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Abstract

The nanomaterials/nanoparticles (NPs) created huge impact in every facet of
human life. The NPs are used in different fields of biomedical research, as anti-
inflammatory, antibacterial and anticancer agents, as a drug delivery system and
even as quantum dots. These remarkable features of NPs are ascribed to their
nano scale size, specific shape and morphology. The toxicity of conventionally
synthesized NPs always posed great threat to human health. Consequently, the
nanotechnologists have been exploited different systems, such as bacteria, fungi,
algae, etc., for the synthesis of human friendly nanoparticles. In spite of the avail-
able methods; the new avenues could still be explored for the production of NPs
with premium biocompatibility. In this direction, researchers are also probing the
feasibility and usability of protozoan as a suitable model for the synthesis of NPs.
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Being the ancestors and owing to the animal-like attributes, the protozoa can yield
better biocompatible NPs. The high bioaccumulation of heavy metals by protozoa
have already proved its suitability in case of quantum dots production. Therefore,
they could be exploited as an emerging candidates for the synthesis of desired
NPs. In this review, we discussed some basic concepts for the synthesis
of nanoparticles in microorganisms, and how could the free living nonpatho-
genic protozoa use their detoxification and antioxidant machinery for heavy metal
reduction and subsequently nanoparticle formation.
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8.1 Introduction

Nanotechnology is the production of materials at nanoscales. The biological
activities of nanoparticles (NPs) ingrained in their smaller size, specific shape,
surface charge and morphology. The uses of NPs are expanding day by day, owing
to their unique functional properties, such as anti-inflammatory, antibacterial, anthel-
mintic, anticancerous, as a drug delivery system and the fluorescence and
photocatalytic behaviour (Alomary and Ansari 2021; Anandan et al. 2019; Ansari
and Asiri 2021; Ansari et al. 2019, 2020; Balasamy et al. 2019; Cui et al. 2019; Khan
et al. 2015, 2019; Musarrat et al. 2015; Patra et al. 2018; Prasad et al. 2020;
Rajakumar et al. 2020). Nonetheless, the biocompatibility of NPs has remained a
major concern for the nanotechnologists. The conventionally synthesized NPs
always pose toxicity to human beings. Therefore, researchers are developing new
approaches for the synthesis of exceptionally biocompatible nanomaterials. This
issue has been managed up to certain extent by using different microorganisms
(Naahidi et al. 2013). These microorganisms, e.g., protozoa, bacteria, algae, and
yeasts have certain innate behaviours, like heavy metal detoxification and free
radical scavenging by the anti-oxidant system. Both these innate processes, pos-
sess many metal quinching macromolecules, such as metal binding proteins, reduc-
ing enzymes and sugars. These macromoecules reduce and stabilize heavy metal
ions into nontoxic insoluble metals, which can act as precursor elemnets for the
synthesis of NPs (Gahlawat and Choudhury 2019; Cui et al. 2016; Juganson et al.
2013; Li et al. 2011).

The nanotechnologists have been successfully produced several metal NPs, such
as silver (Ag), gold (Au), silver–gold alloy, tellurium, platinum, copper, zinc,
selenium (Se), palladium, silica, zirconium, magnetite, and alginate by using
microorganisms, like bacteria, actinomycetes, yeast, fungi, algae, etc. (Jalal et al.
2018; Ovais et al. 2018; Salem and Fouda 2021; Shobha et al. 2020; Sumanth et al.
2020). In spite of the available methods, researchers are still exploring new
biological systems for the production of superiorly biocompatible NPs. In recent
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past, scientists have begin to explore free living nonpathogenic (nonpara-
sitic) protozoa as emerging candidates for the synthesis of NPs. The protozoa
(singular; protozoan) are unicellular, eukaryotic organisms, having plasma mem-
brane as an outer covering. They are considered as the ancestors of animals. The
protozoa have typical internal structures like animal cells, such as membrane bound
nucleus and other organelles. This unicellular organism performes all animal-like
activities viz. heterotrophic mode of neutrition (exception: Euglena, which is also
autotroph), intracellular digestion, reproduction, locomotion, respiration and excre-
tion.The locomotory organales in free living nonpathogenic protozoa are: flagella
(e.g.Euglena), cilia (e.g. Paramecium) and pseudopodia (e.g. Amoeba). These
locomotory organs are absent in parastic forms. Because of the structural and
functional intricacies like animals, the nonparasitic free living protozoa could be
the astounding approach for the synthesis of NPs. This chapter focuses on the brief
discussion about the intracellular and extracellular syntheses of NPs, researches
conducted on protozoa mediated formation of NPs, and possible mechanisms
adopted by the protozoa for synthesis of NPs.

