all of the retrieved result candidates are equally similar to the search
query.Also, in a large Internet-scale corpus,most of the candidates are false positives.
Without a ranking component, the end-user has to manually inspect thousands of
matches to identify the true positives. The goal of the ranking step is to sort and
return the most relevant results, based on their degree of similarity (e.g., Fig. 2)
with the search query, at the top of the result set. The position of each candidate in
the ranked list is determined by its similarity degree to the query. Jaccard similarity
coefficient and the vector spacemodel with cosine similarity are two scalable ranking
models for code clone search engines.

Jaccard coefficient. Jaccard similarity coefficient is a widely used set theory func-
tion for content matching. In the context of clone search, it quantifies the similarity
between a code snippet and a given search query based on their shared encoded
patterns (e.g., lines). The similarity scores generated for each code snippet (in the
candidate list) can be used to rank the items in the candidate list. In J(q,s), q refers
to a set of encoded patterns that are extracted from the given query. Similarly s refers
to the set of encoded patterns from the target code snippet.

J (q, s) = |s ∩ q|/|s ∪ q| (1)

Vector space model (VSM). VSM is an alternative method for ranking. A key
benefit of VSM is that it provides additional flexibility during ranking compared
to the Jaccard coefficient. Using VSM, code snippets are represented as vectors
of frequency values. Entity frequency can be used to discriminate among entities’
contributions by considering both their local and global popularity (occurrences).
The relevance of an entity is expressed as the similarity between a pair of vectors.
Similarity is calculated using the cosine similarity function that measures the angle
between participating vectors.

Cosinesimilarity(q, s) = −→q · −→s /|−→q ||−→s | (2)
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3 Evaluation Framework for Code Clone Search Engines

Evaluating the ranking quality is typically not part of the performance assessment
of classic code clone detection research (e.g., [5]). This is in contrast to code clone
search, which shares many features with information retrieval, including the need
for evaluating the ranking quality of result sets.

In this section,we reviewa set of performancemeasures that support the evaluation
of code clone search engines. These performancemeasures can be classified into three
main categories: (1) common metrics for evaluating ranked result sets, (2) metrics
for ranked results sets with certain properties, and (3) non-functional performance
measures. We also review the concept of labeled datasets, which are an essential part
of any search engine evaluation framework.

3.1 Labeled Dataset

In information retrieval, evaluating the quality of search engines is based on the
relevancy of the reported results. That is, a search is considered to be successful if
it locates documents that are not only lexically similar to the query but also meet
end-user expectations [6]. Therefore, only hits (results) that are relevant from an
end-user perspective are considered to be correct answers (i.e., true positives). For
example, a result returned by the query “Java” might only be relevant when one
considers the user’s expectation, which might be referring either to the concept
coffee or the programming language concept. In its simplest form, such relevancy
can be measured on a binary scale (relevant vs. non-relevant). In more advanced
methods, a more refined scale, using different degrees of relevancy, is considered.
For example, we can use a scale with 4 labels: highly relevant, relevant, marginal, and
non-relevant. Benchmarks (with labeled datasets) are required to measure the quality
of result sets reflecting the feedback of either users or experts. The benchmark has a
labeled dataset which constitutes the “gold standard” or “ground truth”. The labeled
dataset includes three major parts: (1) the input data, i.e., search space, (2) some
queries, and (3) a set of relevant items per query. The dataset also typically contains
relevance scores for each query and relevant answers. These scores are subjective to
the human experts creating the benchmark, e.g., BigCloneBench [7]. In cases when
no benchmarks are available, user studies might be performed or researchers may
have to complete the labeling process, e.g., [4].

3.2 Measure Suite—Measures for Evaluation Ranked Clones

Recall and precision are common measures for evaluating the quality of unranked
result sets in clone detection. For clone search, we need measures for evaluating
ranked result sets. In this section, we review four measures that are in particular
useful for evaluating code clone search engines.
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3.2.1 First False Positive Measure

The location of the First False Positive (FFP) in the displayed result list can be used
as a measure for evaluating the performance of clone search engines. For exam-
ple, R1 and R2 are two sorted results with both result sets containing 5 hits: R1 =
fp1, h2, h3, h4, h5 and R2 = h1, h2, h3, h4, fp5. In this example, hi refers to a correct
answer at rank i. fpi refers to an incorrect answer at rank i, also known as False Pos-
itive. While both R1 and R2 have four correct answers, end-user perceived quality
for R2 would be considered higher, since the FFP occurs later in the ranked result
set (position 5 in R2 versus position 1 in R1).

Discussion. In clone search, one typically deals with a corpus that contains a large
amount of noise (irrelevant code snippets). For example, a case study conducted on
Internet-scale intra-project code clone search reports that for some queries, only 6
out of over 1 million code snippets in the corpus were relevant [4]. This example
highlights two major challenges in evaluating clone search engines: (1) being able to
detect the few relevant snippets and (2) assigning these true positive results a higher
priority than the false positives in the result sets. The FFP measure is easy to use and
interpret.

Weakness. Given that theFFP is highly dependent on the data andquery character-
istics, its applicability to evaluate system performance is often limited. For example,
if a corpus contains a skewed dataset with only x true positives for a given query, the
best achievable result using this measure is x + 1. This becomes an issue particularly
in cases where the number (true positives) varies across queries. Consequently, FFP
cannot be generalized well in the presence of such variance.

3.2.2 Precision@K Measure

Precision at k (P@K) is a measure that reports the number of true positives within
the top items of a ranked result set. This measure captures closely the end-user’s
perceived quality assuming the result set is presented to the end-user on a computer
screen. This measure is in particular applicable when (1) the total number of relevant
results is unknown and therefore no recall can be computed, and (2) the number of
returned items is too large to be fully validated, making the calculation of standard
precision measures impossible.

Precision@K = tpk/(tpk + fpk) (3)

Weakness. The major drawback of P@K is its dependency on the query and
data availability. For example, in order to provide a fair evaluation for “Precision
at 10”, at least 10 actual relevant items must exist in the corpus for all executed
queries. Furthermore, similar to the FFP measure, results from this measure cannot
be generalized (averaged) across queries if variance in the labeled dataset exists.
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3.2.3 Normalized Discounted Cumulative Gain Measure

The Normalized Discounted Cumulative Gain (NDCG) measure assesses the quality
of search engines and their ranking algorithms in terms of being able to assign higher
ranks tomore relevant true positive answers. NDCG takes into consideration not only
the relevance of hits but also the order of the results. To calculate NDCG, each answer
in the labeled dataset must be assigned a relevance score that presents its relevancy
to the query. Then we need to calculate Discounted Cumulative Gain or DCG. To
calculate DCG, we need to obtain the relevancy score of each item in the ranked
result for a given query in the labeled dataset. r(q, i) refers to the relevancy score of
ith item in the ranked result set for the given query q.

DCG(q, n) = r(q, 1) +
n∑

i=2

r(q, i)/log2(i) (4)

The output of DCG depends on the query and available data within the corpus.
It is not possible to compare directly DCG results of different queries with each
other, since the number of positive hits is dependent on the data characteristics of
the corpus. To overcome this limitation and to be able to compare results, we use
NDCG, which is a normalized value of DCG. We first calculate the Ideal DCG
(IDCG), which is the highest achievable DCG given the available relevance scores
in the oracle. Using DCG and IDCG, we can then calculate the final NDCG value as
follows: DCG(q, n)/IDCG(q, n).

Weakness. The measure allows for a fine-grained evaluation of the quality and
ordering of result sets, by providing a single value assessment for comparing different
options or configurations of a clone search engine. However, the measure is only
applicable when fine-grained ordering is important, otherwise, measures such as
Precision@K are preferred. Measuring NDCG is also expensive, since not only all
possible answers for each query have to be evaluated manually but also a similarity
score for each matching code snippet is to be provided. This is non-trivial since
manually assessing code snippets requires expertise and time.

3.2.4 Mean Average Precision Measure

Mean Average Precision (MAP) is a single value measure similar to NDCG. To
compute MAP for a single query, we need to measure the average of all precision at
ks, where k refers to the position of all relevant retrieved items in the result set. We
refer to the list of relevant answers in the result set as R. For experiments involving
more than one query, MAP is simply the average of all APs across queries.

AP = Average Precision = 1/|R|
∑

kεR

p@k (5)
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Weakness. MAP is an essential and low-cost measure that does not require the
creation of relevance scores (unlike NDCG) and only considers the positions of
true positives. However, since MAP does not include relevance scores, it lacks the
ability to distinguish high-quality true positives from the rest of the relevant answers.
Moreover, it is generally only suitable for queries where a reasonable number of true
positives are available; otherwise, its output might be biased.

3.3 Measures for Highly Positive Ranked Results

Sometimes, no or only a few false positives appear at the top of the ranked result
set. In other situations, all hits might be true positives. Assessing in such context
the type of ranking requires more precise measures that take also into account the
exact order of results in a ranked result set and compare them against the labeled
dataset. Such measures differ from earlier measures introduced in this section (e.g.,
NDCG), as they evaluate the relative or exact position of all items within the ordered
list. For such scenarios, we can consider the Normalized Kendall’s τ distance and
Spearman’s rank correlation coefficient measure.

Normalized Kendall’s τ distance. Kendall’s τ measures the dissimilarity of the
items’ order against the ideal order. Suppose π and σ denote the ordering of two
item sets containing the same items, N. S(π, σ ) is the minimum number of switches
required between adjacent items to make the first ordered list identical to the second
ordered list. Finally, we can compute the measure as follows:

τ = 1 − 2 × S(π, σ )

N (N − 1)/2
(6)

Spearman’s rank correlation coefficient. This measure compares the rank of
each shared retrieved item among two subject ranked lists, which are denoted by π

and σ with the number of items being equal to N, and i refer to the rank of an item
in the ranked list.

spearman = 1 − 6
∑N

i=1(π(i) − σ(i))2

N (N 2 − 1)/2
(7)

3.4 Non-functional Performance Measures

In addition to the quality of the result set, one has also to consider additionalmeasures
to evaluate non-functional aspects of a code clone search engine that can potentially
impact end-user satisfaction. The following three non-functional measures can be
automatically calculated and used to compare different code clone search engines:
(1) indexing time, (2) querying latency time, and (3) corpus size.



Source Code Clone Search 131

4 Past, Present, and Future

In this section, we review past, present, and future of source code similarity and
source code clone search. First, we review early research on code similarity search
and clone detection. Then, we review the current approaches for code clone search.
Finally, we highlight a few directions for future research in the domain of code clone
search.

One of the earliest similarity detection approaches dates back to the work by
Ottenstein [8] in 1976. Ottenstein introduced a metric-based approach for finding
plagiarism in student programming assignments. Later on, Grier [9] in 1981 extended
Ottenstein’s work to Pascal code. However, the first reference to the term “clone”
(in the domain of source code and programming domain) dates back to the work
by Abrams and Myrna [10] in 1979. Abrams and Myrna used the term clone in a
Programming Language (APL) context describing it as “... creates an output file and
starts a ‘clone’ of itself”. The concept of a “clone” in source code was later used
by Jacobsen [11] to describe pre-defined commands. Caudill and Wirfs-Brock [12]
also refer to “clone” as a reproduction of executable files in Smalltalk. Tanenbaum
[13] used clone to describe the variations of a software system. During the 1980s,
“clone” as a concept was further popularized mostly through its use as a reference to
computer hardware, such as compatible computer (hardware), an IBM compatible
(or short IBMclone) computer [14] or, in [15], as “...can’t tell what is on my disk
without a clone of my computer”. Among the first researchers who actually used
the term clone detection at the source code level were Carter et al. in 1993 [16].
They described clone detection as the process of finding similar telecommunications
systems using neural networks.

Over the last three decades, source code clone detection, the process of finding
duplicated contents in software artifacts, has matured as a research discipline. Com-
mon to this body of work is that they rely on a complete offline detection process to
find all possible clone pairs within a static source code repository. We refer to this
line of work as clone detection (e.g., [17]).

“Source code clone search”, a research area also known as just-in-time [2], instant
[18, 19], or simply clone search [3], has emerged in the last decade. SHINOBI [20]
supports clone search via a suffix array built on transformed tokens using CCFinder.
Barbour et al. [2] introduce a result sampling approach that uses results obtained
fromother clone detection tools to find candidate clones. The collected candidates are
indexed and then compared by the Knuth-Morris-Pratt string searching algorithm.
Bazrafshan and Koschke [21] exploit Chang and Lawler’s search algorithm, which
was originally proposed for the bioinformatics domain to find approximate source
code patterns. Clone search is also studied for compiled code (e.g., Java bytecode)
by Keivanloo et al. [22]. Further, Keivanloo conducted one of the first large-scale
studies on code clone ranking using the Jaccard coefficient and vector space model
via cosine similarity [4].

Indexing is oneof themajor parts of a clone search engine.Various techniques have
been explored in this area. Hummel et al. [23] use inverted index for scalable Type-2
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clone search. A multidimensional token-level indexing approach is introduced by
Lee et al. [18] using an R*tree on DECKARD’s approximate vector matching. The
language elements (e.g., assignment) constitute the dimensions of the search space.
Zibran and Roy [24] introduced an IDE-support for Type-3 clone search based on
Rabin’s fingerprinting algorithm and suffix trees.

Searching for Type-3 code clones within the source code published on the Internet
is a challenging task. We refer to this line of work as “Internet-scale clone search”.
Keivanloo et al. show hash-based multi-level inverted indexing [3, 25] is a viable
solution for Internet-scale Type-3 clone search. Recent studies provide evidence that
incremental indexing is also possible for Type-3 clone search [26].

There aremany unsolved problems in code clone search specifically in the context
of Internet-scale clone search. Current code clone search engines provide no support
for Type-4 clones. Furthermore, more work is needed in studying how deep learning
can contribute to real-time Type-4 clone search. Another major area to explore is how
to integrate and take advantage of code clone search in downstream applications (e.g.,
code example search [27]).

Benchmarking clone search engines is a research area that still requires more
attention. A major challenge in this area is the lack of large-scale labeled datasets.
Due to the lack of such datasets, Keivanloo had to manually label 32,000 query and
code snippet pairs to complete his early research on Internet-scale code clone search
[4]. Later, he initiated the BigCloneBench [7] to create a dataset that can be used for
clone detection, clone search, and code search community. Larger and more diverse
datasets are now needed specifically to provide better support for research in deep
learning. Finally, automatic filtering and pruning of the result set of a clone search
engine is an area that has yet to be explored. For example, the threshold-free clone
detection method [28] can be extended to clone search engines.

5 Conclusion

Aclone search engine requires several components and algorithms that work together
to provide useful end-to-end functionality. In this chapter, we provide a blueprint for
designing and evaluating clone search engines. First,wedefinemajor concepts related
to clone search. Then, we present a framework that summarizes the architecture of
a clone search engine. This enables us to provide a systematic view of the internals
of a clone search engine, including reference techniques that can be used for future
research. We also discuss requirements for evaluating clone search and present a set
of measures that can be used to evaluate and compare clone search engines.

We also include a discussion on future directions for code clone search, such as (1)
support of clone search beyond Type-3 clones, including the use of deep learning,
(2) the creation of more diverse datasets for evaluating and training clone search
models, (3) and multi-purpose clone search engines.
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Code Similarity in Clone Detection

Jens Krinke and Chaiyong Ragkhitwetsagul

Abstract Clone detection is one application of measuring the similarity of code.
However, clone and plagiarism detectors use very different representations of source
code and different techniques to identify similar code fragments. This chapter inves-
tigates the impact of source code representation (i.e. tokenisation and renaming of
identifiers and literals) and the impact of similarity measurements (e.g. Jaccard index
or Kondrak’s distance over n-grams) for measuring source code similarity on two
known datasets. A comparison using average precision at k with dedicated clone
and plagiarism detectors shows that simple similarity measurements like Kondrak’s
distance using n-grams over tokenised source code usually outperform specialised
tools for the detection of similar, cloned, plagiarised or duplicated code.

1 Introduction

In our previous work [17, 21], we have compared the performance of clone detectors
and plagiarism detectors to other measurements of source code similarity. The per-
formance in terms of recall, precision, etc. was very different and varied depending
on the dataset the detectors were applied to. The clone and plagiarism detectors were
using very different approaches on how they transform the source code and how
they match fragments to identify clones. They typically tokenise the source code
before some kind of similarity measurement is applied and sometimes the tokenised
or otherwise transformed fragments must even be identical, not just similar. More-
over, our previous work also showed that other similarity measurements, e.g. textual
similarity, can outperform clone or plagiarism detectors. Despite previous work that
has compared different clone detectors or plagiarism detectors, it is unknown how
much different forms of tokenisation and different similarity measurements actually
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matter in clone or plagiarism detection. Therefore, we have investigated the impact
of tokenisation and varying similarity measurements on detection of similar code
fragments using the two datasets we used in our previous work.

In the next section, we summarise our previous work and present new results. The
following section presents the investigation on tokenisation and similarity measure-
ments. A discussion section compares the results of the investigation to the results
from known clone, plagiarism and duplication detectors.

2 Background

In this chapter, we summarise the main elements of our previous work and present a
few extensions that have been made to it. In our previous work [21], we compare 30
code similarity analysers on Java source code with the presence of pervasive source
code modifications, created with tools for source code and bytecode obfuscation and
boiler-plate code. The code similarity analysers are compared using their optimal
configurations, i.e. the best parameter settings and similarity thresholds for the tech-
niques to differentiate between similar and dissimilar code. From the experiment, we
found that highly specialised source code similarity tool, such as CCFinderX [13],
outperforms general textual similarity measures. However, there are some special
cases when the code is heavily modified that general string matching techniques can
outperform code clone and plagiarism detection tools. Our experimental results also
show that by applying compilation and decompilation to the source code before per-
forming similarity detection can increase the performance of code similarity tools.
The extension of the work that apply compilation and decompilation before perform-
ing clone detection on open-source software projects also gives similar findings [19].
Furthermore, the study demonstrates that optimal configurations from one dataset
cannot be applied effectively on another dataset. The optimal configurations reported
in the previous work can be used as a guideline for tuning the tools in the situation
where Java source code contains pervasive modification and boiler-plate code.

2.1 Experimental Setup

In this chapter, we adopt the experimental framework that have been used in our
previouswork [21]. The overview of the framework is shown in Fig. 1, which consists
of three main phases or steps.

In Step 1, the test data preparation, a collection of Java source code files are
prepared. In Step 2, the code similarity detection tools that are being evaluated are
executed inside the framework. The tools are executed on every file pair in the dataset
to generate a similarity report containing similarity values for all the pairs. In Step 3,
the similarity report is analysed. We extract a similarity value sim(x, y) from the
report for every pair of files (x, y), and classify the pair as being similar (clones) or
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Fig. 1 The code similarity
evaluation framework
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not similar based on a chosen threshold T . The set Sim(F) of similar pairs out of all
the file pairs in F is

Sim(F) = {(x, y) ∈ F × F : sim(x, y) > T } (1)

After the classification, any performance score such as precision, recall, accuracy
or F1 score can be computed. The framework focuses on the F1 score as the main
criteria to rank the results and optimises the threshold so that the best F1 score is
achieved. Moreover, the framework varies the configuration of each tool to find the
configuration that achieves the best F1 score. The optimisation overfits the config-
uration and the threshold in order to find the best achievable performance of a tool
for a dataset.

2.2 Datasets

There are two main datasets that are used in the framework: the SOCO dataset and
the OCD dataset. We briefly explain them below.

2.2.1 The SOCO Dataset

TheSOCOdataset is adopted from theDetectionofSOurceCOdeRe-use competition
that aims for discovering monolingual re-used source code among a given set of
programs [5, 6]. The source code is originated from the Google Code Jam 2012
edition. We found that many of them share the same or very similar boiler-plate code
fragments which perform the same task. Some of the boiler-plate fragments have
been modified to adapt to the environment in which the fragments are re-used. Since
we re-used the dataset from another study [5, 6], we merely needed to format the
source code files by removing comments and applying pretty-printing to them in
Step 1 of our experimental framework (see Fig. 1). We selected the Java training set
containing 259 files for which the answer key of true clone pairs is provided. The
answer key contains 97 file pairs that share boiler-plate code. Using the provided
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pairs, we are able to measure both false positives and negatives. For each tool, this
dataset produced 259 × 259 = 67, 081 pairwise comparisons, of which 453 pairs
are true positives.

2.2.2 The OCD Dataset

TheObfuscation, Compilation andDecompilation (OCD) dataset is created (Step 1 in
the experimental framework) by applying pervasive source codemodifications to a set
of original Java code files to create pervasivelymodified variants (clones). The details
of the pervasive source codemodifications canbe found in our previouswork [18, 21].
Multiple source code modification tools, including Java source code and bytecode
obfuscators (Artifice [25], ProGuard [9]), Javac compiler, and decompilers (Krakatau
[7] and Procyon [27]), are used to transform the source code in this step to generate
different combinations of the variants. For example, if we have an original file F and
we select one source code obfuscator O and one decompiler D, we retrieve three
variants of F including FO , FD and FOD . After that, the original and the variants are
normalised by formatting the source code.

According to theway the dataset is generated, it offers a complete ground truth, i.e.
we know exactly which pair is similar and which pair is not. The files that originated
from the same Java file must be treated as similar, and vice versa. Thus, we can
decide whether a code pair is correctly classified as a similar pair (true positive, TP),
correctly classified as a dissimilar pair (true negative, TN), incorrectly classified
as a similar pair while it is actually dissimilar (false positive, FP), and incorrectly
classified as dissimilar pair while it is actually a similar pair (false negative, FN).

The dataset contains 100 Java files which originated from 10 Java files. After
executing a code similarity detection tool on this dataset (Step 2), there are 100 ×
100 = 10, 000 file pairs, of which 1,000 pairs are true positives.

2.3 Updated Results

We have added five additional code similarity tool results to the existing results of
the 30 tools for the SOCO and the OCD datasets from our previous work [18, 21].
The updated results are included in Table1. The additional code similarity tools
include SourcererCC [24], a scalable token-based code clone detector, Vincent [22],
an image-based code clone detector and CCAligner [29], a token-based large-gap
clone detector. Moreover, two Java implementations of n-gram-based similarities
using Jaccard index and Cosine similarity1 [4] are also included (with the default
configuration using 3-grams).

1 The cosine similarity presented in this chapter is an n-gram-based string similarity using cosine
similarity and it differs from the cosine similarity used in our previous work [21].



