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Abstract Bioinformatic analysis is a powerful statistical analysis to investigate the
significant genes and their biological information from RNA-sequence (RNA-Seq)-
based gene expression profiles. The most differentially expressed genes (DEGs) of
mouse striatum with their valuable information may be significantly contributed
to the neuroscience research. Two inbred mouse strains, for instance, C57BL/6J
(B6) and DBA/2J (D2), in neuroscience research are commonly used, and B6 strain
sequences are mostly available. Our study’s focus on the identification of significant
DEGs of B6 and D2 samples, protein–protein interaction network, to identify their
biological functions, molecular pathway analysis, miRNAs-target gene interactions,
downstream analysis, and to find out driven genes. Two samples, 10 B6 and 11 D2,
were deeply analyzed, which were retrieved from the Gene Expression Omnibus
(GEO) database with accession number GSE26024. DESeq2, edgeR, and limma
tools were utilized to screen theDEGs somewhere in the range of B6 andD2 samples.
DESeq2, edgeR, and limma had identified a total of 736, 757, and 530 DEGs with
37, 48, and 31 up-regulated genes, respectively. Protein–protein interaction network
analyses of those DEGs were visualized using a search tool for the Retrieval of
Interacting Genes and Cytoscape software. We selected the top 50 high-degree hub
DEGs for each of the three methods, and explored 21 common hub genes along
with three up-regulated genes Bdkrb2, Aplnr, and Ccl28. To explore the biological
insights of these 21 common hub DEGs, Gene Ontology (GO) and KEGG pathway
analysis were executed. In downstream analysis, hierarchical and k-means clustering
techniques were used, and both the methods clustered Bdkrb2, Aplnr, and Ccl28
genes into the same group. Furthermore, DEGs, specifically the genes Bdkrb2, Aplnr,
and Ccl28, are probably the core genes in inbred mouse strains. In conclusion, these
genes probably are the biomarkers for further neuroscience research.
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1 Introduction

RNA-Seqmay be away to investigate the number and sequences of RNA in a sample.
Over the past decade, the revolution of next-generation sequencing has exceedingly
produced a greater yield of sequence data at an inferior cost (Van Dijk et al. 2014).
Simultaneously, analysis techniques used for inspecting sequence data have emerged
(Alioto et al. 2013; Anders et al. 2013; Huber et al. 2015). Among the widespread
methods, RNA-Seq is the largest project for analyzing sequence data. Over the past
decade, the genome-widemRNA expression data derivation from cell population has
been demonstrated to be useful in many more studies (Soneson and Delorenzi 2013;
Bacher and Kendziorski 2016).

Although traditional expression methods existed for analyzing thousands of cells,
they sometimes cover or even misinterpret ones of interest. Nowadays, advanced
technologies allow us to induce transcriptome-wide large-scale information from
cells. This improvement is not simply another progression to enhance expression
profiling, yet rather a major development that will empower crucial experiences into
biology (Bacher and Kendziorski 2016). The analysis of RNA-Seq data assumes a
crucial part to understand the inherent and extraneous cell measures in biological
and biomedical exploration (Wang et al. 2019a). To understand biological processes,
a more precise understanding of the transcriptome in cells is needed for explicating
their role in cellular functions and understanding how differentially expressed genes
(DEGs) can promote advantageous or harmful design (Hwang et al. 2018). Appro-
priate analysis and utilization of the massive amounts of data generated from RNA-
Seq experiments are challenging (Pop and Salzberg 2008; Shendure and Ji 2008).
However, DEGs detection is one of themost significant efforts in RNA-Seq data anal-
ysis. Several methods have been used for identifying DEGs from count RNA-Seq
data in bioinformatic analysis based on Poisson and negative binomial distribution.
Poisson distribution faces an over-dispersion problem; therefore, the negative bino-
mial distribution is more reliable. In this study, we used three familiar methods
(DESeq2, edgeR, and limma) to follow negative binomial distribution for examining
DEGs, and we are going to discuss the fundamental principles of bioinformatic tech-
niques, focusing on concepts important in the analysis of RNA-Seq mouse striatum
data.

