
Chapter 9
A Note on Quadratic Penalties for Linear
Ill-Posed Problems: From Tikhonov
Regularization to Mollification

Pierre Maréchal

Abstract The variational form ofmollification fits in an extension of the generalized
Tikhonov regularization. Using tools from variational analysis, we prove asymptotic
consistency results for both this extended framework and the particular form of
mollification that one obtains when building on the notion of target object.
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9.1 Introduction

Ill-posed inverse problems appear in many areas of applied mathematics, such as
signal and image recovery, partial differential equations and statistics. Many of them
take the form of a linear operator equation

T f = g, f ∈ F,

in which T : F → G is a bounded linear operator between the Hilbert spaces F
and G and g ∈ G is the data. Unfortunately, it frequently occurs that

inf
{‖T f ‖ ∣∣ f ∈ (ker T )⊥, ‖ f ‖ = 1

} = 0,

a condition under which the pseudo-inverse T † of T is unbounded. It results that the
natural solution T †g does not depend continuously on the data g and that the problem
must be reformulated. Tikhonov regularization (see [15] and the references therein)
initiated a vast theoretical corpus. It consists in approximating T † by the bounded
operator Rα = (T ∗T + α I )−1T ∗, in which T ∗ denotes the adjoint of T and α > 0 is
a regularization parameter. The identity I may also be replaced by the more general
selfadjoint operator Q∗Q, where Q is a bounded operator from F to some Hilbert
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space H .We then speak of generalized Tikhonov regularization. From the variational
viewpoint, the generalized Tikhonov solution fα = (T ∗T + αQ∗Q)−1T ∗g is well
known to be the minimizer of the quadratic functional

Fα( f ) := ∥∥T f − g
∥∥2 + α

∥∥Q f
∥∥2

. (9.1)

Inmany cases, the solution space F is a functional space such as L2(�d) or a subspace
of it, and the quadratic penalty term α‖Q f ‖2 may be used to enforce smoothness
of the approximate solution. For example, Q may be a second-order differential
operator (see [3, Chap. 8] for a detailed exposition).

Another way to promote smoothness is via the Fourier–Plancherel transform f̂
of f : the variational counterpart of mollification [1, 6, 7, 9–11] essentially consists
in penalizing (1 − ϕ̂α) f̂ , in which ϕα is a convolution kernel indexed by α > 0. The
function ϕα is commonly defined, for α ∈ (0, 1], as

ϕα(x) = 1

αd
ϕ

( x

α

)
, x ∈ �d , (9.2)

in which ϕ is a nonnegative integrable kernel function with unit integral, and the fam-
ily (ϕα)α∈(0,1] is referred to as an approximate unity. The penalty term ofmollification
then takes the form ‖(I − Cα) f ‖2, in which

Cα f = ϕα ∗ f.

Mollifiers were introduced in partial differential equations by Friedrichs [4, 16].
The term mollification has been used in regularization theory since the eighties.
Mollification was developed in several directions. In the earlier works on the subject,
mollifiers served the purpose of smoothing the data prior to inversion, whenever
an explicit inversion formula was available (see [5, 12] and the references therein).
In [8], an alternative approach was proposed, which gave rise to the so-called method
of approximate inverses. In this approach, the operator under consideration is not
assumed to have explicit inverse, but the adjoint equation has explicit solutions. This
approach opens the way to application to a large class of inverse problems and can
be extended to problems in Banach spaces [14]. A third approach appeared in the
same period of time. In [7], a variational formulation of the idea of mollification was
proposed, in the context of Fourier synthesis and deconvolution. This formulation
was further studied and extended in [1, 6, 9, 11] and is the one we consider in this
paper.

Unlike Tikhonov’s regularization, mollification appeals to a parameter α which
is not interpreted as a weighting of the penalty term, but rather as an objective reso-
lution. Therefore, strictly speaking, mollification does not belong to the generalized
Tikhonov family. However, obviously, letting α go to zero makes the penalization
vanish in both cases. This suggests that Tikhonov and the mollification could be
put in the same framework. To phrase it differently, we could widen the contours of
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the generalized Tikhonov regularization to the point of admitting mollification in its
realm. This is what we propose to do here.

