
Chapter 6
Set Order Relations, Set Optimization,
and Ekeland’s Variational Principle

Qamrul Hasan Ansari and Pradeep Kumar Sharma

Abstract This chapter provides a brief survey on different kinds of set order rela-
tions which are used to compare the objective values of set-valued maps and play
a key role to study set optimization problems. The solution concepts of set opti-
mization problems and their relationships with respect to different kinds of set order
relations are provided. The nonlinear scalarization functions for vector-valued maps
as well as for set-valued maps are very useful to study the optimality solutions of
vector optimization/set optimization problems. A survey of such nonlinear scalar-
ization functions for vector-valued maps/set-valued maps is given. We give some
new results on the existence of optimal solutions of set optimization problems. In
the end, we gather some recent results, namely, Ekeland’s variational principle and
some equivalent variational principle for set-valued maps with respect to different
kinds of set order relations.

Mathematics Subject Classification (2010): 49J53, 90C29, 90C30, 90C46,
58E30

6.1 Introduction

An optimization problem whose objective function is a set-valued map is known as
set optimization or set-valued optimization problem.

Let S be a nonempty subset of a vector space X , Y be a topological vector space,
and F : S ⇒ Y be a set-valued map with nonempty values. The set optimization
problem is defined as follows:
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min F(x)

subject to x ∈ S.
(SOP)

The study of such problems is known as set optimization or set-valued optimiza-
tion. Since the set-valued maps include single-valued maps as well as vector-valued
maps, the set optimization can be considered as an extension of scalar optimization
and/or vector optimization. Since the middle of eighties, the theory of set opti-
mization has received increasing interest in the optimization community and many
authors have studied and investigated set optimization problems due to its extensive
applications in different branches of applied mathematics, engineering, economics,
finance, and medical sciences. Note that several problems from game theory [73],
multivariate statistics [70, 106], radiotherapy treatment (medical image registration,
intensity-modulated radiation therapy) [42, 104, 120], uncertain optimization [7,
105], welfare economics [16], socio-economics [132], mathematical finance [36,
69], optimal control [75], etc. can be written in the form of mathematical formula-
tion of set optimization problems. Not only this, the robust optimization problems
and stochastic/fuzzy programming problems can also be modeled as set optimization
problems. For an overview and further detailed investigations, we refer to the books
[68, 97].

Let us consider and distinguish simple examples of scalar optimization problem,
vector optimization problem, and set optimization problem.

• To find the fastest bowler from a set of cricket players is the scalar optimization
problem (maximization problem) where the objective function gives the speed of
a player.

• To find the bowler(s) from a set of cricket players in such a way that he/she (they)
is (are) having several qualities, namely, speed, in swing/out swing, etc., is a vector
optimization problem. Consider an objective function from a set of players to the
set of all such qualities, that is, the value of the objective function can be regarded
as a vector whose coordinates consist of one’s ability, speed, in swing/out swing,
etc. In other words, the objective function is vector-valued.

• Consider the objective function whose values are teams and assume that a team is
a set of players and each player is regarded as a vector whose coordinates consist
of one’s ability, speed, in swing/out swing, popularity, and so on. Then one can
formulate the problem of choosing a good team for a cricket league in the form of
set optimization problem with the objective function defined as above.

For a set optimization problem, it seems natural the first thing that has to be done
is to decide how to define the solution of a set optimization problem. There are two
popular approaches to define the solution concepts of a set optimization problem:
one is the vector approach and another is the set approach.

