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Foreword

Ovarian cancer is often referred to as a silent killer. In the Western world, it is the
most lethal gynecological disease, and the fifth most common cancer-related death in
women. One reason for the high mortality is a lack of specific symptoms in
postmenopausal women and accurate diagnostic testing for detection of the disease
at early stages as well as the inevitable development of treatment resistance.
Although the 5-year death rate has slightly decreased in the last decade, the overall
prognosis and quality of life has not improved substantially. That said, there are
major advances being made in ovarian cancer research that have improved the
understanding of the disease and might ultimately lead to the development of new
therapeutic options. Since the discovery of ovarian cancer, a long road of research
has been explored. Ovarian carcinoma is actually no longer considered to be one
disease but a spectrum of pathologies with subtype-specific molecular and clinical
features. In this book edited by my friend Khalid El Bairi from Morocco, Chap. 1
presents the etiology of tubo-ovarian carcinoma and the involvement of several
tissues of origin. A better knowledge of the molecular mechanisms and genomic
profiles of this cancer has revealed a very complex disease. Chapters 2 and 3 offer a
comprehensive summary of the molecular hallmarks of ovarian carcinoma. It is
understood that a reduction in the death rate will inevitably be achieved through a
better screening of patients. The search for biomarkers for early detection has been
relatively unsuccessful in the past. In this regard, major progress has recently been
made, with deeper knowledge in the proteomics and genetics of ovarian carcinoma.
The most promising biomarkers and guiding treatment options are presented in
Chap. 4. In addition, Chap. 5 presents how genomic profiling of ovarian carcinoma
could translate into better patient management, in using newer types of circulating
biomarkers to measure treatment response. Other novel biomarkers for early diag-
nosis of tubo-ovarian carcinoma are presented in Chap. 6. Finally, Chap. 7 presents
how recent innovative technologies applied to the development of precision medi-
cine, guided by tumor phenotype, can be optimized for the identification of action-
able molecular targets. Recent advances in the field continue to push the boundaries
of our understanding of this disease and help the evolution of treatments to manage
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ovarian cancer so that it is no longer the silent killer we know today. I hope that this
book will be valuable in offering up-to-date knowledge on this topic for a broad
range of ovarian cancer specialists worldwide.

McGill University Health Centre
Montréal, QC, Canada

Cecile Le Page, PhD
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Origins and Pathology of Epithelial Ovarian
Cancer: A Brief Overview 1
Sara Nasser, Khalid El Bairi, Dario Trapani, and Boubacar Efared

Abstract

Since the emergence of data about the natural history of ovarian cancer
(OC) approximately 150 years ago, tremendous advances have been made in
the area of the molecular pathology of this aggressive cancer. However, OC
remains one of the most lethal gynecological cancers worldwide, with no ade-
quate screening and prevention program available yet to avoid diagnosis in
advanced stages. Despite OC still being the silent killer, it has seen dynamic
shifts in its classification, staging, and theories regarding its origins in the last
years. In fact, the term OC has experienced a shift to include primary peritoneal
and tubal cancer, as these tumors behave identically. The prognosis and treatment
of OC are dependent on multiple factors, including tumor biology and extent of
tumor spread, which has recently been reclassified in a new FIGO staging system.
In the literature throughout the years, attempts to identify the origins of these
heterogeneous tumor entities have better guided our diagnostic strategies and
therapeutic arsenal. This chapter aims to give a general overview of the epidemi-
ology, the natural history as well as the pathology of epithelial OC.
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1.1 Introduction

Epithelial ovarian cancer (OC) is a leading cause of morbidity, mortality, and
disability for women worldwide (Sung et al. 2021). With the advances of clinical
and molecular knowledge, OC has been dissected in a heterogeneous group of
malignancies, characterized by reproducible specific prognostic and predictive
features (Haunschild and Tewari 2021; Govindarajan et al. 2020; Lheureux et al.
2019a). To date, OC is viewed more as a spectrum of diseases, and not a single tumor
entity, with different trajectories of ontogenesis, pathogenesis, and carcinogenesis
(Shih et al. 2021; Wu et al. 2019). The identification of diversified drivers of the
tumorigenesis in the different pathology subtypes of OC has enhanced the
pathology-molecular biology continuum and facilitated the clinical implementation
of therapeutic interventions per histology and molecular subtypes (Lheureux et al.
2019b). This chapter will briefly address ovarian carcinogenesis, portraying a
pathology landscape with key elements of molecular pathogenesis. Useful elements
in the clarification of the pathology-molecular biology continuum will be
highlighted, and key points on the pathology diagnosis and staging will be presented
to outline the essential knowledge on this aggressive women’s cancer.

1.2 Epidemiology of Ovarian Cancer

OC is one of the most commonly diagnosed gynecological cancers, associated with
the highest mortality rates among women (Bray et al. 2018). For instance, although it
has a lower prevalence than breast cancer, it is three times more lethal (Bray et al.
2018; Yoneda et al. 2012; Momenimovahed et al. 2019). OC has been named “The
Silent Killer,” for the indolent initial progression and the onset of non-specific
symptoms only in advanced stages of the disease. Despite significant advances
that have been made over the last decades in the diagnosis and treatment of OC,
more than 75% of patients still presents in advanced stages (Bray et al. 2018; Bereck
et al. 2015, 2018) due to lack of evidence-based and effective screening
interventions, along with the delayed onset of symptoms and initial asymptomatic
tumor growth (Ahmed et al. 2012; Wu et al. 2018). For the vague associated
symptoms, initial OC can be misdiagnosed with other conditions, including gastro-
intestinal and other pelvic disorders (Ahmed et al. 2012; Wu et al. 2018). OC is
highly diverse in its epidemiological and geographical distribution. Approximately,
one-third of OC cases are registered from European countries (Bray et al. 2018;
Momenimovahed et al. 2019). Within Europe, OC has a North-to-South distribution
gradient with the highest incidence rates in the Scandinavian Region (i.e., Denmark,
Finland, and Sweden) and the lowest rates in southern Europe (i.e., Portugal, Greece,
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Spain, Italy) (Sehouli and Fotopoulou 2006). This gradient in the incidence rates is
also reflected in the worldwide distribution of OC, as it has a higher incidence in
high-income countries and a lower incidence in low- and middle-income countries.
According to the International Agency for the Research on Cancer (IARC) global
cancer registry (GLOBOCAN), OC has an age-standardized incidence rate (ASR) of
8.5 per 100,000 women per year in countries with a very high Human development
index (HDI) as compared to an ASR of almost half (4.7 per 100,000 women per
year) in countries with a low HDI (Bray et al. 2018; Momenimovahed et al. 2019),
based on 2018 estimates. The differences between high and low HDI countries have
remained unchanged since 1973, as evaluated by Zhang et al. (2019a). In general,
age-adjusted incidence rates for cancer has been increasing in the last decades, as a
result of lifestyle changes and enhanced healthcare, with more longevous
populations (Bray et al. 2018); however, still, the highest rates for OC are observed
in high HDI countries, especially Central Europe, and Central and South America
(Zhang et al. 2019a). These differences in the incidence are most likely attributable
to the various risk factors associated with OC. It can be argued that factors such as
obesity rates, smoking, use of the contraceptive pill, number of pregnancies,
nutritional, and lifestyle factors do vary significantly between high HDI and low
HDI countries and hence may influence the incidence rates of OC in these regions
(Bray et al. 2018). Furthermore, in low HDI countries, quality registration of health
conditions may be only partially implemented, and the lower incidence rates may
mirror low population coverage of cancer registration and overall under diagnosis of
cancer (Bray et al. 2018). Hence, this could be a confounding factor in representing
the true incidence rates in these regions. In contrast to the above, the mortality rate
for OC is inversely distributed to the incidence rates, with higher mortality rates in
low HDI compared to high HDI countries. According to GLOBOCAN 2018 data,
184,799 deaths were registered due to OC in 2018, of which only one-third in
countries at very-high HDI (Bray et al. 2018). This represents 4.4% of the mortality
rate of all cancers in women (Bray et al. 2018; Momenimovahed et al. 2019). The
highest mortality rates are seen in Asia (specifically in India) (Bray et al. 2018). The
global disparities in cancer mortality can be attributed to the lack of resilient health
systems and sufficient healthcare resources to deliver quality, timely, accessible,
available, and affordable cancer care (Bray et al. 2018). For OC, the disparities in
cancer mortality are mostly related to the delayed access to surgical treatments and to
affordable chemotherapy (Bray et al. 2018). OC remains one of the deadly gyneco-
logical cancers worldwide until to date. Mortality varies greatly according to geo-
graphical distribution and mirrors the environmental, lifestyle, health system,
socioeconomic, and reproductive risk factors around the world.

1.3 Origins of Ovarian Cancer

The exact origin of OC has remained controversial throughout the 150-year known
natural history of the disease. The earliest theory was the development from the
ovarian surface epithelium (OSE) (Desai et al. 2014). In the earliest study by Cheng
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et al., mouse ovarian surface epithelial cells (MOSEC) with ectopic expression of
HOXA9, HOXA10 and HOXA11 genes were injected into mice (Cheng et al. 2005).
This resulted in the development of serous, endometrioid, and mucinous cancers,
supporting the theory that OC can indeed originate from malignant transformation of
OSE. Additionally, the OSE can also be vulnerable to malignant transformation due
to repeated injury (such as the following ovulation or due to hormonal factors) (Eisen
and Weber 1998). Ovarian inclusion can arise following ovulation and the invagi-
nation of the OSE into the ovarian stroma. The OSE was then postulated to undergo
malignant transformation (Zheng and Fadare 2012). This is further supported by
observational studies that suggest that factors suppressing ovulation (such as preg-
nancy, birth-control pill or breast-feeding) can reduce the occurrence of OC (Eisen
and Weber 1998; Zheng and Fadare 2012; Purdie et al. 2003), whereas a higher
number of lifetime ovulations increase the risk of OC (Zheng and Fadare 2012;
Purdie et al. 2003; Risch 1998). However, the OSE theory was then reshaped in 1999
by Dubeau et al. (Dubeau 1999). The author argued that epithelial OCs do not
resemble mesothelial tumors, though OSE cells are identical to the mesothelial cells
lining the peritoneum. Moreover, the authors highlighted that precancerous lesions
are most often not found in the OSE of ovarian inclusion cysts but in the adjacent
organs. In 2001, Piek et al. then firstly proposed the fallopian tube as the origin from
which epithelial OCs arise and implant on the peritoneum and the ovarian surface
(Piek et al. 2001). Consequently, over the last decades, we have seen increasing
evidence in the literature that, in fact, epithelial OCs are not a single entity and
indeed develop from distinct binary pathways. These pathways result in type I
tumors (low-grade serous cancers, low-grade endometrioid, clear cell, mucinous
and Brenner tumors) and type II tumors (high-grade serous cancers) (Desai et al.
2014; Bowtell 2010). High-grade serous OC (HGSOC) typically shows TP53
mutations and frequently occurs in the distal end of the fallopian tubes (Shih et al.
2021). This has been shown in prophylactic salpingectomy specimens obtained from
patients with BRCA1 or BRCA2 mutation carriers (Shih et al. 2021). Studies have
shown that serous tubal intraepithelial carcinomas (STICs) in the distal fimbriated
end of the tube are the most likely precursors for the development of HGSOC. The
STICs theory is further supported by the following findings:

• Fifty percent of pelvic HGSOCs show the presence of intraepithelial cancers in
the fallopian fimbriae (Stanciu et al. 2019; Kindelberger et al. 2007).

• STICs have been found in 10–15% of fallopian tubes that have been prophylacti-
cally removed from women with BRCA mutations (Finch et al. 2006; Medeiros
et al. 2006).

• Ninety-two percent of STICs have shown TP53 mutations like those found in
HGSOCs samples (Stanciu et al. 2019; Ahmed et al. 2010; Cancer Genome Atlas
Research Network 2011).

• STICs-related oncogene products (e.g., cyclin E1, Rsf-1, and fatty acid synthase)
are also overexpressed in HGSOCs (Stanciu et al. 2019).
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• STICs have also been found to be present in prophylactic salpingectomy samples
without the presence of ovarian carcinomas, and hence, are unlikely it had been
formed due to metastasis from an adjacent HGSOC (Desai et al. 2014).

The above observations support the theory that STICs are the origin of HGSOC in
either women harboring or not a germline BRCA mutation. Compared with high-
grade carcinomas, the low-grade serous OC (LGSOC) has a much lower expression
of TP53mutations and higher expression of estrogen and progesterone receptors and
PAX2 (Bowtell 2010). They typically display mutations related to specific signaling
pathways which are not present in HGSOC, for example, KRAS and BRAF, and
rarely TP53 (Kyo et al. 2020). Cystadenomas and borderline tumors represent early
stages in the carcinogenesis of LGSOCs (Ho et al. 2004). This is supported by
several findings showing that both LGSOCs and borderline tumors express KRAS
and BRAF mutations in about 30–35% of cases (Singer et al. 2003; Kyo et al. 2020).
Interestingly, KRAS and BRAF mutations have even been detected in benign
cystadenomas.

LGSOCs initiate their tumorigenesis from tubal epithelial cells invaginating into
the ovarian surface epithelium and forming ovarian inclusion cysts or serous
cystadenomas (Kyo et al. 2020; Bowtell 2010). These develop into borderline
tumors and subsequently into carcinomas. In this process, molecular mutations in
KRAS, BRAF, and ERBB2 are increased. In contrast, HGSOCs are believed to
develop from a different pathway. They start from the tubal epithelium, develop
into latent pre-cancer (p53 signature), precancerous lesion (tubal dysplasia), early
cancer (STICs) and ultimately into HGSOCs. In this process, the earliest change is
the p53 mutation which is currently considered as a hallmark of OC initiation.
Table 1.1 summarizes type I and type II pathways for the development of HGSOC
and LGSOC (Kyo et al. 2020).

In summary, two distinct trajectories of ovarian carcinogenesis have been
reported, associated with specific clinical conditions (e.g., hyperestrinism, endome-
triosis), pathology and molecular landscapes, resulting in a spectrum of ovarian
epithelial malignancies with peculiar treatment-response patterns and prognosis.
While the ontogenetic theories of OC seem to diverge substantially, it cannot be
excluded that the different theories apply to different experimental and clinical
scenarios and may be characteristic of specific OC types. To date, the better

Table 1.1 Clinical, histo-
logical, and molecular
characteristics of type I and
type II ovarian cancer

Type I tumors Type II tumors

Mutated RAS Wild-type RAS

Progress from LMP De novo

Usually LGSC Usually HGSC

Wild-type BRCA BRCA mutations

Generally wild-type TP53 TP53 mutations

Platinum resistant Platinum sensitive

Abbreviations: LMP low malignant potential, LGSC low-grade
serous cancer, HGSC high-grade serous cancer, BRCA breast cancer
gene, TP53 tumor protein 53
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definition of the ontogenesis of the high-grade tumors has resulted in a new
perspective for cancer staging (i.e., 2014 FIGO system) and in the identification of
precursor lesions in the fallopian fimbriae, and not exclusively in the ovaries—
suggesting new options for the fertility-preserving risk-reducing surgical
interventions for women carrying germline mutations at higher risk of OC (e.g.,
prophylactic fimbriectomy).

1.4 Ovarian Cancer Histotypes and Staging

1.4.1 Pathology of Epithelial Ovarian Cancer

OC encompasses a spectrum of diverse histology entities (Scully et al. 1998; Vargas
2014), with peculiar carcinogenesis, clinical and molecular patterns, and prognostic
significance. Most of the OC arises from the malignant epithelial transformation, and
only 10% origins from non-epithelial tissues, including germ cells, sex cord or
stroma cells and mesenchymal tumors of the ovary. The majority of ovarian epithe-
lial tumors present with a serous histology (around 80% of all) (Scully et al. 1998).
However, a multitude of histology types has been reported, such as mucinous,
endometrioid, clear cell, transitional and undifferentiated types, as shown in
Table 1.2 (Vargas 2014; Scully et al. 1998). Two-thirds of the deaths from OC are
related to high-grade serous adenocarcinomas that are associated with the poorest
prognosis. Serous carcinomas are further classified into LGSOCs and HGSOCs.
HGSOCs have a peculiar intrinsic biological aggressiveness, with local invasiveness
and early peritoneal spread (Bell 2005). In fact, these tumors are more commonly
diagnosed as bilateral or locally advanced with conspicuous spread into the perito-
neum. HGSOC seems to originate from the coelomic Mullerian epithelium of the

Table 1.2 Overview of epithelial ovarian tumors

Adenoma Borderline Carcinoma

Serous Serous
cystadenoma

Serous borderline tumor
(BOT)

Serous ovarian carcinoma

Mucinous Mucinous
cystadenoma

Mucinous BOT of either
intestinal type or
endocervical type

Mucinous ovarian
carcinoma

Endometrioid Endometrioid
cystadenoma

Endometrioid BOT Endometrioid ovarian
carcinoma

Clear cell Clear cell
cystadenoma

Clear cell BOT Clear cell ovarian
carcinoma

Transitional Brenner
tumor

Brenner BOT Malignant Brenner tumor
or transitional cell
carcinoma

Undifferentiated – – Undifferentiated ovarian
carcinoma

Mixed Cystadenoma BOT Carcinoma
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ovarian surface, as well as from the tubo-ovarian fallopian fimbriae and the perito-
neum (Zhang et al. 2019b). High-grade serous neoplasms are enriched in mutations
of the breast cancer associated genes 1 and 2 (BRCA1/2), resulting in a deficiency in
the DNA repair machinery and a high burden of DNA mutations, that is a key
characteristic of serous tumors (i.e., higher tumor mutational burden) (Zweemer
et al. 2000). Of note, the presence of these specific stigmata of the homologous
recombination DNA repair mechanism is also associated with enhanced sensitivity
to some DNA-targeting agents, including platinum compounds and targeted agents
against Poly-ADP-ribose polymerase (PARP) (Alkema et al. 2016). Also, another
distinguishing feature of HGSOCs is the presence of TP53 mutations (with
non-synonymous mutations more common than frameshift mutations or deletions)
(Zhang et al. 2016; Singh et al. 2017; Ruba et al. 2020). The macroscopic aspects of
HGSOCs are not specific; most patients present with advanced stages, with
abdominopelvic extension, fallopian tubes are usually embedded in the tumor bulk
(WHO 2020). HGSOCs are described at the gross pathology as variably-sized,
exophytic tumors with solid or papillary growth patterns and solid areas with
necrotic and hemorrhagic parts or bloody fluid-filled cysts (Kaku et al. 2003).
Histologically, HGSOCs present with serous differentiation, high mitotic count
(>5 mitoses/mm2 equivalent to >12 mitosis/10 HPF of 0.55 mm in diameter and
0.24 mm2 in the area) and marked cellular atypia associated sometimes with
necrosis. The tumors may have a solid, cribriform papillary or glandular architecture
with infiltrative borders (WHO 2020; Singh et al. 2017). At immunohistochemistry,
HGSOCs particularly show abnormal p53 oncoprotein immunostaining, reflecting
the TP53 mutation (defined as diffuse and strong p53 nuclear expression (�80%) or
complete absence of immunohistochemical staining with retained internal control
staining); rarely, HGSOCs show aberrant cytoplasmic p53 expression (McCluggage
2012; Singh et al. 2017). Also, p16 is diffusely positive (“block-type” staining) in
most cases of HGSOCs (McCluggage et al. 2015). Other non-distinctive immuno-
histochemical staining of HGSOCs (as well as other serous tumors) include the
cancer-associated antigen Wilms tumor 1 (WT1) and the paired box 8 transcription
factor (PAX8) positivity. Also, they can variously express estrogen and progesterone
receptors; the pattern of cytokeratin (CK) staining is also quite peculiar, with
CK7-positivity and CK20-negativity (Lee et al. 2002). The above-mentioned immu-
nohistochemical features of HGSOCs may be particularly important in the differen-
tial diagnosis with other ovarian carcinomas or metastatic tumors to the ovaries.

LGSOC is a rarer entity of serous carcinomas, representing 1–3% of all epithelial
OCs (Gadducci and Cosio 2020). These tumors present mostly in younger patients
(i.e., 20–40 years), with an initial more indolent biological behavior. Though less
sensitive to chemotherapy, their intrinsic, more indolent nature has been associated
with better prognosis, especially in the earlier stages (Gershenson et al. 2006).
Grossly, LGSOCs present as unilateral or bilateral solid-cystic tumors with ovarian
surface involvement. Histologically, LGSOCs appear as cuboidal, columnar cells,
with monotonous proliferation patterns, without high-grade cellular atypia and lower
mitotic count (�12 mitoses/10 HPF), with usually papillary or micropapillary
architecture, destructive stromal invasion and frequent calcifications (psamommas)
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(WHO 2020). The key IHC finding of this serous variant is the low proliferation
index, with Ki-67 staining usually less than 10%. LGSOCs often express estrogen
and progesterone receptors, with a normal p53 pattern of immunoexpression
(Slomovitz et al. 2020).Notably, the carcinogenesis of a half of low-grade serous
proliferation can be peculiarly driven by molecular alterations of the mitogen-
activated protein kinases (MAPKs), like KRAS and BRAF. Eventually, BRCA
alterations are uncommon.

Mucinous OC (MOC) encompasses up to 5% of all epithelial OCs (Köbel et al.
2010). The clinical and pathology of mucinous malignancies in the ovaries is
commonly challenging, as three-quarter of mucinous tumors in ovaries are second-
ary tumors (i.e., Krukenberg tumors, generally bilateral), and only one-third is a
primitive MOC (generally unilateral) (McCluggage 2012). In addition, only a
minority of MOC in the ovaries are primary malignant proliferation (i.e., pure
MOC), as 90–95% can present in the context of benign or borderline proliferation
(Rodríguez and Prat 2002). Younger women are mostly affected. MOC often
appears as unilateral solid-cystic neoplasms with a smooth external surface filled
with a large amount of gelatinous secretions. Two patterns of tissue invasion have
been reported, expansive, and infiltrative (i.e., destructive stromal growth), respec-
tively; the presence of an infiltrative pattern has been associated independently with
an adverse prognosis, including in early-stage MOC (Lee and Scully 2000). The
immunohistochemical feature of MOC includes positive staining with CK20, CK7,
carcinoembryonic antigen (CEA), CA19-9 and CDX2 (McCluggage 2012). MOC
stains negative to PAX8, WT1, and hormone receptors (estrogen and progesterone),
in contrast with serous OC (McCluggage 2012). This immunostaining profile lacks
unfortunately any specificity as many metastatic tumors to ovaries may have these
immunohistochemical staining patterns, especially tumors from the digestive tract.
Distinguishing primitive MOC from metastases is a challenging issue that requires
histopathological, clinical, and imaging correlations (McCluggage 2012; Simons
et al. 2019). For their intrinsic chemoresistance, MOC has a better prognosis when
diagnosed early and dismal in advanced stages (Kelemen and Köbel 2011).

Endometrioid OC accounts for 10–25% of all epithelial OCs; in 10–15% of the
cases, a diagnosis of endometrioid OC is contextual to pre-existing endometriosis,
with or without synchronous endometrial hyperplasia or carcinoma (Oswald and
Gourley 2015). Endometrioid OC presents mostly as unilateral and as solid hemor-
rhagic masses without papillae. Squamous metaplasia and adeno-fibroma
components are reported in half of the specimens (Gilks and Prat 2009).
Endometrioid OC is histologically, graded as its uterine counterpart according to
the extent of glandular component and cellular atypia: <5% solid growth (grade 1);
5–50% solid growth (grade 2); >50% solid growth (grade 3) (WHO 2020; Fadare
and Parkash 2019). At immunohistochemistry, typically, endometrioid OC stains
positive with CK7, PAX8, hormone receptors, and stains negative with WT1, CK20,
CDX2, with wild-type p53 staining (normal staining) (Fadare and Parkash 2019).
Loss of PTEN is a hallmark of carcinogenesis in these tumors, described in 20–25%;
also, in 10–20%, patients may have a Lynch syndrome, with a family history of
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multiple tumors—therefore presenting a hyper-mutating DNA phenotype, recorded
as microsatellite instability (MSI) (Pierson et al. 2020).

Clear cell OC are rarer variants, diagnosed in 5–10% of the patients; in women
from Japan, this tumor type can encompass up to 25% of the epithelial OCs (Iida
et al. 2020). Clear cell OC is associated with endometriosis in up to 70% of the cases
(Iida et al. 2020). The prognosis of this tumor is stage-dependent: in the earlier
setting, these tumors can have an excellent prognosis (Fujiwara et al. 2016). How-
ever, for their intrinsic platinum resistance, patients with advanced disease have a
poor prognosis (Sugiyama et al. 2000). At the gross pathology, clear cell OC appears
as unilateral cystic mass with solid components, mostly a single and marginated one
(Sugiyama et al. 2000). Microscopically, this tumor exhibits tubule-cystic, papillary,
or solid architecture, cells with clear to eosinophilic cytoplasm and dense eosino-
philic intracytoplasmic secretions (Fadare and Parkash 2019). Cells with a hobnail
appearance are typically found in tumors with tubule-cystic architecture. The typical
immunohistochemical characteristics of clear cell OC are positive staining with
Napsin A, HNF-1β (hepatocyte nuclear factor 1β), PAX8, CK7, and negative
staining with hormone receptors (estrogen and progesterone), CK20, and WT1
(McCluggage et al. 2015; Fadare and Parkash 2019). An association with Lynch
syndrome has been reported; however, the most characteristic genomic stigmata of
these tumors are the presence of ARID1A alterations in a half of cases, resulting in a
hyper-mutating DNA phenotype (Berns et al. 2018).

Other malignant ovarian epithelial tumors include malignant Brenner tumor,
mixed ovarian carcinomas, and undifferentiated carcinomas. These are very rare
cancers, and their molecular and histopathological features are not yet well
established (WHO 2020; Bennett and Olivia 2020; Tafe et al. 2010). Malignant
Brenner tumors resemble histologically invasive urothelial carcinoma but are
associated with foci of benign or borderline Brenner tumors (Cuatrecasas et al.
2009). They are usually unilateral and express urothelial markers at immunohis-
tochemistry (p63, GATA3 mainly) (Cuatrecasas et al. 2009). Mixed ovarian
carcinomas show two or more histological differentiation (serous, mucinous,
endometrioid, clear cell, etc.) (Mackenzie et al. 2015). These tumors seem to be
monoclonal, suggesting a common precursor cell of all of the mixed histological
components (WHO 2020). Undifferentiated carcinomas are defined as malignant
carcinoma with no obvious morphological differentiation. Some are associated with
foci of differentiated ovarian carcinomas (especially low-grade endometrioid
carcinomas), suggesting progression or dedifferentiation from these tumors (WHO
2020; Tafe et al. 2010).

1.4.2 Staging of Ovarian Cancer

The surgical and pathological staging of epithelial OC is crucial and is a major
determinant of the treatment choices and of the prognosis. A standardized interna-
tional staging system aids in determining the following (Binder et al. 2015):
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1. Extent of tumor spread
2. Individual prognosis
3. Treatment efficacy
4. Overall, disease-free and progression-free survival rates

There has been increasing molecular, histological, and genetic evidence in the
literature that serous carcinomas of the ovary or peritoneum may have actually
originated from the fimbrial end of the fallopian tube (Berek et al. 2018; Prat
2014; Callahan et al. 2007). The theory of the STICs as a precursor of HGSOC
has been largely validated and accepted. Some epithelial OCs, in fact, present with
extensive pelvic-peritoneal involvement, with no apparent origin in the ovaries
(Berek et al. 2018; Callahan et al. 2007; Prat 2014). Therefore, STICs may originate
in the fallopian fimbriae and rapidly grow on the ovarian surfaces and implant on the
peritoneum, as commonly reported for HGSOC (Kurman and Shih 2010). Hence,
the Gynecologic Oncology Committee of the International Federation of Gynecol-
ogy and Obstetrics (FIGO) revised the staging system in 2014 to incorporate
ovarian, fallopian tube, and peritoneal cancer as a single entity (Prat 2014)
(Fig. 1.1). The updated staging system enforces the efforts to retrieve the primitive
tumor whenever possible; however, when the primary site cannot be successfully
identified, the pathologist should label it as “undesigned,” more than “unknown
primary,” as a peritoneal or fallopian origin can still be possible, namely a pelvic
origin. In fact, international recommendations are now established for site assign-
ment of the primary tumor in extra-uterine high-grade serous carcinomas of the
ovary and distinguish them from fallopian tubes and peritoneal primaries
(McCluggage et al. 2015; Singh et al. 2016). For this, the fallopian tubes, or at
least their fimbrial ends, should be totally sampled in all the cases of high-grade
serous carcinoma (Table 1.3 summarizes diagnostic criteria for assigning primary
site in extra-uterine high-grade serous carcinoma according to the latest World
Health Organization classification of female genital tumors).

The FIGO staging system includes four stages for OC, based on the peritoneal
spread and metastatic pattern (Fig. 1.1). An important addition in the 2014 classifi-
cation is the subdivision of Stage IC into three risk categories according to the
spontaneous or iatrogenic rupture of the tumor capsule and the presence of malignant
ascites (Berek et al. 2015). Stage III is now defined according to spread to the
retroperitoneal lymph nodes, regardless of the intraperitoneal dissemination (i.e.,
stage IIIA1 and stage IIIA2, see Fig. 1.1) (Prat 2014). This is based on a study
indicating that patients with positive retroperitoneal lymph nodes alone have signifi-
cantly better survival than those who have intraperitoneal dissemination (Berek
2009). Stage IVB now also includes inguinal lymph nodes metastases (Prat 2014).
The FIGO staging system must be considered as a surgical and pathological system.
While imaging like computed tomography scan can detect the pelvic and abdominal
involvement of epithelial OC, all tumors arising from ovaries, fallopian tubes and
primary peritoneal malignancies require a precise surgical staging approach. The
findings from operative surgical staging are critical to inform on the prognosis and
the optimal treatment choices. In patients with no extra-pelvic symptoms, there is no
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Fig. 1.1 The current FIGO classification
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common need to provide a systemic staging, as the distant metastases are uncommon
(Berek et al. 2018). In selected patients with advanced disease at presentation, in
which the surgical staging is deemed not appropriate and/or unsafe, a diagnostic
biopsy may be considered to provide histologically and molecularly appropriate
treatments (Berek et al. 2018).

1.5 Conclusion

The carcinomas of ovarian, tubal, and peritoneal origin remain highly heterogeneous
entities. Accumulating epidemiological and molecular evidence shows that the
origin for serous high-grade carcinomas is indeed the fallopian tube secretory
cells. Additionally, comprehensive molecular analyses have uncovered the key
driver events for serous carcinogenesis. This has provided us with novel molecular
targets and consequently vast opportunities for new therapies (for additional reading,
see Box 1.1).

Box 1.1 Recommended reading of particular interest

Citation DOI

Iida Y, et al. Clear cell carcinoma of the ovary: a clinical
and molecular perspective. Int J Gynecol Cancer. 2020:
ijgc-2020-001656.

https://doi.org/10.1136/ijgc-
2020-001656

Mills AM, Shanes ED. Mucinous Ovarian Tumors. Surg
Pathol Clin. 2019;12(2):565–585.

https://doi.org/10.1016/j.
path.2019.01.008

El Bairi K, et al. Does the “Devil” originate from the
fallopian tubes? Semin Cancer Biol. 2021:S1044-579X
(21)00068-7.

https://doi.org/10.1016/j.
semcancer.2021.03.018

Prat J, et al. Ovarian carcinomas: at least five different
diseases with distinct histological features and molecular
genetics. Hum Pathol. 2018;80:11–27.

https://doi.org/10.1016/j.
humpath.2018.06.018

(continued)

Table 1.3 Assigning tumor primary site in extra-uterine high-grade serous carcinomas

Primary site Diagnostic criteria

Fallopian
tube

– Presence of STIC, or
– Presence of mucosal HGSC, or
– Part or the entire length of the fallopian tube in separable from the tumor mass

Ovary – Both fallopian tubes separate from ovarian mass, and
– No STIC or mucosal HGSC in either tubes

Tubo-ovarian – Fallopian tubes and ovaries not available for complete examination, and
– Pathological findings consistent with extra-uterine HGSC

Peritoneal – Both tubes and both ovaries fully examined, and
– No gross or microscopic evidence of STIC or HGSC in tubes or ovaries

Abbreviations: STIC serous intraepithelial carcinoma, HGSC high-grade serous carcinoma
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Box 1.1 (continued)
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Jones MR, et al. Genetic epidemiology of ovarian cancer
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Abstract

Ovarian cancer (OC) is a leading cause of premature mortality worldwide, mainly
because of its advanced stage at diagnosis and poor outcomes in metastatic phase.
Quality and timely surgery is the key intervention for both the curative and the
palliative setting, providing one of the largest benefits on the survival outcomes.
However, patients with OC, at all stages, benefit of a number of pharmacological
treatments, both chemotherapy and targeted agents. Therapeutic advances in OC
reflect a better knowledge of the biology and the critical pathogenetic
mechanisms of tumorigenesis. For instance, the discovery of homologous recom-
bination deficiency, particularly BRCA gene mutations, and the implementation
of anti-(Poly ADP-ribose polymerase) PARP treatments have been largely con-
sidered to be milestones in cancer treatment. PARP inhibitors are now approved
as maintenance therapy in platinum-sensitive OC. Antiangiogenic agents can play
an important role in the advanced disease. Immunotherapy has been tested in OC
with less impactful results, suggesting the need of more efforts to identify
predictive factors to refine the patient selection. Despite the progresses in treat-
ment discovery, the prognosis of patients with more advanced diseases or
exhibiting treatment resistance still remains dismal. The personalization of
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treatment, together with the developing of new drugs, will improve the prognosis
of this disease, addressing an unmet area of the cancer treatment.

Keywords

Ovarian cancer · Therapy · Biomarkers · Precision medicine · PARP inhibition

2.1 Introduction

Ovarian cancer (OC) is the third most common gynecologic malignancy diagnosed,
after cervical and endometrial cancer and the most lethal gynecological tumor:
295,414 new cases and 184,799 deaths were estimated in 2018, worldwide (Bray
et al. 2018; Momenimovahed et al. 2019). The highest age-standardized incidence of
OC is observed in Europe; however, an increasing trend has been observed over the
last years in Central and South America and Asia (Zhang et al. 2019). One of the
greatest challenges in the field of OC remains the lack of an effective screening,
resulting in common late stage tumors at diagnosis, leading to a dismal prognosis.
Despite the attempts to introduce early diagnostic tools, such as transvaginal ultra-
sound and/or tumor markers (e.g., CA-125, HE4), the high rates of false-positive
screening test results and the poor screening performance led the authorities to
advise against screening in non-selected population (i.e., asymptomatic women,
not selected per cancer risk) (Grossman et al. 2018; Aust and Seebacher-Shariat
2020).

Regarding the histology, the current classification of OC comprises a spectrum of
ovarian neoplasms according to the tissues of origin: surface epithelial (65%), germ
cell (15%), sex cord-stromal (10%), and miscellaneous tumors. Among surface
epithelial tumors, five major histology variants can be distinguished ( for more
details see below), each of them further divided into benign, borderline, and malig-
nant (https://www.pathologyoutlines.com/topic/ovarytumorwhoclassif.html.
Accessed August 6, 2020).The pathogenesis of the epithelial OC (EOC) is mostly
unclear. The “incessant ovulation” theory has been claimed as one of the strongest
biological hypotheses, related to the retainment of inclusion cysts and subsequent
epithelial metaplasia driving the carcinogenetic mechanisms (Fleming et al. 2006).
Additionally, researchers have suggested the “hormonal” and “inflammation hypoth-
esis,” mostly due to the gonadotropin stimulation for the ovulation dynamics.
However, the current perspectives seem to conclude for apathogenesis based on a
multifactorial process, involving different biological events and multi-step
mechanisms (Hunn and Rodriguez 2012).

Regarding the risk factors for EOC, the most critical is the family history for
OC. In fact, 10–20% of women diagnosed with EOC harbors germline mutations in
BRCA (Breast cancer susceptibility gene) 1 or 2, accounting for nearly 80% of
hereditary EOCs. Other mutated genes are TP53 (responsible for Li-Fraumeni
syndrome), mismatch repair genes (responsible for Lynch syndrome), CHEK2,
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RAD51, BRIP1, and PALB2 (all of them involved in double-strand break repair
pathway, some presenting in BRCA-like syndromes) (Toss et al. 2015).

The discovery in the mid-1990s of the BRCA genes and the identification of their
key role in the oncogenesis of ovarian and breast carcinomas is considered the most
important turning point to inform the identification of high-risk patients, the evalua-
tion of prophylactic interventions, and the development of therapeutics for
personalized treatments (Walsh 2015). BRCA-mutant EOC patients show a better
survival, probably due to better response to platinum chemotherapy (Cass et al.
2003), becoming object of study for new therapeutic strategies. Poly-(ADP-ribose)-
polymerase (PARP) inhibitors, whose development started in the 1980s, have been
investigated in several types of human cancers, since they could increase sensitivity
to chemotherapy (mainly DNA-alkylating agents and topoisomerase inhibitors) and
ionizing radiation (Curtin 2005). The discovery, as better outlined below, of a
“synergism” between BRCA mutations and PARP inhibitors is a milestone in EOC
therapeutic research, opening the door to new scenarios of tailored treatments for
EOC. In this chapter, the current advances in the therapeutic management of OC in
the era of precision medicine are discussed.

2.2 Epithelial Ovarian Cancer Histotypes

EOC comprises the majority of ovarian neoplasms. They can be classified according
to the cell of origin in five major histopathological subgroups: high- and low-grade
serous OC (HGSOC and LGSOC, respectively), endometrioid, clear cell (CCO), and
mucinous (MOC) carcinomas. Each subtype shows peculiar characteristics of epide-
miology, risks factors, immunohistochemistry (IHC) patterns, biological behavior,
and response to treatment (Table 2.1). HGSOCs are the most common EOC subtype
(80%). They are usually diagnosed as bilateral disease or in advanced stage due to
the lack of specific symptoms prompting early detection. The detection of occult
OCs in the fimbrial portion of the fallopian tubes in BRCA1 and 2 carriers who
underwent risk-reduction salpingo-oophorectomy led to the proposal of physio-
pathological model of HGSOC precursor cells arising from fallopian tube and
secondarily involving the ovary (Hirst et al. 2009; Yates et al. 2011).The IHC profile
of HGSOC typically reports p53, WT1 staining, harboring more commonly BRCA1
and 2 and TP53 mutations; additionally, they express estrogen and progesterone
receptors (ER and PgR, respectively). Recently, the TCGA has distinguished four
molecular subtypes among the HGSOC subgroup: immunoreactive, proliferative,
differentiated, and mesenchymal; each TCGA subgroup is characterized by peculiar
genes alterations and different outcome (TCGA 2011).

LGSOC represents a subgroup of rare serous cancers, the recognition of which is
relatively recent (Kurman et al. 2014). Due to that, still today there is a lack of
consistent data in this field on large samples of patients. In general, LGSOCs cover
the 4.7% of serous histotypes and almost 2% of all EOC (Matsuo et al. 2018). They
are diagnosed mostly in women in their 40s, younger than those in the HGSOC
group; the association with higher risk of relapse and death in case of former
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smokers and high BMI has been reported. Additionally, LGSOC is characterized by
lower CA-125 levels at diagnosis (Fader et al. 2014) and a more indolent behavior
with a better outcome if compared with HGSOC (i.e., overall survival (OS): 102.9 vs
72.8 months; progression free survival (PFS): 31.2 vs 17.8 months, respectively)
(Gershenson 2016; Della Pepa et al. 2015). From a molecular point of view, LGSOC
is characterized by a peculiar pattern of alterations, which distinguish this group
from HGSOC. The IHC analysis show that they stain positive to WT-1, ER and PgR
expression with a proliferative index (Ki-67)�10% and wild-type TP53 status in the
majority of cases. In few cases, LGSOC can be positive to Her-2 (28%) or c-kit
(4.5%) (O’Neill et al. 2005; Wong et al. 2007). However, the definition of its
molecular profile is one of the most important research topics in this field. The
MAPK pathways play a key role in the process of LGSOC’s carcinogenesis and the
activating mutations in KRAS, BRAF, NRAS, HER-2 genes represent the most
frequent alterations detected by next generation sequencing (NGS) assays. In partic-
ular, KRAS mutations were present in a range between 35% and 54% of LGSOC,
depending on the samples analyzed (Singer et al. 2003a, b), while a wild-type status
was reported in the entire HGSOC population. Like KRAS, also BRAF mutation was
reported in a range between 2% and 33% in different series of LGSOC with no cases
in HGSOC. This mutation, mostly V600E, is mutually exclusive with RASmutations
like in other tumor types, such as colorectal cancer and melanoma (Singer et al.
2003a, b; Hunter et al. 2015). Additionally, these tumors rarely show alterations in
BRCA genes, even if their determination is recommended still today in the context of
serous OCs (Vineyard et al. 2011). Therefore, the discrepancy in the gene profile
between HGSOC and LGSOC seems to suggest a divergent tumorigenesis, in which
peculiar molecular alterations can be recognized at each step of the process (Kurman

Table 2.1 Epithelial ovarian cancer histotypes

Histotype Frequency
Molecular
alterations Clinical features

High-grade
serous ovarian
cancer

70–80% BRCA1/2, Tp53,
WT1

Bilateral disease, advanced stage at
diagnosis

Low-grade serous
ovarian cancer

4% KRAS, NRAS,
BRAF, HER2

Younger age, indolent disease

Endometrioid 10–15% ARID1A, KRAS,
PTEN, MSI

Perimenopause, associated with
endometriosis and endometrial
carcinoma

Clear cell 10% AKT, PI3KCA Early stage at diagnosis, chemoresistant

Mucinous 3–5% KRAS, BRAF,
PI3KCA, cMET

Large cystic mass, early stage at
diagnosis, chemoresistant

Abbreviations: BRCA Breast Related Cancer Antigens, TP53 tumor protein P53, WT1 Wilms’
tumor 1, KRAS Kirsten RAt Sarcoma virus, NRAS neuroblastoma RAS viral oncogene homolog,
BRAF v-Raf murine sarcoma viral oncogene homolog B, HER2 receptor tyrosine-protein kinase
erbB-2, ARID1A AT-rich interactive domain-containing protein 1A, PTEN phosphatase and tensin
homolog, MSI microsatellite instability, AKT protein kinase, PI3KCA phosphatidylinositol-4,5-
bisphosphate 3-kinase-catalytic subunit alpha, cMET hepatocyte growth factor receptor
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and Shih 2016). In particular, some analyses reported the appearance of KRAS
activating mutation in a very early stage of development from the ovarian epithelium
to the LGSOC, which is not present in the HGSOC carcinogenesis. Thus, several
analyses defined and confirmed the hypothesis of two distinct pathways of carcino-
genesis: RAS (or MAPK) related for LGSOC and RAS (MAPK) independent for
HGSOC (Della Pepa et al. 2015).

Endometrioid cancers represent approximately 10–15% of EOC. They are usually
detected in perimenopausal women, with a better prognosis, potentially associated
with the high percentage of low-grade tumors and early diagnoses (Storey et al.
2008). Additionally, endometrioid cancers are frequently associated with endome-
triosis as well as synchronous endometrial carcinoma (15–20% of cases). They
typically have a WT1 positivity, so the distinction with HGSOC—which expresses
WT1 as well—is crucial. The pathways leading to the carcinogenesis are not entirely
understood and the ARID1A is one of the most investigated genes in this EOC
subgroup. In fact, almost 30% of endometrioid OC is ARID1A positive (Guan et al.
2011), showing better survival (5-years OS rate: 84.9% vs 60.2% in ARID1A
positive and negative, respectively) (Heckl et al. 2018). Additionally, endometrioid
cancer harbors KRAS, CTNNB1 (beta-catenin), and PTEN mutations (Prat et al.
2018) as well as microsatellite instability (MSI) in 12–19% of cases, mostly related
to Lynch syndrome (Gras et al. 2001).

CCO (almost 10% of EOC) is frequently diagnosed at early stages, if compared
with the other histology types of OC; the prognosis in the early stage of OCC is
favorable. However, when CCO is diagnosed as an advanced disease, it is associated
with poor prognosis and lack of response to chemotherapy. One of the most
important pathways investigated in this subgroup is the AKT/mTOR signaling.
This pathway is activated in up to 70% of EOC (Itamochi et al. 2017); in particular,
in CCO the PI3KCA gain functions mutations are present in a third of the tumors
(Gasparri et al. 2017). Additionally, CCO shows ARID1A alterations in 50% of
cases, loss of PTEN in 33%, and MSI in <10% of cases and they are linked to
spectrum of tumors of the Lynch syndrome.

MOCs represent the 3–5% of all EOC (Shimada et al. 2009). They are typically
diagnosed in young women (median age 20–40 years old) who presented large cystic
masses, mostly at early stage (80%) with a good prognosis. Otherwise, they show
worse outcome in case of metastatic disease due to the chemoresistance. Over the
last decades, the research has investigated on the origin of MOCs, questioning about
the primary site of those tumors: OCs or metastasis from tumors arose in the
gastrointestinal tract. In this context, Cheasley et al. recently perform a genetic
analysis on 500 specimens of MOC, including all histological grades, such as benign
and borderline tumors, and comparing those with mucinous neoplasms from other
extra-ovarian sites of origin. The authors showed that MOCs express some molecu-
lar alterations, such as CDKN2A, KRAS, and TP53 (76%, 64%, and 64%, respec-
tively) as well as HER-2 (26%, mutually exclusive with KRAS), BRAF and PI3KCA
(8–12%), which clearly identify the ovarian origin of MOCs and their distinction
from metastasis and from the HGSOCs (Cheasley et al. 2019). Therefore, the
diagnosis of MOCs requires a careful evaluation of the specimen from dedicated
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pathologists by using firstly IHC and then the molecular assessment. In this light,
Friedlander et al. did a comprehensive evaluation of 304 cases of MOCs reporting a
very heterogeneous landscape: alterations in KRAS (49%), BRAF (3.5%), PIK3CA
(12%), cMET overexpression (33%, no gene amplification), TP53 mutation (37%),
HER-2 amplification (11%), programmed death 1 (PD-1) positivity in tumor-
infiltrating lymphocytes (TILs) (43%), and programmed death ligand 1 (PD-L1)
positivity (14%) (Friedlander et al. 2015). However, up to date no data about
prognostic and predictive biomarkers for these tumor types are available in literature.
Therefore, like in the LGSOC, still today the most important prognostic factor in
MOCs remains the presence of residual disease after curative surgery (Kajiyama
et al. 2019).