The paper is organized as follows. In Sect. 9.2 we consider the consistency issue
in the aforementioned enlarged framework. In Sect. 9.3, we build on the notion of
target object, absent from the original Tikhonov regularization, but present in the
original works on mollification [1, 2, 7].

9.2 Generalizing Tikhonov Regularization

It is sometimes convenient to consider vector-valued regularization parameters. We
may call parameter choice rule a function

α : �+ × G −→ P
(δ, gδ) �−→ α(δ, gδ)

inwhichP is a subset of�p
+ \ {0}, and an a priori parameter choice rule the particular

case for which α depends on its first argument only. Following [3, Definition 3.1],
we now state:

Definition 9.1 A parametrized family (Rα) of bounded operators is a regularization
of T † if for every g ∈ D(T †), there exists a parameter choice rule α such that

(1) sup
{‖α(δ, gδ)‖ ∣∣ gδ ∈ G, ‖gδ − g‖ ≤ δ

} → 0 as δ ↓ 0;
(2) sup

{‖Rα(δ,gδ)gδ − T †g‖ ∣∣ gδ ∈ G, ‖gδ − g‖ ≤ δ
} → 0 as δ ↓ 0.

In this case, we say that the pair (Rα, α) is a convergent regularization method for
solving T f = g.

Recall that the domain of the operator T † is the vector subspace D(T †) =
ran T + (ran T )⊥, in which E⊥ denotes the orthogonal complement of E . From [3,
Proposition 3.4], we straightforwardly infer that:

Proposition 9.1 If the family of bounded operators (Rα)α∈P converges pointwise
to T † onD(T †) asα → 0 inP , then (Rα)α∈P is a regularization of T † and, for every
g ∈ D(T †), there exists an a priori parameter choice rule α(δ) such that (Rα, α) is
a convergent regularization method for solving T f = g.

The operators T : F → G and Q : F → H are said to satisfy Morozov’s com-
pletion condition if there exists a constant γ > 0 such that

∀ f ∈ F, ‖T f ‖2 + ‖Q f ‖2 ≥ γ ‖ f ‖2. (9.3)

Under the completion condition, the operator T ∗T + Q∗Q admits a bounded inverse,
as can be easily shown. In some cases of interest, it may happen that T ∗T and Q∗Q
can be diagonalized in the same Hilbert basis. In this case, it can be shown that
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∀ f ∈ F,
∥∥(T ∗T + Q∗Q)−1T ∗T f

∥∥
F ≤ ∥∥ f

∥∥
F . (9.4)

The latter assumption is in force in the rest of this paper.

Theorem 9.2.1 Let F,G be infinite dimensional Hilbert spaces and let T : F → G
be injective. Let Qα : F → H be a family of operators such that

• for every fixed α ∈ P , T and Qα satisfy the completion condition (9.3) and Con-
dition (9.4);

• for every f ∈ F, ‖Qα f ‖ → 0 as α → 0 in �p.

Then, for every g ∈ D(T †) = ran T + ran T⊥, fα := (T ∗T + Q∗
αQα)−1T ∗g con-

verges strongly to f †, the unique least square solution of the equation T f = g.

Proof We shall prove that, for every P-valued sequence (αn) which converges to
zero, the corresponding sequence ( fαn ) strongly converges to f †. By assumption,
g = T f † + g⊥, in which f † ∈ F and g⊥ ∈ (ran T )⊥ = ker T ∗. We have

∥∥ fα
∥∥
F = ∥∥(T ∗T + Q∗

αQα)−1T ∗(T f † + g⊥)
∥∥
F

= ∥∥(T ∗T + Q∗
αQα)−1T ∗T f †

∥∥
F

≤ ∥∥ f †
∥∥
F .