8.2 Biosynthesis of Nanoparticles (NPs)

The different microorganisms synthesized NPs by using bottom up approach where
NPs are formed through oxidation and reduction processes by secreted
biomolecules, such as enzymes, proteins, sugar, etc. (Fig. 8.1). In contrast to top
down approach (which uses harsh chemical and physical methods for the metal
reduction and stabilization), bottom up approach yields comparatively nontoxic NPs
by the process of self-assembly of metal ions (Ahmed et al. 2016). In this process,
the type of microorganism and the environmental conditions have major impact on
the shape, size, and morphology of NPs. Therefore, the optimization of different
environmental conditions, such as pH and temperature, chemical analysis of
biological biomass filtrate, are required for the synthesis of desired NPs (Singhal
et al. 2011). Unfortunately, the exact mechanism of biosynthesis of NPs in
microorganisms is not completely understood. However, it has been reported that the
they can use the intracellular or extracellular modes for nanoparticle’s synthesis,
which at many instances are species specific (Gahlawat and Choudhury 2019).
Furthermore, the researchers also exploited the living cell extract of different
microorganisms including protozoa, for the biosynthesis of different metal
NPs (Gahlawat and Choudhury 2019; Juganson et al. 2013).

8.2.1 The Intracellular and Extracellular Synthesis
of Nanoparticles (NPs) by Microorganisms

The microorganisms are in direct contact with their environment and materials can
move in and out of these microorganisms. Henceforth, they can provide a suitable
biotemplate for synthesis of NPs, in their cell interior as well as exterior. In this
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segment, we will give a generalized account on the intracellular and extracellular
syntheses of NPs by microorganisms.

The different metallic and magnetic nanoparticles have been synthesized by the
intracellular and extracellular mechanisms in bacteria, fungi, actinomycetes,
algae and protozoa. In 1984, Haefeli reported that a bacterial strain, Pseudomonas
stutzeri AG259, isolated from a silver mine, was resistant to the high concentration
of silver ions. This resistant behaviour was achieved by the inactivation of toxic Ag+,
possibly with a molecule analogous to metallothioneins (MTs). Probably, this anal-
ogous molecule might sequestrate the silver ions, which eventually converted into
nontoxic silver nanocomposite (Haefeli et al. 1984). Since then, extensive research
have been carried out on the biosynthesis of NPs by bacteria (Guilger-Casagrande

Fig. 8.1 A general concept of biosynthesis of nanoparticles. The metal ions (M+) are reduced by
the biological substances., such as enzyme, proteins, polysaccharides, etc. The reduced metal ions
act as the precursors of nanoparticles (M�) that lead to the nucleation of nanoparticles. Now the
nanoparticles grow in size and stabilize by the capping molecules
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and Lima 2019; Khandel and Shahi 2018; Li et al. 2011; Zielonka and Klimek-
Ochab 2017). The intracellular and extracellular syntheses of NPs by fungi are also
evident (Guilger-Casagrande and Lima 2019; Zielonka and Klimek-Ochab 2017;
Khandel and Shahi 2018). The easy handling of fungi and the numerous proteins
present, make them excellent source for the production of large number of NPs. The
actinomycetes, which share the properties of both bacteria and fungi are also
involved in the synthesis of various metal NPs (Manimaran and Kannabiran 2017;
Kumari et al. 2020). It has been revealed that actinomycetes secrete four different
proteins with molecular masses between 10 and 80 kDa. Because of the dis-
crete nature of these proteins and varied strength of interaction with metal ions,
actinomycetes yield NPs of different sizes, shapes, and monodispersity (Khandel
and Shahi 2016).