Multiple brain regions based on different inbred mouse strains gene expres-
sion profiles have been established previously (Sandberg et al. 2000; Hovatta et al.
2005). The distinct opioid-related phenotype has been studied by gene expression
profiling in themouse striatum (Korostynski et al. 2006). Strain reviews exhibited that
affectability to morphine is an unprecedented degree reliant on hereditary determi-
nants. In our study, we performed bioinformatic analysis on gene expression profiles
of mouse striatum and chose two samples, C57BL/6J and DBA/2J. DESeq2, edgeR,
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and limma detected the DEGs and took the top 50 DEGs from each. From these
genes, we determined common hubDEGs, and performedGO annotation andKEGG
pathway analysis. For common hub DEGs, miRNA–mRNA network is constructed.
After that, downstream analysis is also carried out to find the driven genes. There-
fore, the bioinformatic approach paved the way for the investigation of genes from
RNA-Seq profiles of mouse striatum that can be contributed further to molecular
research in neuroscience.

2 Materials and Methods

We analyzed RNA-Seq read count data of mouse striatum. The following flow chart
shown in Fig. 1 describes the steps of bioinformatic analysis of the data set used in
this study.

2.1 RNA-Seq Data Collection

We downloaded gene expression profile GSE26024 from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26024)
(Bottomly et al. 2011). It is also available at http://bowtie-bio.sourceforge.net/rec
ount/. GSE26024 dataset contains 21 samples, including two samples, 10 C57BL/6J
(B6) and 11 DBA/2J (D2), and 36,536 genes (Korostynski et al. 2006; Wang et al.
2019b).

2.2 Methods for Identification of DEGs

For identifying the DEGs from the RNA-Seq dataset, several methods such as
DESeq, DESeq2, EBSeq, edgeR, baySeq, limma, NBPSeq, etc., have been devel-
oped. In our study, three popular methods, DESeq2 (Love et al. 2014), edgeR
(Robinson et al. 2010), and limma (Smyth et al. 2005), were used from Biocon-
ductor (www.bioconductor.org) project to examine the DEGs between B6 and D2
samples. The following subsections explain a summary of these three methods.

2.3 DESeq2

DESeq2 is described based on the negative binomial distribution model (Love et al.
2014). A generalized linear model is used for DESeq2 and the model form is:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi%3Facc%3DGSE26024
http://bowtie-bio.sourceforge.net/recount/
http://www.bioconductor.org
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Fig. 1 RNA-Sequencing profiles of mouse striatum data analysis workflow (Source Created by the
authors)

Ki j ∼ N B(μi j,αi )

μi j = s jqi j
log2(qi j ) = x jβi

where, count Kij is i-th gene and j-th sample model supported a negative binomial
distribution; fitted mean and gene-specific dispersion parameters are denoted by μij

and αi, respectively. The fitted mean is examined by a sample-specific size factor
and a parameter, sj and qij, respectively. The coefficients β i calculated the log2-fold
changes of themodel matrix (X) each column for gene i. Sample and gene-dependent
normalization factors sij are used after generalization of the model and the variance
of counts Kij,

Var(Ki j ) = [(Ki j − μi j )
2] = μi j + αiμ

2
i j
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Maximum a posterior estimation of the log2-fold changes in β i after incorporating
a zero-centered normal prior provided by DESeq2 (Love et al. 2014).

2.4 edgeR

edgeR model and software was developed by Robinson et al. (2010). edgeR
considered the hypothesis,

H0 : λ j1 = λ j2 (Equally expressed)

(and)HA : λ j1 �= λ j2 (Differentially expressed)

In edgeR, the proportion of total reads, λ jk(i) = ∑Ck
i=1 λ j i , where, λ jk(i) is the jth

genes of the kth group, and λ j i is defined as the proportion of reads in the jth gene in
an ith sample. Then the moderate mean μ j i = niλ jk(i), where, ni is the ith library.
According to the gene-wise or pair-wise assumption, the dispersion parameter φ is
estimated by a maximizing conditional weighted log-likelihood,

WL(φ j ) = l j (φ j ) + αlc(φ j )

where α is the weight, lc is the maximum estimator denoted by φ̂WL
j which is consid-

ered as an empirical Bayesian solution. To estimate dispersion parameter, Robinson
et al. 2010 proposed quantile-adjusted conditional maximum likelihood (qCML) and
CML as follows,

y ji ∼ N B(μ j i , φ)

The maximum likelihood estimator (MLE) becomes
∑

i∈c j y ji∑
i∈c j ni

and the dispersion

parameter is given as Z j = ∑m j

i=1 yki and the common likelihood function lc(φ),

lc(φ) =
G∑

j=1

l j (φ) =
G∑

j=1

K∑

k=1

[
mk∑

g=1

log�(yki + φ−1)+

log�(nkφ
−1) − log�(Zk + nkφ

−1) − nk log�(φ−1)]