In vector approach, one directly generalizes the concepts known from vector
optimization to set optimization, that is, we try to find the best element, in some sense,
of the union of all image sets of the set-valued objective map over the feasible set. In
other words, in vector approach, a minimizer (x̄, ȳ) depends on only certain special
element ȳ of F(x̄) and other elements of F(x̄) are ignored. That is, an element x̄ ∈ S
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for which there exists at least one element ȳ ∈ F(x̄)which is Pareto minimal point of
the image set of F even if there exists many bad elements in F(x̄) is a solution of the
set optimization problem (SOP). The set optimization problemswith vector approach
have been studied and investigated by Corley [33, 34]; Luc [128]; Lin [123]; Jahn
and Rauh [93]; Chen and Jahn [29]; Götz and Jahn [55]; Li [122]; Crespi, Ginchev,
and Rocca [35], Alonso and Rodríguez-Marín [2], Hernández, Rodríguez-Marín and
Sama [84], Hernández [79], etc. For more detail, we refer to the books [90, 97], the
survey papers [41, 64, 79] and the references therein. Of course, vector optimization
problems provide a very important special case of set optimization with numerous
applications. Moreover, the answer to certain problems in vector optimization can be
found, if the vector optimization problem is considered in a set-valued framework,
see [67]. Note that the solution concept based on vector approach is of mathematical
interest but it can not be often used in practice. This solution concept is not suitable
to deal with the set optimization problem defined in the above example. For example,
we can see that a team which has at least one good player is a solution, though most
of the members of such teams are useless. Is it true that such team can achieve good
results?

These solutions must be almost invalid and improper. This drawback gave birth
to the set approach which is based on the comparison of values (sets) of objective
set-valued map, that is, using the set approach, the sets F(x) are compared by using
some kinds of set order relations with the aim to choose the best one in some sense.
The credit for the birth of set approach goes to Kuroiwa [109]. To resolve this
problem, Kuroiwa [109] introduced six kinds of set order relations which are further
studied and investigated in [1, 25, 72, 79–82, 84, 110, 111, 115, 132] and the
references therein. Note that these set order relations were independently introduced
in different fields, for example, in terms of algebraic structures by Young [150] in
1931, in the theory of fixed points of monotonic operators by Nishnianidze [134] in
1984, in interval arithmetic by Chiriaev and Walster [31] in 1998, and in theoretical
computer science by Brink [22] in 1993. In 2011, Jahn and Ha [92] introduced the,
so-called, minmax set order relations to deal with the solutions of the problem (SOP)
where the above mentioned six kinds of set order relations fail. Since the notion
of the set approach was introduced, there has been rapid growth in this field. On
the contrary, the main disadvantage of the set approach over the vector approach
is the loss of lineal structure. Hamel [67] studied the structure of the power set
of Y by introducing a conlineal space. In order to avoid such a problem, several
authors have considered specializations of F or tools to study the problem (SOP) via
a structure well known or simpler than a conlineal space. For instance, Hernández
[80] characterized the solutions of the problem (SOP) via nonlinear scalarization, see
also [13, 129]. Kuroiwa and Nuriya [114] constructed an embedding vector space.
Maeda’s [130]work on n-dimensional Euclidean spaces shows that whenever the set-
valued map is rectangle-valued (SOP), then it is equivalent to a pair of vector-valued
optimization problems.

In general, there is no relation among solutions of the problem (SOP) obtained
by vector approach and solutions obtained by set approach. Moreover, the existence
of solutions by one approach does not imply the existence of solutions of the other
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approach, see [1, 63, 84, 99] and the references therein. Even though both criteria
are different but under certain assumptions, the relation among solution concepts of
the problem (SOP) with vector approach and set approach has been studied in [1,
79, 84, 129, 130] and the references therein.

In 2017, Chen et al. [30] introduced a set order relation called weighted set order
relation. This weighted set order relation is the combination of Kuroiwa’s [109]
upper and lower set order relations. So, under some assumptions, this new set order
relation is more general than Kuroiwa’s upper and lower set order relations. It is
useful for formulating solution concepts for researchers who do not specifically rely
on either the upper or lower set order relation. Recently, Ansari et al. [6] studied
Ekeland’s variational principle and some equivalent results for set-valued maps by
using weighted set order relations and gave some applications to order intervals.

In 2018, Karaman et al. [96] introduced set order relations on the family of sets
based on the Minkowski difference. In comparison to Kuroiwa’s set order relations,
these set order relations are partial ordered on the family of bounded sets, and hence
provide a new approach to study set optimization problems. Khushboo and Lalitha
[99] studied the relationship among different kinds of solution sets of set optimiza-
tion problems defined by means of Kuroiwa’s set order relations and Karaman’s set
order relations. They also investigated that the solution sets of a set optimization
problem defined by different kinds of set order relations are different. Therefore, it
is interesting and important to investigate the set optimization problems by using
Karaman’s set order relations. Very recently, the set optimization problems have
been investigated and studied in [12, 94–96, 99, 139] by using Karaman’s set order
relations.