The intracellular and extracellular syntheses of NPs depend upon different types
and forms of microorganisms. The cell wall plays pivotal role for both intracellular
and extracellular syntheses of NPs. The influx of different ions is facilitated by the
specific ion transport system present in cell wall of these microorganisms. Moreover,
the inner and outer surface of the cell wall in bacteria, fungi and algae has a strong
negative charge, which creates electrostatic interaction with positively charged metal
ions. Such interaction can also occur with other negatively charged macromolecules
(like; proteins, enzymes and polysaccharides) present within the cell. Thus, the
negatively charged inner surface of the cell wall and various intracellu-
lar macromolecules can reduce the positively charged heavy metal ions into the
insoluble metal precursors of NPs. Thereafter, these insoluble metals will be capped,
by these macromolecules, to form stable nanoparticles inside the cell (intracellular
synthesis) (Khandel and Shahi 2016). Finally, these NPs will be diffused or actively
transported out of the cell. Whereas, the extracellular synthesis of NPs is assisted by
negatively charged outer surface of the cell wall and cellular exudates that contain
various proteins, enzymes like nitrate reductase in various fungi, polysaccharides,
etc (Fig. 8.2). A few representative microorganisms, which are involved in intracel-
lular and extracellular syntheses of metal nanoparticles are briefed in Table 8.1.

8.3 Protozoa for the Synthesis
of Biocompatible Nanoparticles (NPs)

The biological entities are in continuous interaction with their environment.
These entities evolved various physico-chemical processes, including mineralization
(for skeletal support) (Clark 2020) and detoxification (for toxins release), to sustain
their life on earth. The detoxification machinery and the presence of numerous
reducing enzymes, proteins and polysaccharides in free living nonparasitic protozoa
can create suitable conditions for the synthesis of NPs. In fact, the production of NPs
by different microorganisms is an adaptation to avoid undesirable events that caused
by noxious metals. The protozoa also have such adaptation, where they can detoxify
heavy metals by intracellular and extracellular mechanisms. Therefore, the synthesis
of NPs can also occur at both the locations. However, the limited information on

8 Protozoa: As Emerging Candidates for the Synthesis of NPs 139



protozoa mediated synthesis of NPs, makes incapable to explain exact mechanism(s).
Just a couple of studies on the synthesis of NPs are carried out using Tetrahymena
spp. and soil inhabiting Leishmania sp. The first study for extracellular synthesis of
NPs in a protozoan was reported by Ramezani et al., in 2012. He used a nonpatho-
genic Leishmania sp., isolated from soil, for the quick synthesis of Ag NP (10 and
100 nm) and Au NP (50 and 100 nm) of polyspersed spherical shape, subse-
quently declining the claim that the protozoa took time for the NPs'
synthesis (Ramezani et al. 2012). This study further confirms the presence of
amine bonds, C¼O, N¼O, C¼N, and COOH bonds of proteins as a capping or
stabilizing agents on the surface of NPs. The Tetrahymena spp. are capitalized for
the production of different nanoparticles, such as Ag NPs, Au NPs, Se NPs and
cadmium nanodots. The nonpathogenic Tetrahymena sp. releases acid hydrolases in

Fig. 8.2 The extracellular and intracellular mechanisms for the biosynthesis of nanoparticles
(NPs). M+: Heavy metal ion, M�: NP precursor
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their vicinity and secretes approximately 30 different proteins under starving condi-
tion (Juganson et al. 2013). This study manifests that the optimization of different
conditions, viz. pH, temperature, micronutrient in the media, etc., are utmost impor-
tant for the production of desired NP. Furthermore, the alterations in culture condi-
tions (which may act as stimuli) may change the physiology of protozoa. These
stimulated protozoa may produce stimulus-specific array of biomolecules, which can
help the researchers to manipulate the forms and features of NPs. The extracellular
synthesis of Ag NPs was also reported by Katre Juganson et al. in 2013. He used
Tetrahymena thermophila cell free exudates along with AgNO3. The proteins
present in the exudates progressively biotransformed the AgNO3 into Ag NPs with
hydrodynamic size of 70 nm. Moreover, the intracellular synthesis of selenium
nanoparticles in the culture medium containing 150 μMNa2SeO3 and T. thermophila
(SB210) at its late log phase was investigated by Cui et al. (Cui et al. 2016). He
reported the overexpressed glutathione (GSH), metallothionein-1 and cluster bind-
ing related gene in T. thermophila might be responsible for the reduction of selenite
to selenium nanoparticles (size: 50–500 nm, coexited with irregular nano selenium).
The Tetrahymena pyriformis has also been used for the synthesis of cadmium quan-
tum dots (QDs) with size of 8.27 nm � 0.77 nm (Cui et al. 2019). The QDs are
nanocrystalline materials with fluorescence and photocatalytic capacities. They are
widely used as probes in bioimaging and biomedical fields by virtue of their brilliant
properties including size-tunable fluorescent emission, broad absorption with narrow
photoluminescence spectra, long fluorescent lifetime, and high resistance to
photobleaching. The better accumulation capacity of Cd2

+ by Tetrahymena
could make it a better alternative for the production of cadmium nanodots (Cui
et al. 2019).

