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Abstract Among several Design of Experiments (DoEs), Latin Hypercube Design
(LHD) is one of the most frequently used methods in the field of physical experi-
ments and in the field of computer simulations to find out the behavior of response
surface of the surrogate model with respect to design points. A good experimental
design should have three important characteristics, namely (i) non-collapsing, (ii)
space-filling and (iii) orthogonal properties. Though inherently LHD preserves non-
collapsing property, but randomly generated LHDs have poor space-filling in terms
of minimum pair-wise distance. In order to ensure the last two properties in LHD,
researchers are frequently looking for finding optimal LHD in the sense of space-
filling and orthogonal properties. Moreover, researchers are frequently encountered
the question, which distance measure is the best in the case of optimal designs? In
the literature, several types of optimal LHDs are available such as Maximin LHD,
Orthogonal LHD, Uniform LHD, etc. On the other hand, two distance measures
namely Euclidean and Manhattan distance measures are used frequently to find
optimal DoEs. But which one of the two distance measures is better, is still unknown.
In this article, intensive statistical analysis has been carried out on numerical instances
to explore the deep scenario of each optimal LHD. The main goal of this research
is to find out a scenario of the well-known optimal designs from statistical point of
view. From this elementary experimental study, it seems to us that in the sense of
space-filling, Euclidean distance measure-based Maximin LHD is the best. But if
one needs space-filling along with better orthogonal property, then multi-objective
(Maximin with approximate orthogonal)-based optimal LHD is relatively better than
Maximin LHD.
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1 Introduction

Computer simulation-based DoEs are used in a wide range of applications to learn
about the effect of input variables x on a response of interest y. Fang et al. (2006)
said, as simulation programs are usually deterministic so the output of a computer
experiment is not subject to random variations, which makes the design of computer
experiments different from that of physical experiments. Many simulation models
involve several hundred factors or even more. It is desirable to avoid replicates when
projecting the design onto a subset of factors. This is because a few out of the
numerous factors in the system usually dominate the performance of the product.
Thus, a good model can be fitted using only these few important factors. Therefore,
when we project the design on to these factors, replication is not required. As it is
recognized by several authors, the choice of the design points for computer experi-
ments should at least fulfill two requirements namely non-collapsing and space-filling
(Johnson et al. 1990; Morris and Mitchell 1995). In addition, in order to find out the
individual effect of factors on response surface, researchers hunt DoEs with orthog-
onal property among the factors. LHD inherently preserves non-collapsing property,
i.e. factors are evenly spread whenever projected on any coordinate. McKay et al.
(1979) first introduced LHD. Later, authors (Morris and Mitchel 1995; Grosso et al.
2009) defined LHD which are a bit different. In a LHD, there are N points (design
points) and each point has k distinct coordinates (parameters/factors). The points
are placed in such a way that they are uniformly distributed when projected on
every single coordinate (factor) axis. In a LHD, the range of each parameter/factor
is normalized to the interval [1, N] (actually authors Grosso et al. 2009) considered
the interval [0, N-1] but for the symmetry of other designs considered, here we have
considered the range [1, N]). Mathematically, let us consider a set of N points in a

uniform k-dimensional grid {1, 2, ..., N JE:
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Then X is a LHD iff x,; # x,;Vj, p,q € {1,2,...,N}3p # g, ie. each
column has no duplicate entries. Note that the number of possible LHDs is huge:
there are (N!)* possible LHDs.

It is known that randomly generated LHD has poor space-filling property. More-
over, it bears poor orthogonal property. Therefore, researchers search for optimal
LHDs in the sense of space-filling, orthogonal, uniform etc., Jin et al. (2005), and
Johnson et al. (1990) proposed Maximin (maximize the minimum inter-site pair-wise



Statistical Analysis of Various Optimal Latin Hypercube Designs 157

distance) experimental design but it was not LHD. They measured the space-filling
on the basis of minimum inter-site pair-wise distance “D;” among all pair-wise
distances of design points. That is if “D;” value of any LHD is relatively smaller
then we say that the LHD is not good enough in the sense of space-filling. Morris
and Mitchell (1995) proposed @, optimal criterion and later Grosso et al. (2009)
modified it for easy computation, which is given below:

1

N N 1 P
®,0 =33 | (1)

i=1 j=i+1 L i

where d;; = d(x;x;) be the distance between points x; and x; and p is a positive
integer.