Besides the set order relations with fixed ordering cone, the interest in set order
relations with variable cone has increased during the last years due to some applica-
tions in different problems, see [7, 10, 20, 40, 42–44, 101, 102, 104, 105, 119, 120]
and references therein. Therefore, in the order relations defined by convex cone to
compare sets, the cone is replaced by a variable domination structure. This variable
domination structure is defined by a set-valued map, called ordering map, which
associates with each element of the space an individual set of preferred or domi-
nated directions. In 2016, Eichfelder and Pilecka [42, 44] introduced the set order
relations equipped with variable domination structures. They provided scalarization
results for obtaining optimality conditions for the solutions of the problem (SOP).
Further, Köbis [101, 102] introduced new set order relations equipped with vari-
able domination structures and differentiated between a concept of domination and
preference. In the recent years, set optimization problems with respect to variable
domination structures have been studied and investigated in [7, 10, 20, 42, 44, 101,
102, 104, 119] and the references therein.

In the recent years, the set order relations has played an important role to deal with
several problems from nonlinear analysis and optimization with set-valued maps,
for instance, Ekeland’s variational principle and related results [12, 13, 63, 72],
continuity and convexity of set-valued maps [115, 117], minimax theorem for set-
valued maps [116], well-posedness [62], stabilty [77], connectedness [78], concepts
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of efficiency for uncertain multi-objective optimiztion [88], optimality notions for
(SOP) [1, 84, 94], and so on.

There are various techniques to deal with the set optimization problems, for
instance, scalarization, vectorization, etc., see [13, 14, 72, 80, 91, 99, 151] and
the references therein. One of the most and widely used techniques to deal with set
optimization problems is the scalarization by which we can convert a set optimiza-
tion problem into a scalar optimization problem, that is, by using scalarization, set
optimization problem is replaced by a family of scalar optimization problems which
allow to relate the solutions of both problems and solve the set optimization problem
by a numerical method applicable for the scalar problems. To study set optimization
problems, scalarization functions are one of the most essential tools from a theoret-
ical as well as computational point of view. Several scalarization techniques for set
optimization problems are available in the literature. Most of them are based on Ger-
stewitz function [54], oriented distance function [86], or their extensions [11, 13, 14,
72, 80, 96, 99, 151]. The original idea of the nonlinear scalarization functions was
given by Krasnosel’skij [107] and Rubinov [140]. Krasnosel’skij [107] used them in
order to establish necessary and sufficient conditions for a cone to be normal. Also,
these types of functionals have been used in theoretical investigations within the
framework of ordered linear spaces, see the book [38] by M. M. Day as an elegant
tool for proof of the fact that the Hahn–Banach extension and a linear closure prop-
erty imply the interpolation property. Furthermore, Feldman [48] and Rubinov [140]
investigated the dual properties of such kinds of functionals, namely, their so-called
support sets. The nonlinear scalarization functional for vector optimization with its
concrete definition was given by Tammer (Gerstewitz) [52] in 1983 and applied to
study separation theorems for not necessary convex sets by Tammer (Gerstewitz)
and Iwanow [53] in 1985. Such nonlinear scalarization functions are now known as
Gerstewitz nonlinear scalarization functional. Luc [125–127] also gave early contri-
butions to this topic. On the other hand, Hiriart-Urruty [86] introduced the notion of
oriented distance function to study optimality conditions of nonsmooth optimization
problems from the geometric point of view. For more details on oriented distance
function and their extensions, we refer [7, 8, 35, 60, 99, 151, 152] and the references
therein.