2.3 The Personalized Era of Advanced Ovarian Cancer Care:
The Intersection of Histology and Molecular Paradigms

The treatment of EOC has been dictated traditionally by the response to the platinum
compounds, informing on the prognosis of the patients and orienting on the best
therapeutic approaches (NCCN guidelines 2020). The choice of treatments for
recurrent EOC is essentially based on the so-called platinum-free interval (PFI).
PFI is defined as the interval between the completion of the last platinum-based
treatment and the clinical and/or radiological evidence of relapse or progression
(Colombo et al. 2019). Tumors are classified according to the platinum response,
based on the PFI. Platinum-refractory ovarian tumors recur during therapy or within
4 weeks after the last dose; platinum-resistant tumors show PFI less of 6 months,
platinum-intermediate sensitive progress between 6 and 12 months, and platinum-
sensitive has a PFI superior to 12 months (Stuart et al. 2011).

The current knowledge on platinum sensitivity seems to suggest unique molecu-
lar mechanisms underlying the response to treatments. In fact, the acquisition of a
platinum-resistant phenotype has been related to several mechanisms, for example,
with the increase of the function of the efflux pumps for chemotherapeutics and the
alteration of binding proteins in the intracellular milieu of cancer cells, capable to
inactivate the platinum reactive properties (Ishida et al. 2010; Okuno et al. 2003).
However, the principal mechanism commonly recalled for the platinum resistance is
in the alteration of the DNA repair mechanisms of the tumor cells (Darzynkiewicz
et al. 2009). When cellular mechanisms of response to the DNA damage are
impaired, the tumor can be more susceptible to the platinum-adduct related damage,
with an enhanced platinum sensitivity: that is the case of tumors presenting
alterations of the homologous recombination DNA damage repair (HRR), for ger-
minal stigmata or acquired somatic genomic events. In fact, it has been estimated
that 50% of HGSOC exhibits an inactivation of the homologous recombination
mechanism (HRD) related to mutations or promoter methylation of BRCA1 and
2 genes, as well as of other molecules involved in this process, classified under the
protein family called “Fanconi Anemia.” These molecules have a prominent role in
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the preservation of genome integrity (Dai et al. 2015; Ledermann et al. 2016; Arts-de
Jong et al. 2016).

The further development of specific compounds capable to result in synthetic
lethality is closely related to the molecular definition of platinum sensitivity, on the
comprehension of the mechanisms of tumor susceptibility and how to manipulate the
delivery of pharmacological interventions. Nowadays, the high-throughput research
methodologies of the molecular biology like NGS have generated multiple genetic
characterizations of the ovarian neoplasms, in the attempt to identify possible driver
genetic alterations of pharmacological interest and define reproducible trajectories of
carcinogenesis. Large-scale genomics reported TP53 mutations in all high-grade
tumors, along with conspicuous copy number alterations (Bodelon et al. 2019).
However, when other tumor types are taken into consideration, the mutational
landscape seems to diverge quite consistently.

Endometrioid, CCO, LGSOC, and MOC present a spectrum of peculiar
alterations of BRAF, KRAS, PTEN, and beta-catenin, as stated above. Specifically,
LGSOC is enriched in ER and PgR, though the role of hormone manipulations is still
controversial for therapeutic intentions (Gershenson et al. 2017). In addition, this
subtype seems to depend upon pathogenetic alterations of MAPK signaling path-
way, including KRAS, BRAF, and NRAS (Slomovitz et al. 2020). However, the
effective and safe targetability of the MAPK components in LGSOC is still contro-
versial: in fact, one randomized trial using a MEK inhibitor (selumetinib) versus
physician’s choice of chemotherapy resulted in premature withdrawn, for futility at
the interim analysis (Farley et al. 2013). Endometrioid cancer, on the other hand,
presents a unique molecular profile, that includes alterations in beta-catenin and
PTEN along with a more common occurrence of MSI. This specific alteration has
been associated with the co-existence of germline mutations of the DNA mismatch
repairing mechanisms, capable to enhance formation of effective tumor-associated
neoantigens to arm an antineoplastic immune response. In general, MSI tumors are
deemed immunogenic. When an endometrioid tumor is detected in a woman,
especially if presenting MSI, a diagnosis of Lynch syndrome should be ruled out
(Ryan et al. 2017). Of interest, the presence of MSI, and in general of a defect in the
mismatch repair of the DNA, has been associated with an enhanced response to
immunotherapy agents, representing one appealing strategy for patients with
advanced disease, for example, non-responsive to standard treatments (Sidaway
2020). On the other hand, though not commonly associated with Lynch syndrome,
CCO seems to be also capable of effective immune-modulatory properties, related to
unique genetic alterations and a hypermutator phenotype. As aforementioned, more
than 50% of CCO harbor a mutation of ARID1A, a major component of the
SWI/SNF remodeling complex of the chromatin (Jones et al. 2010). The mutations
in ARID1A have been associated with an impairment of the mismatch repair mecha-
nism of the DNA, with increased tumor mutation load and enhanced formation of
tumor-associated neoantigens (Shen et al. 2018). This means that CCO converges
eventually on a mismatch repair-like phenotype, associated with an increase
response to immune-therapeutic agents. Finally, MOC presents a high rate of MSI
(Babaier and Ghatage 2020) and HER-2 overexpression, providing a rationale for
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anti-HER2 or HER2/HER3 blockers such as monoclonal antibodies, small
molecules, or their combination (Chung et al. 2019).

The most common enthusiastic declination of precision medicine in ovarian
tumors can be related to the successes of the inhibitors of PARP in HGSOC. With
the availability of a plethora of different PARP inhibitors now approved, as single
agents or in combination either with chemotherapy or with antivascular agents, the
paradigm of a molecular approach in the selection of the treatments of EOC patients
is largely accepted (Longo 2019). However, the approval of multiple PARP
inhibitors, as more extensively discussed below, has been accompanied with the
broader concept of HRD as a predictive marker useful for therapeutic decisions.
Alterations of the DNA damage response in EOC can be several, related to the
mutations or epigenetic silencing of the BRCA genes. Accordingly, in the attempt to
capture the entire mutational landscape of HRD and recapitulate the synthetic
lethality observed with PARP inhibition in BRCA mutated patients, the concept of
HRD has been introduced. Briefly, HRD defines the spectrum of alterations of the
homologous recombination machinery, and is intended to test multiple genes (e.g.,
ATM, Fanconi-anemia related, RAD51) to define high (deficient) or low (proficient
DNA repair machinery) HRD phenotypes (Patel et al. 2018). Together with the
BRCA testing, HRD DNA sequencing panels have been introduced in the clinical
practice, as companion diagnostics of some PARP inhibitors.

The research in OC has been prolific in some areas of the cancer investigations,
providing paradigm of treatment across multiple tumor types, for example, in the
clinical use of PARP inhibitors in non-ovarian tumors. Vice versa, OC research is
now applying the broader context of the gene sequencing for the discovery of
pharmacological targets, to enhance the implementation of effective and safe
compounds for cancer care. While multiple studies are ongoing with innovative
molecules, more often biomarker-driven, the histology classification still has a major
role in the treatment decision of the early stage and platinum response still dictates
the treatment sequences in the advanced stage. With the advent of some agnostic
indications for drugs, approved on the base of biomarkers regardless the histology-
restriction of the drug development, more data will be collected with small
molecules, such as the anti-NTRK compounds and antibodies like the anti-PD1
drugs. This could be applied especially in case of tumors with mismatch repair
deficiency or high mutational burden—permitting to understand if such innovative
paradigms of the oncology will find a place in EOC treatment.

2.3.1 HRD, PARP Inhibitors, and Synthetic Lethality

OC is characterized by a wide variety of genomic alterations, being TP53 somatic
mutation the most frequent (96%) (TCGA 2011). Among EOC subtypes, HGSOCs
show a peculiar biological behavior, with alterations in HRR pathway in almost half
of cases ( for more details, see Sect. 2). HRR is an important DNA repair mecha-
nism: its main role consists in protecting chromosomal integrity through reparation
of double-strand breaks (DSBs) (Prakash et al. 2015). DSBs are the most dangerous
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DNA damages that could occur in mammalian cells, although they can play a role in
biologic diversity and adaptability in some physiological conditions such as meiotic
recombination between homologous chromosomes, V(D)J recombination to gener-
ate a diverse repertoire of antibodies and T cell receptors and immunoglobulin class-
switching (Khanna and Jackson 2001). DSBs could be caused by both endogenous
insults, such as oxidative damage, and exogenous insults, such as chemotherapeutic
drugs and ionizing radiations (Mehta and Haber 2014). During HRR, the undamaged
homologous DNA double helix is recruited to allow the restoration of the disrupted
DNA strands, with an extremely low rate of errors. However, another mechanism of
DSBs repair has been described in human cells, called non-homologous end joining
(NHEJ). NHEJ differs from HRR in a substantial way: in fact, it consists of direct
ligation of the DSB ends without the use of undamaged partner, resulting in an error-
prone process, with frequent insertions, deletions, and translocations (Chapman et al.
2012).

HRR is carried out by proteins functioning, in concert to prevent genomic
instability and, consequently, apoptosis or tumorigenic alterations. RAD51 plays a
central role in recombination, coordinating factors involved in DNA repair, tran-
scription, replication, and cell cycle progression. RAD51 interacts directly with TP53
but also with BRCA 1 and 2 (Baumann andWest 1998). BRCA 1 and 2 are two tumor
suppressor proteins involved in HRR mechanisms, which genes are located on
chromosome 17 and 13, respectively. BRCA1 binds directly to DSBs and, after
being phosphorylated by CHK2, it is required for RAD51 recruitment to the sites of
DNA damage through its interactions with PALB2 and BRCA2; conversely,
BRCA2 contains a DNA-binding domain (DBD) and a binding domain for
RAD51, being the direct link between BRCA1-PALB2-BRCA2 complex and
RAD51 itself (Roy et al. 2012). Other genes involved in HRR are ATM, BARD1,
and BRIP1, which play different roles at different levels of the pathway. HRD is a
well-established pathogenetic mechanism involved in EOC. The most common
alterations in HGSOCs are germline (~20%) and somatic (<10%) mutations in
BRCA1 and/or 2 genes, being BRCA1 mutations more frequent than BRCA2 ones
(Konstantinopoulos et al. 2015).

BRCA germline pathogenic mutations, also called “deleterious”mutations, deter-
mine the inactivation of BRCA1 and/or BRCA2 proteins (“loss of function”), thus
causing hereditary breast–OC syndromes (HBOC). These genetic alterations consist
of nonsense mutations, small insertion or deletions, but also larger gene
rearrangements.However, not all mutations are pathogenic: the so-called neutral or
not pathogenic mutations could be both common single nucleotide polymorphisms
and rare variants, but not associated with ovarian and breast cancer risk, most likely
because they do not affect protein structure and function. A “grey zone” is
characterized by variants of unknown significance, which have undefined/unre-
ported risk of ovarian and breast cancer: subjects harboring them should be assessed
for risk in the light of personal and family history (Lindor et al. 2012). Despite
playing similar roles in HRR pathway, it is well known that BRCA1 and BRCA2
germline mutation carriers have different cumulative risk of breast and OC (47–66%
and 35–46% for BRCA1 and 40–57% and 13–23% for BRCA2 carriers, respectively)
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(Chen and Parmigiani 2007). Furthermore, there are different types of breast cancer
in the two groups, being triple negative tumors more frequent in BRCA1, suggesting
divergent pathogenetic pathways, affecting different cell types and/or cellular dif-
ferentiation potentials, underlining a non-superimposable role of the two proteins
(Roy et al. 2012). Germline mutations in other genes involved in HRR pathway,
such as BARD1, BRIP1, CHEK1/2, PALB2, and RAD51, have been reported,
altogether accounting for about 25% of all germline mutations discovered to date
(Pennington et al. 2014). Somatic mutations in BRCA genes are less frequent than
germline ones and it is not clear if they should be considered comparable on the
prognostic point of view (Moschetta et al. 2016). Somatic alterations in other genes,
such as CHEK2, ATM, and BRIP-1, are also responsible for HRD in OC (Pennington
et al. 2014). HRD causes “genomic scar signatures,” which are epiphenomenon of
DSBs: loss of heterozygosity, telomeric allelic imbalance, and large-scale state
transitions; all these alterations could be identified and classified through ad hoc
HRD scores (Telli et al. 2016). HRR pathway became quickly an interesting target
for drug development; however, unexpectedly, a different class of therapeutic
molecules showed activity in HRD cell lines: PARP inhibitors (Drew 2015).
PARPs belong to a family of enzymes that transfer poly(ADP-ribose) from
nicotinamide-adenine dinucleotide on a variety of target proteins; this activity is
also known as PARylation. PARP-1, the most important in eukaryotes, plays a
central role in DNA damage response signaling (Eustermann et al. 2015). However,
differently from HR pathway, PARP-1 is involved in DNA single-strand breaks
(SSBs) repair: it is a sensor of SSBs by direct binding of damaged DNA sites and it
activates (through PARylation) repairing enzymes such as DNA topoisomerases,
DNA helicases, and base-excision repair factors (Schreiber et al. 2006).

PARP inhibitors have been developed in order to facilitate the accumulation of
SSBs, thus killing tumoral cells. Intriguingly, BRCA mutated cell lines showed an
extremely high sensitivity to PARP inhibitors if compared to BRCA wild-type ones,
unveiling a new combination strategy in OC (Javle and Curtin 2011). This mecha-
nism is called “synthetic lethality,” which means that two genes are lethal when both
are mutated/inactivated while the alteration of only one of them is compatible with
cell viability (Kaelin 2005). In the case of PARP inhibitor and BRCA mutation, the
synthetic lethality takes place by the sum of SSBs, due to the trapping of PARP-1 by
the inhibitor that hesitates in the stalled replication forks and DSBs. These last ones
cannot be repaired due to loss of function of BRCA; therefore, PARP inhibition
results in chromosomal instability, cell cycle arrest and, lastly, cell death (Farmer
et al. 2005). Several PARP inhibitors have reached human testing: olaparib,
niraparib, veliparib, rucaparib, and talazoparib; they are all small molecules
administered orally, but differ in target affinity, with talazoparib showing the highest
PARP trapping potency, and also in pharmacokinetics, such as half-life and metab-
olism (Murthy and Muggia 2019).
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2.3.2 The Emerging Role of Immunotherapy in Ovarian Cancer

EOCs have been classically regarded as poorly immunogenic tumors, in the past.
However, a subset of EOC seems to exhibit molecular features of some kind of
immune-regulation, with higher mutational load and brisk tumor-infiltrating
lymphocytes (TILs) (Goodell et al. 2006). HGSOC is a genomically unstable
disease, particularly when presenting deficits of the DNA repair system—mainly
BRCA1/2 disruptions and other HRD (Strickland et al. 2016). For patients presenting
with tumors enriched of tumor infiltrating immune-competent cells or TILs, a better
prognosis has been demonstrated (Zhang et al. 2003); however, when the immune
response is set on the immunosuppressive phenotype, the resulting milieu seems to
favor the tumor progression, and impair the overall prognosis of patients
(Gabrilovich and Nagaraj 2009). Multiple attempts of immunotherapy agents to
treat EOC have been provided, mainly in early clinical trials, to study the role and
impact of immune-checkpoint inhibitors in various settings of care. The use of the
anti-PD1 immune-therapeutics in unselected patients has resulted in poor disease
control, with 10–15% objective response (ORR) and short PFS survival rates
(between 1 and 3 months) (Brahmer et al. 2012; Matulonis et al. 2019; Varga
et al. 2019). Only a trend for improved outcome survival has been so far reported
with the use of PD-L1 as a predictive biomarker, in the KEYNOTE-100 trial
(Matulonis et al. 2019). This phase 2 clinical trial enrolled patients with OC in two
distinct cohorts to receive pembrolizumab: one pre-treated with �3 lines of therapy,
and the second with heavily pretreated patients. The ORR did not significantly differ
between the two cohorts, ranging between 7.4% and 9.9%, with PFS of 2.1 months.
The patients were stratified for the PD-L1 expression, using the combined positive
score (CPS) assessment. CPS is calculated by counting the number of PD-L1-
positive cells (immune-competent plus tumor cells) divided by the total number of
viable tumor cells and multiplied by 100, aiming to capture the relative staining
density of immune-competent cells—namely the effectors of the response. Patients
with a PD-L1 CPS < 1.5 experienced an ORR of 4.1% and patients with CPS � 10
reported 10% ORR. Concretely, the CPS seems to poorly skim the population
deriving the greatest benefit from immunotherapy, in this setting. A similar result
has been observed with the use of the anti-PDL1 avelumab in the OC cohort of the
JAVELIN master protocol (Mazzarella et al. 2020). In this clinical trial, the use of
the monoclonal antibody avelumab resulted in an ORR of 9.7%: in the PD-L1
positive tumors, the response rates resulted slightly increased against the PD-L1
negative tumors, 12.3% vs 5.9%, respectively (Disis et al. 2019). The PD-L1
staining was reported in JAVELIN by assessing the percentage of tumor cell positive
to PD-L1. In the attempt to potentiate the benefit with immunotherapy, combination
strategies have been implemented. The escalation of chemotherapy regimens with
immunotherapy has been explored in the study JAVELIN 200, a phase 3 trial
enrolling patients with platinum-resistant OC, randomized to receive the standard
treatment with chemotherapy (pegylated liposomal doxorubicin), avelumab, or their
combination (Pujade-Lauraine et al. 2019). The study did not show an improvement
in responses and survival outcomes with the combination regimen. However,
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analysis of enrichment of the population by using the PD-L1 biomarker (as CPS)
showed an improvement of the ORR: 18.5% and 3.4% in the positive and negative
subgroups, respectively, with slight improvement in PFS (3.7 vs 3.0 months, Hazard
Ratio (HR): 0.65) and OS (17.7 vs 13.1 months, HR: 0.72).

The experience with immunotherapy in OC, across diverse settings and platinum
sensitivity, seems to be overall disappointing. Accordingly, the identification of
biomarkers has been identified as a priority area in the research for OC, as the
several declinations of PD-L1 positivity (e.g., proportional scores or absolute scores
for positive staining) seem to reveal an imperfect predictive potential to identify the
patients deriving large benefits from immunotherapy. Histology can also function as
a biomarker per se. Some histological variants of EOC seem to retain an intrinsic
immunogenicity, as observed for the CCO. As described above, CCO present with
an immune-enhancing MSI-like phenotype related to the ARID1A alterations. In
KEYNOTE-100 clinical trial, investigators provided a subgroup analysis for patients
with clear cell tumors (Matulonis et al. 2019). Authors showed a higher ORR in
patients with CCO (n ¼ 19 patients), that was 15.8%—including one complete
response—suggesting some potentiality of the histology to inform the treatment
choice and anticipate the benefits with immunotherapy.

The drug development of immunotherapy for OC should be oriented to the
identification of enrichment biomarkers beyond histological types, to storm the
intrinsic immunogenic nature of a subgroup of patients and enhance an effective
immune-response. Potential biomarkers of clinical utility have been suggested. The
positive prognostic role of the TILs and the instrumental role of the T-cells as
effectors of the anti-tumor response have suggested using TILs as possible bio-
marker of treatment response. While the presence of TILs is not expected alone to
dictate the immune-response, a detailed characterization of the TILs phenotype and
the identification of the milieu—immune-stimulating vs immune-suppressive—can
aid in the identification of patients at a higher chance to respond to treatment,
integrating the information provided by the PD-L1. Additionally, the description
of an immunogenic subtype of OC may be critical to understand which patients are
more likely to benefit from immunotherapy. In analogy with other tumor types, the
use of the neoantigen load or tumor mutational burden and the identification of a
hyper-mutating phenotype, like in patients with MSI (e.g., Lynch syndrome) may be
critical to refine the patients’ selection (Fancello et al. 2019). Even if the research on
immunotherapy and OC seems not immediately close to the definition of a new
treatment paradigm for patients, the formulation of a multifactorial predictive tool
should be prioritized in clinical research, to result in an impact on the patients’
outcome.
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2.4 Current Clinical Management of Epithelial Ovarian Cancer

2.4.1 Localized Disease

2.4.1.1 Curative Surgery
Unfortunately, more than two-thirds of patients affected by malignant ovarian
tumors are diagnosed at an advanced stage (Trimbos 2000). Nevertheless, surgery
plays a crucial role in the management of this tumor regardless of the stage of
disease, with either diagnostic (i.e., in case of suspicious pelvic mass), staging, and
therapeutic aims (Cannistra 2004). According to international guidelines (NCCN
guidelines 2020; Ledermann et al. 2013), the standard surgical approach to radically
manage EOC is via open surgery, carried out in expert centers by trained
gynecologist-oncologists. In the early stages (FIGO I-IIA), which represent almost
20% of EOC at diagnosis, the aim of surgery is to radically remove the tumor and
undertake adequate staging, alongside with a macroscopic complete exploration of
the abdominal-pelvic peritoneal cavity and the reduction of the risk of the rupture of
the primary tumor during its removal. This approach includes hysterectomy with
bilateral salpingo-oophorectomy, omentectomy (infracolic or total, if the omentum is
or not macroscopically involved), lymph-node dissection of the pelvic and the para-
aortic regions up to the left renal vein origin, appendicectomy (in case of mucinous
histology), peritoneal washing, and multiple peritoneal biopsies. Up to date, the
value of performing a complete abdominal and pelvic lymphadenectomy to all the
patients is debated. Patients managed for stage IIB-IV with macroscopically resected
tumors and normal intra-abdominal lymph nodes seem to derive no adjunctive
benefit from the systematic pelvic and para-aortic lymphadenectomy (LION trial)
(Harter et al. 2019). The laparoscopic approach could be considered only in selected
patients, to reduce the risk of post-operative complications, exclusively if it allows
adequate staging. Additionally, a minimally-invasive surgical approach can increase
the risk of rupture of the tumor capsule, with spillage of cancer cells, resulting in an
up-staging, based on the FIGO staging system, thus affecting negatively the prog-
nosis (Park et al. 2013). In case of younger patients, wishing to pursue a fertility-
sparing strategy, a surgery that preserves the uterus and contralateral ovary can be
considered only for low risk ovarian tumors, such as borderline tumors, well
differentiated tumors, early stage tumors (IA and some IC tumors, but not IB
[bilateral tumor] FIGO stage) and favorable histology (serous, MOC, endometroid
subtype) (Bentivegna et al. 2016).

2.4.1.2 Adjuvant Therapy
In the early EOC stages, the prognosis is typically good and the relapse rate is
25–30%. Despite the surgical approach remains the cornerstone in this setting, the
addiction of adjuvant platinum-based chemotherapy has demonstrated to prolong
long-term OS and PFS in these patients (HR: 0.71 and 0.67, respectively) (Lawrie
et al. 2015), especially in those patients who received a suboptimal-staging and in
some specific histological subgroups. Multivariate analyses have shown that some
clinical (such as age and the presence of ascites) and pathological characteristics
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(such as grade of differentiation, FIGO substage, histological type, the rupture of the
tumor capsule, and the extracapsular tumor growth) are independent prognostic
factor (Lawrie et al. 2015). In particular, the tumor grading (well, moderately, and
poorly differentiated) has been identified as the most important prognostic factor
related of disease-free survival (Vergote et al. 2001).

Therefore, in order to stratify the risk of relapse for each patient and do a better
selection of patients who benefit more from adjuvant chemotherapy, we should
consider a score including the histology of the tumor (serous versus CCO or
endometroid or MOC), the tumor grading, and the FIGO stage. Patients with “low
risk” (FIGO stage IA-B G1) and “intermediate risk” (FIGO stage IA-IB G2, IC G1)
have an excellent prognosis (surgery is curative in 95% of cases), if well staged; in
those patients, adjuvant chemotherapy has not shown a benefit if compared with
surgery alone (Collinson et al. 2014). On the other hand, adjuvant chemotherapy
should be offered to “high risk” patients (FIGO IC G2, any patient with grade
3 tumor, stage IC clear cell histology, stage IIA) (Trimbos et al. 2003). ACTION
(Trimbos et al. 2010) and ICON-1 (Trimbos et al. 2003) studies are the two landmark
randomized clinical trials in this setting. They compared the use of platinum-based
adjuvant chemotherapy versus observation alone in early EOC.The ACTION trial,
after a median follow-up time of 10.1 years, showed that recurrence free survival
(RFS) was improved in the group of patients who received chemotherapy versus
observation alone (70% vs 62%). However, the difference in OS was not statistically
significant and the benefit of adjuvant therapy appeared to be limited to patients who
had received suboptimal surgical staging (Trimbos et al. 2010). In a subgroup
analysis of ICON-1 trial, a statistically difference in RFS and OS was observed in
the group who received chemotherapy, but only in patients with high-risk early stage
disease (Colombo et al. 2003). Additionally, combined analysis of both studies
showed encouraging results in 5-years OS rate for adjuvant chemotherapy over
observation (82% vs 74%) (Colombo and Pecorelli 2003).

Therefore, according to international guidelines (NCCN guidelines 2020),
carboplatin monotherapy (six cycles) or the combination of carboplatin/paclitaxel
(three–six cycles) is the standard of care for the adjuvant treatment, even if no data
suggest that the combination therapy is superior to monotherapy, and there are no
clinical trial comparing the two treatments. The optimal duration of adjuvant che-
motherapy remains unclear. In GOG 157 trial, 427 patients with stage I–II were
randomized to receive three or six cycles of carboplatin/paclitaxel; the six cycles
treatment was not associated with significant reduction in recurrence risk, resulting
in additional toxicity (Bell et al. 2006). A subsequent unplanned analysis revealed
that longer adjuvant therapy was associated with a significant reduction in recurrence
risk only for high-grade serous histology (Chan et al. 2010).

Regarding rare EOC subtypes, the role of adjuvant or neoadjuvant platinum-
based treatment is controversial, because of the few cases of LGSOC included in the
landmark trials (Trimbos et al. 2003, 2010) and the chemoresistance of LGSOC with
an ORR of ~4%. Additionally, no dedicated prospective and randomized clinical
trials are available in this setting for LGSOC and the majority of the evidences came
from retrospective analysis. Regarding MOC, the benefit derived from the adjuvant
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platinum-based chemotherapy is controversial too for the same reasons. Like adju-
vant treatment, also the use of bevacizumab is derived from trials that mostly
included HGSOC with a low prevalence of MOCs (Perren et al. 2011). In general,
MOCs are considered chemoresistant since they show a range in ORR of 12–35%. In
conclusion, the choice of adjuvant chemotherapy should be based on the risk of
recurrence assessment. Carboplatin monotherapy (six cycles) or the combination of
carboplatin/paclitaxel (three–six cycles) are the possible choice, according to
patient’s profile.

2.4.2 Advanced Disease: State of the Art

2.4.2.1 Role of Surgery in Advanced Disease
An accurate pre-operative staging of disease is essential in advanced EOC in order to
define the best management. Indeed, the standard of care in this setting is the
up-front maximal debulking surgery followed by carboplatin/paclitaxel chemother-
apy (du Bois et al. 2005). Therefore, patients with good performance status are
candidates for up-front debulking surgery in the absence of diffuse infiltration of
small bowel mesentery, diffuse carcinomatosis of the small bowel-involving such
large parts that resection would lead to a short bowel syndrome-, involvement of
stomach, duodenum, or pancreas, non-resectable lymph nodes, multiple
unresectable liver or lung metastasis or brain metastasis (Querleu et al. 2017). The
main goal of surgery in this setting, indeed, is to achieve a complete cytoreduction,
with the resection of all macroscopic disease, being the most important independent
prognostic factor for those patients (du Bois et al. 2009). Up to date, according to the
ESMO-ESGO consensus conference recommendations, based on retrospective
analyses (Colombo et al. 2019), there is no evidence of OS benefit in relation to
residual disease (if > or <1 cm). Therefore, the optimal cytoreduction is now
defined as no macroscopic visible disease, with no dimensional metric of reference.
Another debated question is the role of pelvic and para-aortic lymphadenectomy in
advanced disease: in the LION trial, patients with macroscopically resected
advanced tumors and normal intrabdominal lymph nodes seemed to derive no
adjunctive benefit in OS and PFS from the systematic pelvic and para-aortic
lymphadenectomy, with similar quality of life (Harter et al. 2019). Finally, surgical
cytoreduction has a role also in recurrence disease. Intraperitoneal relapses represent
the majority of cases of recurrence and the aim of surgery in this setting is to achieve
a complete secondary cytoreduction (Berek et al. 1983). Several clinical trials have
been conducted to identify the best criteria to define the complete cytoreduction and
inform on the patients’ selection for secondary cytoreduction. The AGO DESKTOP
OVAR I trial allowed to identify three predictive factors of complete response: good
performance status according to ECOG scale, macroscopically complete resection at
first surgery, and absence of ascites greater than 500 ml (i.e., AGO-OVAR score)
(Harter et al. 2006). More recently, the AGO DESKTOP III trial prospectively
randomized patients with first recurrence of platinum-sensitive OC (PFI � 6
months), who have received a complete primary resection and who show an AGO
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positive score (i.e., resectability is assumed, based on the AGO-OVAR score), to
perform secondary cytoreductive surgery followed by chemotherapy or chemother-
apy upfront. The trial showed that the secondary cytoreduction was able to improve
OS (53.7 vs 46.2 months in the surgical and control arm, respectively; HR: 0.76, p:
0.03) and PFS (18.4 vs 14 months in the surgical and control arm, respectively; HR:
0.66; p < 0.001) (du Bois et al. 2020). In contrast, the GOG 213 failed to demon-
strate a PFS or OS advantage in patients with recurrence platinum-sensitive EOC
randomized to receive standard chemotherapy plus bevacizumab with or without
surgery. It should be noted that patients in this trial were not systematically selected
and the complete resection was lower than AGO DESKTOP III trial (64% vs 72.5%)
(Coleman et al. 2018). At least, surgery is also indicated in metastatic disease to
control of urinary symptoms and in palliation of malignant bowel obstruction.

2.4.2.2 Neoadjuvant Therapy
The administration of a primary systemic treatment before the radical surgery for
patients with EOC has been for long time viewed as controversial, for the contrasting
results from clinical trials. The neoadjuvant chemotherapy followed by “interval
surgery” in this field has narrow indications, due to the critical role of frontline
surgery in curing patients. The quality of surgery and the maximal cytoreduction, in
fact, are the most relevant prognostic factors in women with OC (Brand et al. 2017).
Accordingly, some gynecology-oncologist have been skeptical on the true impact of
a pre-surgical treatment, especially for the fear of a cancer progression resulting in a
reduced chance to obtain a radical surgery. Currently, the indication for a
neoadjuvant treatment is established after a surgical evaluation, in selected women
in whom an optimal cytoreduction is less likely to be reached with the frontline
surgery: in such a context, the chemotherapy may shrink the tumor and facilitate the
subsequent radical excision (NCCN guidelines 2020). The choice of a neoadjuvant
approach commonly regards patients presenting with FIGO III or IV disease. In
addition, patients who are poor candidates to surgery may be considered for primary
chemotherapy and subsequent surgical re-assessment, for procedural eligibility.

Clinical studies on the neoadjuvant chemotherapy converge on the notion that
primary surgery followed by adjuvant treatment and primary neoadjuvant chemo-
therapy followed by interval surgery can result in similar survival outcomes. The
randomized phase III clinical trials CHORUS and EORTC 55971 were designed to
respond to this research question (Vergote et al. 2018). Patients presenting with stage
IIIA to IV invasive EOC, primary peritoneal, or fallopian tube carcinoma were
randomized to receive neoadjuvant or surgery, as initial treatment. The
non-inferiority preplanned pooled analysis of these two trials reported a similar
outcome with the two alternative initial approaches of treatment. The median OS
described is 27.6 months (14.1–51.3 months) vs 26.9 months (12.7–50.1 months),
with an HR of 0.97 ( p ¼ 0.586). PFS was 11.6 months (7.9–17.7 months) and 11.1
months (6.4–17.5 months), respectively, with a HR of 0.98 ( p ¼ 0.688). The
subgroup of patients with stage IV disease seemed to derive the greatest benefit
from the primary systemic treatment. In fact, for stage IV patients (i.e., extra-
abdominal seeding), PFS was 10.6 (7.9–15.0 months) vs 9.7 months (5.2–13.2
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months), HR: 0.77 ( p¼ 0.049) and OS was 24.3 months (14.1–47.6 months) vs 21.2
months (10.0–36.4 months), HR: 0.76 ( p ¼ 0.048), respectively. In addition, one
Cochrane meta-analysis investigated the role of neoadjuvant chemotherapy in EOC
(Coleridge et al. 2019). The study concluded that patients who are given chemother-
apy prior to surgery derive no added benefit, in respect to the OS or PFS. However,
the study also suggested speculatively that the chemotherapy-first approach could
reduce some surgical complications and possibly improve the quality of life. The
controversies around the neoadjuvant therapy in EOC and the critical role of an
optimal and timely surgical debulking still limit the broad application of the chemo-
therapy—first approach in the clinical practice. According to the international
guidelines for the treatment of OC (NCCN guidelines 2020), neoadjuvant chemo-
therapy can be considered when the surgical option is excluded, in patients with poor
performance status, high anesthesiologic risk, presenting with abdominal seeding
and in any case when the disease is not amenable to optimal primary cytoreduction,
based on the surgical assessment.

2.4.2.3 Chemotherapy in the First-Line Setting
According to international guidelines (NCCN guidelines 2020), a first-line chemo-
therapy with carboplatin area under the curve (AUC) 5 and paclitaxel every 3 weeks
for six cycles has been considered the standard of care in case of EOC in advanced
stages (II–IV FIGO) for a long time (Piccart et al. 2000). However, despite the
treatments, the recurrence rate is high for those patients (70–80% within 2 years).
Therefore, over the last decades, the research has focused on different strategies able
to overcome this limit, including the evaluation of three-drug chemotherapy
regimens, weekly schedules, or by using novel associations. More in detail, the
phase III ICON-5 trial, which evaluated paclitaxel and carboplatin versus
combinations with gemcitabine, pegylated (PEG)-liposomal doxorubicin or
topotecan, failed to show a benefit from the addition of another drug to the doublet
carboplatin plus paclitaxel (Bookman et al. 2009). Likewise, the AGO-OVAR trial
showed no benefit from the addition of topotecan following carboplatin and pacli-
taxel (Pfisterer et al. 2006). Regarding the use of new doublets, the MITO-2 trial
investigated the efficacy of carboplatin plus PEG-liposomal doxorubicin versus
carboplatin plus paclitaxel in 820 patients in this setting (Pignata et al. 2011).
However, even if the trial is formally negative, showing no improvement in PFS
in the experimental arm (PFS: 19 vs 16.8 months, respectively, p: 0.58; OS: 61.6 vs
53.2 months, p ¼ 0.32), the schedule showed manageable toxicities and safety
profile. Therefore, it might be considered an alternative treatment option in case of
contraindications or non-tolerability to taxanes. The SCOTROC trial evaluated the
use of carboplatin plus docetaxel, failing to show a significant improvement of the
outcome in this setting along with an adverse safety profile (Vasey et al. 2004).

Regarding the timing, the phase III MITO-7 trial investigated a weekly schedule
with carboplatin AUC2 and paclitaxel (60 mg/mq), comparing it to the standard of
care schedule, every 3 weeks (Pignata et al. 2014). The trial did not show to improve
the PFS in this setting (17.3 months vs 18.3 months, p¼ 0.66); however, the patients
in the experimental arm showed a better quality of life if compared with the control
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arm, suggesting that a weekly regimen can be considered in some cases. Recently,
the phase III ICON-8 trial failed to improve the outcome in this setting by using
alternative schedules (Clamp et al. 2019). It compared three arms (carboplatin AUC
5 or 6 every 3 weeks plus paclitaxel 80 mg/mq weekly; carboplatin AUC 2 and
paclitaxel 80 mg/mq weekly; standard of care) and showed no improvement in PFS
(17.7, 21, and 20.8 months, respectively; p ¼ 0.51). Interestingly, the ICON-7 and
GOG-218 trial (Burger et al. 2011; Perren et al. 2011) were the first phase III trial to
demonstrate a benefit by adding a biological agent—the antivascular monoclonal
antibody bevacizumab—to the standard carboplatin plus paclitaxel doublet. The
findings were especially relevant in patients with high risk of relapse after surgery
(stage IV, stage III underwent suboptimal debulking, patients with inoperable
disease). Therefore, up to date, the treatment with carboplatin AUC 5 plus paclitaxel
and bevacizumab every 3 weeks represents the standard of care in this setting. For
additional details regarding the use of biological agent in EOC, see the Sect. 4.2.2
below. The treatment of some rare histology subtypes may differ slightly, in the
current practice. For instance, in patients with advanced or metastatic LGSOC, the
treatment options include the standard platinum-based chemotherapy with
bevacizumab or endocrine treatment with aromatase inhibitor until disease progres-
sion or toxicity. One way utilized to improve the patients’ outcome has been through
an alternative delivery of the drugs using intraperitoneal chemotherapy. The GOG
104 (Alberts et al. 1996), GOG 114 (Markman et al. 2001), and GOG
172 (Armstrong et al. 2006) showed a benefit in OS and PFS with the use of
intraperitoneal cisplatin-based chemotherapy in this setting, so the FDA approved
this approach in patients with stage III EOC who underwent complete resection.
However, the high rate of toxicities that lead to discontinuation of treatment is the
most important barrier to the diffusion of this approach, along with the procedural
complexity not universally available. Finally, the GOG 252 trial compared a stan-
dard intravenous chemotherapy (with or without bevacizumab) with the intraperito-
neal chemotherapy with bevacizumab, showing no benefit for the experimental arm
(Walker et al. 2019). Therefore, its use in EOC is still debated. In conclusion,
according to international guidelines (NCCN guidelines 2020), carboplatin plus
paclitaxel and bevacizumab should be considered the standard of care treatment in
patients with EOC, mainly if presenting high-risk characteristics. In all the other
patients, carboplatin AUC5 plus paclitaxel every 3 weeks for six cycles can be
considered the first choice; a weekly schedule with carboplatin AUC2 and paclitaxel
(60 mg/mq) or 3-weekly carboplatin AUC 5 plus weekly paclitaxel (80 mg/mq) are
valid alternatives. In patients with poorer performance status, a first-line chemother-
apy with a single agent (carboplatin) or all-weekly (i.e., MITO-7) (Pignata et al.
2014) schedule could be the alternative option. Figure 2.1 summarizes a possible
treatment algorithm for advanced epithelial OCs, starting from the first line and
according to the “continuum of care.”
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2.4.3 The Role of Biological Agents in the Treatment of Epithelial
Ovarian Cancer

Biological agents approved by FDA for the treatment of locally advanced/metastatic
EOC belong to two classes: antiangiogenic drugs (bevacizumab) and PARP
inhibitors (olaparib and niraparib). Other biological agents investigated in the field
of EOC are pazopanib and MEK inhibitors; these agents are not approved up to date.

2.4.3.1 Antiangiogenic Drugs
The most important antiangiogenic drugs tested in the EOC field are bevacizumab
and pazopanib. Bevacizumab is a humanized monoclonal antibody binding
circulating vascular endothelial growth factor A (VEGF-A), thus preventing the
activation of its receptor, VEGFR, and, consequently dampening the
neoangiogenesis, which is one of the hallmarks of cancer (Ferrara et al. 2004). In
OC, VEGF plays a major pathogenetic role, since it is overexpressed virtually in all
patients; it is associated with neoplastic ascites and it correlates with prognosis
(Colombo et al. 2016). To date, bevacizumab is the only antiangiogenic drug
approved in the field of EOC, even if other molecules, namely TKI, are currently
under investigation (Ntanasis-Stathopoulos et al. 2016). After encouraging data from
phase II clinical trials, bevacizumab was tested in with first-line setting in two phase
III clinical trials: the GOG-0218 trial, which included incompletely resected stage III
or stage IV patients (Burger et al. 2011), and the ICON-7, which included stage I or
IIA grade 3/stage IIB-IV/CCO patients (Perren et al. 2011). In both trials, six cycles
of carboplatin (AUC 5–6) and paclitaxel (175 mg/m2) every 3 weeks were
administered. Bevacizumab (15 mg/kg in GOG-0218 and 7.5 mg/Kg in ICON-7
trial) was administered every 3 weeks from cycle 2 (or cycle 1, in ICON-7 trial, only
if chemotherapy was started within 4 weeks from surgery) to 6 in addition to
chemotherapy and then as single agent maintenance for maximum 22 cycles. A
statistically significant increment in PFS was obtained in both trials (HR: 0.72 and
0.81, respectively), but no statistically significant improvement in OS was reported;
however, first-line PFS was argued as a better endpoint than OS in EOC, since a
prolonged PFS means delayed onset of symptoms and possibly better quality of life.
In addition, OS is affected by post-recurrence/progression therapies (Colombo et al.
2016). Bevacizumab was also tested in recurrent EOC, in both platinum-resistant
and platinum-sensitive setting. The phase III AURELIA trial showed a modest
improvement of PFS in platinum-resistant, bevacizumab-naïve patients treated
with chemotherapy (weekly paclitaxel/topotecan or PEG-liposomal doxorubicin)
and bevacizumab (15 mg/kg every 3 weeks) versus patients treated with chemother-
apy alone (PFS: 6.7 vs 3.4 months) (Pujade-Lauraine et al. 2014). On the other hand,
the phase III trials OCEANS and GOG-0213 showed better outcome in platinum-
sensitive patients (>6 months of PFI) treated with chemotherapy (carboplatin plus
gemcitabine in OCEANS and carboplatin plus paclitaxel in GOG-0213 trial) and
bevacizumab (15 mg/kg every 3 weeks) versus chemotherapy alone (12.4 vs 8.4
months and 13.8 vs 10.4 months, respectively). Patients in OCEANS trial were all
bevacizumab-naïve, while 10% of GOG213 population had received anti-VEGF in
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previous treatment lines (Aghajanian et al. 2012; Coleman et al. 2017). The role of
bevacizumab beyond progression has been investigated starting from the assumption
that resistance to chemotherapy does not affect angiogenesis (Colombo et al. 2016).
The MITO 16B trial (NCT01802749) is investigating the role of bevacizumab in
platinum-sensitive recurrent EOC previously treated with bevacizumab in the first-
line setting (Pignata et al. 2018); it randomized patients to second line chemotherapy
(carboplatin plus gemcitabine) alone or in association with bevacizumab. Prelimi-
nary results showed a promising increase in PFS from 8.8 to 11.8 months (HR: 0.51,
p < 0.001); final results are awaited. Likewise, the phase II JGOG3023 trial,
evaluating the efficacy and safety of bevacizumab beyond progression, is currently
ongoing (Shoji et al. 2018). Therefore, the use of bevacizumab beyond progression
appears to be a promising strategy in recurrent EOC. Concerning toxicities,
bevacizumab is associated with increased incidence of hypertension, proteinuria,
and thromboembolism, and it affects wound healing. No detrimental effect on
quality of life has been reported in clinical trials (Colombo et al. 2016). Up to
date, FDA currently approved bevacizumab across different therapeutic settings:

1. in combination with carboplatin and paclitaxel followed by single agent
maintenance

2. in patients with stage III or IV EOC, fallopian tube, or primary peritoneal cancer
following initial surgical resection

3. in combination with carboplatin and paclitaxel or gemcitabine, followed by single
agent maintenance, in patients with platinum-sensitive recurrent EOC, fallopian
tube, or primary peritoneal cancer and

4. in combination with paclitaxel, PEG-liposomal doxorubicin, or topotecan, in
patients with platinum-resistant recurrent EOC, fallopian tube, or primary perito-
neal cancer who received no more than two prior chemotherapy regimens (FDA
2018).

