
Chapter 10
Synthesis Methods for Carbon-Based
Materials

Pradip Kumar

Abstract Carbon is a most versatile element and its bonding and special nature
have long been noted largely due to the variety and quantity of structures. Carbon
can make different allotropes like graphite, diamond and fullerene due to its sp1,
sp2 and sp3 possible hybridization nature. The development and understanding
of carbon-based materials are topics of major interest in science and technology
due to their excellent electrical, thermal, mechanical and optical properties. On the
other hand, carbon is hardly considered to be toxic material, which makes it easily
biocompatible. Carbon-based materials are synthesized using various top-down and
bottom-up synthesis approaches. In this chapter, various conventional andmore prac-
tical synthesis strategies, as well as their mechanism for diamond, fullerene, carbon
nanotubes, carbon nanofibers, graphene and graphene oxide with the extracts from
published investigations by numerous researchers, will be discussed.

Keywords Diamond · Fullerene · Carbon nanotubes · Carbon fiber · Graphene ·
Arc discharge · Chemical vapor deposition · Exfoliation

10.1 Introduction

Carbon-based materials like graphite, fullerene, diamond, carbon fiber, carbon
nanotube, graphene, activated carbon and soot particles have been well employed
for various applications due to their variety of structure and properties. For example,
graphite iswell-knownelectrodematerial andmoderator in nuclear reactors.Graphite
is mostly used in composites including in pencil, wind turbine generators, pouring
nozzles, thermocouples, crucibles, etc. [1]. In addition to graphite applications, it
is being used as a precursor for the synthesis of most emerging carbon materials;
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graphene. Next to graphite, diamond is one of thewell-known carbonmaterials for its
hardness, high thermal conductivity, insulating and transparent properties [2].Natural
as well as synthetic, both types of diamonds are available in the market. Diamond is
used inmany potential applications including, optics, electronics, medical, and radia-
tion detectors [3].Due to their hardness, diamonds have been used for cutting,making
wedding rings and other jewelry for a long time. Thus, the large-scale synthesis of
diamonds with the desired size and shape is important. Another exciting form of
carbon, fullerene, was discovered in 1985 at Rice University [4]. Fullerene invention
won the Chemistry Novel prize in 1996. Now fullerenes have been greatly consid-
ered well-known carbon allotropes, which had previously been limited to graphite,
diamond and amorphous carbon.

After the fullerene discovery, carbon nanotubes (CNTs) were first time identified
in 1991 by Iijima et al. [5]. They found this new form of carbon materials during
the synthesis of fullerene by an arc evaporation method. CNT is rolled from of
single-layer carbon atoms. This new form of carbon-based materials has opened
many opportunities for materials scientists in many fields. CNTs diameter may vary
up to a few nm, while the length may be achieved in tens of micometers [6]. The
most important properties of CNTs, which make them ultimate materials, are high
electron mobility, thermal conductivity and mechanical strength. CNTs conducting
properties highly depend on the way it constructs like armchair (metallic), zigzag
or chiral (semiconductor). The ultimate properties of CNTs have been employed in
many potential applications including supercapacitors, fuel cells, hydrogen energy
storage, electromagnetic interference, sensors, etc. [7]. Along with, CNTs research,
carbon nanofibers were also explored [8].

The major breakthrough in carbon-based materials was achieved by the iden-
tification of sp2 hybridized single layer of carbon atoms; graphene in 2004 by
Andrew Geim and Novoselov at Manchester University UK [9]. For this wonder
material, they have been awarded a Physics Nobel Prize in 2010. Graphene was
identified by a simple Scotch-tape method. This method produced very high-
quality graphene. Graphene’s unique properties like ultrahigh electronmobility, high
surface area (~2600 m2g−1), large aspect ratios, the extreme thermal conductivity
of ~5000 W/mK, excellent mechanical stiffness (Young’s modulus of 1 TPa) and
optical properties make it emerging materials for high-speed electronics, optical
devices, energy storage, chemical sensors, thermal management and electromagnetic
interference shielding applications [10–13]. Since graphene discovery, it has been
considered a wonder material among the scientific community. Thus, the synthesis
of graphene and its large-scale production is important. Many top-down including
exfoliation and bottom-up including chemical vapor deposition (CVD) approaches
are being used for the synthesis of graphene and other carbon materials [14–16]. In
this chapter, various synthesis mechanisms for graphite, diamond, CNTs, CNFs and
graphene are discussed.
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10.2 Synthesis of Graphite

Graphite is one of the most stable and natural crystalline forms of carbon. It is
composed of stacked layers of sp2-hybridized carbon atoms. These stacked layers
in graphite are weakly attached by weak Van der Waals force and π–π* interaction
which gives its low hardness and perfect cleavage. Natural graphite can be formed by
the reaction of carbon compounds in the rock during hydrothermal metamorphism.
A small amount of graphite can be found in metamorphic and igneous rocks. Most
of the graphite seen at earth’s surface was formed at convergent plate boundaries
where organic-rich limestones and shales were subjected to the pressure and heat of
regional metamorphism. This process produced tiny crystals and flakes of graphite.
However, synthetic graphite is required for industrial applications.

The first synthetic graphite was manufactured in the late 1800s by Edward
Goodrich Acheson. He discovered it accidentally while attempting the manufacture
of silicon carbide in an electric furnace. He used a combination of silica and amor-
phous carbon and found that silicon vaporized at about 4150 °C leaving the carbon
behind in graphitic carbon. This discovery of graphite was extremely valuable and
used for many potential applications. The commercial production of graphite was
started in 1897 when Acheson formed a company in 1899. The synthesized graphite
was found to have a purity of over 99% carbon and it is being used in manufac-
turing products where extremely purematerial is required. Currently, many precursor
materials are being used for synthetic graphite production. For example, in the USA,
high-quality graphite is prepared by using petroleum coke as the primary material.
Generally, the process of synthetic graphite manufacturing consists of powder prepa-
ration, shape-forming, baking and graphitization [17].Graphite is also synthesized by
the reaction of calcitewith hydrogen at different temperatures, pressure and time. The
synthetic graphite can be formed in various shapes and size, powders and granular
materials.

Since its discovery, graphite has been employed in many industrial applications.
The well-known application of graphite is in making pencils, which consist of a
mixture of clay and microcrystalline graphite [1]. High purity graphite is being used
for manufacturing carbon brushes for electrical motors. Composites of graphite (e.g.,
silver-graphite and copper-graphite) are used in wind turbine generators, railway
technology and tacho generators. Composites of alumina-carbon are used in ladles
for pouring nozzles, liquid steel and sliding gates. Thermocouples, heater tubes and
crucible for heating are made of composites of clay-graphite and silicon carbide-
graphite. Graphite is also used as electrode materials, e.g., in electric arc furnaces.
Sliding bearings are made from bronze-graphite composites. Graphite powder is
also used for making graphite foil which is used for manufacturing high tempera-
ture gaskets and packages. Lithium-ion and zinc-carbon batteries used high purity
graphite powder as cathodic material. Graphite is also used in nuclear reactors as a
moderator [18]. Not only industrial applications, now graphite is the main source for
the top-down synthesis of other carbon materials like CNTs, graphene, graphene
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oxide and graphene nanoribbons, which will be discussed later in this chapter
[19, 20].

10.3 Synthesis of Diamond

Diamond is a second naturally occurring allotrope of carbon. The name “Diamond” is
derived from the ancient Greek–adámas meaning “unbreakable”. In diamond, each
carbon atom is sp3-hybridized, arranged in a variation of the face-centered cubic
crystal structure. This arrangement of carbon atoms makes the diamond very hard
material. Diamond has been considered one of the best materials in the scientific
community as well as commercial level due to its remarkable properties including
electrically insulation, high thermal conductivity, lowest thermal expansion coeffi-
cient, chemical inertness and optical transparency. Most of the natural diamond’s
formation occurred at high pressure and temperature in the Earth’s mantle at depths
of 140–190 km Natural diamond is colorless but the color in a diamond can be
originated by a small number of defects or impurities such as boron and nitrogen.

Synthetic diamond has been much attracted since its establishment as a crys-
talline form of carbon. Initially, the diamond was synthesized using a high pres-
sure approach due to its highest density. The first synthesis of a diamond at high
pressure was developed by “General Electrics” in 1955 [21]. The Bulk amount of
diamonds can be synthesized in a thermodynamic stable region at high pressure
and high temperature (HPHT). In contrast, metastable thermodynamic regions at
low pressure and low-temperature methods can produce thin diamond coatings and
powders. To date, various methods have been successfully developed for diamond
synthesis including HPHT, chemical vapor deposition (CVD), thermal activation
of graphite, hydrothermal synthesis and the reduction of carbides (HSRC) [22, 23].
However, CVD is themost studiedmethod for diamond fabrication [24]. This section
summarizes diamonds synthesis by using various synthetic routes.

10.3.1 High Pressure and High Temperature (HPHT)

Byusing this technique, gem-purity large diamond crystals can be grownup to several
millimeters. This is a conventional and effective method used for diamond synthesis
for research aswell as commercial applications. TheHPHTmethod canproducehigh-
quality sheets shape large cubic diamonds,which aremostly used for the development
of cutting and grinding tools. Nevertheless, these diamonds have disadvantages such
as higher cost and size limit. Many companies and researchers are using a reaction
cell in HPHT conditions for the synthesis of various types of diamond crystals for
commercial applications. Although they used different designs for diamond growth,
typical pressure and temperatures used in HPHT are 5–7 GPa and 1200–1800 °C,
respectively [25]. Generally, in the growth process, diamond morphology changes
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Fig. 10.1 Polyhedral of a diamond (Reproduced with permissions [25]. Copyright 1988, American
Physical Society)

from cubic crystal with (100) dominated faces and cuboctahedral crystal with (100)
and (111) dominated faces, to octahedral crystals with (111) dominated crystal faces
with the increase of reaction temperature (Fig. 10.1).