8.3.1 Advantages of Protozoa for Biosynthesis of Nanoparticles
(NPs)

The selection of a proper microorganism for the synthesis of NPs is the most critical
aspect. The nanotechnologists need to consider many factors, such as easy availabil-
ity, trouble free culture, inexpensive culture conditions, short multiplication time,
relatedness with animals, for the synthesis of highly biocompatible NPs. The
protozoa are unicellular eukaryotes enclosed in a unit membrane called as plasma
membrane. Some are parasitic, while others are nonparasitic free living. Generally,
the main objective of nanotechnologists is used to be the production of myriad NPs
with minimum time and effort, without any risk. Given to the high safety/risk ratio,
nonparasitic free living protozoa could be the potential tools for the biosynthesis
of NPs. However, researches on protozoa mediated NPs formation are at very early
stage and the investigators have a long way to go for the validition of free living
nonpathogenic protozoa as the best model. Notwithstanding the fact, this could
still be hypothesised that protozoa, because of their animal-like features, may yield
comparatively more human friendly NPs. These animal-like features in protozoa are:
(a) eukaryotic in nature, (b) similar structural and functional complexity,
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(c) presence of plasma membrane, membrane bound nucleus and other organelles,
(d) similar metabolic pathways that require same types of inorganic and organic
compounds, (e) absence of cell wall is the most striking feature in protozoa, in
contrast to other eukaryotic microorganisms, such as alga and fungi, etc. Other
advantages could be: (i) most of the free living protozoa have short life, (ii) easy to
culture, (iii) the maintenance of culture is inexpensive and thus NPs production
could be very cost effective, (iv) most widespread in water bodies all over the world
and (v) the motile nature, which could be capitalized for easy separation of
protozoa from NPs containing medium (Mortimer et al. 2016). Contrary to this, the
production of NPs by the pathogenic protozoa could be an uphill task for a
nanotechnologist, because of their limited technical skills for parasite handling,
cumbersome culture maintenance, which needs costly reagents and equipments, thus
the cost effectiveness for the production of NPs will be compromised. First and
foremost, use of the parasitic forms may be against the scientific aptitude, if better
alternatives are available.

The only disadvantage could be that the protozoa are very much sensitive and
the extreme temperature, physical or chemical treatments may disrupt the plasma
membrane of the organisms.

8.3.2 Plausible Mechanism(s) for the Synthesis
of Biocompatible Nanoparticles (NPs) by Protozoa

Nothing has been investigated on the mechanistic pathways for synthesis of NPs in
protozoa. The physiology and biochemistry of free living nonpathogenic protozoa
suggest that they may use both intracellular and extracellular modes for synthesis
of NPs. Comprehensively, the protoza can use different innate processes for NPs’
synthesis, such as (a) heavy metal detoxification by metal binding proteins, (b) anti-
oxidant enzymes as metal reducers, (c) sequestration of heavy metals by negatively
charged plasma membrane and/or by many other reducing molecules of the cell, such
as enzymes, proteins and sugars. Before discussing these mechanisms for the bio-
synthesis of NPs, it is important to know certain basic physiological and biochemi-
cal aspects of these innate processes in protozoa.