Pazopanib is an oral inhibitor of VEGFR-1/2/3, PDGFR-α/β, c-Kit, and FGFR-1/
3 kinases, currently approved for advanced soft-tissue sarcoma and renal cell
carcinoma (Miyamoto et al. 2018). Pazopanib has been tested in combination with
paclitaxel versus paclitaxel single agent in platinum-resistant or refractory patients in
the randomized phase II MITO-11 trial, showing a benefit from the addition of
pazopanib (PFS: 6.35 vs 3.49 months in the experimental and control arm, respec-
tively) (Pignata et al. 2015). Pazopanib has also been tested as an agent for the
maintenance, in EOC patients after receiving and not progressed to first-line plati-
num-based chemotherapy. The AGO-OVAR16 phase III placebo-controlled
randomized clinical trial demonstrated a significant improvement in PFS with the
maintenance strategy (Vergote et al. 2019). However, no benefit on the OS was
reported. OS was 59.1 months in pazopanib and 64.0 months in placebo arm (HR:
0.960), respectively. Nevertheless, up to date, pazopanib is not approved for the use
in EOC patients, in any setting.
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2.4.4 PARP Inhibitors

This new class of oral drugs was primarily tested in recurrent EOC and, thereafter, in
first-line setting. Table 2.2 shows an overview of the landmark trials in this field.
First data about olaparib were published in 2009, with preliminary evidences of
activity in BRCA1/2 mutation carriers EOC patients (Fong et al. 2009). The Study
19 was the phase II, placebo-controlled trial to test olaparib [400 mg bis in die (BID)]
as maintenance treatment after first-line. The trial showed a median PFS of 8.4
months in the olaparib arm versus 4.8 months in the placebo arm, reaching 11.2 vs
4.3 months in BRCA mutated patients in a preplanned analysis (Ledermann et al.
2012). Another phase II trial—Study 12—tested olaparib (200 or 400 mg BID)
versus PEG-liposomal doxorubicin in patients with recurrent germline BRCA
mutated OC; median PFS was not different among the three arms (Kaye et al.
2012). The phase III SOLO-2 trial evaluated olaparib (300 mg BID tablet) as
maintenance treatment in platinum-sensitive relapsed OC patients with BRCA1/
2 mutations; median PFS was 19.1 vs 5.5 months, with an HR of 0.30 (Pujade-
Lauraine et al. 2017). The results from SOLO2, together with evidences from Study
19 (Ledermann et al. 2012), led to rapid approval by FDA, in August 2017, of
olaparib for the maintenance treatment of adult patients with recurrent HGSOC,
fallopian tube, or primary peritoneal cancer, who are in a complete or partial
response to platinum-based chemotherapy, regardless of BRCA mutation status
(FDA 2020a, b). Olaparib was subsequently tested as first-line maintenance therapy
in two phase III clinical trials. SOLO1 trial evaluated the efficacy of olaparib
(300 mg BID tablet) as maintenance therapy in patients with newly diagnosed
advanced HGSOC harboring BRCA mutations and experiencing a response to
platinum-based chemotherapy, showing a 70% reduction in risk of disease progres-
sion/death (HR 0.30, the same value of SOLO2 trial) (Moore et al. 2018). An add-on
strategy of olaparib to the standard of care maintenance after chemotherapy with
bevacizumab frontline was tested in the PAOLA-1 study. In PAOLA-1 trial, regard-
less of BRCA mutation status, all patients with HGSOC experiencing a response to
the first-line platinum- and bevacizumab-containing regimen were randomized (2:1)
to receive olaparib tablets (300 mg BID) versus placebo for up to 2 years
(Ray-Coquard et al. 2019). Of note, unlike the previous trials conducted in the
past, in this study all the patients received bevacizumab as first-line maintenance
therapy for up to 15 months. The trial showed valuable results in the overall
population, with the median PFS improved of +5.5 months (22.1 vs 16.6 months,
HR: 0.59). Additionally, there was a higher benefit in HRD patients (PFS: 37.2 vs
17.7 months, HR: 0.33) as well as in HRD patients excluding BRCAmutations (28.1
vs 16.6 months, HR: 0.43). The PAOLA-1 clinical trial did not respond to the
clinical question about the added value of olaparib towards bevacizumab, therefore
the value of these two agents in the maintenance setting is still debated.

Therefore, in May 2020, FDA approved olaparib plus bevacizumab as mainte-
nance treatment for ovarian, fallopian tube, or primary peritoneal cancers who are in
complete or partial response to first-line platinum-based chemotherapy and whose
cancer is associated with HRD positive status, defined by either a deleterious or
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suspected deleterious BRCA mutation, and/or genomic instability (FDA 2020a, b).
The FDA also approved Myriad myChoice® CDx (Myriad Genetic Laboratories,
Inc.) an NGS-based companion diagnostic for olaparib, for the assessment of the
genomic instability on the tumor tissue. The main toxicities of olaparib reported
from the trials are nausea (70%) and vomiting (30%), fatigue (61%, G3-4: 5%),
anemia (35%, G3-4: 16%), diarrhea (30%), and neutropenia (15%). In general,
olaparib could be considered a manageable agent, but toxicities should be optimally
managed by clinicians to improve drug compliance (Ricci et al. 2020). It should be
noted that, in order to obtain exposure equivalence, olaparib 100 mg tablets and
50 mg capsules have different daily dosing, being 300 mg BID and 400 mg BID,
respectively (Mateo et al. 2016). Accordingly, the substitution of capsule and tablets
should not be based on the total dose consideration only, but also on the
formulation used.

The phase III NOVA trial assessed the efficacy of niraparib versus placebo as
maintenance treatment in platinum-sensitive recurrent HGSOC patients; the study
population was categorized according to presence or absence of germline BRCA
mutations. Niraparib (300 mg/die) showed to improve PFS in all three predefined
primary efficacy populations. In particular, in the germline-mutated BRCA cohort the
PFS was prolonged from 5.5 to 21 months (HR: 0.27), in the non-germline-mutated
BRCA HRD cohort from 3.8 to 12.9 months (HR: 0.38), and in the overall
non-germinal mutated BRCA cohort from 3.9 to 9.3 months (HR: 0.45) (Mirza
et al. 2016). This study led to approval of niraparib as maintenance therapy in
recurrent platinum-sensitive HGSOC patients who showed a complete or partial
tumor response to platinum-based chemotherapy for recurrence disease, regardless
of BRCA mutation status (FDA 2020a, b). Niraparib was also tested in newly
diagnosed advanced HGSOC patients after a response to first-line platinum-based
chemotherapy in the phase III PRIMA trial. In the trial PFS was prolonged from 8.2
to 13.8 months (HR: 0.62) and from 10.4 to 21.9 months (HR: 0.43) in the overall
and in HDR population, respectively; data for OS are still immature (González-
Martín et al. 2019a, b). In April 2020, FDA approved niraparib for the maintenance
treatment of adult patients with advanced EOC, fallopian tube, or primary peritoneal
cancer who had a complete or partial response to first-line platinum-based chemo-
therapy (FDA 2020a, b). Niraparib has a safety profile similar to olaparib, but with a
higher incidence of thrombocytopenia.

Another PARP inhibitor, veliparib, was recently tested in the placebo-controlled
phase III VELIA trial (Coleman et al. 2019). In this trial, patients with previously
untreated stage III/IV HGSOC received veliparib or placebo during chemotherapy
with or without a subsequent maintenance phase. A prolonged PFS was observed in
the BRCA mutated cohort (34.7 vs 22 months in the experimental and control arm,
respectively; HR: 0.44), in the HRD cohort (31.9 vs 20.5 months; HR: 0.57) as well
as in the overall population (23.5 vs 17.3 months; HR: 0.68). However, the role of
veliparib added to chemotherapy (carboplatin was reduced per protocol to minimize
additive hematologic toxicities) is still to define and, up to date, veliparib has not
been approved yet by FDA.

The evolving landscape of PARP inhibitors in the treatment of HGSOC
introduced new treatment options but also new complexities in the treatment-
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decision making. With multiple companion diagnostics emerging for the single
molecules and different predictive biomarkers for response, and their possible
overlapping areas, a harmonization process in research is highly warranted. Eventu-
ally, the capacity of these agents to improve OS has not yet been reported, deserving
precautions in the interpretation of the final data.

2.4.4.1 MEK Inhibitors
MAPK signaling pathway is involved in cell survival and proliferation, and its
pathological activation could sustain cancer cell growth (Karin 2001). Among
kinases, MEK1/2 (mitogen-activated protein kinase kinase) is considered as princi-
pal effector, thus representing a potential bottleneck of the pathway (Zhao and Adjei
2014). Several MEK inhibitors have been developed and subsequently tested in
human cancer. Concerning EOC, they have been mainly studied in rare histotypes,
such as LGSOC.

The first MEK inhibitor evaluated in an entire LGSOC population after recur-
rence of disease was the selumetinib. The trial involved 52 patients and showed very
promising results, with 80% disease control rate, PFS of 11 months, and good
tolerability. However, there was no association between MEK alteration and
response to treatment and, therefore, no prognostic or predictive biomarkers were
identified (Farley et al. 2013). Then, a phase II trial evaluated the activity of the MEK
inhibitor pimasertib with or without a PI3K/mTOR inhibitor (voxtalisib) in
65 patients with serous borderline tumors or LGSOC. Unfortunately, the trial was
stopped earlier for futility since it showed similar responses in both arms (12.5% vs
9.4% in the combination and single arm, respectively) (NCT01936363), as well as
the phase III trial MILO/ENGOT-OV11 which tested the MEK inhibitor binimetinib
in this setting (Grisham et al. 2019). Additionally, a phase II/III trial randomized
260 patients with recurrent LGSOC to receive the MEK inhibitor trametinib or
standard chemotherapy. The recently presented preliminary results showed signifi-
cant improvement in PFS (13 vs 7.2 months, p < 0.0001), OS (37 months vs 29.2
months), and responses (26.2% vs 6.2%) for the experimental arm with good
tolerability (Gershenson et al. 2019). However, final results as well as the paper in
extenso are awaited before introducing trametinib in clinical practice.

2.4.5 Chemotherapy After Recurrence

Unfortunately, the majority of patients show a recurrence after first-line treatments
(70–80%). A recurrence is defined as the evidence of relapse of disease, clinical
(sign and symptoms of disease) or assessed by scan and evaluated by RECIST 1.1
criteria. The role of cancer antigen 125 (CA-125) in this setting is still debated. In
fact, if the increase of CA 125 could precede a radiological recurrence from 2 to
6 months (Lindemann et al. 2016), according to international guidelines (NCCN
guidelines 2020) it is not recommended to start a new line of treatment basing only
on biochemical progression, since it does not improve the outcome in this setting
(Rustin et al. 2010). One of the most important thing to consider in case of relapse is
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the PFI. In this regard, in fact, we can distinguish patients in two groups, according
to the platinum-free interval: patients who show a relapse after 6 months and who
can receive again a platinum-based treatment (the “old” platinum-sensitive disease);
patients who have relapse within 6 months and who cannot receive a platinum-based
treatment (the “old” platinum-resistant disease). However, the evaluation of BRCA
status, tumor size, and metastatic sites is important predictive factors that should be
take into account in order to choose the most appropriate second line treatments. In
patients who can receive a platinum-based treatment, the AGO-OVAR (Pfisterer
et al. 2006), CALYPSO (Pujade-Lauraine et al. 2010; Wagner et al. 2012),
OCEANS (Aghajanian et al. 2012), and MITO 16B (Pignata et al. 2018) trials
showed a benefit with the use of carboplatin plus gemcitabine, carboplatin plus
PEG-liposomal doxorubicin, carboplatin plus gemcitabine, in addition to
bevacizumab. The last schedule can be used in either patients who previously
received bevacizumab [MITO 16B trial (Pignata et al. 2018) or not (OCEANS
trial) (Aghajanian et al. 2012)]. More in details, the phase III AGO-OVAR trial
(Pfisterer et al. 2006) showed that a doublet chemotherapy (carboplatin plus
gemcitabine) was superior in term of PFS in this setting if compared to carboplatin
alone (8.6 vs 5.8 months, respectively; HR: 0.72, p ¼ 0.0031). Likewise, the phase
III CALYPSO trial showed that carboplatin and PEG-liposomal doxorubicin were
superior to carboplatin and paclitaxel in PFS (11.3 vs 9.4 months in the experimental
and control arm, respectively; HR: 0.821; p: 0.005) (Pujade-Lauraine et al. 2010).
However, long-term results did not show benefit in OS, may related to the
arm-crossover (Wagner et al. 2012). For additional details about OCEANS, MITO
16B trial, and the use of PARP inhibitors in these patients, see previous sections.

In case of patients who experienced intolerance to paclitaxel, some trials with
nab-paclitaxel and carboplatin have shown promising preliminary results and are
currently ongoing (Benigno et al. 2010). In patients who could receive platinum-
based therapy, but with a poorer performance status, a platinum monotherapy could
be proposed. Finally, in case of patients in this group who cannot receive platinum-
based chemotherapy for other reason, a doublet with trabectedin plus PEG-liposomal
doxorubicin showed to be more effective if compared to PEG-liposomal doxorubicin
alone (Monk et al. 2012). In these patients, trials regarding the sequence of treatment
were conducted, basing on the hypothesis that a first-line non-platinum treatment
might improve the responses to follow platinum-based second line and PFI. How-
ever, the MITO-8 trial (Pignata et al. 2017) failed to confirm this hypothesis and the
sequence “first-line platinum-second-line non-platinum” remains the standard of
care up to date. When PFI is 6–12 months, the prolongation of the PFI has been
suggested to increase the likelihood of having a response in later lines. To respond to
this clinical question, the results of INOVATYON trial (NCT01379989), which use a
second line with trabectedin plus PEG-liposomal doxorubicin and a follow platinum
line, are awaited in order to clarify this issue in platinum-sensitive EOC patients.

In patients who are not suitable to receive a platinum-based therapy due to a short
PFI (resistant or refractory disease), PEG-liposomal doxorubicin, topotecan,
gemcitabine, weekly paclitaxel or trabectedin could be alternatives. In particular,
the MITO-3 trial showed a benefit in quality of life by using PEG-liposomal
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doxorubicin versus gemcitabine in this setting, reporting also an improvement in
PFS in the platinum-sensitive population (Ferrandina et al. 2008). The AURELIA
trial compared weekly paclitaxel/topotecan/PEG-liposomal doxorubicin plus
bevacizumab in this setting, showing a benefit in PFS in all arm and in OS in the
weekly paclitaxel plus bevacizumab arm (see Sect. 4.2.2 for more details) (Pujade-
Lauraine et al. 2014; Poveda et al. 2015). However, today is becoming clear that not
all EOC subtypes have the same response to treatment and the same behavior, as
previously mentioned. Therefore, if the majority of recommendation are related to
HGSOC, those are usually generalized also for the other subtypes, since the pivotal
trials have included also those kinds of tumors, not suitable of dedicated studies due
to their rarity. Starting from this assumption, the approved treatments are the same
for all EOC subtypes, with some peculiarity. In fact, regarding recurrence of
LGSOC, secondary resections, endocrine therapy, and chemotherapy with or with-
out target agents or clinical trials are the possible alternatives. In this context, the
endocrine therapies showed the higher DCR (~60–70%) (Tang et al. 2019), as well
as bevacizumab (~50%) (Dalton et al. 2017). However, clinical trials are currently
ongoing and the landscape is quickly evolving especially in these last years in order
to depict a personalized landscape also in the field of EOC.

2.5 Current Clinical Management of Non-epithelial Ovarian
Cancer

Non-epithelial OCs are a group of rare and heterogeneous tumors that account
almost 10% of all OC. They can arise from a variety of ovarian precursor cells and
include malignancies of germ cell origin, sex cord-stromal cell origin, and a variety
of extremely rare types, such as sarcomas and lipoid cell tumors. The two most
common type are sex cord-stromal tumors (SCSTs), that account for approximately
in 3–5% of OCs and occur more often in postmenopausal women, and malignant
germ cell tumors (GCTs), classified in dysgerminomas and non-dysgerminomas
tumors, that occur mainly in young women, with often unilateral presentation
(exempt dysgerminomas), representing 5% of all OCs. Instead, small cell carcinoma
of the ovary (SCCO) usually affects young women and children with a very low
incidence (less than 1% of OCs) (Gatta et al. 2011).

Non-epithelial OC are classified according to the WHO 2014 classification
(Kurman et al. 2014) and their staging system is extrapolated from FIGO classifica-
tion of EOC. They often occur at an early stage (60–70% at stage I, 25–30% at stage
III), because of their clinical presentation (abdominal pain, menstrual irregularities,
abdominal or pelvic mass). Adverse prognostic factors for GCTs are the stage >I,
incomplete surgical resection, age >45 years, and yolk sac histology (Mangili et al.
2011). Instead, intraperitoneal lesion rupture and FIGO stage are the most common
prognostic factor for SCSTs, even if also the advanced stage of disease can have a
good prognosis because of the response to chemotherapy (Prat and FIGO Committee
on Gynecologic Oncology 2014). According to the international guidelines (NCCN
guidelines 2020), the standard treatment is surgery; fertility-sparing surgery should
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be proposed, considering the young age of patients, even in advanced stage, due to
the tumor sensitivity to chemotherapy. Patients with stage IA dysgerminoma can be
treated with surgery alone, showing a recurrence rate relatively low (15–20%) and a
good response to the treatment at the time of relapse. A platinum-based chemother-
apy must be considered for patients with stages > I, advanced disease, or yolk sac
histology (all stages); three cycles of 5-day platinum-etoposide-bleomycin (PEB) is
the most used regimen for completely resected stage I disease, whereas four cycles
are recommended for more advanced disease (Pectasides et al. 2008). Patients who
show resistance to a platinum-based chemotherapy may receive VAC (vincristine/
actinomycin D/cyclophosphamide) or paclitaxel plus gemcitabine or gemcitabine
plus oxaliplatin as salvage therapy. On the other hand, in SCST patients with early
stage disease the rule of adjuvant chemotherapy is controversial. In advanced stages,
debulking surgery is the cornerstone treatment, even in relapsed disease, and a
platinum-based chemotherapy, such as PEB regimen, is used.In the future, the role
of new target agents, that are already studied in testicular cancer, such as
antiangiogenic agents or tyrosine kinase inhibitors or immune-checkpoint inhibitors,
could be investigated also in these rare tumors (Manchana et al. 2010).

2.6 Conclusions and Future Perspectives

For decades, the OC treatment consisted in debulking surgery followed by platinum-
based chemotherapy. However, the most notable exception to the absence of new
treatment options has been the introduction of maintenance therapy with
bevacizumab, that showed an improved PFS and OS in the subset of high-risk
patients (González-Martín et al. 2019a, b). In the last decade, the PARP inhibitors
agents have changed this scenario. Several clinical trials have shown benefits of
these drugs in recurrent OC, and they have been approved as a maintenance therapy
in patients who have responded to platinum-based chemotherapy, regardless of
BRCA status. The paradigm of BRCA mutation has been exceeded by the definition
of “BRCAness phenotype” in patients with HR-deficient tumors. The HR-deficiency
status characterizes not only the HGSOC, but also the other subtypes, and this
biomarker could be useful in this setting in the future, to refine the patients’ selection.
Although the most recent clinical trials used the same HRD test (i.e., MyChoice test),
even if considering different parameters to define HRD patients, it will be crucial to
incorporate available and reproducible test in clinical practice in order to give to an
high number of patients the chance to be treated with PARP inhibitors. More
recently, the VELIA (Coleman et al. 2019), PRIMA (González-Martín et al.
2019a, b), and PAOLA-1 (Ray-Coquard et al. 2019) trials have given for the first
time the chance to use PARP inhibitors in first-line setting. The efficacy of those
agents was shown in the whole population, with the magnitude of benefit that varies
widely among subgroups, highlighting the need to identify specific biological
subtypes into clinical practice. On the other hand, the use of PD-L1/PD-1 inhibitors
has demonstrated preliminary but very modest activity in EOC, suggesting an
opportunity for combination therapies and in biomarker-selected patients. The
rationale of using immunotherapy with PARP inhibitors is the association between
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the high neoantigens load and the high tumor mutational burden with the increasing
of TILs and the high expression of PD1/PD-L1 in HRD tumors (Strickland et al.
2016). Ongoing clinical trials (such as ATHENA [NCT03522246], DUO-O
[NCT03737643], BGOG/ENGOT-ov43 [NCT03740165], and FIRST
[NCT03602859] trial) are assessing the maintenance therapy based on PARP
inhibitors in combination with immune-checkpoint inhibitors.Another chance of
therapy is the combination of immunotherapy with antiangiogenic agents, given
the immunoregulatory effects of VEGF on endothelial and microenvironment cells
(Gavalas et al. 2012). Further fields of investigation include defining how “moving”
PARP inhibitors in first-line treatment setting can impact on use in recurrent disease
and if the patients can benefit from a re-challenge with the same or different drugs. In
this setting, the ongoing OReO trial (NCT03106987) has the aim to define the
efficacy of olaparib maintenance re-treatment in patients with recurrence EOC,
who have had disease progression following maintenance therapy with PARP
inhibitors (see Box 2.1 for further reading).
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Abstract

The development of the conceptual cancer hallmarks has deeply changed our
understanding of cancer initiation, progression, and metastasis. Moreover, this
pivotal effort is a milestone that provided the scientific rationale for developing
new cancer biomarkers and anticancer drugs. In ovarian cancer (OC), the ten
cancer hallmarks described by Hanahan and Weinberg were investigated in
translational studies for prognostic and predictive biomarker discovery. In addi-
tion, several interventional clinical trials used these principles to explore the
clinical efficacy of several chemotherapeutic and targeted agents such as
antiangiogenics and PARP inhibitors. Promisingly, survival outcomes in
women with OC were improved with the arrival of novel single agents and
combinatorial approaches. In this chapter, the clinical impact of genetics,
biomarkers, and therapy in OC is reviewed based on the hallmarks of cancer.
We particularly present a special emphasis on druggable targets investigated in
phase II/III clinical trials for OC.
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3.1 Introduction

With the advent of next-generation sequencing platforms, emerging ovarian cancer
(OC) genomic data illustrated important druggable pathways that enabled the suc-
cessful development of various novel anticancer molecules such as PARP inhibitors
(PARPi) and antiangiogenics. Until this time, the dualistic origins and pathogenesis
of OC are still debated because of the changing evidence reported in the literature
every year (Klotz and Wimberger 2017; Soong et al. 2018). OC is widely regarded
as a genetic disease in which the accumulation of mutations is a key driver of its
pathogenesis. Targetable genetic alterations reported in OC (Petrillo et al. 2016)
might be classified according to the next-generation hallmarks of cancer as previ-
ously defined by Hanahan and Weinberg’s influential manuscripts (Hanahan and
Weinberg 2000, 2011; De Palma and Hanahan 2012; Hanahan and Coussens 2012;
Lambert et al. 2017). These hallmarks are defined as “acquired functional
capabilities that allow cancer cells to survive, proliferate, and disseminate; these
functions are acquired in different tumor types via distinct mechanisms and at
various times during the course of multistep tumorigenesis” (Hanahan andWeinberg
2011). In this perspective, the present chapter will be discussed according to this
promising model. Moreover, a special and central spotlight will be given to the
translation of these alterations in cancer drug discovery and biomarkers development
based on recent observational and interventional human trials.

3.2 Actionable Hallmarks of Ovarian Cancer

3.2.1 Synthetic Lethality Beyond Genomic Instability

DNA damages and subsequent alterations in cell repair mechanisms are the principal
causes that favor tumorigenesis. These are notable results of tumor mutational
instability enabling proliferative properties to cancer cells. Genomic instability is
the most studied cancer hallmark until today. Repair pathways of DNA damages are
complex and encompass several genes of the family of homologous recombination
repair (HRR), non-homologous end-joining, and single-strand annealing
(De Picciotto et al. 2016). In OC, BReast CAncer (BRCA), RAD51 recombinase
(RAD51), and partner and localizer of BRCA2 (PALB2) orchestrate HRR and are
found mutated particularly in patients with high-grade serous histology (Lord and
Ashworth 2012). Mutations in these tumor suppressor genes drive genomic instabil-
ity which is a well-known characteristic that predicts outcomes in several cancers
including OC. Remarkably, mutations in these genes—namely pathogenic action-
able BRCA1 and BRCA2 variants—render women with OC particularly sensitive to
chemotherapy (see Chaps. 4 and 7) and also PARPi (Le Page et al. 2020), a recently
emerged concept known as synthetic lethality. Of note, synthetic lethality induced
by PARPi followed by senolytic agents has proven to be synergistic preclinically and
therefore, combinatorial approaches using this approach seem to be promising
(Topatana et al. 2020). Furthermore, a durable response to immune-checkpoint
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blockade can be achieved based on genomics. OC patients with HRR deficiency
have a notable infiltration of immune infiltrates which correlate with greater
improvement in overall survival (OS) (Keenan et al. 2019; Morse et al. 2019).

The development of PARPi based on this hallmark is a milestone in OC therapy.
Various PARPi were approved worldwide for treating OC as a treatment and/or
maintenance therapy based on landmark studies (Mirza et al. 2020). PARPi were
initially investigated in three randomized phase III trials (NOVA, SOLO-2, and
ARIEL-3) as maintenance treatment for patients with recurrent OC after platinum-
based chemotherapy (Mirza et al. 2018). NOVA was a double-blind phase III trial
that randomized OC patients with platinum-sensitive and recurrent disease to receive
niraparib as monotherapy or placebo in a 2:1 fashion with progression-free survival
(PFS) as a primary endpoint (Mirza et al. 2016). In this trial, 553 women were
enrolled including 203 participants with germline mutated BRCA and other
350 participants with non-mutated BRCA. Median PFS in niraparib arm was signifi-
cantly longer as compared to the placebo group ( p < 0.001) with a manageable
bone-marrow toxicity profile by dose reduction. In the germline mutated BRCA
cohort, women treated with niraparib had 21 months of PFS as compared to 5.5
months in those treated with placebo (HR: 0.27; 95% CI: 0.17–0.41). Furthermore,
patients with HRR deficiency (HRD) beyond BRCA also benefited from niraparib
treatment within an increase of median duration of PFS by 9 months (HR: 0.38; 95%
CI: 0.24–0.59) (Mirza et al. 2016). Following these promising findings for niraparib
which is the only PARPi approved as maintenance therapy regardless of BRCA
status, olaparib, another PARPi given as tablets was investigated in the SOLO-2/
ENGOT-Ov21 phase III trial (Pujade-Lauraine et al. 2017). This study was a
randomized, placebo-controlled and enrolled 295 platinum-sensitive and recurrent
OC with BRCA1 or BRCA2 mutations to receive olaparib or placebo (2:1 ratio).
Median PFS was significantly longer in the arm treated with olaparib than the
placebo arm (19.1 vs 5.5 months, HR: 0.30, CI: 0.22–0.41, p < 0.0001) (Pujade-
Lauraine et al. 2017). Long-term benefit from this oral therapy as a maintenance
therapy for relapsed OC was markedly noticed as demonstrated by the latest updated
OS data presented at ASCO20 virtual meeting (Poveda et al. 2020). Final OS in this
trial showed that maintenance olaparib provided an improved median OS of 12.9
months as compared to placebo after a median follow-up of 65 months (Poveda et al.
2020). Rucaparib was studied in the randomized and placebo-controlled ARIEL-3
phase III trial (n ¼ 564, 2:1 ratio) as a maintenance therapy for patients with
recurrent platinum-sensitive who had received two regimens of platinum-based
chemotherapy (Coleman et al. 2017a, b). Patients with mutated BRCA OC had
superior median PFS (22.9 vs 5.4 months; HR: 0.23, 95% CI: 0.16–0.34,
p < 0.0001). In addition, patients with HRD carcinoma also benefited from
recuparib (13.6 vs 5.4 months; HR: 0.32, 0.24–0.42, p < 0.0001). With a hazard
ratio of 0.36, clinically meaningful benefits of recuparib was also noticed in the
intention-to-treat population ( p < 0.0001) (Coleman et al. 2017a, b).

In the recurrent setting, ARIEL-2 was an open-label multicenter phase II trial that
investigated rucaparib in 206 women with recurrent and platinum-sensitive high-
grade serous OC (Swisher et al. 2017). The median PFS of patients in the BRCA
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mutant cohort after treatment with rucaparib was 12.8 months. In the other cohorts,
median PFS was 5.7 months and 5.2 months in patients with high and low loss of
heterozygosity, respectively (Swisher et al. 2017). QUADRA is another phase II trial
(n¼ 463) that was planned to investigate the clinical efficacy of niraparib as a single
agent in the fourth or later line of treating recurrent OC (Moore et al. 2019a).
Enrolled heavily pretreated patients were mainly resistant or refractory to
platinum-based chemotherapy (n ¼ 151 and n ¼ 161, respectively). Median
follow-up for OS exceeds 1 year with a manageable hematological toxicity profile,
as expected (Moore et al. 2019a). More recently, SOLO-3 randomized
FDA-mandated confirmatory phase III was designed to look at response rates for
PARP inhibitor olaparib versus one of the non-platinum drugs used in this setting
including pegylated liposomal doxorubicin, paclitaxel, gemcitabine, or topotecan
(Penson et al. 2020). This study randomly assigned 266 recurrent OC patients with
platinum-sensitive disease and BRCA mutant tumors to receive olaparib or single
non-platinum chemotherapy and the objective response rate (ORR) was its primary
endpoint. ORR in this population was significantly higher (72.2%) compared to
chemotherapy (51.4%). In heavily pretreated women who had received at least two
prior lines of chemotherapy, ORR was also superior in the olaparib arm (84.6% vs
61.5%). Median PFS also favored olaparib, which resulted in significantly improved
outcomes (HR: 0.62; p¼ 0.013; 13.4 vs 9.2 months) (Penson et al. 2020). However,
as mentioned above, this phase III compared a PARPi versus non-platinum drugs in
a platinum-sensitive setting without a control using platinum-based chemotherapy.
Therefore, this strategy should be reserved for OC patients who are not candidates
for platinum-based chemotherapy.

Four randomized phase III clinical trials using PARPi have been conducted for
newly diagnosed OC in the first-line setting (SOLO-1, PAOLA-1, PRIMA, and
VELIA) (for review, see: Franzese et al. 2020; Mirza et al. 2020; Lee and Matulonis
2020). These trials were all in the front-line setting and had PFS as the primary
endpoint but with differences in terms of the composition of their control arms, the
timing of the use of PARP inhibition, and platinum-resistance status (Mirza et al.
2020). SOLO-1 was a double-blind phase III trial that randomly allocated patients
with newly diagnosed OC and BRCA mutant tumors to receive olaparib as a
maintenance treatment or placebo in a 2:1 fashion after clinical response platinum-
based chemotherapy (Moore et al. 2018c). After a median follow-up of 41 months of
the 391 enrolled participants, a reduction of risk of disease progression or death by
70% was noticed in the olaparib arm as compared to placebo (HR: 0.30; 95% CI:
0.23–0.41; p < 0.001) (Moore et al. 2018c). Of note, this study excluded all patients
without BRCA mutant tumors and also not permitted a prior exposure to
bevacizumab. Niraparib was studied as monotherapy for maintenance after response
to first-line chemotherapy in the randomized and placebo-controlled PRIMA phase
III trial (n¼ 733) (González-Martín et al. 2019). Half of the enrolled participants had
homologous recombination deficient tumors in which PFS was statistically and
clinically meaningful as compared to the placebo arm (21.9 vs 10.4 months; HR:
0.43; 95% CI: 0.31–0.59; p < 0.001). Moreover, PFS in the intention-to-treat
population was also improved (13.8 vs 8.2 months; HR: 0.62; 95% CI: 0.50–0.76;
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p < 0.001) (González-Martín et al. 2019). The efficacy of veliparib in the first-line
induction treatment was assessed in the VELIA study (Coleman et al. 2019). 1140
patients with previously untreated OC received carboplatin and paclitaxel in combi-
nation with veliparib followed by veliparib for maintenance or without veliparib as
maintenance in the experimental arm and the standard of care plus placebo and
placebo maintenance in the control arm (1:1:1 ratio). Median PFS in BRCA-mutated
women was significantly superior to the control group and achieved 34.7 vs
22 months (HR: 0.44; 95% CI: 0.28–0.68; p < 0.001). Notably, the population of
patients with homologous recombination deficiency also benefited from veliparib
(HR: 0.68; 95% CI: 0.56–0.83; p < 0.001). The findings of this study suggest that
first-line induction therapy using carboplatin, paclitaxel, and veliparib followed by
veliparib maintenance is superior in terms of PFS as compared to the classical
doublet protocol alone (Coleman et al. 2019). PAOLA-1 examined the clinical
benefits of adding olaparib to bevacizumab in the first-line maintenance after
response to chemotherapy plus bevacizumab in OC patients BRCA mutation status
(Ray-Coquard et al. 2019). 806 eligible patients received either olaparib or placebo
in a randomized fashion (2:1). Median PFS was increased with the use of olaparib in
combination with bevacizumab as compared to bevacizumab and placebo (HR: 0.59;
95% CI: 0.49–0.72; p < 0.001). The hazard ratio for progression or death in women
with positive tumors for homologous recombination deficiency (including BRCA)
treated with olaparib was 0.33 suggesting a substantial benefit from this combination
(Ray-Coquard et al. 2019). Currently, this doublet is considered as the standard of
care for first-line maintenance regardless of BRCA and HRR deficiency.

Building on this, these landmark studies were successful in providing evidence
supporting the use of PARPi in various OC treatment settings. This is further
supported by recent multiple meta-analyses of randomized and controlled trials
discussed in this section (Tomao et al. 2019; Ruscito et al. 2020; Lin et al. 2021;
Hao et al. 2021). Future head-to-head comparisons of PARPi and combinatorial
approaches with other anticancer drugs including antiangiogenics and immune-
checkpoint blockers will be promising to improve OC care (Veneris et al. 2020)
and are a research priority. Moreover, synthetic lethality appears to play a principal
role in selecting patients to benefit from the development of PARPi. Knowledge on
HRR including BRCA mutations seems to be important in conferring sensitivity to
these agents. The accuracy of currently available genetic testing procedures needs to
be improved in the future. More details on this hallmark can be found in the other
chapters of this book.

3.2.2 Tumor Promoting Inflammation

It is well established that inflammation substantially contributes to the supply of
protumoral state as well as in the progression of malignancies (Diakos et al. 2014;
Taniguchi and Karin 2018). During cancer progression and metastasis, a large
number of tumor cells undergo necrotic cell death which drives the recruitment of
immune inflammatory cells that can actively promote cancer invasiveness by acting
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on angiogenesis and cell proliferation mechanisms (Hanahan and Weinberg 2011).
In the ovaries, several events that majorly delay inflammation such as parity (Fortner
et al. 2018), oral contraceptives use (Collaborative Group on Epidemiological
Studies of Ovarian Cancer 2008; Cibula et al. 2011; Havrilesky et al. 2013), and
non-steroidal anti-inflammatory drugs are associated with a reduced risk of OC
(Trabert et al. 2018) and improved outcomes in OC patients (Verdoodt et al.
2018). On the other hand, events causing inflammation such as endometriosis have
been suggested to increase OC risk (Pearce et al. 2012; Wendel et al. 2018). The link
between cancer and inflammation has been investigated in both epidemiological and
experimental studies and it was subsequently confirmed through anti-inflammatory
therapies that were relatively effective in chemopreventive approaches as suggested
by numerous recent meta-analyses (Qiao et al. 2018; Zhang et al. 2016a; Wang et al.
2015; Huang et al. 2014a). Inflammation can damage DNA by releasing reactive
oxygen species (ROS) which may cause considerable structural and functional
changes such as somatic mutations during the multistep carcinogenesis (Kawanishi
et al. 2017). Oxidative stress has been linked to cancer initiation and progression by
inducing genome instability through DNA damage or by its mutagenic effects
(Aguilera and García-Muse 2013). High concentrations of ROS at the site of damage
cause DNA DSBs, mutations in tumor suppressor genes and proto-oncogenes which
promote carcinogenesis (Kruk and Aboul-Enein 2017; Kawanishi et al. 2017).
Interestingly, various molecular changes associated with repeated hemorrhage-
associated oxidative stress during carcinogenesis of high-grade serous OC may
explain some pieces of the puzzle (Kobayashi et al. 2017). Retrograde menstruations
were proposed as a possible driver of high-grade serous OC by accumulation of
genetic alterations in some key genes such as CCNE1 (Kroeger and Drapkin 2016),
EZH2 (Li and Zhang 2013), ALDH1A1 (Chui et al. 2014), and PAX2 (Song et al.
2013) that have key roles in tissue differentiation and carcinogenesis (reviewed by
Kobayashi et al. 2017). In addition, fimbrial cells of the fallopian tube may also be a
target of ROS (Kobayashi et al. 2017) and are currently considered as a possible
origin of high-grade serous OC (Karnezis et al. 2017). Mature ovarian follicles and
their fluids (a rich source of ROS) during ovulation were also recently emerged as
another probable inflammatory factor that may affect ovarian malignant transforma-
tion by causing DNA double-strand breaks and upregulation of inflammatory
pathways (Bahar-Shany et al. 2014; Huang et al. 2015). Moreover, cyclooxygenase
2 (COX-2) was found to be highly expressed in OC and correlated with tumor grade
(Zhang et al. 2019a). Moreover, COX-2 seems to enhance the capability of cancer
cells for proliferation and invasiveness and also confers cisplatin-resistance (Zhang
et al. 2019a; Deng et al. 2020). In animal studies, COX-2 inhibition by celecoxib was
found to reduce the invasion and growth of OC cells (Li et al. 2012; Wang et al.
2018). This concept was introduced into interventional clinical trials for OC with
two published randomized phase II studies using the COX-2 inhibitor celecoxib in
combination with carboplatin. Heavily pretreated OC patients were enrolled in a
single-arm phase II study to evaluate the clinical activity of oral celecoxib combined
with carboplatin (NCT01124435) (Legge et al. 2011). ORR was 28.9% including
three complete and ten partial responses with median PFS and OS of 5 and
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13 months, respectively, and a well-tolerated toxicity profile (Legge et al. 2011).
DoCaCel study was another randomized phase II clinical trial that investigated
celecoxib as a combination with docetaxel and carboplatin compared to up-front
chemotherapy alone in the first-line setting for stage IC to IV OC (Reyners et al.
2012). After a median follow-up of 32.2 months, median PFS and OS were similar in
both arms (14.3 and 34 months respectively). However, no conclusions can be
drawn as most patients discontinued celecoxib earlier because of skin reactions
(Reyners et al. 2012). Recently, celecoxib was given with metronomic chemother-
apy using oral cyclophosphamide for patients with recurrent epithelial OC (Gupta
et al. 2019). No difference in terms of medial OS was noticed between the combina-
tion group compared to cyclophosphamide alone ( p ¼ 0.95) (Gupta et al. 2019).
Celecoxib is currently investigated in combination with chemotherapy in other
ongoing clinical trials for OC (NCT02432378, NCT00538031). Moreover,
acetylsalicylic acid (aspirin), another COX-2 inhibitor is being explored for
preventing venous thromboembolism among women with OC receiving
neoadjuvant chemotherapy (NCT04352439). Aspirin is also used in a randomized
phase II study of atezolizumab, bevacizumab, and aspirin for recurrent platinum-
resistant OC in the ongoing EORTC-1508 (n ¼ 122) (NCT02659384).

3.2.3 Sustaining Proliferative Signaling

3.2.3.1 PI3K/AKT/mTOR Pathway
Phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) signaling pathway is implicated in various required cell
functions such as cell growth, vesicle trafficking, metabolism control, survival,
mobility, and angiogenesis and is triggered by cell surface tyrosine kinase receptors
(RTKs) (Bilanges et al. 2019; Li et al. 2014; Ghigo et al. 2012). This central
signaling axis involves PI3K, the major downstream transducer RTKs, and allows
activation of AKT by phosphorylation, which in turn activates downstream effector
serine/threonine-protein kinase mTOR. PI3K is composed of eight isoforms divided
into class I, class II, and class III PI3Ks that generate lipid messengers involved in
signal transduction of intracellular trafficking (Vanhaesebroeck et al. 2010). Onco-
genic PIK3CA is one of the most commonly mutated genes in human cancers and
encodes for enzymatic PI3K protein activated by extracellular signals essentially
growth factors (Fruman and Rommel 2014). The negative regulation of PI3K
signaling is mainly driven by phosphatase and tensin homolog (PTEN) and inositol
polyphosphate 4-phosphatase type II (INPP4B) tumor suppressor genes (LoRusso
2016). Notably, Loss of PTEN or INPP4B leads to prolonged activation of AKT
which directly activates mTOR complex (mTORC) by phosphorylation. Therefore,
this leads to activation of eukaryote translation initiation factor 4E binding protein-1
(4EBP-1) and ribosomal S6 kinase-1 (S6K-1) with protein synthesis as a result
which is required for cell-cycle progression and growth (Laplante and Sabatini
2012; Mabuchi et al. 2015).
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Upregulation of PI3K/AKT/mTOR pathway can occur as a result of over-
activation, modifications in the downstream targets of PI3K and mutations in their
regulatory and/or catalytic domains (Mabuchi et al. 2015). Notably, PI3K/AKT/
mTOR axis plays a central function in the proliferation and progression of OC
(Petrillo et al. 2016; Aziz et al. 2018a). According to the TCGA study, genetic
aberrations in PI3K pathway suggested that 45% of OC cases harbor this alteration
(Cancer Genome Atlas Research Network 2011). These aberrations include incident
mutations and amplifications in key oncogenes PIK3CA (12%, 46% in clear cell
OC), PIK3R1 (3.8%), AKT1 (2%), AKT2 (13.3%), and mTOR (1.9%) (reviewed by
Mabuchi et al. 2015). Mutations in PIK3CA are frequent (51%) especially in ovarian
clear cell carcinomas (a distinct and relatively rare histopathologic subtype of
epithelial OC) as found by a recent study using whole-exome sequencing technology
(Murakami et al. 2017). Not previously reported PIK3R1mutations (8%) in the same
tumor histology were also found which suggest that integrated genomic profiling
using NGS may be useful in understanding the molecular genetics of this aggressive
subtype of OC (Murakami et al. 2017). Similarly, in another NGS report enrolling
more clear cell OC patients (n¼ 48), PIK3CAmutations were found in 50% of cases
(Shibuya et al. 2018). Importantly, PIK3CA missense mutations were found signifi-
cantly associated with improved OS in OC patients with clear cell histology
(Rahman et al. 2012). In addition, clear cell ovarian tumors with mutated PIK3CA
are likely to have hyalinized/mucoid stroma which is a potential risk of
paraneoplastic thromboembolism (Kato et al. 2018). Amplification of PIK3CA is
also seen in recurrent OC suggesting maintained alteration of this pathway during
progression and metastasis (Li et al. 2019a). Taken together this high mutation
frequency of PIK3CA gene in clear cell OC, this signature is of great significance
as a biomarker for diagnosis and prognosis and should be investigated in further
studies. Alterations in tumor suppressor genes PTEN (protein loss or
downregulation) and INPP4B have also been reported in OC and account for 77%
(Martins et al. 2014) and 79% (protein loss) (Salmena et al. 2015), respectively.
Importantly, PTEN loss was found as an early event in OC and it induces fallopian
tube tumor initiation and invasion via a mechanism involving upregulation of
WNT4, a key gene in cell migration (Russo et al. 2018). Moreover, INPP4B and
PTEN loss were found significantly associated with worse outcomes in OC
(Gewinner et al. 2009; Skírnisdóttir and Seidal 2011; Salmena et al. 2015; Patch
et al. 2015), however, data from other reports were not in line with these findings
(McCormick et al. 2016; Bakkar et al. 2015).

Notably, Cai et al. assessed the clinical significance of this pathway in OC based
on a meta-analytic approach that included 20 eligible studies (PTEN: 11, PI3K:
5, AKT: 11) and 2499 patients with epithelial OC (Cai et al. 2014). High PI3K and
protein AKT expressions were found associated with reduced OS (PI3K—HR: 1.44,
95% CI: 1.08–1.91; AKT—HR: 1.60, 95% CI: 1.26–2.04) (Cai et al. 2014). In terms
of PFS, OC patients with high PI3K and protein AKT expressions were related to
poor outcomes (PI3K—HR: 3.35, 95% CI: 1.14–9.82; AKT—HR: 1.65, 95% CI:
1.07–2.55) (Cai et al. 2014). Accordingly, the currently available evidence is
insufficient to recommend these biomarkers as predictors of prognosis and additional
updated meta-analyses and translational prospective studies are warranted.
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Drugging the components of the PI3K/AKT/mTOR signaling cascade has been
extensively investigated in various human clinical trials according to the
U.S. National Library of Medicine database (http://www.clinicaltrials.gov). mTOR
inhibition using temsirolimus alone or combined with other anticancer drugs tested
in early dose-finding phase I trials showed manageable toxicity profile as well as
some signals of clinical activities in gynecological cancers including OC (Temkin
et al. 2010; Boers-Sonderen et al. 2014; Piha-Paul et al. 2014; Kyriakopoulos et al.
2016). Previously, Behbakht et al. conducted a phase II trial to study the efficacy of
weekly intravenous temsirolimus in 60 patients with persistent and recurrent epithe-
lial OC and other peritoneal carcinomas that have received at least 1–3 chemother-
apy regimens (Behbakht et al. 2011). The modest activity was seen in this setting
including 24.1% of patients that had a PFS � 6 months and 9.3% with partial
response (Behbakht et al. 2011). Moreover, Emons et al. enrolled women (n ¼ 22)
with platinum-refractory/resistant OC to receive weekly intravenous temsirolimus in
a phase II trial (AGO-GYN8; NCT01460979) but unfortunately, it didn’t meet its
predefined efficacy endpoint (Emons et al. 2016). Recently, everolimus, an oral
mTOR inhibitor, was combined in another phase II trial with the aromatase inhibitor
letrozole in relapsed estrogen receptor-positive high-grade OC in both platinum-
resistant and sensitive settings (Colon-Otero et al. 2017). Promisingly, this study
enrolling 20 OC patients found a 47% 12-week PFS rate with this combination
(median PFS: 3.9 months; 95% CI: 2.8–11.0 and median OS: 13 months) (Colon-
Otero et al. 2017). More recently, Tew et al. randomized 150 OC patients in a phase
II trial (GOG186-G; NCT00886691) with a recurrent or persistent disease to receive
bevacizumab combined with oral everolimus versus bevacizumab alone (Tew et al.
2018). In this study, PFS was the primary endpoint and was not significantly
improved in the everolimus arm compared to bevacizumab alone (5.9 vs 4.5 months,
HR: 0.95; 95% CI: 0.66–1.37, p ¼ 0.39) (Tew et al. 2018). Furthermore, similar
findings were noted for median OS (16.6 vs 17.3 months, respectively, HR: 1.16;
95% CI: 0.72–1.87, p ¼ 0.55) (Tew et al. 2018). Unfortunately, this combination
associating mTOR inhibitor everolimus and bevacizumab demonstrated higher rates
of serious adverse events (� grade 3) including gastrointestinal perforation and it
was not effective in this indication (Tew et al. 2018). Therefore, it is not
recommended for further clinical exploration in patients with recurrent
OC. Biological rationale and additional clinical data about mTOR inhibition in
gynecologic cancers can be found in a recent review (Kassem and Abdel-Rahman
2016).