The obtained results andmethod proved that theywere not good enough to synthe-
size diamonds in that early experiment. After that many researchers modified the
experimental conditions and reported good results using the HPHT method. In the
modified HPHT method, Pt-30% Rh/Pt-6% Rh thermocouple was used for temper-
ature monitoring. Room temperature pressure calibration was done by changing the
resistance of standard substances. But, high temperature pressure calibration was
performed by the graphite-diamond equilibrium. Liu and co-workers used carbonyl
iron powder as a catalyst for diamond crystallization in the range of 5–7GPa pressure
and 1200–1800 °C temperatures [26]. A high purity graphite rod was used as source
material. In this growthprocess, the purpose of using carbonyl ironpowderswas to see
the effect of nitrogen and oxygen on diamond growth. The diamond growth process
was performed on the mixture of graphite rod and catalyst powders (7:3, weight
ratio) for 4 h. After crystallization experiments, sample columns were first cracked.
The remaining impurities of graphite and catalysis were removed by dissolving the
products in a hot mixture of H2SO4 and HNO3. Diamond growth was first confirmed
byXRDmeasurements as shown in Fig. 10.2. From theXRDpattern, it is evident that
the sample has a cubic diamond structure which is composed of {111}, {220} and
{311} characteristic lines. In contrast, the SEM image showed an irregularly shaped
diamond crystal grown at 1600–1650 °C temperature without a clear {100} or {111}
crystal faces (Fig. 10.3a). Further, an increase in reaction time for 15 min, diamond
crystals of 0.5–0.9 mm with lamellar and strip shapes were formed (Fig. 10.3b, c).
With the further increase in temperature, it was found that {111} faces played a key
role in the crystallization of diamond. Diamond crystals obtained at 1700–1750 °C
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Fig. 10.2 XRD pattern of
diamond crystal grown at 6.5
GPa and 1600 °C
(Reproduced with
permissions [26]. Copyright
2011, American Chemical
Society)

Fig. 10.3 Representative
optical images of diamond
crystals grown at 6.5 GPa
pressure and three different
temperatures: a 1600 °C, b, c
1700 °C and d 1800 °C in
the presence of carbonyl iron
powders catalyst
(Reproduced with
permissions [26]. Copyright
2011, American Chemical
Society)

temperature showed {111} dominant faces and minor {100} faces (Fig. 10.3d). The
above experimental outcomes revealed that high temperature conditions are more
suitable for the stable growth of octahedron diamond crystals.

Diamond crystals were further synthesized from the sulfur-carbon (S–C) mixture
at high temperatures (1550–2000 °C) and pressures (6.3–7.5 GPa) [27]. Graphite
rod (99.99% pure), sulfur powder and cuboctahedral synthetic diamond crystals of
500 μm size as seed particles were taken as starting materials. For the nucleation
of diamond crystals, first, the graphite rod was placed into a capsule of 7.2 mm
diameter and 7 mm high. Then, diamond seed crystals and sulfur powder together
were placed into a cylindrical sample and then placed into the graphite capsule. Then,
diamond crystal growth was investigated at different temperatures and pressures
for the time of 3–40 h. Growth of diamond crystals in the above system exhibited
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significant dependency on temperature, pressure and nucleation time. For example,
there was no diamond growth on seed crystal was found at 6.3 GPa pressure and
1550 °C temperature. In contrast, metastable graphite and slight diamond growth on
the {100} and {111} faces of the seed crystals were obtained on higher temperatures
(1650 °C). Even at this temperature, there was no spontaneous diamond nucleation
was established. Spontaneous nucleated diamond crystals were formed at a high
temperature of 1750 °C (Fig. 10.4). The size of nucleated diamond crystals was
found to be ~50 μm with {111} dominant and {100} minor faces. The different
surface morphology of diamond crystals was depending on the surface indices of
seed crystals. For example, the flat growth of layers was found on {111} faces, while
{100} and {110} faces result in pyramidal relief and striation structure, respectively.
The above findings conclude that the seed crystals can form a stable octahedron
diamond crystal at high temperatures. Also, metastable graphite of ~100 μm size
was grown in the upper part of the capsule. Further experiment showed the regrown
metastable graphite and diamond growth layers at relatively low temperatures (1550
and 1600 °C) and higher pressure (7.0 GPa). There was no sign of spontaneous
nucleation of the diamond up to 40 h run. In contrast, intense diamond crystallization

Fig. 10.4 SEM image of an overall view of diamond seed crystals, a spontaneous crystals and
growth layers on the (111), b diamond seed crystal, c grown diamond layers on the (100) and
(110) surfaces, d crystalline diamond obtained from 6.3 GPa pressure and 1750 °C temperature for
a reaction time of 9 h (Reproduced with permissions [27]. Copyright 2009, American Chemical
Society)
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with more than 50% graphite to diamond conversion was found at the temperature
of 1700 °C. Obtained diamond crystals show size up to 500–700 μm which can be
further grown up to ~1 mm. Spontaneous nucleation of seed crystals and growth of
diamond crystals were established at higher temperatures (1750, 1800 and 1900 °C)
without any metastable graphite. Further, a rise in temperature up to 2000 °C gives
diamond crystals of 400 μm along with metastable graphite crystals.

In recentwork,Ge doped single-crystal diamondwas synthesized fromanMg-Ge-
C system at high pressure of 7.0 GPa and a high temperature of 1500–1900 °C [28].
The mixed powders of Mg0.9Ge0.1 and several seed crystals were used. This HPHT
systemproduced relatively large size diamond crystals of 2–3mmat 1900 °C. Further,
they also synthesized diamond crystals using a phosphorous-carbon systemat 6.3–7.5
GPa pressure and 1400–1850 °C temperature [29]. Hu et al. also developed high-
quality cubic diamond crystals for commercial purposes by using amultiseedmethod
[30]. The diamond crystals were synthesized using Fe–Ni alloy-carbon system under
HPHT conditions by a temperature gradient method. Graphite powder as a carbon
source and Fe–Ni alloy (64:36 by wt%) as catalyst/solvent were used, respectively.
The growth temperature and pressure were set to 1250–1350 °C and 5.5–5.7 GPa,
respectively. Pure and large size diamond crystals were successfully synthesized
using this HPHT. But this method is extremely expensive for bulk production.

10.3.2 Chemical Vapor Deposition

The chemical vapor deposition (CVD) method is one of the most common synthesis
techniques for all types of carbon-based materials. This method involves the decom-
position of hydrocarbon gases and then deposition onto a substrate. In this process,
a process gas, excitation source and a substrate on which sample will be deposited
are required. Various gases including hydrogen, oxygen, methane, carbon dioxide,
argon and nitrogen were used as process gas. To activate the chemical process,
various energy sources including microwave, radiofrequency, direct current, hot fila-
ment, laser-induced and chemical activation have been used. In most of the cases,
hydrogen and methane gas mixture were used for carbon-based materials. Methane
or other hydrocarbons act as a carbon source, while the role of atomic hydrogen or
oxygen is the most critical. The key role of hydrogen or oxygen in the CVD method
is to terminate the dangling carbon bonds on the surface of the developed crystalline
carbon materials. It is also reported that hydrogen atoms can cleave neutral hydro-
carbons and create reactive radicals such as CH2. The cleaved hydrocarbon can bond
with exposed carbon atoms to form tetrahedral sp3 (ta-C) or trigonal sp2 (a-C) bonded
carbon [31]. Another benefit of using hydrogen in diamond synthesis is to avoid the
growth of graphite because atomic hydrogen can etch sp2 bonded graphite much
faster than an sp3 bonded diamond.

For the first time, Eversole reported the gas-phase synthesis of diamond in 1958
[32]. This method uses a carbon-containing gas, which is passed to diamond seed
crystals at a pressure of a few torr and temperature of ~1000 °C. Interestingly, it
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was observed that the diamond was grown when source gas has a methyl group
(CH3–) like methane, ethane, methyl mercaptane, propane, methyl chloride and
acetone. However, the low growth rate of diamond crystals of ~1 Å/h was the major
issue for applications of diamond in real life. In contrast, hydrocarbon gases like
benzene, which do not havemethyl groups, could not grow diamonds by this method.
The systematic procedure of diamond synthesis from the CVD method is illustrated
in Fig. 10.5. A few years later, Angus et al. [33] also reported diamond synthesis
using the CVD method on diamond seeds crystals by using mixtures of hydrocar-
bons and hydrocarbon–hydrogen gases. So far, the diamond has been synthesized
using various modified CVD methods (Fig. 10.5b). It has been noted that diamond
growth in CVD depends on various parameters such as pre-treatment of the sample,
range of temperature, type of activation source and substrate selection, which play
an important role. Generally, molybdenum, tungsten carbide and silicon nitride are
being used as a substrate in CVD growth. In the CVD method, the temperature
distribution, internal energy and solubility clearly depend on the excitation source.
Based on the excitation sources, CVD processes can be divided into heated gas and
ionization plasma CVD techniques which can be further sub-divided into chemical,
electrical, or electromagnetically and thermal activation processes.

In the thermal activation CVD process, the gas phase is activated by hot filaments
or hot surfaces as shown in Fig. 10.6 [24]. In this approach, the first process gas flows
into the chamber and then hot filament was used for heating. The distance between
substrate and filament can vary from 5 to 20 mm and substrate temperature can be
achieved around 1000K [24, 34]. Eiichi and co-workers reported the diamond growth
by an advanced hot filament CVD method. In this method, the substrate tempera-
ture is independently controlled [35]. A mixture of CH4/H2 gas was used as a source
precursor and silicon as a substrate. The distance between substrate and filament was
maintained to 6–10 mm. Filament temperature was measured to be ~2050 ± 10 °C
by an optical pyrometer. The controlled pressure of 30 torr was applied by the MKS
pressure control system. The gas flow rate was maintained to ~600 sccm and the
ratio of methane to hydrogen gas was 1%. It was found that diamond growth mainly

(b) (a) 

Fig. 10.5 a Proposed mechanism of diamond growth processes by a CVD method, b diamond
CVD techniques (Reproduced with permissions [24]. Copyright 2011, Elsevier)
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(b) (a) 

Fig. 10.6 Schematic representation of a hot filament a and chemical activated b CVD process
(Reproduced with permissions [24]. Copyright 2011, Elsevier)

depends on substrate distance and its temperature. Maximum diamond growth was
observed in the range of 900–1000 °C temperature. However, with the increase of
substrate temperature, the growth rate was reduced. In the same year, Park et al.
produced a synthetic diamond film using a hot filament CVD method [36]. They
deposited diamond films on a polycrystalline titanium substrate. Direct radiation
from filament was used to heat the substrate. The flow of reactant gases (CH4 and
H2) into the reactor was controlled through a mass flowmeter. Their experimental
findings revealed that surface morphology played a significant role in the nucle-
ation and therefore in diamond film growth. The surface roughness increased the
nucleation density of diamond and reduced the incubation time required for nucle-
ation. As a result, the growth rate of individual diamond particles decreased. Further,
Kobayashi and co-workers established a relationship between growth rate and flow
time of source gases in the hot filament method [37]. They set the temperature of
filament and substrate to 850 °C and 2100 °C, respectively. The pressure was varied
from 5 to 106 kPa. In the pressure range of 5–50 kPa, all growth rates increased
very fast and get maximum at a residence time of 1.1 ms. After that growth rate
was abruptly deceased and saturated with residence time. Simultaneously, diamond
and nanostructured graphite thin films were grown by hot filament CVD [38]. By
changing the distance between substrate and filament, diamond and graphite growth
can be established. At a distance of 5 mm, the diamond was obtained, while graphite
deposition was observed at a distance of 15 mm.