The idea of nonlinear scalarization for sets was first investigated in 2000 by
Tanaka–Georgiev [51]. In 2006, Hamel and Löhne [72] extended the above functions
to two different functions on a power set of Y corresponding to the set order relations.
Further, Hernández and Rodríguez-Marín, [80] investigated nonlinear scalarizing
functions for sets by introducing cone-topological concepts, see [9]. Furthermore,
in 2009, Knwano–Tanaka–Yamada [118] introduced a unified approach for such
scalarizations for sets using Kuroiwa’s set order relations. In the recent past, Araya
[13, 14] investigated six types of nonlinear scalarizing functions for set-valued maps
and their relationships. In the literature, expressions using inf–sup of the Gerstewitz
function can be found in [60, 61] which were used to study necessary and suffi-
cient optimality conditions in set optimization problems with set order relations.
Khoshkhabar-amiranloo et al. [98] and Sach [141] also introduced slightly differ-
ent nonlinear scalarization functions to study set optimization problmes. Recently,
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Karaman et al. [96] introduced nonlinear scalarization functions by using the set
order relations defined by the Minkowski difference and studied optimality notions
for (SOP). Very recently, Ansari et al. [6] introduced the notions of nonlinear scalar-
ization functions by using weighted set order relations. Several applications of the
nonlinear scalarization functions can be found in the literature, for instance, to study
Ekeland’s variational principle and related variational principle [6, 12, 13, 63, 65,
72]; nonconvex separation type theorems [13, 14, 54]; Gordan’s type alternative
theorems [13, 135]; equilibrium problems [9, 56]; minimax theorems [116]; vector
variational inequalities [9, 56]; robustness and stochastic programming [100]; and
stability and well-posedness [62, 77]. In the recent years, several authors have stud-
ied and investigated nonlinear scalarizing technique for set optimization problem,
see [6, 12, 60, 61, 72, 97, 98, 141] and their references therein.

In recent years, scalarization functions with variable domination structures also
gained increasing interest in the optimization community. Eichfelder and Pilecka
[44] introduced a nonlinear scalarization function when the images of ordering maps
are Bishop Phelps cones. Further, Köbis et al. [104] and Ansari et al. [7] introduced
nonlinear scalarizing methods to characterize several set order relations and minimal
solutions for set optimization problems equippedwith variable domination structures
with their applications in medical image registration and uncertain multi-objective
optimization and to derive necessary optimality conditions for solutions of set opti-
mization problems with respect to variable domination structures. Very recently,
Kobis et al. [105] introduced a new nonlinear scalarization functional in set opti-
mization equipped with variable domination structures, which are further studied by
Ansari and Sharma [10] to obtain Ekeland’s variational principle. For more details
on scalarization functions with respect to variable domination structures, we refer
[7, 10, 44, 104, 105] and the references therein.

The present chapter is organized as follows: In the next section, we recall some
definitions and concepts which will be used in the sequel. In Sect. 6.3, we gather
different kinds for set order relations with their properties. The relationships among
these set order relations are provided along with theoretical and geometrical illus-
trations. In Sect. 6.4, a survey of nonlinear scalarization functions for vector-valued
maps/set-valued maps is given. Such nonlinear scalarization functions for vector-
valued maps as well as for set-valued maps are very useful to study the optimality
solutions of vector optimization/set optimization problems and to study some set
order relations. In Sect. 6.5, solution concepts for set optimization problems based
on vector approach and set approach and relations among them are given. Several
examples are given to illustrate each type of solution concept. Some new results on
the existence of optimal solutions of set optimization problems are given in Sect. 6.6.
In the last section, we investigate Ekeland’s variational principle for set-valued maps
in different settings and also by using different kinds of set order relations. Further,
we investigate some other equivalent variational principles, namely minimal ele-
ment theorem, Takahashi minimization theorem, and Caristi fixed point theorem for
set-valued maps.
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6.2 Preliminaries

Throughout the chapter, all vector spaces are assumed to be defined over the field of
real numbers, and we adopt the following notations, unless otherwise specified.

We denote by N, Q, and R the set of all natural numbers, the set of all rational
numbers, and the set of all real numbers, respectively, and R+ = [0,∞). We denote
by R

n the n-dimensional Euclidean space and by R
n+ the nonnegative orthant in R

n .
The zero element in a vector space will be denoted by 0. Let Y be a topological
vector space with its topological dual Y ∗. We denote by 2Y (respectively, P(Y )) and
B(Y ) the family of all (respectively, nonempty) subsets of Y and the family of all
nonempty bounded subsets of Y , respectively. For a set A ⊆ Y , we denote by intA,
A or clA, ∂A, and Ac, the interior, the closure, the boundary, and the complement of
A, respectively.

For arbitrary nonempty sets X and Y , we denote by PX and PY , the projection of
X × Y onto X and Y , respectively, that is,

PX (x, y) = x and PY (x, y) = y, for all (x, y) ∈ X × Y.