To assess the perfect dispersion parameter φ, the common likelihood lc(φ) is
used and the MLE of λ jk(i) depending on φ. After estimating MLE, the hypothesis
is tested, and the alternative hypothesis HA is used for identifying differentially
expressed genes.
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2.5 Limma

Linearmodels formicroarray data, i.e., the limma tool is broadly used for the analysis
of RNA-Seq data (Law et al. 2014). Different steps of limma for analyzing DEGs
are described as follows:

(a) 1st step is the normalizing of the data. Suppose, data matrix rgi defined the
RNA-Seq read count, where row and column defined the genes and samples,
respectively (g= 1, 2…G; i = 1, 2,…, nk). Voommethod is used to transform
the read count data matrix to log-counts per million (log-cpm) as follows:

ygi = log

(
cgi + 0.5

Ci + 1
× 106

)

where Ci denotes the mapped reads for sample i,

Ci =
G∑

g=1

Cgi .

(b) 2nd step is the searching of low expression genes and filter them.
(c) 3rd step is the introduction of a linear model for analyzing DEGs that describes

the treatment factors assigned to different RNA samples. The model used here
is:

E(ygi ) = μgi = xTi βg.

Here, covariate vector xi and an unknown coefficient βg represent log2-fold
changes with the range of conditions of the experiment. In matrix form,

E(yg) = Xβg

Here, a log-cpm value of vector is yg for gene g and the design matrix is X with
column xi. The fitted model is

μ̂gi = xTi β̂g

The mean log-cpm is transformed to mean log count value by:

c̃ = ȳg + log2(C̃) − log2(10
6)

Here, the geometric mean is C̃ . The log-cpm fitted values μ̂gi are transformed
into fitted counts by

λ̂gi = μ̂gi + log2(Ci + 1) − log2(10
6)
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(d) Calculated voomweights usingLOWESScurve (Cleveland, 1979) that is statis-
tically robust and used to describe a piecewise function lo () which is linear.
After that, the voom weight is wgi = lo(λ̂gi )

−4 called voom precision.
(e) Then fitted the contrasts of coefficient. The contrast is given by βg = MTαg ,

where, M defined the contrasts matrix, β̂gi |βgi , σ
2
g ∼ N (βgi , vgiσ

2
g ).

(f) Empirical Bayes is used for getting better estimates, and it assumes the inverse
of Chi-square prior σ 2

g with mean s20 , f0 is the degrees of freedom, and fg is
the residual degree. The posterior values for the residual variances are

s̃2g = f0s20 + fgs2g
f0 + fg

Then the moderate t-statistic is

t̃gi = β̂gi

ugi s̃g

(g) Adjust p-values for false discovery rate, and access the results that make sense
for identifying differentially expressed genes.

2.6 Methods for Functional Analysis of DEGs

Functional analysis is carried out for annotations of DEGs and to explain their
biological insights.

2.7 PPI Analysis of DEGs

PPI network represents the interaction of proteins, where nodes and edges represent
the proteins and their interaction. Search tool for the Retrieval of Interacting Genes
(STRING) database (http://www.string-db.org/) was used to collect information for
DEGs (Szklarczyk et al. 2015), and an interaction network was considered where
combined score > 0.4. Cytoscape software version 3.7.1 was used to visualize the
regulatory network of their corresponding genes (Su et al. 2014). For the analysis of
core genes, Network Analyzer in Cytoscape software was used for the interaction
network.

http://www.string-db.org/
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2.8 GO Enrichment and KEGG Pathway Analysis of DEGs

Normally, high-throughput genomics or transcriptomics data is annotated by the GO
enrichment analysis (Ashburner et al. 2000). Additionally, KEGG is a knowledge-
based database used to manage natural pathways and infections. A significant
genes list was submitted to the Gene Ontology (http://www.geneontology.org/) and
KEGG pathway (http://www.genome.jp/kegg/) for inspecting over-represented GO
and pathway classes. GO is studied to predict the possible elements of the DEGs in
BP, biological process or GO process; MF, molecular function or GO function; and
CC, cellular component or GO component. KEGG pathway analysis is performed
for gene functions investigation (Altermann and Klaenhammer 2005), connecting
genomic information with higher-level systemic functions, etc. In addition, we have
considered statistically significant over-represented pathway categories in KEGG
pathway enrichment analysis.