In particular, the family fα is bounded. Now, let (αn) be a sequence in P which
converges to 0. In order to simplify the notation, let fn := fαn and Qn := Qαn . Since
the sequence ( fn) is bounded, we can extract a weakly convergent subsequence ( fnk ).
Let then f̃ be the weak limit of this subsequence. On the one hand,

T ∗T fnk ⇀ T ∗T f̃ as k → ∞ (9.5)

since T ∗T is bounded. On the other hand,

Q∗
nk Qnk fnk ⇀ 0 as k → ∞

since fnk is bounded and Q∗
nk Qnk converges pointwise to the null operator, so that

T ∗T fnk = (T ∗T + Q∗
nk Qnk ) fnk − Q∗

nk Qnk fnk
= T ∗g − Q∗

nk Qnk fnk

= T ∗T f † − Q∗
nk Qnk fnk

⇀ T ∗T f †

�
as k → ∞. Together with (9.5), this shows that T ∗T f̃ = T ∗T f †, that is, by the
injectivity of T , that f̃ = f †. It follows that the whole sequence ( fn) converges
weakly to f †. Finally, by the weak lower semicontinuity of the norm,
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‖ f †‖ ≤ lim inf
n→∞ ‖ fn‖ ≤ lim sup

n→∞
‖ fn‖ ≤ ‖ f †‖,

which establishes that fn → f † as n → ∞.

In the familiar case where F = L2(�d) or subspaces of it and H = L2(�d),
the choice Qα = I − Cα corresponds to the mollification method described in the
introduction. The previous theorem applies in this case since, as is well known, if
(Cα) is as in (9.2), then

Cα f → f as α ↓ 0.

Notice that Morozov’s completion condition is automatically satisfied in the impor-
tant case where F = L2(V ), the space of square integrable functions with essential
support in V , whenever V is a compact domain. As a matter of fact, in this case, it
follows from [1, Lemma 12 and Proposition 5] that there exists a positive constant να

such that
∀ f ∈ L2(V ), ‖(I − Cα) f ‖2 ≥ να‖ f ‖2.

9.3 Target Objects

In a number of cases, the operator T gives rise to an explicit intertwining relationship.
By this, we mean the existence of a bounded operator �α : G → G such that

TCα = �αT . (9.6)

Note that Eq. (9.6) constrains �α only on the range of T . In order to extend its
definition to the whole space G, we first use the unique bounded extension of �α

to the closure of ran T , and then extend it further by zero on (ran T )⊥. With this
definition of �α , it is easy to see that

�α = cl (TCαT
†), (9.7)

in which cl (·) denotes the extension by closure. More generally, it has been shown
in [2] that whenever the operator TCαT † is bounded, its closure to G minimizes
� �→ ‖�T − TCα‖ over all the bounded operators on G which vanish on (ran T )⊥.

At all events, we may consider the following variational form of mollification:

fα := argmin
∥∥T f − �αg

∥∥2 + ∥∥(I − Cα) f
∥∥2

. (9.8)

This form can be justified by the following heuristics. Since our target object isCα f †,
the tautology f † = Cα f † + (I − Cα) f † indicates that in addition to penalizing (I −
Cα) f one should also aim at fitting the data corresponding to the mollified object. If
g � T f †, then
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�αg � TCα f †

by Eq. (9.6), whence the adequacy term in (9.8). The regularized solution is then
given by

fα := (
T ∗T + (I − Cα)∗(I − Cα)

)−1
T ∗�αg.

Important applications allow for the introduction of the intertwining operator �β

corresponding to approximate unities such as the above-defined families (Cα). We
now review a few examples.

Example 9.1 In [7], the authors studied the problem of spectral extrapolation, which
underlies aperture synthesis in astronomy and space imaging. This problem corre-
sponds to the case where

T = f rm[o]−−eWU

with W a bounded domain containing an open set. Here, U denotes the Fourier–
Plancherel operator. We refer to TW as the Fourier truncation operator. Since Cα =
U−1

[
ϕ̂α

]
U , we see that

TCα = 1WUU−1
[
ϕ̂α

]
U = [

ϕ̂α]1WU = [
ϕ̂α

]
T,

from which we infer that �α = [
ϕ̂α

]
.