Preliminary evidence of targeting this pathway by inhibiting AKT has also shown
some anticipation in developing new therapeutics for high-grade OC (Fu et al. 2012).
Perifosine, a small-molecule AKT inhibitor developed by AEterna Zentaris, was
previously tested in platinum and taxane resistant or refractory high-grade OC in
combination with docetaxel and showed some signals of activity as well as a good
tolerability profile in this phase I trial (Fu et al. 2012). Perifosine monotherapy was
also tested in a phase II trial based on a basket design using PIK3CA mutational
status for recurrent OC patients’ stratification (Hasegawa et al. 2017). The modest
activity was seen in OC patients with mutated PIK3CA including disease control
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rates (40%) compared with wild-type status (12.5%) (Hasegawa et al. 2017). Thera-
peutic advances regarding AKT axis blockade using small molecules and biologics
are reviewed elsewhere (in general, by Mattmann et al. 2011 and in gynecologic
malignancies, by Bregar and Growdon 2016). Antitumor activity of PI3K inhibition
using the Genentech’s pictilisib (GDC-0941) designed to be used orally was initially
found to have some clinical signs of efficacy in patients with platinum-refractory OC
exhibiting PTEN loss and PIK3CA amplification (Sarker et al. 2014). When com-
bined with MEK1/2 inhibitor trametinib, PI3K inhibition by buparlisib (BKM120,
Array BioPharma and Novartis) given daily has shown promising response in OC
patients with mutated KRAS (Bedard et al. 2015). However, these positive results
were invalidated by the serious toxicity profile found in this phase Ib
(NCT01155453) trial including grade 3/4 adverse events (Bedard et al. 2015).
Furthermore, combined inhibition of PI3K and PARP in vitro (Wang et al. 2016a)
provided the first evidence of synergistic activity that was tested in a phase I trial
(Matulonis et al. 2016). Remarkably, the association of PI3K inhibitor buparlisib
with PARP inhibitor olaparib demonstrated clinical benefits in breast and OC
subjects with both germline mutated and wild-type BRCA (Matulonis et al. 2016).
Recently, the use of olaparib with the PI3K inhibitor alpelisib confirmed the
synergistic effects of this combination (Konstantinopoulos et al. 2019). In this
dose-escalation and dose-expansion phase Ib trial (NCT01623349), the authors
observed preliminary clinical evidence of the efficacy of this association with 36%
of patients having a partial response and 50% with stable disease, which merits
further investigation in epithelial OC (Konstantinopoulos et al. 2019). To date,
clinical data on this topic are not mature enough to conduct large randomized
phase III trials. As a final point, until to date, most sequencing reports have provided
discordant mutation frequencies in genes related to this pathway which makes
developing targeted drugs difficult as they play an important role in drug resistance.
Therapeutic interventions in this OC pathway showed some promise that should be
evaluated in future clinical trials with potential predictive biomarkers for better
patients’ selection.

3.2.3.2 RAS Pathway
The RAS/RAF/MEK/ERK cascade is a receptor tyrosine kinase-dependent signaling
axis that links intracellular gene expression pathways to extracellular stimuli
(De Luca et al. 2012). It enhances key cellular activities including proliferation,
survival, migration, cell-cycle regulation, and other cell functions by phosphoryla-
tion/dephosphorylation mechanisms. The dysfunction of this pathway by genetic
alterations has been linked to several human malignancies including type I epithelial
OC (Spreafico et al. 2017; Della Pepa et al. 2015) and contributes to the hallmarks of
cancer by sustaining proliferative signaling. The canonical RAS/RAF/MEK/ERK
cascade is initiated by signals such as binding ligands (growth factors, cytokines,
etc.) to the corresponding receptor at the cell membrane level. The RAS family of
proteins includes three important members, KRAS, NRAS, and HRAS which are
located downstream of receptors. The downstream mediators RAF isoforms are
protein kinases activated by the binding of small G proteins of the RAS family to
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their N-terminal region. Basically, activated RAS recruits and activates RAF which
in turn phosphorylates MEK1/2 leading to ERK activation. Activated ERK1/2 has a
wide variety of cytosolic and nuclear targets that induce inappropriate cell prolifera-
tion and metabolism, survival, and mobility (Papa et al. 2018; Liu et al. 2018).
Deregulation of this pathway mainly by constitutive activation of RAS and RAF
proteins has been well studied in most solid cancers (reviewed elsewhere: Khan et al.
2018).

Recent studies suggest that KRAS mutations are found in clear cell OC with a
prevalence ranging from 13% to 16.7% (Shibuya et al. 2018; Zannoni et al. 2014,
2016). KRAS and BRAFmutations are rare in high-grade serous OC but are proposed
to be an important driver of its cancer biology (Cancer Genome Atlas Research
Network 2011). In low-grade serous OC, BRAF mutations are less common and
represent 5% (Turashvili et al. 2018), which is contradictory with the previous data
suggesting 33% prevalence (Singer et al. 2003). Based on targeted exome and
whole-genome sequencing, Moujaber et al. find that 13.8% of low-grade serous
OC patients had somatic mutations in the BRAF gene (Moujaber et al. 2018).
However, this difference in mutation frequency may be due to the difference in the
enrollment of patients with this relatively rare OC subtype as well as the variability
of clinical stages of included samples. Moreover, low-grade serous OC is known for
remarkable mutated KRAS (35%) (Singer et al. 2003). In summary, KRAS and BRAF
mutations are more likely to be associated with low-grade serous and clear cell OC
(Prat et al. 2018; DeFazio et al. 2016; Kaldawy et al. 2016; Russel and McCluggage
2004). Very few reports have investigated the prognostic value of these genetic
alterations in OC. Earlier, Wong et al. found based on a cohort of 91 OC samples that
low-grade serous tumors with mutant-BRAF and KRAS are likely to have improved
clinical outcomes (Wong et al. 2010). In addition, patients with this chemoresistant
disease harboring mutated BRAF had better OS as compared to patients with wild-
type KRAS and BRAF status (Grisham et al. 2012). Recently, it was reported that
low-grade serous OC patients with mutated BRAF or KRAS have significantly
improved OS compared with wild-type patients (106.7 vs 66.8 months, respectively;
p ¼ 0.018) (Gershenson et al. 2015). Unexpectedly, these findings are conflicting
with the recent results in the Chinese patients in which neither KRAS nor BRAF
mutations were found to be prognostic biomarkers (Xu et al. 2017). In addition,
mutated KRAS was found to predict chemosensitivity to anticancer drug decitabine
(an FDA approved DNA methyltransferase inhibitor) (Stewart et al. 2015) but the
real clinical impact of these two mutated signatures (KRAS and BRAF) is still
inconclusive because of the small number of enrolled cases and therefore, should
be replicated in larger cohorts.

The blockade of the components of this pathway by the recently developed
inhibitors, trametinib (mekinist®, Novartis), dabrafenib (tafinlar®,
GlaxoSmithKline), and vemurafenib (zelboraf®, Plexxikon and Hoffmann-La
Roche) has demonstrated significant clinical benefits in various cancers such as
advanced melanoma (Luther et al. 2019; Dhillon 2016) and lung cancer (Kelly
2018) especially when combined with other anticancer agents. In OC, preclinical
findings indicating the efficacy of MEK inhibitors in cancer cell lines (Simpkins
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et al. 2018; Pétigny-Lechartier et al. 2017; Fernández et al. 2016, 2019; Gruosso
et al. 2015; Cossa et al. 2014; Sheppard et al. 2013; Katagiri et al. 2010) have
provided biological rationale of using MEK blockade in human clinical trials. In this
perspective, selumetinib (AZD6244; Array BioPharma and AstraZeneca), a potent
orally available small molecule that inhibits MEK1/2 enzymes, was recently granted
orphan drug designation by the FDA for treating uveal melanoma, thyroid cancer,
and neurofibromatosis (AdisInsight (Springer) website, https://adisinsight.springer.
com/drugs/800019504, accessed 25/01/2019). It was investigated in OC in a single-
arm phase II trial (NCT00551070) enrolling women with recurrent low-grade serous
ovarian or peritoneal tumors (Farley et al. 2013). This pretreated population experi-
enced a PFS of 11 months and 63% of patients had PFS > 6 months which merit
further development of this drug in this chemoresistant OC (Farley et al. 2013).
Interestingly, a dramatic response to selumetinib was seen in a patient with mutated
KRAS recurrent low-grade serous OC who showed a durable response for more than
7 years (Takekuma et al. 2016). Selumetinib is being investigated by M.D. Anderson
Cancer Center and AstraZeneca in a phase I trial (NCT03162627) combined with
PARP inhibitor olaparib for patients with advanced endometrial, ovarian, and other
solid malignancies with altered RAS pathway and is still recruiting (estimated study
completion date: 2026). In addition, selumetinib combined with fulvestrant
(Faslodex®), an estrogen receptor antagonist developed by AstraZeneca, showed
potential for this association in reversing resistance in positive estrogen receptor OC
(Hew et al. 2015) which illustrates a promising use in upcoming early human
studies. MEK blockade by binimetinib (MEK162; Array BioPharma), another
inhibitor of this pathway, has shown an interesting prolongation of response duration
(31 months) in a woman with advanced/recurrent low-grade serous OC that was
enrolled in the MILO phase III trial (NCT01849874) and having mutated KRAS
(Han et al. 2018). Additionally, evidence of binimetinib activity in OC has been
achieved in a phase Ib trial (NCT01649336) combining this drug with paclitaxel
particularly in patients with known altered MEK pathway (Grisham et al. 2018).
MILO phase III randomized and parallel-assignment clinical trial is currently being
conducted to assess the efficacy of binimetinib as monotherapy versus best physician
choice (paclitaxel, topotecan, or PLD) in women (n¼ 360, estimated) with recurrent
or persistent low-grade serous OC in North America, Europe, and Australia
(NCT01849874). MILO study completion date is estimated in September 2019.
Trametinib is another potential oral inhibitor of MEK enzymes that have exhibited
impressive response rates with dabrafenib combo in treating solid cancers especially
unresectable or metastatic melanoma with BRAF V600E/K mutations (Long et al.
2017a, b; Abdel-Rahman et al. 2016). In OC, doublet PI3K/MEK inhibition using
buparlisib in combination with trametinib has been studied in phase Ib trial
(NCT01155453) and demonstrated promising clinical signals of activity (76% of
disease control rate) in patients with mutated KRAS (Bedard et al. 2015). To date,
only two case reports have reported dramatic response to trametinib combined with
dabrafenib or metformin in selected patients with low grade and clear cell histology
harboring KRAS and BRAF mutations and therefore, highlighting the need for
clinical trials with predefined basket designs (Mendivil et al. 2018; Castro et al.
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2015). This underscores the need for predictive biomarkers for this pathway block-
ade to identify OC patients who are most likely to derive durable clinical benefit. A
phase III randomized trial (NCT02101788) is being conducted by the NCI (National
Cancer Institute) that will enroll an estimated number of 260 recurrent or progressive
low-grade OC patients with cross-over assignment. In this trial, PFS is the primary
endpoint with intention-to-treat analysis and patients will be randomized to receive
trametinib or clinician’s choice (topotecan, paclitaxel, letrozole, tamoxifen, or PLD).
Importantly, this trial will also assess various genetic testing by NGS for various
genes related to this pathway such as KRAS in addition to circulating cell-free tumor
DNA and their correlation with tumor response. Patient recruitment with this rare
histological subtype is the major challenging barrier. Taken together, targeting this
pathway in this subtype of OC is at the beginning and promising treatments are to
come in the near future (for a detailed review in this topic, see: McLachlan et al.
2016a, b).

3.2.3.3 Cyclin E1
Cyclin 1 protein is encoded by the CCNE1 gene and constitutes a core signaling that
accelerates G1/S transition by binding cyclin-dependent kinases (CDK) (Kanska
et al. 2016). Principally, CDK2 is the main partner of CCNE1 and plays a key role in
various cell functions such as cell-cycle progression, DNA replication, transcription,
and repair (Wood and Endicott 2018; Kanska et al. 2016). Interactions of CCNE1
and their associated CDK can provoke modifications in their ATP-binding pockets
which enables access of target substrates. Briefly, CDK enzymes are activated by
Cdc25 which in turn phosphorylates Cdc25 by positive feedback to generate active
CDK/cyclins required for cell-cycle control (Kanska et al. 2016). Negative regula-
tion of this signaling is ensured by cell-cycle inhibitors p21 and p27, key mediators
of TP53-mediated damage response as well as TGF-β/SMAD pathway (reviewed in
detail elsewhere: Kanska et al. 2016).

Increased oncogenic CCNE1/CDK2 kinase activity is involved in the mitogenic
transformation of various cancers such as hepatocellular carcinoma (Bayard et al.
2018; Sonntag et al. 2018), lung cancer (Huang et al. 2012), breast cancer (Lundgren
et al. 2015), endometrial and uterine cancers (Kuhn et al. 2014), and OC (Kuhn et al.
2016). CCNE1 genetic deregulation by amplification is an early event in the genesis
of fallopian tube-derived high-grade serous OCs (Karst et al. 2014; Kuhn et al.
2016). Genetically altered CCNE1 is found in about 20% of OCs (Nakayama et al.
2010). Notably, OC patients with CCNE1 amplifications tend to have poor survival
(Nakayama et al. 2010; Cancer Genome Atlas Research Network 2011; Ayhan et al.
2017; Zhao et al. 2018) and are chemoresistant to standard chemotherapy (Patch
et al. 2015; Etemadmoghadam et al. 2009). Recently, various reports have confirmed
this association which supports the use of altered CCNE1 as a prognosticator and
predictive biomarker of treatment failure in OC management. In this perspective, an
early study by Etemadmoghadam et al. found that CCNE1 copy number gain is
significantly associated with poor PFS and OS in a cohort of 43 advanced serous
ovarian tumors (Etemadmoghadam et al. 2010). Similarly and based on primary
tumors data, another study by the previous team showed that high-grade OC patients
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with amplified CCNE1 showed short OS and their tumors were associated with
polyploidy (Etemadmoghadam et al. 2013a), a substantial driver of chemotherapy
resistance (Kuznetsova et al. 2015; Mittal et al. 2017). Moreover, this study has also
demonstrated that cell polyploidy drives resistance to inhibition of CCNE1 partner
CDK2 and therefore may be used to identify a subset of OC patients that are likely to
benefit from anti-CDK agents under development (Etemadmoghadam et al. 2013a).
Of note, polyploidy arises from genome doubling, early during cancer evolution and
is highly common across various cancers with poor prognosis (Bielski et al. 2018).
Likewise, another recent study suggests that tumors from high-grade serous OC
patients (n ¼ 41) with short survival are characterized by focal copy number gain of
CCNE1 in addition to wild-type BRCA status (Yang et al. 2018). In a relatively large
cohort that enrolled 262 high-grade serous OC, amplified-CCNE1 tumors were
found associated with genome instability as well as poor clinical outcomes as
compared with the non-amplified group (Aziz et al. 2018b). Unlike previously
discussed reports and contrary to the expectations, Pils et al. demonstrated in a
cohort of 172 serous epithelial OC tissues that amplified-CCNE1 has no impact on
clinical outcomes (Pils et al. 2014). Surprisingly, based on Cox model, high CCNE1
gene expression was found to be significantly an independent predictive biomarker
of prolonged OS in stage III/IV OC patients (Pils et al. 2014). One possible
explanation is that ovarian tumors harboring CCNE1 alterations may have other
important genetic signatures that influence survival and therapy response and have to
be considered as well because of the substantial heterogeneity within and between
OC patients. More recently, co-amplification of CCNE1 and BRD4 (bromodomain
and extraterminal 4) was found in OC patients with worse OS (Petersen et al. 2020).
In addition, this report also confirmed the role of high protein expression of cyclin E
in conferring platinum-resistance ( p ¼ 0.016) (Petersen et al. 2020). These discor-
dant results came from small study cohorts which limit definitive answers to the
prognostic and predictive value of this oncogene in OC. Hopefully, more conclusive
data are awaited especially from randomized and controlled trials that are
investigating CCNE1 in OC as a biomarker for patients’ stratification. Based on
promising anticancer activity of bortezomib (a proteasome inhibitor) in CCNE1-
amplified high-grade serous OC (Etemadmoghadam et al. 2013b), this amplification
is being used as a predictor of response rate in a currently recruiting phase II trial
(NCT03509246) that will evaluate the efficacy of bortezomib combined with PLD
for platinum-resistant OC patients with wild-type BRCA status. In addition, two
other phase I/II trials (NCT02797977; NCT02797964) conducted by Sierra Oncol-
ogy, Inc. are recruiting patients with advanced cancers including OC and will
investigate SRA737 agent (a checkpoint kinase 1 inhibitor) based on various genetic
signatures including altered CCNE1 and BRCA to predict sensitivity to this new
anticancer drug.

Remarkable advances regarding pharmacological inhibition of the kinase
components of this pathway were recently achieved especially in breast cancer
with the promising results from phase III trials (NCT01958021, NCT01942135)
testing inhibitors of cyclin-dependent kinases (CDK) 4/6 including palbociclib
(Ibrance®, Pfizer) (Verma et al. 2016) and ribociclib (Kisqali®, Novartis)
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(Hortobagyi et al. 2016). In OC, preclinical investigation of dinaciclib (MK-7965,
Merck & Co), a CDK2 inhibitor, showed synergistic anticancer activity when
combined with AKT inhibitors in CCNE1-amplified tumors (Au-Yeung et al.
2016). In addition, a combination of ribociclib and cisplatin followed by ribociclib
maintenance demonstrated potential antitumor response in both in vitro and in vivo
high-grade serous OC model (Iyengar et al. 2018). Currently, there is one phase I
clinical trial (NCT02897375) recruiting patients with advanced cancers including
OC and will assess the safety of palbociclib combined with cisplatin or carboplatin.
Ribociclib is also being evaluated in OC in combination with immunotherapy
(PDR001) and hormone therapy (fulvestrant) in a phase I trial (NCT03294694) as
well as in another phase I trial (NCT03056833) in combination with paclitaxel/
carboplatin and is still currently recruiting patients. Until this time, only one phase II
trial (NCT03673124, n ¼ 51) by the Gynecologic Oncology Group (GOG—http://
www.gog.org) in collaboration with Pfizer is planned to evaluate the efficacy of
palbociclib combined with letrozole in women with recurrent low-grade serous OC
and it is estimated to provide first results in July 2021. Promisingly, these recent
signs of progress in understanding this proliferative signaling have illuminated
potential targets and biomarkers to guide drug selection and are currently used in
developing novel targeted agents for OC.

3.2.3.4 EGFR Pathway
Historically, epidermal growth factor receptor (EGFR) and its related proteins
including human epidermal receptor (HER2) have been extensively studied for
more than three decades and their critical role in epithelial cell development and
cancer has been elucidated since 1978 (for review see: Mitsudomi and Yatabe 2010;
Arteaga and Engelman 2014). Moreover, family members of EGFR proteins are
important targets of multiple anticancer drugs such as monoclonal antibodies and
small-molecule tyrosine kinase inhibitors that were successfully developed for
treating various epithelial cancers including gynecological cancers (Reyes et al.
2014). The interaction between the four EGFR family transmembrane protein
receptors through homodimerization and heterodimerization, as a result of ligand
binding and/or receptor mutations, directly affects downstream key cell signaling
pathways by activating many genes responsible for tumor cell proliferation, survival,
and invasion (Sigismund et al. 2017). Studies reporting overexpression of EGFR in
epithelial OC suggest a range of 4–100% of cases (Teplinsky and Muggia 2015).
Importantly, EGFR and HER protein (or gene) members, especially HER2, are
suggested to have an impact on the prognosis of OC as demonstrated by recent
studies (Despierre et al. 2015; Demir et al. 2014; Shang et al. 2017a) and an up-to-
date meta-analysis (Luo et al. 2018). However, blockade of EGFR in randomized
controlled trials (RCTs) comparing targeted anti-EGFR drugs with or without
standard chemotherapy in epithelial OC patients as first-line or as maintenance has
demonstrated a marginal gain in survival outcomes (Morrison et al. 2018).
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3.2.3.5 Folate Receptor Pathway
Folate is a vitamin with fundamental roles in DNA synthesis and methylation, and
also recombination repair (Rizzo et al. 2018). Cellular intake of folates is achieved
throughout its contact with the reduced folate carrier transporter or by endocytosis
facilitated by folate receptor alpha (FR-α) glycoprotein (Zhao et al. 2011). FR-α is
encoded by the FOLR1 gene located on chromosome 11 (11q13.4). FR-α is a high
affinity glycosylphosphatidylinositol membrane-anchored protein that binds and
transports physiological levels of folate into cells (Rizzo et al. 2018). FR-α is
suggested to affect chemoresistance via regulating the expression of apoptosis-
related signaling proteins, Bcl-2 and Bax (Chen et al. 2012). A higher FR-α
expression was found to be an important biomarker for prognosis and response to
therapy in several aggressive solid cancers such as pancreatic ductal adenocarcinoma
(Cai et al. 2017), triple-negative breast cancer (Ginter et al. 2017), and recurrent,
platinum-resistant and refractory OC (Martin et al. 2017; Rubinsak et al. 2018).
Furthermore, OC patients who express an increased level of FR-α have poor
response to chemotherapy ( p ¼ 0.021) as well as poor disease-free interval (HR:
2.45; 95% CI: 1.16–5.18, p ¼ 0.02) and OS (HR: 3.6; 95% CI: 0.93–13.29,
p¼ 0.03) (Chen et al. 2012). Promisingly, recent studies provided rational therapeu-
tic targeting of FR-α in OC as showed by several human clinical trials using
monoclonal antibodies (Armstrong et al. 2013), vaccines (Kalli et al. 2018), and
novel class antibody-drug conjugates (ADC) (Stewart and Cristea 2019). Recently,
Armstrong et al. enrolled 54 OC patients with platinum-sensitive disease in phase II
open-label trial comparing the anti-FR-α farletuzumab (MORAb-003) weekly as
monotherapy versus in combination with standard carboplatin and taxanes (pacli-
taxel 175 mg/m2 or docetaxel 75 mg/m2) every 3 weeks (six cycles) followed by
farletuzumab as maintenance (Armstrong et al. 2013). Notably, adding farletuzumab
to carboplatin and taxanes improved the response rate and duration of response in
this setting (Armstrong et al. 2013). Following these promising results, a phase III
randomized and controlled trial (NCT00849667) was conducted to evaluate treat-
ment with farletuzumab versus placebo in 1100 recurrent and sensitive OC but it
didn’t show any statistically significant difference between the arms (Vergote et al.
2016). Interestingly, attempts to develop immunity against FR-α in OC based on
peptide vaccines were also investigated and showed motivating results (Kalli et al.
2018). In this perspective, a phase I trial (NCT01606241) that tested the safety of
FR-α peptide vaccine and enrolled OC patients with no evidence of disease after
completed standard therapy found that this strategy is well-tolerated and that FR-α
T-cell immunogenic response was developed over the vaccination course which was
observed and persisted for at least 12 months (Kalli et al. 2018). In addition, Yeku
et al. assessed this strategy in a phase II trial (NCT02764333) using TPIV200
vaccine (Tapimmune Inc.), a polypeptide multi-epitope against FR-α, in combina-
tion with anti-PD-L1 durvalumab (Imfinzi®, AstraZeneca) for patients with
platinum-resistant or refractory OC (Yeku et al. 2018). This promising combination
with an immune-checkpoint inhibitor was found safe and opened a new era for OC
vaccines. FR-α-based therapeutic targeting in OC has benefited from the innovative
ADC as well (Moore et al. 2018a). Briefly, ADC are newly developed anticancer
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drugs and are based on engineered complexes composed of a monoclonal antibody
directed against cancer cell antigens such as (FR-α and CD30), a biologically active
cytotoxic drug and a linker (Moore et al. 2018a; Beck et al. 2017). This method
enables a targeted delivery and cancer-killing ability with reduced toxicity by
allowing discrimination between healthy and cancer tissues (Beck et al. 2017).
There are currently various randomized and controlled trials investigating ADCs
in human cancers such as brentuximab vedotin (Adcetris®, Seattle Genetics) and
ado-trastuzumab emtansine (Kadcyla®, Genentech) as well as mirvetuximab
soravtansine (IMGN853, ImmunoGen) for OC particularly for platinum-resistant
patients. Mirvetuximab soravtansine is an ADC that binds to FR-α to deliver a
powerful anti-microtubule (maytansinoid) drug into cancer cells (Moore et al.
2018a). Phase I dose-finding and safety trials demonstrated manageable toxicity
(grade 1 or 2 fatigue, blurred vision, and diarrhea) and encouraging preliminary
clinical activity in OC (Moore et al. 2017, 2018b). Recently, results of FORWARD
II (expansion cohort, NCT02606305) phase Ib trial combining mirvetuximab
soravtansine with immune-checkpoint inhibitor pembrolizumab (Keytruda®,
Merck) were presented at ESMO 2018 meeting and showed potential signals of
clinical activity in recurrent platinum-resistant setting (Matulonis et al. 2018).
Promisingly, FORWARD I phase III multicenter trial conducted by ImmunoGen,
Inc. in collaboration with Gynecologic Oncology Group is enrolling 333 women
with platinum-resistant advanced OC in a randomized fashion (NCT02631876).
This trial compared the efficacy of mirvetuximab soravtansine versus the
investigator’s choice of chemotherapy (paclitaxel, pegylated liposomal doxorubicin
(PLD), or topotecan) in FR-α-positive patients and with PFS as a primary endpoint
(study design reviewed by Moore et al. 2018a). Recently, the findings of this pivotal
trial showed significant improvements in the arm treated with mirvetuximab
soravtansine in terms of ORR (24% vs 10% in the controlled arm; p ¼ 0.014) but
without improved PFS in the intention to treat population (HR: 0.981; p ¼ 0.897)
(Moore et al. 2019b). The data on OS (as of August 2019) showed a benefice for this
antibody-drug conjugate in patients selected based on high expression of FR-α (16.4
vs 12.0 months; HR: 0.678, p ¼ 0.048) (Moore et al. 2019b). Two additional phase
III trials (MIRASOL/NCT04209855, SORAYA/NCT04296890) with a large sam-
ple size for this setting are currently ongoing. Moreover, approaches using
combinations such as mirvetuximab soravtansine and bevacizumab yielded
promising findings for this difficult-to-treat population (O’Malley et al. 2020;
Fowler 2020). Furthermore, academic clinical trials are also currently ongoing to
study the early efficacy of mirvetuximab soravtansine in combination with PARP
inhibitors and chemotherapy (NCT02996825/cohort C; NCT03552471).

In another effort for this setting, vintafolide (a folate-vinca (desacetylvinblastine
hydrazide) conjugate; Endocyte®) that targets tumors with positive FR-α was tested
in phase III trials (Ledermann et al. 2015; Assaraf et al. 2014). In this perspective,
PRECEDENT is a phase II trial (NCT00722592) that has been conducted to
randomize 149 women (intention to treat population) with platinum-resistant OC
to receive intravenous vintafolide + PLD versus PLD alone (Naumann et al. 2013).
Some marginal improvement in terms of PFS in the vintafolide arm was seen in this
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difficult to treat setting (5.0 vs 2.7 months, HR: 0.63; 95% CI: 0.41–0.96, p¼ 0.031)
(Naumann et al. 2013). However, the interim analysis of the following PROCEED
phase III trial (NCT01170650) didn’t provide significantly improved outcomes with
this treatment and therefore, the study was stopped to enroll more patients (Oza et al.
2015b). This strategy particularly using mirvetuximab soravtansine may represent a
promising hope for targeting this pathway in platinum-resistant OC (for further
reading, see: Bergamini et al. 2016; Scaranti et al. 2020; El Bairi et al. 2021). This
hallmark of OC and particularly this drug target seem to have a promising future as a
therapeutic strategy for this aggressive gynecological cancer.

3.2.4 Evading Growth Suppressors

3.2.4.1 TP53 Network
Mutated TP53 events are still by far the most prevalent in cancer since the discovery
of this tumor suppressor gene in 1979 (Soussi 2010). Every year, thousands of
papers are published and provided notable novel findings regarding p35 functions,
genetic variants as well as possible therapeutic interventions. There are more than
70,000 articles recorded on PubMed/Medline until today along with 140 clinical
trials on the US ClinicalTrials.gov database (accessed 25 February 2019). Moreover,
there is a rich source of data related to this gene and important databases were created
for this purpose such as the IARC TP53 Database (http://p53.iarc.fr/) and The UMD
TP53 Database (https://p53.fr/tp53-database) providing updated information for the
scientific community working on this hot subject (for review, see: Leroy et al. 2014;
Bouaoun et al. 2016). The TP53 gene encodes for p53 protein with suppressive cell
functions and is the most studied anti-oncogene to date (Aubrey et al. 2016). P53
protein has binding transcription factor activity and can bind to various promoter
elements of key human genes to regulate their expression. Particularly, TP53
fundamentally controls cell proliferation and maintains the integrity of the human
genome and is linked to all cancer hallmarks previously described by Hanahan and
Weinberg in 2011 (Hanahan and Weinberg 2011; Aubrey et al. 2016). Briefly, in
normal conditions, low p53 levels are maintained by negative regulation of MDM2
(murine double minute 2), an E3 ubiquitin ligase, that represses p53 transcriptional
function and also enables its degradation by the proteasome (Vijayakumaran et al.
2015). Furthermore, p53 acts on several target genes that mediate cell-cycle arrest,
DNA repair, apoptosis, and autophagy in the presence of activating stimuli such as
oncogene expression and DNA damage.

While somatic TP53 gene alterations are frequent in several cancers (Hainaut and
Pfeifer 2016), germline mutations predispose to a wide spectrum of early-onset
cancers such as Li-Fraumeni and Li-Fraumeni-like syndromes (Guha and Malkin
2017; Andrade et al. 2017). According to the TCGA project, OCs are characterized
predominantly (96%) by mutated TP53 in almost all sequenced tumors (Cancer
Genome Atlas Research Network 2011). TP53 gene alterations reported in cancer
are represented mainly by point mutations and are dominated by missense mutations
(exons 5–8) particularly in breast and OCs (Silwal-Pandit et al. 2017). Tumor cells
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with mutated TP53 can control the gene expression associated with tumorigenesis,
including proliferation, migration, and invasiveness (Kang et al. 2013; Lee et al.
2015; Ren et al. 2016; Ahn et al. 2017; Xu et al. 2019). Mutated TP53 upregulates
the expression of several pro- and anti-apoptotic genes, such as MYC, FAS, BCL2L,
NFkB2, and ABCB1 (Brosh and Rotter 2009). Recent evidence from sequencing
reports of low stage tumors suggests that deleterious TP53 mutations alongside
tetraploidy and homologous recombination repair defects are the earliest events in
the pathogenesis of high-grade serous OC (Flesken-Nikitin et al. 2013; Chien et al.
2015; Huang et al. 2015; Labidi-Galy et al. 2017; Soong et al. 2019).

Based on previous studies that assessed the clinical relevance of linking TP53
mutations with the prognosis of OC (Kang et al. 2013; Rechsteiner et al. 2013;
Nadkarni et al. 2013; Wong et al. 2013; Wojnarowicz et al. 2012; McAlpine et al.
2012; Köbel et al. 2010; Bernardini et al. 2010), various recent studies have provided
evidence regarding their impact on survival outcomes and response to treatments. In
this regard, the TP53K351N variant was found to be associated with platinum-
resistance to neoadjuvant chemotherapy in advanced OC (Zhang et al. 2014).
Notably, this mutation independently predicted disease-free survival in this setting
(Zhang et al. 2014). Mechanistically, it seems that mutated TP53 induces genome
instability and chromosome 7 accumulation in addition toMDR1 gene amplification
favors chemoresistance (Zhang et al. 2017). Recently, these findings were confirmed
in a large prospective cohort (Ghezelayagh et al. 2020). In fact, TP53 mutations,
which account for 87.9% in high-grade OC, were found associated with platinum
sensitivity even after adjusting for BRCA-mutated status (OR: 0.41, 95% CI:
0.17–0.99; p ¼ 0.048) but not with survival outcomes (Ghezelayagh et al. 2020).
However, several authors have recently demonstrated that TP53 also impacts the
survival of OC patients. Based on the Cancer Genome Atlas (TCGA) data, Seagle
et al. demonstrated that TP53 hot spot mutations in epithelial high-grade serous OC
confer differential OS outcomes (Seagle et al. 2015). Patients with R248 codon had
the worse OS, followed by those with any other codons, R175 codon, and R273
codon which had the highest OS ( p¼ 0.04). Moreover, the authors also showed their
in vitro experimentation that TP53 mutations confer resistance to the
antimicrotubules paclitaxel, epothilone B, and ixabepilone (Seagle et al. 2015). In
another TCGA-based study, the co-occurrence of mutated TP53 and BRCA in serous
OC was found to be associated with improved survival as compared to TP53 or
BRCA alone (Li et al. 2019b). However, the latest cohort report by Mandilaras et al.
demonstrated that these mutations have no impact on a first platinum-free interval or
OS (Mandilaras et al. 2019). To date, the prognostic impact of loss or gain of
functions of TP53 in OC is still conflicting. Therapeutically, targeting the TP53
pathway was also investigated in early clinical trials for OC. A phase II trial
(NCT01164995) that investigated AZD1775 (a WEE1 kinase inhibitor developed
by Merck®) given orally in combination with carboplatin in patients with TP53-
mutated resistant or refractory OC to first-line chemotherapy showed encouraging
signs of efficacy (Leijen et al. 2016). The toxicity profile was manageable and was
mainly represented by fatigue, nausea, thrombocytopenia, diarrhea, and vomiting. In
the 21 evaluated patients for efficacy, the overall response was 43% including one
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patient that had a prolonged complete response. In addition, median PFS and OS
were 5.3 and 12.6 months, respectively, in this difficult-to-treat population (Leijen
et al. 2016). More recently, Oza et al. conducted a double-blind phase II trial
(NCT01357161) to investigate the efficacy of oral adavosertib (AZD1775) or
placebo in association with carboplatin and paclitaxel in OC patients with
platinum-sensitive disease and enriched with mutated TP53 (Oza et al. 2020). The
addition of adavosertib to chemotherapy was found to improve PFS (HR: 0.63; 95%
CI: 0.38–1.06); p ¼ 0.08, meeting the predefined significance threshold <0.2 (Oza
et al. 2020). More recently, the clinical activity of adavosertib in combination with
gemcitabine in platinum-resistant or refractory OC was investigated in a randomized
and placebo-controlled phase II trial (NCT02151292) (Lheureux et al. 2021).
Median PFS in women treated with adavosertib and gemcitabine was significantly
superior compared to gemcitabine monotherapy (HR: 0.55; 95% CI: 0.35–0.90,
p ¼ 0.015). Regarding OS, the experimental arm median OS was 11.4 months
compared to 7.2 months in the control group treated with gemcitabine (HR: 0.56;
95% CI: 0.35–0.91, p¼ 0.017). However, despite this hope for this setting with poor
outcomes, this study results introduced clinically significant adverse events
(Lheureux et al. 2021). These works highlight the important role of TP53 in OC
and may be a promising targetable pathway for drug discovery in this cancer.

3.2.4.2 Retinoblastoma Protein Signaling
Historically, the retinoblastoma gene (RB1) was initially discovered in the 80th and
was the first isolated human tumor suppressor gene (Lee et al. 1987). RB1 gene is
located at chromosome 13 (13q14.2) and is a key player in the control processes of
cell-cycle progression in cooperation with other tumor suppressors such as BRCA
and TP53 (Di Fiore et al. 2013). Notable functions including cell-cycle arrest, cell
death, genomic stability, differentiation, and a plethora of other cellular roles are
regulated by this triplet of anti-oncogenes (Dick and Rubin 2013; Manning and
Dyson 2012). Negative regulators of RB1 function by phosphorylation encompass
cyclin D, CDK4, and CDK6 and allow G1/S transition by activation of the E2F
family of transcription factors (transcribe a range of genes required for S phase)
which therefore enable mitogenic release (reviewed in detail by Sherr and
McCormick 2002; Dick and Rubin 2013).

RB1 loss is not only implicated in the development of retinoblastoma but is also
related to the initiation and progression of several pediatric and adult cancers such as
OC (Li et al. 1991; Takenaka et al. 2015; Stover et al. 2016; Jia and Zhao 2019). In
addition to germline and somatic alterations of RB1 observed in many cancers, a
previous analysis of three case-control studies suggested that single nucleotide
polymorphisms in three common variants of this gene may be also associated with
an increased risk to develop invasive OC (Braem et al. 2011; Song et al. 2006). Data
from the TCGA study found that RB1 expression is deregulated in 67% of high-
grade serous OC cases (The Cancer Genome Atlas Research Network 2011). A
recent report using NGS found a prevalence of 29% of copy number variation of RB1
gene in recurrent OC (Du et al. 2018) but there is still a lack of sequencing studies
focusing on the prevalence of its genetic alterations in primary tumors. To date, most
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OC genome sequencing projects focused only on the prognostic value of RB1 for
chemoresistance and survival outcomes (Garsed et al. 2018; Du et al. 2018; Patch
et al. 2015; Takenaka et al. 2015; Milea et al. 2014). Gene breakage or homozygous
deletion in RB1 in OC was found recently to be associated with exceptional response
to platinum-based treatment mainly in patients with improved PFS (Garsed et al.
2018). Gene breakage is a type of genetic alteration due to high levels of replication
stress and causes a defect in DNA repair mechanisms which may explain possible
sensitivity to various treatments. This previous study further assessed RB1 protein
loss based on immunohistochemistry in a cohort of 313 OC patients including
91 exceptional responders and found a significant association with long PFS
(35%, p < 0.001) as compared with unselected OC cases (Garsed et al. 2018).
Moreover, Kaplan-Meier survival analysis suggested that exceptional responders to
treatment with RB1 protein loss had better survival when their tumors harbor HRR
deficiency ( p ¼ 0.03) (Garsed et al. 2018) which is consistent with a previous large
cohort of high-grade serous OC (Milea et al. 2014).

3.2.5 Activating Invasion and Metastasis

Metastasis is a fatal hallmark of cancer. Patients with advanced cancer die often
because of metastatic disease. This inevitable and organotropic process, particularly
in OC, involves a complex interaction between intrinsic tumor characteristics and
surrounding stroma (Welch and Hurst 2019). In OC, neoplastic progression into the
peritoneal cavity was widely considered to be different as compared with other solid
cancers. In fact, OC cells metastasize through a route using passive spread known as
trans-coelomic dissemination (Barbolina 2018; Tan et al. 2006) in which multicel-
lular spheroids adhere to mesothelial cells in the peritoneal cavity to build secondary
metastatic sites. However, recent findings also suggest that hematogenous dissemi-
nation into the omentum can be also seen via circulating tumor cells (Yeung et al.
2015; Pradeep et al. 2014). Peritoneal metastases in OC are responsible for poor
patients’ prognosis. Various molecular signaling pathways involved in epithelial-to-
mesenchymal transition (EMT), angiogenesis, and motility were defined and
investigated to understand metastasis and offer therapeutic interventions and
biomarkers to predict outcomes.

3.2.5.1 Cadherins
Cadherins family of cell-surface glycoproteins are involved in the calcium-
dependent cell–cell adhesion that sustains the integrity of epithelial cells and tissue
architecture and are found in most mammalian tissues (Gloushankova et al. 2017;
Shamir and Ewald 2015). Cadherins constitute with other proteins (such as integrins
and cytoskeleton proteins) molecular complexes known as adherens junctions that
mediate intercellular adhesive interactions involved in various cell functions includ-
ing adhesion (Klezovitch and Vasioukhin 2015), polarity (Ebnet et al. 2018),
mechanotransduction (Leckband and de Rooij 2014), trafficking and migration
(Collins and Nelson 2015; Brüser and Bogdan 2017), as well as communication
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with extracellular matrix (ECM) (Ferreira et al. 2015). Deregulation of cadherin
signaling by mutations, loss, methylation, damage or by other signaling pathways
such as FGF2 plays a central role in cancer progression by promoting EMT which is
a key characteristic of epithelial tumor cell invasion into the surrounding microenvi-
ronment and spread to distant organs (Sawada et al. 2008; Gheldof and Berx 2013;
Lau et al. 2013; Wang et al. 2016b; Kourtidis et al. 2017; Wong et al. 2018). In
addition, cadherin also forms a complex with β-catenin and supports its canonical
oncogenic cell growth activity (Shahbazi and Perez-Moreno 2015). Cadherin
molecules can be divided into type I [E-encoded by CDH1 gene and N-encoded
by CDH2 gene] and are found in tissues with a high degree of intercellular cohesion
such as human epithelia and type II expressed in cells with motility features (Pal
et al. 2018). There are also other cadherins with potential impact on cancer progres-
sion such as VE and FAT cadherins and are reviewed elsewhere (Ashaie and
Chowdhury 2016; Zhang et al. 2016b). In ovarian tissues, it was previously
suggested that fallopian tube epithelia express more likely E-cadherin while ovarian
surface epithelium (derived from mesoderm) expresses N-cadherin (Qiu et al. 2017;
Adler et al. 2015; Koensgen et al. 2010; Hudson et al. 2008; Ahmed et al. 2007).
However, cadherin expression is considered heterogeneous (Klymenko et al. 2017a)
and it is admitted that well-differentiated OC express E-cadherin, while advanced
and metastatic tumors display N-cadherin upregulation, a concept known as cadherin
switching that favors metastasis (Patel et al. 2003; Hazan et al. 2004; Cheung et al.
2010) and is observed during EMT involved in intraperitoneal seeding of OC cells
(Klymenko et al. 2017b; van Baal et al. 2018). In OC, other altered cadherins were
also investigated such as P-cadherin which was previously found to facilitate the
dissemination of tumor cell aggregates into the peritoneum (Usui et al. 2014) (for
review, see: Vieira and Paredes 2015; Roggiani et al. 2016). The loss of cell–cell
adhesion by cadherin alterations is therefore implicated in malignant transformation
and invasive behaviors of OC as suggested by several latest studies (Chmelarova
et al. 2018; Chen et al. 2017; Teng et al. 2015; Du et al. 2014; Huang et al. 2014b;
Wang et al. 2014; Wakahashi et al. 2013). Importantly, downregulation of cadherins
is regarded as an essential event in OC progression and aggressiveness and predicts
poor outcomes (Yu et al. 2017; Peng et al. 2012). Based on immunohistochemistry
and tissue microarray, Takai et al. analyzed tumor samples from 174 primary tumors
and 34 metastases from OC patients for EMT markers (E-cadherin and its inhibitor
Snail) and their associations with outcomes (Takai et al. 2014). Patients with
EMT-positive markers (reduced E-cadherin and nuclear Snail expression) were
likely to have peritoneal dissemination than those with negative status ( p< 0.05)
(Takai et al. 2014). Remarkably, in multivariate analysis, EMT-positive status was
significantly associated with PFS ( p< 0.05) and OS ( p< 0.01) (Takai et al. 2014).
Moreover, another report assessed the prognostic value of E-cadherin expression in
advanced-stage high-grade serious OC patients (n¼ 98) treated with platinum-based
chemotherapy and found that positive E-cadherin by immunostaining predicts better
outcomes (Miše et al. 2015). Positive E-cadherin tumors were found significantly
associated with improved response to first-line platinum-based treatment ( p <
0.001) as well as better PFS and OS ( p < 0.001 for both) (Miše et al. 2015). In
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addition, positive E-cadherin expression predicts drug sensitivity to platinum ( p <
0.001) and improved OS ( p ¼ 0.01) in multivariate analysis (Miše et al. 2015).
Notably, a recent analysis from the Japanese Gynecologic Oncology Group (JGOG)
(3016A1 study) of 201 high-grade serous OC cases showed that patients with
mesenchymal transition phenotype have the worst prognosis (PFS: 1.4 years and
OS: 3.6 years) (Murakami et al. 2019). A similar conclusion was drawn by a recent
meta-analysis that included 1720 OC patients and found that reduced E-cadherin
expression correlates with poor OS (pooled HR: 1.74, 95% CI: 1.40–2.17) and PFS
(HR: 1.45, 95% CI: 1.12–1.86) (Yu et al. 2017). However, important heterogeneity
(I2statistic ¼ 57.0%, p¼ 0.003) among studies enrolled for OS analysis was noted and
may be explained by the difference in E-cadherin detection methods that were used
by studies and their related cut-off point variations (Yu et al. 2017).

In an attempt to target this signaling axis, various therapeutic interventions were
investigated (Wong et al. 2018; Mrozik et al. 2018) but their use in clinical research
is still at the beginning. In OC, Bialucha et al. examined the anticancer activity of an
antibody-drug conjugate HKT288 targeting tumor-associated antigen cadherin
6 (Bialucha et al. 2017). First-in-human HKT288 is an immunoconjugate consisting
of a human monoclonal antibody against cadherin 6 conjugated to a maytansine-
based cytotoxic agent developed by Novartis and was tested in a phase I trial for OC
and renal carcinoma (NCT02947152) (currently terminated). Importantly, HKT288
showed durable anticancer activity in xenografts derived from ovarian and renal
cancer patients (Bialucha et al. 2017). Of note, cadherin 6 is responsible for cancer
metastatic behavior (Gugnoni et al. 2017) and correlates with poor prognosis
(Ma et al. 2018b). Hence, drugging this EMT pathway merits further evaluation
in OC.

