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Abstract

Nanotechnology has revolutionized with lots of applications in the medicinal
field to prevent, detect and treat several biological problems including disease and
infections. The plant virus nanoparticles (VNPs) and virus-like nanoparticles
(VLPs) obtained through viral nanotechnology have become a versatile platform
in several fields such as in obtaining high selectivity and specificity, optics and
biosensing, drug delivery and targeting, nanocatalysis, next-generation
nanoelectronics. The capsid proteins in plant viruses aid in the production of
novel nanomaterials, also they can self-assemble and form well-organized icosa-
hedral viruses with altered coat protein subunits, interior and exterior size
properties. The virus interior is particularly used to protect the sensitive
compounds and encapsulate them, while their exterior can be utilized to coat
small molecules in a précised manner. These properties of viruses including their
biocompatibility nature have led to the development of VNPs/VLPs to achieve
targeted drug delivery. Plant viruses are natural immunogenic and thus they are
altered to use as vaccines against various pathogens. In this chapter, we discuss
their applications and role in nanoparticle synthesis to create an effective and
alternate way related to both medicine and nanotechnology disciplines.
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Abbreviations

BMV Brome Mosaic Virus
CarMV Carnation Mottle Virus
CCMV Cowpea Chlorotic Mottle Virus
CP Capsid protein
CPMV Cowpea Mosaic Virus
CPs Capsid proteins
DNA Deoxyribonucleic acid
DOX Doxorubicin
EGF Epidermal growth factor
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HCRSV Hibiscus Chlorotic Ringspot Virus
MP Movement protein
MPs Movement proteins
MRFV Maize Rayado Fino Virus
PAA Polyacrylic acid
PC Polyacid
PEG Polyethylene glycol
PSA Polystyrenesulfonic acid
PSD Particle size distribution
RCNMV Red Clover Necrotic Mottle Virus
RNA Ribonucleic acid
SeMV Sesbania Mosaic Virus
ssRNA Single-stranded RNA
TYMV Turnip Yellow Mosaic Virus
VLPs Virus-like particles
VNPs Virus-based nanoparticles

6.1 Introduction

Since ancient times, humans have widely used natural products against several
diseases and infections. Nearly 25% of modern medicines are derived from natural
resources. Drug discovery based on natural products has been gaining a lot of
interest in designing lead molecules (Swamy and Sinniah 2016). The chemically
diverse natural products are being screened to treat various diseases and infections
including inflammations, diabetes, cancer, cardiovascular and microbial diseases as
it exhibits extraordinary biological and chemical properties with several unique
advantages, such as fewer side effects and toxicity, low-price, good therapeutic
potentials and macromolecular specificity (Siddiqui et al. 2014). The usage of
large-sized compounds/materials as drugs poses major complications including
poor bioavailability, poor absorption, poor solubility, in vivo instability, issues
related to target specific delivery and adverse effects of drugs (Thilakarathna and
Rupasinghe 2013; Bonifácio et al. 2014). Hence, now there is a need for a new drug
delivery system that could help in solving this crisis and can also help in targeting the
specific body parts (Jahangirian et al. 2017). In such a situation, nanotechnology
plays a major significant role in drug formulations by controlling the drug release
and its delivery with immense success (Ansari et al. 2019, 2021; Balasamy et al.
2019; Khan et al. 2019; Rajakumar et al. 2020; Murali et al. 2021). Nanoscience
applies nanophases and nanostructures in various fields of sciences especially in the
field of nano-based nanomedicine and drug delivery systems and thus is found to
connect the barriers of physical and biological sciences (Patra et al. 2018; Anandan
et al. 2019; Kavya et al. 2020).