Code Similarity in Clone Detection 139

Table 1 Performance and the optimal configuration of new code similarity tools and techniques
on the SOCO and OCD datasets

Tool Settings T FP FN Acc Prec Rec F1

SOCO dataset

Clone detection

SourcererCC
(T)*

similarity =
60

24 42 58 0.9985 0.9039 0.8720 0.8876

Vincent sim = jaccard 25 38 127 0.7196 0.9975 0.8956 0.7980

threshold =
0.25

GBRadius =
20

CCAligner (T)* q = 7, e = 0,
sim = 0.5

16 13 46 0.9991 0.9690 0.8985 0.9324

String similarity

Jaccard 3-grams 58 36 72 0.9984 0.9134 0.8411 0.8759

Cosine 3-grams 86 26 84 0.9984 0.9342 0.8146 0.8703

OCD dataset

Clone detection

SourcererCC
(T)*

similarity =
40

21 232 205 0.9563 0.7741 0.7950 0.7844

Vincent sim = jaccard 16 77 509 0.8647 0.4915 0.9426 0.6268

Threshold =
0.15

GBRadius =
20

CCAligner (T)* q = 8, e = 2,
sim = 0.4

8 66 322 0.9612 0.9113 0.6870 0.7775

String similarity

Jaccard 3-grams 40 108 116 0.9776 0.8911 0.8840 0.8876

Cosine 3-grams 65 784 226 0.8990 0.4968 0.7740 0.6052

*—Tools that do not report similarity value directly. Similarity is measured at the granularity level
of token (T)

For the SOCO dataset, we found that two clone detectors, SourcererCC (F1 score
of 0.8876) and CCAligner (0.9324), outperform the 3 n-gram-based string similarity
techniques. This is possibly due to the nature of the dataset that contains traditional
clones with boiler-plate code, which can be easily handled by clone detectors. Also,
some are gapped clones which makes CCAligner, a large-gap clone detector, per-
forms verywell on this dataset. The best performing tool overall for the SOCOdataset
is still JPlag [16] (text version) from our previous work [21] with the F1 score of
0.9692.

The results show that for the OCD dataset, which contains pervasively modified
code, the n-gram-based string similarity using Jaccard index outperforms the three
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code clone detectors with F1 score of 0.8876. Among the clone detectors, Sourcer-
erCC performs best with F1 score of 0.7844, followed by CCAligner (0.7775) and
Vincent (0.6268). The n-gram-based string similarity using cosine similarity per-
forms worst in this dataset (0.6052). This still follows the observation we found in
the previous work that some string similarity tools work well in pervasively modi-
fied code. Nonetheless, the best performing tool overall for the OCD dataset is still
CCFinderX [13] from our previous work [21] with the F1 score of 0.9760.

Based on the results of our study which observed that textual similarity mea-
surements often outperform dedicated code similarity measurements and are easier
to apply and language independent, we have adopted textual similarity to measure
source code similarity in other work, for example, for the recommendation of related
tests [30] or for the recommendation of related code reviews [11] with great success.
We have also built a highly scalable Clone Search engine on top of a document search
engine which uses multiple code representations [20].

3 Tokenisation and Similarity

Given the results of our previous work and the experience we gained by adopt-
ing textual similarity measurements to measure code similarity and by varying the
source code representation for code clone search, we had to investigate the effect of
tokenisation and the impact of the similarity measurements.

To investigate the impact on tokenisation and the similarity measurements, we
extended our framework in which we could easily vary the applied similarity mea-
surement together with different representations of the source code. The extended
framework is, therefore, independent of a specific implementation of a clone or
plagiarism detector. For example, changing the tokenisation or the similarity mea-
surement of an existing detector would bias the results.

3.1 Approach

For the investigation, we extended the framework presented in the previous section.
In Step 1, the preparation step, the two datasets are tokenised in two additional repre-
sentations. In Step 2, the detection step, various different similaritymeasurements are
adopted. In Step 3, the analysis step, the similarity reports are analysed and different
performance scores are used to compare and rank the results.

3.1.1 Similarity Measurement

Our framework simply measures the similarity of two strings that encode the two
source code fragments. If the measured similarity is high (higher than a certain
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threshold), then the two fragments can be suggested as being cloned or plagiarised.
However, instead of specifying an actual threshold, the extended framework will use
the similarity measurements over a ground truth to evaluate the performance in a
threshold-independent way, no longer using the F1 score.

At the core of our extended framework is a library that implements a number of
string similarity measurements [4]. From the library, our extended framework uses
the similarity measurements that provide a normalised distance which is then turned
into a similarity measure in the range of 0 to 1. Three of the similarity measurements
are normalised classic string distance of measurements:

• (Normalised) Levenshtein.
• Jaro–Winkler.
• (Metric) Longest Common Subsequence (LCS).

Some more distance measurements are based on n-grams where the original string is
replaced by n-grams which are sequences of n characters. The following similarity
measurements are using such n-grams:

• Jaccard index: The original string is replaced by a set of n-grams.
• Cosine similarity: The original string is replaced with a profile of n-grams.
• Kondrak’s n-gram distance [14]: The original string is replaced with a sequence
of n-grams.

With 1-grams, the Jaccard index and the Cosine similarity are measuring similarity
based on the individual characters in the two string. In the used library, Kondrak’s
n-gram distance for 1-grams is equivalent to normalised Levenshtein and therefore
we will not consider normalised Levenshtein separately in the following.

3.1.2 Tokenisation

To tokenise the fragments, our extended framework uses an existing tokenisation
tool created by [26]. The extended framework produces two different tokenised
representations:

1. A tokenised representation which ignores whitespace and replaces comments and
strings by corresponding tokens.

2. A representation that, in addition to the tokenisation described above, also replaces
all identifiers by a single token and replaces values with values on a logarithmic
scale.

The token stream created by both representations is turned into a string by mapping
each token onto a single character.2 The strings created from the token streamcan then
be used in the same way as normal strings for similarity measurements as described
above.

2 Java’s strings are encoded in UTF-16 so the range is large enough to encode tokens by characters.
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3.1.3 Evaluation

With the described extended framework we can apply the three classic string simi-
larities and the three n-gram-based similarities for n-grams varying n from 1 to 10
on three different representations, the actual source code and the two different stages
of tokenisation. The extended framework then computes the similarity between each
pair of fragments out of a set of source code fragments in our ground truth and
measures the performance with the following three scores:

• AUC: Area under the receiver operating characteristic curve.
• AP: Average precision which summarises the precision–recall curve.
• AP@k: Average precision at k.

For average precision at k, the limit k is set to number of positives in the ground
truth (i.e. fragments that are cloned, plagiarised or similar), k = 453 for SOCO and
k = 1000 for OCD. The three scores are independent of a threshold and therefore
are preferable over the scoring we used in the previous section.

3.2 SOCO

Table2 shows the results for the SOCO dataset (the best results for a performance
score are highlighted in bold and the best n-gram size is underlined). With the SOCO
dataset it was not possible to compute the Metrics LCS distance measures.3 Overall,
the performance increases with higher n-gram sizes. For the 10-grams, the Jaccard
index and Kondrak’s distance measurements perform best, depending on the consid-
ered performance score (Jaccard index has the better AUC and Kondrak’s distance
has the better AP@k). As the SOCO dataset is skewed (few positives and many
negatives), the AP@k score is the most important. Considering AP@k only, Kon-
drak’s distance performs best in all three variations. Using tokenisation (AP@k =
95.9%) outperforms the plain text (AP@k = 93.5%) and the tokenisation plus renam-
ing (AP@k = 92.7%) representations, while plain text is better than tokenisation +
renaming. It is worth mentioning that Kondrak’s distance performs better in terms
of AP@k than the other similarity measurements also for lower n-gram sizes.

We limited the size of the n-grams to 10 as the computation becomes increas-
ingly expensive for higher n-grams making larger sizes impractical. However, we
performed additional experiments with higher values for n, up to 20. The Jaccard
index AP@k increases for higher n, reaching a maximum of 0.9655 on the tokenised
representationwith 19-grams. TheAP@k increases similarly for Kondrak’s distance,
reaching a maximum of 0.9676 on the tokenised representation with 19-grams. For
Cosine similarity on the tokenised representations (with and without renaming),
higher n values do not improve AP@k, only on plain source code up to 0.9058 for
20-grams.

3 The library did run out of memory.
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Table 2 String similarity results for the SOCO dataset

n AUC AP AP@k AUC AP AP@k AUC AP AP@k

Plain text Tokenised Tokenised + renaming

Cosine

1 0.942483 0.773646 0.725199 0.932090 0.796242 0.745543 0.893635 0.728507 0.690120

2 0.981917 0.863362 0.808510 0.965480 0.865593 0.804177 0.930470 0.766166 0.726384

3 0.990450 0.911526 0.847904 0.975602 0.851654 0.791692 0.961402 0.836159 0.783832

4 0.995115 0.936822 0.872453 0.982012 0.842019 0.788261 0.969102 0.865543 0.809498

5 0.998467 0.944394 0.873175 0.985886 0.837235 0.784644 0.974286 0.865882 0.806162

6 0.998649 0.943959 0.872477 0.988566 0.835805 0.784322 0.979847 0.863649 0.806029

7 0.998727 0.943372 0.872130 0.991242 0.835750 0.783936 0.985300 0.862780 0.811079

8 0.998850 0.944149 0.871738 0.993494 0.836374 0.783456 0.989584 0.862572 0.815123

9 0.999007 0.947530 0.875402 0.995022 0.836909 0.782589 0.992641 0.863169 0.815434

10 0.999106 0.950632 0.879628 0.995953 0.837633 0.782016 0.994471 0.864055 0.815548

Jaccard

1 0.973822 0.727393 0.624999 0.997210 0.924175 0.844944 0.994897 0.864069 0.780071

2 0.996458 0.886330 0.791853 0.999707 0.967051 0.870565 0.999285 0.948140 0.865061

3 0.999160 0.943648 0.860523 0.999842 0.978399 0.887701 0.999679 0.966003 0.879583

4 0.999657 0.963879 0.882228 0.999873 0.981996 0.900734 0.999809 0.975233 0.888845

5 0.999804 0.975093 0.899884 0.999890 0.984241 0.909808 0.999838 0.977786 0.888240

6 0.999839 0.978406 0.904395 0.999905 0.986222 0.918900 0.999857 0.980025 0.896408

7 0.999857 0.980305 0.904665 0.999912 0.987423 0.923741 0.999871 0.981735 0.913018

8 0.999867 0.981375 0.904798 0.999913 0.987943 0.924415 0.999881 0.983109 0.913519

9 0.999871 0.981776 0.904726 0.999909 0.987986 0.936986 0.999888 0.984103 0.914262

10 0.999876 0.982315 0.904659 0.999914 0.988656 0.941492 0.999890 0.984598 0.914655

Kondrak

1 0.997431 0.959880 0.922369 0.997814 0.987229 0.945020 0.994434 0.944480 0.911651

2 0.997745 0.963136 0.926471 0.997879 0.988162 0.949447 0.995686 0.951461 0.912297

3 0.997915 0.965479 0.926423 0.997967 0.989123 0.949730 0.996407 0.957683 0.913064

4 0.998033 0.967590 0.926447 0.998057 0.989771 0.954107 0.996881 0.962682 0.913704

5 0.998110 0.969441 0.926489 0.998144 0.990302 0.954212 0.997169 0.966794 0.922190

6 0.998179 0.970954 0.930626 0.998215 0.990569 0.954251 0.997368 0.969566 0.922338

7 0.998237 0.972389 0.930745 0.998294 0.990865 0.954393 0.997504 0.971969 0.922491

8 0.998283 0.973678 0.930912 0.998359 0.991085 0.954473 0.997617 0.974115 0.926758

9 0.998318 0.974528 0.935053 0.998420 0.991309 0.958714 0.997700 0.975775 0.926819

10 0.998342 0.975301 0.935139 0.998480 0.991522 0.958773 0.997775 0.977222 0.926950

Jaro-Winkler

0.956778 0.789582 0.727252 0.989106 0.931157 0.864918 0.964399 0.788191 0.725396
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3.3 OCD

Table3 shows the results for the OCD dataset (the best results for a performance
score are highlighted in bold and the best n-gram size is underlined). The results
are very different from the SOCO dataset. Overall, the best performing similarity
measurement here is the Jaccard index with an n-gram size of two applied to the plain
source code; however, Jaccard index performs poorly for the tokenised representation
for any n-gram size. For the tokenised representations, Kondrak’s distance is best
with n = 2 and renaming makes the results slightly worse.

4 Discussion

To allow a general discussion about how tokenisation and renaming affect similarity
measurements, we extracted the same scores for the clone and plagiarism detectors
as discussed before. We picked a subset of tools and similarity measurements and
extracted for each tool and similarity measurement the configuration that produced
the best AP@k score. Table4 shows on overview of the scores, ranked by AP@k
score for the SOCO dataset.

As the SOCO dataset is targeting source code plagiarism, it is no surprise to
see JPlag performing best; however, in the general setting, not the Java-specific one
(which ranks fourth). simjava [8] is ranked second. It is interesting to see that a simple
detector like Simian [12] outperforms more complex detectors. However, Kondrak’s
distance on the tokenised representation is ranked third and outperforms all clone
detectors. With 18-grams or 19-grams using tokenisation, Kondrak’s distance and
Jaccard index would rank best. It is worth noting that well-known or modern tools
like NiCAD, CCAligner or SourcererCC are not performing well with AP@k scores
below 90%.

When looking at the three different representations, it seems that their impact is
limited as the scores for Kondrak’s distance are close to each other. Moreover, when
considering the variation is tokenisation over all tools, there is no clear pattern. For
JPlag, the text version outperforms the Java-specific version, but simjava outperforms
its text variant simtext; Simian performs best when variable names are ignored;
NiCAD performs best with consistent renaming; etc.

As the SOCO dataset is a simple dataset mainly using copied blocks of source
code, all clone and plagiarism detectors should be able to perform well, in particular,
as we search for optimal configurations.

Table5 shows on overview of the scores, ranked by AP@k score for the OCD
dataset. The first thing to note is that every tool or measurement achieves its opti-
mal performance with a different configuration. For the OCD dataset, CCFinderX
clearly outperforms every other tool or measure. However, the plain text Jaccard
index over 2-grams is ranked second and the tokenised Kondrak’s distance over 2-
grams is ranked third. The relative ranking of the clone detectors Simian, Deckard,
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Table 3 String similarity results for the OCD dataset

n AUC AP AP@k AUC AP AP@k AUC AP AP@k

Plain text Tokenised Tokenised + renaming

Cosine

1 0.8209 0.5420 0.4053 0.9022 0.6404 0.4833 0.9459 0.7804 0.6448

2 0.8632 0.5977 0.4314 0.9063 0.7096 0.5899 0.9457 0.7744 0.6579

3 0.9319 0.7022 0.5106 0.8979 0.7067 0.5767 0.9411 0.7413 0.6159

4 0.9428 0.7531 0.5791 0.8784 0.6818 0.5566 0.9451 0.7625 0.6323

5 0.9511 0.7861 0.6349 0.8666 0.6769 0.5639 0.9472 0.7809 0.6588

6 0.9443 0.7823 0.6449 0.8607 0.6723 0.5677 0.9500 0.7898 0.6580

7 0.9326 0.7734 0.6399 0.8765 0.6884 0.5726 0.9559 0.8070 0.6763

8 0.9292 0.7692 0.6470 0.8843 0.6901 0.5614 0.9554 0.8078 0.6715

9 0.9225 0.7611 0.6433 0.8898 0.6794 0.5390 0.9508 0.8179 0.6726

10 0.9166 0.7545 0.6486 0.9064 0.6968 0.5418 0.9550 0.8335 0.6963

Jaccard

1 0.9832 0.9321 0.8467 0.9208 0.7695 0.6569 0.9452 0.8191 0.7099

2 0.9949 0.9745 0.9233 0.9122 0.6912 0.5378 0.9799 0.9103 0.8205

3 0.9936 0.9611 0.8777 0.9226 0.6976 0.5251 0.9772 0.8891 0.7694

4 0.9874 0.9320 0.8378 0.9178 0.6958 0.5433 0.9762 0.8785 0.7445

5 0.9789 0.9060 0.8136 0.9054 0.6863 0.5397 0.9776 0.8829 0.7447

6 0.9737 0.8954 0.8103 0.8969 0.6675 0.5135 0.9785 0.8897 0.7504

7 0.9726 0.8914 0.8008 0.8901 0.6537 0.4862 0.9770 0.8967 0.7745

8 0.9702 0.8850 0.8008 0.8944 0.6514 0.4687 0.9753 0.9072 0.8052

9 0.9679 0.8809 0.7991 0.9052 0.6606 0.4954 0.9752 0.9159 0.8345

10 0.9665 0.8772 0.7955 0.9065 0.6673 0.4982 0.9738 0.9201 0.8449

Kondrak

1 0.9295 0.8531 0.7996 0.9886 0.9466 0.8798 0.9817 0.9377 0.8658

2 0.9327 0.8570 0.8044 0.9887 0.9479 0.8802 0.9823 0.9388 0.8667

3 0.9341 0.8584 0.8048 0.9884 0.9465 0.8797 0.9824 0.9390 0.8654

4 0.9353 0.8596 0.8050 0.9881 0.9448 0.8717 0.9822 0.9380 0.8653

5 0.9362 0.8600 0.8031 0.9878 0.9436 0.8680 0.9819 0.9368 0.8649

6 0.9370 0.8601 0.8011 0.9874 0.9419 0.8644 0.9812 0.9351 0.8612

7 0.9374 0.8598 0.7957 0.9870 0.9405 0.8642 0.9806 0.9334 0.8611

8 0.9378 0.8596 0.7936 0.9867 0.9394 0.8639 0.9801 0.9319 0.8609

9 0.9382 0.8594 0.7932 0.9864 0.9382 0.8581 0.9792 0.9299 0.8606

10 0.9386 0.8592 0.7928 0.9861 0.9369 0.8543 0.9784 0.9280 0.8587

Jaro-Winkler

0.8644 0.6228 0.4941 0.9679 0.8570 0.7240 0.9419 0.8318 0.7170

Metrics LCS

0.9073 0.8180 0.7484 0.9783 0.9247 0.8517 0.9547 0.8933 0.8451
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Table 4 Overall scores for the SOCO dataset

Measurement Configuration AUC AP AP@k

JPlag-text t = 4 0.9997 0.9887 0.9653

simjava r = 25 0.9987 0.9891 0.9605

Kondrak Tokenised, 10-grams 0.9985 0.9915 0.9588

JPlag-Java t = 12 0.9895 0.9749 0.9513

Simian (L) threshold = 4,
ignoreVariableNames

0.9921 0.9753 0.9509

Deckard mintoken = 50, stride =
2, similarity = 1.0

0.9823 0.9564 0.9438

Jaccard tokenised, 10-grams 0.9999 0.9887 0.9415

Kondrak plain text, 10-grams 0.9983 0.9753 0.9351

CCFX b = 16, t = 12 0.9905 0.9705 0.9276

Kondrak tokenised + renaming,
10-grams

0.9978 0.9772 0.9269

Jaccard tokenised + renaming,
10-grams

0.9999 0.9846 0.9147

Jaccard plain text, 10-grams 0.9999 0.9823 0.9047

Sherlock N = 5, Z = 3 0.9983 0.9468 0.8986

NiCAD (C) UPI = 0.30, minline =
5, rename = consistent,

0.9695 0.9198 0.8940

abstract = condition

CCAligner (T) windowsize = 7,
editdistance = 0,
similarity = 0.5

0.9503 0.8914 0.8908

iClones (T) minblock = 40,
minclone = 50

0.9469 0.8880 0.8873

Cosine plain text, 10-grams 0.9991 0.9506 0.8796

simtext r = 10 0.9931 0.9603 0.8617

NCD-zlib N/A 0.9983 0.9187 0.8464

SourcererCC similarity = 60% 0.9412 0.8232 0.8169

Cosine tokenised + renaming,
10-grams

0.9945 0.8641 0.8155

Cosine tokenised, 10-grams 0.9960 0.8376 0.7820

Vincent threshold = 0.25,
similarity = jaccard

0.8561 0.7292 0.7231
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Table 5 Overall scores for the OCD dataset

Measurement Configuration AUC AP AP@k

CCFX (C) b = 5, t = 11 0.9997 0.9975 0.9753

Jaccard 2-grams 0.9949 0.9745 0.9233

Kondrak tokenised, 2-grams 0.9887 0.9479 0.8802

Kondrak tokenised + renaming,
2-grams

0.9823 0.9388 0.8667

Jaccard tokenised + renaming,
10-grams

0.9738 0.9201 0.8449

Simjava r = 16 0.9714 0.9106 0.8421

JPlag-Java t = 5 0.9728 0.9090 0.8230

Simian (C) threshold = 4,
ignoreVariableNames

0.9263 0.8500 0.8198

Deckard (T) mintoken = 30, stride =
inf, similarity = 0.95

0.9662 0.9019 0.8191

NCD-bzlib N/A 0.9636 0.8961 0.8188

Kondrak 4-grams 0.9353 0.8596 0.8050

Plaggie M = 7 0.9562 0.8808 0.7979

Sherlock N = 4, Z = 2 0.9449 0.8560 0.7936

Jplag-text t = 4 0.9677 0.8754 0.7814

NiCAD (T) UPI = 0.50, minline =
10, renaming = blind,

0.9257 0.8273 0.7444

abstract = Declaration

Cosine tokenised + renaming,
10-grams

0.9550 0.8335 0.6963

CCAligner (T) windowsize = 8,
editdistance = 2,
similarity = 0.4

0.8367 0.6993 0.6748

SourcererCC similarity = 40% 0.9337 0.7720 0.6708

Jaccard tokenised, 1-grams 0.9208 0.7695 0.6569

Cosine 10-grams 0.9166 0.7545 0.6486

simtext r = 4 0.8075 0.6452 0.6103

Cosine tokenised, 2-grams 0.9063 0.7096 0.5899

Vincent threshold = 0.10,
similarity = jaccard

0.7641 0.5089 0.4660

iClones (T) minblock = 10,
minclone = 50

0.7117 0.4792 0.4259
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NiCAD, CCAligner and SourcererCC has not changed, with NiCAD, CCAligner
and SourcererCC again not performing well with an AP@k below 80%. However,
in the OCD dataset, the underlying tokenisation seems to have a stronger impact.
Kondrak’s distance is performing much worse on plain source code without tokeni-
sation but Jaccard index is performing much better on plain source code. Again, we
cannot identify a clear pattern but it seems that the similarity measurement itself has
a stronger impact than the representation of the source code below.

For code clones that are created from copied fragments and may only contain
renaming operations for identifies or literals (similar to the SOCO dataset), larger n-
grams achieve better average precision at k scores (10-grams for the SOCO dataset).
However, increasing the n-gram sizes will make the similarity measure more expen-
sive.Moreover, measuring similarity with the Jaccard index is much faster than using
Kondrak’s distance (O(m ∗ n), m and n are the length of the strings) because the
Jaccard index (O(m + n)) is using profiles over n-grams instead of sequences.