Chemically activated growth of diamond using CVD on combustion flame was
the first time described by Hirose et al. [39]. The temperature of the combusting
flame can be reached in the range of 2000 to 3550 K. In chemically activated CVD
processes, the heating was done by an exothermic conversion of the source gases.
In general, acetylene and oxygen gases were applied for the combustion process.
Generally, the substrate temperature was used from 770 to 1470 K. Figure 10.6b
shows the typical setup for the combustion flame-based CVD method. The flame
was generated by a commercially available oxyacetylene torch, which is vertically
placed to the substrate. The whole process was controlled by changing the ratio of
C2H2/O2 with continuous monitoring of the substrate temperature by thermocouples
andfinally, diamondcrystalswere successfully depositedon the substrate. To increase
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the deposition area, multiple torches can be used. However, chemically induced
diamond deposition is not a significant method for industrial applications.

Similar to the thermally and chemically activated CVD process, diamond growth
also has been demonstrated by usingmixed-gas plasma [40, 41]. The common growth
process in microwave plasma CVD involves placing a substrate in a quartz tube
which is perpendicular to the waveguide. Microwave plasma can be generated by a
magnetron. The substrate can be fully exposed to the plasma by adjusting through a
plunger. Typical gas pressure was adjusted to ~40 torr and the gas flow rate was set to
10–100 sccm. The successful synthesis of high-quality diamonds using plasma CVD
was developed by Setaka and co-workers. However, thismethod has some limitations
like large-area deposition because the plasma was limited to the quartz tube size. In
this context, Hiroshi et al. developed a new type of microwave plasma deposition
system in which they used a high magnetic field with improved plasma density [42].
In another work, a high-quality diamondwas grown frommicrowave plasmaCVDby
using graphite as the carbon source [43]. In this work, carbon is etched from graphite
and placed inside the plasma. They used a conventional bell jar system for plasma
generation. The hydrogen flow was fixed around 300 sccm, growth time of 24 h
and microwave power was around 940 W. Silicon was used as a substrate. Diamond
was grown on four different hydrogen gas pressure of 80, 100, 120 and 140 torr. At
low pressure, the growth was not uniform. However, the best quality diamond was
obtained at 140 torr pressure. Further, it has also been reported that diamond can be
grown using a pre-treated mixed-gas-system of carbon dioxide and hydrogen [44].
However, diamond synthesized in the above methods is not feasible for industrial
applications in which large-area diamond films are required.

Scalable fabrication of large-area diamonds was considered as a key step for
industrial applications. Tiwari et al. reported that enhanced nucleation and diamond
growth by using a microwave plasma CVD method [45]. They have grown diamond
film on Pt/SiO2/Si substrate. In the deposition process, first, the substrate was cleaned
by ultrasonication in acetone and alcohol for 10 min. After that, adamantine was
seeded on the cleaned substrate by using ultrasonication. Diamond was grown using
1% CH4 in H2. The obtained thickness of the diamond film was about 900 nm for
the deposition time of 120 min. However, further, the improvement was required
for industrial production. Qi and co-workers reported a large area of single-crystal
diamond using the microwave plasma CVD method [46]. The bulk production of
diamond was achieved using 75 kW and 915 MHz microwave plasma-assisted CVD
system. A mixture of H2/CH4/N2 gases and pressures from 90 and 180 torr was used
with recorded growth rates from 10 to 30μm/h. A single-crystal diamond of 2.5 mm
thickness was obtained in a single deposition run (Fig. 10.7). By using this technique,
single-crystal diamonds production was achieved to 100 g/day and out of the 25%
of the diamond, crystals were observed to be colorless.
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Fig. 10.7 Single-crystal diamond obtained by the 915MHzmicrowave plasma CVD. The diamond
crystal’s weights were ranged from 0.2 to 1.15 carats (Reproduced with permissions [46]. Copyright
2014, American Chemical Society)

10.3.3 Other Methods

Thermally activated graphite also can be used for diamond growth at low pressures.
Palnichenko et al. reported diamond nucleation and growth using a short and intense
heat pulse [47]. The diamond growth was obtained on different substrates including
nickel, copper, aluminum, silicon and quartz. All the substrates were in the form of
10 cm2 area plates and placed at a distance of 5 ± 1 mm from the electrode tip. The
substrate temperature was maintained up to 10 K. As a result, well-shaped colorless
diamond particles of 10μmsizewere observed on the substrate as shown in Fig. 10.8.
The maximum size of diamond particles can be reached up to 100 μm. The average
density of diamond particles obtained by a single pulse was measured to be 10 ±
5 microparticles cm2 with homogenously distributed irrespective of the nature of
the substrate. The diamond formation was characterized using XRD, Raman and IR
spectroscopic techniques.

Another alternative route for diamond fabrication is hydrothermal synthesis.
Syzmanski and co-workers reported diamond synthesis by a hydrothermal process
at different supercritical-fluid systems [48]. Gogotsi et al. reported diamond crystals
synthesis using hydrothermal synthesis [22]. The sp3 bonded carbon was obtained
in the temperature range of 300–800 °C and pressure within 500 MPa under
hydrothermal conditions by selective leaching of silicon carbide (SiC). The formation
of diamond upon hydrothermal treatment of SiC has been reported elsewhere [49].
Following the above work, few researchers successfully diamond synthesis without
diamond seeds by hydrothermal process. Lou et al. synthesized diamond crystal up
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Fig. 10.8 SEM micrograph
of diamond microparticles
obtained by a dense
carbon-phase process
(Reproduced with
permissions [47]. Copyright
1999, Nature Publishing
Group)

to a size of 250 μm by reduction of CO2 and magnesium carbonate with metallic
supercritical- fluid sodium at a temperature of 440 °C [50].

For a long time, diamond has been popular for a variety of applications including,
medicals, optics, electronics and radiation detectors. Before the graphene research,
the diamond was known for the best thermal conductivity and chemical inertness
[2]. Single-crystal diamonds have applications in optical science [3]. It has been
well noted that pure diamond revealed the widest spectral transmission range among
all solid materials. Diamond windows have been used in the chemical industry
for spectroscopic quality control of molten plastics, caustic alkalies and so on. In
recent years, diamond coatings have been applied to many medical devices such
as temporomandibular joint prostheses, microelectromechanical systems and heart
valves [51]. Functionalized nanosized diamonds have been used for the immobi-
lization of chemotherapeutic agents. Many researchers have demonstrated imaging
of cell and tissues with nanodiamond particles. Another important application of
diamond is in the making of the radiation detectors. Due to its hardness, diamonds
have been used for cutting, making wedding rings and other jewelry for a long time.

10.4 Synthesis of Fullerene

The first fullerene molecule was discovered by Richard Smalley, Robert Curl, James
Heath, Sean O’Brien and Harold Kroto at Rice University in 1985 [4]. For this
new invention, they won the Chemistry Novel prize in 1996. This new form of
carbonwas found to have truncated icosahedron structure and called fullerene, named
Buckminsterfullerene, on the name of architect Buckminster Fuller who designed
geodesic domes in the 1960s. A fullerene molecule is made from sp2 hybridized
carbon atoms. Typically, a C60 fullerene molecule has icosahedral symmetry closed
cage structure with 20 hexagonal and 12 pentagonal rings. To date, fullerenes have
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beengreatly considered awell-knowncarbon allotrope. Since its discovery, fullerenes
have been significantly considered for fundamental research as well as for potential
technological applications, especially in materials science and electronics. In this
section, various synthetic routes for fullerene synthesis will be discussed.

Fullerenes can be found in nature like in flames but its first experimental identifi-
cation was observed in carbon vapor as shown in Fig. 10.9a. This unusual fullerene
molecule was detected from laser pulse vaporized carbon species obtained from the
surface of graphite, toward high-density helium flow [4]. After that vaporized carbon
species traveled toward the ionization region andC60 can be formed at particular clus-
tering conditions, which is about 40 times larger than the neighboring clusters. Time
of flight mass spectra confirmed the most of the fullerene molecules consist of C60

with fewC70 molecules (Fig. 10.9b). Figure 10.9c confirms the truncated icosahedral
structure of featured C60 fullerenemolecules. This flame technique can produce good
quality fullerene molecules. However, this method produced microscopic amounts
of fullerenes, which limits its commercialization.

Fig. 10.9 Carbon vapor irradiation setup for fullerene synthesis, b time of flight mass spectra and
c designed structure of C60 fullerene molecule (Reproduced with permissions [4]. Copyright 1985,
Nature Publishing Group)
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Since the first identification of fullerene by Kroto et al., W. Krätschmer and D.
R. Huffman (K–H) synthesized C60 fullerene using arc method. The arc was created
between graphite rods and burned under the helium atmosphere [52]. The carbon
radicals were produced by slow evaporation burned graphite rod. However, the rate
of clustering is slow in comparison with pulsed laser vaporization. Also, in this K-H
method, the cooling rate of condensing carbon vapor ismuch slower. But, C60 clusters
were successfully grown by adjusting the pressure of helium buffer gas around the
evaporating graphite rods. Later, it was investigated that a simple AC or DC arc can
produce C60 and the other fullerene molecules in sufficient quantity for commercial
applications [53]. The formation of carbon clusters in the size of the range of C60

was easily achieved by adjusting the pressure of helium buffer gas around graphite
rods. Following the above pioneering work, fullerene was synthesized using various
methods like soot, vapor-phase, arc discharge, etc.

10.4.1 Soot Method

After microscopic production by Kroto et al., C60 fullerenes growth was identified
in flames. Howard et al. reported the fullerene growth in premixed laminar flames
of benzene and oxygen with Ar diluent [54]. The flame was stabilized over a copper
burner of 70 mm diameter, which was used for delivering the feeding mixture. The
flames were produced under various conditions. Soot was deposited for 53–170 min
on quartz probe for each flame. Figure 10.10 shows the electron-mass spectrum of the
as-deposited soot materials. Based on the reported data, it is confirmed that the soot

Fig. 10.10 Electron-mass spectrum of a flame-generated soot particles (Reproduced with permis-
sions [54]. Copyright 1991, Nature Publishing Group)
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sample contained both C70 andC60 fullerenemolecules, whichwas further confirmed
by FTIR.

In most of the soot method, fullerene was extracted from bulk soot [55]. The first
time, Reilly and co-workers demonstrated the direct observation of fullerene growth
in flame-generated soot [56]. They used a real-timemeasurement experimental setup
for fullerene detection. They used a burner consisting of four 1.1 mm inner diameter
and 1.5mmouter diameter. A brass tube of 65mm longwas used for creating a torch-
like flame. The flow rate of pure acetylene without any oxygen or air was about to be
2.4 cm3/s through the burner tubes. Soot particleswere collected onto exhaust snorkel
of 4-inch diameter, which was placed over the flame. The sample tube was allowed
to cool down automatically. Based on their experimental findings, it was concluded
that the carbonization process of polycyclic aromatic hydrocarbons (PAHs) produced
fullerene in the particle phase. This method also produced individual soot particles
in low quantities. In summary, by this technique, we can track the composition of
fullerene molecules.