3.2.5.2 ZEB1 and ZEB2 Axis
ZEB (zinc finger E-box-binding homeobox) 1 and 2 are transcription factors with
pleiotropic roles especially in regulating the EMT process via mechanisms involving
cell plasticity (Zhang et al. 2019b; Caramel et al. 2018; Krebs et al. 2017). ZEB
DNA-binding proteins family promotes metastasis by repressing epithelial markers
such as E-cadherins and activating mesenchymal cell programs (Simeone et al.
2018; Fardi et al. 2019; Zhang et al. 2019b). In addition, invasiveness of OC is
enhanced when ZEB proteins are upregulated by various factors such as placental
growth factor (PLGF) (Song et al. 2016), MAGI1-IT1 long non-coding RNA (Gao
et al. 2019), TGF-β (Rafehi et al. 2016), and miR-429 (Chen et al. 2011). Various
reports have indicated that high expression of these ZEB1/2 markers provides
important prognostic information in OC (Yoshihara et al. 2009; Prislei et al. 2015;
Wu et al. 2016; Yan et al. 2017; Sakata et al. 2017; Zhang et al. 2018). Previously
and based on gene expression profiling of 43 OC tissues, Yoshihara et al. showed
that high ZEB2 expression is an independent factor of poor PFS (HR: 1.37; 95% CI:
1.07–1.78, p ¼ 0.014) and OS (HR: 1.53; 95% CI: 1.05–2.22, p ¼ 0.027) on Cox
multivariate analysis (Yoshihara et al. 2009). Later, another report that enrolled a
cohort of 143 OC patients found that high ZEB2 mRNA expression is significantly
correlated with poor survival outcomes as compared to patients with low ZEB2
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mRNA expression (PFS: 16 vs 23 months, p ¼ 0.035, OS: 42 vs 70 months,
p ¼ 0.002) (Prislei et al. 2015). Recently, a retrospective study from Yan et al.
aimed to examine ZEB2 expression as a prognostic biomarker in OC based on tissue
samples from 64 epithelial tumors, 36 benign tumors, and 28 normal specimens (Yan
et al. 2017). Positive expression of ZEB2 was significantly increased in OC as
compared to benign tumors and associated with differentiated histology and FIGO
stage as well ( p ¼ 0.002 for both) (Yan et al. 2017). Furthermore, patients with
positive expression of ZEB2 had worse OS ( p¼ 0.002) (Yan et al. 2017). However,
this prognostic significance disappeared in Cox multivariate analysis (HR: 1.496;
95% CI: 0.567–3.948, p ¼ 0.416) (Yan et al. 2017).

In addition to its prognostic value, ZEB1 was found recently to mediate
chemoresistance to platinum in OC cells by downregulating solute carrier family
3 member 2 (SLC3A2) (Cui et al. 2018). SLC3A2 is a cell-surface transporter and
transmembrane glycoprotein involved in intracellular calcium levels control and is
mainly expressed in rapidly proliferating cells (Fotiadis et al. 2013). Also, SLC3A2
was found to induce migration and invasion (Wang et al. 2017a). ZEB1
downregulates SLC3A2, and thus may likely induce dormancy and senescence of
tumor cells which are known hallmarks of resistance to anticancer therapy (Yeh and
Ramaswamy 2015; Endo and Inoue 2019). However, this concept is not discussed
deeply yet in the current literature. Therapeutically, Sakata et al. demonstrated based
on an in vitro and in vivo study that ZEB1 inhibition restored sensitivity to paclitaxel
in resistant OC cells (Sakata et al. 2017). Similarly, suppression of ZEB1 in other
cancers displayed potent anticancer properties in resistant cells (Peng et al. 2019;
Ren et al. 2013). This signaling axis has an important link with EMT and OC
patients’ outcomes and there is growing evidence supporting the role of ZEB1/
ZEB2 axis in other malignant cellular processes such as stemness, senescence, and
cell death (Caramel et al. 2018). Therefore, additional studies are needed to better
understand this signaling pathway in cell biology in general and particularly in
cancer.

3.2.5.3 EpCAM
Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a cell–cell
adhesion glycoprotein involved in various cellular pathways including cell integrity,
proliferation, signaling, and migration (Yahyazadeh Mashhadi et al. 2019; Schnell
et al. 2013). EpCAM was reported to be highly expressed in various tumors of
epithelial origin (Spizzo et al. 2011; for review, see: Herreros-Pomares et al. 2018).
Of note, in vitro assessment found that this marker promotes invasion during the
EMT process especially in cancer cells with non-mesenchymal phenotype
(Martowicz et al. 2012). Phenotypic immunostaining of EpCAM in human tumors
suggests stable or high expression in tumor-associated stem cells, effusions, and
metastases (Patriarca et al. 2012). Moreover, germline EPCAM deletion in colorectal
tissues causes MSH2 epigenetic silencing which predisposes to Lynch syndrome
(Pathak et al. 2019; Tutlewska et al. 2013). The presence of this molecule on
circulating tumor cells is becoming a potential candidate for real-time profiling of
human cancers (de Wit et al. 2019; Loeian et al. 2019) including OC (Van
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Berckelaer et al. 2016) based on liquid biopsy approaches (Grover et al. 2014).
Highly expressed EpCAM in OC stages is well documented. Previously, a retro-
spective study detected EpCAM in all OC subtypes and FIGO stages (Köbel et al.
2008). Furthermore, this can also be seen in recurrent ovarian tumors and metastases
(Bellone et al. 2009). Clinical impact and prognostic value of EpCAM
overexpression in OC were investigated in three recent studies and suggest favorable
outcomes (Battista et al. 2014; Woopen et al. 2014; Tayama et al. 2017). Battista
et al. evaluated the expression of EpCAM in a cohort of 117 OC and found a
significant independent prognostic value for this biomarker in terms of disease-
specific survival (HR: 0.408, 95% CI: 0.197–0.846; p ¼ 0.016) on multivariate
analysis (Battista et al. 2014). Similarly, another German report that enrolled tissue
samples from 74 OC patients mostly with advanced FIGO stages found that
overexpressed EpCAM is significantly associated with improved PFS ( p ¼ 0.040)
and better response to chemotherapy ( p ¼ 0.048) (Woopen et al. 2014). In addition,
EpCAMwas found to predict OS ( p¼ 0.022) (Woopen et al. 2014). Findings from a
recent large Japanese study by Tayama et al. (n ¼ 168) confirmed these data
(Tayama et al. 2017). Kaplan-Meier curves of OS stratified by EpCAM expression
found significant difference between high and low groups (HR: 2.17; 95% CI:
1.22–3.88; p ¼ 0.008) (Tayama et al. 2017). However, these cohorts of OC patients
that assessed EpCAM as a prognostic biomarker were retrospective in their design
and exploratory in their nature and therefore, their findings must be interpreted with
caution.

Therapeutically, EpCAM is a potential target for anticancer therapy that was
investigated using trifunctional bispecific antibodies such as catumaxomab
(Removab®) (Krishnamurthy and Jimeno 2018; Frampton 2012) and small-
molecule inhibitors (Tretter et al. 2018) particularly for malignant ascites in perito-
neal carcinomatosis (Knödler et al. 2018). Catumaxomab was developed by Neovii
Biotech® (a German pharmaceutical company) and evaluated in phase II/III pro-
spective trial (NCT00836654) that randomized 258 patients (n ¼ 129 for OC) to
receive catumaxomab combined with paracentesis against control of patients treated
with paracentesis alone for recurrent malignant ascites (Heiss et al. 2010). Modest
clinically meaningful improvement was reached in terms of puncture-free survival
which was longer in the group treated with catumaxomab as compared to the control
arm (median 46 vs 11 days; p < 0.0001) as well as in terms of median time to next
paracentesis (77 vs 13 days; p < 0.0001) (Heiss et al. 2010). Moreover,
catumaxomab was found to improve ascites symptoms and quality of life of OC
patients with a chemotherapy-refractory setting in a single-arm open-label multicen-
ter US phase II trial (n ¼ 32; NCT00326885) (Berek et al. 2014). In platinum-
resistant disease, this drug has slight anticancer activity as suggested by a phase IIa
of the AGO trialists (NCT00189345) (Baumann et al. 2011). Catumaxomab given as
an intraperitoneal infusion was approved by the US FDA and the EMA in Europe in
early 2009 but withdrawn later for marketing since 2014 for insolvency concerns
(https://neovii.com/neovii-completes-marketing-authorisation-withdrawal-of-
removab-in-the-european-union/?cn-reloaded¼1. Accessed 19/06/2019).
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3.2.6 Enabling Replicative Immortality

In physiological conditions, mutant cells are suppressed by a blockade of their
proliferation and eliminated by immunity. On some occasions, these cells can be
immortal by additional (epi)genetic events that progress their phenotype into highly
malignant cells that in turn can induce senescence and escape from tumor suppres-
sion (Moiseeva et al. 2020). The viable state of cancer cell senescence (also called
cytostasis or dormancy) classically presents as a growth arrest but with the retained
proliferative ability for survival, a well-known cancer condition called cellular
plasticity (Damen et al. 2020). Accordingly, dormant/proliferative cancer cells
have unlimited replicative potential. Telomere dysfunction and oncogenic and
exogenic-induced stresses are the principal causes that stimulate cell senescence
(Yaswen et al. 2015). Notably, the presence of senescent cells in cancer clones is
associated with recurrent disease, metastatic dissemination, and poor outcomes
(Damen et al. 2020). This hallmark is less investigated in OC for therapeutic
approaches. However, its involvement in tumorigenesis and prognosis seems to be
important. After front-line chemotherapy, OC cells can escape and survive to
repopulate the initial tumors (Telleria 2013). This repopulation phenomenon
encompasses transient cells with a senescent phenotype that drive relapse (Telleria
2013). Recently, Lam et al. demonstrated that signaling mechanisms of
chemoresistance in OC and dormancy are linked (Lam et al. 2020). Chemoresistant
OC cells had an enhanced survival by senescence (Lam et al. 2020). Telomere
shortening in OC, which is regulated by telomerase—a prominent enzymatic activity
of cancer cells, is involved in genomic instability that introduces additional
mutations. During this event, end-to-end fusions in chromosomes were observed
and can induce genome instability and bypass host cellular protection. Telomere
shortening was remarkably noticed in serous tubal intraepithelial carcinomas, a
precursor of high-grade serous OC (Kuhn et al. 2010). Moreover, this alteration
was also observed in tubo-ovarian dysplastic lesions (Chen et al. 2013). This
suggests that telomere shortening occurs earlier during ovarian tumorigenesis and
is a selective mechanism of cancer cell immortality. The use of telomerase by tumor
cells to maintain their telomere length and integrity has been an attractive druggable
target. In addition, the pharmacological elimination of dormant cells has also been
investigated using the so-called senolytic/senostatic drugs (Wyld et al. 2020). In this
perspective, preclinical combinatorial approaches using these drugs and the standard
OC chemotherapy were investigated (Meng et al. 2012; Stamelos et al. 2013; Wyld
et al. 2020). Targeted inhibition of telomerase activity in OC using BIBR1532 and
carboplatin was found to block the formation of spheroid-forming cells in vitro
(Meng et al. 2012). Moreover, the preclinical use of navitoclax, an orally bioavail-
able Bcl-2 inhibitor directed against senescent cells, demonstrated an improved
efficacy against OC cells when combined with paclitaxel-carboplatin therapy
(Stamelos et al. 2013). Of note, the combination of paclitaxel and navitoclax was
also previously shown to have a synergistic effect against OC cells (Wong et al.
2012). In OC patients, the high expression of Bcl-x(L) which induces senescence
mediated chemoresistance and the use of these drugs reduced resistant cells (Wong

84 K. El Bairi et al.



et al. 2012). Clinically, this approach was investigated in a phase II trial (MONAVI-
1/NCT02591095) using the single-agent navitoclax in 47 women with platinum-
resistant/refractory recurrent OC. The preliminary findings of this trial in 44 patients
assessable for efficacy showed a long response in 11 subjects treated with chemo-
therapy after navitoclax in addition to 12 patients that had high response (Brachet
et al. 2017). This suggests that this agent may reverse platinum-resistance in this
difficult-to-treat population (McMullen et al. 2020). However, the findings of the
blockade of this hallmark in OC which are mainly based on few preclinical studies
are not convincing yet. Telomere shortening not only drives tumor cell senescence
but is also involved in genome instability (Bär and Thum 2017). The model of “too
little of it can kill you but too much of it can kill you too” enlightens well the
difficulty of targeting this hallmark in cancer and the timing of its inhibition seems to
be crucial (Bär and Thum 2017). As the mechanisms of replicative immortality
interfere with those of “evading growth suppressors,” the previous chapter
discussing TP53 and RB pathways adds more details on this subject. For further
reading, see: Książek (2020), Sikora et al. (2020), Saleh et al. (2020), and Moiseeva
et al. (2020).

3.2.7 Inducing Angiogenesis

Without doubt, this hallmark accounts for the most relevant achievements and the
most potential exploited compounds in cancer. Pathologic angiogenesis has a prin-
cipal role in the growth and metastasis of solid tumors. This process is biologically
supported by a network of pathways and growth factors dominated by vascular
endothelial growth factor (VEGF) (Apte et al. 2019). Tumor hypoxia is a central
regulator of VEGF expression through HIF and other hypoxia-related factors and
genes such as platelet-derived growth factor (PDGF) and oncogenic mutations that
synchronize VEGF-related signaling pathways (Apte et al. 2019). The VEGF/
VEGF-R1/R2 canonical signaling induces vascular permeability, cell proliferation,
migration, and survival via the activation of several kinases. An important number of
studies demonstrated that VEGF expression has a prognostic value in
OC. Previously, pooled data from a meta-analysis of 19 studies showed that
VEGF overexpression is associated with reduced OS in OC (Hui and Meng 2015).
Moreover, another meta-analysis of 16 studies also demonstrated that serum and
tissue expression of VEGF is an independent predictor of poor PFS in OC (Yu et al.
2013).

Blockade of angiogenesis in OC resulted in promising findings. Bevacizumab is a
neutralizing anti-VEGF monoclonal antibody approved for treating
OC. Bevacizumab was investigated in several phase III trials for OC including
ICON-7 (Perren et al. 2011; Oza et al. 2015a), GOG-0213 (Coleman et al.
2017a, b), GOG-0218 (Burger et al. 2011; Tewari et al. 2019), OCEANS
(Aghajanian et al. 2012), and AURELIA (Pujade-Lauraine et al. 2014) for patients
with newly diagnosed or recurrent disease. The FDA and EMA approvals of this
anticancer drug were based on the promising findings of these landmark trials
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particularly GOG-0218. This phase III trial was designed to show the superiority of
adding bevacizumab to standard chemotherapy in the front-line setting. The
investigators tested this hypothesis using three-arm placebo-controlled study that
compared standard chemotherapy alone, chemotherapy plus bevacizumab, and
chemotherapy plus bevacizumab followed by bevacizumab as maintenance in a
population of 1873 women (Burger et al. 2011). The results of this study showed
an increase in PFS by 4 months (but not in OS) in the arm adding bevacizumab to the
standard carboplatin and paclitaxel treatment of advanced OC (Burger et al. 2011).
Similarly, ICON-7 was a phase III trial that explored the benefits of bevacizumab in
combination with the standard of care (Perren et al. 2011). This trial randomly
assigned 1528 patients with OC to receive bevacizumab in association with
carboplatin and paclitaxel or chemotherapy alone. PFS was also improved in this
trial favoring the addition of bevacizumab to the standard of care (HR: 0.81; 95% CI:
0.70–0.94; p ¼ 0.004) (Peeren et al. 2011).

In recurrent disease, OCEANS was a phase III (n ¼ 484) placebo-controlled
study that explored the addition of bevacizumab to carboplatin and gemcitabine as
compared to this doublet alone in the platinum-sensitive setting (Aghajanian et al.
2012). Median PFS was superior in the bevacizumab arm (12.4 vs 8.4 months; HR:
0.484; 95% CI: 0.388–0.605; p < 0.0001) (Aghajanian et al. 2012). In the
GOG-0213 phase III trial (n¼ 674) that was powered for OS, a clinically meaningful
difference of OS by 5 months was noticed in the bevacizumab group as compared to
chemotherapy alone (Coleman et al. 2017a, b). In addition, the investigators con-
firmed the benefits of bevacizumab plus gemcitabine and carboplatin concerning the
PFS (Coleman et al. 2017a, b). In the platinum-resistant setting, the efficacy of
bevacizumab in combination with non-platinum chemotherapy was explored in the
AURELIA phase III trial (n¼ 361) (Pujade-Lauraine et al. 2014). This study showed
an improvement in median PFS and ORR in the bevacizumab-containing arm (6.7
months vs 3.4 months and 27.3% and 11.8%, respectively) (Pujade-Lauraine et al.
2014). Based on these data, bevacizumab was also approved for the treatment of
both platinum-sensitive and resistant recurrent OC, but not for refractory setting.

Cediranib is another antiangiogenic drug that was investigated in OC (Orbegoso
et al. 2017). This molecule is an oral antiangiogenic vascular endothelial growth
factor receptor 1–3 (VEGFR1–3) inhibitor. The efficacy of cediranib was explored
in women with relapsed platinum-sensitive OC in the ICON-6 phase III trial
(n¼ 486) (Lederman et al. 2016). PFS was improved in the group of patients treated
with cediranib given with chemotherapy and continued as a maintenance treatment
but with added adverse events including voice changes, diarrhea, neutropenia, and
hypothyroidism which were the most common causes of treatment discontinuation
(Lederman et al. 2016). In a randomized phase II study, cediranib was given in
association with olaparib in comparison with olaparib alone in a population of
90 patients with platinum-sensitive OC (Liu et al. 2019a). Median PFS was doubled
in the intention-to-treat population of the combination group (16.5 vs 8.2 months,
HR: 0.5, p ¼ 0.007) and also in the subgroup with wild-type/unknown germline
BRCA status (23.7 vs 5.7 months, p ¼ 0.002) (Liu et al. 2019a). These encouraging
results provided the rationale to investigate the combination of cediranib and
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olaparib in the ongoing ICON-9 phase III trial which will randomize 618 women
with relapsed platinum-sensitive OC following a response to platinum-based che-
motherapy to receive this association or olaparib alone as maintenance treatment
(Elyashiv et al. 2021). PFS and OS are co-primary endpoints of this clinical trial and
it is estimated to be completed in 2024 (Elyashiv et al. 2021).

Pazopanib, an oral multikinase inhibitor of VEGFR and also platelet-derived
growth factor receptor (PDGFR), was investigated in OC in the AGO-OVAR16
phase III trial (du Bois et al. 2014). This study randomized 940 women with
advanced OC who did not progress after first-line platinum-taxane chemotherapy
to receive pazopanib or placebo as maintenance treatment (1:1). The hazard ratio for
progression or death was 0.77 (95% CI: 0.64–0.91; p ¼ 0.0021) with a median PFS
of 17.9 months in pazopanib arm versus 12.3 months in patients treated with
placebo. An interim analysis in 35.6% of patients did not show a significant
difference in terms of survival (du Bois et al. 2014). Similarly, no improvements
in median OS were noticed (Vergote et al. 2019a). Nintedanib is another tyrosine
kinase inhibitor of VEGFR that has been studied for the standard first-line in
advanced OC (du Bois et al. 2016). In this perspective, AGO-OVAR 12 phase III
explored the efficacy of the combination of standard paclitaxel and carboplatin with
nintedanib versus the doublet and placebo for newly diagnosed advanced OC. In this
study, 1366 women were randomly assigned to receive one of the two combinations
in a 2:1 fashion. The nintedanib group has statistically significantly increased
median PFS as compared to the control (17.2 vs 16.6 months, HR: 0.84; 95% CI:
0.72–0.98, p ¼ 0.024) but without a clinically meaningful improved PFS (0.6
months benefit). In addition, this combinatorial regimen was associated with more
gastrointestinal adverse events (du Bois et al. 2016). This big clinical trial for chemo-
naïve OC patients is a good example of overpowered negative clinical trials in which
statistical difference has no value over clinical significance. Other angiogenic targets
such as angiopoietins 1 and 2 and Tie2 receptor were also explored for therapeutic
strategies. Trebananib is an inhibitor of this pathway that was studied in phase III
trials for OC. TRINOVA-1, TRINOVA-2, and TRINOVA-3 were randomized phase
III clinical trials that studied the combination of trebananib with standard chemo-
therapy or single agents, paclitaxel and PLD for first-line and recurrent settings but
without providing clinically meaningful improvements in median PFS (Monk et al.
2014; Marth et al. 2017; Vergote et al. 2019b). The exploration of antiangiogenics in
OC is also being studied in other ongoing phase III trials. Other details on combina-
torial synergistic approaches particularly immune-checkpoint blockade can be found
in Sect. 2.9 (Avoiding Immune Destruction).

3.2.8 Resisting Cell Death

Classically, the regulation of cell death encompasses two major circuits, the extrinsic
pathway that receives extracellular signals through death receptors and the intrinsic
program that engages p53 after DNA damage. Basically, the activation of cell death
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leads to progressive activation of caspases that causes proteolysis. However, cancer
cells resist natural programmed cell death to avoid their elimination by host defense
mechanisms. The deregulated machinery of apoptosis in cancer involves several
strategies to avoid inducing sensors particularly “TP53 loss”, which suppresses
critical damages for cells by activating intracellular signaling of death (Hanahan
and Weinberg 2011). Accumulating evidence also demonstrated that cancer cells
escape from cell death by increasing the expression of major negative regulators
such as Bcl-2 and its relative Bcl-xL or downregulating multiple pro-apoptotic
signals (Bax, Bim, and Puma). Also, additional mechanisms allow cancer cells to
resist using diverse secondary pathways gained during tumor evolution (for scoping
reviews on this topic, see elsewhere: Singh et al. 2019; Carneiro and El-Deiry 2020).
Other forms of regulated cell death beyond apoptosis have recently emerged and
merit recommended reading elsewhere (Wang et al. 2020; Galluzzi et al. 2017,
2018). In OC, mutated TP53 is a well-known signature of early events of ovarian
carcinogenesis (Kuhn et al. 2012). TP53 mutations are believed to drive platinum-
resistance and were also found to predict disease-free survival (Zhang et al. 2014;
Seagle et al. 2015). The value of other cell death-related proteins in OC outcomes
seems to be limited. On the one hand, the high expression of the pro-apoptotic Bax
was found to prolong survival and predicted platinum sensitivity in OC (Yigit et al.
2012). Regarding Bcl-2, data from the large Danish MALOVA cohort showed that
this marker may not be of clinical importance for the prognosis of OC patients
(Høgdall et al. 2010). On the other hand, the pro-survival proteins (Bcl-xL and
Mcl-1) were found to drive chemotherapy resistance in high-grade serous OC
(Stover et al. 2019). Therapeutically, the use of agents that physically interfere
with anti-apoptotic proteins via BH3 motifs seems to be a promising approach for
cell death induction (so-called BH3 mimetics) (Ashkenazi et al. 2017). The efficacy
of these agents was investigated in several preclinical studies. Previously, Simonin
et al. showed that Bcl-xL and Mcl-1 cooperate to protect OC cells against oncogenic
stress and cell death induced by chemotherapy (Simonin et al. 2009). These findings
were later confirmed suggesting that their concomitant inhibition may be effective in
OC (Brotin et al. 2010; Lincet et al. 2013). The exploitation of calcium signaling via
calmodulin inhibition in combination with the BH3 mimetic ABT-737 was found to
induce apoptosis by sensitizing OC cells (Bonnefond et al. 2015). A human pilot
study by the team of Stéphanie Lheureux was conducted to explore predictive
biomarkers of ABT-737 in patients with high-grade serous OC (NCT01440504)
(Lheureux et al. 2015). Relevant markers of response were established to select
patients for clinical trial design, and this includes Bim, Mcl-1, and phospho-Erk1/
2 (Lheureux et al. 2015).

This has provided a rationale for investigating other antagonists to disrupt this
pathway. The association of the Bcl-2 selective inhibitor WEHI-539 and the BH3
mimetic ABT-737 showed synergistic effects in potentiating the anticancer activity
of carboplatin in vitro using various OC cells by inducing caspase 3/7 and PARP
cleavage (Abed et al. 2016). Similarly, the combination of a PARP inhibitor
(BMN-673) and BH3 mimetic ABT-263 also showed synergistic cytotoxic effects
against OC cells by increasing the expression of Bim, a pro-apoptotic protein
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(Yokoyama et al. 2017). Recently, Iavarone et al. explored the therapeutic blockade
of MEK/ERK signaling based on cobimetinib (GDC-0973) combined to ABT-263
using patient-derived xenograft models of high-grade serous OC (Iavarone et al.
2019). The results of this report showed greater inhibition of tumor growth as
compared to the single agent. Moreover, baseline levels of pro-apoptotic protein
BIM and/or pERK were predictors of drug response suggesting their potential value
as biomarkers (Iavarone et al. 2019). More recently, a strategy using drug
repurposing of naftopidil to increase the expression of BH3-only proteins including
Bim, Puma, and Noxa resulted in sensitizing patient-derived organoid models from
OC patients to ABT-737 and the MEK inhibitor trametinib (Florent et al. 2020a). Of
note, naftopidil is an α1-adrenergic receptor antagonist used in benign prostatic
hyperplasia management (reviewed by Florent et al. 2020b). The area of preclinical
research on BH3 mimetics as single agents or in combination with other targeted
therapeutics in OC seems to be highly active. To the best of our knowledge, there is
only one BH3 mimetic that has been investigated in a clinical trial for OC
(NCT02591095). MONAVI-1 was a French open-label phase II trial that studied
navitoclax (ABT-263) given daily in a population of OC patients with platinum-
resistant disease. Early signs of efficacy of this monotherapy were revealed in
11 patients that were treated with chemotherapy; therefore, confirming that this
BH3 mimetic is a potent sensitizer (Brachet et al. 2017). More details on this
hallmark in OC can be found in Sects. 2.4 and 2.6 (Evading Growth Suppressors
and Enabling Replicative Immortality).

3.2.9 Avoiding Immune Destruction

Escape from host mechanisms of defense involving immune surveillance is an
emerging hallmark of cancer (Hanahan and Weinberg 2011). Tumor cells avoid
immunological killing by overexpressing immune-checkpoints such as programmed
death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) (Fig. 3.1),
infiltration of immunosuppressive cells such as regulatory T lymphocytes (Treg), and
disruption of antigen processing and presentation machinery (Tang et al. 2020). As
in other cancers, the tumor microenvironment of OC contains various cellular
components of clinical value including tumor-infiltrating cells (TILs), tumor
associated macrophages (TAMs), tumor associated neutrophils (TANs), cancer-
associated fibroblasts (CAFs), and a variety of other cells (Macpherson et al.
2020). The prognostic value of these immune suppressive infiltrates as biomarkers
was extensively studied in OC (Macpherson et al. 2020). A recent meta-analysis of
19 studies (n ¼ 6004) pooled data of TILs in high-grade serous OC and
demonstrated a significant association with OS and PFS (Hao et al. 2020). Indeed,
intratumor and stromal TILs were favorably correlated to survival outcomes in this
setting. Hence, these updated results confirmed the previous findings of Hwang’s
meta-analysis and other earlier TILs studies (Hwang et al. 2012; Webb et al. 2016;
James et al. 2017; Wang et al. 2017b; Buderath et al. 2019). Recent additional
reports on this topic also showed the benefits of high TILs in women with high-grade
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serous OC. Martin de la Fuente et al. reported that patients with higher CD3, PD-L1,
and PD-1 had significantly longer OS (Martin de la Fuente et al. 2020). Moreover,
high expression of TILs was also found to have a positive impact on survival in OC
(Martin de la Fuente et al. 2020). TILs in OC are most prevalent in tumors with high-
grade histology (Chen et al. 2020). Improved PFS and immune response in OC
patients with positive PD-L1 was also seen in advanced FIGO stages (Chen et al.
2020). OCs have frequently deficient homologous recombination systems with or
without BRCA mutations. This allows tumors a notable expression of neo-antigens
which in turn are marked indicators of an immune response in solid cancers (Fumet
et al. 2020; Cormedi et al. 2020) and OC (Strickland et al. 2016; Le Saux et al. 2020).
Therefore, these data are of important significance for investigating immunotherapy
in this setting. The recent introduction of immune-oncology in clinical practice has
revolutionized our current management of cancer. The advent of immune-
checkpoint inhibitors (ICIs) and their predictive biomarkers for patients’ selection
has deeply changed outcomes in some cancers previously known to be aggressive
(El Bairi et al. 2020; Keenan et al. 2019; Ribas and Wolchok 2018). Stunning
successes with some cancers such as melanomas (Pasquali et al. 2018), metastatic
colorectal cancer with microsatellite instability (André et al. 2020), and lung cancer
(Almutairi et al. 2019), little benefits have been reported in OC (Le Saux et al. 2020).
The therapeutic arsenal using immune-checkpoint blockade is a recent development
in the design of novel clinical trials for OC using combinatorial approaches (Le Saux
et al. 2020). OC is classically regarded as a “cold tumor” characterized by decreased
levels of TILs (Le Saux et al. 2020). Therefore, response to ICIs in OC has been
commonly reported to be low. Initial phase I/II studies that were conducted to
investigate ICIs in OC have shown modest improvement in outcomes.

Experience with pembrolizumab (an anti-programmed death-1 (PD-1) monoclo-
nal antibody) in phase I clinical trials as monotherapy for solid cancers (KEYNOTE-
028/NCT02054806) demonstrated a durable antitumor response with a manageable
safety and toxicity profile in patients with advanced PD-L1-positive OC (Varga et al.
2019). Following these early signs of efficacy, a two-cohort phase II study was
conducted in patients with recurrent and advanced OC (KEYNOTE-100/
NCT02674061). Cohort A included 285 patients that received 1–3 lines of therapy
and cohort B (n ¼ 91) received 4–6 lines of treatments (Matulonis et al. 2019).
Pembrolizumab as a single agent at a dose of 200 mg was given every 3 weeks for
both cohorts. ORR and disease control rate in cohort A were 7.4% and 37.2%,
respectively, and 9.9% and 37.4% in cohort B. Notably, a higher response was
observed in patients with a combined positive score (CPS) � 1 (10% vs. 4.1% for
CPS < 1). In addition, PFS in both cohorts was 2.1 months. The toxicity profile in
this study was consistent with the previous experience with this agent (Matulonis
et al. 2019). As expected, modest response was demonstrated for this novel
monotherapy in this setting. However, a historical case report showed a complete
response in an OC patient treated with pembrolizumab alone and harboring PD-L1
gene structural variations (Bellone et al. 2018). The authors observed a notable
complete response in a patient with recurrent advanced chemoresistant high-grade
serous OC that progressed on all standard therapies. Whole exome sequencing of the
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surgical specimens showed a low tumor mutational load/megabase with a remark-
able structural variation of PD-L1 gene causing unusual PD-L1 surface expression.
This was markedly associated with high infiltration of CD4 and CD8 TILs,
macrophages, and B lymphocytes suggesting immune escape (Bellone et al.
2018). To test the hypothesis that PARP inhibitors may increase the expression of
PD-L1 (Jiao et al. 2017; Sato et al. 2017); and therefore the response to
pembrolizumab, the TOPACIO/KEYNOTE-162 phase I/II trial (NCT02657889)
investigated this approach in patients with platinum-resistant disease
(Konstantinopoulos et al. 2019). This study was a single-arm and open-label and
used pembrolizumab in combination with oral niraparib (200 mg daily for both)
every 3 weeks. ORR and disease control rates were 18% and 65%, respectively.
Moreover, three complete responses and eight partial responses were noticed regard-
less of prior bevacizumab exposure or BRCA status (Konstantinopoulos et al. 2019).
Recently, the biomarker analysis of this study identified PD-L1 and PD-L2 amplifi-
cation as determinants of exceptional response in some patients of this trial (Färkkilä
et al. 2020). In another phase II non-comparative trial (NCT02865811; n ¼ 23), Lee
et al. showed that the combination of pembrolizumab with PLD has a manageable
toxicity profile and provided a preliminary evidence of its clinical activity including
26.1% of ORR in the population of patients with platinum-resistant OC (Lee et al.
2020). Moreover, the combination of pembrolizumab with metronomic cyclophos-
phamide and bevacizumab in another phase II trial (NCT02853318; n ¼ 40) also
demonstrated clinical benefits in OC patients with recurrent disease including >12
months of durable response in 25% of the treatment population that encompassed
mainly platinum-resistant women (Zsiros et al. 2020). However, despite promising,
these phase II trials were non-randomized and no comparator was added to their
design and therefore, these early signs of efficacy should be interpreted with caution.
The ongoing study registered on the US ClinicalTrials database shows more than
70 clinical trials using pembrolizumab used as monotherapy or in combination with
other anticancer drugs for OC (www.clinicaltrials.gov, accessed 14/01/2020). The
MK-7339-001/KEYLYNK-001/ENGOT-ov43/GOG-3036 is an ongoing phase III
trial that may provide definitive and strong evidence for the future use of this agent in
OC (NCT03740165). This study randomizes 1086 OC patients with advanced
disease to receive the standard carboplatin-paclitaxel with or without
pembrolizumab followed by maintenance therapy with the PARP inhibitor olaparib
or placebo in the first-line setting. The study uses PFS and OS as primary endpoints
and it is expected to be completed in August 2025.

The anti-PD-L1 durvalumab was investigated in OC as a combination with other
therapeutics including PARP inhibitors and vaccines. A proof-of-concept phase II
trial (NCT02484404; n ¼ 35) aimed to assess the efficacy of durvalumab given
every 4 weeks in combination with oral olaparib in recurrent and predominantly
platinum-resistant OC (Lampert et al. 2020). The ORR was 14% and the disease
control rate reached 71%. Moreover, this combination was found to increase the
infiltration of TILs and IFNγ/TNFα release, which both are indicators of
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immunomodulatory response. Moreover, patients with increased IFNγ had superior
PFS (HR: 0.37, 95% CI: 0.16–0.87, p ¼ 0.023 (Lampert et al. 2020). Durvalumab
was also investigated in combination with the folate receptor alpha vaccine TPIV200
in patients with advanced platinum-resistant OC (Zamarin et al. 2020a). The
investigators found an increased T cell response to vaccine peptides and prolonged
median OS in one patient (21 months) in addition to stable disease in nine patients
(Zamarin et al. 2020a). To test the hypothesis that PARP inhibitors create
neo-antigens that may upregulate PD-L1 expression, MEDIOLA phase II trial
(NCT02734004) was initiated. The initial results of this study that investigated the
doublet olaparib and durvalumab and the triplet olaparib, durvalumab, and
bevacizumab in non-germline BRCA-mutated platinum-sensitive and relapsed OC
were recently presented at ESMO 2020 virtual meeting (Drew et al. 2020). Remark-
ably, ORR and PFS were 77.4% and 14.7 months, respectively, in the cohort treated
with the triplet combination as compared to 31.3% of ORR and 5.5 months of PFS
with the doublet (Drew et al. 2020). These encouraging results may be supported by
the ongoing DUO-O phase III trial investigating the triplet approach (n ¼ 1254;
NCT03737643) in advanced OC. This is a large randomized multicenter phase III
that was designed to evaluate the efficacy of durvalumab combined with the standard
platinum-based chemotherapy and bevacizumab followed by durvalumab and
bevacizumab as maintenance therapy or durvalumab, bevacizumab, and olaparib.
PFS is the primary endpoint of this clinical trial, which is expected to provide
preliminary results in November 2025.

Avelumab is another anti-PD-L1 that was investigated in the landmark JAVELIN
studies for OC. The phase Ib (NCT01772004) part of this multicohort trial that
investigated avelumab in OC was an open-label single-arm study that enrolled
125 participants with recurrent or refractory disease who had received platinum-
based chemotherapy (Disis et al. 2019). Avelumab was given at a dose of 10 mg/kg
every 14 days until progression assessed by RECIST version 1.1, unacceptable
toxicities, or withdrawal from enrollment. After a median follow-up of 26.6 months,
confirmed ORR was noticed in 12 patients with 1 and 11 complete and partial
responses, respectively. 1-year PFS rate was 10.2% and median OS reached 11.2
months (Disis et al. 2019). The mature data of JAVELIN Ovarian 200 phase III trial
(NCT02580058) were discouraging (Pujade-Lauraine et al. 2019). This study
randomized 566 OC patients with platinum-resistant or refractory disease to receive
avelumab as monotherapy or avelumab + PLD as compared to PLD alone (1:1:1
ratio) (Pujade-Lauraine et al. 2018). No significant differences between the three
arms in terms of PFS and OS in the intention-to-treat population were noticed
(Pujade-Lauraine et al. 2019). Similarly, the JAVELIN Ovarian
100 (NCT02718417) phase III trial that evaluated avelumab combined with/or
following carboplatin-based chemotherapy versus chemotherapy alone in untreated
OC patients did not meet its primary endpoint (Ledermann et al. 2020). This trial was
stopped due to futility of efficacy at a planned interim analysis.
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The ICIs nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) were also
investigated in OC for both platinum-resistant and sensitive settings. A first phase
II clinical trial enrolled 20 patients with platinum-resistant OC to receive intravenous
nivolumab every 2 weeks as a monotherapy until disease progression (Hamanishi
et al. 2015). The investigators found severe adverse events in two patients and ORR
was 15%. Median PFS and OS were 3.5 and 20 months, respectively (Hamanishi
et al. 2015). Nivolumab given every 2 weeks was also studied in combination with
bevacizumab in a single-arm phase II trial (NCT02873962) (Liu et al. 2019c). This
association is believed to have synergistic effects by modulating the tumor microen-
vironment to turn OC into a “hot tumor” (Tamura et al. 2019). Patients with
platinum-sensitive OC seem to benefit much more from this combination as com-
pared to those with platinum-resistance (ORR: 40% vs 16.7%) (Liu et al. 2019c). In
another phase II study (NCT02498600), nivolumab was also studied in combination
with ipilimumab as compared to nivolumab alone for OC as a dual blockade strategy
(Zamarin et al. 2020b). This study included 100 OC patients with recurrent or
persistent disease that were randomly allocated to receive monotherapy every
2 weeks or induction double blockade every 3 weeks followed by maintenance
monotherapy with nivolumab. The median PFS was doubled in the combination as
compared to nivolumab alone (3.9 vs 2 months, respectively, HR: 0.53; 95% CI:
0.34–0.82) (Zamarin et al. 2020b). As in other clinical trials, PD-L1 status didn’t
predict response to these agents. Therefore, other predictive biomarkers are needed
for patients’ selection in this setting. A phase III randomized and placebo-controlled
four-arm trial (NCT03522246/ATHENA/GOG-3020/ENGOT-ov45) is currently
exploring the activity of nivolumab in combination with rucaparib after front-line
platinum-based chemotherapy in 1000 newly diagnosed OC patients (Westin et al.
2019). This multicenter study is expected to release its early findings in 2024.
Promisingly, this type of combination involving a prior exposure to chemotherapy
may be successful. It was recently demonstrated that neoadjuvant chemotherapy
boosts local immunity in high-grade serous OC (Jiménez-Sánchez et al. 2020;
Mesnage et al. 2017). Moreover, blockade of CTLA-4 within the intact tumor
microenvironment in OC was demonstrated to induce tumor-reactive CD8+ tumor-
infiltrating lymphocytes (Friese et al. 2020). This may improve the effectiveness of
combined strategies after this initial modality.

Atezolizumab is an immune-checkpoint inhibitor of PD-L1 that is currently
studied in treating OC (Palaia et al. 2020). A multicenter phase I trial (n ¼ 12;
NCT01375842) that enrolled women with recurrent epithelial OC evaluated the
safety and tolerability profile of atezolizumab used as a single agent (Liu et al.
2019b). Long response duration was observed in two patients only and no new safety
signals were identified for atezolizumab (Liu et al. 2019b). Atezolizumab was also
investigated in OC in combination with bevacizumab in another phase I trial (n¼ 20;
NCT01633970) for platinum-resistant disease (Moroney et al. 2020). ORR was 15%
and disease control rate was 55%. Median PFS and OS were 4.9 and 10.2 months,
respectively. The prior exposure to treatments and PD-L1 status did not affect
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response to this combination (Moroney et al. 2020). In preclinical animal models,
this combination was found to attenuate resistance to cisplatin by a synergestic
suppression of epithelial to mesenchymal transition (Zhang et al. 2019c). To the
best of our knowledge, no published findings of phase II trials using this agent in OC
are available. All currently ongoing phase II studies on atezolizumab in OC are still
in progress at the time of this chapter writing. This makes the ongoing phase III trials
on this immune-checkpoint inhibitor in OC questionable in terms of the rationale for
conducting large randomized and controlled trials. In this regard, IMagyn050/GOG
3015/ENGOT-OV39 is a large phase III trial (NCT03038100) that will randomize
newly diagnosed advanced OC patients to receive either front-line atezolizumab
combined with paclitaxel, carboplatin, and bevacizumab or placebo combined with
the previous triplet (Moore and Pignata 2019). This trial is expected to enroll 1300
patients and PFS and OS are its co-primary endpoints in the intention-to-treat
population and in the subpopulation of patients with positive PD-L1 (Moore and
Pignata 2019). The preliminary findings of this study were presented at the ESMO
2020 Virtual Congress and demonstrated that the addition of atezolizumab to the
standard of care did not improve PFS in this setting (Moore et al. 2020). The
AGO-OVAR 2.29/ENGOT-ov34 is another ongoing phase III (NCT03353831)
designed to investigate the clinical activity of atezolizumab combined with
non-platinum chemotherapy and bevacizumab (standard of care) versus standard
of care plus placebo in platinum-resistant OC (Harter et al. 2020). The estimated
sample size of this trial is 664 patients and OS and PFS are its co-primary endpoints
and it is currently recruiting patients. In platinum-sensitive OC, the Spanish
randomized and controlled phase III ANITA trial (NCT03598270; ENGOT-Ov41/
GEICO 69-O) is recruiting patients to receive atezolizumab + platinum-based
chemotherapy followed by maintenance by niraparib + atezolizumab (experimental
arm) versus a control arm consisting of platinum-based chemotherapy + placebo
followed by maintenance by niraparib + placebo (González-Martín et al. 2020). With
a sample size of 414 patients and PFS as a primary endpoint, the authors expect to
demonstrate a benefit in terms of PFS per RECIST v1.1 criteria with a HR of 0.7
(power: 80%, two-sided p-value<5%) (González-Martín et al. 2020). Atezolizumab
is also being studied in the ATALANTE randomized and controlled phase III trial in
platinum-sensitive and relapsed OC (n¼ 405, ENGOT-ov29/NCT02891824) (Kurtz
et al. 2018). The investigators will compare the efficacy of adding atezolizumab to
chemotherapy in combination with bevacizumab as compared to chemotherapy and
bevacizumab alone in 2:1 ratio. The primary endpoint is RECIST v1.1-based PFS
and the first results are estimated to be released in September 2023. Finally, the use
of ICIs as monotherapies in OC didn’t show clinically meaningful improvements in
OC. However, combinatorial approaches using antiangiogenics or PARP inhibitors
with ICIs seem to be promising. These associations are believed to induce an
angiogenic tumor access by TILs. Presently, a promising escalating strategy using
first-line platinum-based chemotherapy combined with ICIs and antiangiogenics
followed by maintenance regimen with ICIs, antiangiogenics, and PARPi is being
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studied in several phase III trials and is believed to improve survival outcomes
in OC.

The clinical evaluation of other immunotherapeutic strategies such as the Toll-
like receptor 8 (TLR8) agonist motolimod (NCT01666444) (Monk et al. 2017), the
IDO1 inhibitor epacadostat (NCT01685255) (Kristeleit et al. 2017), and the Vigil®
DNA engineered immunotherapy (Oh et al. 2016) was not successful in delivering
improved outcomes to OC patients.

3.2.10 Deregulating Cellular Energetics

During neoplastic transformation, the deregulated control of the cell cycle involves
an adjustment of energetic metabolism to fuel the tumorigenic process (Hanahan and
Weinberg 2011). The use of glucose is a characteristic of normal cells, however; the
previous works of the German Nobel laureate Otto Heinrich Warburg (1883–1970)
showed that cancer cells have atypical energy metabolism (Warburg 1930, 1956).
Accordingly, even in the presence of oxygen, tumor metabolism is reprogrammed to
be dependent of glycolysis and thus the concept of “aerobic glycolysis or Warburg
effect” (nicely reviewed elsewhere: Pascal et al. 2020; Scheid et al. 2021; Urbano
2021). This metabolic switch is partially covered by upregulation of glucose mem-
brane transporters such as GLUT-1 which in turn is associated with mutated anti-
oncogenes and activated oncogenes such as Myc and RAS (Hanahan and Weinberg
2011). During hypoxia, tumor cells accentuate their energetic needs based on
glycolysis reliance by increasing the levels of hypoxia-inducible factor (HIF)-α
(Hanahan and Weinberg 2011). Together, this suggests that this hallmark is essential
for angiogenesis and invasion; and consequently the aggressive cancer phenotype
(Icard et al. 2018). A previous report showed that GLUT-1 expression is correlated
with tumor proliferation and microvessel density, in addition to suboptimal
debulking in patients overexpressing this marker and Ki-67 (OR: 3.8, p ¼ 0.01)
(Semaan et al. 2011). Moreover, GLUT-1 was found associated with tumor cell
mitosis (Kim et al. 2012) and its overexpression predicted reduced OS and shorter
DFS in epithelial OC (Cantuaria et al. 2001; Cho et al. 2013). In addition, HIF-α in
OC, which is released as a homeostatic response to hypoxia, promotes vasculogenic
mimicry to induce epithelial to mesenchymal transition (Du et al. 2014). Also, HIF-α
expression was found associated with metastasis and reduced 5-year survival and
poor OS (Shen et al. 2017; Jin et al. 2014a; Braicu et al. 2014; Shimogai et al. 2008).
Notably, several authors have investigated the Warburg effect in OC as a source for
energy supply (Zhang et al. 2018; Ma et al. 2018a; Shang et al. 2017b; Jin et al.
2014b). Some of these preclinical studies have also provided potential pharmaco-
logical inhibitors of aerobic glycolysis in OC such as ginsenoside (Lu et al. 2020;
Zhou et al. 2018), ABT737 (a BH3 mimetic) (Dong et al. 2020), ivermectin (Li et al.
2020), and berberine (Li et al. 2021). One clinical trial has attempted to investigate
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an inhibitor of these pathways in OC. This was a phase II trial (NCT01652079) that
enrolled 63 patients with recurrent platinum-resistant ovarian, fallopian tube, or
peritoneal cancer to receive the anti-HIF-1α investigational nanoparticle-drug con-
jugate CRLX101 (camptothecin as the active molecule) in combination with
bevacizumab. The latest available results of this two-stage trial and its preceding
preclinical study showed that this combination is synergistic with durable inhibition
of HIF-1α (Pham et al. 2015; Krasner et al. 2014, 2015, 2016). Very recently, the
combination of EP0057 (formerly CRLX101) with weekly paclitaxel for recurrent or
persistent epithelial ovarian, fallopian tube, or primary peritoneal cancer in a phase
Ib/II trial (NCT02389985/n ¼ 30) demonstrated an ORR of 31.6% in women with
prior treatment with bevacizumab and one complete response (Duska et al. 2020). To
the best of our knowledge, this study was terminated after the company decision.