Example 9.2 In the problem of deconvolution, as considered, e.g., in [6, 9], the
situation is even simpler: since convolution operators commute, we readily see that
�β = Cα .

Example 9.3 Finally, in computerized tomography [13], the underlying operator is
the Radon transformation

(T f )(θ , s) =
∫

f (x)δ(s − 〈θ , x〉) dx, θ ∈ S 1, s ∈ �.

A consequence of the so-called Fourier slice theorem is that, for any two functions
f1, f2,

T ( f1 ∗ f2) = T f1 � T f2,

in which � denotes the convolution with respect to the variable s. It follows that, in
this case,

�α = (g �→ Tϕα � g),

a relationship which was in force in [11].

We now establish a consistency theorem for the form of mollification given
in (9.8).
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Theorem 9.3.1 Let F = L2(�d) and let T : F → G be a bounded injective oper-
ator from F to the infinite dimensional Hilbert space G. Let Cα : F → F be an
approximate unity as in (9.2). Assume that, for every fixed α ∈ (0, 1], T and I − Cα

satisfy the completion condition (9.3). Assume at last that, for every fixed α ∈ (0, 1],
the intertwining operator �α exists. Then, for every g ∈ D(T †) = ran T + ran T⊥,
fα := (T ∗T + (I − Cα)∗(I − Cα))−1T ∗�αg converges strongly to f †.

Proof We shall prove that, for every positive sequence (αn) converging to zero,
fαn → f † as n → ∞. Let g = T f † + g⊥, with f † ∈ F and g⊥ ∈ (ran T )⊥. Since
�αg = TCα f †, we have:

∥∥ fα
∥∥
F = ∥∥(T ∗T + (I − Cα)∗(I − Cα))−1T ∗TCα f †

∥∥
F

≤ ∥∥Cα f †
∥∥
F

≤ ∥∥ϕα

∥∥
1 · ∥∥ f †

∥∥
F = ∥∥ f †

∥∥
F .

The last equality stems from the fact that, in Eq. (9.2), ϕ is assumed to be positive and
to have unit integral. Therefore, the family ( fα) is bounded. Let (αn) be a sequence
in (0, 1] which converges to 0, and let fn := fαn , Cn := Cαn and �n := �αn . Since
the sequence ( fn) is bounded, we can extract a weakly convergent subsequence ( fnk ).
Let then f̃ be the weak limit of this subsequence. On the one hand,

T ∗T fnk ⇀ T ∗T f̃ as k → ∞ (9.9)

since T ∗T is bounded. On the other hand,

(I − Cnk )
∗(I − Cnk ) fnk ⇀ 0 as k → ∞

since fnk is bounded and (I − Cnk )
∗(I − Cnk ) converges pointwise to the null oper-

ator, so that

T ∗T fnk = (T ∗T + (I − Cnk )
∗(I − Cnk )) fnk − (I − Cnk )

∗(I − Cnk ) fnk
= T ∗�nk g − (I − Cnk )

∗(I − Cnk ) fnk
⇀ T ∗T f †

�
as k → ∞, since T ∗�nk g = T ∗TCnk f

† goes to T ∗T f †. Together with (9.9), this
shows that T ∗T f̃ = T ∗T f †, that is, by the injectivity of T , that f̃ = f †. There-
fore, the whole sequence ( fn) converges weakly to f †. Finally, by the weak lower
semicontinuity of the norm,

‖ f †‖ ≤ lim inf
n→∞ ‖ fn‖ ≤ lim sup

n→∞
‖ fn‖ ≤ ‖ f †‖,

which establishes that fn → f † as n → ∞.
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9.4 Conclusion

We have shown that the variational form of mollification fits in an extension of the
generalized Tikhonov regularization setting. Using tools from variational analysis,
we have obtained asymptotic consistency results for both this extended framework
and the particular form of mollification that one obtains when developing the notion
of target object.
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