The protozoa are equipped with the detoxification system, which neutralizes the
noxious activity of heavy metals. Gutiérrez et al. reviewed that the ciliate protozoa
are evolved both intracellular and extracellular mechanisms for heavy metal detoxi-
fication by metallothionein (MTs) and other reducing macromolecules (Gutiérrez
et al. 2011). The metal detoxification in ciliate protozoa may occur by four different
methods: 1. The intracellular quelling of heavy metal stress by the chelators and/
or antioxidant enzymes. 2. A resistant mechanism, which employed adsorption
of positively charged heavy metal ions on the negatively charged outer surface
of cell membrane (extracellular detoxification). 3. The third mechanism is biotrans-
formation in which the biomethylation and biovolatilization occur, which was first
reported in Tetrahymena thermophila. 4. The fourth mechanism is the active trans-
port of the metal ion out of the cells, which is evident by the presence of 485 putative
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genes encoding membrane transporter in T. thermophila. The most important mech-
anism is the intracellular sequestration of heavy metals by MTs and accumulation in
vacuoles, which actively releases these nontoxic insoluble metals outside of the
organisms. The metal bioaccumulation has been reported in various ciliate protozoa
(Gutiérrez et al. 2011). The ciliate protozoa’s MTs family is divided into subfamily
7a or CdMTs or subfamily 7b or CuMTs, depending upon metal induction pattern
and Cys residue clustering. Moreover, the protozoa, e.g. Euglena, also have the
ability to accumulate heavy metals, such as Cd2+, Cu2+, Zn2+, Pb2+, Tc7+, and
Cr6+ (RodrÍguez-Zavala et al. 2007; Rehman 2011). This accumulation is facilitated
by the formation of a complex with the cysteine, GSH, and chelatins, which are
thought to be the components of antioxidative strategy of Euglena against heavy
metal toxicity (Mendoza-Cozatl et al. 2002; Jasso-Chávez et al. 2010). Thus, these
chelators, such as enzymes [e.g. glutathione or (GSH)], proteins (e.g., thioredoxin),
inner and outer surface of plasma membrane could act as a reducing and
stabilizing sites, which may biotransform heavy metal ions into the nanoparticles,
under appropriate conditions.

Interestingly, the protozoa are also well equipped with the antioxidant machinery.
If the heavy metal exposure is too high not to get saturated by the metal chelators,
then the over production of reactive oxygen species (ROS) may damage the organ-
ism. Under this circumstance, the antioxidant system plays vital role in protection of
protozoa, by scavenging of ROS. Moreover, the reducing capacity of antioxidant
enzymes may also promote the transformation of toxic metal ions into nontoxic
insoluble metals. The antioxidant enzymes, such as glutathione peroxidases (GPXs),
which use GSH as an electron donor (Overbaugh and Fall 1985), NADPH dependent
thioredoxin (Trx) reductase (Yoshida et al. 2016), ascorbate peroxidase (APX)
(Shigeoka 2002) act as reducing agents for ROS in protozoa, and thus protect the
organisms from heavy metal toxicity.

The chelation or sequestration of metal ions is indispensable for the nanoparticle
formation. As we know that the protozoa have MTs, different antioxidant enzymes
and other proteins, as a metal ion reducers and stabilizers. These biomolecules
can reduce the heavy metal ions by electron donation, under suitable conditions.
Thus, the metal ions can biotransform into insoluble metals that may act as a NP
precursors. Subsequently, these NP precursors will nucleate and grow into NPs,
which could be stabilized by biomolecules that contain amine bonds, C¼O, N¼O,
C¼N, COOH as functional groups NPs. The role of metal chelators in the formation
of NPs is supported by an observation, where various phytochelators with reducing
property are used for the synthesis of nanoparticles (Husen and Siddiqi 2014). The
main enzymatic chelators in microorganisms are MTs, which are cysteine rich, low
molecular weight proteins. The MTs can bind both physiological (like, zinc, sele-
nium, copper) and xenobiotic heavy metals (like, silver, cadmium, mecury, arsenic).
This metal chelating property of MTs has been used for the large scale production of
silver nanoparticles by the engineered bacteria containing MT gene insert from
Candida sp. (Yuan et al. 2019). Conclusively, at least four probable mechanisms
for the production of NPs by the free living nonpathogenic protozoa, could be
deduced.

8 Protozoa: As Emerging Candidates for the Synthesis of NPs 145



1. Intracellular Synthesis of Nanoparticles in Protozoa: The three possi-
ble mechanisms for synthesis of NPs in free living nonpathogenic protozoa are
individually discussed below. These categorizations have made for the
easy understanding of these phenomena. However, these mechanisms may oper-
ate simultaneously, if the conditions are uncontrolled. Nonetheless, the genetic
modification in protozoa, just like bacteria (Yuan et al. 2019), may give prefer-
ence to one process over the others, for the synthesis of desired NPs.
(a) Synthesis of NPs by the Protozoa using Metallothioneins (MTs):