2.9 miRNAs-Target Gene Interactions of DEGs

miRNAsmolecules are involvedwith numerous physiological and disease processes.
Each miRNA is assumed to control manifold genes to select probable miRNA–
mRNA interaction within the hub genes network (Lim et al. 2003). We used miRDB
(http://mirdb.org/) for miRNAs-target gene interactions (Wong and Wang 2015).
Cytoscape software was used to develop a regulatory miRNA–mRNA network.

2.10 Downstream Analysis of DEGs

Clustering is crucial for understanding gene expression data. Clusters are obtained by
the similarity of genes in a gene expression profile. The popular k-means clustering
algorithm is used for clustering DEGs. We also used hierarchical clustering that is
also known as hierarchical cluster analysis. It attempts to group genes into small
clusters and to group clusters into higher-level systems (Eisen et al. 1998; Kuklin
et al. 2001). A common method for visualization of gene expression data using
hierarchical clustering is the heatmap. The heatmap may also be combined with
hierarchical clustering methods, which may split genes into groups and/or samples
together, and support to display DEGs expression pattern. This may also be useful
for identifying genes that are commonly regulated, or biological signatures related
to a selected condition.

http://www.geneontology.org/
http://www.genome.jp/kegg/
http://mirdb.org/
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Table 1 Number of DEGs
with p-value < 0.01

Methods DEGs Up-regulated DEGs Down-regulated
DEGs

DESeq2 736 37 699

edgeR 757 48 709

limma 530 31 499

Source Created by the authors

3 Results

3.1 Identified DEGs

DESeq2, edgeR, and limma methods identified DEGs summarized in Table 1. We
identified DEGs by considering p-value < 0.01 and discriminate up-regulated and
down-regulated genes based on the cut-off criteria, log FC > 2.0 and log FC < −2.0,
respectively.

3.2 PPI Analysis of DEGs

According to the information in the STRING database, the gene interaction network
contained many nodes and edges. Nodes and edges are listed in Table 2. DEGs are
demonstrated by the nodes, and interactions between DEGs are showed by the edges.
Predicted scores (degree) are used to rank core genes.

We selected the top50high-degree hubDEGs for eachmethod, and the distribution
of the top 50 DEGs in the interaction network is shown in Fig. 2. The relationship
between the data points and comparing points on the line are roughly 0.821, 0.844,
and 0.842, and the R2 values are 0.912, 0.907, and 0.897 for DESeq2, edgeR, and
limma, respectively.

Venn diagram discovered 21 common hub DEGs among the top 50 high-degree
hub DEGs as shown in Fig. 3. These 21 DEGs are Bdkrb2, C5ar1, C3ar1, Fpr1,
Ccr6, Ptgs2, Mki67, Tas1r2, Sstr5, Ccl28, Aplnr, Apln, Gpr55, B2m, H2-K1, F2r,
Dnajc3, Trhr, Polr1a, Adcy4 and Mog. Venn diagram is drawn using the R package
“VennDiagram.” Again the interaction network of the 21 common hubDEGs ismade

Table 2 Nodes and edges
were identified based on
p-value < 0.01

Methods Nodes Edges

DESeq2 725 1441

edgeR 744 1713

limma 520 678

Source Created by the authors
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Fig. 2 Nodes-degree relationshipwhere (a) DEGs found throughDEseq2, (b) DEGs found through
edgeR, and (c) DEGs found through limma. The dot (black) node indicates the core genes, the curve
(red) indicates the fitted line, and the straight (blue) line indicates the power law. (Source Created
by the authors)

Fig. 3 Venn diagram of the
DEGs detected by the three
methods (Source Created by
the authors)
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Fig. 4 The interaction network of the common 21 hub DEGs. The hub genes are indicated by the
nodes, and the interactions between the hub genes are indicated by the edges. (Source Created by
the authors)

by the STRING database containing 21 nodes and 67 edges (Fig. 4). Up-regulated
hub genes Bdkrb2, Aplnr, and Ccl28 were highlighted by a different color from other
down-regulated genes.