Viruses are nanosized which can deliver their genetic material and can infect the
host cells. Viruses infect all living organisms including animals, algae, plants,
bacteria and fungi. The host-specific viruses are classified into mycophages,
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zoophages, cyanophages, phytophages and bacteriophages (Beijerinck 1898). In
vitro self-assembling of viral components can be done under proper conditions
due to the presence of self-assembled capsid proteins (CPs) with encapsulated
DNA or RNA genetic material. Virus parasites require a host cell for their assembly
and replication (Heise and Virgin 2013). They are described to be non-enveloped or
enveloped based on the absence or presence of lipid bilayer, this envelope aids the
infection process through host cell entry (Singh et al. 2006). Due to their
bioconjugation potential, size property, stabilities, mutagenesis, the non-enveloped
viruses are used as bionanomaterial such as nanocontainers or nanocarriers in the
field of nanobiotechnology.

6.2 Nanoscience and Nanotechnology

Nanoscience is the phenomena involving manipulation of materials at atomic,
molecular and macromolecular levels; and nanotechnology involves the design,
characterization, production and application of systems and devices of nanometer
scale (Yang et al. 2008). Both nanoscience and nanotechnology are the growing
fields that have transformed various industries such as cosmetics, biotechnology,
food sciences, electronics and pharmaceutics (Devalapally et al. 2007). Particularly
the application of nanotechnology in the field of pharmaceutical research has led to
the development of nanomedicines that operate at the nanometer scale range that
provides a wide range of medical benefits in treating various infections and diseases
(Onoue et al. 2014). The nanomaterials used to carry out such applications are well
defined with sizes ranged from 1 to 100 nm and are usually nanospheres. Nanotech-
nology develops the nanomedicines by employing curative agents at the nanoscale
level and hence can move freely inside the human body when compared to large-
sized materials (Rudramurthy et al. 2016).

6.2.1 Nanomaterial

Nanomaterial refers to the manufactured, natural or incidental material which
comprises particles either in aggregate or in the unbound state. Structures such as
carbon nanotubes, graphene flakes and fullerenes have their dimensions below 1 nm
and are considered to be nanomaterial; also the materials with surface area by
volume ratio are included in this category (Oh and Han 2020). These nanomaterials
are very promising in the medicinal field as they act as drug carriers. According to
the European Union, three factors help us in identifying the nanomaterial which is
size, particle size distribution (PSD) and surface area (Soares et al. 2018).

6.2.1.1 Size
Size is the most important feature as it applies to several materials with a size range
of 1–100 nm. The particular size for a particle to be treated/considered as a
nanomaterial is 100 nm including other properties. Nanomaterial manufacturing
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includes two different approaches: top-down and bottom down. The top-down
approach involves the breakdown of heavy material into smaller simpler pieces by
chemical or mechanical energy. On the other hand, bottom down approach utilizes
the molecular or atomic approach that helps the precursor particles to combine and
increase their size through a chemical reaction (Luther 2004).

6.2.1.2 Particle Size Distribution
The widely used parameter for the identification of nanomaterial is PSD. The setting
up of PSD is important as the nanomaterial is polydisperse which means it is
composed of particles of different sizes (Bleeker et al. 2013).

6.2.1.3 Surface Area
The material falls into the definition of nanomaterial if its surface area by volume
ratio is 60 m2/cm3 including its size and PSD characteristics (Soares et al. 2018).

6.3 Application of Nanotechnology

Over a few years, nanotechnology has become a daily routine in everybody’s life.
This revolutionized technology has been implied in various fields of science.
Nowadays there are increased applications and product development of new
medicines that usually contain nanomaterials belonging to the field of biomedical
and pharmaceutical research (Bleeker et al. 2013). A number of nanoparticles have
been synthesized by different routes that show excellent antimicrobial and anticancer
potentialities (Jalal et al. 2016; Ali et al. 2020; Almatroudi et al. 2020; Ansari et al.
2020a, b; Farouk et al. 2020; Prasad et al. 2020; Sumanth et al. 2020; Rehman et al.
2020; Ansari and Asiri 2021; Alomary and Ansari 2021). Further, various nanotech-
nology applications have been approved using viruses as vaccines, including
biomaterials, molecular electronic materials and chemical tolls (Singh et al. 2017).