10.4.2 Chemical Vapor Deposition

Similar to diamond growth, fullerene formation was demonstrated by CVD using
gaseous species such as CH4 or C2H2. Lee et al. reported the fullerene formation
during the synthesis of diamond film using the CVD method [57]. The experiment
was performed in a conventional hot filament CVD chamber having an 8 cm tungsten
filament of 0.75 mm diameter. The current and filament temperature was maintained
about 50–55 A and ~2200 °C, respectively. The pressure of the chamber was main-
tained from 30–35 torr. Methane (99.8% pure) and H2 (99.99% pure) were used as
precursor gases with a controlled flow rate. Silicon wafer placed on flat stainless-
steel was used as a substrate and maintained at a temperature from 850 and 900 °C.
Fullerene deposition was obtained between 5 to 24 h. In each run, 10–75mg soot was
collected soot. Mass spectrum measurements confirmed the fullerene growth in the
hot filament CVD method. Further, it was found that changing the composition of
precursor gases (2–5% CH4, 95–98% H2), substrate temperature (400–750 °C) and
moving the substrate away from filament enhanced the growth of fullerene forma-
tion to 10–20 mg/h. There was a strong correlation between the diamond and the
fullerene growth process. Figure 10.11 shows the diamond and fullerene formation
by using the above process (solid arrow) and by other researchers with other routes
(thin arrow).

Some other researchers have also developed other CVD methods for fullerene
formation [58]. Fullerene was formed by low-temperature plasma CVD under atmo-
spheric pressure [59]. Low-temperature plasma was generated by applying rf voltage
under a constant flow of atmospheric pressure Ar or He gas. Benzene or naphthalene
gases were used as a source for deposition. At He (70 sccm) and 70–100 rf powers,
the gas plasma produced a tary deposit upon the flow of naphthalene or benzene
(0.01–1 sccm). The products from naphthalene (0.3–0.6 sccm) formed soot when Ar
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Fig. 10.11 Formation of diamond and fullerene by several processes using different starting
materials (Reproduced with permissions [57]. Copyright 1995, American Institute of Physics)

(13 sccm)was introduced intoHe (47 sccm) plasma. It was found that product appear-
ance depends on the plasma conditions. Fullerene formation was confirmed by UV–
visible spectra. Further, Wang et al. produced the Fe-included onion-like fullerenes
at a temperature of 1100 °C [60]. The diameter of the as-synthesized fullerenes was
in the range of 15–40 nm which was confirmed through microscopic techniques.
In this method, fullerene growth mainly depends on the substrate temperature and
carbon source.

10.4.3 Arc Discharge

Since its development in the 1990s, the arc discharge method has been considered an
effective and popular method for large-scale synthesis of fullerene [61, 62]. In this
method, graphite electrodes are vaporized in a low pressure helium atmosphere. Arc
is generated by passing the current through electrodes and fullerene containing soot
was formed. Kratschmer’s group in 1990 developed the first arc discharge system
which is the most popular technique for fullerene synthesis till now [52]. After that
several authors demonstrated fullerene formation using the arc discharge method. It
was found that fullerene formation strongly depends on the operation parameters of
carbon plasma-like very high temperature and inert atmosphere at reduced pressure.
The typical setup of the arc discharge method is mainly composed of a stainless-steel
double-walled cylindrical chamber [63]. Both graphitic electrodes were mounted
horizontally near the bottom of the reaction chamber. But anode is mounted in a
controlled guiding mechanical system for maintaining a constant distance between
both electrodes during arc discharge. For soot formation, the chamber is evacuated
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until a pressure of 10–3 to 10–4 torr. The chamber was filled with an Ar or He gases
at the pressure 50–200 torr at 30 ± 2 °C during the process. From the obtained
soot, C60 fullerene was extracted with toluene and by vacuum evaporation. Fullerene
formation was confirmed by XRD measurements. The yield of fullerene synthesis
was up to 6–8% which was higher than previous reports. The best yield of fullerene
synthesis (~8%) was achieved at an arc current of 150 A and 100 torr of chamber
pressure.

It has been noted that synthesis yield depends on the thermal and photochem-
ical stability of C60; however, both have not been defined well. The experimentally
low decomposition temperature of 1000 K was determined for C60 in a vacuum
[64]. Theoretical results showed the fullerene stability up to a temperature of 1800 K
[65]. In general, C60 has been considered a relatively stablemolecule. However, it can
degrade under a variety of conditions [66]. It was demonstrated that fullerene decom-
position significantly depends on the intensity of emitted light energy [67, 68]. The
arc gap also influenced fullerene yields. The maximum yield was reported for large
electrode gaps (2–4 mm) [69, 70]. However, in contrast, in some studies maximum
yield was reported at a smaller electrode gap [71]. This contrast in experimental
findings is considered due to large experimental errors [72].

The first experimentally investigation of the arc gap on the fullerene formation is
reported by Andrzej et al. [53]. They optimized the experimental parameters such as
input power, pressure, buffer gas and AC or DC feedingmode. The electrode gap was
set to 0.5 mm with 4 mm for DC arcing. The whole system is controlled by an opto-
electronic system of 0.2 mm accuracy. Initially, the electrodes were positioned close
together. In contrast to the conventional method of striking anode against cathode,
high-voltage glowdischargewas used for arc discharge intimation.Aheliumpressure
of 13.3 kPa was used for tests. The quantity of fullerene resulting from soot obtained
from electrode arcing was tested by conventional spectrophotometric techniques.
Based on their experimental observation, a significant distinction was found at a
smaller electrode gap, while larger gap distance gave a significant difference in the
fullerene formation. The fullerene content decreaseswith the increase of the electrode
gap. Further, they also found that not only the electrode gap but also complex vapor-
ization andmass transport phenomena greatly influenced the fullerene yield. Further,
fullerene synthesis was also demonstrated from DC discharge between carbon elec-
trodes in the mixture of Ar and ferrocene gas [73]. Another alternative, the solar
energy-based approach was also developed for fullerene synthesis [74].

Fullerene has received much attention for a wide range of applications due to its
interesting features includingnonlinear optical properties and superconductivity [75].
Fullerenes have potential applications in 2D/3D metal–organic frameworks, solar
energy conversion, liquid crystals materials, thermoresponsive materials and C60-
polymer hybrid materials, etc. [76–80]. Fullerene’s unique shape and hydrophobic
nature make it very effective for medical applications including sensitizers for
photodynamic therapy and as photoactive molecular devices [81, 82].
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10.5 Synthesis of Carbon Nanotubes

Carbon nanotubes (CNTs) have received first recognition in 1991, but their history
goes long back. Radushkevich and Lukyanovich [83] first observed and described
CNTs in 1952, which was later confirmed by Oberlin et al. in 1976 [84]. However,
CNTs received significant research interest after its discovery in 1991 by Iijima et al.
[5]. MWCNTs were obtained, while they were developing a new arc evaporation
method for the synthesis of C60 fullerene. After two years later, Iijima et al. [85]
described the growth mechanism of SWCNTs. CNTs have a tubular structure with
a diameter as small as 1 nm and length can be varied from few nm to microns. The
construction principle of SWNTs using a graphene sheet along the chiral vector C is
shown in Fig. 10.12 [6]. CNT’s structure can be zigzag, armchair, or chiral, totally
depending on the chiral vector during construction, which determines its most of the
properties. For example, Dresselhaus et al. investigated the electrical properties of
CNTs constructed from different chiral vectors [86]. Thus, CNTs properties depend
on its structure like chiral angle, length, diameter, etc., which can give them unique
properties. Due to the exceptional properties of CNTs, they have been considered
novel nanomaterials for a wide range of applications.

Fig. 10.12 The principle of CNTs construction using a graphene sheet (Reproduced with
permissions [6]. Copyright 2011, The Royal Society of Chemistry)
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For fundamental study and commercialization of CNTs in the field of material
science, various synthesis methods such as CVD, laser ablation and arc discharge
have been developed. CNTs were first prepared using arc discharge techniques and
then followed by a low-temperature CVD technique (<800 °C). Later, other non-
standard methods including liquid pyrolysis and organic approach were also devel-
oped. Irrespective of techniques, CNTs can be synthesized in the form of single-wall
carbon nanotubes (SWNTs), double-wall carbon nanotubes or multi-wall carbon
nanotubes depending on the experimental parameters.

10.5.1 Arc Discharge

Since its first identification by Iijima et al., CNTs growth have been developed by
many other groups. The arc discharge technique produced CNTs at higher tempera-
tures (>1700 °C). Arc discharge technique produced CNTs have shown some struc-
tural defects. Figure 10.13 showed a typical experimental setup of the arc discharge
technique [87]. The arc chamber is composed of two electrodes (anode and cathode)
which aremountedvertically or horizontally. The cathode is filledwith a pure graphite
rod and the anode is filled with powdered carbon precursor along with the catalyst.
High temperature is achieved from created arc discharge. SWNTs can be produced
by using graphite rods doped with metal catalysts like Fe and Co as the anode and
pure graphite as a cathode [5].

Fig. 10.13 Schematic of an arc discharge for CNTs (Reproduced with permissions [87]. Copyright
2014, Elsevier)
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The synthesis of SWNTs was further reported by carbon evaporation with cobalt
[6]. Nickel has been considered the most widely used catalyst for SWNTs synthesis.
The catalytic role of the growth of carbon nanoclusters was investigated using dc
arc discharge. Nickel-filled anode improves the growth of SWNTs [88]. SWNT’s
growth was further investigated with platinum-group metals (Ru, Rh, Pd, Ir, Pt)
and it was found that only Rh, Pd and Pt were found to have catalytic activity for
growing SWNTs of 1.3–1.7 nm diameters [89]. In another study, it was found that
Mo improved the yield of soot [90]. However, the purity of SWNTs in collected soot
was not changed significantly. The mass production of SWNTs can be achieved by
using a bimetallic Ni-Y catalyst under He ambient gas [91].

Similar to SWNTs, double-walled nanotubes (DWNTs) were synthesized by
the arc discharge method. However, DWNTs synthesis from the arc discharge
method is much more complicated in comparison with SWNTs production. Many
research groups reported DWNTs synthesis using the arc discharge method [92–
94]. Hutchison et al. reported the production of DWNTs from the arc discharge
technique by using a mixture of argon and hydrogen [94]. The obtained mate-
rials were confirmed as bundles of DWNTs along with SWNTs as a by-product.
Further, high-quality DWNTs was synthesized from high temperature pulsed arc
discharge method [95]. Later, Huang et al. reported the synthesis of super bundles
of DWNTs in a hydrogen-free atmosphere [96]. Liu et al. synthesized selective
DWNTs by hydrogen arc discharge technique with nickel formate dihydrate catalyst
[97]. Graphite powders or MWNTs/carbon nanofibers were used as a carbon source
(Fig. 10.14). The HRTEM results confirmed around 80% DWNTs and the rest of
were SWNTs and ends of DWNTs were uncapped. In this work, it was also found
that the growth of DWNTs mainly depended on the cobalt catalyst [98].