3.3 Conclusion

With the emergence of data from large-scale sequencing projects, novel targets were
discovered for OC. These actionable molecular alterations enabled enlargement of
the current therapeutic arsenal against this aggressive cancer. Moreover, various
biomarkers were also explored and seem to be promising for predicting prognosis
and therapy response. There is a considerable move to exploit the hallmarks of
cancer in improving outcomes and designing novel clinical trials for OC (Fig. 3.2).
Genome Instability, Inducing Angiogenesis, Avoiding Immune Destruction, and
Sustaining Proliferative Signaling were the most influencing hallmarks for the
development of landmark phase III trials for OC. This list (Table 3.1) is expected
to be extended in the future with newly launched phase III clinical studies which may
supply the currently available treatments of OC with additional therapeutic
approaches particularly targeted agents. Some signaling pathways that have a nota-
ble role in ovarian carcinogenesis were not discussed in this chapter because of the
word limit and are illustrated elsewhere in other reviews (for further reading, see
Box 3.1).
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Outcomes
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Abstract

The emergence of precision medicine and our latest understanding of the
biological characteristics of ovarian cancer (OC) have led to the discovery of
drug targets, novel anticancer agents, and their predictive biomarkers. The genet-
ics of OC is an evolving biomarker for predicting outcomes. Several completed
and ongoing clinical trials used this concept for better patients’ selection and
stratification. The exploitation of specific molecular vulnerabilities in OC for drug
development such as BRCA and BRCAness is a milestone in the current manage-
ment of this women’s cancer. Without a doubt, OC is one of the solid cancers that
have benefited from genetic biomarkers for the implementation of targeted agents
such as PARP inhibitors in clinical practice. This progress is discussed in this
chapter based on recent studies and clinical trials.

Keywords

Genetics · Ovarian cancer · Biomarkers · Survival · Surgery

K. El Bairi (*) · O. Al Jarroudi · S. Afqir
Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco

Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
e-mail: k.elbairi@ump.ac.ma

# The Author(s), under exclusive licence to Springer Nature Singapore Pte
Ltd. 2021
K. El Bairi (ed.), Ovarian Cancer Biomarkers,
https://doi.org/10.1007/978-981-16-1873-4_4

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1873-4_4&domain=pdf
mailto:k.elbairi@ump.ac.ma
https://doi.org/10.1007/978-981-16-1873-4_4#DOI


4.1 Introduction

Few therapeutic advances were achieved in improving survival outcomes in the first-
line therapy of ovarian cancer (OC). However, predictive and prognostic biomarkers
have considerably changed outcomes in some settings in women with this aggressive
cancer (Le Page et al. 2020a; b; El Bairi et al. 2017a, b; Madariaga et al. 2020). An
illustrative example is the important number of clinical trials, prospective studies,
and retrospective real-world cohorts that have demonstrated the favorable impact of
BRCA mutations on therapy response and prognosis in OC (Madariaga et al. 2019;
Lorusso et al. 2020). Moreover, BRCA mutations and other variants in homologous
recombination repair (HRR) genes are now used for OC patients’ selection for poly-
ADP-ribose polymerase inhibitors (PARPi). BRCA, BRCAness, and HRR are
associated with genomic instability and synthetic lethality in OC and are potential
predictors of pharmacological sensitivity to platinum agents and PARPi
(Konstantinopoulos and Matulonis 2018). Remarkably, as a result of the relevant
success of cancer genetics in the field of translational oncology, there is an increasing
number of clinical trials in OC that use genetic alterations as biomarkers for patient’s
selection, stratification, and prediction of drug response; particularly using umbrella
and basket trial designs (Tsimberidou et al. 2020). As described in the other chapters
of this book, some of their results provided considerable information for clinical use
and it is not surprising to see other starting and ongoing trials in this highly active
research area of OC. The current chapter focuses on the impact of genetic variants on
outcomes in OC.

4.2 Ovarian Cancer Genetics as a Biomarker of Response
to Chemotherapy and Survival Outcomes

Platinum-based chemotherapy is currently considered the backbone of OC therapy.
Carboplatin and cisplatin bind to DNA and induce structural adducts which in turn
cause considerable damages to cancer cells, and therefore driving cell cycle arrest
and mitochondrial apoptosis (Galluzzi et al. 2012). Enhanced response to these
anticancer drugs is observed in patients with mutated BReast Cancer 1 and
2 genes (BRCA1/2) which confer impairment of DNA repair mechanisms (Quinn
et al. 2009; Madariaga et al. 2019). Several preclinical reports have shown that cells
harboring BRCA variants have superior sensitivity to platinum-based chemotherapy
(Madariaga et al. 2019). This loss of function is considered the key driver of
responsiveness to these agents and is a well-established predictive biomarker in
OC. Clinically, women with both germline and somatic mutated BRCA were found
to have increased response to platinum-based chemotherapy (Alsop et al. 2012;
Gorodnova et al. 2015; Vencken et al. 2011; Pennington et al. 2014; Leunen et al.
2009) (for detailed review, see: Le Page et al. 2020a, b). During a relapse, these
improved outcomes were also observed in platinum-resistant OC with BRCA
mutations (Alsop et al. 2012). Thus, platinum re-challenge is an approach for
recurrent OC patients with germline mutated BRCA carriers (Madariaga et al.
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2019). In addition to high immune infiltrates, increased mutational burden, and loss
of heterozygosity, BRCA mutations are considered as key determinants of excep-
tional long-term OC survival (Yang et al. 2018; Hoppenot et al. 2018). This was
further confirmed by several meta-analyses of survival outcomes in OC (summarized
in Table 4.1). Remarkably, a large study that enrolled 316 high-grade serous OC
patients found that BRCA2, but not BRCA1, was associated with superior

Table 4.1 Summary of recent meta-analyses of the impact of BRCA mutations on prognosis and
survival

Author/
year

Number of
enrolled
studies
(patients) Prognostic endpoints Findings

Huang
(2018)

33 (7745) Overall survival (OS) and
progression-free survival (PFS),
complete response rate (CRR),
partial response rate (PRR), and
overall response rate (ORR)

–Mutated BRCA1/2 are
associated with improved OS
(HR: 0.75; 95%; CI: 0.64–0.88)
and PFS (HR: 0.80; 95% CI:
0.64–0.99).
–Presence of BRCA1/2 mutated
status is associated with better
ORR, higher CRR, and lower
PRR but mutated BRCA1 or
BRCA2 alone were not
associated with ORR.

Xu
et al.
(2017)

34 (18396) OS and PFS Mutated BRCA1 and BRCA2
demonstrated improved OS and
PFS in ovarian cancer patients
(HR: 0.73; 95% CI: 0.63–0.86
and HR, 0.57; 95% CI,
0.45–0.73, respectively) and PFS
(HR: 0.68; 95% CI: 0.52–0.89
and HR: 0.48; 95% CI:
0.30–0.75, respectively).

Zhong
et al.
(2014)

14 (9588) OS and PFS Ovarian cancer patients with
mutated BRCA1 and BRCA2 had
better OS (HR: 0.76; 95% CI:
0.70–0.83 and HR: 0.58; 95%
CI: 0.50–0.66, respectively) and
PFS (HR: 0.65; 95% CI:
0.52–0.81 and HR: 0.61; 95%
CI: 0.47–0.80, respectively) than
non-mutated status

Sun
et al.
(2014)

35 OS and PFS Mutated BRCA status had a
favorable impact on OS (HR:
0.69; 95% CI: 0.61–0.79).
Similarly, patients with BRCA-
mutated had longer PFS (based
on 18 studies) (HR: 0.69, 95%
CI: 0.63–0.76)

Abbreviations: BRCA Breast Cancer gene, CI confidence interval, HR hazard ratio
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chemotherapy response and also improved survival outcomes (Yang et al. 2011).
Mechanistically, both BRCA1 and BRCA2 are important complementary members of
the genes involved in DNA damage repair. However, accumulating evidence
suggests that the principal function of BRCA2 is the regulation of RAD51 that has
a pivotal role in double-strand break repair (Davies et al. 2001) rather than tumor
suppression ensured particularly by BRCA1. Functions of BRCA1 encompass cell
cycle arrest checkpoint control (Yarden et al. 2002; Sharma et al. 2018), mitotic
spindle assembly (Joukov et al. 2006; Xiong et al. 2008), and centrosome duplica-
tion (Mullee and Morrison 2016; Kais et al. 2012; Sankaran et al. 2007; Hsu and
White 1998) and their failure can predispose to cancer initiation rather than confer-
ring sensitivity to platinum DNA-crosslink agents. Therefore, these fundamental
data may explain this difference in survival and drug response in this previous study.
Importantly, the “mutator phenotype” hypothesis in OC patients with mutations
beyond BRCA1 is a potential driver of chemotherapy response in this setting as well.
Despite these important observations, the acquisition of reversion mutations in
BRCA genes can restore BRCA proteins expression and induce resistance to
platinum-based therapy and also PARPi (Milanesio et al. 2020). Therapeutically, a
recent meta-analysis documented that pharmacological blockade of DNA
end-joining repair signaling may improve the stability of drug response by
preventing the acquisition of reversion BRCA mutations (Tobalina et al. 2021).
Promisingly, detection of these reversion mutations can be performed using real-
time liquid biopsy approaches. Based on massively parallel targeted sequencing,
Weigelt et al. showed recently that prospective evaluation of circulating-free DNA
has the potential to non-invasively identify putative BRCA1 or BRCA2 reversion
mutations with restored functions in women with OC and breast cancer (Weigelt
et al. 2017). Similarly, two other recent reports confirmed these findings and showed
that detected BRCAmutations using liquid biopsy in OC patients are associated with
acquired resistance to treatments (Christie et al. 2017; Lin et al. 2019). Methylation
phenomena in BRCA1 promoter were also suggested as a biomarker of
chemosensitivity in OC (Ignatov et al. 2014). However, a meta-analysis of individ-
ual data (n ¼ 2636) demonstrated that patients with BRCA1-methylated OC had
similar survival outcomes as compared to those with non-BRCA1-methylated
tumors (Kalachand et al. 2020). Other mutated genes outside the BRCA family
(Table 4.2) such as members of the HRR pathway particularly RAD51, which are
found in approximately 50% of high-grade serous OC, were also found to predict
chemosensitivity (Fuh et al. 2020; da Costa et al. 2019). Moreover, this HRR
deficiency has also a value for prognostic stratification of OC patients (Takaya
et al. 2020; Morse et al. 2019). Patients with this fundamental vulnerability had
high infiltration of immune cells particularly tumor-infiltrating lymphocytes (TILs)
which correlate with better survival and may make these women highly responsive
to immune-checkpoint blockade (Ledermann 2019; Morse et al. 2019;
Konstantinopoulos et al. 2015) (see Chap. 3 for details). Currently, this biomarker
is used for predicting response to PARPi rather than platinum-based
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Table 4.2 Other emerging and potential single gene variants or panels with impact on prognosis
and survival of ovarian cancer

Genes Functions/pathways Clinical impact References

RAD51B Repair of DNA double-
strand breaks

Acquired chemotherapy
resistance

Patch et al. (2015)

RAD51C Repair of DNA double-
strand breaks

Acquired resistance to
PARP inhibitors via
secondary somatic
reversion mutations

Kondrashova et al.
(2017)

Improved overall survival
(OS) and sensitivity to
platinum

Pennington et al.
(2014)

RAD51D Repair of DNA double-
strand breaks

Acquired resistance to
PARP inhibitors via
secondary somatic
reversion mutations

Kondrashova et al.
(2017)

TP53 Cell cycle regulation, cell
death, and DNA repair

Resistance to platinum- and
taxane-based chemotherapy
(oncomorphic mutations)

Brachova et al. (2014)
(for review, see:
Brachova et al. 2013)

Sensitivity to
chemotherapy and
improved survival

Wong et al. (2013)

RB1 Cell cycle regulation Long OS and PFS, and
durable response

Garsed et al. (2018)

ADAMTS Tissue development and
maintenance, tumor
progression and
metastasis (cell migration
and angiogenesis)

Significant association with
better OS, progression-free
survival (PFS), and
platinum-free survival

Liu et al. (2015)

CCNE1 Regulation of cell cycle Poor OS The Cancer Genome
Atlas Research
Network, (2011);
Nakayama et al.
(2010)

CHEK2 Regulation of cell cycle
after DNA damage

Poor OS and therapy
response

Ow et al. (2014)

KRAS Proliferative signaling
pathways

Resistance to platinum-
based therapy

Ratner et al. (2012)

Sensitivity to decitabine
agent

Stewart et al. (2015)

Improved cancer-specific
survival

Nodin et al. (2013)

BRAF Signal transduction, cell
division, and
differentiation

Improved OS as compared
to KRAS mutant or KRAS/
wild-type BRAF tumors

Grisham et al. (2013)

NF1 Regulation of cell cycle Acquired resistance to
chemotherapy

Patch et al. (2015)

(continued)
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chemotherapeutics. The European Society for Medical Oncology (ESMO) stated
that assays for clinical evaluation of HRR deficiency are useful in predicting the
likely magnitude of benefit from PARP inhibition but additional biomarkers with
improved accuracy are needed to better stratify patients (Miller et al. 2020).

Research in this area of biomarkers discovery has also provided other
perspectives for non-platinum chemotherapy such as the natural compound
trabectedin and pegylated liposomal doxorubicin (PLD) (Madariaga et al. 2019; El
Bairi et al. 2019). Trabectedin (known as Yondelis®) is a marine compound isolated
from the colonial tunicate Ecteinascidia turbinate that acts as a cytotoxic alkylating
agent and also as a vascular disruptor (El Bairi et al. 2019). It was approved in
several countries of the European Union for the treatment of OC as a late-line
therapy in combination with PLD for recurrent platinum-sensitive disease. The
efficacy of trabectedin was found associated with deficient HRR systems in various
clinical trials (El Bairi et al. 2018; Ventriglia et al. 2018). Previously, an exploratory
analysis of the randomized phase 3 OVA-301 study that compared the efficacy of
trabectedin and PLD versus PLD alone in women with recurrent OC showed that
germline BRCA1 mutant tumors had improved median PFS (13.5 vs. 5.5 months,
p ¼ 0.0002), OS (23.8 versus 12.5 months, p ¼ 0.0086), and higher response rates
(49 vs. 28%) (Monk et al. 2015). Moreover, women with BRCA wild-type OC had
no improvements in median OS (19.1 versus 19.3 months; p ¼ 0.9377) (Monk et al.
2015). BRCA status and BRCAness were also used for patients’ selection in the
MITO-15 phase II study that investigated trabectedin in women with recurrent OC
(Lorusso et al. 2016). BRCA status was not associated with response to trabectedin
nor with survival (Lorusso et al. 2016). However, the recent findings of another
randomized phase III trial that compared the efficacy of trabectedin combined with
PLD in the same previous setting showed significant overall survival (OS) benefits
for patients harboring BRCA mutations (34.2 vs. 20.9 months; HR: 0.54, 95% CI:
0.33–0.90; p¼ 0.016) (Monk et al. 2020). Similarly, improved outcomes for median
PFS were also noticed for patients with BRCA mutant tumors (HR: 0.72, 95% CI:
0.48–1.08; p ¼ 0.039) (Monk et al. 2020). The DNA damaging agent PLD used in
the recurrent setting was also found to be more effective in tumors with BRCA
mutations. Two previous retrospective studies demonstrated that BRCA-associated

Table 4.2 (continued)

Genes Functions/pathways Clinical impact References

TAP1 Antigen presentation Association with OS Millstein et al. (2020)

ZFHX4 Cell differentiation

CXCL9 Mediation of T cells
recruitment

FBN1 Extracellular matrix
protein

PTGER3 Receptor of prostaglandin
E2
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OC women had improved sensitivity to PLD, greater PFS (Adams et al. 2011), and
also OS (Safra et al. 2014). Regarding taxane chemotherapy which is used in
combination with carboplatin in the first-line setting as a standard of care and as a
single agent for recurrent platinum-resistant disease; data on BRCA as a predictor of
response are sparse. In prostate cancer, the correlation between mutated BRCA and
poor response to docetaxel was noticed (Nientiedt et al. 2017). In addition, mutated
BRCA1-associated breast cancer was found less sensitive to taxane chemotherapy
(Kriege et al. 2012). In OC, the inhibition of endogenous BRCA1 expression was
reported to be associated with decreased sensitivity to antimicrotubule agents (Quinn
et al. 2007). Moreover, median OS in patients with higher BRCA1-expression was
found improved after treatment with taxanes (23 vs. 18.2 months; HR: 0.53;
p¼ 0.12) (Quinn et al. 2007). Other emerging genes that might impact drug response
and prognosis in OC can be found in Tables 4.2 and 4.3.

4.3 Ovarian Cancer Genetics and Response to PARP Inhibitors

DNA damage response pathway is one of the invested targets in drug discovery for
OC. PARP 1 and PARP2 are the principal enzymes of this pathway and are recruited
during DNA lesions to orchestrate repair effectors activity (Lord and Ashworth
2017). PARP bound to damaged DNA and transfer poly-ADP-ribose units to various
target proteins (PARylation process) required for DNA breaks repair such as topo-
isomerase and DNA ligase (for review, see: Franzese et al. 2019). Inhibition of
PARP mediated DNA repair appeared to be a potential strategy that is widely known
as synthetic lethality (Lord et al. 2015; Lord and Ashworth 2017) and has moved
successfully into clinical trials several PARPi including rucaparib (Rubraca®),
olaparib (Lynparza®), veliparib (ABT-888), niraparib (Zejula®) as well as the
next-generation of this category such as talazoparib (Talzenna®). In 2005, two
preclinical reports were published in Nature by Farmer et al. and Bryant et al.
showed that mutant cancer cells with BRCA dysfunction are highly sensitive to
PARP inhibition (Farmer et al. 2005; Bryant et al. 2005). Based on these substantial
findings, this new concept was used as a rationale for developing trial designs of
several PARPi for various cancers harboring this signature. In OC, many clinical
studies that investigated oral PARPi have achieved their primary objectives and
showed positive results from phase II-III trials in the front-line, for recurrent disease,
or maintenance settings following platinum-based chemotherapy (Table 4.4).

4.3.1 Olaparib

Olaparib was the first-in-class developed PARPi and approved by the FDA and
EMA in 2014 for treating OC (Franzese et al. 2019). Early trials (NCT00516373 and
NCT00494442) showed favorable safety and tolerability profile which were
represented mainly by reversible fatigue, anemia, and mild gastrointestinal
symptoms (Fong et al. 2009, 2010; Audeh et al. 2010). Interestingly, these dose-
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finding trials demonstrated significant antitumor response in OC patients with BRCA
mutations (Fong et al. 2010; Audeh et al. 2010). In a second interim analysis of OS
and a preplanned analysis of data by BRCA mutation status of a randomized and
double-blind phase II study (NCT00753545) that used olaparib as maintenance
treatment for recurrent platinum-sensitive OC, Ledermann et al. found that patients
with mutated BRCA had significantly longer PFS as compared with wild-type
subjects (11.2 vs. 7.4 months) (Ledermann et al. 2014). However, in terms of OS,
no significant difference was seen between the two groups (HR: 0.73; 95% CI:
0.45–1.17; p ¼ 0.19 for BRCA mutated status and (HR: 0.99; 95% CI: 0.63–1.55;
p¼ 0.96) for wild-type BRCA) (Ledermann et al. 2014). Moving from this immature
evidence, the greatest clinical benefit was observed in BRCA-mutated recurrent and
platinum-sensitive OC patients in another randomized phase II trial (NCT01081951)
combining olaparib with standard chemotherapy (Oza et al. 2015). PFS in patients
with mutated BRCA was significantly improved (HR: 0.21; 95% CI: 0.08–0.55;
p ¼ 0.0015) (Oza et al. 2015). These data were supported by an updated analysis of
OS of NCT00753545 trial and showed that BRCA-mutated platinum-sensitive recur-
rent OC patients appear to have longer OS despite it did not achieve the planned
level for statistical significance ( p< 0.0095) (Ledermann et al. 2016). Confirmatory
results from two randomized phase III trials (SOLO-1 and SOLO-2/ENGOT-Ov21)
using olaparib as maintenance therapy for OC were reported recently. Pujade-
Lauraine et al. conducted a phase III randomized, double-blind and placebo-
controlled and multicenter trial to evaluate the efficacy of olaparib as maintenance
treatment for platinum-sensitive, relapsed and BRCA mutated OC (Pujade-Lauraine
et al. 2017). This study (NCT01874353; SOLO-2/ENGOT-Ov21) enrolled
295 patients including 196 in the olaparib arm and showed significantly higher
PFS as compared with the placebo arm (19.1 months vs. 5.5 months p < 0.0001
respectively) (Pujade-Lauraine et al. 2017). More recently, results from SOLO-1
(NCT01844986) phase III trial that assessed olaparib (n ¼ 260) versus placebo
(n ¼ 131) as maintenance therapy this time for newly diagnosed OC with BRCA
mutations and after first-line standard chemotherapy demonstrated a gain of 3 years
in PFS (despite not reached) in the group who received olaparib after 41 months of
follow-up (HR: 0.30; 95% CI: 0.23–0.41; p < 0.001) (Moore et al. 2018). Remark-
ably, a recent meta-analysis that enrolled 8 randomized trials (1957 patients) includ-
ing SOLO-2 found that patients with BRCA carriers exhibited significant survival
benefits from olaparib and thus showing decisive additional evidence for this genetic
biomarker but with an increased risk of severe anemia which requires regular
hematologic surveillance (Guo et al. 2018). Promisingly, further evidence will be
released by the ongoing SOLO3 phase III trial that randomizes relapsed OC patients
who have received at least 2 prior lines of platinum-based chemotherapy and with
BRCA carriers to receive olaparib versus standard of care (NCT02282020). Moving
beyond BRCA biomarkers, it seems that a subset of OC patients with mutations in
HRR genes other than traditional BRCA may also benefit from olaparib which can
expand the use of this drug in the future (Hodgson et al. 2018). Similarly, findings
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from a comparative molecular analysis of the NCT00753545 trial showed that long-
term responders to olaparib maintenance may be multifactorial and related to HRR
profile (Lheureux et al. 2017). In the confirmatory SOLO-3 phase III trial, patients
with BRCA mutated status were randomly assigned to receive olaparib or a
non-platinum drug for the platinum-sensitive setting for which objective response
rate was the primary endpoint as mandated by the FDA (Penson et al. 2020). The
superiority of olaparib was noticed and reached 72.2 as compared to 51.4% in
patients treated with standard of care (Penson et al. 2020). The addition of
olaparib to bevacizumab for the first-line maintenance therapy was investigated
in the PAOLA-1 phase III trial (Ray-Coquard et al. 2019). This study
randomized 806 OC patients with mutated BRCA to receive olaparib and
bevacizumab or bevacizumab + placebo in a 2:1 fashion. A significant hazard
ratio of 0.59 resulted in the comparison for PFS. In patients with HRR deficiency,
the hazard ratio for progression or death reached a value of 0.33 suggesting the
clinical benefits of adding olaparib to anti-angiogenesis in this setting
(Ray-Coquard et al. 2019).

4.3.2 Rucaparib

Women with OC who have BRCA mutant tumors that were enrolled in the ARIEL-3
randomized and controlled phase III (n ¼ 564) for the recurrent platinum-sensitive
disease had superior median PFS (HR: 0.23, 95% CI: 0.16–0.34, p < 0.0001)
(Coleman et al. 2017). Similarly, patients with HRR deficiency had also improved
PFS (HR: 0.32, 0.24–0.42, p < 0.0001). In the ARIEL-2 phase II trial for the
recurrent platinum-sensitive setting that stratified patients into multi-cohorts includ-
ing those with BRCA status, median PFS was also improved in the group treated with
rucaparib and having BRCA mutations (HR: 0.27, 95% CI: 0.16–0.44, p < 0.0001)
(Swisher et al. 2017). Notably, RAD51C and RAD51D genetic variants were found
associated with acquired resistance to this PARP inhibitor in OC (Kondrashova et al.
2017). Furthermore, reversion mutations in BRCA were also identified in circulating
tumor DNA of OC patients with reduced rucaparib PFS as compared to women with
no reversion mutations at baseline (median 1.8 vs. 9 months; HR: 0.12; p< 0.0001).
Thus, combinatorial approaches may be promising to overcome drug resistance to
rucaparib (Lin et al. 2019).

4.3.3 Niraparib

To the best of our knowledge, niraparib has been investigated in two randomized
phase III trials for OC, NOVA (n¼ 553) and PRIMA (n¼ 733) (see Chap. 3). In the
NOVA study that explored the efficacy of niraparib in the recurrent platinum-
sensitive setting, 203 women had germline mutated BRCA and had superior
PFS as compared to those treated with placebo (HR: 0.27; 95% CI: 0.17–0.41)
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(Mirza et al. 2016). Remarkably, women with HRR deficiency had also improved
PFS (HR: 0.38; 95% CI: 0.24–0.59) (Mirza et al. 2016). When niraparib was
investigated as a monotherapy in the maintenance setting after response to
front line therapy in NOVA study, enrolled women with HRR deficient tumors
had clinically and statistically improved PFS (HR: 0.43; 95% CI: 0.31–0.59;
p < 0.001) (González-Martín et al. 2019). In late lines of recurrent OC therapy,
the QUADRA phase II trial explored the efficacy of niraparib in heavily
pre-treated patients and showed a clinical activity of this PARPi in women
with HRR deficiency including those with or without BRCA mutations (Moore
et al. 2019).

4.3.4 Veliparib

Veliparib is a new synthetically lethal therapeutic approach for treating OC
(Boussios et al. 2020). Previously and based on early signs of efficacy in a phase
II trial (Coleman et al. 2015), veliparib as a single agent was studied for platinum-
resistant or partially sensitive recurrent OC in a combined phase I/II trial (Steffensen
et al. 2017). Veliparib was given to women that have exclusively germline mutated
BRCA showed clinical activity in this heavily pretreated population including 65%
of overall response rate, PFS of 5.6 months, and OS of 13.7 months (Steffensen et al.
2017). VELIA (n ¼ 1140) was a landmark three arms phase III trial that explored
the efficacy of veliparib in the first-line therapy of OC (Coleman et al. 2019).
Women with BRCA mutant and HRR deficient tumors treated with veliparib in
combination with carboplatin/paclitaxel doublets had favorable outcomes includ-
ing superior PFS (HR: 0.44 and HR: 0.68 respectively, p < 0.001 for both)
(Coleman et al. 2019). In a recent biomarker analysis of a phase II study, homeo-
box A9 (HOXA9) promoter methylation in circulating tumor DNA was
demonstrated to confer resistance to veliparib (Rusan et al. 2020). Longitudinal
monitoring of OC patients based on this liquid biopsy approach showed that
methylated HOXA9 at baseline was significantly correlated with worse outcomes
included reduced PFS and OS ( p < 0.0001 and p ¼ 0.002, respectively) (Rusan
et al. 2020). Therefore, this may provide perspectives for real-time monitoring
using this potential predictive biomarker.

4.4 Ovarian Cancer Genetics and Surgical Outcomes

Usually, cytoreductive debulking surgery is performed for OC patients after primary
diagnosis and staging, followed by adjuvant platinum-based chemotherapy or after
receiving neoadjuvant chemotherapy (NACT) for women with poor performance
status, large tumors, and important volumes of ascites (Vitale et al. 2013). Further-
more, secondary debulking surgery can be performed during recurrences but its role
in improving outcomes is still controversial (Lorusso et al. 2012). Resectability and
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optimal cytoreduction are influenced by several factors such as disease location, the
expertise of surgeons as well as probably genetic status such as BRCA mutations
(Narod 2016; Ponzone 2021). Interestingly, to see whether OC patients with BRCA
mutations have superior surgical outcomes as compared with those with wild status,
some recent reports looked into this matter based on different observational study
designs. Earlier in 2012, a retrospective report of 367 stage IIIC-IV high-grade
serous OC from the Memorial Sloan Kettering Cancer Center investigated germline
BRCAmutation status as a predictor of optimal cytoreduction compared to wild-type
tumors (Hyman et al. 2012). OC patients with mutated BRCA and who underwent
surgery had relatively superior rates of optimal debulking as compared with wild-
type patients (84.1% vs. 70.1% respectively, p ¼ 0.02) (Hyman et al. 2012).
However, based on multivariate analysis, this study demonstrated that mutated
BRCA status is not associated with residual tumor volume (OR: 0.63; 95% CI:
0.31–1.29; p ¼ 0.21) suggesting that optimal cytoreduction may be due to surgery
alone instead of OC genetics (Hyman et al. 2012). In another retrospective study that
enrolled 27 cases with recurrent OC treated with cytoreductive surgery and hyper-
thermic intraperitoneal chemotherapy (HIPEC) and 84 matched controls treated with
systemic chemotherapy alone, women with positive BRCA carriers were found to
have longer PFS in the HIPEC group as compared with the controls
(20.9 vs. 12.6 months, p ¼ 0.048) (Safra et al. 2014). Consequently, this confirms
the recently published data supporting the impact of the emerging HIPEC in treating
OC (van Driel et al. 2018; Spiliotis et al. 2015; Cascales-Campos et al. 2015)
especially in patients with BRCA mutational status. However, an opposing conclu-
sion from a recent study found that patients with BRCA1 mutated OC are less likely
to achieve no residual disease after debulking surgery than wild-type patients
(19% vs. 39%; p < 0.0001) (Kotsopoulos et al. 2016). Importantly, the same
study found that improved survival outcomes observed in OC patients with mutated
BRCA status may be due to higher initial sensitivity to platinum-based therapy and,
notably, no residual disease at debulking is the strongest predictive factor of long-
term survival (Kotsopoulos et al. 2016). Recently, Petrillo et al. evaluated the impact
of BRCA mutational status on outcomes including optimal debulking in a large
multicenter report of women with newly diagnosed high-grade serous OC with stage
IIIc and IV disease (Petrillo et al. 2017). Patients with mutated BRCA had signifi-
cantly higher peritoneal tumor load but without having different median PFS when
treated with NACT or debulking surgery ( p ¼ 0.268). Remarkably, patients with
wild-type BRCA status and who benefited from primary debulking surgery had
superior median PFS as compared to those treated with NACT (26 vs. 18 months;
p ¼ 0.003) (Petrillo et al. 2017). Similarly, Marchetti et al. showed in their recent
retrospective cohort that women with BRCA wild-type ovarian tumors who
underwent complete secondary cytoreductive surgery had superior 5-year post-
recurrence survival as compared to those with no surgical intervention
(54% vs. 42%; p¼ 0.048) (Marchetti et al. 2018). However, Naumann et al. showed
that optimally resected high-grade OC had frequent BRCA mutations and
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dramatically improved median OS (110.4 vs. 67.1 months; HR: 0.28, 95% CI:
0.11–0.73, p ¼ 0.009) when treated with HIPEC compared with patients wild type
tumors (Naumann et al. 2018). More recently, Gordonova et al. analyzed the medical
record of 283 consecutive women who underwent complete or optimal debulking
and compared their outcomes based on BRCA status (Gorodnova et al. 2019). Again,
this study showed that BRCA status did not predict outcomes in patients subjected to
primary surgery ( p ¼ 0.56) (Gorodnova et al. 2019). To the best of our knowledge,
only one report has prospectively assessed the impact of BRCA status on optimal
debulking. This was a cohort report that enrolled 107 OC patients including 51.4%
of BRCA mutated cases (Rudaitis et al. 2014). No significant difference between OC
patients harboring BRCA mutations and those with wild-type status was seen in
terms of optimal debulking surgery (58.2% vs. 53.9%, p¼ 0.6994). However, BRCA
mutated OC patients had improved median PFS (19 months, 95%; CI: 13–25)
compared with wild-type subjects (13 months, 95%; CI: 10–16) ( p ¼ 0.039)
(Rudaitis et al. 2014). In conclusion, it seems that BRCA carriers have no impact
on optimal debulking for OC patients. However, most of these studies are retrospec-
tive in their design and thus, should be commented with caution because of the high
risk of biases. Until to date, no definitive answers were provided and most current
studies especially clinical trials are investigating BRCA as biomarkers for chemo-
therapy and targeted therapies.

4.5 Conclusion

The genetics of OC is becoming actionable with the arrival of precision medicine in
gynecologic oncology. This progress is also supported by the recent development of
sequencing technology. To date, several therapies require genetic information of OC
patients before their use. Remarkably, this approach has deeply improved outcomes
in some settings of this aggressive women’s cancer. More research on biomarkers is
needed to ensure that patients can achieve maximal clinical benefits from the
emerging targeted agents in OC. In this perspective, the currently active clinical
trials using BRCA status for patients’ selection and stratification can improve
personalized medicine in the near future (Tables 4.5 and 4.6). For additional reading,
see Box 4.1.
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Table 4.5 Summary of active clinical trials assessing BRCAmutations as prognostic biomarkers in
ovarian cancer for patients’ selection and stratification

Trial identifierǂ Objective Enrollment@ Sponsor

NCT02341118 Genomic profiling of
BRCA1/2 mutational status
to predict clinical outcomes

2000 University Health Network,
Toronto

NCT02321228
(TUBA)§

To determine whether an
early salpingectomy and a
delayed oophorectomy in
mutated BRCA subjects will
improve menopause-related
quality of life without
increasing OC incidence

510 University Medical Center
Nijmegen

NCT00579488 Assessment of clinical
outcomes in OC patients
with mutated BRCA

20,000 Memorial Sloan Kettering
Cancer Center in
collaboration with Cold
Spring Harbor Laboratory

NCT03296826 Identification of
clinicopathological features
in Japanese women with
mutated BRCA undergoing
RRSO (risk-reducing
salpingo-oophorectomy)

600 Translational Research
Center for Medical
Innovation, Kobe, Hyogo,
Japan

NCT03159572
(HITOMI)

Investigation of association
between PFS/sensitivity to
platinum and germline
mutation BRCA in breast
cancer and OC

700 Translational Research
Center for Medical
Innovation, Kobe, Hyogo,
Japan

NCT03510689
(Gene-HEART
study)

Investigation of association
between pathogenic BRCA
mutations in hereditary
breast and OC treated with
anthracycline-based
chemotherapy and the risk to
develop cardiovascular
disease

150 Abramson Cancer Center of
the University of
Pennsylvania

NCT01167842 Correlation between
molecular findings (BRCA
mutational status and other
mutated genes) with
response to treatment,
recurrence data and survival

180 University of Washington

ǂTitles of clinical trials were copied as shown by the database (with recruiting or enrolling by
invitation studies), @Actual or estimated. Data from ClinicalTrials.gov (accessed 12/10/18).
§Results published, see Harmsen et al.: https://bmccancer.biomedcentral.com/articles/10.1186/
s12885-015-1597-y
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Abstract

Genomically actionable mutations are increasingly used to deliver personalized
medical care for patients with ovarian cancer (OC). Liquid biopsy applications
encompass the identification and study of circulating tumor DNA (ctDNA), cell-
free DNA, circulating tumor cells, and sometimes circulating miRNAs. In the
current practice, ctDNA is mostly utilized. The multiple clinical applications of
liquid biopsy in oncology have facilitated the implementation of precision medi-
cine in practice. Though not still ready for clinical use in OC daily practice, the
use of liquid biopsy in the experimental setting has revolutionized the study of the
mechanisms of carcinogenesis and treatment resistance underlying the clinical
disease progression. Moreover, as a minimally invasive approach, liquid biopsy
can be used to predict response to antineoplastic therapies, including standard
platinum-based chemotherapy regimens and PARP inhibitors. In addition, liquid
biopsy can also be used in OC to predict recurrence, inform on the prognosis and
anticipate clinical progression-free survival events. In this chapter, the clinical
relevance and utility of blood-based ctDNA in OC are reviewed.
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5.1 Introduction

Ovarian tumor components such as circulating tumor cells (CTCs) (Romero-
Laorden et al. 2014), circulating tumor DNA (ctDNA) (Esposito et al. 2014),
microRNAs (Wang et al. 2017), and cell–cell communicating exosomes, which
are nano-sized vesicles containing nucleic acids and proteins (Li and Wang 2017),
can be released into the bloodstream during tumor apoptosis, necrosis, and meta-
static spread. Noninvasive quantitative and qualitative assessment of these tumors
highly informative “gold constituents” may be accomplished with the advent of
highly sensitive technologies such as digital polymerase chain reaction (PCR) and
next-generation sequencing (NGS) platforms (Zhang et al. 2017) as well as the
FDA-approved CellSearch® immuno-magnetic system for CTCs detection and
characterization (Sun et al. 2018). This field of oncology is rapidly evolving and
has literally experienced an explosion of liquid biopsy studies. Ovarian cancer
(OC) is a particularly suitable and an ideal candidate for liquid biopsy: first, it
sheds a higher quantity of tumor materials in the bloodstream; then, a significant
proportion of women can experience a tumor recurrence after the primary treatments
and/or tumor progression, after the initial systemic chemotherapy. Therefore, the
clinical OC setting recalls the need to identify biomarkers of prognosis, early
recurrence and prediction of treatment sensitivity. With the emerging precision
oncology, ctDNA-based approaches have provided considerable and actionable
data for the development of tools for (a) early detection, (b) real-time and longitudi-
nal monitoring of therapy response, (c) detection of residual disease and recurrence,
and (d) study of tumor heterogeneity (Steffensen et al. 2014; Wan et al. 2017; El
Bairi et al. 2017a, b; Van Berckelaer et al. 2016) (Fig. 5.1). In this chapter, the advent
of ctDNA in OC is reviewed based on several recent developments.

5.2 Circulating Tumor DNA as a Biomarker in Ovarian Cancer

Several recent human trials investigated the clinical value of ctDNA in OC
(Table 5.1). Pereira et al. examined the role of ctDNA as a prognostic biomarker
in 22 women with OC at the time of surgery and throughout the treatment course,
using digital PCR and NGS to identify relevant mutations (Pereira et al. 2015).
Notably, this study detected ctDNA in 93.8% of patients comparing it with
computed tomography scan findings and CA-125 marker results. Moreover,
ctDNA after 6 months of adjuvant treatment was found undetectable and associated
with better PFS and OS ( p ¼ 0.0011 and p ¼ 0.0194, respectively) suggesting its
potential impact as a prognostic biomarker for disease recurrence and survival rate
(Pereira et al. 2015). However, the prognostic value of ctDNA seems to be limited by
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the lack of sufficient data on its correlation with tumor size and stage. The ctDNA
based analysis has revealed that mutated TP53 was the most prevalent gene alter-
ation, followed by low frequent mutations in PTEN, PIK3CA,MET, KRAS, FBXW7,
and BRAF genes in patients with high-grade serous tumors (Pereira et al. 2015). To
date, the rich source of data regarding initial TP53 mutations revealed its important
driver role in basal-like breast cancers and OC (reviewed elsewhere: Silwal-Pandit
et al. 2017). Notably, OC patients with mutated TP53 appear to have better survival
and to be sensitive to chemotherapy (Leijen et al. 2016; Wong et al. 2013). In a
retrospective analysis, Parkinson et al. found that decreased TP53 mutant allele
fraction (>6%) in ctDNA is an independent predictive biomarker for time-to-
progression endpoint (TTP) (HR: 0.22, 95% CI: 0.07–0.67, p ¼ 0.008) in relapsed
high-grade serous OC (Parkinson et al. 2016). Furthermore, ctDNA levels were
strongly correlated with the total volume of disease ( p < 0.001) compared to the
gold-standard CA-125 biomarker. Likewise, a significant correlation between
mutated TP53 in ctDNA and CA-125 ( p < 0.001) was reported, thus suggesting
its possible use as a highly specific biomarker to predict platinum-based treatment
response (Parkinson et al. 2016). Recently, a large study enrolling 121 OC patients
demonstrated that the NGS-based detection of somatic and germline BRCA
mutations in ctDNA is feasible when the standard diagnostic testing is not satisfac-
tory (Ratajska et al. 2017). BRCA reversion mutations (also known as back
mutations) are a mechanism that may explain the acquired resistance to platinum

Dissemination of tumor components into 
the blood circulation

Non-invasive liquid 
biopsy

Circulating 
tumor DNA

PCR-based approaches

Targeted next-generation 
sequencing approaches

Whole-genome 
sequencing approaches

-Point mutations
-Copy number 

alterations
-Rearrangements

-Methylation changes

1-Early detection
2-Real-time monitoring 

of therapy response
3-Detection of residual 
disease and recurrence

4-Study of tumor 
heterogeneity

Fig. 5.1 Dissemination of tumor components into the blood circulation
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Table 5.1 Impact of circulating tumor DNA in ovarian cancer management (data from the last
5 years)

Author/year
No. of patients
(histology)

Clinical
impact Genetic alteration Study technique

Rusan et al.
(2020)

32 (HGSOCβ) Response to
PARP
inhibitors

HOXA9
methylation

In-house digital
droplet PCR

Noguchi et al.
(2020)

51
(miscellaneous)

Prediction of
progression-
free survival
(PFS)

Somatic
mutations in
TP53, APC,
KRAS, EGFR,
MET, PIK3CA,
NPAP1, and ALK

Illumina NextSeq
500

Ogasawara et al.
(2020)

255
(miscellaneous)

Prediction of
recurrence

Somatic PIK3CA
and/or KRAS
mutations

Digital droplet
PCR

Alves et al.
(2020)

11
(miscellaneous)

Prediction of
disease-free
survival

– Quantitative real-
time PCR

Lin et al. (2018) 112 (HGSOC) Response to
PARP
inhibitors

ReversionBRCA1/
2 mutations

Guardant360
assay (Illumina
HiSeq)

Slavin et al.
(2018)

2010 Identification
of incidental
germline
mutations

Variants in 16{

genes associated
with hereditary
cancers

Guardant360
assay (Illumina
HiSeq)

Giannopoulou
et al. (2018)

50 (HGSOC)¥ Prediction of
overall
survival
(OS) and PFS

ESR1 methylation Real-time
methylation-
specific PCR

Christie et al.
(2017)

30 (HGSOC) Therapy
response

Reversion
BRCA1/
2 mutations

Targeted
sequencing
(Illumina MiSeq)

Widschwendter
et al. (2017)

151
(miscellaneous)

Early
detection and
therapy
response

DNAme-Marker
Panel

Bisulfite
sequencing
(Illumina MiSeq/
HiSeq 2500)

Ratajska et al.
(2017)

121 (HGSOC;
72%)

Monitoring of
PARP
inhibition

BRCA1/2 Next-generation
sequencing
(Illumina)

Parkinson et al.
(2016)

40 (HGSOC) Therapy
response

TP53 Digital PCR

Harris et al.
(2016)

10 (HGSOC) Therapy
response and
relapse
monitoring

Somatic
chromosomal
rearrangements

Next-generation
sequencing
(Illumina HiSeq
2000) and qPCR

Pereira et al.
(2015)

22 (21 HGSOC
and 1 mixed
mesodermal
tumor)

Therapy
response and
survival

TP53 and other
low frequent
mutated genesǂ

Next-generation
sequencing
(Illumina HiSeq
2500 and Ion

(continued)
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and PARP inhibition-based chemotherapy in OC and leading to the restoration of
wild-type functions of this gene (Sakai et al. 2008; Norquist et al. 2011). These
secondary mutations can take place in germline or somatic mutated BRCA alleles
(Carneiro et al. 2018) and usually alter the structure of the primary frameshift into an
in-frame internal deletion and leads to partly functional BRCA proteins (Ganesan
2018). As demonstrated by the previous study, detection of secondary reversion
BRCA mutations in ctDNA allows the selection of patients that can benefit from
PARP inhibition therapy which has recently shown a potential clinical response in
OC (Ratajska et al. 2017; Ledermann 2016). Furthermore, in another study that
recruited 30 patients with recurrent high-grade serous OC with known germline
BRCA1 or BRCA2 status, reversion mutations detected in ctDNA based on targeted
NGS assay were found to drive poor response to PARP inhibition and platinum-
based treatments (Christie et al. 2017). However, despite reversion BRCA mutations
were identified in ctDNA in an unbiased manner, this approach is limited by the fact
that wild-type BRCA alleles-based DNA may be abundantly released in the blood
from normal cells which will possibly influence the sensitivity of these NSG assays
(Christie et al. 2017). More recently, 10,888 unselected patients with advanced
cancers (stage III/IV), including OC patients (n ¼ 210, 2%), were enrolled in a
large cohort to identify incidental germline mutations in 16 actionable genes based
on the Guardant 360™ NGS-based assay (Slavin et al. 2018). Variants in clinically
targetable genes, such as BRCA in ctDNA, were found to be the highest among
patients with OC compared with other advanced cancers (8.13% vs. 3.46%, 3.34%,
and 2.2% for prostate, pancreatic, and breast tumors respectively) (Slavin et al.
2018). Similarly, Lin et al., in a study (n ¼ 112) that used Guardant-360assay, has
recently shown that patients with OC, without BRCA reversion mutations, had
longer median PFS than those with reversion mutations identified in ctDNA before
PARP inhibitors-based treatments (9.0 vs. 1.8 months; HR: 0.12; p < 0.0001) (Lin

Table 5.1 (continued)

Author/year
No. of patients
(histology)

Clinical
impact Genetic alteration Study technique

Torrent PGM-Ion
AmpliSeq™
Cancer Hotspot
Panel v2) and
digital PCR

βincluding four patients with non-serous tumors. {APC, ATM, BRCA1, BRCA2, CDKN2A, KIT,
MLH1, NF1, PTEN, RB1, RET, SMAD4, STK11, TP53, TSC1, and VHL. ǂPTEN, PIK3CA, MET,
KRAS, FBXW7, and BRAF. Abbreviations: ALK anaplastic lymphoma kinase, APC adenomatous
polyposis coli, BRCA breast cancer gene, DNA deoxyribonucleic acid, EGFR epidermal growth
factor receptor, ESR1 estrogen receptor 1, HGSOC high-grade serous ovarian cancer, HOXA9
homebox A9, KRAS Kirsten rat sarcoma, MET mesenchymal–epithelial transition factor, NPAP1
nuclear protein-associated protein 1, PARP poly-ADP ribose polymerase, PIK3CA
phosphatidylinositol-4,5-bisphosphate 3-kinase, TP53 tumor protein 53, PCR polymerase chain
reaction, qPCR quantitative polymerase chain reaction. ¥53 primary tumors and 50 corresponding
plasma samples
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et al. 2018). Moreover, baseline ctDNA in OC at the time of diagnosis has also a
value for predicting recurrence. In this regard, a large retrospective cohort of
255 patients with epithelial OC demonstrated that the presence of detectable
ctDNA is an independent biomarker for recurrence (HR: 0.38, 95% CI: 0.18–0.79;
p ¼ 0.01) (Ogasawara et al. 2020). This suggests that tumor seeding can occur in
localized OC. Moreover, other pilot studies confirmed the feasibility of this nonin-
vasive approach in predicting outcomes in patients with OC (Alves et al. 2020;
Noguchi et al. 2020). Taken together, these preliminary findings can establish
prognostic value and efficient real-time monitoring of anticancer treatments, if
validated in large cohorts using standardized assays such as companion diagnostics.
Remarkably, concordance between genomic alterations in ctDNA and primary
tumors was also noticed suggesting an added value of this approach as a diagnostic
tool (reviewed elsewhere: Cheng et al. 2017). Moreover, the combination of cell-free
DNA with CA125 and the emerging biomarker HE4 may improve the accuracy of
OC detection as supported by an earlier report (Shao et al. 2015). Therefore,
multimarker panels are supposed to improve the sensitivity and specificity of this
liquid biopsy-based approach.