6.4 Viruses as Nanomaterials

Viruses have become an ideal example for nanoscale fabrication/ nanomaterials
because of their well-characterized geometries with surface and size uniformity
(Brumfield et al. 2004; Klem et al. 2003). They replicate and produce in living
cells/host cells and allow the assembly of millions of nanoparticles. Viruses are
ubiquitous as they infect plants, mammals and bacteria; these have been used in the
manufacturing of virus-based nanoparticles (VNPs). Viruses have naturally evolved
with the capacity to deliver nucleic acids and are therefore ideally used to deliver
molecules like drugs and other reagents (Koudelka et al. 2015).

VNPs are well known for their biodegradability, efficient delivery of drugs to
target cells, biocompatibility and ability to cross biological barriers as they are
primarily composed of proteins (Guenther et al. 2014). The nucleic acids which
code for viral proteins of VNPs can be modified before synthesis (Wirth et al. 2013).
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Viruses can specifically interact with proteins, with the ability to hijack intracellular
machinery and nucleic acid delivery, due to such properties of viruses it has led to
the development of VNPs but ruling out the pathogenic effects caused by host–virus
interactions is difficult (Ylä-Herttuala 2012). On the other hand, VLPs (virus-like
particles) are the subclass of VNPs that are non-infectious naturally occurring
bio-nanoparticles which are biocompatible, replication-deficient and biodegradable
with genome free viral protein cages. They also differ in terms of size, self-assembly,
morphology and structural organization (Yan et al. 2015). Icosahedral (roughly
spherical in appearance) viruses are the most commonly used tool to produce viral
protein cages by offering several properties such as high tolerance to pH, chemical
modifications, organic solvent mixtures and temperature (Loo et al. 2007). The fully
functional plant and bacteriophage-based VNPs cannot infect humans and thus are
regarded to be safe (Yildiz et al. 2011).

Nucleic acids are enclosed tightly in a capsid of plant and bacteriophage viruses
comprising multiple copies of coat proteins. The capsids are usually icosahedral in
nature with flexible filaments or stiff tubes (Sapsford et al. 2013). Both plant and
bacteriophage viruses are not usually enveloped with lipid membrane as they must
withstand harsh environmental conditions to infect the host cell (Manchester and
Singh 2006). For such reasons, icosahedral plant VNPs and VLPs have become a
potential platform used for developing bionanoparticles in the fields of
nanomedicines, nanobiotechnology and nanoelectronics (Narayanan and Han
2017a, b) (Fig. 6.1).

6.5 Different Types of VNPs/VLPs and their Roles

6.5.1 Plant Viruses

Plant viruses are obligate parasites on hosts and compared to other organisms,
viruses are non-cellular. They are non-hazardous to human beings because it is
non-infectious and attacks only the plants. Morphologically these plant viruses are
either icosahedral or helical (flexuous filaments or rigid rod) (Narayanan and Han
2017a, b) and using the host machinery three proteins are produced such as structural
proteins, replication proteins and movement proteins (MPs) to enable the movement
through plasmodesmata in the host (Pogue et al. 2002). Viruses rely on insects or
dissemination through the environment to infect the host as they are immobilized
outside the infected host. The viruses possess single-stranded, positive-sense, linear
RNA (ssRNA) as genetic material in Cauliflower mosaic virus, Geminivirus and
Dahlia mosaic virus (Narayanan and Han 2017a, b).

6.5.2 Icosahedral Plant VNPs and VLPs

Icosahedral plant VNPs and VLPs are very common structures among viruses
predicted by Crick and Watson in 1956 (Caspar 1956). On the surface of the sphere
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60 identical subunits are arranged that display two-fold, three-fold, five-fold and
icosahedral symmetries as represented in Fig. 6.2 (Finch and Klug 1959). In recent
studies, icosahedral plant VNPs and VLPs such as Carnation mottle virus (CarMV),
Cowpea mosaic virus (CPMV), Maize rayado fino virus (MRFV), Sesbania mosaic
virus (SeMV), Brome mosaic virus (BMV), Cowpea chlorotic mottle virus (CCMV),
Hibiscus chlorotic ringspot virus (HCRSV), Red clover necrotic mottle virus
(RCNMV) and Turnip yellow mosaic virus (TYMV) have gained a lot of importance
in the field of nanotechnology (Caspar and Klug 1962) (Fig. 6.3).