Overall, the main observation is that simple textual similarity measurements
over n-grams usually outperform dedicated clone and plagiarism detectors when
the AP@k score is considered. In both datasets, more recent clone detectors like
SourcererCC or CCAligner were performing worse than textual similarity measure-
ments and older detectors.

5 Related Work

There are a few studies on comparing performance of code similarity analysers.
Most of the studies focus on comparing only code clone detectors [1, 3, 23, 28],
source code plagiarism detectors [10], and a mix between dedicated techniques and
general textual similarity measures [2]. Nonetheless, there is little work that inves-
tigates the effect of source code representation (i.e. tokenisation and renaming of
identifiers and literals) and the impact of similarity measurements when performing
code clone detection. The work that is close to our study is by Novak et al. [15]
that studies of effect of several source code pre-processing techniques on plagiarism
detection accuracy in student programming assignments. The study includes five pre-
processing techniques (removing comments, template exclusion, removing common
code, all techniques without normalisation and all techniques with normalisation),
and their effects on three code plagiarism detectors: SIM, JPlag and Sherlock. The
study also evaluates the tools on two modes: Java and text. The experiment was done
on two datasets, SOCO (also used in this chapter) and RSS. The results show that
pre-processing techniques can help boosting the performance of code plagiarism
detection tools. Similar to our study, the experimental result from Novak’s study
also shows that, in some cases, by applying the right pre-processing techniques,
text-based version of the tools can outperform their dedicated Java counterpart.
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6 Conclusions

The comparison using average precision at k with dedicated clone and plagiarism
detectors shows that simple similarity measurements like Kondrak’s distance using
n-grams over tokenised source code usually outperform specialised tools for the
detection of cloned, plagiarised or duplicated code.

When one considers the complexity of setting up and configuring dedicated clone
or plagiarism detectors which sometimes are unable to analyse source code that
cannot be compiled or parsed, a simple measurement like Kondrak’s distance or
Jaccard index over a tokenised source code may be a better choice to measure code
similarity. Moreover, future work on code similarity should compare with simple
measurements like Kondrak’s distance or Jaccard index as a baseline to establish
whether a suggested new technique actually improves the state of the art.
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Is Late Propagation a Harmful Code
Clone Evolutionary Pattern?
An Empirical Study

Osama Ehsan, Lillane Barbour, Foutse Khomh, and Ying Zou

Abstract Two similar code segments, or clones, form a clone pair within a software
system. The changes to the clones over time create a clone evolution history. Late
propagation is a specific pattern of clone evolution. In late propagation, one clone in
the clone pair is modified, causing the clone pair to become inconsistent. The code
segments are then re-synchronized in a later revision. Existing work has established
late propagation as a clone evolution pattern, and suggested that the pattern is related
to a high number of faults. In this chapter, we replicate and extend the work by
Barbour et al. (2011 27th IEEE International Conference on Software Maintenance
(ICSM). IEEE (2011) [1]) by examining the characteristics of late propagation in
10 long-lived open-source software systems using the iClones clone detection tool.
We identify eight types of late propagation and investigate their fault-proneness. Our
results confirm that late propagation is the more harmful clone evolution pattern
and that some specific cases of late propagations are more harmful than others. We
trained machine learning models using 18 clone evolution related features to predict
the evolution of late propagation and achieved high precision within the range of
0.91–0.94 and AUC within the range of 0.87–0.91.
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1 Introduction

A code segment is labeled as a code clone if it is identical or highly similar to another
code segment. Similar code segments form a clone pair. Clone pairs can be intro-
duced into systems deliberately (e.g., “copy-and-paste” actions) or inadvertently by
a developer during development and maintenance activities. Like all code segments,
code clones are not immune to change. Large software systems undergo thousands
of revisions over their lifecycles. Each revision can involve modifications to code
clones. As the clones in a clone pair are modified, a change evolution history, known
as a clone genealogy [2], is generated.

In a previous study on clone genealogies, Kim et al. [2] define two types of evo-
lutionary changes that can affect a clone pair: a consistent change or an inconsistent
change. During a consistent change, both clones in a clone pair are modified in par-
allel, preserving the clone pair. In an inconsistent change, one or both of the clones
evolve independently, destroying the clone pair relationship. Inconsistent changes
can occur deliberately, such as when code is copied and pasted and then subse-
quently modified to fit the new context. For example, if a driver is required for a new
printer model, a developer could copy the driver code from an older printer model
and then modify it. Inconsistent changes can also occur accidentally. A developer
may be unaware of a clone pair and cause an inconsistency by changing only one
half of the clone pair. This inconsistency could cause a software fault. If a fault is
found in one clone and fixed, but not propagated to the other clone in the clone pair,
the fault remains in the system. For example, a fault might be found in the old printer
driver code and fixed, but the fix is not propagated to the new printer driver. For these
reasons, a previous study [2] has argued that accidental inconsistent changes make
code clones more prone to faults.

Late propagation occurs when a clone pair undergoes one or more inconsistent
changes followed by a re-synchronizing change [3]. The re-synchronization of the
code clones indicates that the gap in consistency is accidental. Since accidental
inconsistencies are considered risky [4], the presence of late propagation in clone
genealogies can be an indicator of risky, fault-prone code.

Many studies have been performed on the evolution of clones. A few (e.g., [3,
4]) have studied late propagation and indicated that late propagation genealogies are
more fault-prone than other clone genealogies. Thummalapenta et al. began the initial
work in examining the characteristics of late propagation. The authors measured the
delay between an inconsistent change and a re-synchronizing change and related
the delay to software faults. In our chapter, we examine more characteristics of late
propagation to determine if only a subset of late propagation genealogies are at risk of
faults. Developers are interested in identifying which clones are most at risk of faults.
Our goal is to support developers in their allocation of limited code testing and review
resources toward the most risky late propagation genealogies. To achieve this goal,
we first study the prevalence and fault-proneness of late propagation genealogies, and
secondly we train multiple machine learning models to predict whether a clone pair
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would have late propagation. Early diagnosis of late propagation can help developers
in addressing the clones with late propagation fast before they become buggy.

In this chapter, we replicate and extend the analysis of late propagation performed
by Barbour et al. [1]. We study the characteristics of late propagation genealogies
and estimate the likelihood of faults. We used 10 open-source projects from GitHub
instead of only two projects as in the original study. We also include an additional
research question aimed at predicting occurrences of late propagation genealogies.

2 Experimental Setup

The goal of our study is to investigate the fault-proneness of clone pairs that undergo
late propagation. The quality focus is to lower the maintenance effort and cost due
to the presence of late propagated clone pairs in software systems. The perspective
is that of researchers interested in studying the effects of late propagation on clone
pairs. The results may also be of interest to developers who perform development
or maintenance activities. The results will provide insight in deciding which code
segments are most at risk for faults and in prioritizing the code for testing.

The context of this study consists of the change history of open-source software
projects, which have different sizes and belong to different domains. This section
describes the setup used to perform our study which aims to address the following
four research questions:

• RQ1: Are there different types of late propagation?,
• RQ2: Are some types of late propagation more fault-prone than others?,
• RQ3:Which type of late propagation experiences the highest proportion of faults?,
and

• RQ4: Can we predict whether a clone pair would experience late propagation?.

2.1 Project Selection

We use GHTorrent on the Google Cloud1 to extract all projects that have more than
1,000 commits, 1,000 issues, and 1,000 pull requests. We use such a high number
of commits, pull requests, and issues to ensure that we have enough history of clone
genealogies.We limit our study to Java projects. Our selection criteria provide uswith
66 Java projects. Then, we discard the projects that are younger than 5 years (created
after June 2015). If a project has more source lines of code (SLOC), the probability
of having code clones increases. A recent study suggests [5] to include projects with
more than 100K source lines of code. We remove the projects with less than 100K

1 https://ghtorrent.org/gcloud.html.

https://ghtorrent.org/gcloud.html
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Table 1 Description of selected projects

Project name # of commits # of issues SLOC % of java files
(%)

# of clone
genealogies

Druid 10,496 1,657 1.2m 94.50 61,718

Netty 9,910 4,174 476.2k 98.60 6,576

Muikku 16,970 2,696 318.4k 50.4 23,836

Framework 18,969 1,788 867.9k 95.50 11,961

Checkstyle 9,454 2,198 457.4k 97.80 7,705

Gatk 4,173 2,736 2.2m 93.70 22,651

Realm 8,318 3,358 199.9k 83.80 13,540

Nd4j 7,021 1,238 467.0k 99.80 45,413

Rxjava 5,762 1,950 474.9k 99.90 8,866

K 15,997 1,134 243.3k 83.50 6,026

SLOC by using the GitHub project SLOC calculator extension.2 Furthermore, we
remove the forked projects and the projects which have less than 70% of Java files.
The percentage of Java files is calculated using GitHub’s language information of
each project. Finally, after applying all the selection criteria, we retain the top 10
projects used in this study. Table 1 provides the description of the selected projects.

2.2 Building Clone Genealogies

The selected projects are all Git-based projects. Git provides multiple functions to
extract the history of the projects. The history includes the renamed files, changed
files, and changes made to each file using the blame function. We perform the
following steps on each of the projects in our dataset. After downloading the repos-
itories, we use the following command to extract the identifier, committer email,
commit date, and the message of each commit:

git log – pretty=format:"%h,%ae, %ai, %s"

2.2.1 Detecting Code Clones

We use the latest version of the iCLONES clone detection [6] to identify the clones
from the projects. We select iCLONES because it is recommended by Svajlenko et
al. [7] who evaluate the performance of 11 different clone detection tools. iCLONES
uses a hybrid approach to detect clones. We use the settings used by Svajlenko et al.
[7] as the recommended settings are reported to achieve higher precision and recall

2 https://github.com/artem-solovev/gloc.

https://github.com/apache/druid
https://github.com/netty/netty
https://github.com/otavanopisto/muikku
https://github.com/vaadin/framework
https://github.com/checkstyle/checkstyle
https://github.com/broadinstitute/gatk
https://github.com/realm/realm-java
https://github.com/deeplearning4j/nd4j
https://github.com/ReactiveX/RxJava
https://github.com/kframework/k
https://github.com/artem-solovev/gloc
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values. We use the git checkout command to extract a snapshot of a project at
a specific commit. We sort all commits chronologically and run the clone detection
on each commit.

2.2.2 Extracting Clone Genealogies

Code clones may experience changes during the development and maintenance
phases of the project. Such changes can be consistent or inconsistent based on a
relative similarity score. Inconsistent clones can be later synchronized to become
consistent. The set of states and the history of changes to any clone pairs are known
as clone pair genealogy.We identify clone genealogies of all the clones in the studied
projects. Our approach for generating clone genealogies is similar to the approaches
used in other studies [8, 9]. BothGöde andKrinke track clones over time by acquiring
a list of changes from the source code repositories of the subject systems.

The iCLONES tool produces a list of clones that exist in a project at any specific
commit. We link the clone pairs between each commit to create a set of genealogies.
A change to a clone can affect its size while a change to a file containing the clone
can shift the position of the clone (i.e., changes its line numbers). To address this
issue, we use the git diff command to detect all the changes to a specific file.
We track the clone positional changes affected by the changes to the non-clone part
of the file. We include only the changes to the clone contents rather than the clone
line number since a shift in the line numbers does not change the state of the clone.

We build a clone genealogy for each clone pair detected by the iCLONES tool.
We start by extracting the commit sequence of each project under study. We use the
commit sequence to identify the modifications in the clone pairs of each commit. If
a commit C2 changes a file that contains code in the clone pair, we use the diff
command to compare the changes to a previous commit C1. If a clone snippet is
changed in C2, we update the start and end line numbers of the clone from C2. To
generate the mapping and to check the modifications, we used a third-party Python
patching parser called whatthepatch [10]. If the start or the end of the clone
snippet is deleted, wemove the clone line numbers accordingly to address the deleted
lines. Krinke [9] made several assumptions when updating line numbers of clones
between revisions. We use the same assumptions in our study:

1. If a change occurs before the start of the clone, or after the end of the clone, the
clone is not modified.

2. If an addition occurs starting at the first line number of a clone, the clone shifts
within the method but is not modified.

3. If a deletion occurs anywhere within the clone boundaries, the clone is modified
and its size shrinks.

4. If a deletion followed by an addition overlaps the clone boundaries, we assume
that the clone size shrinks because of the deletion, and the new lines do notmakeup
part of the clone.
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In the last assumption, it is possible that there exists a clone containing both our
updated reference clone and the newly added lines. We use the strictest assumption
that the new lines are not included. When determining consistent and inconsistent
changes, we look for clones in the clone list that contain our updated reference clone.
Therefore, this scenario would still be considered a consistent change. In addition,
we also track changes to the names of the clone files.

2.3 Classification of Genealogies

In the current state of the art, late propagation is defined as a clone pair that expe-
riences one or more inconsistent changes followed by a re-synchronizing change
[4]. For example, consider two clones that call a method. A developer modifies the
call parameters of the method and updates one of the clones to reflect the change.
This causes the clone pair to become inconsistent. Using all combinations of the
inconsistent phases described by Barbour et al. [1], we identify eight possible types
of late propagation (LP) genealogies. The detail of the eight types of late propaga-
tion are described in [1]. The eight types are organized in three groups based on
the occurrence or not of a change propagation: (1) propagation always occurs (three
types named LP1, LP2, and LP3), (2) propagation may or may not occur (four types
named LP4, LP5, LP6, and LP7), and (3) propagation never occurs (one type named
LP8). In this study, we examine if the cases that always involve propagation (i.e.,
LP1, LP2, and LP3) or never involve propagation (i.e., LP8) are more prone to faults
than the other types of late propagation. We made a slight modification in the def-
inition of LP7 to include cases where during divergence either A or B is changed,
instead of considering only instances in which both A and B are changed during
divergence.

2.4 Detecting Faulty Clones

We use the SZZ algorithm [11] to identify the changes that introduced faults. First,
we use the Fischer et al. [12] heuristic to identify fault-fixing commits using a regular
expression. The regular expression identifies the bug-ID in the commit messages. If
a bug-ID appears in the commit message, we map the commit to the bug as a bug-
fixing commit. Second, we mine the issue reports of each project from GitHub. For
the issues that are closed, we identify if there are any pull requests associated with
such issues. If there is a pull request associated with an issue, we identify all the
commits included in the pull request and map the commits to the issue as a bug-
fixing commit. Once we have a list of all bug-fixing commits, we use the following
command to identify all the modified files in each commit.
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git log [commit-id]-n 1—name-status

We consider only changes to Java files in a commit. A commit is a set of changes
to the file(s) in the software repository. For all changes to a specific file of a bug-
fixing commit, we use the git blame command to identify all the commits when
the same snippet was changed. We consider such commits as the “candidate faulty
changes.” We exclude the changes that are blank lines or comments.

Finally, we filter the commits that are submitted before the creation date of the
bugs.We then checkwhether the commits identified as bug-inducing commits include
clone pairs. If a clone snippet is included in the bug-inducing commits, we label the
clone change as “buggy.”

3 Case Study Results

This section reports and discusses the results of our study.

3.1 RQ1: Are There Different Types of Late Propagation?

Motivation. This question is preliminary to questions RQ2 and RQ3. It provides
quantitative data on the percentages with which different types of late propagation
occur in our studied systems.

Approach. We address this question by classifying all instances of late propagation
as described in Sect. 2.3. For each type of late propagation, we report the number of
occurrences in the systems. Table 2 lists each of the categories and the proportion of
occurrences in our dataset, both as a numerical value and a percentage of the overall
number of late propagation instances for the systems.

Results. As summarized in Table 2, four types of late propagation are dominant
across all systems when using the iClones clone detection tool (i.e., LP1, LP3, LP7,
and LP8). The four dominant types represent the three late propagation categories.
Only LP3 (instead of LP6) is more dominant as compared to the results of Barbour
et al. [1]. As shown in Table 2, LP7 occurs in an average of 40.5% of instances of late
propagation, so it is the most common form of late propagation across all systems.
However, LP7 is also the least understood of the types of late propagation. Since both
clones in LP7 clone pairs can be modified during all three steps of late propagation
(i.e., experiencing a diverging change, a change during the period of divergence, a
re-synchronizing change), it is unclear in which direction changes are propagated
during the evolution of the clone pair. A few types of late propagation (i.e., LP2,
LP4, and LP5) contribute minutely to the number of late propagation genealogies.
Other than the one project (Muikku), all the other projects include almost all types of
late propagation. Our further investigation shows that only 1% (297 out of 23,836)
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of the clone genealogies experience late propagation which is the lowest among all
the projects and this might be the reason for the absence of half of LP types.

Overall, we conclude that there is representation frommultiple types of late propa-
gation and across all categories of late propagation. In the next two research questions,
we examine the types in more detail to determine if some types are more risky than
others.

Summary of RQ1

Late propagation types LP1, LP3, LP7, and LP8 are the most commonly
occurring type of late propagation in the 10 studied open-source projects
from GitHub. The results are consistent with the previous study except that
LP3 is more frequent instead of LP6. Most of the projects include all types
of late propagations.

3.2 RQ2: Are Some Types of Late Propagation More
Fault-Prone than Others?

Motivation. Previous researchers have determined that late propagation is more
prone to faults than other clone genealogies [3]. Using the classification of late prop-
agation clone genealogies proposedbyBarbour et al. [1],we evaluate late propagation
in greater depth and examine if the risk of faults remains consistent across all types
of late propagation.

Approach. We compute the number of fault-containing and fault-free genealogies in
each late propagation category.We compute the same values for non-late propagation
clone genealogies that experience at least one change. For the remainder of this
chapter, we use the abbreviation “Non-LP” for clone pairs that experience at least one
change but are not involved in any type of late propagation.We test the following null
hypothesis3 H02: Each type of late propagation genealogy has the same proportion
of clone pairs that experience a fault fix.

We use the Chi-square test [13] and compute the odds ratio (OR) [13]. The Chi-
square test is a statistical test used to determine if there are non-random associations
between two categorical variables. The odds ratio indicates the likelihood of an
event to occur. It is defined as the ratio of the odds p of an event (i.e., fault-fixing
change) occurring in one sample (i.e., experimental group), to the odds q of the event
occurring in the other sample (i.e., control group): OR = p/(1−p)

q/(1−q) . An OR = 1 indi-
cates that the event is equally likely in both samples; an OR > 1 shows that the event
is more likely in the experimental group while an OR < 1 indicates that it is more
likely in the control group. Specifically, we compute two sets of odds ratios. First,

3 There is no H01 because RQ1 is exploratory.
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Table 3 Contingency table, Chi-square tests results for clone genealogies with and without late
propagation. The table shows the values for all the combinations of late propagations and faults

LP-faults LP-no faults No LP-faults No LP-no
faults

p-value OR

1,851 1,929 42,526 48,928 <0.05 1.8

we select the clone pairs that underwent a late propagation as an experimental group.
Second, we form one experimental group for each type LPi of late propagation and
re-compute the odds ratios. In both cases, we select the non-LP genealogies as the
control group.

Results. Previous researchers [4] have studied the relationship between late propa-
gation and faults. In this research question, we first replicate the earlier studies and
then extend the study to include the different categories of late propagation.

(a) Fault-proneness of late propagation. Table 3 summarizes the results of the tests
described above for instances of late propagation compared to non-late propagation
(LP) genealogies. The first and second columns show the number of LP genealogies
with and without faults. The third and fourth columns in the table list the number of
non-LP genealogies that experience fault fixes and the number that is free of fault
fixes. The last column of the table lists the odds ratio test results for each system.
All of our results pass the Chi-square test with a p-value less than 0.05 and are
therefore significant. Where there are few data points, we use Fisher’s exact test to
confirm the results from the Chi-Square test. Fisher’s exact test is more accurate than
the Chi-square test when sample sizes are small [13]. In this study, the Fisher test
provides the same information as the Chi-square test, so we do not present the Fisher
test results in the tables. Table 4 shows the percentage of fault-prone late propagation
in each of the studied projects. In all the significant cases, the odds ratio is greater
than 1, indicating that late propagation genealogies aremore fault-prone than non-LP
genealogies. Overall, our results agree with previous studies [4] that found that late
propagation is more at risk of faults.

(b) Fault-proneness of late propagation types. We repeat the previous tests, divid-
ing the instances of late propagation into their respective late propagation types. We
compare each type of late propagation to genealogies with no late propagation. For
each type of late propagation, Table 5 lists the number of instances that experience a
fault fix, the number of instances with a no-fault fix, the result from the Chi-square
test, and the odds ratio using the control group composed of non-LP genealogies.

An examination of the significant cases in Tables 5 reveals that the odds ratios
are greater than 1, so each type of late propagation is more fault-prone than non-LP
genealogies. There are two exceptions to this observation, LP2 and LP3 in Table 5.
All exceptions belong to the “propagation always occurs” category. Thus, in general,
these late propagation types are not more fault-prone than non-LP genealogies. Our
observation is consistent with the previous findings by Barbour et al. [1].
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Table 4 Contingency table, Chi-square tests results for clone genealogies with and without late
propagation

Projects LP-faults LP-no faults % of faulty LPs (%)

Druid 970 440 67

Netty 1 136 0.5

Muikku 145 157 48

Framework 3 152 2

Checkstyle 78 54 60

Gatk 134 209 39

Realm 135 186 42

Nd4j 283 325 47

Rxjava 0 103 0

K 102 167 38

Table 5 Contingency table with the Chi-square test for different late propagation types

Propagation
category

LP type Faults No faults p-value OR

No LP 42,526 48,928 <0.01 1

Propagation
always occurs

LP1 244 246 < 0.01 3.953

LP2 20 32 <0.01 0.672

LP3 224 227 <0.01 0.922

Propagation
may or may
not occur

LP4 23 50 < 0.01 2.256

LP5 68 52 <0.01 1.765

LP6 216 161 <0.01 6.179

LP7 803 724 <0.01 1.277

Propagation
never occurs

LP8 253 437 <0.01 3.2

We conclude that there are many types that make up a small proportion of LP
instances and have a very high odds ratio. Thus, when one of these LP types occurs,
the risk of fault introduction is high. For example, LP6 has a high odds ratio (e.g.,
6.17 in Table 5) but accounts for less than 5% of all late propagation instances in
Table 2.

The two most common late propagation types in the previous research question,
LP7 and LP8, in general, have low odds ratios in Table 5. This indicates that although
they occur frequently, they are less fault-prone than other less common late propaga-
tion types (e.g., LP6). The result is consistentwith the previous findings byBarbour et
al. [1]. Overall, each type of late propagation has a different level of fault-proneness.
Thus, we reject H02 in general.
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Summary of RQ2

The most commonly occurring late propagation types (i.e., LP7 and LP8)
are less fault-prone than the less commonly occurring late propagation (i.e.,
LP6). The result is consistent with the previous study and shows that each
propagation type is different from others.