The MTs are cysteine rich low molecular weight metal-binding proteins. The
main function of MTs is to regulate the metabolism of essential metals (zinc,
copper and selenium) within the cell. The cysteine residues of MTs
are involved in the sequestration of free radicles and heavy metals into
insoluble metals. The MTs have Cys-Xaa-Cys clusters, which can act as
functional group for the reduction of metal ions and their stabilization and
accumulation within the cells (Yuan et al. 2019). The high metal binding
affinity and metal reducing properties can make MTs a biofactory for
the synthesis of metal NPs. Interestingly, the protozoa also contain MTs,
which act as heavy metal chelators during detoxification process (Gutiérrez
et al. 2011). The reducing and stabilizing properties of MTs have already
been employed for the synthesis of NPs in other microorganisms (Yuan et al.
2019). Therefore, MTs from protozoa can also reduce metal ions and
thus, can transform them into nontoxic NPs. Heavy metal ions exposure to
protozoa causes massive influx of heavy metal ions inside the
organisms (RodrÍguez-Zavala et al. 2007; Rehman 2011). These ions activate
the heavy metal response elements present on metallothionein gene promoter
and cause overexpression of MTs. These MTs bind with the metal ions,
eventually reduce and stabilize them into nontoxic metal NPs. Finally, these
NPs will be accumulated in vacuoles and effluxed out of the cells via
vacuolar exocytosis or through ATP dependent transporters (Fig. 8.3a).

(b) Synthesis of NPs by Protozoa using reducing Enzymes from Anti-Oxidant
Machinery:
The protozoa have efficient antioxidant system for scavenging reactive
oxygen species. This antioxidant system has many enzymes, viz. GPXs, Trx
reductase, APX, etc., which neutralize toxic free redicals, generated in
response to the heavy metal ions. These molecules can reduce the metal
ions into the NP precursors. These NP precursors will nucleate and form NPs,
which will be actively transported out of the cell (Fig. 8.3b).

(c) Inner surface of the Plasma membrane as a Biotemplate for the synthesis
of NPs:
This mode of NPs formation may be similar to the other microorganisms. The
only difference between them is in cell covering. The protozoan is enclosed
with plasma membrane, while other microorganisms have cell wall (see
section and Fig. 8.2). The cell membrane of protozoa is composed of lipopro-
tein embedded in lipid bilayer. The layer facing the cytoplasm is negatively
charged. This negatively charged surface can donate the electrons to metal
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ions and thus, can form NP precursors, which will nucleate and finally
produce NPs. (Fig. 8.3c).

2. Extracellular Synthesis of NPs by Protozoa:
The outer surface of the protozoa consist of glycolipid with sugar group extended
outwards. These proteins, extending outwards, may act in similar manner as
discussed in method, 1c. But, the formation of NPs at the surface of a protozoan
could be a resistant mechanism, which may reduce heavy metal ions by nega-
tively charged outer surface or by cellular exudates. These reduced ios can form
nontoxic NPs outside the cell (Fig. 8.3d, e).

Fig. 8.3 Plausible mechanisms of nanoparticle’s synthesis by protozoa. (a) Metallothioneins
(MTs) induced NPs’ synthesis, (b) enzyme mediated nanoparticles (NPs) synthesis, (c) inner
surface of the cell as a biotemplate for NPs synthesis, (d) extracellular synthesis of NPs,
(e) Induction of NPs’ formation by reducing biomolecules present in cellular exudate. HMs:
heavy metal ions, M+: metal ion, M�: nanoparticle precursor, �ve: negatively charged surface
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8.4 Conclusion

The biocompatible nanoparticles are used in various biomedical and therapeutic
research to avoid toxicity of chemically synthesized NPs. The reduction of metal
ions into NP precursors is imperative for the formation of nanoparticles. Fortunately,
different microorganisms, viz. protozoa, bacteria, fungi, alga etc. can provide suitable
biotemplates for such reduction processes in cell interior as well as exterior. Never-
theless, the formation of nontoxic nanoaggregates by these microorganisms is just
a surrogate of defense machinery against heavy metal toxicity. Considering the
biocompatibility, the protozoa have edge over other microorganisms, owing to
their remarkable resemblance with animals. However, inadequate data on
protozoa mediated synthesis of NPs and on its applications, limit us to draw any
final conclusion. But, the indistinct nature and wide spread presence of protozoa
throughout the world may prove a boon for the synthesis of human friendly NPs.
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