Arc discharge methods were also used for the production of MWNTs. The
morphology of MWNTs depends on the synthesis conditions. Some groups have
reported the use of methane or hydrogen atmosphere for MWNTs growth. Wang
et al. reported MWNTs synthesis using DC arc discharge under the helium and
methane atmosphere [99]. Thin and long MWNTs were obtained by using methane

Fig. 10.14 SEM images of the as-synthesized DWNTs (Reproduced with permissions [97].
Copyright 2007, American Chemical Society)
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gas pressure of 50 torr and an arc current of 20 A for the anode. Further, long and fine
MWNTs can be prepared under a hydrogen gas atmosphere. But a big difference was
found with the use of He andmethane gas atmosphere. It was found that methane and
helium gases atmosphere give more carbon smoke in comparison with the hydrogen
gas atmosphere [23]. In another work, it was found that DC arc discharge in the
hydrogen gas atmosphere can produce long MWNTs and graphene sheets as a by-
product [24]. MWNTswere also synthesized at various pressures ranged from 150 to
500 torr under acetone, ethanol and hexane atmosphere. It was demonstrated that the
production of MWNTs was at least two times higher in ethanol, acetone and hexane
atmospheres than that of MWNTs produced in the He atmosphere.

Further, the growth of MWNTs was also reported from the arc discharge deposi-
tion process with the use of a pulsed laser. Parkansky and co-workers used a single-
pulse arc for the synthesis of MWNTs in ambient air [100]. MWNTs were deposited
vertically oriented on Ni/glass substrate with a length of up to 3 mm and a diameter
of about 10 nm with a single 0.2 ms pulse. Tsai et al. also demonstrated MWNTs
with an inner and outer diameter of 5 and 17 mm, respectively by using single-pulse
discharge in the air [101]. Moreover, there are several reports on MWNTs depo-
sition by using a gas atmosphere with arc discharge in liquid solutions. Sornsuwit
et al. reported the synthesis of high-quality SWNTs andMWNTs in H3VO4 aqueous
solution from pure graphite electrodes through arc-discharge [102]. HRTEM anal-
ysis revealed the high-quality well-ordered MWNTs without any defects. The outer
diameter of MWNTs was 10–20 nm and interlayer distance of ~ 0.35 nm between
graphene layers [103]. Similarly, the synthesis of MWNTs in high yield can be
obtained by arc discharge in liquid nitrogen [104]. Arc discharge in water can also
produce high yield MWNTs production [105].

10.5.2 Laser Ablation

Laser ablation methods have been successfully developed for the production of
SWNTs and MWNTs. For the first time, the Smalley group demonstrated the princi-
ples and mechanisms of CNTs growth by laser ablation technique [106]. Generally,
Nd: YAG and CO2 lasers are being used in the laser ablation method. In this method,
the graphite target is vaporized by a laser beam at high temperatures under an inert
atmosphere. The laser generates carbon species, which are swept by the flowing inert
gas from the high temperature zone to a conical water-cooled copper collector. The
reaction temperature is an important parameter in CNTs production quality and yield.
It was reported that the size and average diameter of CNTs can be tuned by tuning
the laser power, growth temperature, catalyst composition, type of gases and its
pressure [107–109]. Maser and co-workers demonstrated the high-density SWNTs
obtained from a simple CO2 laser system [110]. Also, it was found that laser power,
the wavelength of laser and pulse duration can play a key role in the properties of
the final product [111]. For example, the average diameter of SWNTs increased with
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the increase of CO2 laser power from 500 to 800 W. However, the excitation wave-
length growthmechanism of CNTs has not been clearly understood. Chen et al. [112]
reported that SWNTs diameter can be controlled by varying the furnace temperature,
catalytic metals and flow rate. Higher furnace temperature produced SWNTs with
larger diameters. It was found that the use of a Ni–Y alloy catalyst increases the
SWNT diameter, whereas an Rh-Pd catalyst reduces it [113].

For commercial purposes, polystyrene-MWNTs thin films deposited on alumina
substrates by PLD techniques with Nd: YAG laser ablation [114]. High-quality
DWNTs andSWNTswere produced froma combinedmethod of steady arc discharge
and the laser-furnace methods [115, 116]. Impurities such as catalytic metals and
amorphous carbon present in CNTs can be removed by purification processes based
on chemicals such as H2O2 or oxidation by hot air (400–500 °C) [117]. Both arc
discharge and laser ablation techniques can give high-quality growth of CNTs,
but these are expensive techniques due to high power equipment. Also, the CNTs
production yield is low in both methods.

10.5.3 Chemical Vapor Deposition

To date, the CVD technique has been established as one of the best methods for CNTs
production. In this method, CNTs are formed by the decomposition of the carbon
precursor on the catalytic substrate surface. Thermal or plasma CVD is considered
as the standard method for CNTs synthesis. Also, other CVD techniques such as
hot filament (HFCVD), water-assisted CVD, oxygen assisted CVD, radiofrequency
CVD (RF-CVD) or microwave plasma (MPECVD) have been developed [118–121].
CVD techniques are very economical for industrial production of quite pure CNTs
in comparison with laser ablation. In this technique, first, a catalyst is prepared and
then the actual synthesis of nanotube was performed. The catalyst role in the CVD
method is to improve the decomposition of the carbon precursor. When the catalytic
substrate is heated up in a carbon-rich gaseous environment, CNTs were produced
at 500 to 1000 °C. The advantage of CVD techniques over arc discharge or laser
ablation is that it can produce CNTs in many forms like straight or coiled, films and
vertically aligned structures.

The systematic of catalytic CVD reactor system for CNTs synthesis is shown in
Fig. 10.15a [122]. Amixture of xylene-ferrocene was used as a carbon source into an
inert gas medium. The reaction starts with the decomposition of the ferrocene-xylene
mixtures at atmospheric pressure and temperatures of 625–775 °C. As obtained
nanotubes were highly pure (Fig. 10.15b, c) with a maximum length of ~50 μm.
Many substrates including Ni, Si, Cu, Cu/Ti/Si, SiO2, etc. were used CNTs growth
[123]. CNTs growth was also investigated on the mesoporous silica substrate as it
can play as a template for the initial nanotube growth [124, 125].

In the CVD technique, the selection of catalysts is a very important parameter
for CNTs growth. The effect of catalytic nanoparticle composition and morphology
on CNTs growth in the CVD method has been demonstrated [126]. Also, CNTs
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Fig. 10.15 a A representative scheme for the production ofMWNTs using catalytic CVD reactor. b
as grown SEM image of well-aligned MWNTs arrays and c higher magnified SEM image obtained
from catalytic CVD method (Reproduced with permissions [122]. Copyright 2002, American
Chemical Society)

growthwas reported fromcatalysts derived fromCo/Fe/Al layered double hydroxides
(LDHs) [127]. It was found that Co content in precursors showed a significant effect
on CNTs growth. CNTs with a smaller diameter and fewer defects were formed at
higher Co content. In another work, Flahaut et al. investigated the catalytic effect on
the preparation of CNTs [128]. The results showed a significant effect of catalyst
composition on CNTs growth. Jiang et al. reported the in situ growth of CNTs on
the pre-treated graphite electrode in the presence of Ni(NO3)2 catalyst via CCVD
method. For a shorter growing time, MWNTs revealed the length of 200–1000 nm
with the inner and outer diameter of 20 and 80 nm, respectively [129].

Not only catalysis, but carbon source also is a key parameter for CNTs growth.
High-quality DWNTs can be obtained by decomposition of benzene at 900 °C in
the presence of Fe-Mo/Al2O3 catalyst [130]. As-prepared DWNTs bundles were
found without any amorphous carbon on the surface, with fewer structural defects.
Further, the well-aligned MWNTs were obtained via pyrolysis of C2H2 on a large
area of Ni deposited Si/SiO2 substrate using the thermal CVD technique at 900 °C
[131]. The studies showed the crucial effect of NH3 pre-treatment on the surface
morphology metal catalyst and therefore to get the vertical aligned CNTs. Highly
aligned CNTs can be obtained at a higher density of Ni particles due to the effect
of steric hindrance between neighboring CNTs. It was found that the degree of
CNTs crystallization increased with the increase of NH3 pre-treatment time. The
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detail of the direct growth of aligned CNTs, substrate effect, growth mechanism and
advantages and shortcomings of CVD have been reviewed [132]. Some researchers
used Nickel oxide-silica binary aerogels as the catalyst for the growth of MWNTs
by decomposition of methane at 680 °C for 120 min. The diameters of DWNTs were
observed to be 40–60 nm [133]. Also, CNTs can be grown using two carbon sources
of ethanol/Co and benzene/Fe systems [134].

CNTs were further grown by plasma-enhanced CVD (PECVD). The use of the
PECVDmethod for SWCNTs has beenwell summarized byLim et al. [135]. PECVD
method gives high-quality CNTs. Forest like MWNTs deposited on a solid substrate
is shown in Fig. 10.16. PECVD methods can be used in many different modes:
direct current (DC-PECVD), radio frequency (RF-PECVD), diffusion (DPECVD)
or microwave (MWPECVD). Like thermal CVD, CNTs synthesis using DPECVD
has been demonstrated on the various substrate (i.e., Ag, Pt, W, Ta, Ir and NiV) at
low-temperature (480–612 °C) [136]. Vollebregt et al. [137] reported self-aligned
vertically grown CNTs and CNFs by using Pd as catalyst material. Samples were
fabricated using a different catalyst (Pd, Ni, Fe, Co) and at different temperatures
such as 450–640 °C for atmospheric pressure chemical vapor deposition (APCVD)
and 450–500 °C for PECVD. APCVD produced highly dense self-aligned CNTs
when Pd acts as the catalyst, while the random growth of CNTs was found in the
Co and Fe catalyst. Further, they also concluded that CNTs grown by PECVD in
the presence of Pd catalyst, produced large bundles of tubes, while large-diameter
CNFs were formed in the presence of Ni catalyst. Biocompatible supported CNTs
electrodes also have been developed using the CVD method by using ferritin as the
catalyst. This type of CNTs electrodes might be useful in neuro-implants [138].

Since its discovery in 1991, CNTs have stimulated intensive research in the area of
nanotechnology due to their outstanding electronic, thermal and mechanical, prop-
erties. Their implementation in various potential applications forms a great research
effort and is now in progress. CNTs application has been demonstrated in scanning

Fig. 10.16 SEM image of
forest type MWNTs
produced from PECVD at
atmospheric pressure
(Reproduced with
permissions [135]. Copyright
2010, Springer)
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tunneling microscopy tips. CNTs have also been demonstrated for solar cells, fuel
cells, biosensor, hydrogen storage media and carbon–metal composites for strong
and lightweight structures applications. In summary, low cost, rapid and readily
scalable route for carbon nanotubes fabrication have been developed for all future
applications.