3.3 RQ3: Which Type of Late Propagation Experiences the
Highest Proportion of Faults?

Motivation. In the previous research question (i.e., RQ2), we identify the fault-
proneness of late propagation types as compared to the no-LP clone pairs. The results
show that fault-proneness is not related to the frequency of LP type. In this research
question, we want to identify which type of late propagation experiences the highest
proportion of faults. In other words, we examine if, when faults occur, do they occur
in large numbers?

Approach. We test the following null hypothesis H03: Different types of late propa-
gation have the same proportion of clone pairs that experience a fault fix. For each
type of late propagation, we calculate the sum of all faults experienced by instances
of that type of late propagation. We use the non-parametric Kruskal–Wallis test to
investigate if the number of faults for the different types of late propagation is iden-
tical.

Results. Table 6 presents the distribution of faults for different types of late propaga-
tion. The “Total” row represents the total numbers of faults over all late propagation
genealogies. To validate the results, we perform the non-parametric Kruskal–Wallis
test which compares the distribution of faults between groups of different types of
late propagation. The results of theKruskal–Wallis test is statistically significant with
a p-value of 2.89−15. Hence, there is a statistically significant difference between the
distribution of faults across all types of late propagations.

Examining the results in Table 6 for the significant cases, we see that, in general,
LP7 and LP8 contribute to a large proportion of the faults. In the previous question,
LP7 and LP8 have lower odds ratios. Although they are less prone to faults, when
they do experience faults, the faults are likely to occur in large numbers. The change
causing the inconsistency may lead to faults in the system, which may explain why
the change is reverted instead of being propagated to the other clone in the clone
pair. Overall, we can conclude that types LP7 and LP8 are the most dangerous. The
level of fault-proneness of the other types is system-dependant. The proportion of
faults for each type of late propagation is, therefore, very different. Thus, we reject
H03. This result is consistent with the findings of Barbour et al. [1].
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Table 6 Proportion of faults for each type of late propagation

Propagation category LP type # of faults % of faults (%)

Propagation always
occurs

LP1 244 13.2

LP2 20 1.1

LP3 224 12

Propagation may or
may not occur

LP4 23 1.2

LP5 68 3.7

LP6 216 11.7

LP7 803 43.3

Propagation never
occurs

LP8 253 13.8

TOTAL 1851 100.00

Summary of RQ3

In terms of the proportion of faults, LP7 and LP8 are more risky and should
be monitored carefully and/or refactored if possible. The risk for the other
types of late propagation is system-dependant.

3.4 RQ4: Can We Predict Whether a Clone Pair Would
Experience Late Propagation?

Motivation. In this research question, we use machine learning algorithms to train
models that can help developers predict which clone pair will experience late prop-
agation and have faults in the future. Using these predictions, developers would be
able to refactor risky clone pair early on and/or keep them in check before the clone
pair becomes inconsistent or a fault is introduced. This information about risky clone
pairs will help developers in making better use of their time and resources.

Approach. For each instance in the clone pair genealogy, we calculate multiple
features that may help with training the models for predicting whether a clone pair
would experience late propagation or not. The features are used in a prior study by
Barbour et al. [5]. Table 7 presents the description of our collected features.

We train models for two different behaviors; (1) presence of late propagation
(MLP ) and (2) fault-prone late propagation (MBUG). For every change experienced
by a clone pair, we calculate 18 features as described in Table 7. We also examined
the fault-proneness of the clone pairs, as described in Sect. 2.
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Table 7 Description of clone genealogies features from [5] used to build the models

Metric Description

Product metrics

CLOC The number of cloned lines of code

CPathDepth The number of common folders within the project directory structure

CCurSt The current state of the clone pair (consistent or inconsistent)

CommiterExp The experience of committer (i.e., the number of previous commits submitted
before a specific commit.)

Process metrics

EFltDens The number of fault fix modifications to the clone pair since it was created
divided by the total number of commits that modified the clone pair

TChurn The sum of added and the changed lines of code in the history of a clone

TPC The total number of changes in the history of a clone

NumOfBursts The number of change bursts on a clone. A change burst is a sequence of
consecutive changes with a maximum distance of one day between the changes

SLBurst The number of consecutive changes in the last change burst on a clone

CFltRate The number of fault-prone modifications to the clone pair divided by the total
number of commits that modified the clone pair

Genealogy metrics

EConChg The number of consistent changes experienced by the clone pair

EIncChg The number of inconsistent changes experienced by the clone pair

EConStChg The number of consistent change of state within the clone pair genealogy

EIncStChg The number of inconsistent change of state within the clone pair genealogy

EFltConStChg The number of re-synchronizing changes (i.e., RESYNC) that were a fault fix

EFltIncSChg The number of diverging changes (i.e., DIV ) that were a fault fix

EChgTimeInt The time interval in days since the previous change to the clone pair

We use logistic regression, SVM classifier, Random Forrest, and XGBOOST
to classify the clone pairs data. Logistic regression is a statistical model that uses
a logistic function to model a binary-dependant variable. Support vector machine
(SVM) is a supervised model associated with learning algorithms that analyze data
for classification. Random forrest is an ensemble learning method for classification
that operates by constructing several decision trees. XGBOOST [14] is an optimized
gradient boosting library designed to be highly efficient and flexible. Recent studies
[15, 16] have used XGBOOST for training the models for classification problems.
We split the data into training (70%) and testing (30%) to train and test the models.
We make sure that our data splitting is time consistent i.e., we do not use future late
propagations data to predict past late propagations.

Results. Table 8 shows the results of model training using the four machine learning
algorithms.We evaluate themodels using three performancemetrics commonly used
for assessing trained machine learning models, including precision, f1-score, and
AUC. Precision is the fraction of relevant instances among the retrieved instances. F1-
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Table 8 Evaluation metrics for the machine learning algorithms

ML algorithm MLP MBUG

Precision F1-score AUC Precision F1-score AUC

Logistic Regression 0.81 0.68 0.76 0.78 0.71 0.75

SVM Classifier 0.87 0.72 0.80 0.78 0.72 0.76

Random Forrest 0.89 0.80 0.85 0.94 0.93 0.93

XGBOOST 0.91 0.72 0.87 0.91 0.75 0.90

score is the harmonic mean between precision and recall. AUC provides an aggregate
measure of performance across all possible classification thresholds. Results show
that XGBOOST outperforms all the algorithms in terms of precision and AUC.
However, Random Forrest achieves the highest value among the four models.

Furthermore, we analyze the most important predictors for both behaviors (i.e.,
late propagation occurrence and fault occurrence in late propagation). For MLP , the
number of consistent state changes (EConStChg) (37.5%), the number of consistent
changes (EConChg) (32%), and the sum of added or changed lines (Tchurn) (23.2%)
are the most significant features having more than 90% effect in the model. The
number of consistent state changes (EConStChg) has a negative effect, meaning that
if a genealogy experience more inconsistent changes than consistent changes, then it
can be an indicator of late propagation introduction in clone genealogies. For MBUG ,
number of fault-prone modifications in the history (CFltRate) (65%), number of
previous commits by a specific developer (CommitterExp) (17%), and time interval in
days since last change (EChgTime) (8%) are themost significant features havingmore
than 90% effect in the model. The number of faulty changes divided by the number
of changes (CFltRate) has a positive effect. A higher number of erroneous changes
in clone genealogy history is an indicator of future fault occurrences. Experience
has a negative effect, which suggests that late propagation genealogies changed by
less experienced developers are more fault-prone. Developers can benefit from these
results as they can leverage the trained machine learning models to assess the risks
of the clone pairs.

Summary of RQ4

For MLP , XGBOOST achieves the highest precision (0.91) and AUC (0.87)
with consistent state changes (EConStChg) being themost significant feature.
For MBUG , Random Forrest achieves the highest precision (0.94) and AUC
(0.93) with the number of past fault-fixing changes (CFltRate) being themost
significant feature.
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4 Threats to Validity

We now discuss the threats to the validity of our study. Construct validity threats in
this study are mainly due to measurement errors possibly introduced by our chosen
clone detection tool. To reduce the possibility of misclassification of code fragment
as clones, we chose the best configuration for clone detection tool that has been
recommended by the recent evaluation of code clone tools [7]. Another construct
validity threat stems from the SZZ heuristics used to identify fault-fixing changes
[11]. Although this heuristic does not achieve a 100% accuracy, it has been success-
fully employed and reported to achieve good results in multiple studies [17]. Reli-
ability validity threats concern the possibility of replicating this study.4 We attempt
to provide all the details needed to replicate our study. Also, the source code and git
repositories of the studied systems are publicly available.

5 Conclusion

In this chapter, we replicate a previous study by Barbour et al. [1] to examine late
propagation in more detail. We first confirm the conclusion from the previous study
that late propagation is more risky than other clone genealogies. We then identify
eight types of late propagation and study them in detail to identify which types of
late propagation contribute the most to faults in the systems. Overall, we find that
two types of late propagation (i.e., LP7 and LP8) are riskier than the others, in terms
of their fault-proneness and the magnitude of their contribution toward faults. LP7
occurs when both clones are modified, causing a divergence and then at least one of
the two clones in the pair is modified to re-synchronize the clone pair. LP8 involves
no propagation at all and occurs when a clone diverges and then re-synchronizes
itself without changes to the other clone in a clone pair. The contribution of other
types of late propagation is found to be system-dependent. From this study, we
can conclude that late propagation types are not equally risky. We train machine
learning models to identify the clone genealogies with late propagation (MLP ) and
fault-prone late propagations (MBUG) early on.We use 18 different clone genealogy-
related features to train four different machine learningmodels. For the occurrence of
late propagation (MLP ), XGBOOST achieves the highest precision (0.91) and AUC
(0.87) with consistent state changes (EConStChg) being the most significant feature.
For the fault-prone late propagations (MBUG), Random Forrest achieves the highest
precision (0.94) and AUC (0.93) with the number of fault-prone changes (CFltRate)
being the most significant feature.

4 https://github.com/qecelab/latepropagation.

https://github.com/qecelab/latepropagation


Is Late Propagation a Harmful Code Clone Evolutionary … 167

References

1. L. Barbour, F. Khomh, Y. Zou, Late propagation in software clones, in 2011 27th IEEE Inter-
national Conference on Software Maintenance (ICSM) (IEEE, 2011), pp. 273–282

2. M. Kim, V. Sazawal, D. Notkin, G. Murphy, An empirical study of code clone genealogies,
in Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13 (ACM, New York, NY, USA, 2005), pp. 187–196

3. L. Aversano, L. Cerulo, M. Di Penta, How clones are maintained: an empirical study, in 11th
European Conference on Software Maintenance and Reengineering (2007), pp. 81 –90

4. S. Thummalapenta, L.Cerulo, L.Aversano,M.DiPenta,An empirical studyon themaintenance
of source code clones. Empir. Softw. Eng. 15, 1–34 (2010)

5. L. Barbour, L. An, F. Khomh, Y. Zou, S.Wang, An investigation of the fault-proneness of clone
evolutionary patterns. Softw. Qual. J. 26(4), 1187–1222 (2018)

6. N. Göde, R. Koschke, Incremental clone detection, in 13th European Conference on Software
Maintenance and Reengineering (IEEE, 2009), pp. 219–228

7. J. Svajlenko, C.K. Roy, Evaluating modern clone detection tools, in 2014 IEEE International
Conference on Software Maintenance and Evolution (IEEE, 2014), pp. 321–330

8. N. Göde, Evolution of type-1 clones, in Proceedings of the 9th International Working Confer-
ence on Source Code Analysis and Manipulation (IEEE Computer Society, 2009), pp. 77–86

9. J. Krinke, A study of consistent and inconsistent changes to code clones, inWorkingConference
on Reverse Engineering (2007), pp. 170–178

10. C.C.S., whatthepatch—python’s third party patch parsing library Online. Accessed 17 Aug
2020
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A Summary on the Stability of Code
Clones and Current Research Trends

Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider

Abstract Code clones are exactly or nearly similar code pieces in the source
code files of a software system. These mainly get created because of the frequent
copy/paste activities of the programmers during development. Many studies have
been done on realizing the impacts of code clones on software evolution and mainte-
nance.We performed a comprehensive study on clone stability in order to understand
whether clone or non-clone code in a software system is more change-prone. Intu-
itively, code pieceswith higher change-proneness (lower stability)will require higher
maintenance effort and cost during software evolution. According to our study, code
clones are more change-prone than non-clone code in general and thus, code clones
are likely to require a highermaintenance effort and cost.We suggest that code clones
should be managed with proper tool support so that we can get rid of their negative
impacts and can get benefited from their positive impacts. This document provides a
brief summary of our study on clone stability. It also discusses the studies that were
done mostly after the publication of our study. Finally, it mentions some possible
future works on the basis of the findings of the existing studies.

1 Summary of Our Study

Although code cloning (copy/pasting code fragments) seems to be a useful software
engineering practice which is often employed by the programmers during program-
ming, such a practice has mixed impacts on software maintenance according to the
existing studies [8, 22, 28, 29, 34, 36, 38, 43, 44, 50, 51, 55]. Code cloning creates
exactly or nearly similar code pieces known as code clones [71, 73] in the code-
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base. While some of the studies [22, 28, 36, 38] found code clones to have positive
impacts (such as faster development, reducing development cost, and code compre-
hension) on software development, there is strong empirical evidence [8, 29, 34, 43,
44, 50, 51, 55] of their negative impacts (such as higher instability, bug-proneness,
and late-propagation tendency) too. Such a controversy among the existing studies
is expected, because different studies investigated the impacts of code clones in dif-
ferent ways, on different experimental setups, and using different clone detection
tools. In order to resolve the controversy among the existing studies, we perform a
large-scale empirical study on the comparative stability of clone and non-clone code.

Stability has been defined by different studies [22, 28, 38, 44] in different ways.
It generally measures the extent to which clone or non-clone code remains stable
(unchanged) during evolution. The underlying idea behind our study [49] is that if
clone code appears to be more stable than non-clone code during software evolution,
code clones should be consideredmore beneficial because they introduce less changes
as well as less maintenance effort than non-clone code. In our study, we divide the
code-base of each of our subject systems into two parts. One part contains the clone
code fragments and the other part contains the non-clone code fragments. We then
determine the stability of these two parts of code fragments using different stability
measuringmetrics thatwere proposed and used by the existing studies.We implement
all the metrics on the same experimental setup using two different clone detection
tools: CCFinder [35] and NiCad [17]. We perform our investigations on thousands
of revisions of 12 subject systems written in three different programming languages:
Java, C, and C#. The systems are of diverse variety in terms of their application
domains, sizes, and revision history lengths.

We found that seven of the existing studies on code clones have investigated clone
stability. These studies have proposed and used eight stability measuringmetrics.We
list the studies and the corresponding metrics in Table1. While these metrics were
implemented and analyzed on different experimental setups in different studies, we
implement all these metrics on the same experimental setup. The reason why we
targeted the stability-related metrics is that these metrics can effectively capture
the change-proneness of code fragments from different perspectives. In general, the
more a code fragment gets changed, the higher is the maintenance effort it requires
during evolution. After implementing the eight stability measuring metrics on the
same experimental setup, we compare the stability of clone and non-clone code
of the 12 subject systems. We perform our comparison by analyzing through four
dimensions: (1) clone-type-centric analysis, (2) clone detection tool-centric analysis,
(3) system-centric analysis, and (4) programming language-centric analysis.

In clone-type-centric analysis, we analyzedwhich type(s) of code clones appear to
be more unstable during evolution. In clone detection tool-centric analysis, we inves-
tigated whether the clones detected by each of the clone detection tools (CCFinder
and NiCad) exhibit a higher instability than non-clone code. In system-centric analy-
sis, we wanted to see whether the code clones in each of our subject systems are more
unstable than the corresponding non-clone code. Finally, in programming language-
centric analysis, we analyzed whether each of our investigated programming lan-
guages (Java, C, and C#) individually suggests code clones to be more unstable than
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Table 1 Studies on clone stability and the related metrics

Study Investigated metrics

[28] The metric calledModification Frequency was proposed by Hotta et al. [28] to see
how many times the clone and non-clone regions get changed during evolution

[22] The metric named Modification Probability was proposed by Göde and Harder
[22] to quantify how many tokens are likely to get modified in clone and
non-clone code regions

[40] The metric Average Last Change Date of clone and non-clone code was proposed
by Krinke [40]

[54] Mondal et al. [54] proposed Average Age of clone and non-clone code to
determine how long a fragment in a particular code region remains alive during
evolution

[44] Two metrics, Impact and Likelihood, of changes in clone and non-clone code
were proposed by Lozano and Wermelinger [44]

[45] The metric called Average instability per cloned method due to clone and
non-clone code was proposed by Lozano and Wermelinger [45]

[56] The metric Dispersion of changes in clone and non-clone code was proposed by
Mondal et al. [56] to determine changes in which code region (clone or
non-clone) is more scattered

non-clone code and code clones in which language(s) appear to be more unstable.
According to our study [49], we have the following findings:

• Clone code generally appears to be more unstable than non-clone code during
software evolution.

• Type 1 (exact clones) and Type 3 (gapped clones) clones exhibit higher instability
than Type 2 clones (exact clones with renamed variables and changed data types).

• Code clones in the subject systems written in two of our investigated programming
languages (Java and C) are more change-prone compared to the code clones in the
subject systems implemented in C#.

As code clones generally appear to be more unstable than non-clone code during
software evolution, proper tool support for managing code clones is important so
that we can minimize their negative impacts and, at the same time, get benefited
from their positive impacts. As Type 1 and Type 3 clones exhibit a higher instability
than Type 2 clones, we should prioritize those two clone types (Types 1 and 3) when
making clone management decisions.

2 Research Activities Done After the Publication
of Our Study

Over the past few decades, the area of clone research has attracted a lot of inves-
tigations and studies. While some of these studies were done on clone detection
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techniques and tools [9, 13, 23, 35, 41, 42, 72], many of the remaining studies
were done on analyzing the impacts of code clones [4–8, 25, 27, 36, 38, 39, 44]
on software maintenance and evolution. The impact analysis studies were done in
different directions. While a number of studies found code clones to be beneficial for
software development and program comprehension, other studies discovered serious
negative impacts of code clones on software evolution. As different studies obtained
controversial outcomes regarding the impacts of code clones, we performed a com-
prehensive study on the comparative stability of clone and non-clone code.We found
code clones to be more unstable than non-clone code during software evolution and
maintenance. Thus, clone code requires more maintenance effort and cost in general.

After the publication of our study [49], a number of studies [30, 31, 50, 51, 63]
have shown empirical evidence of negative impacts of code clones such as bug repli-
cation through code cloning, higher bug-proneness of code clones than non-clone
code, context adaptation bugs in code clones, bug-propagation through code cloning,
and late propagation tendencies of code clones and the related bugs. Mainly consid-
ering the harmful impacts of code clones, clone researchers now suggest to manage
code clones through some clone maintenance activities such as clone refactoring [82,
89] and tracking [19, 33].

Clone refactoring is the task of removing code clones from the code-base through
merging. A lot of studies [4, 5, 16, 25, 26, 74, 85, 86, 91] have been done on
clone refactoring. Some of these studies [12, 89, 90] investigated scheduling the
task of clone refactoring in order to optimize the refactoring gain. Some studies
[26, 81] suggested different patterns for refactoring clones. A number of studies
[57, 58] have also investigated finding code clones that are important for refactoring
and identifying useful clone refactoring patterns through mining clone evolutionary
history. Some of the studies [46, 82] have also investigated automatic and semi-
automatic refactoring of code clones and developed promising tools on the basis of
the investigations. Clone refactoring using lambda expressions [83] has also been
recently investigated.

Clone tracking means remembering code clones in the clone classes through
evolution. In the presence of a clone tracker, whenever a programmer attempts to
make some changes to a clone fragment, the other fragments in the same clone class
will be notified to the programmer. The programmer then decides whether these
other clone fragments in the same clone class also need to be modified similarly.
Clone tracking has also been investigated by a number of studies [19–21, 33, 80]
resulting in a number of clone trackers such as Clone Notifier [80], CCSync [15],
JSync [67], gCad [75], and Clone-Tracker [20]. These clone trackers are capable of
tracking clone genealogies and can work on different clone types. One study [57]
has also investigated identifying code clones that can be considered important for
tracking on the basis of clone evolutionary history.

Researchers have also investigated devising history-based change suggestion tech-
niques [37, 60, 68, 69] on the basis of code clones. A change that previously occurred
in a particular code fragment might be necessary for a similar code fragment in the
recent revision of the code-base. Some existing studies [68, 69] have investigated
providing change suggestions considering fragment-level code similarity. One study



A Summary on the Stability of Code Clones and Current Research Trends 173

[60] has also explored the possibility of providing method-level change suggestions
by considering method-level clones detected by the NiCad [17] clone detector.

Currently, researchers are also investigating how to use code clones for improving
association rule mining-based co-change suggestion techniques [1, 14, 52]. A recent
study [66] has investigated a number of clone detectors in order to identify which
detectors are the most efficient ones for suggesting cloned co-change candidates.

A number of studies [77, 88] have been done on detecting semantic clones and
cross-language clones [2].A recent study [3] has also established a benchmark dataset
for evaluating semantic clone detectors. Semantic clone detection techniques are still
at a very early stage. Currently, researchers are conducting studies and proposing
different techniques for detecting semantic clones.

A number of studies [32, 76] have been done on devising clone detectors that can
run on big-code (very large code-base). A very big dataset called BigCloneBench
[78] has been established for evaluating clone detectors. A mutation and injection
framework for evaluating clone detectors has been developed [79]. Researchers have
investigated how to use machine learning techniques for designing cloud-based auto-
matic clone validation tools [64, 65].

Researchers have also investigated the importance of micro-clones [10, 61, 84]
during software evolution. Micro-clones are similar code fragments that are smaller
than the minimum size of the regular code clones. Existing studies [30, 53, 61]
have investigated micro-clones of at most four lines of code. It has been shown that
the number of micro-clones is much higher than regular code clones in software
systems [61]. Also, micro-clones are often more bug-prone than regular clones [30].
The recent studies [53, 61] have discovered that micro-clones require consistent
updates like the regular clones during evolution. Thus, the necessity of managing
micro-clones has been established.

Researchers have also studied inconsistent changes in code clones [11, 38, 62].
After experiencing inconsistent changes, the code clones can undergo mutation and
migration [87]. Studies [11, 62] show that the inconsistent changes in code clones can
lead to bugs and inconsistencies in software systems. Inconsistent changes in Type
3 clones have the highest possibility of introducing bugs in the code-base compared
to Type 1 and Type 2 clones [62].

Some studies [47, 48] have investigated clone visualization techniques. Clone
visualization can be useful for making clone management decisions. The existing
techniques [24, 47, 48, 70] can help us visualize the genealogies of clone fragments
in a code-base, locate areas in the code-base that have code cloneswith a high density,
identify which changes in code clones introduced bugs in the code-base, and analyze
how to resolve clone-related bugs. Some of the studies have also investigated clone
differentiation mechanisms to assist in clone refactoring.