Audze and Eglais (1977) proposed a new optimal criterion that is similar to the
potential energy function (Potential (U)) and which is defined as below:

. . NN
Min U = min E E d_2 2)
ij

i=1 j=i+1

Itis known that multicollinearity (orthogonal property) measures the linear depen-
dency among the factors of the design points. Multicollinearity may be measured by
the partial pair-wise correlations among the factors. Several ways are available in
the literature to measure the pair-wise correlations. Here, we consider the measure
of average pair-wise correlations and maximum correlation, respectively, as below:
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Here p;; denotes the simple product-moment correlation between the factors i
and j; k denotes the number of factors in the design considered. Butler (2001) found
optimal LHD on the basis of this criterion. On the other hand, Joseph and Hung
(2008) proposed the combination of the above two criteria. Moreover, Fang et al.
(2000) defined a uniform design that allocates experimental points uniformly spread
over the domain. It is noted that uniform design does not require orthogonal (multi-
collinearity) property. It considers projective uniformity over all sub-dimensions.
But, in Fang et al. (2000), authors classified uniform design as space-filling design.
A good literature review is available in Viana et al. (2014). It is worthwhile to mention
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here that Jamali et al. (2019) recently established some relations and bonds between
Euclidian and Manhattan distance measures regarding LHD.

2 Experimental Result and Discussion

For the experimental study, we have considered a typical LHD of four factors (k =
4) with nine (N = 9) design points, which is optimized using several optimal criteria.
The optimized LHDs are shown in Table 1. In Table 1, MLH-SA denotes Maximin
LHD regarding Manhattan distance measure (L') obtained by Simulated Annealing
(SA) approach (Husslage et al. 2011). OMLH-MSA denotes Orthogonal Maximin
LHD regarding L' distance measure obtained by Modified Simulated Annealing
(MSA) (Morris and Mitchell 1995), OLH-Y denotes Orthogonal LHD regarding L!
distance measure obtained by Ye (1998), ULH-F denotes uniform LHD regarding L!
distance measure obtained by Fang et al. (2000) and MLH-ILS indicates the Maximin
LHD regarding Euclidean distance measure (L?) obtained by Iterated Local Search
(ILS) approach (Grosso et al. 2009).

At first, we have extracted all important statistical characteristics of each optimal
design given in Table 1. Then all the findings are shown in Table 2. The symbols
SD, CoV, B1, B2, Min Distance, Max Distance denote Standard Deviation, Coef-
ficient of Variation (%), Moment Coefficient of Skewness, Moment Coefficient of
Kurtosis («¢; + 3), minimum pair-wise inter-site distance among all design points of
the LHD and maximum pair-wise inter-site distance among all design points of the
LHD respectively. Besides, D;*! and D;"? denote the minimum pair-wise inter-site
distance of design points measured in L! (Manhattan) distance measure and in L2
(Euclidean) distance measure respectively. It is mentioned earlier that space-filling
is defined on only D; value or ® value. Similarly, orthogonal LHD is defined by
multi-collinearity and so on. But the insight views of several optimized LHDs are
still unknown. Here, we have analyzed the optimal LHDs statistically and on distance
measures. In addition, we have compared optimized LHDs in those issues.

Table 1 Some optimal LHDs for (k,N) = (4,9)

Method LH-SA OMLH-MSA OLH-Y ULH-F MLH-ILS

Optimal design matrix 1334 1533 1263 4175 1584
2588 2258 2976 1343 2749
3862 3975 3429 9954 3216
4716 4381 4712 6669 4833
5293 5717 5555 5721 5151
6959 6699 6398 2887 6378
7147 7124 7681 3516 7692
8421 8842 8134 8238 8967
9675 9466 9847 7492 9425

Source Collected from the following papers: Morris and Mitchell (1995), Ye (1998), Fang et al.
(2000) and Grosso et al. (2009)
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Table 2 Statistical analysis among several optimal LHDs for (k, N) = (4, 9)

Method MLH-SA |OMLH-MSA |OLH-Y ULH-F MLH-ILS
Objective function Maximin | Maximin+p |p Uniform | Maximin
Dist. used in the method | L! L! L! L! L?