10.6 Synthesis of Carbon Nanofibers

The first synthesis of carbon filaments was reported in the 1970s, but the significant
research was carried along with the discovery of CNTs in 1991. These carbon fila-
ments with the cylindrical structure are known to be as carbon fibers (CFs). They can
be nanofibers or microfibers, depends on their diameter. Carbon nanofibers may have
different microstructural configurations like platelet CNFs as shown in Fig. 10.17
[139]. Herringbone CNFs are formed when graphite sheets are inclined from the
fiber axis with some angle. The next structure is tubular CNFs, wherein graphite
sheets and fiber axis are parallel to each other. Based on their morphology, CFs can
be produced in various shapes including planar, twisted, branched, coiled, spiral,
helical and so on. Mainly chemical vapor deposition and electrospinning method
have been adapted for significant synthesis of carbon fibers. However, other methods
including template-assisted, hot-filament assisted sputtering and microwave-based
synthesis have also been reported. In this section, the synthesis and mechanism of
carbon fibers using the CVD and electrospinning method will be discussed.

10.6.1 Chemical Vapor Deposition

Again, the CVD technique has been considered as one of the most versatile
approaches for carbon nanofibers synthesis. CVD techniques have been developed
for scalable and reproducible synthesis of CNFs, in which gaseous precursors such as
C2H2 andCH4 are used on ametal catalyst support at elevated temperature. Typically,

Fig. 10.17 Schematic representations of platelet (a), herringbone (b) and tubular (c) CNFs to the
filament axis (Reproduced with permissions [139]. Copyright 1995, American Chemical Society)
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the use of catalysts, the chemical composition of precursor and reaction parameters
define the final structure of the product. In this method, hydrocarbon decomposi-
tion of carbon precursor provides a continuous supply of carbon to produced well-
organized tubular filaments of sp2-carbon in hexagonal form.However, this technique
is expensive and also produces short fibers [140].

Catalytic thermal CVD (CTCVD) was mostly used for the fast growth of helical
carbon fibers. In the early 1990s, Motojima et al. [141] first time used the CTCVD
method for the synthesis of regular coiled shape carbon filaments. The CFs were
synthesized by pyrolysis of acetylene on Ni-catalyzed substrate at a temperature of
350–750 °C. The obtained CFs were found to be composed of pair-coiled fibers.
These fibers are elastic and can extend up to three times the original length of the
coil. Figure 10.18 showed the perpendicular grown carbon coils on the graphitic
substrate [142]. Catalyst Ni grain material was found on the tip of all carbon coils,
which is shown by arrows. The diameter of the regular carbon coils was ~3 to 6 μm
with the coil pitch of 0.5–0.7 μm without any gap. For the reaction time of 2-h, coil
length was increased up to 5–8 mm with a growth rate of 7 μm/s. The high yield of
carbon nanocoils was obtained by using acetylene as a carbon source and iron-coated
indium tin oxide as catalytic material [143]. Similar to CNTs synthesis, CF synthesis
has been developed by the decomposition of acetylene, methane, ethylene, etc. over
various transition metals catalysts including Fe, Co, Ni, etc. in the temperature range
of 500–1000 °C [144, 145].

Further, carbon nanocoils (CNC) were produced by the low-temperature decom-
position of acetylene [131]. The obtained CNCs exhibited a yield of 11 g in each
run and formed a nanospring. Minea et al. [146] prepared carbon nanofibers at room
temperature by plasma-enhancedCVD.They used lowpressure, high-density plasma
technique and grown the fibers on a thick Ni film deposited upon a silicon substrate.
The CNFs were scratched from the substrate by a diamond tip. The obtained CNFs

Fig. 10.18 SEM image of
vertically grown carbon coils
on the substrate (Reproduced
with permissions [142].
Copyright 1999, American
Institute of Physics)
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were amorphous and have a short length of ~50 nm at a deposition rate of 2 nm/min.
Carbon nanofibers are also synthesized without any catalyst by microwave pyrolysis
CVD using N2 as a carrier gas and CH4 as a source at a temperature of 1050–1150 °C
[147]. Carbon fibers are radially grown on the porous Al2O3 substrate. The prepared
CFs were uniform in diameter in the same region. Simultaneously, it was also noted
that the ends of fiber were hemispheroidal and some cauliflower-like fiber ends can
also be observed in the as-prepared samples.

10.6.2 Electrospinning

Commercial synthesis of carbon fibers was obtained from the electrospinning
method. The first patent on electrospinning was published by Cooley in 1902. After
that, researchers produced carbon fibers through electrospinning [148]. However, this
method got much attention in the last two decades and is optimized for carbon fibers
fabrication. This technique is based on the processing of polymeric solutions ormelts
by using an electrically force fluid system [149]. In the electrospinning process, there
are many controlling parameters such as solution properties and processing param-
eters as well as on surrounding temperature and humidity conditions [150]. The
structure of CNFs strongly depends on the nature of the polymeric precursor. The
CNFs fabrication has been reported using various polymeric precursor including
polyacrylonitrile (PAN), pitch, cellulose, poly (amic acid) (PAA), polybenzimida-
zole (PBI), polyimide (PI), poly (p-xylenetetrahydrothiophenium chloride) (PXTC)
and poly (vinyl alcohol) (PVA) [151, 152]. High-quality CNFs production can be
obtained by selecting the right organic polymers, followed by thermal annealing
under inert conditions.

Kong et al. [153] successfully synthesized CNFs by electrospinning of PAN/DMF
polymer solution and then stabilization and carbonization. The stabilization was
carried out in the air between temperature 200 to 300°C. The carbonization process
was performed at 2800°C under an inert atmosphere (Fig. 10.19) [154–157]. CNFs

Fig. 10.19 a Typical SEM micrograph of electrospun PAN nanofibers obtained from 8% PAN
solution in DMF, b CNFs produced from a two-step heating: 200 °C for 30 min and 750 °C for
1 h and c CNFs produced from a multi-step progressive heating: 5 °C/min from 30 to 230 °C,
1 °C/min from 230 to 270 °C, then 5 °C/min from 270 to 800 °C (Reproduced with permissions
[154]. Copyright 2009, Elsevier)
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can be also prepared with the addition of inorganic species including MWNTs, Ag,
TiO2 and etc. Ra and co-workers first time demonstrated the CNFs preparation by
embedding MWNTs in the PAN matrix. Further, electrospun Ag/PAN nanofibers
were obtained at the Ag content of 0-5 wt% [158]. Recently, Inagaki et al. reviewed
the systematic process for CNF fabrication [151]. Preparation and applications of
CNFs prepared by electrospinning have also been reviewed elsewhere [152].

Indeed, carbon nanofibers are currently available on a large scale for a large
number of potential applications like field emission sources, catalyst substrate,
hydrogen storage, chemical sensors, electrode material, scanning probe tip, nano-
electronics and mechanical reinforcements.

10.7 Synthesis of Graphene

Since its discovery in 2004, graphene is being considered as a wonder material for
a wide range of potential applications. The unique properties of graphene make
it emerging materials for high-speed electronics, optical devices, energy storage,
chemical sensors, thermal management and electromagnetic interference shielding
applications [11, 12, 159–166]. Optimization of graphene synthesis using various
top-down and bottom approach has led to an extraordinary amount of interest in both
industry and academics. To date, graphene and graphene oxide has been synthesized
from various top-down and bottom-up approaches. In this section, different methods
will be discussed for the synthesis of graphene, including the recent developments.

10.7.1 Top-Down Approach

In this approach, graphite is being used as starting materials. Graphite is constructed
from sp2 hybridized carbon atoms arranged in honeycomb lattice structure with an
interlayer distance of 3.35 Å along the c-axis. In graphite, all carbon layers bonded
together with a weak Van der Waals force. Therefore, graphite can easily exfoliate
by either chemical or mechanical exfoliation methods.

10.7.1.1 Mechanical Exfoliation of Graphite

The first single layer of graphene was identified using micromechanical cleavage
of highly oriented pyrolytic graphite (HOPG) in 2004 [159]. This method involved
an adhesive tape to peel off the graphene layers from HOPG. The peel-off process
was repeated many times to achieve a single layer of graphene on tape, followed by
transfer on a cleaned substrate [167]. Figure 10.20a showed the optical images of
graphene and few-layer graphene deposited on a 300 nm SiO2 substrate. The thick
layer graphene appeared yellow. Upon reduction of the graphene layer thickness, it
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Fig. 10.20 Optical image of exfoliated graphene obtained from the Scotch-tape method. (Repro-
duced with permissions [168]. Copyright 2010, Elsevier)

showed bluishly. The darker side showed a few layers graphene, while lighter shades
showing the single-layer graphene [168]. This micromechanical cleavage process
is known as the “Scotch-tape method”, which facilitated the initial experimental
measurements on the exceptional electronic, thermal conductivity, mechanical and
optical properties of graphene. These unique properties generated a huge interest in
graphene in almost all branches of science. This Scotch-tape can produce single-
layer graphene up to 1 mm with a minimal defect. The produced graphene is good
in quality but bulk production is not possible. Therefore, for real-life applications,
other synthesis methods are required which can have produced graphene on large
scale.

10.7.1.2 Solution-Based Exfoliation of Graphite

Solution exfoliation of graphite has emerged with great interest because it can give
producible results on a scalable large scale. Similar to the direct dispersion of carbon
nanotubes, many authors directly dispersed the graphite into various organic solvents
and then sonicated for exfoliation into a single-layer or multilayer graphene sheets.
Coleman et al. obtained good quality graphene sheets by dispersion and sonication
of graphite into the NMP solvent [169]. Graphene dispersion was further achieved
by 3 h ultrasonication of HOPG in DMF [170]. Various polar and no-polar solvents
were explored for graphene synthesis [171]. Bulk production can be achieved by this
solution exfoliation method but the production yield is very low. A further attempt
was made to ultrasonication-free exfoliation by intercalating graphite with alkaline
metals [172]. A high yield of graphene up to 2 mg/mL was obtained by spontaneous
exfoliation of HOPG in chlorosulfonic acid [173]. Graphene synthesis in aqueous
was also explored by using various surfactants [174, 175]. The analysis confirmed the
synthesis of single or few-layer graphene up to a size of a few mm. However, exfo-
liated graphene sheets are less stable in water in comparison with organic solvents.
Graphene synthesis using the solvent exfoliation method depends on many factors
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like the size of graphite flakes, sonication time and centrifugation conditions and the
solvents. From an industrial point of view, this method is appealing but this solution-
based exfoliation approach has several drawbacks. Most of the exfoliated flakes
possess a multilayer structure, which gives low yield and large size and thickness
heterogeneity among the exfoliated flakes. Moreover, long-time sonication reduces
the size of the graphene sheets, resulted in small size graphene sheets, which can
significantly affect the properties of graphene sheets. Also, surfactant exfoliated
graphene sheets can alter the resulting electronic properties of graphene.