The following section mentions a number of future research directions on the
basis of the existing studies.
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3 Future Research Directions

3.1 Investigation on Refactoring and Tracking
of Micro-clones

As we have already discussed, micro-clones have been recently investigated by a
number of studies [10, 61, 84]. Micro-clones also need to be managed like the
regular code clones during software evolution. A number of refactoring techniques
for refactoring regular code clones exist. However, refactoring of micro-clones has
not yet been explored. Investigation in this direction can add value to the existing
knowledge on clone refactoring. Generally, there can be a large number of micro-
clones in a software system. Thus, identifyingmicro-clones that should be considered
important for refactoring is a promising future work as well.

Tracking of micro-clones has also not been investigated yet by the existing stud-
ies. A number of tracking techniques for tracking regular clones currently exists. It is
important to investigate whether these existing techniques are also suitable for track-
ing micro-clones. Clone tracking requires detecting clone genealogies. As there are
too many micro-clones in a software system, the existing genealogy detection tech-
niques might not be feasible for micro-clones. Thus, investigation toward detecting
genealogies of micro-clones can also be an important future work.

3.2 Identifying Bugs and Devising Fix Patterns
for both Regular- and Micro-clones

Many existing studies [18, 29, 43, 59] have discovered bugs related to regular code
clones. However, bugs inmicro-clones have not been explored that much. It is impor-
tant to investigate whether micro-clones also take part in replicating and propagating
bugs.We still do not knowwhether micro-clones can contain context adaptation bugs
like the regular clones. An investigation in this direction can add value to the existing
research on code clones. It is also important to explore possibilities for automatically
fixing clone-related bugs. Investigation on identifying patterns for fixing particular
bugs related to clones can be a promising direction of research.

3.3 Comparative Stability of Regular- and Micro-clones

Existing studies [22, 28, 55] have compared the stability of clone and non-clone code.
However, there is no study comparing the stability of regular- andmicro-clones. Such
a study can discover which clone type (regular- or micro-clones) is more change-
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prone during evolution and, as a result, requires more maintenance effort and cost.
That particular clone type can be managed with a higher priority.

3.4 Industrialization of Clone Management Techniques

Although there are a lot of studies on clone detection and management (refactoring
and tracking), the detection and management techniques have not yet been indus-
trialized that much. Future studies on industrializing clone techniques can be very
important for the clone research community. Studies can be done on realizing the
opinions of the professional developers regarding code clones and their management.
Some studies can be done to demonstrate to the developers how the consideration of
code clones and related techniques can be useful during software development.

3.5 Minimizing Testing Effort After Clone Refactoring

After clone refactoring, the refactored code needs to be checked to see if the code
is giving the expected output. If testing the refactored code requires a huge amount
of time and effort, the task of refactoring might not appear to be useful to the pro-
grammers. Thus, devising automated tests for the refactored code on the basis of the
existing tests can be an important direction of research. The possibility of automatic
tests after clone refactoring can make refactoring promising to the programmers.
Moreover, it would be very interesting if the benefits of refactoring can be quantified
after implementing a clone refactoring task.

3.6 Investigating Programmer Sensitivity of Cloned
Co-change Candidates

An existing study [66] reports that the precision and recall in suggesting cloned co-
change candidates are generally very low. Toward improving the detection accuracy
of cloned co-change candidates, it is important to investigatewhether such candidates
are sensitive to programmers. In other words, it would be interesting to see if a
programmer generally wants to make changes only to those clone fragments that are
created by himself. If a project is being developed by two or more programmers, it
can be a general tendency that each programmer will take care of the code written
by that programmer. An investigation in this direction can be useful in suggesting
cloned co-change candidates.
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4 Conclusion

This document contains a summary of our study [49] on clone stability and a brief
history of research activities that were conducted in the area of code clones mostly
after our study. We see that a great many studies have been done on clone detection,
analysis, andmanagement (such as clone refactoring and tracking).We alsomention a
number of future research directions on the basis of our studyfindings and believe that
investigations in these directions can enrich the existing knowledge on the impacts
of code clones and their management.
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Identifying Refactoring-Oriented Clones
and Inferring How They Can Be Merged

Yoshiki Higo

Abstract Our research group has been working on code clones for more than 20
years. In this chapter, I review our work on merging clones published in 2008 (Higo
et al. in J Soft Mainten Evolut 20:435–461, 2008 [3]), introduce two subsequent
studies, and discuss prospects for future research.

1 Introduction

First of all, I would like to thank Prof. Katsuro Inoue at Osaka University and Prof.
Chanchal Roy at the University of Saskatchewan for giving me the opportunity to
reflect on the research in literature [3]. The literature is about identifying refactoring-
oriented clones and inferring how they can be merged, which was my first research
project. The results were finally accepted for publication in the Journal of Software
Maintenance and Evolution: Research and Practice1 in 2008 [3]. It is hard to believe
that it has already been 12 years since literature [3] was published.

I began my research on merging clones in 2002 when I was a first-year master’s
student. At that time, the research group I belonged to had a tool calledCCFinder [5],
which enabled us to detect clones in a short time even from large-scale software. Our
research group applied CCFinder to a variety of software and found that all of the
software contained clones, and in some cases, more than half of the code was cloned.
Also, at the time, the existence of all clones was thought to be evil. However, since
CCFiner detected matching token sequences in the source code as clones, it was
difficult to merge many of the detected clones into one. Therefore, we had started
a research project to provide merging assistance to the clones found by CCFinder.
The final results of this research are literature [3].

1The journal changed its name in 2012 and is now called the Journal of Software: Evolution and
Process.
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In this chapter, we describe the merging assistance for clones that we proposed in
literature [3] and present two subsequent research studies conducted by our research
group. We also conclude with future perspectives on merging clones.

2 Assisting Developers in Merging Clones

In literature [3], we proposed a technique to assist developers in merging clones
in Java source code. The technique includes the following three steps, and it tells
developers which clones and how they can be merged.

STEP-1 it detects clones in a given target system.
STEP-2 it extracts mergeable parts in general clones.
STEP-3 it characterizes mergeable parts with quantitative metrics.

The remainder of this section explains each of the steps in detail.

2.1 Detecting General Clones

In this step, this technique detects clones using an existing clone detection technique.
It is advisable to use a detection tool that can detect at least Type-2 clones because
developers often introduce small changes to copied code fragments after they perform
copying and pasting operations. We intended to support to merge clones that are
made by copying and pasting operations. In our implementation of this technique,
we used CCFinder [5]. In literature [3], we called clones detected by clone detection
techniques general clones.

2.2 Extracting Mergeable Parts in Clones

In this step, this technique extracts cohesive structural parts included in general
clones. The extracted parts are easier tomerge thangeneral clones themselves because
they are structural units of programming language. Since the system that we devel-
oped based on the technique is arranged for Java language, the following structural
cohesive parts included in general clones are extracted.

Declaration class, interface
Function method, constructor, static initializer
Block do, for, if, switch, synchronized, try, while.

In literature [3], we called extracted parts refactoring-oriented clones. Figure1 shows
that refactoring-oriented clones are more suitable to be merged than general clones.
This figure shows general clones detected by CCFinder. The try-catch blocks in the
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Fig. 1 General clones and refactoring-oriented clones

clones include common instructions,while the clones also include a few extra instruc-
tions before and after the try-catch blocks. The presence of such extra statements in
the clones makes it difficult to merge the clones into a new single method.

At present (at the time when I’m writing this chapter), there are many tools that
detect clones atmethod-level or block level. Ifweuse such tools insteadof CCFinder,
general clones are the same as refactoring-oriented clones, which means we can omit
this step.

2.3 Characterizing Mergeable Parts

In this step, this technique characterizes refactoring-oriented clones with two view-
points.

First viewpoint: position relationship in the class hierarchy
Java is an object-oriented programming language, whichmeans the distance between
clones in class hierarchy strongly affects how they can bemerged. Figure2 illustrates
three examples.

Case 1 if clones exists in a single class, they can be merged as a new method in
the same class (see Fig. 2a).

Case 2 if clones exist in different classes that are derived from the same class, they
can be pulled up to the common base class (see Fig. 2b).
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Fig. 2 Examples of merging clones



Identifying Refactoring-Oriented Clones and Inferring How They Can Be Merged 187

Case 3 if clones are scattered across multiple classes, creating a new class is a way
to merge the clones (see Fig. 2c). In Fig. 2c, new class TelephonNumber is
created, and then the duplicated function in getTelNumber is delegated to
the new method in the new class. A new class can be created as a common
base class of the classes including the clones, unless the classes are already
inherited from another class.

This technique utilizes the position relationship of given clones in the class hierarchy
to automatically infer how they can bemerged.We designed a newmetric DCH(C)2

for a given clone class C as follows to represent their position relationship quantita-
tively. Herein, we assume that clone class C includes code fragments f1, f2, . . . , fn
and class ci includes code fragment fi .

• If all of c1, c2, . . . , cn represent the same class (in Case 1), DCH(C) becomes 0.
• If classes c1, c2, . . . , cn represent different classes but all of them are derived from
common base class cp (in Case 2), DCH(C) becomes the maximum number of
hops from ci (1 ≤ i ≤ n) to cp in the class hierarchy.

• If classes c1, c2, . . . , cn do not share a common base class, DCH(C) becomes∞.

The formula for metric DCH(C) are represented as follows:

DCH(C) =

⎧
⎪⎨

⎪⎩

0 (in Case 1)

max{D(c1, cp), D(c2, cp), · · · , d(cn, cp)} (in Case 2)

∞ (in Case 3),

(1)

where D(ci , cp) represents the number of hops from ci (1 ≤ i ≤ n) to cp in the class
hierarchy. If ci is the same as cp, D(ci , cp) is set as 0.

DCH(C) becomes large as the degree of the dispersion of C becomes extended.
If all code fragments in C exist in a single class, DCH(C) is set as 0. If all code
fragments in C are in a class and its direct child classes, DCH(C) is set to 1. This
metric is measured for only the class hierarchy of the target project because it is
unrealistic to pull up application code to libraries such as JDK.

Second viewpoint: coupling between a clone and its surrounding code
As mentioned before, the basic strategy for merging clones is migrating clones to
another place in the source code. To migrate a code fragment to another place, it is
desirable that the code fragment has low coupling with its surrounding code.

Herein we assume that Extract Method refactoring is to be performed. To apply
this refactoring pattern, the smaller the number of externally defined variables that
are used (referenced and assigned) in the code fragment, the easier it is to migrate the
code fragment to another place. If externally defined variables are used in the target
code fragment, it is necessary to provide the variables as parameters to the newly
extracted method. To automatically infer the ease of code migration, the degree of

2 DCH means Dispersion in the Class Hierarchy.
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coupling is presented as two quantitativemetrics the Number of Referenced Variables
(N RV (C)) and the Number of Assigned Variables (N AV (C)).

Herein, we assume that clone class C includes code fragments f1, f2, . . . , fn .
Code fragment fi references si number of variables that are defined outside the code
fragment, and it assigns to ti number of variables defined outside the code fragment.
Two metrics N RV (C) and N AV (C) are represented as follows.

N RV (C) = 1

n

n∑

i=1

si , N AV (C) = 1

n

n∑

i=1

ti . (2)

N RV (C) represents the average of externally defined variables referenced in the
code fragments that belong to clone class C . In the same way, N AV (C) represents
the average of externally defined variables assigned in the code fragments.

If refactoring-oriented clones described in Sect. 2.2 are Type-1 or Type-2 clones,
both si and ti (1 ≤ i ≤ n) are always identical among the clones in the same clone
class. In such a case, those metrics can be represented as follows:

N RV (C) = s1 = s2 = · · · = sn, N AV (C) = t1 = t2 = · · · = tn. (3)

If the refactoring-oriented clones are Type-3 clones, si /ti can be different from
s j /t j (1 ≤ i, j ≤ n, i �= j). In such a case, the definitions of Formula 2 must be used.

2.4 Examples of Merging Code Clones

Herein we show two examples of identifying clones to be refactored with this tech-
nique. The first example is merging clones with Extract Method, and the second one
is with Pull Up Method.
Merging clones with Extract Method
A typical set of conditions could be as follows in a case that Extract Method refac-
toring is used to merge clones.

EC1 (Extract Method Condition 1) The target granularities are blocks;
EC2 (Extract Method Condition 2) DCH(S) is 0;
EC3 (Extract Method Condition 3) N AV (S) is 1 or less.

EC1 is necessary because Extract Method is performed for a part of an existing
method. If all clones are in a single class, it is easy to merge them as a new method
in the same class, which is the reason why EC2 is used. The reason for EC3 is that,
some values are assigned to two or more variables that are outside the clones, it is
necessary to create a new class for such variables because Java methods can return
only a single value.
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Table 1 Classifying code clones satisfying (EC1) to (EC3)

EXTRACT PARAMETER RETURN OTHER

EG1 Required – – –

EG2 Required Required – –

EG3 Required – Required –

EG4 Required Required Required –

EG5 Required Do no care Do no care Required

The primary operations for Extract Method are as follows:

EXTRACT A set of operations for simply extracting a code fragment as a new
method is required: (1) cutting the target code fragment, (2) pasting the code
fragment outside the method, (3) adding a simple signature (a method name with
no parameter) to the code fragment.

PARAMETER A set of operations for removing the direct access to the externally
defined variables in the extracted method are required: (1) adding parameters to
the signature, and (2) replacing the references to the externally defined variables
with references to the parameters.

RETURN A set of operations for adding a return-statement to the extracted
method is required: (1) defining a new local variable, (2) replacing the assign-
ment to the externally defined variable with an assignment to the local variable,
(3) adding a return-statement for passing the value of the local variable.

OTHER Other operations than the above ones for extracting code fragments as
new methods are sometimes required. For example, if a clone includes a return-
statement, it is not desirable to simply perform a RETURN operation.

EXTRACT operations are required by any clones in performing Extract Method,
whereas PARAMETER, RETURN, and OTHER operations depend on the internal
logic of clones. If a clone class satisfies all the conditions EC1 to EC3, the clone
class is categorized into either of five groups, EG1 to EG5 in Table1.

EG1 (Extract Method Group 1) Clone classes in this group can be merged by
just extracting the clones as a new method in the same class. That is, the clones
use no externally defined variables. Clone classes in this group require only the
EXTRACT operation.

EG2 (Extract Method Group 2) Clone classes in this group can be merged by
extracting the clones as a new method by adding parameters for the externally
defined variables. That is, the clones reference one or more externally defined
variables. Clone classes in this group require the EXTRACT and PARAMETER
operations.

EG3 (Extract Method Group 3) Clone classes in this group can be merged by
extracting the clones as a new method by adding a return-statement. That is, the
clones assign to an externally defined variable. Clone classes in this group require
the EXTRACT and RETURN operations.
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EG4 (Extract Method Group 4) Clone classes in this group can be merged by
extracting the clones as a new method by adding parameters and a return-
statement. That is, the clones reference one or more externally defined variables
and assign a value to an externally defined variable. Clone classes in this group
require the EXTRACT, PARAMETER, and RETURN operations.

EG5 (Extract Method Group 5) Clone classes in this group could potentially
be merged but require too much effort. Clone classes in this group, by defini-
tion, require the OTHER operations. In this group, it is irrelevant whether clone
classes require the PARAMETER and RETURN operations or not. Thus, the
corresponding cells in Table1 are “do no care”.

Merging clones with Pull Up Method
If a user wants to merge clones by performing the Pull Up Method, the following
conditions should be reasonable:

PC1 (Pull Up Method Condition 1) The target granularities are methods;
PC2 (Pull Up Method Condition 2) DCH(S) is 1 or more (not ∞);
PC3 (Pull Up Method Condition 3) N AV (S) is 0.

Pull Up Method refactoring is performed on existing methods, which is the reason
for PC1. PC2 requires all classes including clones (duplicated methods) to extend
a common base class. PC3 is required because it is difficult to add a new return-
statement for handling an externally defined variable to methods if they already
include return statements.

The primary operations for Pull Up Method are as follows:

MOVE A set of operations for simply moving a code fragment to another place,
for example, (1) cutting the target method from the original place, and (2) pasting
it in the common base class.

PARAMETER A set of operations for removing direct accesses to variables that
cannot be used in the common base class and, instead, passing them as input
parameters, for example, (1) adding parameters to the signature, and (2) replacing
the references to the unavailable variables with references to the parameters.

OTHER Other operations than the above ones. As was seen in the case of Extract
Method pattern, not all clones satisfying PC1 to PC3 can be removed using the
above two operations, EXTRACT and PARAMETER. Some clones may require
more effort to remove, or it may be impossible to remove them. As a matter of
convenience, such clones are defined to require OTHER operations.

MOVE operations are required by any of the code clones in performing the Pull
Up Method, whereas the requirements of the PARAMETER and OTHER operations
depend on the internal logic of the code clones. If the condition of PC3 is “N AV (S)
is one or less”, one more primary set of operations, RETURN, should be added.

RETURN A set of operations for adding a return-statement to the moved method
to reflect the result of the assignment in it to the caller place.
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Table 2 Classifying code clones satisfying PC1 to PC3

MOVE PARAMETER OTHER

PG1 Required – –

PG2 Required Required –

PG3 Required Do no care Required

When N AV (S) is 1, there is an assignment to an externally defined variable. Such
assignments have to be changed to local variable assignments, and a return-statement
has to be added for reflecting the assignment result to the caller place.

MOVE operations are required by any of the code clones in performing the Pull
Up Method, whereas the requirements of PARAMETER and OTHER operations
depend on the internal logic of the clones. If a clone class satisfies all the conditions
PC1 to PC3, the clone class is categorized into one of the following groups, PG1 to
PG3. Table2 shows the relationships between classified groups and their required
operations.

PG1 (Pull Up Method Group 1) Clone classes that can bemergedby justmoving
the clones to the common base class, that is, the clones use no externally defined
variables. This group requires only MOVE operations.

PG2 (Pull Up Method Group 2) Clone classes that can bemerged bymoving the
clones to the common base class by adding parameters for referencing externally
defined variables, that is, the clones reference one or more externally defined
variables. This group requires MOVE and PARAMETER operations.
We can choose either to delete existing methods including the clones or change
them to call using the new method from the inside. If the existing methods are
deleted, it is necessary to change all of the caller places because the signature was
changed.

PG3 (Pull Up Method Group 3) Clone classes that require ingenuity in merging
them, that is, this group requires OTHER operations. As for Extract Method
pattern, it is irrelevant whether clone classes in PG3 require the PARAMETER
operations or not, so that the corresponding cell of Table2 is “do no care”.

3 Our Research Following Literature [3]

Fortunately, literature [3] has more than 100 citations as of the end of 2020. We are
very happy that this research is helping other research. Our research group has also
conducted research following literature [3]. In this section, we will briefly introduce
the two studies.
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3.1 Refactoring Assistance for Type-3 Clones

The technique that we developed in literature [3] was intended to assist refactor-
ing for Type-1 and Type-2 clones. In other words, the technique is not suitable for
Type-3 clones, which include non-duplicated instructions. In literature [4], we have
developed another technique to assist refactoring for Type-3 clones. In literature [4],
clones are detected by program dependence graph, and they are checked whether
they can be merged with Form Template Method refactoring pattern.

Form Template Method is one of the refactoring patterns proposed by Fowler et
al. [1].FormTemplateMethod usesTemplateMethod that is one of the design patterns
proposed by Gamma et al. [2]. In Template Method, developers write an outline of
the process into a base class and implement the details of the process in its derived
classes. In order to apply this pattern to similar methods that have a common base
class, duplicated instructions between the methods are pulled up to the base class,
and non-duplicated instructions remain in its derived classes. As a result, clones in
similar methods are merged into the base class.

Figure3 shows an example of application of Form Template Method. There are
two classes that share the common base class, Site, and those two classes include
similar methods, getBillableAmount. By applying Form Template Method to those
methods, the common processing flow in the methods is pulled up to the base class,
and the unique instructions in the two methods are extracted as new methods, get-
BaseAmountandgetTaxAmount. Herein, the new method written in the base class
is called Template Method. By applying this code transformation, clones in the meth-
ods are merged into the base class, and the unique instructions in those methods are
handled well by creating new methods in the original classes.

Fig. 3 Example of Form Template Method
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The technique proposed in literature [4] is suitable to handle differences between
target methods comparing to other clone removal techniques. By comparing target
methods with their program dependence graphs, the technique can assist developers
in merging Type-3 clones even if clones include the following differences.

• Clones include the duplicated instruction in a different order.
• Clones include the same processing with different implementation styles (such as
for-loop and while-loop).

Our technique automatically identifies clones that can be refactored with Form
Template Method and show developers how individual clone classes can be merged
with the refactoring pattern.

3.2 Merging Clones in a Fully Automated Manner

In recent years, merging clones has become known as a form of refactoring. Merging
clones makes it easier to keep consistencies in the source code because developers
do not have to put the same changes on clones in multiple different places. However,
there is a possibility that merging clones itself introduces new bugs in the source
code. Consequently, merging all clones without any special reason is not realistic: a
reasonable indicator is required whether or not given clones should be merged.

In literature [6], we proposed a technique to automatically measure the effect of
refactoring on clones by considering the number of lines reduced by merging clones
as the effect of such refactoring. In other words, in literature [6], we proposed a
technique to automatically merge as many clones as possible from the target system.

The technique repeats (1) detecting clones, (2) editing source files, (3) compiling,
and (4) testing. This technique enables developers to obtain actual lines of code that
can be reduced by merging clones, not just estimating it.

Figure4 shows an overview of the proposed technique. The input of the technique
is a set of source files. The output is a set of source files in which clones have been
merged as much as possible and their reducible lines of code. This technique does
not merge clones if merging them does not reduce the lines of code of the source
files. The whole of this technique is performed in a fully automated manner. In the
proposed technique, a new class is generated, and the new class is used as a utility
class for placing merged clones. More concretely, each merged clone is declared as
a static method in the class. We have applied the proposed technique to seven Java
open-source projects. Table3 shows the target projects and the experimental results
on them. As a result, the proposed technique succeeded in merging 489 clone classes
in total.