No. of distances (n) 36 36 36 36 36

Sum of distances 2160 2160 2160 2160 2160
Average 60 60 60 60 60

SD 21.7894 21.19355 24.4949 21.65641 |22.59794
CoV 36.31566 | 35.32259 40.82483 |36.09401 |37.66323
Bi 1.237749 | 0.989075 1.278651 |0.148856 |1.332428
Baloy +3) 0.760507 | 0.093569 1.918449 |-0.93998 |0.347584
Min Distance (L?) 33 31 30 26 42

Max distance (L?) 122 109 120 102 112
Range (L?) 89 78 90 76 70

P 0.088889 | 0.041667 0 0.061111 |0.133333
PMax 0.216667 | 0.116667 0 0.15 0.233333
d>,€2 0.183966 | 0.187146 0.202608 |0.207282 |0.17497
Potential (U) 0.667812 | 0.66931 0.7 0.699 0.666661
DM 11 11 10 10 10

D12 33 31 30 26 ?

Source Authors’ own calculation by using programs

We have also detected all pair-wise inter-site Euclidean distances (actually square
of Euclidean distances) “D;;*” values for all pair of design points for each optimal
LHDs. Now for each optimal LHD, the “D,;jz” are plotted corresponding to each
pair of design points (I = {1,2,..., 36}), which are shown in Fig. 1. It is noted that
since we have taken 9 design points, we have obtained [(NV (N — 1)/2] = 36 number
of pair-wise distances. It is worthwhile to mention here that the sum of square of
all pair-wise (Euclidian) distances, (d(x;, Xj))z, of a fixed LHD is identical (=2160)
and so average of the square distances of all LHDs (for k = 4, N = 9) are also
identical. It is noted that there are (9!)* such LHDs and for each such LHD the value
of 3 (d(xi, x;))” is equal to 2160.

Now, we will discuss the comparison between two Maximin LHDs namely MLH-
SA and MLH-ILS in which both are optimized by using same single optimal criterion
called Maximin optimal criterion. But distance measures namely L! and L? are used
in MLH-SA and MLH-ILS, respectively, which are different. In addition, different
optimal heuristic algorithms namely SA and ILS approaches are applied to optimize
the MLS-SA and MLH-ILS designs, respectively. It is observed in both MLH-SA
and MLH-ILS that the values of SD, CoV, Bi. B2, 0, Pumaxs CI>§2 and Potential (U)
are not significantly different. It is also observed that the difference of D! of the
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Fig.1 Graphical representation of square of Euclidean distances corresponding to the pair of design
points for each optimal LHDs where (k, N) = (4, 9). Source Created by the authors

two DoEs is not significant, though MLH-SA searched optimal D! value whereas
MLH-ILS explored for D 112 value rather than D!,

Now we will talk about the comparison between Maximin LHD and Uniform
LHD mainly MLH-ILS and ULH-F. It is shown in Table 2 that uniform optimality
criterion-based LHD is flatter and un-skewed compared to all other LHDs considered
here. Moreover, the coefficient of correlation of ULH-F is relatively smaller than that
of MLH-ILS. It is also observed that SD, CoV, Max Distance and Range values are
not significantly different from the two optimal LHDs namely MLH-ILS and ULH-F.
It is also clear from Table 2 that the D! values of both DoEs are identical. On the
other hand, for CDIL,Z, Potential (U) and D, "2 values, MLH-ILS design is significantly
better than those of ULH-F design. It is worthwhile to mention here that the D2
value of ULH-F is worst compared to other optimal designs considered here.