3.3 GO Enrichment Analysis of DEGs

Functional analysis of the common 21 hub DEGs is clarified through GO analysis.
GO function indicates that these 21 hub DEGs are enriched in G-protein coupled
peptide receptor activity, peptide binding, signaling receptor binding, etc.GOprocess
indicates that these 21 hub DEGs are enriched in cell death, response to stimulus,
signaling, homeostatic process, immune system process, response to stimulus, blood
vessel development, cAMP-mediated signaling, heart development, and other biolog-
ical processes. For the GO component, the 21 hub DEGs were enriched in the plasma
membrane, an integral component of the plasmamembrane, cytoplasmic vesicle, and
so on. GO analysis results of these DEGs are explained in Table 3.
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Table 3 GO enrichment analysis of common 21 hub DEGs

Gene Gene title GO: function GO: process GO: component

Bdkrb2 Bradykinin receptor,
beta 2

G-protein
coupled peptide
receptor
activity, peptide
binding

Cell death, response
to stimulus,
signaling

Plasma membrane

C5ar1 C5a anaphylatoxin
chemotactic receptor 1

G-protein
coupled
receptor
activity,
phospholipase
C activity

Activation of
phospholipase C
activity, immune
response, immune
response-activating
cell surface receptor
signaling pathway,
inflammatory
response

Intracellular,
cytoplasmic vesicle

C3ar1 C3a anaphylatoxin
chemotactic receptor

G-protein
coupled
receptor
activity,
phospholipase
C activity

Activation of
phospholipase C
activity, immune
response, immune
response-activating
cell surface receptor
signaling pathway,
inflammatory
response, inositol
phosphate-mediated
signaling

Intracellular, plasma
membrane

Fpr1 fMet-Leu-Phe receptor G-protein
coupled peptide
receptor
activity,
phospholipase
C activity

Activation of
phospholipase C
activity, immune
response, immune
response-activating
cell surface receptor
signaling pathway,
inflammatory
response, inositol
phosphate-mediated
signaling

Intracellular, plasma
membrane

Ccr6 C–C chemokine
receptor type 6

G-protein
coupled peptide
receptor
activity

Calcium-mediated
signaling, cell
chemotaxis,
immune response,
positive regulation
of cytosolic calcium
ion concentration

External side of the
plasma membrane,
intracellular

Ptgs2 Prostaglandin G/H
synthase 2

Oxidoreductase
activity, cell
death, response
to stimulus

Immune system
process, system
development, cell
differentiation

Endoplasmic reticulum,
plasma membrane

(continued)
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Table 3 (continued)

Gene Gene title GO: function GO: process GO: component

Mki67 Proliferation marker
protein Ki-67

DNA binding Cell population
proliferation,
system
development

Non-membrane-bounded
organelle, nucleus

Tas1r2 Taste receptor type 1
member 2

G-protein
coupled
receptor
activity, taste
receptor
activity

Sensory perception
of sweet taste
response to
stimulus, signaling

Integral component of
plasma membrane

Sstr5 Somatostatin receptor
type 5

G-protein
coupled
receptor
activity,
neuropeptide
binding

Neuropeptide
signaling pathway,
response to
stimulus, signaling,
homeostatic process

Integral component of
plasma membrane

Ccl28 C–C motif chemokine
28

Signaling
receptor
binding

Homeostatic
process, immune
system process,
response to stimulus

Cytoplasmic vesicle

Aplnr Apelin receptor G-protein
coupled peptide
receptor
activity

Blood vessel
development,
cAMP-mediated
signaling, heart
development

Intracellular, plasma
membrane

Apln Apelin Signaling
receptor
binding,
extracellular
region

Cell population
proliferation,
establishment of
localization,
signaling

Extracellular region,
signaling receptor
binding

Gpr55 G-protein coupled
receptor 55

G-protein
coupled
receptor
activity,
phospholipase
C activity

Rho protein signal
transduction
activation of
phospholipase C
activity, inositol
phosphate-mediated
signaling, positive
regulation of
cytosolic calcium
ion concentration

Integral component of
plasma membrane
intracellular

B2m Beta-2-microglobulin Homeostatic
process, cell
differentiation,
system
development,
immune system
process

Cytosol, Golgi
apparatus, plasma
membrane

(continued)
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Table 3 (continued)

Gene Gene title GO: function GO: process GO: component

H2-K1 H-2 class I
histocompatibility
antigen

Peptide binding
signaling
receptor
binding

Adaptive immune
response, immune
effector process,
positive regulation
of adaptive immune
response

F2r Proteinase-activated
receptor 1

G-protein
coupled
receptor
activity,
phospholipase
C activity

Rho protein signal
transduction,
activation of
phospholipase C
activity, inositol
phosphate-mediated
signaling, positive
regulation of
cytosolic calcium
ion concentration