194 Y. Higo

Fig. 4 Process flow of the technique proposed in literature [6]

Table 3 Target projects and experimental results

Project Size (KLoC) # Detected CCa # Merged CCa Execution time

jEdit 5.40 163 423 57 40min

JFreeChart 1.0.19 236 848 145 2h 48min

JRuby 1.7.27 334 858 236 6h4min

Ant 1.10.1 231 635 7 20min

JMeter 3.2 79 114 5 3min

Closure compiler
20190618

250 286 27 3h13min

Joda-Time 2.10.3 74 89 9 7m
aClone class

4 Directions of Future Research Related to Merging Clones

Herein, we discuss the prospects for future research on merging clones.
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4.1 Revealing the Purpose of Merging Clones

The first research direction is to investigate what the purpose of merging clone is. As
mentioned above, merging clones allows for more efficient changes to be made to the
code in the future because there are no concerns about missing changes. Reducing
the size of the system (number of lines of code) is one reason to merge clones. But
is there any other reason to merge clones? If we can understand the reasons for
merging clones in actual software development and the frequency of merging clones
for each reason, it may serve as a guidepost for future research on merging clones.
For example, it would be necessary to detect cases of merging clones for open-source
software managed on GitHub and to investigate the motivation for each case.

4.2 More Advanced Automatic Refactoring of Clones

In the research presented in Sect. 3.2, we have succeeded in merging clones in a fully
automated manner. However, this fully automatic refactoring involves the following
two issues.

• Only size reduction is considered as the effect of merging clones.
• Only extracting clones as a newmethod in a utility class is theway tomerge clones.

One of the purposes of merging clones is to reduce the number of lines, but there
are other purposes as well. As mentioned in Sect. 4.1, merging clones can prevent
omissions of changes when changes are required to the code in the future. Thus, if
the goal of preventing omissions of changes is a priority, merging clones may be
useful even if the number of code lines increases. Therefore, it is necessary to use a
multi-objective fitness function instead of a single-objective one for more practical
automatic refactoring.

As shown in Fig. 2, there are various ways for merging clones, and how clones
should be merged depends on the characteristics of the clones. The technique in
literature [6], which is only extracting the clones into a utility class, is not sufficient.
It is necessary to automatically merge clones in an appropriate way according to
their characteristics and to make the quality of the code after automatic refactoring
acceptable to the developers.
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Clone Evolution and Management

Norihiro Yoshida and Eunjong Choi

Abstract Programmers tend to write code clones unintentionally, which can be eas-
ily avoided. Clone change management is a crucial issue in open-source software
(OSS) and industrial software development (e.g., development of social infrastruc-
ture, financial systems, andmedical equipment).When industrial software developers
have to fix a defect, they must find the code clones corresponding to the code frag-
ment, including it. To date, several studies have been conducted on the analysis of
clone evolution using OSS. However, only a few studies have reported on the appli-
cation of a clone change notification system to the industrial software development
process of our knowledge. In this chapter, first, we introduce a system that notifies
about the creation of code clones. Then, we report on our experience with the system
after a 40-day long application of it in a corporation’s software development process.
In the industrial application, a developer successfully identified ten unintentionally
created clones that should bemerged.Moreover, we introduce the improvements that
were made since we released the initial version of the notification system. Besides,
we demonstrate a usage scenario of the current version. The current version of Clone
Notifier and its video are available at: https://github.com/s-tokui/CloneNotifier.

1 Introduction

Good programming practice requires programmers to avoid unnecessary duplication
in source code because it increases maintenance costs. For instance, once program-
mers fix a bug in a portion of the source code, they inspect duplicates of that portion
[23]. However, they tend to create unintended code clones, especially in large-scale
source codes.
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Kamiya et al. developed a tool known asCCFinder [11] for detecting code clones
automatically by identifying identical token sequences from the source code. Several
members of the division of software engineering in a corporation have worked to
promote the use of CCFinder in their corporation. According to the feedback from
the CCFinder users in the corporation, we found that developers were not motivated
to merge trusted code clones after a large-scale testing process owing to the cost
of re-performing the testing process. The feedback also indicated that a system is
required to regularly inform the developers of newly introduced code clones so that
they can notice those code clones before the large-scale testing process.

Therefore, we developed a Clone Notifier [19, 20] that performs a daily checkup
of newly introduced code clones in source code (see Fig. 1). To determine the use-
fulness of Clone Notifier, we applied it in the actual development process in the
corporation and received daily feedback that included newly introduced code clones
and data on whether those code clones were merged.

In this chapter, Sect. 2 introduces the initial version of Clone Notifier. Subse-
quently, we report the experience with its application in the actual development
process in the corporation along with the feedback from the development project in
Sect. 3. Next, Sect. 4 introduces the improvements that were made since we released
the initial version, and we thereafter demonstrate a usage scenario of the current ver-
sion of Clone Notifier. Related works are presented in Sect. 5. Finally, we conclude
our discussion in Sect. 6.

The current version of Clone Notifier and its video are available at: https://github.
com/s-tokui/CloneNotifier.

2 Clone Notifier

Figure1 illustrates the implementation of Clone Notifier. It assumes the use of a
version control system such as Git. It extracts code clones that were newly introduced
on the previous day, at midnight, by comparing the versions at the end of the previous
day and the day before that. Thereafter, it informs of the code clones via an e-mail.We
also provide a web-based code clone viewer for developers who receive an e-mail.

2.1 Extraction of Newly Introduced Code Clones

Figure2 illustrates an overview of the extraction of newly introduced code clones by
Clone Notifier. The extraction is performed by a code clone detection toolCCFinder
and GNUDiff. First, CCFinder detects all the code clones from each of the two ver-
sions. Thereafter,mappings of code fragments between the twoversions are identified
using GNU Diff. Finally, Clone Notifier extracts the newly introduced code clones
by identifying code clones that were both (i) present in the version by the end of the
previous day; (ii) have no mapping to the version at the end of the day before the
previous.

https://github.com/s-tokui/CloneNotifier
https://github.com/s-tokui/CloneNotifier
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Fig. 1 Implementation of Clone Notifier

2.2 E-mail Notification

Once Clone Notifier finishes the extraction described in the previous section, it
notifies of the newly introduced code clones via an e-mail. This e-mail notification
aims to send an initial report of new code clones. The first part of this e-mail includes
the number of newly introduced code clones, and the location information represents
where each of the code clones is present. The second part comprises actual code
fragments of the code clones.

2.3 Web-Based Code Clone Viewer

Figure3 is a screenshot of a web-based code clone viewer. This viewer supports
developers who receive a notification e-mail and would like to understand the details
of extracted newly introduced code clones. Once a developer selects one of the newly
introduced code clones, this viewer shows the source code and highlights the code
clones.
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Apply CCFinder Apply CCFinder Apply CCFinder

Apply 
Clone No fier

Apply 
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Version 
at the end of 3 days ago 

Newly-introduced 
code clone

Version 
at the end of 2 days ago 

Version 
at the end of yesterday

Newly-introduced 
code clone

Fig. 2 Overview of the extraction of newly introduced code clones by Clone Notifier

3 Industrial Application

In our work [20], we reported the result of applying Clone Notifier in an industrial
development process. In this section, we briefly introduce it. For further detail, please
refer to [20].

The goal of the application is to confirm that Clone Notifier can inform code
clones that should be merged. We asked a project manager to evaluate whether
or not each of the extracted newly introduced code clones should be merged. The
project manager is responsible for deciding on managing code clones and requesting
programmers to merge them when necessary.
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Fig. 3 Screenshot of web-based code clone viewer

The target is amaintenance project for aweb-based system. The system consists of
approximately 350 files and 12KLOCwritten in Java. The duration of the application
is 40 days.

3.1 Results

During the 40 days of application, 119 sets of newly introduced code clones were
extracted. The project manager recognized ten of them as sets of code clones that
should be merged. Two of the ten sets were merged into a code fragment during
the 40 days. The other eight sets were designated as candidates that will be merged
during the next maintenance project.

We interviewed the project manager, and he acknowledged the usefulness of
Clone Notifier. He was satisfied that ten sets of code clones were recognized as
candidates that should be merged, and two of the ten sets were merged during the 40
days.

He also requested us to implement the feature to present numerical criteria for
selecting code clones, such as the length of a code clone and number of elements in
a clone set (i.e., a set of code clones identical or similar to each other) in the future.
He suggested that numerical criteria help a user understand the benefit of merging
each code clone set.
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3.2 Findings

Wemanually checked the differences between the 10 sets of code clones that should
be merged and the other 109 sets of code clones. Consequently, we acquired inter-
esting insights about the ten sets of code clones that should be merged.

First, in the case of code clones that were newly introduced by adding a new code,
the project manager frequently recognized those code clones as those that should
be merged. Meanwhile, code clones were sometimes accidentally created by only
replacing or deleting statements. In such a case, the project manager mostly decided
to leave those code clones unchanged.

Second, code clones that included entire portions of loop or branch statements
were considered as those that should be merged. Meanwhile, the project manager
rarely recognized code clones that included only portions of a loop or branch state-
ments that should be merged because it is difficult to merge syntactically incomplete
code clones.

Third, code clones that did not include consecutive if-else blocks and consecutive
variable declarations were considered as those that should be merged. However, such
code clones are unavoidable owing to the lack of expressiveness of Java.

3.3 Discussion

According to the project manager’s interview, we believe that this industrial appli-
cation was a success.

The main remaining problem is that Clone Notifier extracted useful sets of code
clones as well as useless sets of code clones. The ratio of the useful code clones
to useless code clones is 8.4%. We are not satisfied with the ratio. One promising
solution is presenting numerical criteria to characterize a clone set, as mentioned by
the project manager. Criteria such as the length of a code clone and the number of
elements in a clone set are expected to support the understanding of each clone set’s
benefit. Another promising solution is opting out of code clones that are unnecessary.
Syntax-based filtering is expected to identify code clones that include syntactically
incomplete sentences, consecutive if-else blocks, and consecutive variable declara-
tions.

4 Improvements of Clone Notifier

After releasing the initial version of Clone Notifier, we have continued to improve
it. In our recent tool demo paper [19], we introduced the current version of Clone
Notifier. Hereafter, we describe the details of the main improvements.
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4.1 Support for Type-3 Clone Detection Tools

The current version of Clone Notifier supports Type-3 clone detection tools (i.e.,
SourcererCC [18], CCVolti [21]). The clone relation of Type-2 clone detection tool
is an equivalent relation. Meanwhile, the clone relation in the Type-3 clone detection
tool is not equivalent because it is not transitive. Therefore, it is necessary to change
the approach for constructing clone sets from clone pairs. The current version of
Clone Notifier constructs sets of clones from clone pairs of JGraphT1 for solving
the maximal clique problem. A clique is a subset of vertices of an undirected graph,
such that edges are present between two different vertices in the clique. A maximal
clique is a clique that is not exclusively present within the vertex set of a larger clique.
For instance, there are four code fragments c1, c2, c3, and c4. When detecting the four
clone pairs (c1, c2), (c2, c3), (c3, c1), and (c3, c4), Clone Notifier detects (c1, c2, c3)
and (c3, c4) as the sets of code clones. As the sets of code clones are maximal cliques
of the JGraphT, they can be included in code clones that may need simultaneous
modification without a surplus or deficiency.

4.2 Notification of Inconsistent Changes of Clones

Along with refactoring [5], an essential motivation for code clone detection is to
determine inconsistent changes to code clones [8–10]. As one of the improvements,
we have incorporated the idea of inconsistency detection proposed by Kim et al. [12]
into Clone Notifier so that it can notify the inconsistent changes of code clones.

4.3 Usage Scenario

We demonstrate a usage instance of Clone Notifier to detect the inconsistent change
clone sets. Moreover, we examine the results to uncover the code clones that should
be fixed.

First, the developer sets the configurations of the Clone Notifier. After down-
loading Clone Notifier, the developer executes setting.jar and writes (e.g., the code
clone detection tool, two versions of the directory path, email address, and config-
uration file name) to generate the configuration file. Next, the developer executes
Clone Notifier with the configuration file as an argument. Finally, after completing
the execution, the developer receives an email from Clone Notifier with a summary
of the results. In this use case, one inconsistent changed clone set is detected. To
investigate the presence of any defect in the code clone, the developer accesses the
URL provided in the email and checks the results.

1 https://jgrapht.org/.

https://jgrapht.org/
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Fig. 4 Inconsistent change (previous commit ID: f7ea1a4233, current commit ID: e8b0e6b82d)

When accessing the URL, the home page is displayed. If the developer clicks
a category name of a clone set, they can check the detailed information about that
category. On the clone set page, the developer can confirm the change information of
the code clone for each clone set. The information includes whether the code clone
has been modified, contains a file, and the line location of the source code. When the
developer clicks the code clone ID, they can access more detailed information about
changes. In the source code page, as shown in Figs. 4, 5, and 6, the code clone in the
source code is displayed. If changes have been made, the changes are colored.

4.4 Findings

This section illustrates three instances of inconsistent changes detected by the Clone
Notifier.

The first instance of inconsistent change on 29 December 2018 is the clone set of
three code fragments, as shown in Fig. 4. These code fragments are in the same file.
Although it was necessary to refactor the other two similar code clones, the modified
code clone was refactored. The commit message includes that the modified coding is
excessively convoluted and hard to follow. Approximately 2 weeks before the receipt
of this commit message, the committer discussed with PostgreSQL developers and
improved the readability of this code via e-mail.2 When a code clone in a clone set
was very convoluted, the other code clones are also convoluted. Thus, they should
be identified as refactoring candidates.

2 https://www.postgresql.org/message-id/20181206222221.g5witbsklvqthjll@alvherre.pgsql.

https://www.postgresql.org/message-id/20181206222221.g5witbsklvqthjll@alvherre.pgsql
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Fig. 5 Inconsistent change (previous commit ID: 82150a05be, current commit ID: edda32ee25)

Fig. 6 Inconsistent change (previous commit ID: 9010156445, current commit ID: 252b707bc4)

The second inconsistent change on 5 April 2019 is the clone set of three code
fragments, as shown in Fig. 5. These code fragments are in the same file. Although it
was necessary to refactor the other two similar code clones, themodified code clone of
these code fragments was refactored, such that the condition statement changes to the
condition negative form. The commit message indicates that “the developer rewrites
get_attgenerated() to avoid compiler warning if the compiler does not recognize that
error log does not return”. Therefore, to avoid the compiler warning with the other
code clones in the clone set, these code clones should be modified with the same
change. If Clone Notifier is constantly used, the developer can consistently refactor.
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The third inconsistent change on 17 April 2019 is the clone set of two code frag-
ments, as shown in Fig. 6. These code fragments are in the same file. One of these
code fragments was refactored, such that it added a NULL return if DataChecksum-
sEnabled is false. It was necessary to refactor the other code clone in the sameway as
the refactored code fragment. The commit message includes that “returning 0 could
falsely indicate that there is no problem, but returning NULL correctly indicates that
there is no information about potential problems”.

5 Related Work

Several studies have been conducted to investigate and support clone evolution [16].
Kim et al. studied genealogies of code clone [12]. They defined a model of clone

genealogy to study the evolution of code clones across multiple versions of source
code. Other clone evolution models have been proposed and discussed [1, 2, 6, 13].
Duala-Ekoko et al. presented Clone Region Descriptors to track code clones moved
to other locations in source code [3, 4].

Nguyen et al. developed a clone management tool JSync to notify developers of
the changes and the inconsistencies of code clones in source files [15]. Additionally,
Jiang et al. [9] and Li et al. [14] proposed the detection of code clones from a single
version of source code.

Recently, Honda et al. developed CCEvovis [7], which is a system that visualizes
the evolution of code clones [20]. It highlights and visualizes the clone change for
developers to understand. Saha et al. described the design and implementation of a
near-miss clone genealogy extractor, gCad [17], which can extract and classify both
exact and near-miss clone genealogies.

Additionally, Yoshida et al. proposed a proactive clone recommendation system
for “Extract Method” refactoring [22]. The proposed system that was implemented
as Eclipse plug-in monitors code modifications on the fly. Once the proposed system
detects an “Extract Method” refactoring instance based on code modifications, it
recommends code clones of the refactored code as refactoring candidates.

6 Summary

We reported an industrial experience with Clone Notifier that performs daily
checkup of newly introduced code clones in source code. Clone Notifier success-
fully suggested that the code clones should be merged. Through further analysis of
the result, we acquired interesting insights for improving Clone Notifier. Moreover,
we introduced the improvements we have made since we released the initial ver-
sion. Thereafter, we demonstrated a usage scenario of the current version of Clone
Notifier.
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Sometimes, Cloning Is a Sound Design
Decision!

Michael W. Godfrey and Cory J. Kapser

Abstract Thepractice of copy-paste-edit—alsoknownas code cloning—hasalways
been popular with software developers; however, evidence suggests that code cloning
also carried risks: code bloat, creeping system fragility and design drift, increased
bugginess, and inconsistent maintenance are all possible side effects of code cloning.
Early research into this practice often tacitly assumed that it was always problematic,
and sought to identify instances of it (“clone detection”) for later elimination. How-
ever, our studies of how cloning has been practised in the development of several
large open-source systems suggested a more nuanced view might be appropriate: we
found that code cloning seems to be practised for a variety of reasons, and some-
times with principled engineering goals in mind. That is, the idea that “code cloning
is uniformly harmful to software system quality” is itself harmful. We argue instead
that code clone instances should be evaluated along a number of criteria—such as
developer intent, likely risk, and mitigation strategies—before any refactoring action
is taken. Also, after some years of reflection on our original studies, we further sug-
gest that instead of concentrating only on source code and other technical artifacts,
there is much to be gained by shifting our focus to studying how developers perceive
and practice code cloning.

1 Introduction: A Problem Reconsidered

In much of the early literature on the topic [1, 2, 14], the practice of code cloning
is assumed to be detrimental to software system quality. For example, we know that
code clones can cause additional maintenance effort; changes to one segment of code
mayneed to be propagated to several others, incurring unnecessarymaintenance costs
compared to forming one reusable abstraction at a single place in the code base [11].
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Also, locating and maintaining these clones pose additional problems if they do not
evolve synchronously. With this in mind, methods for automatic refactoring have
been suggested [2], and tools specifically to aid developers in the documenting [8]
andmanual refactoring of clones [13] have also been developed, but these techniques
have not seen widespread industrial adoption.

With this evidence in mind, it seems fairly safe to assert that code cloning is
sometimes an indication of sloppy design, and in such cases should be considered to
be a kind of development “bad smell” [9]. However, in our studies we have found
that there are many instances of cloning that seem, at worst, harmless and may even
be beneficial to the system’s overall long-term health. For example, cloning may
be used to introduce experimental strategies to core subsystems without negatively
affecting the stability of the main code branch; also, sometimes programming lan-
guages lack abstraction features such as genericity, which can lead to functions that
look very similar to each other but cannot be further unified. Thus, we argue that a
variety of concerns—such as stability, code ownership, and design clarity—need to
be considered before any refactoring is attempted; a developer or manager should try
to understand the reasoning behind the intentional duplication before deciding what
action, if any, to take.

This chapter describes eight cloning patterns that we uncovered during case stud-
ies we performed on large software systems [17, 18]. These patterns present both
good and bad motivations for cloning, and we discuss both the advantages and disad-
vantages of these patterns of cloning in terms of development and maintenance. Our
goal is not to categorize clones for purposes of refactoring but to document the types
of cloning that occur in software to aid the general understanding of how cloning is
used in practice. In some cases, we identify patterns of cloning that we believe are
beneficial to the quality of the system.

To support our basic argument—that code cloning can sometimes be a benefi-
cial design practice—we studied several widely used open-source software systems,
including the Linux kernel, the PostgreSQL relational database management sys-
tem, the Apache httpd web server and the Gnumeric spreadsheet application. In this
work, we explored the observed uses of code cloning by the developers, the apparent
rationale behind the uses, and the relative frequency of “good” versus “bad” clones.

We also show how high-level cloning patterns can be organized in a fashion
similar to the cataloging of design patterns [10]. There are several benefits that can
be gained from this characterization of cloning. First, it provides a flexible framework
on top of which we can document our knowledge about how and why cloning occurs
in software. This documentation can further help to crystallize a vocabulary that
researchers and practitioners can use to communicate about cloning. Second, our
categorization is a step towards formally defining these patterns to aid in automated
detection and classification of the practice of code cloning. These classifications can
further be used to define metrics concerning code quality and maintenance efforts.
Automatic classifications provide uswith bettermeasures of code cloning in software
systems and the severity of the problem in general. For example, a software system
that containsmany clones that are intended to evolve separately, such as experimental



Sometimes, Cloning Is a Sound Design Decision! 211

variation clones described in Sect. 3, will require different maintenance strategies
and tools compared to a software system containing many clones that need to be
maintained synchronously, such as those clones introduced because of language
limitations.

2 Finding Code Cloning Patterns

Our broad research goal in performing these studieswas to better understand the ratio-
nales behind why developers apparently often chose to engage in copy-paste-edit,
as well as to investigate likely risk factors and mitigation strategies. In particular,
we wished to answer the general question of how code clones are used and what
types of code are cloned. The study subjects of these initial investigations were the
Linux kernel and PostgreSQL [17], and it is from this pilot study that we devised
our set of cloning patterns as well as the pattern catalogue template. While this ini-
tial investigation was not explicitly intended to examine patterns of cloning, during
our analysis we uncovered several recurring ways in which developers duplicated
behaviour. These patterns are defined by what is duplicated and why, and to some
extent how the duplication is done. More specifically, the patterns we observed con-
cern both cloning of large architectural artifacts, such as files or subsystems, and
finer-grained cloning, such as functions or code snippets. The apparent reasons why
developers use these patterns range from difficulty in abstracting the code to mini-
mizing the risk of breaking aworking software system. In some cases, documentation
explicitly states the reasons for code cloning. While this is a subjective assessment,
both authors are experienced developers and have a strong understanding of software
design and maintainability. When we discuss how the duplication is performed, we
describe what the new artifacts will be rather than the tools that are used to perform
the duplication.

To describe and categorize our patterns, we created the following template, based
on experiences from our pilot study [17]:

Pattern name—Describes the pattern in a few words.
Motivation—Discusses why developers might use this cloning pattern rather than
an appropriate abstraction.
Advantages—Describes the benefits of this pattern of cloning compared to other
methods of reusing behaviour.
Disadvantages—Describes the negative impacts of this pattern of cloning.
Management advice—Presents ideas on how this type of cloning can bemanaged
in the long term.
Long-term issues—Discusses issues to be aware ofwhen deciding to use a cloning
pattern as a long-term solution.
Structural manifestations—Discusses how this type of cloning pattern occurs in
the system. This section describes the scope and type of code copied, as well as
the types of changes that are expected to be made.
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Examples—Provides examples of the pattern from real systems, drawn from the
Linux kernel (various versions), PostgreSQL version 8.0.1, Apache httpd version
2.0.49, and Gnumeric version 1.2.12.

We have categorized the eight patterns into three related meta-groups: Forking,
Templating, andCustomization; this partitioning is based on the presumed high-level
motivation for the cloningpattern.Below,wegive a descriptionof themeta-categories
as well as the individual patterns we found in our second study, using Apache httpd
and Gnumeric as the example systems. Space does not permit a detailed exposition
of the patterns using this template in this chapter, so instead we briefly describe each
and give a short overview of an observed real-world example; full details of the study
can be found elsewhere [18].