10.7.1.3 Electrochemical Exfoliation of Graphite

After the development of the solution-based exfoliation method, there is a contin-
uous demand for new approaches for the bulk production of high-quality graphene.
Then, the researchers developed an electrochemical method for graphene synthesis.
The purpose of electrochemical methods is to intercalate the ions within graphite
and improve the yield of graphene production [176]. The use of intercalating agents
provides an attractive way to exfoliate graphite while retaining the basic properties
of graphene. This method involves the application of anodic (oxidation) or cathodic
(reduction) potentials in an electrolytes solution, graphitic material as working elec-
trode, reference electrode (SCE, Ag/AgCl, etc.) and a counter (usually Pt) electrodes.
The most common and widely studied intercalated ions are Li+, Ni2+, F−, SO4

2−,
NO3−, Cl−, etc. [177]. Several electrolytes and electrochemical conditions were
applied to achieve the bulk exfoliation of graphene [178, 179]. It was found that
applied potential and electrolytes strongly affected the quality of graphene. Few
studies showed that the use of high voltages promotes the formation of oxygen
groups on graphene sheets surface and also damages the structure. Graphite interca-
lation in aqueous SDS surfactant solution explored to drive the exfoliation process.
The resulted graphene sheets were found to have a size of 500 and 1 nm thick-
ness was successfully obtained [180]. To avoid the formation of oxygen functional-
ities on the graphene surface, the cathodic reduction/intercalation method was also
attempted [181]. Recently, Adriano and co-workers prepared graphene sheets from
commercially available graphite foil as shown in Fig. 10.21a [182]. Three different
electrolytes; H2SO4, LiClO4 and Na2SO4 were tested with a common exfoliation
procedure. Optical images of graphite foil before exfoliation and after applying the
+10 V potential for prolonged time are shown in Fig. 10.21b, c, respectively. As
obtained graphene dispersion in NMP is shown in Fig. 10.21d. Figures 10.21e, f
show the exfoliation process at the time of zero, 5 min and 20 min, respectively.
As obtained exfoliated graphene was easily dispersible and formed stable dispersion
in DMF at the concentration of 1 mg/mL. It was noticed that out of three different
electrolytes used in the exfoliation process, either H2SO4 or Na2SO4 have shown
more vigorous and efficient exfoliation.

In comparison with micromechanical cleavage and solvent exfoliation, graphene
synthesis using electrochemical exfoliation is more environmentally friendly and
generally fast. However, this method also not providing homogenous graphene
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Fig. 10.21 a Two electrode electrochemical exfoliation set up, b photo of graphite foil before exfo-
liation, c graphite foil after exfoliation process, d graphene dispersion in DMF solution (1 mg/ml).
e, f illustrating the exfoliation process at a time (e) zero, (f) after 5 min and (g) after 20 min
(Reproduced with permissions [182]. Copyright 2015, Wiley–VCH)

sheets. Also, the use of anodic conditions for ions intercalation causes unwanted
oxygen-containing functional groups, which disrupt the sp2-hybridized carbon
structure.

10.7.1.4 Chemical Exfoliation and Reduction

In the chemical exfoliation method, chemical species intercalated within graphitic
layers and oxidized the graphitic layers. A little energy in the form of sonication
or shaking results as single-layer graphene oxide. Brodie (1859) reported the first
successful oxidation of graphite by using potassium chlorate as an oxidizing agent in
the presence of nitric acid (HNO3) [183]. He attempted to establish an exact formula
of graphite by producing highly oxidized graphite. He found that the overall mass of
graphite flakes was increased upon oxidization due to the presence of hydrogen and
oxygen on graphene sheets. This method was further improved by adding chlorate
into fuming during the reaction [184]. Further, concentrated sulphuric acid was also
added into the mixture to increase oxidization.
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Later on, Hummers andOffeman developed another effective oxidationmethod in
which graphite flakes react with the mixture of potassium permanganate (KMnO4)
and sodium nitrate in concentrated sulfuric acid (H2SO4) with improved experi-
mental safety [19]. This method is considered the primary route for GO preparation
and became more popular for the synthesis of graphene. Some researchers have
developed slightly modified versions of Hummer’s method to avoid the poisonous
nitrous gas, which evolves during the reaction in the presence of sodium nitrate in the
mixture. After complete oxidation, the interlayer distance between graphitic layers
increased to 6 Å or more which is due to the presence of oxygen-containing func-
tional groups on its surface and edges. This increased interlayer distance in graphite
oxide weakens the force between layers, can produce a separate layer upon soni-
cation [185]. The separated layers are called graphene oxide (GO). By using this
method, a bulk amount of GO can be produced, which is required for commercial
applications [186]. Graphene oxide can be dispersed easily in aqueous as well as in
organic solvents. But, the main problem with GO is its electrical insulator nature,
which is due to the presence of oxygen-containing functional groups on its surface
and edges. A lot of research has been performed on GO and its composite mate-
rials [187–192]. FESEM images of large size GO prepared by modified Hummer’s
method is shown in Fig. 10.22a. Figure 10.22b showed its size distribution [188].
More than 50 μm graphene sheets can be synthesized. Size selections of GO sheets
strongly depend on the lateral size of graphite flakes and separation conditions. The
thickness of as-prepared GO sheets was measured to be ~1 nm (Fig. 10.22c) [189].
The increased thickness of GO sheets is because of oxygen functional groups on the
graphene basal plane and edges.

The first serious mechanism of GO synthesis was investigated by Tour and co-
workers [193]. In this study, they explained the step-by-step synthesis of graphite into
GO as shown in Fig. 10.23. The first step is showing the intercalation of sulphuric
acid into graphite, the second step is to covert the intercalated graphite into oxidized
graphite and the last step is to exfoliate the graphite oxide into graphene oxide (GO).
The study also showed the single-layer GO yield is depending on the oxidation
degree of GO sheets. For example, Kim et al. obtained the three different sizes of
GO sheets by using different sizes of graphite flakes with variable oxidation time and
studied their size-dependent liquid crystalline properties [194]. Production of single-
layer GO can be improved by using pre-oxidized graphite flakes. Single-layer GO
yield also improved by exfoliation of graphite in presence of tetrabutylammonium
ions. However, the process is very time taking [195]. A low-temperature approach
was also established for the large production of single-layer GO [196]. Most of the
established chemical exfoliation methods used hazardous chemicals, which release
poisonous gases. By using theK2FeO4 oxidation agent, a 100%yield ofGO synthesis
was achieved within a short reaction time of 1 h [197]. Similar to other chemical
exfoliation methods, this method also releases harmful gases.

The chemically exfoliated graphene oxide has oxygen-containing functional
groups on its surfaces. The present functional groups can help for the dispersion
of other inorganic nanomaterials and further functionalization of GO for composites
and other potential applications. However, graphene oxide sheets are insulating in
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nature due to oxygen-containing functional groups. To make it conductive, which is
required for most of the graphene applications, we need to remove or reduce these
oxygens containing functional groups from the GO surface. There are mainly three
common approaches that are being used for such reduction of GO, namely, thermal,
chemical and electrochemical reduction methods.

In a thermally reduced approach, GO is annealed at high temperature (1000–
2000 °C) under inert conditions. In this method, gaseous species are generated within
the interlayers of the GO structures, thin-film/powder and consequently removal of
oxygen functional groups and simultaneous graphitization at elevated temperatures,
resulting in highly conducting products [198, 199]. Many researchers reported that
thermally reduced graphene can improve its electrical and thermal conductivity, but
reduced graphene oxide sheets have shown some defects. For example, Xin et al.
produced free-standing graphene paper via thermal reduction and graphitization at
a very high temperature ~2200 °C [200]. As prepared free-standing graphene paper
showed high thermal conductivity of 1238 W/mK. This high temperature thermal
annealing approach is straight forward. Thermally reduced graphene oxide has a great
potential be used for composite materials, EMI shielding, electrochemical devices

Fig. 10.22 a Representative SEM micrograph of large-area GO, b size distribution of GO sheets
and c AFM image of GO sheet (Reproduced with permissions [188, 189]. Copyright 2014, 2015,
Elsevier)
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Fig. 10.23 Mechanism of graphite exfoliation into single-layer GO (Reproduced with permissions
[193]. Copyright 2014, American Chemical Society)

and conductive ink and paint. But this method has some drawbacks of long-time
heating and annealing at high temperature.

Electrochemical reduction of GO is another approach, which can be performed at
ambient conditions.Many authors have obtained the pristine graphene-like properties
from electrochemically reduced GO [201–203]. Recently, Ambrosi et al. studied the
reduction of GO using the electrochemical method, which gives precise control of
C/O ratio between 3 to 10 [204]. Thermal and electrochemical reduction methods
can reduce GO significantly, however, a chemical reduction is the most widely used
method for GO reduction. A chemical reaction/reduction is performed on aqueous
GO solution, powder and thin films to remove most of the functional groups. The
most studied chemical reducing agent is hydrazine, which was already tested in past
in 1937 by Hofmann and König [205]. Beceril et al. investigated GO film reduction
by immersing it into a hot aqueous hydrazine solution. In other studies, hydrazine
vapor is used for GO reduction even at room temperature. Another reducing agent,
NaBH4 was also explored, but all these methods give rigid and fragile rGO films with
low electrical conductivity [208]. Experimental findings revealed that both hydrazine
and NaBH4 are not effective in reducing agents for GO powder or films. Also, the
hydrazine reduction mechanism is not clearly understood.
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Further, amore significant routewas developed by using halogen hydrohalic acids,
which can give highly conductive rGO films [209]. The reduced GO film maintains
its flexibility and mechanical strength. Recently, many other reducing agents such
as lithium aluminum hydride, hydroxylamine, eco-friendly L-ascorbic acid, saccha-
rides, have been developed for GO reduction [210–213]. Other ways of reducing like
a camera flash, UV light and laser scribes were also used for the reduction of GO
films [214–216]. It was noticed that chemical reduction procedures can give suffi-
cient electrical, thermal and mechanical properties, however, overall performance is
poor compare to pristine graphene. This poor performance of chemically reduced
GO is due to incomplete removal of functional groups and the creation of defects
on the graphene sheet during the reduction reaction. However, with this poor perfor-
mance of reduced GO, the chemical reduction method is most widely used for bulk
synthesis of reduced GO, which has shown good results in energy storage, sensor
and composite applications. For example, Kumar et al. reported the much-improved
electrical conductivity of ~3000 S/m and ultrahigh in-plane thermal conductivity of
~19.5 W/mK from low-temperature HI reduced composite film [162].

10.7.1.5 Unzipping Carbon Nanotubes

Unzipping of CNTs can produce graphene. This approach mainly produced different
kinds of graphene, called graphene nanoribbons (GNRs) [217, 218]. The typical
width of the GNRs is≤50 nmwith an aspect ratio of more than 10. Dai et al. reported
the GNRs synthesis using partially embedded multiwalled CNTs (MWCNTs) in
a PMMA film under an Ar plasma treatment for the various duration [217]. As-
prepared GNRs exhibit smooth edges with a narrow width of 10–20 nm (Fig. 10.24).
The yield of GNRs is nearly 100% in this method. The resulting graphene nanorib-
bons contained oxygen functional groups, which can be removed either chemically
or thermal annealing method. In contrast to the above work, Tour and co-workers
proposed amore scalable approach to open theMWCNTs longitudinally by oxidizing
them in presence of sulphuric acid and potassium permanganate [219]. The resulted
GNRs exhibited functional groups on their surface. To reduce the defects and vacan-
cies on the GNRs surface, H3PO4 was introduced in the oxidation process [218].
Heating of MWNTs in presence of potassium resulted in lower defects on GNRs
surface.