Integral component of
plasma membrane,
intracellular

Dnajc3 DnaJ homolog
subfamily C member 3

Chaperone
binding,
unfolded
protein binding,
signaling
receptor
binding

Protein folding in
endoplasmic
reticulum, cell
differentiation,
cellular component
organization,
system
development,
immune system
process

Endoplasmic reticulum,
plasma membrane, Golgi
apparatus

Trhr Thyrotropin-releasing
hormone receptor

Signaling
receptor
activity

Muscle contraction,
sensory perception,
homeostatic
process, response to
stimulus, signaling

Plasma membrane

Polr1a DNA-directed RNA
polymerase subunit
RPA1

RNA
polymerase I
activity,
transferase

Nucleic
acid-templated
transcription

DNA-directed RNA
polymerase I complex,
nuclear chromatin

Adcy4 Adenylate cyclase type
4

G-protein
coupled
receptor
activity,
adenylate
cyclase activity

Activation of
adenylate cyclase
activity, adenylate
cyclase-activating
G-protein coupled
receptor signaling
pathway, regulation
of adenylate cyclase
activity

Integral component of
plasma membrane,
intracellular

(continued)
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Table 3 (continued)

Gene Gene title GO: function GO: process GO: component

Mog Myelin-oligodendrocyte
glycoprotein

Signaling
receptor
binding,
carbohydrate
derivative
binding

T cell receptor
signaling pathway,
immune response,
immune system
process, response to
stimulus

External side of plasma
membrane, leaflet of
membrane bilayer

Source Created by the authors

3.4 KEGG Pathway Analysis of DEGs

In the analysis of theKEGGpathway,wehave considered a false discovery rate (FDR)
less than 0.05 and found out significant genes. KEGG pathway analysis exposed and
targeted pathways enriched in neuroactive ligand–receptor interaction, pathways in
cancer, ovarian steroidogenesis, and other significant pathways described in Table 4.

Pathway ranking associated with genes is displayed in Fig. 5. The first-ranked
staphylococcus aureus infection pathway had the 6% genes that involved C5ar1,
C3ar1, and Fpr1. The second is the complement and coagulation cascades pathway
with 4.5% related genes that are Bdkrb2, C5ar1, C3ar1, and F2r. The third, regulation
of lipolysis in adipocytes pathway, had the 3.65% related genes that included Ptgs2,
Adcy4. The fourth, the ovarian steroidogenesis pathway, had 3.51% related genes that
are Adcy4, Ptgs2. And, the fifth, neuroactive ligand–receptor interaction pathway,
had the 3% related genes that are Bdkrb2, C5ar1, C3ar1, Fpr1, Sstr5, Aplnr, Apln,
and F2r.

3.5 miRNA–mRNA Network Construction for DEGs

The common 21 hub DEGs were closely associated with related miRNA and
predicted potential miRNAs. The prediction scores were likewise gathered from
the miRDB database, and therefore the miRNA–mRNA with a high score implied
near-potential function of miRNA inside the guideline of the objective mRNA. The
miRNA–mRNA network appeared in Fig. 6 with cutoff > 70.

3.6 Downstream Analysis for DEGs

Cluster analysis of 21 hub DEGs is shown in Fig. 7. Two popular clustering methods,
hierarchical clustering and k-means, were applied for finding the similarity of DEGs.
We divided DEGs into three clusters for both methods. In the k-means algorithm,
it observed that Ptgs2, Mog, and Dnajc3 are clustered together in Group 1; Polr1a,
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Table 4 KEGG pathway analysis of common 21 hub DEGs