We will also discuss orthogonal-based DoEs mainly of OLH- Y. In addition,
comparison will be drawn with Maximin-based LHD mainly MLH-ILS. Since the
initial criterion of OLH-Y is p = 0, so obviously the factors of the DoE are all
uncorrelated. It is observed in Table 2 that the SD, CoV, 8; and D,"! values of OLH-Y
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are not significantly different with that of MLH-ILS. But it is noticed that for 8,, Max
Distance, Range, CIDﬁz, Potential (U) and D2 values, OLH-Y is significantly worse
compared with the values of MLH-ILS. Moreover, though in OLH-Y, L! distance
measure is used whereas, in MLH-ILS, L? distance measure is used but both D;"!
values are identical. On the other hand, D,"? value of MLH-ILS is significantly better
compared with not only OLH-Y design but also all other designs considered here.

Now we will discuss the properties of OMLH-MSA in which multi-objective func-
tion namely Maximin and multi-collinearity was considered. It is observed that the
SD, the CoV, the B and Max Distance values of OMLH-MSA are the best compared
with all other optimal designs. But these values are not significantly different from
those values of MLH-ILS.

It is observed in Table 2 that the average correlation as well as maximum correla-
tion of OMLH-MSA is negligible and smaller than those values of MLH-ILS. But it
is also noticed in Table 2 that the average correlation as well as maximum correlation
of MLH-ILS is also not significantly larger. In addition, it is also observed in Table 2
that D;! value of OMLH-MSA is not significantly smaller than that of other optimal
LHDs. On the other hand, D12, <I>22 and potential (U) values of MLH-ILS are the
best compared with all other optimal LHDs. Moreover, these values are significantly
better compared with OMLH-MSA. It is also observed in Fig. 1 that according to
space-filling criterion MLH-ILS is relatively looking more homogeneous over the
design space compared with other designs.

Now we will discuss the two distance measures considered here namely Euclidean
and Manhattan. It is noticed in Table 2 that except MLH-ILS all other designs are
optimized by using Manhattan distance measure whereas MLH-ILS is optimized by
considering Euclidean distance measure. It is observed in Table 2 that D;"! value of
anyone LHD compared with the remaining other LHDs is not significantly better.
On the other hand, the D;"? value of MLH-ILS is the best and significantly larger
than any other one.

3 Conclusion

When LHD is considered as an experimental design, the design inherently preserves
good non-collapsing property. On the other hand, when Maximin optimal crite-
rion is considered, then the DoE should have good space-filling property. Again,
when we use multicollinearity as an optimal criterion, then the factors of the DoE
are uncorrelated or approximately uncorrelated. Similarly, whenever the uniform
optimal design is considered then design becomes flatter. Besides optimal criteria,
another question is frequently raised; which distance measure is relatively better in
case of an optimal design? In this elementary study, the main objective is to find
out the schematic view of several well-known optimal designs from the statistical
point of view. A rigorous statistical analysis has been carried out over some well-
known optimal LHDs, which are optimized with different optimal criteria. From this
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elementary analysis, it seems to us that, if we prefer a DoE containing all three prop-
erties (good) then multi-objective-based LHD namely OMLH-MSA is relatively
better. But if one considers only space-filling LHD, then MLH-ILS is the best in
which Euclidean distance measure is considered. Similarly, if one needs the design
with uncorrelated factors along with non-collapsing property then it is obvious that
OLH-Y is the best. In addition, it seems to us that L2 is relatively better to find out
Maximin LHD. Though multi-objective-based optimal LHD is relatively better, it is
obviously time-consuming. Moreover, in that optimal DoE, none of the individual
optimal criterion (of multi-objective function) is found good enough. It is worthwhile
to mention here that ILS is preferable to find Maximin LHD with cheaper compu-
tational time. Therefore, according to us, one may first find out an optimal LHD by
considering Maximin optimal criterion with ILS approach to detect the important
factors on response surface by using L? distance measure. Then orthogonal optimal
criteria may be applied on the reduced DoE (eliminated unimportant factors) to get
an uncorrelated-based DoE for further experiments. But it is worthwhile to mention
here that, in this experimental research, only some optimal LHDs of (k, N) = (4,
9) are considered. At the same time, we would like to note here that in the existing
literature only four optimal LHDs of (k, N) = (4, 9) viz MLH-SA, OMLH-MSA,
OLH-Y, ULH-F, MLH-ILS are available, which means, some other instances that
are optimized with all these five approaches are not yet available in the literature. So,
further experiments (with different instances) should be carried out to draw a more
concrete conclusion.
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