Various other methods have been proposed for GNRs synthesis including metal
catalyst assisted cutting, thermal exfoliation step, lithium insertion and mechan-
ical sonication in organic solvents [221–225]. Li et al. demonstrated effective inter-
calation of MWCNTs for the scalable synthesis of GNRs [225]. GNRs have also
synthesized the intercalation ofLi-NH3 intoMWCNTs and thermal exfoliation [226].
Another interesting approach for GNRs synthesis is catalytic nano-cutting of CNTs
[224]. This nano-cutting approach can produce partial or complete unzipping of
carbon nanotubes. This technique has some advantages like smooth and sharp edges
GNRs with specific orientations can be obtained on large scale. However, the major
problem of this technique is that it does not ensure complete cutting in all MWCNTs,
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Fig. 10.24 Schematic for GNRs synthesis from unzipping of CNTs with representative TEM
images (Reproduced with permissions [221]. Copyright 2010, Wiley–VCH)

which limits its applicability. Synthesis of GNRs without any chemical or catalyst
contamination was reported using high DC pulses by using MWCNTs as starting
materials [227].

10.7.2 Bottom-Up Methods

This method is mainly based on small molecules to combine by a catalytic process to
produce a high-quality graphene sheet [228]. In the first half of the twentieth century,
Scholl and Clar pioneered the synthesis of polycyclic aromatic hydrocarbons. Clar
et al. (in 1958) firstly synthesized a small graphene sheet with 42 carbon atoms [229].
After that, a series of polycyclic aromatic hydrocarbonswith amuch larger sp2 system
was proposed [230]. In this route, first branched oligophenylenes were prepared
by Diels–Alder reactions and then subjected to oxidative cyclo-dehydrogenation to
give planar graphene disks. Under specific conditions, carbon-containing molecules
combined into an sp2-hybridized carbon network. Further, an attempt of graphene
synthesis was made using chemical vapor deposition (CVD) and epitaxial growth
[231]. These early efforts on the synthesis of monolayer graphene were followed by
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a large number of scientists [232]. In this section, synthesis aspects of the bottom-up
methods for graphene, specifically, CVD and epitaxial growth approach will discuss.

10.7.2.1 Chemical Vapor Deposition

CVD is a well-established technique for controlled synthesis of various carbon nano-
materials including CNTs, fibers, fullerenes. This method involves the decomposi-
tion of carbon sources on transition metal catalyst deposited wafer at high temper-
ature. The decomposed carbon atoms are deposited and then assembled at high
temperatures. Large-area epitaxial graphene films (up to a size of few mm) can be
obtained. CVD grown graphene was first reported in 2008 and 2009, using Ni and
Cu substrates, which was followed by grown over several metal substrates such as
iridium, ruthenium, platinum [233–237]. This technique demonstrated the synthesis
of single-crystal graphene domains currently up to dimensions of the size in centime-
ters [238]. The graphene quality was comparable to the Scotch off method produced
graphene.

Graphene grown on nickel and coppermetal substrates ismore popular in compar-
ison with other metal substrates [231, 239, 240]. For graphene growth on a nickel
substrate, first polycrystalline Ni films were annealed in Ar/H2 atmosphere at 900–
1000 °C to increase grain size and then the H2/CH4 gas mixture was exposed to the
substrate. This step involves the decomposition precursor gas and then decomposed
carbon atoms dissolve into the Ni film to form a solid solution. Finally, the samples
were allowed to cool down in Ar gas. Figure 10.25a illustrates the growth process of
graphene on the Ni surface [241]. Ni surface would be an excellent lattice-matched
substrate for graphene growth because Ni (111) has a lattice similar to the densely
packed hexagonal lattice of graphene (Fig. 10.25b) and they also have similar lattice
constants [242]. As-prepared graphene on Ni substrate can be transferred to the
required substrate for further study and applications. A low-magnified TEM image
of graphene with step-shaped edges is shown in Fig. 10.25c. The inset figure showed
the SAED pattern of graphene along the [001] direction. Graphene can main its
original structure after transfer on another substrate as shown in Fig. 10.25d. Lewis
et al. have also grown graphene on patterned Ni films for desired geometries at
specific positions [243]. Wafer-scale graphene synthesis on evaporated Ni films was
also demonstrated [239]. It was also demonstrated that the feasibility of transferring
graphene on a flexible and transparent substrate has been employed for large-scale
flexible transparent electronics applications (Fig. 10.25f) [244]. Tuning of experi-
mental conditions such as deposition temperature, pressure, type and quality of metal
substrates and cooling time can improve the graphene growth up to mm scale [245,
246].

Despite good progress in the growth of CVD graphene, there are still many chal-
lenges to be overcome for their practical applications. For example, removal of metal
catalyst and transfer onto a different arbitrary surface. Thus, the research has been
focused on the transfer process of CVD grown graphene on different surfaces. The
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Fig. 10.25 a Schematic of graphene formation on Ni substrate, b Schematic diagram of graphene
atoms (smaller atoms) on Ni (111) lattice (larger atoms), c Low magnification TEM image of
graphene edges, d Optical image of graphene transferred from the Ni surface to SiO2/Si substrate, e
Full-wafer-scale deposition of graphene layers on polycrystalline Ni and f Flexible and transparent
graphene films on the PDMS substrates (Reproduced with permissions [247]. Copyright 2013,
American Chemical Society)

transfer of CVD graphene onto arbitrary substrate was obtained using polymer-
supported metal etching/transfer or mechanical exfoliation with special functional-
ized polymers [248]. However, the transfer process usually causes some wrinkles or
structural damages, which degrade the quality of graphene [249]. One of the most
common transfer methods is the etching of metal substrate while the graphene is
supported by an inert polymer such as PMMA or PDMS [247, 250]. So far, several
other substrates like PVC, PTFE, PC, CN/CA, PET, paper and cotton cloth have been
investigated and applied via a hot/cold lamination process [251]. After complete
etching of the metal substrate, the graphene is transferred to the desired substrate
followed by the removal of the supporting inert polymer. However, this procedure is
very sensitive because it can induce mechanical stress to cause structural damages
and alterations. This process also gives some contamination by metallic impurities,
which can dramatically alter the electronic properties of the transferred graphene
[252, 253]. For example, nickel and copper metal substrates dissolved by etching
agents such as FeCl3, Fe(NO3)3 contaminate the transferred graphene with a signif-
icant amount of Fe impurities [254, 255]. Moreover, the incomplete etching process
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also can contaminate CVD graphene with an extremely large number of redox-
active residuals, such as Cu or Ni metals. Recently, PMMA-graphene was separated
from the growth substrates without etching by inducing O2 bubble generation with
a mixture of NH4OH, H2O2 and H2O [256]. Further, Gao et al. developed a face-
to-face transfer of wafer-scale graphene films [257]. This novel approach was based
on nascent gas bubbles and capillary bridges that provide high-quality graphene
with fewer defects. Several improved techniques were developed such as plasma-
enhanced chemical vapor deposition (PECVD) and microwave-assisted CVD for
the high-quality fabrication of graphene [258]. Therefore, CVD has been consid-
ered as the most versatile and commercially viable technique for the manufacturing
of continuous graphene films to meet the industrial demand for electronic-grade
materials.

10.7.2.2 Epitaxial Growth

Similar to CVD, the epitaxial technique is also a substrate-based technique in which
single-layer graphene is used to grow on a single-crystal carbide (SiC) by vacuum
graphitization. The thermal treatment of SiC under vacuum results in the subli-
mation of the silicon atoms while the carbon-enriched surface rearranges to form
graphitic layers (epitaxial graphene). Precise control of the sublimation may lead
to the formation of very thin graphitic layers over the entire surface of SiC wafers,
with an occasional monolayer of graphene. Recently, a wafer-scale coating of mono-
layer graphene was achieved by annealing at a higher temperature (1650 °C) under
the Ar atmosphere rather than 1150 °C under UHV conditions [259]. The obtained
wafer-scale monolayered graphene exhibited carrier mobility of 2000 cm2/Vs at
room temperature for a carrier density of ~1013 cm2

. This value is only five times
lesser than the mechanically exfoliated graphene. Some other researchers have also
reported the mechanisms and kinetics of epitaxial graphene growth on SiC [260,
261]. A schematic of the synthesis process is shown in Fig. 10.26 [262]. Epitaxial
growth on SiC can be achieved by an additional supply of carbon without subliming

Fig. 10.26 Epitaxial
graphene growth on silicon
carbide wafer via
sublimation of silicon atoms
(Reproduced with
permissions [262]. Copyright
2016, Wiley–VCH)
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Si. This additional supply of carbonmay be given by hydrocarbon gas decomposition
or by sublimation of solid carbon source inmolecular beam epitaxy [263]. Apart from
SiC, other carbides have been exploited early on to fabricate supported graphene.
Successful preparation of graphenemonolayers has been achieved on the (100), (111)
and (410) surfaces of titanium and the (111) faces of tantalum by decomposition of
ethylene gas [264]. Interestingly the morphology of the TiC faces determines the
graphene structure. In particular, monolayer graphene nanoribbons were obtained
on the 0.886 nm-wide terraces of TiC(410), while large monolayer crystallites were
formed on terrace-free TiC (111). It should be noted that SiC is a wide bandgap
semiconductor and no transfer of graphene is required on other substrates, which
allows very easy fabrication of the devices. Therefore, epitaxially grown graphene
is very promising for the mainstream electronics industry. However, this technique
has some limitations for large-scale fabrication due to the high cost of single-crystal
SiC wafers. Another challenge in this technique is the uniform growth of large-area
single-layer graphene.

Graphene has been considered as one of the most promising materials for a wide
range of applications not only because of its excellent electronic, optical, thermal and
mechanical properties but also due to its easy synthesis and handling for technology
transfer. The unique properties of graphene make it useful in most areas including
environment, sensors, solar cells, supercapacitor, batteries, fuel cell and catalysis
[265–267]. Chemical exfoliation and reduction procedure can produce a single layer
on a large scale which is mainly required for most industrial applications. Never-
theless, CVD produced graphene has shown promising results for electronic/device
applications.

Conclusion
This chapter gives clear indications on the synthesis of various carbon materials
Several synthesis methods like soot, arc discharge, chemical vapor deposition,
mechanical and chemical exfoliation, electrospinning and epitaxial growth have been
highlighted. The growth mechanism for all carbon materials has been discussed.
Among carbon-based materials, graphene is a newly invented material with ultimate
properties. Therefore, high-quality graphene synthesis by various routes in important
for different kinds of applications.
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