Pathway Description Genes count Associated genes FDR

mmu04080 Neuroactive
ligand–receptor interaction

8 of 284 Bdkrb2, C5ar1, C3ar1,
Fpr1, Sstr5, Aplnr, Apln,
F2r

1.3E−08

mmu04610 Complement and
coagulation cascades

4 of 88 Bdkrb2, C5ar1, C3ar1,
F2r

6.9E−05

mmu05150 Staphylococcus aureus
infection

3 of 50 C5ar1, C3ar1, Fpr1 0.0005

mmu04020 Calcium signaling pathway 4 of 180 Bdkrb2, F2r, Trhr, Adcy4 0.0005

mmu04371 Apelin signaling pathway 3 of 134 Aplnr, Apln, H2-K1 0.0050

mmu04062 Chemokine signaling
pathway

3 of 179 Ccr6, Ccl28, Adcy4 0.0095

mmu04024 cAMP signaling pathway 3 of 194 Sstr5, F2r, Adcy4 0.0103

mmu04015 Rap1 signaling pathway 3 of 207 Fpr1, F2r, Adcy4 0.0108

mmu05200 Pathways in cancer 4 of 522 Adcy4, F2r, Ptgs2,
Bdkrb2

0.0129

mmu04923 Regulation of lipolysis in
adipocytes

2 of 55 Ptgs2, Adcy4 0.0129

mmu04913 Ovarian steroidogenesis 2 of 57 Adcy4, Ptgs2 0.0129

mmu04612 Antigen processing and
presentation

2 of 78 B2m, H2-K1 0.0189

mmu04742 Taste transduction 2 of 86 Tas1r2, Adcy4 0.0210

mmu04750 Inflammatory mediator
regulation of TRP channels

2 of 119 Adcy4, F2r 0.0363

mmu04611 Platelet activation 2 of 122 F2r, Adcy4 0.0363

mmu04921 Oxytocin signaling pathway 2 of 149 Ptgs2, Adcy4 0.0463

mmu04723 Retrograde
endocannabinoid signaling

2 of 145 Ptgs2, Adcy4 0.0463

mmu04072 Phospholipase D signaling
pathway

2 of 145 Adcy4, F2r 0.0463

mmu04022 cGMP-PKG signaling
pathway

2 of 164 Bdkrb2, Adcy4 0.0492

mmu04141 Protein processing in
endoplasmic reticulum

1 of 164 Dnajc3 0.0496

Source Created by the authors

Apln, and B2m belong to Group 3; and remaining DEGs are contained in Group
2. Hierarchical clustering using heatmap presentation of DEGs observed that Ptgs2,
Mog, Dnajc3, Apln, and B2m are clustered together in Group 1; Polr1a, Htr6, F2r,
Sstr5, and Trhr belong to Group 3; and the remaining DEGs are clustered together
in Group 2.
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Fig. 5 KEGG analysis of common 21 hub DEGs. The different color means different pathways.
(Source Created by the authors)

4 Discussion

Themost recognizedmouse strains such asC57BL/6J (B6) andDBA/2J (D2) samples
are widely used in neuroscience research (Sandberg et al. 2000). In the current study,
the mouse striatum gene expression profile of GSE26024 was downloaded, and
to identify core genes bioinformatic analysis was performed. These investigations
confirmed that 736, 757, and 530 DEGs are identified using DESeq2, edgeR, and
limma with 37, 48, and 31 up-regulated genes, respectively (Table 1). Furthermore,
protein–protein interaction network analysis, GO, KEGG pathway, construction of
miRNA–mRNA network, and downstream analysis were executed to access the
biomarkers or the core genes.

Table 2 displayed the nodes and edges of the DEGs assessed by the three different
methods. The protein–protein interaction network investigation recognized the top 50
highest-degree hub genes of DEGs selected from each DEGs set. Figure 2 explained
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Fig. 6. miRNA–mRNA interaction network of DEGs (Source Created by the authors)

Fig. 7 Cluster analysis of common 21 hub DEGs. (a) K-means clustering and (b) Hierarchical
clustering of DEGs with three clusters (Source Created by the authors)
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nodes-degree relationship of the top 50 hub DEGs. It describes core gene distribution
by giving generally high certainty that the basic model is linear in the interaction
network. Figure 3 is a Venn diagram displaying and identifying 21 common hub
genes based on the top 50 hub DEGs. Among the common 21 hub DEGs, DESeq2
and limma found Bdkrb2 and Ccl28, and edgeR foundAplnr up-regulated genes. The
other genes are observed to be down-regulated. We also performed gene interaction
network analysis for these 21 commonhubgenes andobserved that the gene “Dnajc3”
had no interaction with other genes (Fig. 4).

To disclose the underlying molecular mechanisms, we have characterized the
possible GO terms and biological pathways of common hub genes. GO enrich-
ment analysis is displayed in Table 3. The up-regulated DEGs, Bdkrb2 and Aplnr,
are mainly involved in the same functional terms such as plasma membrane, and
Ccl28 is associated with cytoplasmic vesicle; contrariwise, down-regulated DEGs
are observed to be rich in biological intracellular, plasma membrane, endo plasmic
reticulum, DNA-directed RNA polymerase I complex, non-membrane-bounded
organelle, and so on.