6.5.2.1 Carnation Mottle Virus (CarMV)
It is a pathogenic virus belonging to Tombusviridae family, consisting of 4.0 kb
genome with positive-strand ssRNA and is of 30 nm (Morris and Carrington 1988).
The capsid of CarMV is composed of protein subunits of 37.79 kDa with crown-like
hexamers and pentamers on its surface (Forrest 1997). CarMV can be used as VLPs

Fig. 6.1 Icosahedral plant VNPs/VLPs nanoparticles (Narayanan and Han 2017a, b)
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synthesized using heterologous expression to produce organic/inorganic
nanostructures (Lvov et al. 1994).

6.5.2.2 Cowpea Mosaic Virus (CPMV)
CPMV is a plant virus that belongs to Comoviridae family (Lin and Johnson 2003).
It is widely used as nano building blocks to synthesize materials which are 30 nm
sizes consisting of non-enveloped, positive-strand ssRNA (Wang et al. 2002).
CPMV VNPs do not dissociate and remain stable during purification and diagnostic
techniques such as electroelution, ultracentrifugation, agarose electrophoresis and
chromatography (Soto et al. 2004).

6.5.2.3 Maize Rayado Fino Virus (MRFV)
It belongs to the maize rayado fino virus group that causes small chlorotic stripes and
fine dots along the leaf veins of infected maize (Gamez 1980). It consists of
20–25 nm isometric protein with positive-sense ssRNA containing 180 subunits of
protein clustered into 12 pentamers and 20 hexamers (Gamez 1969). MRFV is an
excellent nanomaterial candidate with well-defined geometry. The wild-type
MRFV-VLPs were mutated to produce Cys-MRFV-VLPs to provide anchors for
functional groups (Gamez and Leon 1988). Hence, the MRFV-VLPs can be used in
novel bionanomaterial platforms for therapeutic applications (Koenig et al. Koenig
1988).

6.5.2.4 Sesbania Mosaic Virus (SeMV)
Sesbania mosaic virus belonging to Sobemovirus genus infects both mono and
dicotyledonous plants (Natilla and Hammond 2011). The SeMV forms VLPs
~30 nm by self-assembling of coat proteins (Bhuvaneshwari et al. 1995). These
VLPs help in entering mammalian cells to deliver monoclonal antibodies like
Herclon (anti-HER2 receptor), D6F10 (anti-abrin) and anti-α-tubulin DM1A by
crossing cell membrane (Govind et al. 2012). Thus, SeMV VLPs have become a
universal nanocarrier which can be used in delivering antibodies.

Fig. 6.3 The regular geometry of icosahedron VNPs (Narayanan and Han 2017a, b)
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6.5.2.5 Brome Mosaic Virus (BMV)
BMV belongs to the group of Bromovirus family with separately encapsulated
positive-strand ssRNA (Abraham et al. 2016). It causes white or yellow spots and
streaks on leaves by infecting both monocots and dicots (Lane 1981). This RNA
icosahedral plant virus coats protein around the functional gold nanoparticles to form
VLPs and their properties being similar to the native BMV virus (Noueiry and
Ahlquist 2003). These VLPs create functional and optical probes for bioimaging
and biosensing applications (Larson et al. 2005).

6.5.2.6 Cowpea Chlorotic Mottle Virus (CCMV)
CCMV is a multi-component plant virus that belongs to Bromoviridae group of
family with tripartite genome encapsidated inside the capsid of inner cavity diame-
ter ~ 18 nm and an outer diameter of ~28 nm (Chen et al. 2005). CCMV comprises
180 subunits of coat protein that contains 190 amino acids (Ma et al. 2012). The
CCMVVLPs are a multifunctional nano platform used in the effective diagnosis and
treatment for several viral and bacterial infections (Tang et al. 2006).