Another application of liquid biopsy is the ability to assess gene methylation and
other epigenetic changes as biomarkers for early detection and prognostication
purposes (El Bairi et al. 2018; Tomasetti et al. 2017). In OC, the clinical significance
of methylation patterns in ctDNA has been examined by Widschwendter et al. in
151 patients with various histologies, based on a multi-marker panel (three
methylated regions COL23A1, C2CD4D, and WNT6 genes) using bisulfite sequenc-
ing; the pretreatment of DNA samples before the sequencing is one standard
procedure to study the DNA methylation pattern (Widschwendter et al. 2017).
This methylation panel has demonstrated to discriminate patients with OC from
healthy women or patients with a benign pelvic mass, with specificity and sensitivity
of 90.7% (95%, CI: 84.3–94.8%) and 41.4% (95% CI: 24.1–60.9%) respectively
(Widschwendter et al. 2017). Remarkably, this panel showed superiority in
predicting chemotherapy response compared with CA-125 (78% of responders and
86% of non-responders ( p ¼ 0.04) vs. 20% and 75% respectively) (Widschwendter
et al. 2017). Correlation between changes in methylation in primary tumors and
ctDNA based on real-time methylation PCR (mPCR) and its association with clinical
outcomes was also reported in a recent study enrolling 50 patients with high-grade
OC (Giannopoulou et al. 2018). Methylated ESR1 in ctDNA, a gene encoding for the
estrogen receptor, was found to be significantly associated with primary tumors
( p ¼ 0.004) (Giannopoulou et al. 2018). Importantly, methylated ESR1 was also
found to predict better overall survival ( p ¼ 0.027) and progression-free survival
( p ¼ 0.041) (Giannopoulou et al. 2018). More recently, homeobox A9 (HOXA9)
promoter methylation in ctDNA was found to predict response to PARP inhibitors
(Rusan et al. 2020). The findings of this cohort (n ¼ 32) of a phase II trial that
investigated veliparib for platinum-resistant OC patients with BRCA mutations
demonstrated that detectable methylated HOXA9 at baseline and before each treat-
ment cycle was associated with worse outcomes. Patients that were positive for this
biomarker had a reduced PFS (5.1 vs 8.3 months; p < 0.0001) and OS (9.5 vs
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19.4 months; p¼ 0.002). This longitudinal monitoring also showed that patients that
were positive at baseline and that had undetectable methylated HOXA9 ctDNA
showed improved outcomes on multivariate analysis (Rusan et al. 2020).

In addition to point mutations and DNA methylation, chromosomal
rearrangements in ctDNA were also investigated based on whole-genome sequenc-
ing technology and appear to have greater tumor specificity in OC (Harris et al.
2016). Aberrant chromosomal junctions were identified in ctDNA of OC patients
(n ¼ 8) before cytoreductive surgery in which five subjects had undetectable post-
surgical ctDNA and therefore, supporting its possible use for monitoring therapeutic
interventions (Harris et al. 2016). Still, results from these proof-of-principle studies
remain immature in these small populations of OC patients. Also, these studies have
been conducted based on relatively small samples and different methodologies and
technologies which require meta-analytic approaches to combine their data. In this
perspective, only one previous meta-analysis was performed by Zhou et al. and it has
pooled the results of nine studies (462 patients and 407 controls) to assess the
diagnostic value of circulating cell-free DNA (cfDNA) in OC (Zhou et al. 2016).
Pooled sensitivity of cfDNA (0.70; 95% CI: 0.65–0.74) was found poor but its
specificity (0.90; 95% CI: 0.87–0.93) reached an acceptable value for OC diagnosis
(Zhou et al. 2016). As expected, subgroup analysis indicated that studies with large
sample sizes detected OC accurately compared with small sample ones. In the case
of specimen types, plasma-based assays were found to have high sensitivity but low
specificity (0.72 and 0.89, respectively) in comparison with serum-based tests (0.65
and 0.93, respectively) (Zhou et al. 2016). When compared with the most recent
meta-analysis by Dayyani et al. that investigated the diagnostic value of the standard
CA-125 showing an area under the curve (AUC) of 0.883 (95%; CI: 0.771–0.950)
(Dayyani et al. 2016), the AUC of cfDNA was relatively greater [0.89 (95%; CI:
0.83–0.95)], thus demonstrating a better accuracy (Zhou et al. 2016). In this meta-
analysis, significant heterogeneity (sensitivity: I2 ¼ 85.2% and specificity:
I2 ¼ 78.5%) was observed among enrolled studies (Zhou et al. 2016). Meta-
regression was utilized to identify the source of this heterogeneity and accordingly,
no covariates such as study design, sample type, location, etc. were found to
influence it and therefore the source of this heterogeneity could not be detected
(Zhou et al. 2016). Furthermore, potential bias and quality appraisal of methodolog-
ical quality of selected studies for the meta-analysis was assessed using QUADAS-
2 (Whiting et al. 2011). This tool indicated that the study design did not considerably
involve the accuracy of cfDNA as a diagnostic biomarker for OC (Zhou et al. 2016).
As this field is rapidly evolving, future meta-analyses will provide sizable evidence
when additional studies are available.

5.3 Perspectives: Ongoing Clinical Trials Investigating ctDNA
for Ovarian Cancer

Clinical trials on this topic (Table 5.2) have the potential to provide accurate findings
by increasing power and providing well-designed biomarker cohorts. The design of
clinical trials for several interventions across the cancer continuum embraces
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innovative technologies to boost cancer care advancements and validate the clinical
utility, safety, and effectiveness. Research questions, in fact, shall find validations
only in the context of controlled studies. The use of liquid biopsy in clinical trials has
been initially developed to study the treatment response. However, while liquid
biopsy applications have found room in the clinical care of some patients with
selected tumor types, mostly as plasma-based assays for non-small cell lung cancer,
several clinical trials are assessing their utility in a spectrum of diseases (Snow et al.
2019).

The presence of tumor ctDNA has been historically identified in healthy subjects
(Mandel and Metais 1948), and in patients with cancer, suggesting ab initio a role for
both the early diagnosis and treatment of human cancers. In OC, the identification of
ctDNA in healthy subjects has prompted the applications for the screening of solid
tumors, providing the high capacity of DNA shedding into the plasma of some
cancers (Alharbi et al. 2018). The lack of effective screening mechanisms based on
plasma markers and imaging for OC has illuminated an important unmet need, for
the deadliest women’s pelvic tumor (Jacobs et al. 2016). The first clinical studies of
the screening of OC have provided quite variegated results: essentially, sensitivity is
interestingly elevated with ctDNA but diagnostic specificity still too low for screen-
ing purposes (Vanderstichele et al. 2017). Whole-genome sequencing, targeted gene
sequencing by quantitative PCR, and DNA methylation pattern studies have been
utilized in clinical trials for OC screening (Pereira et al. 2015); however, the
definition of an exact role and clinical position is still a matter of research. To
date, no cancer screening has been successfully implemented on liquid biopsy,
though highly promising (Lo and Lam 2020). Presently, one clinical trial led by
Shanghai Jiao Tong University in China and based on the study of the ctDNA
methylation levels by deep sequencing-Sequencing is ongoing for screening
purposes (NCT03155451). The incorporation of the information from ctDNA will
aid in the definition of effective early detection interventions for patients at average
or increased risk of OC, alone or in the context of more complex decisional
algorithms. Possibly, high-performing ctDNA-based strategies will help reduce the
incidence of advanced disease, inform on the appropriate timing of prophylactic
surgeries in high-risk patients and enhance the family screening, for selected
pedigrees.

Levels of ctDNA are influenced also by the disease burden and affected in the
quantity and quality by the carcinogenesis dynamics of clone selection-turnover and
treatment responses. The concept of earlier treatment in OC, based on the use of
plasma biomarkers of relapse (e.g., CA125), has never been truly supported in
women receiving and completing primary treatments (Krell et al. 2017). The
CA125-triggered treatment has not been demonstrated to improve the outcome in
women with no macroscopic OC recurrence (Krell et al. 2017). However, CA125 is
an imperfect biomarker, and susceptible to a number of non-oncogenic phenomena,
including inflammatory processes (Kim et al. 2016). So far, the definition of the most
meaningful prognostic determinants in OC patients is based on the clinical and
radiological findings, e.g., platinum sensitivity (Krell et al. 2017). Therefore, clinical
implementation of plasma-based markers that better predict the true cancer relapse
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events are highly warranted, to understand if the therapeutic exposure of the initial
clones driving the recurrence in the preclinical stage can improve cancer survival.
Based on these assumptions, prospective clinical trials have been designed and are
ongoing to identify and validate ctDNA-based biomarkers for recurrence of stage
I-IV epithelial OC after debulking surgery or following adjuvant chemotherapy
(NCT03691012) and explore the ctDNA dynamics (NCT03302884/CIDOC).

In addition, several trials are also exploring the opportunity to study the variations
in the ctDNA during treatment or the identification of resistance-driving clones. The
phase 2 clinical trial ARIEL2 enrolled patients to receive the anti-PARP rucaparib; a
subset of patients performed a liquid biopsy, to understand how the quantitative
changes in the ctDNA could predict treatment response. None of the patients with
persistently elevated ctDNA experienced a radiological tumor response, while 80%
of patients with a demonstrated reduction of ctDNA (i.e., decreased level of 50% or
more after a single treatment cycle) experienced a radiological tumor response,
suggesting a possible predictive role (Piskorz et al. 2016). Therefore, prospective
clinical trials have been designed to understand how ctDNA quantitative dynamics
can affect the prognosis and serve as clinically useful and valid predictive
biomarkers (NCT03302884/CIDOC). Also, ctDNA quantitative evaluations can be
useful to understand the on-target mechanisms of resistance, as discussed above for
the intragenic reversion mutations of BRCA1/2, linked to acquired resistance to
PARP inhibitors (Christie et al. 2017). The ongoing prospective clinical trials aim
to confirm the clinical value of longitudinal mutational evaluations with ctDNA
during treatments for PARP inhibitors (NCT02822157/CLIO, NCT02489058/
OLALA) and/or other targeted agents (NCT03622983/PELVIMASS2,
NCT03783949/EUDARIO, NCT02797977).

Moreover, experimental evidence has demonstrated a possible role of liquid
biopsy in the monitoring of response to immunotherapeutic agents (IO). The assess-
ment of tumor response in patients receiving IO has been sometimes challenging,
especially for patients experiencing an initial tumor progression followed by a
durable cancer response (i.e., pseudo-progression). Accordingly, ctDNA-based
assays that correlate with the true cancer burden may be desirable. Indeed, one
study confirmed the prognostic value of ctDNA reduction in patients receiving IO,
including a cohort of women with high-grade serous ovarian cancer (Bratman et al.
2020). This recapitulates the findings with chemotherapy and targeted agents.
Consistently, ctDNA applications in IO treatment response monitoring have been
implemented in ongoing clinical studies (NCT03017573/SCANDARE,
NCT03277209, NCT02644369/INSPIRE). The possibility to collect samples during
routine clinical procedures for standard clinical assessments of patients with OC is a
major favoring characteristic for the clinical implementation of liquid biopsy, as its
noninvasive nature. While the utility, reproducibility, and value of ctDNA assays in
the clinical practice are still investigational, the OC biology and the preliminary
exploratory findings from small cohorts suggest a promising role in the clinical
practice, across the spectrum of cancer continuum.
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5.4 Feasibility, Availability, and Accessibility of Liquid
Biopsy-based Methodologies for Clinical Applications:
Addressing Barriers, Framing Solutions for Cancer
Resilient Health Systems

The implementation of innovative medical technologies developed in resource-rich
settings can often encounter barriers in different health system contextures (Lustberg
et al. 2018). For the approved indications, the role of assays based on liquid biopsy is
complementary, and not entirely intended to replace tissue-based diagnostics; they
are used mostly to characterize predictive and prognostic biomarkers (Goodsaid
2019). As a result, a number of regulators and decision-makers have questioned the
true clinical utility of ctDNA assays outside clinical trials, thus they have not
supported the coverage by the national health insurance schemes (Lustberg et al.
2018). The liquid biopsy technologies are sophisticated and costly, therefore
demanding elevated financial resources and skilled health personnel.

In low- and middle-income countries, the implementation of effective cancer
control programs is challenged by the scarcity of resources, often weakened by
non-resilient health systems, unprepared to face the rapidly increasing cancer burden
(Wambalaba et al. 2019). Accordingly, the selection and prioritization of cancer
interventions are critical to assure the delivery of quality cancer interventions to a
large proportion of the population, pursuing for a universal health care. Neverthe-
less, some authors have reported possible benefits in the implementation of ctDNA
techniques in low- and middle-income countries. The possibility to collect blood
samples virtually anywhere, stored in local laboratories, and then analyzed in
reference centers is one of the advantages (Temilola et al. 2019). For many patients,
in fact, the first and most important barrier to cancer care is to have a diagnosis of the
malignancy, to seek medical care, and to perform the diagnostic tissue biopsy—
representing one of the most significant reasons for delays in cancer treatments and
advanced cancer presentations (Brand et al. 2019; Trapani et al. 2021). However,
evidence to support a complete replacement of tissue biopsy with liquid biopsy for
diagnostic purposes is not entirely supported, as the role of ctDNA assays is mostly
complementary, and not intended to make the diagnosis of cancer (Adeola et al.
2017). Therefore, no implementation should be endorsed in the absence of good
prospective clinical data, and validations in the ethnic subgroups of interest. For
example, only a minority of the patients enrolled in the clinical studies of liquid
biopsy belong to African ancestry, and African-based studies are only a small
number. One research showed that the majority of African-based studies were
done in Egypt, with a few other studies from Northern Africa and South Africa
(Temilola et al. 2019). Advocating for inclusiveness in clinical trials and evaluating
the local utility of new medical technologies have emerged as health imperatives,
ensuring valuable investments with measurable population health and economic
gains (Dilla et al. 2015).

The implementation of innovative health interventions like liquid biopsy with no
cognition of the utility, health gains, budgetary impact, and reimbursement decisions
are common sources of inefficiency in the health investments. For example, three
African countries (Kenya, Tunisia, and South Africa) have made available to the
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public some liquid biopsy kits (Kinyua 2018); however, these interventions have
soon become prerogative of only a minority of the populations, as they are de facto
unaffordable to the greatest proportion of the patients. The financial barriers and the
lack of consistent data on effectiveness and cost-effectiveness can prevent all the
good narratives to develop implementation research of liquid biopsy in low- and
middle-income countries, including serving the most remote areas and disadvan-
taged populations. In addition, the risk to increase the health care gap is large,
including through an elevated exposure to catastrophic health expenditure.

Nowadays, it is imperative to expand the options of cancer services in low- and
middle-income countries through a phased approach. The safety, feasibility,
sustainability, and cost-effectiveness of new technologies must be viewed in a
context-appropriate cancer planning perspective, and not as a mere race for the
most innovative devices. Therefore, research investments must be oriented to
boost the local capacities through international and national efforts, including
regulated agreements with the private sector, and always developed in alignment
with the goals of the national cancer control planning (Jamison et al. 2018).

The use of liquid biopsy could also help in the promotion of the best treatment
practices, in the context of clinical trials. Whether liquid biopsy should be
implemented in the clinical practice for women with OC in low- and middle-income
countries nowadays is unlikely to be realistic. However, the strengthening of clinical
research is the imperative of the cancer agenda, including with the use of new
technologies—when intended to enforce the local evidence-based practices, scale-
up the workforce, and develop training programs—resulting in a health system
benefit of the cancer research, therefore translated in a population benefit with
societal gains. Major advancements in cancer care will be stated only under a
goal-oriented research agenda, making sure that priority investments are not dis-
tracted by more appealing but not presently useful interventions. It is necessary to
work for population-based cancer care that is affordable, accessible, and designed to
respond to local health needs through global health tools and technologies.

5.5 Conclusions

Liquid biopsy is a novel noninvasive approach that can provide a more accurate
prognostic evaluation and prediction of therapeutic response. Moreover, its potential
role in the early detection of the disease and in cancer screening needs to be further
investigated. To date, OC represents the fifth cause of death from cancer in the
women population and it has the worst prognosis among gynecological tumors
(Giannopoulou et al. 2019). This aggressive cancer is still diagnosed at an advanced
stage despite general improvements made in the management of the disease. The
lack of clearly defined biomarkers for early detection plays an important role that has
to be addressed. Liquid biopsy may represent a new promising tool in the manage-
ment of OC, offering improvements in monitoring the disease course, treatment
response, and prediction of resistance to anticancer therapies. It may be useful to
develop more personalized and evidence-based therapy for this aggressive disease.
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There is still much to do for an optimal management and a better therapeutic
outcome for women with OC. The available data are based on pilot exploratory
studies. Improved and standardized techniques, reproducibility of results, large OC
patients sampling, and longer follow-up are mandatory before implementing ctDNA
approach in clinical practice. Additional data and further reading are detailed in prior
reviews (Box 5.1).

Box 5.1 Recommended reading of particular interest
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Abstract

Quantitative proteomic profiling is progressively emerging as a reliable strategy
to achieve early diagnosis, and prognostic stratification in epithelial ovarian
cancer (OC). In particular, specific proteomic profiles of tumor-derived
circulating proteins involved in regulating apoptosis, epithelial-to-mesenchymal
transition, and cellular motility seem to show promising performances in early
disease identification and prognostic stratification. Furthermore, proteomic char-
acterization of ascites and pleural effusions will significantly improve the accu-
racy of predicting outcomes and selecting OC patients to benefit from the current
therapies. Cancer tissues, pleural effusions, and ascitic fluids should be consid-
ered as the best biological samples for proteomic profiling to achieve the optimal
use of biomarkers. On the other hand, plasma circulating-free proteins, or tumor-
derived extracellular vesicles-embedded proteins are considered as the most
appropriate source of data for early disease identification in OC patients. In the
next decade, proteomic profiling will certainly be introduced in the clinical
algorithms of the management of OC.
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6.1 Introduction

Epithelial ovarian cancer (OC) is a leading cause of cancer-related deaths in the
female population (Sung et al. 2021). Due to the lack of early symptoms, patients
with OC are often diagnosed with an advanced stage of disease. In fact, approxi-
mately 60% of women have stage IIIC–IV disease at diagnosis, which is associated
with a 5-year survival below 30% (Elstrand et al. 2012). The most relevant issue to
achieve early detection of the disease is the absence of related symptoms before the
occurrence of diffuse peritoneal carcinomatosis. Only two biomarkers, cancer anti-
gen 125 (CA-125) and human epididymis 4 (HE4) are currently used in clinical
practice as reliable serological tests for diagnosis and disease monitoring of OC
(El Bairi et al. 2017, 2020). In this perspective, several studies have demonstrated
that the serum dosage of both HE4 and CA-125 has the highest sensitivity in the
detection of OC and in particular when combined (Moore et al. 2008; Leung et al.
2016; Montagnana et al. 2009). Several clinical algorithms based on the combined
assessment of CA-125 serum levels, and ultrasound pelvic examination have been
developed as screening approaches in women with ovarian mass. However, overall
discriminating performances in terms of sensitivity and specificity appeared to be
disappointing; therefore, nowadays, despite initial promising findings, there is no
validated screening algorithm able to accurately detect OC earlier. Furthermore, with
the advent of personalized medicine, there is a growing awareness in the scientific
community that OC does not represent a unique disease, but a complex, and
heterogeneous biological entity (Petrillo et al. 2016). Therefore, emphasizing the
need to completely change our point of view, moving from the traditional clinical
approach that one fits for all, to the evidence-based strategy that every clinical
strategy should be tailored to the patients’ specific disease. In this context, it is
expected that the proteomic strategies support the genomic-based approach for
disease profiling. As previously mentioned, the lack of effective clinical strategies
in achieving early diagnosis has created an increasing interest in proteomic
approaches. In particular, genomic-based profiling is certainly useful to characterize
the pattern of gene expression in cancer cells, but the functional role of a specific
gene product can be definitely assessed only by focusing on the proteins level. For
these reasons, there is a great expectation on the potential benefits in terms of
accurate disease characterization that can be achieved with the advent of the
proteomic era. In this context, proteomic analysis includes several different
strategies, including protein structural identification, quantification of protein levels,
description of protein–protein interaction, posttranslational modifications, and func-
tional analysis. Proteomics has greatly advanced from initial gel-based procedures
(one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electropho-
resis) to mass spectrometry-based (MS) methods. In particular, innovative
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approaches such as electrospray ionization-MS and matrix-assisted laser desorption/
ionization (MALDI)-MS are emerging as reliable strategies to achieve an accurate
and reliable protein profiling in oncology. The availability of quantitative methods
that are able to identify deregulated protein expression represents a further step
toward future use of proteomic platforms for disease characterization in patients with
OC. The aim of this chapter is to briefly give an overview of the current knowledge
on investigated proteomic biomarkers in OC.

6.2 Proteomics and Ovarian Cancer

6.2.1 Ovarian Cancer Cell Lines and Tumor Tissues

OC cell lines traditionally represent the first step of preclinical cancer research.
These experimental models enable the investigation of biological mechanisms
sustaining proliferation and development of metastatic potential as well as the
characterization of gene and protein expression. On the other hand, recent evidence
has clearly demonstrated that several OC cell lines are characterized by a
hypermutated genotype, which is frequently very different from OC tissues retrieved
from tumor biopsies (Domcke et al. 2013). For these reasons, the results obtained
from preclinical in vitro models should be always considered with great caution, and
in vivo validation is mandatory. Focusing on proteomic profiling of OC cell lines,
several interesting data have been published suggesting that specific protein panels
may be involved in driving drug resistance (Agarwal and Kaye 2003; Li et al. 2010;
Chappell et al. 2012; Chen et al. 2014). In particular, a study conducted by Li et al.
identified a panel of 28 proteins in several cancer cell lines involved in the develop-
ment of cisplatin resistance (Li et al. 2010). These potential biomarkers were
classified into eight functional groups: calcium-binding proteins, chaperones, extra-
cellular matrix, DNA damage repair complex, mitochondrial proteins, transcription
factor, cytoskeletal proteins, and signaling transducing factors (Li et al. 2010).
Unfortunately, these interesting preliminary data were not validated in patients’
samples. The complete proteomic profiling of tumor tissues is certainly a very.
However, it is well known that formalin tissue fixation produces cross-links
among proteins on cancer tissues; thus, masking epitopes in proteomic characteriza-
tion. Furthermore, surgical contamination and tumor disease heterogeneity are also
other potential pitfalls. On the other hand, the availability of novel techniques for
protein extraction, together with improvement of quantitative proteomic strategies
allow a reliable proteomic characterization even on formalin-fixed embedded protein
(FFPE) blocks. Few studies that investigated the differences in terms of proteomic
profiles in OC tumor histotypes have been published. A specific proteomic profile
has been suggested for high-grade serous histology (An et al. 2006). Notably, the
most relevant findings have been reported by Wiegand et al. which identified
50 proteins differentially expressed in clear cell and endometrioid OC as compared
with high-grade serous histology (Wiegand et al. 2014). In particular, this study
found a specific biological mechanism at a proteomic level that is probably involved
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in tumor development for both clear-cell and endometrioid OC. In fact, the authors
detected increased levels of phosphorylated AKT protein in tumor tissues, together
with a reduced expression of BAF250a; this protein acts as tumor suppressor
promoting apoptotic cascade. It can be hypothesized that in the process of
endometrioid and clear-cell carcinogenesis, phosphorylation of AKT protein occurs
as an early event, and in turn suppresses BAF250a expression at the genomic level
(Wiegand et al. 2014). Awaiting further experimental confirmations, these data
represent a relevant contribution of proteomic tissue characterization for early
diagnosis and disease profiling of OC (Wiegand et al. 2014). Furthermore, the
experimental evidence showing a relevant biological role of phosphorylated AKT
protein in OC introduced another crucial point of proteomic tissue characterization
which is represented by the identification of posttranscriptional modifications. In
fact, it is well known that the biological processes such as glycosylation or phos-
phorylation may produce activation, or silencing of a protein function, and these
relevant biological mechanisms can be detected only through proteomic analysis,
and not using a traditional genomic approach. A plethora of studies have been
published and showed the relevance of phosphorylated protein isoforms in driving
tumor angiogenesis, apoptosis blockade, epithelial-to-mesenchymal transition, and
chemoresistance through the activation of several pathways including NFκB,
mitogen-activated protein kinase (MAPK), Src, and PI3K (Elzek and Rodland
2015). Unfortunately, despite the important amount of literature suggesting, and
clearly demonstrating the role of these phosphorylated proteins in cancer develop-
ment, none of these molecules have successfully entered into clinical practice as
diagnostic biomarkers. One of the potential reasons to explain this contrasting
scenario is the lack of proteomic data confirming at the protein level the above-
mentioned findings that have been identified only at the genomic level.

6.2.2 Proteomic Plasma Analysis

Serum derived from cancer patients certainly represents the most appropriate sample
to be used for proteomic characterization. Compared with tumor tissues, serological
samples can be easily achieved, and during sampling, it can avoid contamination
using an appropriate protocol for collection and early processing (Fig. 6.1). Further-
more, compared with FFPE blocks, no fixation is required, and tumor tissue is not
manipulated; thus, avoiding cross-links between proteins. On the other hand, the
number of tumor-derived proteins released in the blood is very low. Therefore, it is
not surprising that only with the availability of innovative quantitatively spectro-
scopic techniques such as SELDI-TOF that we were able to correctly identify tumor-
derived circulating proteins.

In OC, a relevant proteomic serological profiling has been conducted by Zhang
et al. that showed that a panel of circulating proteins has been found to be differen-
tially expressed in OC patients as compared with healthy subjects, thus, allowing the
earliest proteomic-based strategy for early diagnosis (Zhang et al. 2004). These
results have been further evaluated to develop a five proteins algorithm, called
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OVA1 test, based on the combined dosage of apolipoprotein A1, prealbumin,
transferrin, β-2 microglobulin, and CA-125 (Ueland et al. 2011). The OVA1 assay
also received class II FDA approval to be used in combination with ultrasound
evaluation for the triage of suspicious pelvic mass. Unfortunately, premarketing
approval is still needed despite these interesting data. Definitive clinical data are still
omitted, but these results, for the first time, opened the route for serological
proteomic profiling that is able to increase the diagnostic performance of CA-125
alone in the detection and stratification of OC patients (Fig. 6.2). Based on proteomic
profiling of TCGA samples, Yang et al. showed a high-throughput protein profiling
which allowed the identification of an algorithm of nine proteins called PROVAR
which is able to predict disease progression in OC (Yang et al. 2013). Again, also for
the PROVAR test, a clinical validation has not been performed, thus not allowing a
safe translation from laboratory to clinical practice. Another experimental approach
for proteomic profiling of OC patients is represented by the combined evaluation of
blood and tumor samples. This strategy is of great value to correctly identify tumor-
derived proteins that may be involved not only in carcinogenesis, but also in the
development of drug resistance. An interesting study based on this approach showed
a statistically significant lower expression of APOA1 and serotransferrin in both
serum and cancer tissue samples of OC patients compared with healthy subjects
(Wegdam et al. 2014), thus providing a partial confirmation of the Zhang’s findings
(Zhang et al. 2004). Another emerging scientific field is represented by the so-called
circulating secretomes or secretomics which analyzes the secreted extracellular
proteins in the blood (Madden et al. 2020). Circulating extracellular proteins in the
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blood are glycosylated which makes them suitable for proteomic biomarker discov-
ery. Interestingly, several previous studies used this approach (Tian et al. 2011; Pan
et al. 2011; Faca et al. 2008; Gunawardana et al. 2009). In conclusion, the profiling
of circulating proteins appears as a promising field for the identification of
biomarkers for the diagnosis and stratification of OC patients.

6.2.3 Proteomic Analysis of Ascitic and Pleural Effusions

The vast majority of OC patients develop ascites along with their disease natural
history. Unfortunately, this event is related to peritoneal cancer spread, and it is
obviously associated with late FIGO stages. Therefore, ascitic fluids are certainly a
relevant source for biomarkers development and their proteomic profiling may be of
great value to study the mechanisms of disease spread, and patients’ prognostic
stratification. However, ascitic samples cannot be used for early disease detection.
Interestingly, a complete proteomic profiling of ascites from OC patients revealed a
panel of 50 differentially expressed proteins (Gortzak-Uzan et al. 2008; Kuk et al.
2009). However, as described in Table 6.1, these studies do not have a potential
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Fig. 6.2 Integration of proteomics in the diagnostic algorithms for early identification of epithelial
ovarian cancer
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clinical horizon as this approach has no clinical value for performing proteomic
profiling of ascitic fluids to achieve early disease detection. On the other hand, the
role of proteomic profiling of pleural effusion in the prognostic stratification of OC
patients seems to be promising (Davidson et al. 2006; reviewed elsewhere: El Bairi
et al. 2017; Carvalho et al. 2019). Reduced survival was seen in patients with
increased levels of AKT, and JNK proteins; thus, another opportunity for further
clinical validation of these biomarkers for prognostic disease stratification (Davidson
et al. 2006).

Table 6.1 Proteomic analysis in ovarian cancer patients: Comparison of different biological
sources

Biological source

Tumor tissue Plasma

Ascitic and
pleural
effusions

Samples
collection

• Need of invasive procedure
• High risks of contamination

• Easy
• Low risks of contamination

• Need of
invasive
procedure
• Low risks of
contamination

Technical
aspects

• High amount of tumor-
derived proteins
• Need of accurate
microdissection to reduce
contaminations bias
• Epitopes masking: potential
concerns in detecting specific
protein profiles due to
formalin fixation

• Low amount of tumor-
derived proteins: need of
high sensitivity proteomic
strategies

• High
amount of
tumor-derived
proteins

Clinical role
and
implications

Early disease diagnosis
• Limited value
Disease stratification
• Potentially relevant value

Early disease diagnosis
• Great value
Disease stratification
• Great value, particularly
when combined with tumor,
and ascitic fluids evaluation

Early disease
diagnosis
• No value
Disease
stratification
• Potentially
relevant value

Scientific
evidence

Early disease diagnosis
• Limited evidences for
clinical translation
Disease stratification
• Limited evidences for
clinical translation

Early disease diagnosis
• FDA approved panel to be
further validated in a clinical
scenario
• Relevant evidences on
circulating extracellular
vesicles ready to be validated
in clinical scenarios
Disease stratification
• Limited evidences for
clinical translation

Early disease
diagnosis
• Limited
evidences for
clinical
translation
Disease
stratification
• Limited
evidences for
clinical
translation
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6.3 Proteomics and Extracellular Vesicles: A Promising
Approach in Ovarian Cancer

In the last decade, the role of extracellular vesicles and their cargoes as diagnostic,
prognostic, and predictive biomarkers have been widely studied in cancer
(Srivastava et al. 2021; Amintas et al. 2021). Extracellular vesicles (EVs) are divided
into three types based on their size: exosomes (30–100 nm), microvesicles (100 nm–

1 μm), and apoptotic bodies (500 nm–3 μm). Regarding their functional features,
exosomes seem to play a crucial role in regulating several biological mechanisms
involved in cancer growth, and metastatic development, acting as mediators of
cellular crosstalk in cancer tissue (Elewaily and Elsergany 2021). Exosomes can
contain a complex cargo of materials, including microRNAs and occasionally
genomic DNA. The vast majority of miRNAs circulates in body fluids of patients
as cell-free RNAs, and for these reasons, they have been considered for several years
as potential biomarkers to be used in liquid biopsy approaches. However, circulating
miRNAs are quickly removed by enzymatic RNAse activity. Therefore, these
biomarkers do not appear as easily manageable diagnostic tools to be used in
screening diagnostic tools. On the other hand, circulating miRNAs embedded in
tumor-derived EVs are certainly more stable, and easier to be used in diagnostic
algorithms, particularly considering that some specific miRNAs panels are differen-
tially expressed in OC patients compared to healthy women (Mahdian-Shakib et al.
2016; Montagnana et al. 2017). Finally, EVs are easily identifiable in various body
fluids, such as blood, serum, and urine, making them reliable markers that are easy to
find and potentially very useful in clinical practice. Recently, Barnabas et al.
conducted a proteomic analysis of EVs-related proteins in utero-tubal lavage from
healthy women, and OC patients and showed a panel of nine proteins (SERPINB5,
S100A14. MYH11, CLCA4, S100A2, IVL, CD109, NNMT, ENPP3) that were
differentially expressed in the two groups, and involved in regulating kinase activity,
cellular motility, and apoptosis modulating p53 pathway (Barnabas et al. 2019).
Unfortunately, the diagnostic performance of these proteomic biomarkers in the
early detection of OC was around 75%, being therefore promising, but still not
adequate for clinical use (Barnabas et al. 2019). Furthermore, as previously men-
tioned, proteomic profiling of ascites and pleural effusion may be certainly regarded
as a potentially useful tool to achieve final diagnosis. In particular, the evaluation of
EVs embedded miRNAs, and proteins may be certainly regarded as a very interest-
ing approach with a panel of proteins (NANOG, SPINT2, and ZEB2), and miRNAs
(miR-29a, miR-30d, and miR-205) differentially expressed in OC patients and
healthy women (Yamamoto et al. 2018). However, this experimental approach
appears very questionable, since ascitic fluids, which appear in women with late-
stage disease, do not represent a useful biological sample to be used for early
diagnosis. For, these reasons, the studies comparing the proteomic profile of ascitic
fluids in OC patients and healthy controls do not have the appropriate design to
provide clinically useful insights. Interestingly, a previous report failed to identify
differences in terms of proteomic profile between OC patients and healthy subjects
(Zhao et al. 2014). However, when focusing only on women with an advanced stage
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of disease, a higher level of circulating HSP27-related EVs in patients with perito-
neal carcinomatosis was noticed (Zhao et al. 2014). Thus, again highlighting the
need to focus scientific efforts on specific subgroups of OC patients in future
biomarker research. Another crucial point is represented by the potential role of
EVs proteomic profiling for early identification of chemoresistance. A recently
published study by Guerra et al. showed a correlation between reduced circulating
levels of EVs-embedded RAB7A protein and the development of cisplatin resistance
(Guerra et al. 2019). Furthermore, poor drug response is related to several complex
biological mechanisms involving also epithelial-to-mesenchymal transition which is
principally based on cytoskeletal and extracellular matrix modifications. Therefore,
it is not surprising that the recently published data showed increased levels of
EVs-embedded matrix metalloproteinase 1 (MMP1) in peritoneal lesions with
intrinsic chemoresistant features. Furthermore, the overexpression of circulating
EVs-derived MMP1 was found to be associated with reduced overall and
progression-free survival in women with OC. In conclusion, the proteomic profile
of circulating EVs appears as a promising field for future developments for early
diagnosis and prognostic stratification of OC patients.

6.4 Future Perspectives: A Focus on microRNAs

Quantitative proteomic profiling techniques extended the horizon of proteomics by
assessing several other biomarkers beyond proteins such as miRNAs. Deregulation
of mi-RNAs expression has been shown to be associated with malignant develop-
ment of OC. Therefore, quantitative proteomic assessment of miRNAs expression
patterns represents a further approach to improve early detection of OC. Previously,
Taylor et al. reported that eight circulating exosomal miRNAs (miR-21, miR-141,
miR-200a, miR-200b, miR-200c, miR-203, miR-205, and miR-214) are
overexpressed in OC patients compared to benign controls (Taylor and Gercel-
Taylor 2008). Similarly, another report showed that the expression levels of four
serum miRNAs (miR-182, miR-200a, miRR-200b, and miR-200c) were signifi-
cantly elevated in women with high-grade serous OC as compared with healthy
controls (Kan et al. 2012). Moreover, serum levels of miR-25 and miR-93 were
found downregulated, while miR-7 and miR-429 were found upregulated in OC
patients compared with healthy women (Meng et al. 2015). This suggests that the
differential expression of some selected miRNAs can be used as biomarkers.

The role of miRNAs isolated from serum, tissue, and ascites was analyzed by
Chung et al. and identified five miRNAs (miR-132, miR-26a, let-7b, miR-145, and
miR-143) as the most significantly downregulated miRNAs in the sera of OC
patients (Chung et al. 2013). Moreover, Zhou et al. investigated the diagnostic
value of urinary miRNAs in OC patients and identified a significant upregulation
of mir-30a-5p in the urine samples of women with OC when compared to healthy
controls (Zhou et al. 2015). The miRNA signatures from exosomes were concordant
to those from the originating tumor cells, indicating that circulating miRNAs profiles
accurately reflect the tumor profile. Furthermore, Zheng et al. evaluated plasma
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samples of 360 OC patients and 200 healthy controls, and they found a higher
expression of plasma miR-205 and lower expression of let 7-f in OC patients (Zheng
et al. 2013). The authors were able to propose a combination of mir-205 and let-7f to
provide high diagnostic accuracy (Nakamura et al. 2016; Zheng et al. 2013).
Similarly, Zuberi et al. showed that miR-200a was significantly upregulated in
mucinous adenocarcinoma when compared with histotypes in 70 OC patients
(Zuberi et al. 2015). Another interesting experience has been recently published
evaluating the differences in terms of circulating EVs derived miRNAs between OC
patients and healthy controls (Chi Pan et al. 2018). A specific panel of miRNAs
(miR-23a, miR-92a, miR-21, miR-100, and miR-200b, miR-320, miR-16, miR-93,
miR-126, and miR-223) was identified as potentially useful diagnostic biomarkers,
but the overall discriminating performance was indecisive being below 85%, thus
not allowing a further clinical validation. Very interesting results have been reported
in 2017 by Yokoi et al., which demonstrated that a combination of eight circulating
serum miRNAs (miR-142-3p, miR-26a-5p, let7d-5p, miR-374a-5p, miR-766-3p,
miR-200a-3p, miR-328-3p, and miR-130b-3p) was able to successfully discriminate
OC patients from healthy controls with remarkable diagnostic performances at ROC
analysis (AUC 0.97; sensitivity 0.92 and specificity 0.91) (Yokoi et al. 2017a, b).
The eight miRNAs classification model had a different AUC, sensitivity, and
specificity for the different histological types of OC, thus emphasizing the need to
identify histology-based diagnostic models (Yokoi et al. 2017a, b). In addition, in
the same study, the authors developed a predictive algorithm able to differentiate
early-stage OC from benign tumor using seven mi-RNAs (miR-200a-3p, miR-766-
3p, miR-26a-5p, miR-142-3p, let-7d-5p, miR-130b-3p, and miR-328-3p) (Yokoi
et al. 2017a, b). In this model, the diagnostic performance appeared promising with
an AUC of 0.92, but the sensitivity and specificity were lower being 0.861, and
0.833, respectively (Yokoi et al. 2017a, b). Similarly, Yoshimura et al. identified
circulating EVs embedded miR-99a-5p as a potentially useful diagnostic tool for
early detection of OC patients (Yoshimura et al. 2018). Furthermore, a quantitative
proteomic approach detected a relevant reduction of circulating miR-99a-5p after
cytoreductive surgery, thus suggesting that this biomarker may be used for disease
monitoring. Unfortunately, the diagnostic performances were always below 85%
with relevant differences according to tumor histotypes, and specificity for detecting
clear cell and mucinous OC above 90%. It should be acknowledged that the results
of this study do not support the use of this miRNA in clinical setting; however, this is
the first well-conducted experimental approach that stratified prognostic and diag-
nostic performances of specific proteomic profiles according to tumor histology
(Yoshimura et al. 2018), which certainly support this approach to be furtherly
developed. In case of endometriosis-associated OC, Suryawanshi et al. found that
three plasma miRNAs (miR-16, miR-191, and miR-195) are overexpressed in
peritoneal endometriotic lesions and discriminated between healthy subjects and
patients with deep infiltrating endometriosis (sensitivity and specificity of 88% and
60%, respectively) (Suryawanshi et al. 2013). Kobayashi et al. showed that serum
miR-1290 is significantly increased in patients with high-grade serous OC, and it can
be used to early identify these patients (Kobayashi et al. 2018). In particular, this
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study demonstrated that CA-125 retains a better performance to early identify the
OC patients as compared with miR-1290 serum levels. However, the assessment of
miR-1290 serum levels showed better performance as compared to CA-125 in
discriminating high-grade serous OC patients from women with non-serous ovarian
malignancies. Furthermore, the authors compared the levels of miR-1290 before and
after the primary debulking surgery and suggested that serum miR-1290 reflects
tumor burden, which may help disease monitoring (Kobayashi et al. 2018). Simi-
larly, in a cohort of 56 high-grade serous OC patients, Shah et al. showed that the
combination of miR-375 and CA-125 was the strongest discriminator of healthy
versus high-grade serous OC patients, and that the combination of miR-34a-5p and
CA-125 was the strongest predictor of complete surgical debulking (Shah et al.
2018). In addition, the role of the EVs derived miRNAs have been studied also in
terms of prognosis because of their implication in the development of drug resistance
in OC patients. In particular, increased circulating levels of annexin A3 (Yin et al.
2012) together with a panel of miRNAs including miR-181a, miR-1908, miR-21,
miR-486, and miR-223 were identified as markers of platinum-resistance in women
with OC, thus suggesting a potential clinically relevant role for these biomarkers
(Kuhlmann et al. 2019). To date, this approach using microRNAs and other liquid
biopsy components is under investigation in several human studies but the current
evidence is not mature yet for clinical use.