2.1 Forking

Forking is cloning used to bootstrap development of similar solutions within a new
context, with the expectation that the clones will likely evolve independently, at least
in the short term. A major motivation for forking is to protect stability of the main
codebase, by allowing for experimentation to occur away from the core system.
In these types of clones, the original code is copied to new source files and then
independently developed. Forking helps to do this by pushing points of variation
out to the fringes. In so doing, hardware or platform variants can interact with the
rest of the core system through a kind of virtualization layer; also, experimental
new designs or features can be tested with relatively little risk to the core system.
Short-term forking can lead to careful evaluation of new ideas, with the goal of later
integrating them into to main code base or abandoning them if they prove to be
undesirable. In the longer term, forking can be an effective strategy when variants
need to continue to evolve independently but in parallel with each other and at least
informally aware of the each others’ existence.

Forking differs significantly from the other two categories in that the granularity of
copying is often coarse, at the file or directory level; by comparison, the granularity of
templating and customizing tends to be at the level of whole functions or contiguous
code snippets.

We observed three patterns of cloning that fit into the category of Forking.

2.1.1 Hardware Variation

Hardware variation can occur when a new piece of hardware is released that is
highly similar to previous hardware, yet different enough that some special handling
is required. For example, we observed a common implementation and management
strategy for device drivers within the Linux kernel: If the new and old devices were
highly similar, often the existing device driver was adapted to handle both devices;
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however, if the differences were more fundamental, then the code from the old driver
was copied into a new space and edited as needed.With this latter strategy, the existing
working driver is left untouched, thus posing no risk to users of the older device.
However, the development of the new driver can use the existing driver code as a
starting point. The old and new drivers are then maintained independently, implying
that if bugs are found, developers of related drivers must notify each other.

The Linux SCSI driver subsystem has several examples of this pattern of
cloning [25]. In one example, the file NCR5380.c was copied to the file
atari_NCR5380.c and adapted for the Atari hardware device. This new file was
then cloned as sun3_NCR5380.c to be adapted to the Sun-3 platform. Another
example of driver cloning is the file esp.cwhich has been duplicated and modified
in NCR53C9x.c. What is interesting in the Linux SCSI drivers is that the authors
duplicating the new file explicitly reference the file they have duplicated, making the
chains of replication easy to verify.

2.1.2 Platform Variation

When porting software to new platforms, low-level functionality responsible for
interaction with the platform will often need to change. Rather than writing portable
code such as a virtualization layer, it is sometimes easier, faster, and safer to clone
the code and make a small number of platform-specific changes. In addition, the
complexity of the possibly interleaved platform-specific code may be much higher
than several versions of the cloned code, making code cloning a better choice for
maintenance. In the case of source code within virtualization layers themselves,
avoiding this complexity is often a reason to clone code. This pattern differs from
hardware variation in that the drivers are often comprised of lower level source code,
possibly with embedded assembly language.

However, the differences in the type of source code in these artifacts raise different
types of maintenance concerns. The code will evolve along two dimensions: the
requirements of the software and the support of the platform. Bug fixes may be
difficult to propagate as it may not be clear how or if the bugs are present in each
version of the code. Changes to the interface of the platform-specific code become
more problematic because these changes will need to be performed across several
versions of the library. As groups of platform-specific code clones grow, the common
interface that they support will become more brittle and difficult to change because
of the number of places where lower level changes will need to be made. In order to
guarantee consistent behaviour on supported platforms it will be vital to ensure that
visible behaviour from each of the clones remains consistent.

As an example, platform variation is apparent in several subsystems within
Apache’s portable library, the Apache Portable Runtime (APR) contained within
the httpd webserver. This subsystem is a portable implementation of functionality
that is typically platform dependent, such as file and network access. In the version
of Apache httpd that we examined, we found two examples of this type of cloning:
the fileio and threadproc subsystems. In these two subsystems, there are four
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directories: netware, os2, unix, and win32. threadproc has an additional
subsystem beos. In each case, the subsystems performed their tasks slightly dif-
ferently, depending on the target operating system. In these cases, the differences
are typically insertions of additional error checking or application program interface
(API) calls.

2.1.3 Experimental Variation

Developers may wish to optimize or extend pre-existing code but be reluctant to
risk system stability. By forking the existing code into a new branch, users can have
the choice to experiment with new features and designs, or to use the performant,
trusted stable code. Many modern systems use this approach: developers create a
“safe sandbox” for experimentation by cloning the existing codebase—a practice
known as branching—and can then try out new ideas. Designs or features that seem
advantageous can then be backported into the main codebase, while less desirable
or problematic features can simply be abandoned. Alternatively, the whole system
variant can be explicitly merged back into the main codebase.

An example of experimental variation canbe found in theApachehttpdweb server.
In the multi-process management subsystem, the subsystem worker was cloned
multiple times as threadpool and leader [17]. The cloned subsystems are
experimental variations on worker that are designed to provide better performance.
Because they are separated from worker, the webserver remained stable while
optimizations were being developed.

2.2 Templating

Templating is used as a method to directly copy behaviour of existing code when
appropriate programming language abstraction mechanisms, such as inheritance or
generics, are unavailable. Templating is used when there is a common set of require-
ments shared by the clones, such as behaviour requirements or the use of a particular
library. When these requirements change, all clones must be maintained together.
Often, template clones differ from each other in minor but important ways; they
appear to be almost unifiable into a single parameterized solution, but for various
technical reasons, this is not practical. For example, consider the following code
written in the C programming language, taken from Gnumeric:

gnumeric_oct2bin (FunctionEvalInfo *ei, GnmValue const * const *argv) {
return val_to_base (ei, argv[0], argv[1],

8, 2,
0, GNM_const(7777777777.0),
V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);

}
gnumeric_hex2bin (FunctionEvalInfo *ei, GnmValue const * const *argv) {
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return val_to_base (ei, argv[0], argv[1],
16, 2,
0, GNM_const(9999999999.0),
V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);

}

These two functions are part of a whole family of routines for converting data to
and from various numeric formats (hexadecimal, octal, binary, etc.). Since C does
not support generics, one must create a different function for each supported numeric
type, despite the function implementations differing only in explicit constant values.
Templated clones often maintain their close similarity over time compared to forking
clones, where explicit semantic divergence may be a goal.

2.2.1 Parameterized Code

This pattern represents cases where there is a simple and precise mapping between
variants, but the programming language does not provide enough support to be able
to unify them into one function. The Gnumeric functions above are a good example
of parameterized code. In this case, it is likely that the cloning will be well known to
the system’s developers; the clonesmay occur together as a group in the same file and
are likely to be carefully maintained in parallel as the system evolves. Parameterized
code clones are, in essence, a side-effect of the inexpressiveness of the underlying
programming language and are likely to be unavoidable.

2.2.2 Boilerplating

This pattern is a generalization of the parameterized code pattern, in which there may
not be a simple and precisemapping between the clones. Like templated code, boiler-
plating is largely a side-effect of the choice of implementation language; it is partic-
ularly common in systems written in older procedural languages such as FORTRAN
and COBOL. The lack of language-level support for user-defined abstractions—
commonly found in more modern languages—may mean that solutions to relatively
straightforward tasks can be unusually lengthy, awkward, and complicated. Conse-
quently, developers have a strong incentive to seek out and adapt existing solutions
for their needs; working solutions to common problems are seen as design assets to
be exploited again and again [5].

2.2.3 API Protocols

This pattern can be seen as a looser version of boilerplating, albeit for different
reasons. When a developer uses a complex library or framework, there is often a
required protocol for use; documentation “cookbooks” often provide code exemplars
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of how to use a given API, which developers are encouraged to copy-paste-edit to
adapt for their specific needs. For example, when creating a GUI button using the
Java SWING API, the usual steps are (a) instantiate the appropriate button class, (b)
add the button to a container, and (c) assign action listeners to the button. Repetitive
formulas like this may be very common within a system that makes extensive use of
a given API; however, detailed inspection of the code often reveals that the variants
are different enough that it is hard to form a single unified abstraction, say, for all of
the different buttons in a GUI.

2.2.4 Programming Idioms

This pattern models the case where a development team may have language- or
project-specific conventions to perform certain kinds of low-level tasks. For exam-
ple, a common idiom in Apache httpd is how a pointer to a platform-specific data
structure is set in the memory pool; we found 15 occurrences of this idiom in the
APR subsystem. Different platforms may require special handling, yet these variants
may appear throughout the system’s source code since the low-level tasks recur over
and over.

2.3 Customization

Customization occurswhen existing code is found that solves a problem that is similar
to the task at hand, but different enough that a common abstraction is impractical;
the existing code is cloned into a new programmatic context and tailored to solve
this new problem. In some cases, such as concerns about system stability or code
ownership, existing code cannot be modified “in place” to encompass the additional
behaviour.

Customization patterns differ from templating in that customization requiresmore
than simple parametric changes to the copied code, such aswhen significant function-
ality must be added to or removed from the clone. Also, while templating and fork-
ing typically have the goal of maintaining high-level consistent behaviour between
clones, customization does not. Customization is opportunistic and unconstrained
reuse of existing code to solve today’s problems right now. The ad hoc changes that
occur in customization clones set them apart from other clones in important ways:
their differences can be harder to spot, the effects of the changes on behaviour may
be harder to understand, and the code clones may be harder to detect.

In this section we describe two customization patterns.
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2.3.1 Bug Workarounds

Due to code ownership issues or unacceptable exposure to risk, it may be difficult to
fix a bug at the source, so workarounds may be necessary. Copying the buggy code
to a new file, and then fixing the bug there may be the best short-term option. In other
situations, it may be possible to guard the points where buggy code is called; this
guard can then be copied as part of the usage of the procedure.

For example, one of the authors built an application around the internals of Sun’s
javac compiler. On finding a small bug in the javac source code, he cloned the
offending code into a descendant class of the original within his application and fixed
the bug there. Because he did not have commit permission to the javac source code
repository, he could not fix the bug directly; instead he applied this fix and submitted
a bug report.

2.3.2 Replicate and Specialize

Replicate and specialize are simply customization clones that are not bug
workarounds. As developers implement solutions, theymay find code in the software
system that solves a similar problem to the one they are solving. However, this code
may not be the exact solution, and modifications may be required. While the devel-
oper could decide to generalize the original code, this may have a high cost in testing
and refactoring in the short term. Code cloning may appear to be a more attractive
alternative and is commonly used in practice to minimize costs associated with risk
[5]. Replicate and specialize clones can be small and specialized or broad and wide
ranging. For example, LaToza et al. noted a practice within Microsoft of “clone and
own”: when a product group wanted to specialize existing functionality belonging to
another product group, they had the option of creating a clone of the original, with
the understanding that they would be responsible for any ongoing maintenance of
the specialized library version.

3 Case Study

To better understand the phenomenon of code cloning as practised in large industrial
projects as well as to explore the utility of our cloning categorization, we performed
a manual study on two large open-source systems: Apache httpd version 2.2.4 and
Gnumeric version 1.6.3; both of these systems comprised more that 300,000 lines of
code [18].

We created a clone detection and analysis tool called CLICS (CLoning Inter-
pretation and Categorization System) [17], whose detection algorithm was largely
modelled on that of CCFinder [15]. We looked for “type 2” clones according to Bel-
lon’s taxonomy [3]; that is, we ignored differences in identifier names and explicit
string or numeric constant values. We required code regions to match at least 60
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consecutive tokens to be considered a clone; within the research community, this is
a fairly high threshold, which helps to eliminate false positives from the result set.

Using these settings, CLICS identified 21,270 clones instances across 1580 groups
for Apache httpd and 11,400 clones instances across 3437 groups for Gnumeric.
We then took a random sampling of 100 clone groups from each system for manual
examination.We discarded groups that we considered to be false positives, leaving us
with 93 clone groups forApache httpd and 71 clone groups forGnumeric. Finally, we
picked representative clone specimens fromeachgroup anddid amanual examination
of each, categorizing across two dimensions: (1) which of our proposed categories
was the best fit for this clone, and (2) was the use of cloning beneficial to the system
design or harmful orwas the cloning simply unavoidable. The results are summarized
in the table below.

Apache httpd Gnumeric
Group Pattern Good Unavoidable Harmful Good Unavoidable Harmful
Forking Hardwarevariation 0 0 0 0 0 0
Forking Platformvariation 10 0 0 0 0 0
Forking Experimental variation 4 0 0 0 0 0
Templating Boilerplating 5 0 0 6 0 1
Templating API protocols 0 17 0 0 8 1
Templating Programming idioms 0 0 12 1 0 1
Templating Parameterized code 5 1 12 10 0 24
Customizing Bug workarounds 0 0 0 0 0 0
Customizing Replicate +specialize 12 0 4 15 0 1
Other 3 0 8 1 0 3
Total 39 18 36 33 8 30

Overall, we judged about 35–40% of the clones to be “good”, a little fewer to
be “bad” or harmful to the design, and about 15–20% to be unavoidable. In all, we
felt this was strong evidence that code cloning was often practised not simply out of
laziness, but as an engineering tool to improve the health of the software system.

4 Recent Work

We now briefly discuss some research on code cloning that we have done since the
original studies. This work builds on the premise that code cloning can be a positive
design decision. There are three major components: a case study of cloning in a
large open-source system, an exploration of how the process of compilation affects
cloning, and the construction of a classifier to predict which code clones are the best
candidates for refactoring.
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4.1 Cloning Within Linux SCSI Drivers

At the time of this work, much of the existing research on software code cloning
had concentrated on detection and analysis techniques and their evaluation and most
empirical studies of cloning have investigated cloning within single system versions.
We decided to perform a longitudinal evolutionary study of cloning within a well-
known industrial software system: the SCSI driver subsystem of the Linux kernel
[25]. We chose the SCSI driver subsystem as a test subject as it is known that cloning
has been embraced by some of these developers as a design practice: when a new
SCSI card was introduced into the marketplace that was similar to an old one, but
different enough to warrant its own implementation in a separate file, a new driver
might be cloned from an existing one [12].

Our study consisted of three main parts. In the first, we performed an high-level
design analysis of the Linux SCSI subsystem; we found that there were three archi-
tectural layers, with the top two levels providing driver-independent infrastructure
and the lowest level consisting of a large collection of hardware-specific low-level
drivers that implement the same basic functionality. We note that a single driver file
might provide support for several related SCSI cards, with IFDEFs separating out
the implementation differences. Cloning was common between these IFDEF code
fragments, but we also found a lot of cloning between individual driver files as well.
We examined how cloning was practised in each of the levels, and we found that both
the absolute number and clone coverage rate—that is, the percentage of the source
code that is part of a clone—among low-level drivers were significantly higher than
among files in the upper two levels.

In the second part, we examined how cloned drivers evolve between versions
and over time. Similar to other studies [4, 20, 21], we found that clones were much
more likely to be changed inconsistently than consistently. We also observed several
spikes in clones being deleted. Manual analysis suggests that these were mostly due
to support for older SCSI cards being deprecated and implementation details being
removed from the driver files; in each case, we found that there was also a spike in
new clones being created, suggested that a lot of refactoring was occurring as well.

In the third part, we explored if the presence of cloning could be used as an
effective predictor of hardware similarity. We decided to concentrate on the bus
architecture of the cards because this information could be automatically extracted
from the KConfig files, which contain configuration information used by the Linux
build process; that is, we could establish a clear “ground truth” for the vast majority
of the drivers. We then randomly picked 100 pairs of drivers and compared their
bus type similarity. We found that if two drivers had a clone relationship between
them that there was over an 80% likelihood that their bus types were compatible.
This was a much stronger predictor of compatibility than the other two models we
created: having the same manufacturer led to a 65% chance that the bus types were
compatible, and a randomizedmodel found only 24%were compatible. This suggests
that within our study cloning may be strongly driven by similar hardware features;
that is, the presence of cloning can provide useful information about the problem
domain.
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4.2 Cloning in Source Code and in Binaries

In this work, we sought to explore the relationship between cloned source code and
compiled code [19]. While most research into code clone detection has focused on
source code, sometimes we would like to investigate the provenance of a system
for which we have access only to compiled code. For example, we might suspect
that a given binary contains code released under the GPL but has not been attributed
as such. Prima facie, the relationship between similarities at the source code level
and similarities within a binary file is unclear. While others have performed clone
detection tools to binaries previously, to the best of our knowledge no one had
performed an analysis of how compilation affects source code clones. Source code
clones may indeed be compiled into binaries that also resemble each other in the
corresponding places, but this relationship has not yet been carefully studied and
will likely vary considerably by compiler.

Consider a pair of clones in the source code base of a system: While a compiler
will preserve the semantics when transforming the source code to an executable,
the corresponding binary segments may differ significantly in their structure due
to additional context, the possible addition and deletion of entities in the source
model (e.g., inner classes in Java), and optimizations which may radically change
the structure of the compiled code. That is, compilation may transform source code
clones into very different entities within the binary. At the same time, compilation
can also acts as a kind of source code normalization, transforming syntactically
different but semantically similar source code segments into the same binary-level
representation.

In this exploratory work, we used the tool CCFinderX [13] to find clones in both
source code and the corresponding bytecode of four large Java open-source systems;
CCFinderX performs clone detection on arbitrary token streams, and so was a good
fit for our purposes.

Our study yielded three major observations. First, we found that applying a token-
based clone detection tool on both source code and the resulting bytecode produced
significantly different result sets. Across the four systems—netbeans-javadoc,
eclipse-ant, eclipse-jdtcore, and javax-swing—we found a similar
number of clones in the source code (1845) and bytecode (1985). However, when we
mapped the clones from source to byte code, we found that only 488 of them—about
25% of the total—occurred in both result sets.

Second, we found that there are kinds of clones that can be detected only within
the source code andwill not be apparent in the bytecode. This is because the compiler
may shorten code sequences, create extra .class files, and may generate different
opcodes instead of operands.

Third, we found that there are kinds of clones that can be detected only at the
bytecode level and will not have corresponding clones in the source code. This is
because the compiler may elongate the code sequences and normalize control flows.
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4.3 Recommending Clones for Refactoring

While our main work described above advocates for a nuanced view of the practice
of code cloning—and in particular that sometimes cloning can be beneficial to the
long-term health of a software system—we also recognize that sometimes clones
are created out of expediency to meet a project deadline. In principle, these clones
should be viewed as a kind of short-term “technical debt” that, in principle, should
eventually be refactored when the project schedule permits. But simply running a
clone detection tool over the codebase of a large software system often results in a
very large result set of candidate clones, and it is unclear if it is worth developer time
and effort to sort through to identify which clones should high-priority candidates
for refactoring. “Fixing” a code clone involves an invasive redesign of the system,
and not all clones may be worth the risk to system stability to fix.

In this work, we used machine learning to explore the landscape of source code
clones and refactoring prioritization [26]. That is, assuming we have the results of
a clone detection analysis on a software system, we seek to build a recommenda-
tion engine to suggest clones that are most appropriate for refactoring in terms of
the likely benefits, costs, and risks. In particular, we created a decision tree-based
classifier incorporating features of the clones, such as the design of the source code,
the programmatic context, and properties of the cloning relationship.

We ran a clone detector over the source code of threemedium- to large-sized open-
source software systems: ArgoUML, Apache Ant, and Lucene. We then labelled each
clone as being refactored or unrefactored by checking if the clone was present in
subsequent versions of the system. For the training data, we selected an equal number
of refactored and unrefactored clones—323 instances of each—and used tenfold
cross validation, creating a classifier for each of the three projects. Our within-project
models achieved a precision of between 77 and 88%; we found that cross-project
precision was also strong, between 73 and 89%.

This work illustrates the promise of automated help in managing code clones
within a large software system. By recommending which clones are the most promis-
ing candidates for refactoring, our work supports better resource allocation for refac-
toring, more effective maintenance practices, and improved software quality in the
long term.

5 Summary

Early research into the practice of code cloning tacitly assumed that it was a bad
practice, usually done in haste or out of laziness. In his chapter on bad smells in
Fowler’s well-known book Refactoring, Kent Beck referred to duplicated code as
“number one in the stink parade” [9]. However, Cordy and others suggested that in
some contexts, code cloning was a sound engineering decision and could improve
overall system quality [5]. Our work in creating a qualitative catalogue of how and
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why cloning is practised, together with our case studies on two large open-source
systems, supports this view. We feel that it is important for developers to under-
stand context behind the decision to clone code before attempting invasive removal;
automated tools such as a refactoring recommendation system can help.

What is the future of research in code cloning? Since the publication of our original
study, the number of research papers published on clone detection, analysis, and
management has grown substantially.More detection techniques have been proposed
and evaluated [23], many case studies of code cloning and its effects on software
quality have been performed [22, 24], and there been many applications of clone
detection techniques to other problem areas [6]. However, we still feel that there is
room for more exploration of the developer rationale behind cloning. We suggest
that instead of concentrating only on source code and other technical artifacts, there
is much to be gained by shifting our focus to studying how developers perceive and
practice code cloning through qualitative studies.

Finally, we note that the title of our original paper was “‘Cloning considered
harmful’ considered harmful” [16]. Of course, we realize that we could have been
phrased the basic idea more simply, such as “Sometimes, cloning is a sound design
decision!”. However, to do so—that is, to refactor the title to remove the cloning—
would have lost themeta-reference to Dijkstra’s famousmeme [7]. The prose cloning
in the title seems to have made it more memorable; with more than 10years of
hindsight, we believe that the decision to clone was, in this case, a sound one.
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IWSC(D): From Research to Practice:
A Personal Historical Retelling

Rainer Koschke and Stefan Bellon

Abstract The two authors of this chapter were among the founding participants of
theFirst International Workshop on Software Clone Detection (IWSCD)—nowadays
known as the International Workshop on Software Clones (IWSC). This chapter
briefly summarizes the history of this community-building workshop from its early
days until today. IWSC(D) has had not only an impact on research but also in practice.
Indeed the authors have also developed clone detection tools—among other static
program analyses to assess the internal quality of programs—used in the software
industry by thousands of developers. The foundations of these tools were laid in soft-
ware clone research, which highlights both the relevance of this topic for industry
and what impact research may be capable to achieve. This historical retelling will
not only be a summary of almost 20 years of the history of our primary commu-
nity event—trying to be as accurate and complete as possible—but also provide the
personal perspectives of the two authors along with some anecdotes.

1 Introduction

We were among the participants of the first Workshop on Software Clone Detection
(IWSCD) that is now known as the International Workshop on Software Clones
(IWSC)—our primary scientific meeting solely devoted to software clones. IWSC
has not only been a major factor in shaping our research community, in general but
has also made a considerable impact on our professional and personal life. As often
in history, all that has started more or less coincidentally, just out of curiosity and
with no intent or foresight what would arise from it.