6.5.2.7 Hibiscus Chlorotic Ringspot Virus (HCRSV)
HCRSV is a non-enveloped and monopartite plant virus with a positive-strand
ssRNA genome and is a member of Carmovirus genus (Brumfield et al. 2004). It
mostly infects flowering plants like Malvaceae. Certain studies have demonstrated
that VLPs derived from HCRSV are used as a transport vehicle for polyacid
(PC) drug molecules with a molecular mass of ~13 kDa like polyacrylic acid
(PAA) and polystyrene sulfonic acid (PSA) (Ke et al. 2004).

6.5.2.8 Red Clover Necrotic Mottle Virus (RCNMV)
RCNMV is an icosahedral soil-transmitted plant virus which belongs to
Tombusviridae family Dianthovirus genus (Cheng et al. 2009). It is made up of
180 protein subunits with ~17 nm wide inner cavity (Basnayake et al. 2006). This
virus consists of two ssRNA encoding capsid protein (CP), virus movement protein
(MP) and viral polymerase (Loo et al. 2006). The RCNMV nanoparticles loaded
with doxorubicin (DOX) in conjugation with CD46 is used as next-generation
imaging and therapeutic delivery agents to HeLa cells (Lockney et al. 2011).

6.5.2.9 Turnip Yellow Mosaic Virus (TYMV)
TYMV is the first isolated, purified and crystallized spherical virus belonging to
Tymoviridae family and Tymovirus genus with 28–30 nm diameter containing coat
protein subunits of 20.13 kDa and ssRNA (Gibbs 1999). Because of its empty
capsids, it is the most widely used plant virus isolated from host plants (Canady
et al. 1996). This bionanoparticle is used for constructing nanomaterials by
employing their protein scaffold (Barnhill et al. 2007) (Fig. 6.4).
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6.6 Role of VNPs in Therapeutic Interventions

The VNPs can be utilized to target specific cells such as cancer cells and immune
system cells. Also, they can be used as vaccines to present antigens in the immune
system (Cao et al. 2014). The targeting of VNPs can be achieved through genetic
variations or by the chemical addition of molecules which is designed to bind to

Fig. 6.4 The general modification strategies made while developing functional VNPs (Koudelka
et al. 2015)
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specific receptors (Choi et al. 2012). These small molecules can be assigned as
ligands that are attached/added to the ends of PEG chains or displayed on the surface
of the capsid. For example, EGF, folic acid, RGD peptides and transferrin are used as
ligands attached to VNPs (Azizgolshani et al. 2013).

6.7 Role of VNPs as Drug Delivery Agents

VNPs are widely used for delivering conventional drugs, therapeutic agents, genes,
photoactive molecules, even viral genomes involved in gene therapy or short
interfering RNAs to a particular cell or receptor present on the cell surface (Zeng
et al. 2013). The hybrid VNPs carrying metal nanoparticles have been investigated
for photothermal therapy (Galaway and Stockley 2013).

6.8 Role of VNPs Against Infectious Diseases

VNPs have achieved great success against various bacterial, fungal and viral
infections. The virus–antigen complex given in a single dose induced to act against
several viruses has produced a protective immune response (Huang et al. 2011). The
VLP vaccine combinations administered into lungs have been demonstrated as a
powerful strategy in immunotherapy and vaccine development (Hovlid et al. 2012).

6.9 Conclusion with Future Perspective

The icosahedral plant viruses used to design VNPs and VLPs offer a versatile
platform in manipulating the viruses’ genome or coat proteins to target the specific
sites for therapeutic applications. Icosahedral plant viruses have been used to
develop new bionanomaterials to improve their functions in drug delivery to the
target, catalysis, biomineralization, cell imaging and other purposes. Also, the
development of fabricated nanomaterials has been evaluated only on a few in vivo
and in vitro tissue culture systems. VNPs and VLPs have generated great immune
responses due to the presence of diverse functions and properties (bioconjugation
potentials, capsid sizes and stabilities). However, the use of viruses in nanotechnol-
ogy as delivery is relatively less explored and more of in vitro evaluations and
studies are must for a better understanding of side effects and physiological changes/
functions to ensure a safe virus-based therapeutics against various infections/
diseases.
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