6.5 Conclusion

In the last decade, quantitative proteomic approaches have been used as a promising
tool to be used in clinical practice. In particular, compelling evidence seems to
support the role of a panel of proteins and circulating microRNAs as reliable
biomarkers to achieve early diagnosis and accurate prognostic stratification of OC
patients. On the other hand, despite a plethora of experimental data suggesting
potential diagnostic and prognostic proteomic profiles, only a few reports have
entered clinical evaluation, with contrasting results, thus producing an impressive
gap between preclinical evidences, and clinical findings. Therefore, there is an
urgent need to design clinically focused studies with an immediate reliable transla-
tion into clinical practice. The combination of proteomic profiles, serum CA-125
levels, BRCA gene status, and ultrasound examination appears as the most promising
strategy. For further reading, see Box 6.1.
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Box 6.1 Overview of recommended articles providing relevant scientific
insights on this specific issue

Recommended reading of particular interest DOI

Macklin A, et al.Recent advances in mass spectrometry
based clinical proteomics: applications to cancer
research. Clin Proteomics. 2020;17:17.

https://doi.org/10.1186/
s12014-020-09283-w

Sobsey CA, et al. Targeted and Untargeted Proteomics
Approaches in Biomarker Development. Proteomics.
2020;20(9):e1900029.

https://doi.org/10.1002/
pmic.201900029

Bonifácio VDB. Ovarian Cancer Biomarkers: Moving
Forward in Early Detection. Adv Exp Med Biol.
2020;1219:355–363.

https://doi.org/10.1007/978-
3-030-34025-4_18

He Y, et al.Oncoproteomics: Current status and future
opportunities. Clin Chim Acta. 2019;495:611–624.

https://doi.org/10.1016/j.
cca.2019.06.006

Srivastava A, Creek DJ. Discovery and Validation of
Clinical Biomarkers of Cancer: A Review Combining
Metabolomics and Proteomics. Proteomics. 2019;19
(10):e1700448.

https://doi.org/10.1002/
pmic.201700448

Carvalho VP, et al. The contribution and perspectives
of proteomics to uncover ovarian cancer tumor
markers. Transl Res. 2019;206:71–90.

https://doi.org/10.1016/j.
trsl.2018.11.001

Forshed J. Experimental Design in Clinical 'Omics
Biomarker Discovery. J Proteome Res. 2017;16
(11):3954–3960.

https://doi.org/10.1021/acs.
jproteome.7b00418

Huang Y, Zhu H. Protein Array-based Approaches for
Biomarker Discovery in Cancer. Genomics Proteomics
Bioinformatics. 2017;15(2):73–81.

https://doi.org/10.1016/j.
gpb.2017.03.001

Bonifácio VDB. Ovarian Cancer Biomarkers: Moving
Forward in Early Detection. Adv Exp Med Biol.
2020;1219:355–363.

https://doi.org/10.1007/978-
3-030-34025-4_18

Labrie M, et al. Proteomics advances for precision
therapy in ovarian cancer. Expert Rev Proteomics.
2019;16(10):841–850.

https://doi.org/10.1080/
14789450.2019.1666004

El Bairi K, et al. Prediction of therapy response in
ovarian cancer: Where are we now? Crit Rev Clin Lab
Sci. 2017;54(4):233–266.

https://doi.org/10.1080/
10408363.2017.1313190
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Abstract

Cancer genetics is increasingly becoming central in the course of patients’ care.
Genetic testing for pathogenic variants in ovarian cancer (OC) is becoming widely
available and represents a cornerstone for cancer risk assessment, prediction of
prognosis, and targeted treatments. The introduction of novel technologies for
sequencing has enabled large-scale multigene panel genomic testing. In this
chapter, the current genetic variants and genetic testing guidelines for OC are
reviewed. We also discussed potential applications of next-generation sequencing
in understanding OC genetics and its impact on patients’ outcomes according to
the latest research findings. We finally depict the potential of single-cell sequenc-
ing in understanding OC heterogeneity based on recent proof-of-concept studies.

A. Ghoneum
Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC,
USA

A. Tazzite
Genetics and Molecular Pathology Laboratory, Medical School, Hassan II University, Casablanca,
Morocco

K. El Bairi (*)
Cancer Biomarkers Working Group, Oujda, Morocco
e-mail: k.elbairi@ump.ac.ma

N. Said (*)
Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC,
USA

Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, USA

Comprehensive Cancer Center, Winston Salem, NC, USA
e-mail: nsaid@wakehealth.edu

# The Author(s), under exclusive licence to Springer Nature Singapore Pte
Ltd. 2021
K. El Bairi (ed.), Ovarian Cancer Biomarkers,
https://doi.org/10.1007/978-981-16-1873-4_7

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1873-4_7&domain=pdf
mailto:k.elbairi@ump.ac.ma
mailto:nsaid@wakehealth.edu
https://doi.org/10.1007/978-981-16-1873-4_7#DOI


Keywords

Ovarian cancer · Next-generation sequencing · Single-cell sequencing · Genetic
testing

7.1 Introduction

Genetic testing in OC is currently used to identify individuals at increased disease
risk as well as to predict prognosis and response to targeted therapies including
platinum and poly(ADP)-ribose polymerase inhibitors (PARPi), which are currently
shifting poor outcomes in this aggressive disease (Amin et al. 2020). Notably, next-
generation sequencing (NGS) played a central role in delivering molecular testing
for OC patients (Stoffel and Carethers 2020). These novel techniques enable massive
and parallel sequencing of several clinically actionable variants simultaneously in a
short period and at a lower cost as compared to the standard Sanger sequencing
approach (El Bairi et al. 2020a). For these reasons, most genetics laboratories have
opted for this technology for routine genetic counseling; not only for risk assessment
but also for predicting prognosis and therapy response. Moreover, due to the
significant tumor heterogeneity observed in OC, other technologies—principally
single-cell sequencing—were applied to explore the molecular mechanisms of
tumor pathogenesis, clonal evolution, and chemoresistance (Winterhoff et al.
2019). This chapter will focus on these aspects to illuminate the potential of cancer
genetics to improve the management of OC in the era of precision medicine.

7.2 Overview of Guidelines and Approved Methods
for Genetic Testing in Ovarian Cancer

OC is the fifth most common cancer in women and the most lethal gynecologic
malignancy (Siegel et al. 2020; American Cancer Society 2020). Family history of
breast cancer or OC is considered as a well-known risk factor for OC; nearly 25% of
all OCs are associated with heritable genetics. Mutated Breast Cancer type 1/2
(BRCA) anti-oncogenes account for almost 40% of OCs in subjects with family
history, while 6% of all ovarian, fallopian tube, and peritoneal cancers are caused by
germline mutated mismatch repair (MMR) genes involved in homologous recombi-
nation (HR) and those associated with the Fanconi anemia pathway (Walsh et al.
2011). Mutations in these genes have been identified as pathogenic variants (PV) or
likely pathogenic variants (LPV) and they are not only limited to germline hereditary
disease, but they were also identified as somatic mutations in primary and/or
recurrent tumors from patients with no family history of cancer (Konstantinopoulos
et al. 2020). Importantly, screening and identification of these mutations guide the
clinical decision for prophylaxis, surveillance, as well as therapeutics offered to
women with family history of OC, women diagnosed with OC and their blood
relatives (Konstantinopoulos et al. 2020). In the last decade, multiple and
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simultaneous analyses of several genes associated with OC have been facilitated by
the arrival of next-generation sequencing (NGS) techniques for both germline and
somatic mutations in primary and/or recurrent tumors. This has enabled cost-
effective screening tests, especially for patients with family history of cancer and
suspected genetic syndromes (Angeli et al. 2020). However, the main challenge is
defining the number of genes that must be tested for women with a genetic predis-
position and risk assessment based on the penetrance of disease-causing genetic
variants (Sud et al. 2017; Angeli et al. 2020). In addition to BRCA1/2 and MMR
genes, other high penetrance genes including TP53, PTEN, STK11, and CDH1 have
been identified and were associated with the risk of developing breast cancer and
OCs. Genes including PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C,
RAD51D, and some genes of the MMR pathway have been considered as moderate
and low penetrance genes, along with other genes involved in the same pathway
such as PIK3CA amplification and activating mutations. In this chapter, we will
review the major screening markers that have been employed in genetic testing for
OC, their diagnostic and prognostic value, and their significance for guiding clinical
decisions.

7.2.1 Hereditary Breast and Ovarian Cancer Syndrome

Hereditary germline mutations in BRCA1/2 genes account for approximately
20-25% of OCs leading to deficiencies in DNA repair mechanisms (Walsh et al.
2011; Arts-de Jong et al. 2016; Norquist et al. 2016a). Heterozygous carriers of
germline mutations in BRCA1/2 have a heightened risk of OC diagnosis, with 44%
for BRCA1 and 17% for BRCA2 (Kuchenbaecker et al. 2017). BRCA mutations are
inherited in an autosomal dominant pattern with high penetrance of cancers in
individuals carrying BRCA mutations (Moyer 2014). Women having deleterious
germline mutations, first-degree relatives have a 50% chance of carrying the same
variant, while second-degree relatives have a 25% risk. Therefore, these two
populations should benefit from genetic testing and appropriate surveillance
protocols (Moyer 2014).

BRCA1/2 mutations are highest in the high-grade serous subtype of OC,
constituting up to 20% (Ledermann et al. 2016), while constituting 10%
in endometrioid and even low frequency in clear cell carcinomas (Arts-de Jong
et al. 2016; Manchana et al. 2019). In addition, BRCA1/2 genes are subject to
somatic mutations in BRCA in 5%-7% of OC cases as well as promoter
hypermethylation with subsequent downregulation/loss of their transcription
(Kanakkanthara et al. 2019). Somatic BRCA1/2 alterations have similar molecular
characteristics as hereditary cancers (Faraoni and Graziani 2018). BRCA1 and
BRCA2 confer genome stability by coordinating DNA repair via HR, a high-fidelity
process responsible for repairing double-stranded breaks (DSBs). In contrast to
nonhomologous DNA end joining (NHEJ), which repairs breaks merely by ligating
DSB ends, HR uses a sister chromatid as a template and hence reduces errors in
repair (Dziadkowiec et al. 2016; Fleury et al. 2019; Frey and Pothuri 2017).
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Inactivating mutations in BRCA1/2 lead to a deficiency in HR, forcing cells to shift to
the NHEJ pathway to repair DSB with increased chromosomal instability that can be
further aggravated by factors that induce DSBs, such as exposure to DNA cross-
linking agents (Gorodetska et al. 2019; Mylavarapu et al. 2018). Thus, cells deficient
in BRCA1/2 are sensitive to platinum agents, which intercalate into DNA nucleotides
(Mylavarapu et al. 2018), and PARP inhibitors (PARPi). PARP describes a category
of enzymes that generate large branched chains of poly(ADP)ribose (PAR) from
NAD+. The efficacy of PARP inhibition (PARPi) is dependent on the concept that
PARP1 loss in the setting of HR dysfunction (due to BRCA1/2 mutation) increases
DNA aberrations, leading to cell death via synthetic lethality (Topatana et al. 2020;
Eskander and Tewari 2014; Turk and Wisinski 2018). The synthetic lethality of
PARPi–BRCA can be attributed to the fact that PARP1 contributes to the repair of
single-strand breaks (SSBs), and PARP inhibition may cause destruction of replica-
tion forks, causing DSBs and hence cell death (Helleday 2011). PARP inhibitors are
not only effective for EOC treatment in patients with BRCA dysfunction, but they
have also been approved as a second-line treatment for recurrent and advanced
HGSOC or endometrioid carcinoma (Mirza et al. 2016).

7.2.2 Mismatch Repair (MMR) Genes

Germline inactivating mutations of DNA MMR genes is the cause of Lynch
syndrome (LS), also known as hereditary nonpolyposis colon cancer (HNPCC)
and are inherited in an autosomal dominant manner (Carethers and Stoffel 2015).
Lynch syndrome is the second most common cause of inherited OC and accounts for
10–15% of all hereditary OCs (Hampel et al. 2015). OCs associated with Lynch
syndrome mainly have non-serous histology including endometrioid (19.2%),
mucinous (16.9%), and clear cell (11.5%) carcinomas (Nakamura et al. 2014), and
are typically diagnosed at an earlier age and stage, with a better OS (Nakamura et al.
2014). Although the incidence of MMR mutations in serous cancers has been
reported to be lower than other subtypes, there is a significant between-study
heterogeneity; warranting routine testing of MMR mutations in women diagnosed
with other histologic types (Carethers and Stoffel 2015; Germano et al. 2018;
Guillotin and Martin 2014; Konstantinopoulos et al. 2020; Zhao et al. 2018).

MMR genes, including post-meiotic segregation increased 1 and 2 (PMS1 and
PMS2), mutL homolog 1 (MLH1), mutS homolog 2, 3, and 6 (MSH2, MSH3, and
MSH6), as well as deletion of EPCAM gene upstream of MSH2, participate in repair
during DNA replication (Carethers and Stoffel 2015; Li 2008). Inactivating
mutations of MLH1 and MSH2 account for the majority of LS cases, followed by
PMS2 and MSH6 mutations (Pino et al. 2009). For women with OC, the most
frequent mutations were MSH2 (47%) and MLH1 (38%) (Helder-Woolderink et al.
2016). Somatic MMR gene deficiencies are detected in OC through genetic or
epigenetic mechanisms and have important implications in both treatment and
prognosis (Germano et al. 2018; Zhao et al. 2018). MMR proteins correct for
nucleotide base mismatches, small deletions or insertions generated by DNA
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polymerase displacement or slippage during DNA replicative events. Typically, in
LS, when there is a somatic mutation of one allele, the other allele is inactivated, and
the MMR protein’s normal expression is lost, leading to the accumulation of
repeated nucleotide sequences and microsatellite instability with replicative errors
(Moller et al. 2017; Guillotin and Martin 2014). Notably, studies of clear cell OCs
with microsatellite instability revealed that these tumors are immunogenic with
increased lymphocytic infiltration; thus, patients with these tumor phenotypes may
benefit from immune checkpoint blockade in the setting of recurrent disease, regard-
less of their tissue of origin (Howitt et al. 2017). Existing clinical data do not support
the recommendation of routine surveillance and screening of OC in LS patients by
transvaginal ultrasound and serum CA-125 testing. However, the National Compre-
hensive Cancer Network (NCCN) guidelines recommend that bilateral Risk-
reducing salpingo-oophorectomy (RRSO) may be considered and individualized
based on patient’s age (childbearing or menopausal status), comorbidities, family
history, and the mutated LS gene as lifetime for OC vary by the mutated gene
(NCCN Guidelines 2019).

7.2.3 DNA Repair Protein (RAD51)

RAD51 paralogs family proteins including X-ray repair cross-complementing
proteins (XRCC3 and XRCC2), RAD51D, RAD51C, and RAD51B are involved in
the DNA repair pathway (Prakash et al. 2015). Located at the human
chromosome15q15.1, the RAD51 protein plays an invaluable role during HR repair
by binding to DNA and initiating ATP-dependent homologous pairing and strand
transfer reactions (Antony et al. 2009). When ATP is present, RAD51 self-assembles
into an extended polymer on single-stranded DNA catalyzing strand exchange
(Antony et al. 2009). Germline variants in several RAD51 paralogs have been
detected in ovarian and breast cancers. RAD51C and RAD51D mutations confer
predisposition to OC with a lifetime risk of OC for RAD51C PV/LPV carriers of
around 7% (Suszynska et al. 2020; Loveday et al. 2011, 2012). Risk of developing
OC in case of RAD51 variants warrants their use with BRCA1 and BRCA2 in routine
clinical genetic screening (Song et al. 2015).

7.2.4 Tumor Protein p53 (TP53)

TP53 is a transcription factor, which regulates several target genes that induce DNA
repair, cell cycle arrest, cell death, senescence as a response to cellular stress. TP53 is
altered in over 96% HGSOC cases (Cancer Genome Atlas 2011; Ahmed et al. 2010).
Ultra-deep sequencing revealed low-frequency TP53 mutations in ascitic fluid and
blood samples from chemotherapy-naïve patients, including control samples without
tumor. TP53 mutations were detected in DNA samples derived from tumor cells
present in the vagina of women with high-grade serous OC (HGSOC) and were also
detected in 60% of patients with HGSOC without a prior tubal ligation (Erickson
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et al. 2014). Pathogenic variants of TP53 mutations were also detected in 64% of
vaginal smears (Papanicolaou tests) withdrawn six years before OC diagnosis with
tumor-matching PV, strongly suggesting that noninvasive early molecular detection
of HGSOC is possible based on identification of TP53 clonal variants (Paracchini
et al. 2020). There are several advantages of using TP53 mutations as prognostic
indicators for OC as the first genetic events of HGSOC formation areTP53mutations
detected in Fallopian tubes’ serous tubal intraepithelial carcinoma “STIC” lesions
(Chien et al. 2015; Soong et al. 2019; Kuhn et al. 2012). However, high-accuracy
NGS revealed the presence of low-frequency TP53 mutations in several healthy
tissues, regardless of age, and becoming increasingly abundant with age in all tissues
investigated. Hence, it is essential to differentiate between tumor-derived versus
age-associated TP53 alterations in high-sensitivity DNA sequencing studies (Cancer
Genome Atlas 2011; Vang et al. 2016).

7.2.5 BRCA1 Interacting Protein C-Terminal Helicase 1 (BRIP1)

BRIP1 is required for DNA inter-strand cross-link (ICL) repair and is important to
genome stability. Hence, germline deletions in BRIP1 have been associated with a
higher risk of breast and OC. A recent study conducted by Moyer et al., investigated
NGS of germline DNA in 1199 patients with OC and 2160 patients with early-onset
breast cancer, and found that approximately 2% of patients carried a missense
mutation in BRIP1 (Moyer et al. 2020). Surprisingly, this percentage was threefold
higher than the frequency of BRIP1 variant alleles seen in individuals of the general
population. Inactivating mutations in the helicase domain of BRIP1 were identified
in 75% of the PV of BRIP1 suggesting that BRIP1 is a susceptibility gene for breast
and OC (Moyer et al. 2020). Deletion of BRIP1 was also found to result in a higher
risk of OC in familial index patients, and in patients with late-onset
OC. Interestingly, the minority of deleterious missense variants were significantly
more widespread in OC patients than in breast cancer patients (Weber-Lassalle et al.
2018; Balmana and Domchek 2015).

7.2.6 Checkpoint Kinase 2 (CHEK2)

CHEK2 encodes for a tumor suppressor serine-threonine kinase that is responsible
for DNA repair, cell cycle arrest, and apoptosis (Zoppoli et al. 2012). Somatic
missense mutation is associated with low-grade invasive cancers, borderline ovarian
tumors, and ovarian cystadenomas but not with HGSOC (Zoppoli et al. 2012).
Recent NGS studies identified CHEK2 PV and PVL as the third most frequently
altered susceptibility gene among OC patients, though with moderate or low pene-
trance (Carter et al. 2018; Kurian et al. 2019). However, the clinical implications in
surveillance, prophylaxis, treatment, and prognosis are not strong
(Konstantinopoulos et al. 2020).
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7.2.7 Cyclin-Dependent Kinases (CDKs) and CDK Inhibitors

Loss of function (LOF) splice variant of the CDK12 gene was found to be strongly
associated with hereditary OC (Bogdanova et al. 2019; Sokol et al. 2019). CDK12
mutation or deficiency was reported to sensitize cells to agents that target cell cycle
checkpoints, including CHK1 inhibitors (Chou et al. 2020; Zhu et al. 2020). Hence,
CDK12 not only serves as a prognostic biomarker, but can enhance the
antiproliferative effects of CHK1 inhibitors (Paculova et al. 2017). In OC, the
Cyclin-Dependent Kinase (CDK) inhibitor p16 gene exhibits a somatic mutation
rate of 15–30% (Wang et al. 2017), as well as promoter methylation and homozy-
gous deletions (Ruan et al. 2018). The expression of p16 protein was significantly
reduced in OC compared to normal ovarian tissue, and negatively correlated with
patient prognosis (Wang et al. 2017). Sallum et al. demonstrated that the IHC of
p53/p16 index was a reliable marker for differentiation of low-grade serous OC
(LGSOC) from HGSOC (Sallum et al. 2018).

7.2.8 Cyclin E1 (CCNE1)

Cyclin E1 is encoded by CCNE1 gene, which is amplified in approximately 30% of
HGSOC cases (Petersen et al. 2020; Gorski et al. 2020). Tumors amplified by
CCNE1 are characterized by abnormal replication, replicative stress, and genomic
instability (Kuhn et al. 2016). Thus, intact BRCA1 is integral for the survival of
tumors with amplified CCNE1 as they are deemed HR proficient (Patch et al. 2015).
Accordingly, a degree of synthetic lethality exists as chromosomal instability
generated by HR pathway mutations and CCNE1 amplification cannot coexist
within the same cell (Etemadmoghadam et al. 2013; Kawahara et al. 2017). The
amplification of CCNE1 is associated with poor prognosis in tubo-ovarian high-
grade serous carcinomas particularly in primary or refractory chemoresistant disease
(Au-Yeung et al. 2017; da Costa et al. 2019; Chan et al. 2020; Gorski et al. 2020).

7.2.9 Phosphatase and Tensin Homologue (PTEN)

The tumor suppressor PTEN is commonly known as a potent inhibitor of the
phosphoinositide-3 kinase (PI3K) pathway, and is seminal in the regulation of
cellular proliferation, metastasis, cellular survival, genomic stability, and metabolic
homeostasis (Carracedo and Pandolfi 2008). The lifetime risk of germline PTEN
PV/LPVs carriers is approximately 25–85% for breast cancer, while the risk of OC is
low or none, ranking PTEN as a low penetrance gene in OC (Angeli et al. 2020).
Alterations in PTEN are mainly somatic in ovarian tumors with 6% of HGSOC
showing homozygous loss of PTEN (Cancer Genome Atlas 2011; Martins et al.
2014), whereas in STIC lesions, PTEN loss was observed in 33% of patients (Roh
et al. 2010).
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7.2.10 Serine/Threonine Kinase 11 (STK11)

The serine/threonine kinase 11 (STK11) gene is located on chromosome 19p13.3 and
encodes for a tumor suppressor that regulates cell polarity and apoptosis (Xu et al.
2013; Li et al. 2018; Zhao and Xu 2014). Commonly serving as an upstream kinase
for AMP-activated protein kinase (AMPK), STK11 is essential in regulating cell
metabolism and homeostasis (Faubert et al. 2014). Germline inactivating mutations
of STK11 has historically been linked to Peutz-Jeghers syndrome, an autosomal
dominant disorder with distinct clinical manifestations including melanocytic
macules in lips, buccal mucosa, and digits, with multiple hamartomatous polyps in
the gastrointestinal tract, and importantly a heightened risk of sporadic tumor
formation (Hemminki et al. 1998; Beggs et al. 2010). In the case of STK11 variants,
the lifetime risk of breast and gynecological cancer development is 32–54%, and
13%, respectively (Lim et al. 2004; Syngal et al. 2015; George et al. 2016; Angeli
et al. 2020).

7.2.11 Clinical Implications of Genetic Screening
on Decision-Making

The National Comprehensive Cancer Network (NCCN) (NCCN Guidelines 2019)
and the American Association of Clinical Oncology (ASCO) (Konstantinopoulos
et al. 2020) published recommendations and guidelines for the management of
hereditary OC (Fig. 7.1):

1. “Germline genetic testing for BRCA1/2 and other susceptibility genes of OC
should be offered to all women diagnosed with epithelial OC, irrespective of their
clinical features or family history. Women who do not carry germline alterations,
somatic tumor testing for BRCA1 and BRCA2 PV or LPV should be performed.
Therapeutically, PARP inhibitors, that act through the mechanism of synthetic
lethality, can be offered to OC patients with germline or somatic BRCA1/
2 variants (Lord and Ashworth 2017). Importantly, the decision of sequencing
germline DNA based on mutations found in tumor tissues is not recommended
because of reduced sensitivity. 5% of germline mutations could be missed if
tumor somatic variants are used to determine germline mutations. Missing a
germline mutation could provide false reassurance for family members who may
be at risk (Konstantinopoulos et al. 2020).”

2. “First-, and second-degree blood relatives of patients with germline BRCA1/
2 PV or LPV, should be offered genetic testing for BRCA1 and BRCA2 PV or
LPV. Surveillance protocols, including annual transvaginal ultrasound com-
bined with serum CA-125 (although of uncertain benefit), beginning as early as
30–35 years of age) should be followed. RRSO should be considered typically
between 35 and 40 years of age, and/or upon completion of childbearing
(Konstantinopoulos et al. 2020).”
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3. “In case of other OC histotypes including clear cell, endometrioid, or mucinous
carcinomas, patients should be offered somatic tumor testing for MMR gene PV
and LPV alterations. These MMR genes can be evaluated using several available
tests including polymerase chain reaction (PCR) for microsatellite instability
assessment and immunohistochemistry (IHC) for the evaluation of expression
status of the key MMR proteins (McConechy et al. 2015). Targeted NGS panels of
known microsatellite loci or microsatellite regions are also valuable. However,
these lack the sensitivity and the specificity for diagnostic and prognostic
purposes (Konstantinopoulos et al. 2019).”

4. “Clinical decisions based on variants of uncertain significance (VUS) is not
recommended as clinical and preclinical research and assessment of whether a
variant is deleterious or benign is still underway and hence reclassification of
VUS is anticipated (Barbosa et al. 2020). In this respect, many preclinical and
clinical trials are investigating targeted agents and other innovative synthetic
lethal approaches for various somatic alterations in OC subtypes, including
activating or inactivating mutations of BRAF, KRAS, ARID1A, PIK3CA, and
PTEN, and amplification of CCNE1, CCND1, CCND2, and MYC, as well as
deletion of RB and CDKN2A genes. However, it should be appreciated that the
association between specific variants and drug response to therapy may be
contextual and impacted by specific tumor site, type, histology, as well as
concomitant mutational landscape and molecular alterations in the tumor
(Song et al. 2015; Giri et al. 2019; Alexandrova et al. 2020; Kobayashi et al.
2018; Caumanns et al. 2018).”

7.2.12 Challenges in Developing Effective Genetic Screening
Methods

Several factors pose challenges to the development of an effective and consistent
screening method (NCCN Guidelines 2019; Alexandrova et al. 2020; Bowtell et al.
2015; Carter et al. 2018; Patni 2019; Soletormos et al. 2016). One factor is the low
prevalence of OC in the US population. Hence, studies with large prospective
cohorts, which are necessary to determine the screening accuracy of a plausible
test, are difficult to conduct. Second, the inherent lack of sensitivity and specificity of
putative screening markers increase the overall risk of false-negative and false-
positive test results. Third, the accrued cost of testing a panel of markers poses a
challenge as insurance companies are not likely to cover them (Angeli et al. 2020).
Fourth, there is a lack of patient and provider education regarding the importance of
genetic information which may lead to increased uncertainty and unwarranted
anxiety in patient populations (Konstantinopoulos et al. 2020). Fifth, there is limited
availability of genetic counselors and access to facilities that offer genetic testing.
Finally, the majority of OC biomarkers are derived from advanced stages and hence
are less useful for early diagnostic/screening modalities (Rauh-Hain et al. 2011).
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7.3 Exploring the Impact of Next-Generation Sequencing
in Ovarian Cancer Management

NGS has led to the discovery of diverse genomic alterations in epithelial OC that
impacts drug resistance and survival outcomes (Gorringe and Campbell 2009;
Stoffel and Carethers 2020). Unfortunately, a majority of OC patients relapse or
develop resistance although the high initial response rate to standard chemotherapy.
Based on both clinicopathologic and molecular features of tumors, epithelial OC is
categorized into two subtypes. Type I OC is characterized by a high rate of mutations
in KRAS, BRAF, PIK3CA, PTEN, and ERBB2 genes and includes low-grade serous,
mucinous, endometrioid, and clear cell tumors (Terada et al. 2016). Type II has a
high frequency of TP53 mutations and comprises high-grade serous, undifferenti-
ated carcinomas and carcinosarcomas (Koshiyama et al. 2014; Kurman and Shih
2016). Genomic profiling studies using NGS have confirmed this genetic heteroge-
neity, especially in serous and endometrioid tumors. Accordingly, genetic variants
and gene expression profiles can be used to better stratify patients for optimizing
treatment responses. Based on a cancer panel covering the most frequently mutated
genomic regions, a significant association has been found between tumor heteroge-
neity and OS in OC patients (Oh et al. 2019). A large proportion of high-grade
epithelial OC cases have shown deficiencies in HR, in particular high-grade serous
carcinoma that is the most common and the aggressive subtype (da Cunha Colombo
Bonadio et al. 2018). Additionally, genomic profiling revealed that TP53 and
BRCA1/2 are the most frequently mutated genes (Ross et al. 2013; Norquist et al.
2016b; Maru et al. 2017; Zhang et al. 2019). Approximately all tubo-ovarian high-
grade serous carcinomas present TP53 mutations (The Cancer Genome Atlas
Research Network. 2011). However, TP53 wild-type tumors show distinct morpho-
logical characteristics (The Cancer Genome Atlas Research Network. 2011). In a
large cohort of sequenced tubo-ovarian high-grade serous carcinomas, the
histomorphological, immunophenotypical, and molecular characteristics have been
compared between TP53mutant and wild-type patients (Chui et al. 2020). The study
confirmed that 40% of TP53 wild-type tumors exhibit similar genetic and pheno-
typic characteristics as low and high-grade serous cancers while the remaining share
common morphological features with TP53 mutant high-grade serous carcinomas
(Chui et al. 2020). In addition, Mandilaras et al. performed an immunohistochemical
and molecular analysis of HGSOC and observed that the six studied TP53 mutation
classification schemes did not affect the patients’ platinum-free interval and OS
(Mandilaras et al. 2019). Remarkably, four distinct transcriptomic types of high-
grade serous carcinomas have been identified; namely mesenchymal, immunoreac-
tive, differentiated, and proliferative (Cancer Genome Atlas Research Network
2011; Bowtell 2010). Survival analyses showed that immunoreactive tumors had
better outcomes than proliferative and mesenchymal subtypes (Verhaak et al. 2013;
Konecny et al. 2014). Also, copy number alterations of genes involved in HR were
detected in high-grade serous (63%) and clear cell carcinomas (30%) (Saotome et al.
2020). Furthermore, a significant association was observed between increased copy
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number alteration count ratio and advanced stages of the disease (p ¼ 0.0187)
(Saotome et al. 2020).

Both genes BRCA1 and BRCA2 are involved in many cellular pathways including
DNA double-strand breaks repair by HR mechanism, transcriptional and posttran-
scriptional regulation of gene expression, and protein ubiquitination (Wang et al.
2000). Deficiency in HR repair pathways (Roy et al. 2011) may enhance tumor
response to some targeted therapies based on platinum salts or PARPi. The large
“Cancer Genome Atlas” project revealed that almost half of HGSOC are HR
deficient, 20% of which are due to somatic or germline BRCA1/2 mutations and
11% presented BRCA1 promoter hypermethylation (The Cancer Genome Atlas
Research Network 2011). Various studies that used NGS platforms have identified
other genes related to this cancer type beyond the classical BRCA (Alsop et al. 2012;
The Cancer Genome Atlas Research Network. 2011; Pennington et al. 2014;
Cunningham et al. 2014; Harter et al. 2017; Norquist et al. 2016b; Yates et al.
2017; Hahnen et al. 2016). Lynch syndrome genes, especially MHL1 and MSH2,
involved in the human MMR system seem to play an important role in OC predis-
position (Bonadona et al. 2011; Engel et al. 2012). The lifetime OC risk is estimated
to be 20% and 24% for women withMLH1 andMSH2 mutations respectively by the
age of 70 (Nielsen et al. 2016). Subsequent studies have shown that HR deficiency
may be due to other genes involved in this pathway as well. DNA sequencing of
1195 women with advanced OC recruited as part of GOG218 randomized phase III
trial revealed that 25% of patients have germline mutations on genes involved in HR
repair pathway (Norquist et al. 2018). Nearly 12.4% of mutations have been reported
in the BRCA1 gene, 6.5% in BRCA2, and 6.8% in other genes including ATM, ATR,
BARD1, BLM, BRIP1, CHEK2, MRE11A, NBN, PALB2, RAD51C, RAD51D,
RBBP8, SLX4, and XRCC2 (Norquist et al. 2018). Somatic mutations have also
been found in 9.9% of patients with respective frequencies of 5.2%, 2.2%, and 2.5%
(Norquist et al. 2018). Similarly, Zhao et al. performed NGS of 31 HR genes in
50 Chinese women with confirmed epithelial OC and germline mutations were
found in 36% patients (Zhao et al. 2017). Somatic mutations have also been found
in 10% of patients and the most frequent alterations identified were in RAD50, ATR,
and CHEK2 genes (41.7%) (Zhao et al. 2017).

BRCA1/2 mutational status is considered as an accurate predictive and prognostic
biomarker for platinum-based treatments. This is mainly due to HR deficiency that
characterizes such tumors. Indeed, cancers associated with pathogenic BRCA1/
2 variants are unable to repair DNA double-strand breaks induced by platinum
compounds. It has been found that OC patients harboring BRCA1/2 germline muta-
tion and treated with platinum have better survival. High platinum sensitivity and
increased remission rates have been observed in epithelial OC patients with germline
or somatic mutations in BRCA1/2 (Zhao et al. 2017). In a cohort of 353 OC patients,
the investigators observed that women with mutations in the RAD51-binding
domain of BRCA have a significantly prolonged platinum-free interval
(29.7 vs. 83 15.5 months; p ¼ 0.011) and superior progression-free survival (PFS)
at 5 years (HR: 0.36; 95% CI: 0.20-0.64; p ¼ 0.001) as compared with patients with
non-BRCA carriers (Labidi-Galy et al. 2018).
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Germline and somatic mutations in BRCA1/2 genes have also been considered as
potential biomarkers of tumor response to PARPi therapy (see previous chapters for
details). PARP is a key enzyme in the base excision repair pathway. It mediates the
recruitment of many other proteins to DNA damage sites, to trigger the repair
process. Inhibition of these enzymes blocks the base excision repair system leading
to the conversion of single-strand breaks to double-strand breaks during replication
(Dedes et al. 2011; Ledermann 2016). Consequently, the use of PARPi would be
more effective when HR pathway is dysfunctional, such as in tumors with BRCA1/
2 mutations particularly OC (Bryant et al. 2005; Donawho et al. 2007; Ashworth
2008). Several clinical trials have assessed the benefit of PARPi in OC patients with
germline BRCA1/2 mutations (see Chap. 3 for details). Various PARPi such as
olaparib, rucaparib, and niraparib are currently approved and used for OC treatment
(Boussios et al. 2020; Balasubramaniam et al. 2017). Olaparib was the first PARPi
approved for use as maintenance therapy for patients with platinum-sensitive
relapsed OC and BRCA1/2 mutations. This was mainly based on the promising
results of randomized phase III trials such as SOLO-1 (Moore et al. 2018) and
ARIEL-related studies (Kristeleit et al. 2017, 2019; Swisher et al. 2017; Coleman
et al. 2017). In addition, investigation of HR pathway in OC treated with rucaparib
showed that patients with BRCA mutations and those with high loss of heterozygos-
ity (LOH) had longer PFS and better median duration of response than patients with
low LOH tumors (Swisher et al. 2017). Simultaneously, the approval of these PARPi
authorized a tumor tissue-based NGS assay called FoundationFocus™ CDxBRCA
LOH able to detect somatic and germline BRCA1/2 mutations as well as the
percentage of LOH for patient’s selection. Furthermore, mutational screening of
BRCA1/2 mutations in formalin-fixed and paraffin-embedded (FFPE) tumors using
NGS has been found to be valid and reliable (Ellison et al. 2015; Mafficini et al.
2016; Weren et al. 2017). An international round-robin has approved BRCA1/2 NGS
screening in FFPE tumors of patients with high-grade serous carcinoma with an
overall success rate of 81% (Endris et al. 2016).

In order to identify predictive biomarkers of chemotherapy resistance, NGS was
used in other OC studies that focused on additional genes and pathways beyond
BRCA such as ARID1A and c-MYC. Aurora kinases (AURK) play an important role
in OC development (Pérez-Fidalgo et al. 2020) and are involved in cell division, cell
cycle control, and DNA repair defects. Experimental data showed that OC cells
overexpress AURK proteins, especially AURKA and AURKB (Lassmann et al.
2007; Chen et al. 2009). These kinases influence response to chemotherapy (Yang
et al. 2006; Sun et al. 2007, 2020). In this perspective, a phase II study of ENMD-
2076—a selective AURK inhibitor—in patients with recurrent ovarian clear cell
carcinoma found that 6-month PFS was better in patients with loss of AT-rich
interactive domain 1A (ARID1A) expression than those with normal ARID1A
(33% vs. 12%, p ¼ 0.023) (Lheureux et al. 2018). In contrast, no significant
difference was observed in median PFS by sequencing ARID1A gene, thus
suggesting the existence of an alternative mechanism of loss of expression
(Lheureux et al. 2018). ARID1A gene encodes for a subunit of the human SWI/SNF
chromatin remodelling complex, which plays a role in epigenetic regulatory
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mechanisms. Mutations in this gene appear to be more common in clear cell and
low-grade endometrioid tumors (Wiegand et al. 2010; Jones et al. 2010). These
findings suggest that ARID1A gene expression could be considered as a predictive
biomarker to guide patients’ selection for treatment with AURKA inhibitors. On the
other hand, c-MYC gene amplification has been previously described in OC and is
implicated in drug resistance. C-MYC is a proto-oncogene involved in the regulation
of cell growth, proliferation, metabolism, and apoptosis (Kalkat et al. 2017). More-
over, high levels of c-MYC expression in patients with HGSOS have been found to
be significantly associated with decreased PFS (p ¼ 0.0277) and OS (p ¼ 0.0058)
(Reyes-González et al. 2015). More importantly, inactivation of bromodomain and
extra-terminal motif (BET) protein can downregulate c-MYC gene transcription
(Delmore et al. 2011). Therefore, BET inhibitors may represent a potential therapy
for ovarian tumors overexpressing c-MYC. Recently, a whole-exome sequencing
study showed that c-MYC amplifications occur in 74% of primary ovarian tumors,
78% of metastatic tumors, and 82% of recurrent OCs (Li et al. 2019). Moreover,
preclinical analyses performed in xenografts and patient-derived xenografts models
using ovarian resistant cell lines demonstrated that increased sensitivity to BET
inhibitors (GS-626510 and JQ1) is associated with c-MYC amplification (Li et al.
2019).

Genomics has also the potential to examine the actionable information in
circulating tumor cells (CTC), cell-free DNA (cfDNA), and circulating tumor
DNA (ctDNA) derived from fragmented tumor cells released in body fluids (El Bairi
et al. 2020b). The implementation of liquid biopsy approaches provided information
on disease screening, progression, relapse, and treatment response. Furthermore,
ctDNA methylation analyses enabled precise evaluation of tissue of origin, fragmen-
tation size, structures, and release mechanisms. In OC, BRCA1 and TP53 mutations
are also present in cfDNA suggesting its possible role as a potential biomarker
(Giannopoulou et al. 2018). A number of studies have used high-throughput
sequencing to assess genetic alterations in liquid biopsy samples from OC patients.
Recently, a report of 20 HGSOC patients confirmed that digital PCR or NGS
technologies were able to detect TP53 mutations in serum cfDNA (Vitale et al.
2020). TP53 missense mutations were present in tumor tissues and serum cfDNA in
53% of patients at diagnosis. Interestingly, these mutations disappeared with treat-
ment and reappeared at tumor progression which makes this strategy promising for
monitoring therapy and follow-up. Vanderstichele et al. compared the chromosome
instability in cfDNA and tumor samples in OC patients with adnexal masses and
found that somatic copy number variations in cfDNA were similar to those detected
in tumors (Vanderstichele et al. 2017). In terms of accuracy, TP53 and BRCA1
mutations in both ctDNA and tumor tissues of drug resistant recurrent OCs seem to
be highly consistent with tumor bulky data (Du et al. 2018). BRCA1 and BRCA2
somatic mutations have been detected in cfDNA of OC patients harboring germline
BRCAmutations and resistant to platinum-based chemotherapy and PARPi. BRCA1/
2 reversion somatic mutations in cfDNA of patients with recurrent high-grade serous
OC can be explored using NGS which may be used for monitoring response to
PARPi (Christie and Bowtell 2017). In agreement with these findings, a large cohort
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of HGSOC recently explored BRCA reversion mutations after earlier treatment with
platinum-based chemotherapy and their ability to predict response to PARPi
(Li et al. 2019). NGS of plasma cfDNA collected from patients with germline or
somatic BRCA mutations revealed that the presence of BRCA reversion mutations of
platinum-resistant or refractory HGSOC were correlated with reduced benefits from
rucaparib treatment (Li et al. 2019). Therefore, the combination of NGS and liquid
biopsy approaches, especially circulating DNA may be used in the future for this
purpose if mature findings from large interventional trials support the current
evidence (see Chap. 5 for further reading on this topic).

7.4 Single-Cell Sequencing Technology to Depict Ovarian
Cancer Heterogeneity

The advent of NGS and single-cell sequencing (SCS) has transformed the current
understanding of the cancer contexture (Lawson et al. 2018; Suvà and Tirosh 2019;
Bagger and Probst 2020). SCS enables high throughput sequencing of cancer cells
one at a time, which allows for better assessment of tumor cellular heterogeneity,
clonal evolution, and mechanisms of drug resistance (El Bairi et al. 2020b). A
number of recent translational studies have illuminated the single-cell landscape of
ovarian tumors and its considerable association with clinical outcomes (Winterhoff
et al. 2019). Previously, Winterhoff et al. investigated the levels of heterogeneity in
HGSOC based on single-cell RNA sequencing of tumor and stromal cells
(Winterhoff et al. 2017). The investigators were able to demonstrate two major
clones of cells. In the epithelial group, genes related to proliferative properties
such as MYC were markedly noticed. In addition, high expression of genes
associated with extracellular matrix and epithelial-to-mesenchymal transition was
observed in the stromal subpopulation. Notably, these identified cells and their
signatures were not found to be correlated with chemoresistant phenotypes. How-
ever, these markers were associated with cancer cell stemness (Winterhoff et al.
2017) which is a well-known hallmark that confers drug resistance (reviewed
elsewhere: Chen et al. 2021; Marzagalli et al. 2021). Soon after, two other teams
confirmed that this technology is also applicable for identifying the cell of origin of
OC (Vuong et al. 2018; Shih et al. 2018). In a preclinical study, cells of the ovarian
surface epithelium were treated with estradiol and were characterized by single-cell
RNA sequencing to decipher their transcriptional dynamics (Vuong et al. 2018).
These dysplastic cells were distinguished by their upregulation of genes related to
proliferation, metabolism, and survival signaling. Moreover, the study findings also
showed that the Greb1 gene is expressed in an estrogen-driven precancerous state of
these cells and is a potential biomarker for the transition from dysplasia to cancer
(Vuong et al. 2018). Of note, OCs commonly express GREB1 which is an estrogen
receptor-regulated tumor promoter (Hodgkinson et al. 2018) and involved in ovarian
tumor progression (Laviolette et al. 2014). In another study using human OC
samples, sixteen different cancer cell subpopulations were identified and were
associated with various OC histotypes and benign tumors (Shih et al. 2018).
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Notably, the proportion of these cells changed noticeably between the primary and
metastatic sites (Shih et al. 2018). To date, the origins of OC including fallopian
tubes and ovarian surface epithelia and the related mechanisms of tumor progression
are still debated and the arrival of SCS may provide additional discoveries for this
unresolved mystery. More recently, Hu et al. showed that nongenetic heterogeneity
in serous OC can be precisely assessed when guided by the molecular profiling of
normal fallopian tube cells, which are believed to drive ovarian tumorigenesis
(Hu et al. 2020). Analysis of 6000 fallopian tube cells identified 6 cell
subpopulations and substantial intra-tumor nongenetic heterogeneity was noticed,
which was associated with survival outcomes in this setting (Hu et al. 2020). The
single-cell RNA sequencing of 11,000 cells in the ascites of OC patients
demonstrated an important inter-patient variability of ascites cells including
fibroblasts with immunomodulatory properties and macrophages (Izar et al. 2020).
In addition, the findings of this report confirmed the previous subclassification of
HGSOC into immunoreactive and mesenchymal types with abundant immune
infiltrates and fibroblasts. This highlights the notable place of tumor microenviron-
ment in this novel classification. Genetically, this variability was associated with
heterogeneous copy number alterations and activation of cancer stemness. Based on
OC patient-derived xenografts, the authors showed that the expressed JAK/STAT
signaling in cancer cells and cancer-associated fibroblasts is potentially targetable for
drug discovery (Izar et al. 2020). The chronology of HGSOC subtype clonal
evolution was investigated in another recent study using data from The Cancer
Genome Atlas and SCS of ovarian tumors (Geistlinger et al. 2020). A marked
difference between OC subtypes in terms of subclonality, ploidy, and tumor purity
was noticed. Furthermore, genomic alterations in these subtypes diverged at later
stages of tumor evolution and were typically subclonal. In proliferative tumors, this
subclonality was characterized by prominent genomic instability and absence of
immune infiltrates. On the contrary, differentiated tumors had undamaged genome
integrity and high immune infiltrates. SCS of 42,000 tumor cells also demonstrated
prevalent heterogeneity in the composition of ovarian tumors regarding tumor cell
types (Geistlinger et al. 2020). Therapeutically, SCS also presents a good opportu-
nity for improved comprehension of the mechanisms of resistance to the emerging
PARPi. In this perspective, Färkkilä et al. generated single-cell clones of resistant
tumor cells to PARPi based on CRISPR/Cas9 technology and showed various
mechanisms of resistance (Färkkilä et al. 2021). In some studied clones, multiple
mechanisms of resistance at the same time were observed. Clonal selection of
resistant cells occurred in a heterogeneous sensitive cell population with
pre-existent drug tolerance. The analysis of tumor specimens from a patient with
mutated BRCA1 and having resistance to PARPi showed a clonal and spatial
heterogeneity. Remarkably, the study also showed that these clones have different
responses to targeted agents and therefore, demonstrating that resistant cells to
PARPi need additional therapies to bypass PARPi resistance (Färkkilä et al. 2021).
The utility of SCS in depicting the global picture of OC heterogeneity was supported
by these proof-of-concept studies. Additional research using this technology is
needed to determine molecular features that influence outcomes in this aggressive
cancer.
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7.5 Conclusion

The genetics of OC is becoming actionable especially with the emergence of targeted
therapeutics that require predictive biomarkers for patients’ selection as well as
cancer risk assessment. NGS enables multiple and simultaneous OC genetic testing
of relevant genes with a rapid turnaround time. Moreover, SCS provides a window of
opportunities to better characterize OC heterogeneity. Further studies of OC genetics
particularly in the context of clinical trials are awaited. For additional reading, see
Box 7.1.
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