As a matter of fact, we were not only participants but we were even the organizers
of the first IWSDC. Since then we have devoted a large part of our research on this
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subject and kept being involved in organizing IWSC and other kinds of scientific
meetings on software clones. In these roles, we have been witnesses to the history
of IWSC since its early days. Yet, we want to point out here that the possessive
determiner its relates to IWSC only and not to software clone research in general.
We actually arrived late to the game, other researchers have worked in this field for
about a decade already.

In this chapter, we want to tell the story of IWSC, how it came about and how it
developed further. In addition, we also reflect on how it influenced our professional
life—an academic life and a life as a professional tool developer. This part of the
story gives an example of the sometimes meandering ways on how research can
achieve a real impact in the industry.

2 The Birth of IWSCD

In the early years of the new millennium, the first author was a postdoc at the Uni-
versity of Stuttgart in Germany where he designed a new course on software reengi-
neering. One of its topics was detecting software clones. There was a large variety of
techniques ranging from textual and lexical over syntactic approaches to techniques
based on program dependency graphs. At the end of this section on software clones,
he always felt somewhat discontented that he could not present any comparative
study on the relative strengths and weaknesses of those existing techniques. For this
reason, he figured it would be worthwhile to conduct a study comparing those tech-
niques in terms of recall, precision, and computational costs. Luckily, he found a very
capable student—who happened to become the second author of this book chapter
many years later—willing to do this study as his Master’s thesis. As a matter of
fact, it was not a Master’s thesis but the German counterpart of that, called Diploma
thesis—which, however, has a misleading connotation when verbally translated into
English. Although the Bologna declaration was just stated in the European Union in
1999, it would take a couple of years until the various higher education qualifications
were finally unified into Bachelor and Master degrees in the EU.

For our comparative study, we invited leading current researchers in clone detec-
tion at that time to participate in the study. Thesewere Baker (token-based) [1],Merlo
and Antoniol (token-based and metric-based) [2], Krinke (data-flow-based) [3],
Rieger (token-based) [4], Baxter (syntax-based) [5], and Kamiya (token-based) [6].
The researchers on this who-is-who list of clone detection scientists applied their
tools to a set of C and Java programs the second author of this chapter provided.
The second author also judged the submitted clone candidates blindly. The result-
ing dataset has been named the Bellon benchmark and was later re-used by diverse
researchers. Other researchers have challenged the design of the study [7–9] or pro-
posed alternative approaches to compare the results of clone detectors [10–13].

The results of the comparative study were initially documented in the Master
thesis by Bellon [14] written in German. The idea was to publish the outcomes later
in an English publication, but it took almost 5 years until that actually happened
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[15]. In hindsight, writing the Master thesis in German was a mistake, but at the time
of writing we did not anticipate the impact this work would have and how long it
would take to publish it in a journal. As a consequence, this thesis may have become
the German Master thesis most frequently cited by international authors in software
engineering despite it was written in German.

In the evaluation of our study,we classified the clones submitted by the participants
into the three classic categories [14, 15]:

• Type 1 is an exact copy without modifications (except for whitespace and com-
ments).

• Type 2 is a syntactically identical copy; only variable, type, or function identifiers
were changed.

• Type 3 is a copy with further modifications; statements were changed, added, or
removed.

Our paper [15] is often cited for this classification. In recent years, scientists seem
to prefer to cite Roy and Cordy’s comprehensive survey on software clones [16]
instead, which is citing our paper for this classification, and thus constitutes only an
indirect citation. Yet, our paper is neither the appropriate original reference for this
classification. We do not precisely remember where this classification came from
exactly. Someone in our study—either one of our participants or we—must have
been aware of it and proposed it as a foundation for our intended study to which all
participants agreed. It is very unfortunate that we seem to have taken it for granted
and did not cite its original source—a mistake that we want to repair now. Quite
likely, the first authors proposing this classic classification are actually Carter et al.
[17]. Their definition is as follows:

• Type 1—An exactly identical source code clone, i.e., no changes at all.
• Type 2—An exactly identical source code clone, but with indentation, comments,
or identifier (name) changes.

• Type 3—A clone with very similar source code, but with small changes made to
the code to tailor it to some new function.

• Type 4—A functionally identical clone, possibly with the originator unaware
that there is a function already available that accomplishes essentially the same
function.

We note that their and our definitions are slightly different regarding whitespace,
which is disregarded for our type-1 clones, but explicitly ignored only for their type-2
clones. Other authors have later rephrased those classifications, however, sometimes
also introducing similar subtle differences. In particular, the distinction between type-
3 and type-4 clones is often blurred, as some authors think of type-4 clones as only
some minor syntactic transformations between code fragments, such as replacing
while loops by for loops, whereas the original definition by Carter et al. would allow
a completely different solution to a similar problem; thus, BubbleSort and QuickSort
would be type-4 clones of each other.

As another aside, we find it interesting that Carter et al. used neural networks
to detect clones already in 1993, which is a current trend these days. Many papers
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are being published on using artificial intelligence techniques to detect similar code
fragments. Quite likely the authors of those papers should take a look at the paper of
Carter et al. not only because of the original clone-type classification.

In the year of 2002, when Bellon finished his research, the time of such compara-
tive studies seems to have come. Independently from our study, Bailey and Bird have
conducted a similar study [18]. Since then a number of works have been published
on comparing clone detectors and creating benchmarks to do so, which is a good
indicator of the maturity of this field—although thorough comparisons relative to
tasks at hand is still an ongoing research topic in itself.

After the study was done, we wanted to meet with the participants of our experi-
ment to discuss the results. The earliest opportunitywas the International Conference
on Software Maintenance (ICSM) at Montreal in 2002. Ettore Merlo, who was the
General Chair of ICSM 2002 and also participant of our study, kindly offered us a
meeting room for an informal meeting parallel to the conference program. Yet, there
was one participant who intended to come to our meeting only. He did not have a
paper at ICSME or one of its co-located events and would not get travel funding for
only an informal meeting. For this reason, we turned our meeting initially planned
to be informal into an official workshop and gave it the name First International
Workshop on Software Clone Detection (IWSCD). We were about 15 people at this
meeting. Interestingly, IWSCD drew the attention not only of the participants of
the experiment even though we did not advertise this workshop. Neither the partic-
ipant who is the reason for our informal meeting to become an official workshop
nor ourselves would have expected that this would be the start of a long series of an
ever-growing established workshop.

3 Progression and Broadening

Already 7 months later, we organized another working session on benchmarking for
clone detectors at the International Workshop on Program Comprehension (IWPC)
2003 [19]. Two of the three organizers of this working session, namely, Andrew
Walenstein and Arun Lakhotia, were no participants of the original study discussed
at the first IWSCD. Obviously, the subject of comparing clone detectors has quickly
caught the interest of other researchers, even from other fields.

As a consequence of the increasing interest in the community, the second IWSCD
was then held in 2003 in Victoria, Canada, as a satellite workshop of the Working
Conference on Reverse Engineering (WCRE). The organizers were again Andrew
Walenstein, Arun Lakhotia, and the first author of this chapter. This workshop drew
about 35–40 participants and resulted in a summary published in ACM Software
Engineering Notes [20].

The next major milestone was a Dagstuhl seminar in 2005 named “Duplication,
Redundancy, and Similarity in Software,” where Ettore Merlo joined the team of
the organizers of previous IWSCD instances. This seminar, which was by invitation
only, was solely devoted to this ever-increasing research topic. It drew more than 40
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international experts in the field to meet for several days, and rekindled interest in
both the techniques and the applications of the area. It included long debates on the
definition of clones—a question for which we still have not reached a consensus. It
was therewhere Ira Baxter stated his frequently cited provocative recursive definition
of clones: “Clones are segments of code that are similar according to some definition
of similarity.” And there are still many different definitions of similarity as of today.

Following an informal ad hoc meeting of about 20 members of the community at
ICSM 2008 in Beijing, the third International Workshop on Software Clones (IWSC)
was organized and held in Kaiserslautern, Germany, as part of the Conference on
Software Maintenance and Reengineering (CSMR) 2009, organized by a a new team
consisting of Stanislaw Jarzabek, James Cordy, Katsuro Inoue, and the first author
of this chapter. The latter three would serve as the steering committee of IWSC
for many years. About 30 researchers gathered to present and discuss their new
results. It was the occasion where the “Detection” in the workshop’s original name
was dropped. The focus of the workshop was no longer the narrow topic of just
finding clones but also the empirical impact of clones, reasons for clones, and their
evolution—basically all aspects of cloning. It is interesting to note that all but one
scientific meeting IWSCD was co-located with have changed their names after the
renaming of IWSCD: CSMR and WCRE merged into SANER, ICSM migrated to
ICSME, and IWPC became ICPC. Only ICSE is still ICSE and the International
Conference on Software Engineering (ICSE) was the next event IWSC co-located
with. IWSC joined ICSE 2010 in Cape Town, South Africa, where it had one of the
highest attendance levels of any ICSE workshop, with 31 registered participants and
about 10 drop-in observers. The fifth IWSC associated again with ICSE 2011, this
time in Honolulu, Hawaii, hit also a big success among many ICSE workshops, with
39 registered participants.

A second Dagstuhl seminar took place in 2012 with the title “Software Clone
Management Towards Industrial Application,” where three of the five organizers
were from industry. Unlike previous similar events, this Dagstuhl seminar put a par-
ticular emphasis on the industrial application of software clonemanagementmethods
and tools and aimed at gathering concrete usage scenarios of clone management in
industry, which was intended to help to identify new industrially relevant aspects in
order to shape future research. Research in software clones is very close to indus-
trial applications. Among other things, we focused on issues of industrial adoption
of our methods and tools, which was made possible also by our strong industrial
participation. We managed to reach a percentage of about 30% participants from the
industry.

The partnership with ICSE continued for another 2 years until 2013. IWSC then
departed from ICSE in 2014 and co-located with the first and last joint event of
CSMR and WCRE in Antwerp, Belgium, where both conferences decided to merge
into a new IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). The reason to no longer co-locate with ICSE was simply
because of ICSE’s policy for workshops, which would not allow key role holders of
a workshop to submit to their own workshop, which the steering committee of IWSC
felt to be counterproductive for a small workshop with a clearly focused topic where
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strong contributors of the community often serve also in key roles of organizing
scientific events around this topic.

The co-location with SANER was running successfully for several years, but it
became increasingly difficult for our Japanese members to come to SANER because
the time when SANER usually takes place collides with the annual time in which
many Japanese universities have their final defenses of Bachelor andMaster students,
making it extremely difficult for both Japanese faculty and students to travel. Because
the community of IWSC has a very strong base in Japan, the steering committee
decided to co-locate with ICSME in the future. How this will work out, we will see
very soon in the near future.

4 From Academia to Practice

After his graduation, the second author of this chapter became a Ph.D. student in the
research group where the first author worked as a postdoc. Naturally, his intent was
to continue with his work on clone detection. The head of the research group of the
two authors of this chapter, however, considered clone detection to be a dead field
and argued him out of pursuing research in this area. In hindsight, given the hundreds
of publications that came after from a very large number of researchers around the
globe, that was a capital misjudgment.

Working on static program analysis to detect structural flaws—known as bad
smells or software erosion—and seeing an increasing interest in industry for such
analyses, we decided to create a spin-off, which eventually became the company
Axivion, officially founded in 2006 and now one of the leading companies on static
analysis for stopping software erosion. Clone detection is just one kind of software
erosion that can be detected by the tools provided by Axivion. The tool suite includes
checkers for dead code, coding style violations, cyclic dependencies, architecture
violations, metric outliers, and defects. Typically, companies will offer a large vari-
ety of such analyses, where clone detection is only one of them. There were other
companies focusing on only clones, but they have not lasted long.

The focus of Axivion is not just detecting such flaws or technical debts, but really
to manage them. In particular, for clones that means that clones will be tracked over
time and if they are changed or even deleted, all developers ever having dealt with
those clones—which can be retrieved from change history recorded in the version
control system—will be informed. This way inconsistent changes may be avoided.
This approach is parallel to what we have seen in research, where the focuses have
shifted from pure clone detection to clone management.
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4.1 Clone Detectors of Axivion and How They Came About

The tool suite of Axivion includes different clone detectors and those clone detectors
have changed over time. There is a token-based clone detector for a large variety of
languages including C, C++, C#, Java, and Ada, and a syntax-based clone detector
for C, C++, and C#. Both have their roots in research.

The syntax-based clone detector follows the ideas by Baxter et al. [5], that is,
hashing and comparing syntax trees. The program is represented by its syntax tree,
then subtrees of this syntax tree are hashed into buckets, and finally, pairs of subtrees
in the same bucket are compared to each other structurally. There is obviouslymore to
that simplified summary, for instance, to dealwith subtrees representing sequences, to
filter subtrees considered clones subsumed by other subtrees also considered clones,
and to detect subtrees forming type-3 clones. Those details can be found in the
original paper [5].

There are a few differences between Axivion’s syntax-based clone detector and
the original approach outlined by Baxter et al. such as handling sequences and fore-
most that Axivion’s syntax-based clone detector is based on a unified abstract syntax
tree capturing all languages of interest (C, C++, and C#) together, which offers a
way to add new languages without the need to change anything in the clone detec-
tor. As already shown in our comparative study that formed the starting point of
our involvement in clone research in the first place [14, 15], syntax-based clone
detection offers higher precision than other approaches—because all of its clones
are guaranteed to be syntactic units—at, however, higher costs. The cost for the syn-
tactic analysis, however, can be neglected here because the code needs to be parsed
anyway to enable all other analyses offered by the Axivion tool suite. And the avail-
able syntactic information can be leveraged. As a more substantial enhancement,
thus, Axivion’s syntax-based clone detector offers preprocessing and postprocessing
steps to transform the input and filter unwanted clones. These processing steps take
advantage of the available information about the syntax and are, hence, more pow-
erful than those suggested by Kamiya et al. [6] at the token level. The preprocessing
steps of Axivion’s syntax-based tool, for instance, allow one to exclude enum dec-
larations in C which are very regular and thus re-occurring syntactic patterns due to
the rigid C grammar for these; they can easily be falsely proposed as type-2 clones
by token-based tools. These patterns can even be specified by the user.

The token-based clone detector ofAxivion used today has its roots also in research,
although it has gone through a series of more drastic changes. It started with a re-
implementation of Brenda Baker’s token-based approach based on so-called p-suffix
trees [1]. A suffix tree is a very compact representation of all suffixes of a program,
where the program is viewed as a sequence of tokens. The compact representation
is achieved by putting two suffixes with a common prefix onto the same sequence
of edges from the root to the node in the suffix tree at which the two suffixes start to
be different. Obviously, if there are two suffixes with a common prefix, that means
that this prefix occurs at least twice in the program and, hence, is a candidate for a
clone. That is, clones can be detected simply by looking for inner nodes in the suffix
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trees whose depth is large enough to exceed a user-defined threshold for clones to
be considered too short. This data structure has been developed a very long time ago
for string matching. It could be straightforwardly used for detecting type-1 clones
when a program is represented as a token sequence (the string). If we want to detect
type-2 cloneswith consistent renaming, however, we need to abstract from the textual
appearances of certain tokens (such as identifiers or literals) but not from their order
of occurrences. The important contribution by Baker was to adapt the construction of
a suffix tree to so-called p-strings rather than bare strings. A p-string in the context
of clone detection is a sequence of tokens where certain types of tokens—called
parameter tokens, e.g., identifiers and literals—are replaced by an index. That index
abstracts from the textual appearance of parameter tokens but not from the order in
which the parameter tokens appear. Through Baker’s extension, it became possible
to detect consistently renamed type-2 clones.

The first author became a professor at the University of Bremen where he contin-
ued to work on clone detection and implemented Baker’s token-based approach in
a tool written in the programming language Ada. In Bremen, he found yet another
very talented student interested in clone detection, namely, Nils Göde. The task to
be solved as part of his Diploma thesis was to devise and implement an approach to
detect clones incrementally [21, 22]. Göde’s implementation is based on a general-
ized suffix tree, already a known concept at that time capable of representing not only
a single string but also multiple strings. In our case, each string would represent the
token sequence of another version of the same program. The generalized suffix tree
can be built incrementally and is, thus, very attractive if a series of program versions
is to be analyzed as it is required when the evolution of clones is to be studied.

For the implementation of this incremental approach, Göde extended our existing
re-implementation ofBaker’s token-based approach inAda.BecauseBaker’s concept
of p-strings could not easily be adapted to generalized suffix trees, however, our Ada
implementation ended up having two separate data structures: one suffix tree for
p-strings and one generalized suffix tree for multiple ordinary strings, that is, strings
without Baker’s replacement of parameters through indices.

After Nils Göde finished his Diploma, he re-implemented the incremental
approach as part of his Ph.D. research [23] in Java without Baker’s concept of p-
strings. The tool was named iClones and has since then been used by many other
researchers in their studies, in particular, on the evolution of clones. The advantage
of Baker’s approach was to report only consistently substituted type-2 clones. Con-
sistent substitution must be checked in a postprocessing step in iClones. On the other
hand, inconsistently substituted clones would not be detected by Baker’s approach
and they maybe particularly interesting in evolutionary studies because they uncover
inconsistencies during the evolution possibly hinting at oversights.

iClones was always available for academic users and has meanwhile become
publicly available as open source.1 It has never made it into the Axivion tool suite,
however. iClones has its use case for analyzing a large series of program versions at
once, which is often conducted in the context of research studies. Axivion, however,

1 https://github.com/uni-bremen-agst/iclones.

https://github.com/uni-bremen-agst/iclones
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offers tools that are integrated into the daily continuous integration process of com-
panies, where typically the program is checked out and built once every night, then all
analyses including clone detection are run and their results are stored in a database.
Clone detection is only a small contributor to the computational resources needed
and the time between analyzing two revisions of a program is long compared to the
scenario where researchers analyze all revisions at once in a batch computation. In
the latter case, holding the generalized suffix tree in memory makes sense, in the
case of a continuous integration process that is triggered once per day, it would make
less sense—in particular, because all other kinds of static analyzes are typically not
incremental.

The currently used token-based clone detector in the Axivion tool suite was devel-
oped by the first author of this paper. It was a completely new development in C++
where a suffix array is used instead of a suffix tree. Suffix arrays are an alternative
data structure to suffix trees with the advantage of being much more compact so
that even the complete Linux kernel can be represented in memory of an ordinary
computer. Other than that, it allows answering the same kind of questions as suffix
arrays. The computational costs are dominated by scanning the source code from
disk. The costs of the algorithm to construct the suffix array are negligible. The tool
does not use Baker’s concept of p-string so that inconsistently substituted type-2
clones can be detected, too.

This history of the development of clonedetectors shows several interesting things.
First, all those tools had their roots in research, which demonstrates that we as a
research community may achieve an impact on practice. This may, however, be
relativized by the fact that both authors were originally from academia (or still are)
where they researched clone detectors. We do not know what effect our work has
on tool developers that never show up at our scientific meetings. They may or may
not read our research papers. Second, the path from an academic prototype to an
industrial-strength tool may not always be straightforward. In case of the syntax-
based clone detector, it was rather straightforward (although we should note that
Baxter’s original approach was enhanced by preprocessing and postprocessing steps
to filter uninteresting clones), whereas the token-based clone detector has undergone
a more substantial evolution. Third, the use cases of clone detectors in academia
may not always apply to industrial applications, too. The incremental clone detection
implemented in iClones has its strength in academic research where a large series of
program versions is to be analyzed one after the other, which is rather different from
an integration into a continuous integration process for a company’s code on a daily
basis.

4.2 Practical Experiences with Axivion’s Clone Detectors

The primary tool used for clone detection in practical applications of the Axivion tool
suite is the syntax-based clone detector because of its higher accuracy. A token-based
detector may be used if a new programming language needs to be analyzed for which
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there is no abstract syntax tree and the costs for developing a parser generating such
abstract syntax trees are prohibitive. A token-based detector may also be useful if the
code of a potential client is analyzed in a workshop with limited time and resources
to give a rough estimation on the degree of cloning quickly. Because it requires only
a lexical analysis, the code can be incomplete or even be syntactically incorrect, and
there is no need to integrate the tool into an often complicated existing build process
as it would be required for syntactic tools.

The use of those clone detectors in practice emphasizes once more that cloning is
a practically relevant issue. The clients of Axivion are aware of the problem and take
it seriously. Tools that not only detect clones but also trace and manage clones over
time are highly appreciated. The data gathered by the company with a syntax-based
clone detector even suggests that proprietary code may have a higher clone rate than
open-source programs. What was found for client code is higher than what we have
found in open-source projects [24], even though the open-source study used a token-
based clone detector that is known to have higher recall than the syntax-based clone
detector used by Axivion [15].

The experience by Axivion indicates that the clone detectors available today seem
to be “good enough” in general. They have sufficient recall and, in particular, the
syntax-based clone detector provides sufficient precision, too. Yet, what constitutes
a clone in a technically or formally correct sense may not always be meaningful to
a user and more work needs to be done to distinguish meaningful clones from less
interesting ones—a problem our research community has identified long ago and
still has not solved. We have explored various kinds of filters to distinguish useful
from useless clones in research, such as size, change rate, number of developers,
etc. What we have not yet fully explored is additional semantic information on the
clones. For instance, type-2 clones abstract from names, but maybe we should take
a closer look at the categories of names. Renaming a local variable is likely more
acceptablewhen it comes to similarity than calling different functions.Namebinding,
typing information, call contexts, and def-use chains have not been explored to make
this distinction to the best of our knowledge. In other words, the semantics of the
differences should be consulted.

5 Conclusions

In this chapter, we have retold the story of IWSC, which is the primary scientific
event specifically on software clones. It somehow started on a spontaneous whim
without a vision to form a community, but maybe someone else would have done
something similar if we had not. The time seemed to be ripe for consolidating and
foster a research community around software clones as evident by the fact that other
researchers were also working on comparative studies and how sparks skipped and
other people got involved so quickly.

When IWSC(D) was started, we would not have expected that software clones
become such a long-lasting research topic. The contribution of IWSC to this research



IWSC(D): From Research to Practice: A Personal Historical Retelling 235

line is hard to assess. The problem of software clones was real (and still is) when
the first publications on software clones came out—often conducted in the context
of real and large software applications. IWSC started only after about one decade of
prior research on clone detection, and hence we can argue that this topic would have
continued to be researched without IWSC. Yet, the topic gathered momentum at the
time when IWSCD started and IWSC may have served to get together the critical
mass of researchers for that. Anyhow, IWSC has certainly succeeded in providing
a forum to meet with other clone researchers as evident by the continuously high
participation at the workshop and the joint papers and projects that came out of it as a
result of researchers that had not been working together before. IWSC has definitely
had a sustainable effect on our life as a researcher and tool developer and many ideas
on research topics we investigated and techniques we developed in practical tools
used in industry came from this community.
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