Besides, KEGG pathway analysis is used for identifying the functional anal-
ysis of DEGs. According to KEGG pathway analysis, multiple genes are associated
with same pathway as well as a same gene is associated with several pathways.
Bdkrb2 is enriched in the Neuroactive ligand–receptor interaction pathway, Comple-
ment and coagulation cascades, Calcium signaling pathway, and Pathways in cancer.
C5ar1 and C3ar1 regulate the Neuroactive ligand–receptor interaction, Complement
and coagulation cascades, and Staphylococcus aureus infection. Fpr1 is associated
with Neuroactive ligand–receptor interaction, Staphylococcus aureus infection, and
Rap1 signaling pathway. Adcy4 is associated with several pathways such as Calcium
signaling pathway, Chemokine signaling pathway, cAMP signaling pathway, Rap1
signaling pathway, Pathways in cancer, Regulation of lipolysis in adipocytes, Ovarian
steroidogenesis, Taste transduction, Inflammatory mediator regulation of TRP chan-
nels, Platelet activation, Oxytocin signaling pathway, Retrograde endocannabinoid
signaling and Phospholipase D signaling pathway, and so on (Table 4). The up-
regulated DEGs, Bdkrb2 and Aplnr, are significantly enriched in Neuroactive ligand-
receptor interaction pathway, while Ccl28 is enriched in Chemokine signaling
pathway. Figure 5 describes the percentage of geneswhich are involvedwith different
pathways.

We also have constructed miRNA–mRNA network for the common hub genes
(Fig. 6). Multiple hub genes are observed to be connected with miRNAs. Trhr
and C5ar1 hub genes related to mmu-miR-23a-3p and mmu-miR-23b-3p. MiR-23a
downregulation is the following experiment of traumatic brain injury (Sabirzhanov
et al. 2014) and MiR-23b is involved in cancer aggressive (Grossi et al. 2018). Ptgs2
andC5ar1 genes are connectedwithmmu-miR-761 andmmu-miR-214-3p.MiR-761
is involved in suppressing the remodeling of nasal mucosa (Cheng et al. 2020). F2r
and Ptgs2 are observed to be connected with mmu-miR-216a-5p while Dnajc3 and
Ptgs2 are connected with mmu-miR-467e-5p, Dnajc3 and Mog are connected with
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mmu-miR-539-5p, Apln and Ptgs2 are connected with mmu-miR-743a-3p, mmu-
miR-743b-3p, mmu-miR-340-5p, and C3ar1and Ccl28 are connected with mmu-
miR-186-5p. It is more interesting that up-regulated hub genes, Ccl28 and Aplnr,
are associated with mmu-miR-467a-5p while Aplnr and Bdkrb2 are interconnected
with mmu-miR-205-5p. MiR-467a is highly expressed in tumor suppressors (Inoue
et al. 2017) and MiR-205 upregulation determines the aggressiveness and metastatic
activity of malignant tumors (Dahmke et al. 2013).

The downstream analysis (Fig. 7) explained the cluster of 21 hub DEGs, in which
maximum DEGs clustered in group 2 and a small number of DEGs clustered in
group 1 and 3. We observed that the up-regulated DEGs, Ccl28, Aplnr, and Bdkrb2,
belong to the same cluster (group 2) of both k-means and hierarchical clustering
methods. From the above discussions, we may highlight that the genes Ccl28, Aplnr,
and Bdkrb2 are crucial genes and might be the driven genes. More importantly, they
might be the biomarkers for further neuroscience research.

5 Conclusions

In summary, DEGs are identified fromRNA-Seq profiles of mouse striatum using the
three popular DEGs calculation methods, and applied PPI network on DEGs. Then,
the 21 commonhubDEGswere recognized including the up-regulated genesBdkrb2,
Aplnr, and Ccl28. Analysis of GO and KEGG pathway identified significant genes
to explore the biological insights of the DEGs. The downstream analysis explained
that Bdkrb2, Aplnr, and Ccl28 genes belong to the same group. Finally, we have
concluded that the hub genes, Bdkrb2, Aplnr, and Ccl28, might be the driven genes in
inbredmouse strains. These identified driven genesmight be promising candidates or
biomarkers for further neuroscience research. Furthermore, experimental validation
is needed and should be made in future studies.
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