A function F : X → 2Y is said to be a set-valued map, and it is denoted by
F : X ⇒ Y . For the set-valued map F : X ⇒ Y , the image of F at x ∈ X is a subset
F(x) of Y . The domain of F is

dom F = {x ∈ X : F(x) �= ∅},

and the image of F is

Im F = {y ∈ Y : there exists x ∈ X such that y ∈ F(x)}.

The set-valued map F : X ⇒ Y can be identified by its graph which is defined as

graph F = {(x, y) ∈ X × Y : x ∈ X, y ∈ F(x)}.

The image of the set S ⊆ X under F is

F(S) :=
⋃

x∈S
F(x),

so, Im F = F(X). The set

Graph F = {(x, V ) ∈ X × P(Y ) : V = F(x)}

is designated as graph of F by Hamel and Löhne [72].
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A subset C of a vector space Y is said to be a cone if for all x ∈ C and λ ≥ 0, we
have λy ∈ C . The set C of Y is called a convex cone if it is convex and a cone, that
is, for all x, y ∈ C and λ,μ ≥ 0, we have λx + μy ∈ C .

Definition 6.1 A cone C in Y is said to be

(a) solid if it has nonempty interior, that is, intC �= ∅;
(b) nontrivial or proper if C �= {0} and C �= Y ;
(c) reproducing if C − C = Y ;
(d) pointed if for 0 �= x ∈ C , we have −x /∈ C , that is, C ∩ (−C) = {0};
(e) closed cone if it is also closed.

The dual of a cone C ⊆ Y is defined by

C∗ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ C},

where 〈y∗, y〉 denotes the value of the functional y∗ at y.
The convex cone C ⊆ Y induces an ordering on Y as

x C y ⇔ y − x ∈ C, for all x, y ∈ Y.

If intC �= ∅, then we have

x ≺C y ⇔ y − x ∈ intC, for all x, y ∈ Y.

Further, if C is pointed, then the ordering C is a partial ordering on Y .
Note that there is a one-to-one correspondence between an ordering and a convex

cone (see [9]).

Definition 6.2 Let A, B ∈ P(Y ).

• The algebraic sum of A and B is defined as

A + B := {a + b : a ∈ A, b ∈ B}.

• The algebraic difference of A and B is defined as

A − B := {a − b : a ∈ A, b ∈ B}.

• The Minkowski (Pontryagin) difference of A and B is defined as

A−̇B := {y ∈ Y : y + B ⊆ A} =
⋂

b∈B
(A − b).

• For λ ∈ R, λA := {λx : x ∈ A}.
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It is worth to mention that the set equation A + A = 2A does not hold in general
for a nonempty subset A of a vector space. The Minkowski difference of a set
and a vector coincides with their algebraic difference, that is, A−̇a = A − a for all
A ∈ P(Y ) and a ∈ Y .

Note that the Minkowski (Pontryagin) difference plays a very important role in
many applications such as robot motion planning [124], morphological image anal-
ysis [143], and computer-aided design and manufacturing [121]. For further details
onMinkowski (Pontryagin) difference, we refer to the book [136].

The following example illustrates different types of set addition and set difference.

Example 6.1 Let A = [−1, 1] × [−1, 1] and B = [−1, 0] × [−1, 0]. Then,
A + B = [−2, 1] × [−2, 1], A − B = [−1, 2] × [−1, 2], and A−̇B = [0, 1] × [0, 1].

See, Fig. 6.1 for an illustration of the sets A, B, A + B, A − B, and A−̇B.

We present some basic properties of theMinkowski (Pontryagin) difference.

Proposition 6.1 [96] Let Y be a normed space, A, B ∈ P(Y ), and α ∈ Y . The fol-
lowing assertions hold.

(a) (α + A)−̇B = α + (A−̇B).
(b) A−̇(α + B) = −α + (A−̇B).
(c) If A is closed, then A−̇B is also closed.
(d) If A is bounded, then A−̇A = {0}.
Definition 6.3 [9, 127] Let C be a closed convex cone in Y . A nonempty subset A
of Y is said to be

(a) C-proper if A + C �= Y ;
(b) C-closed if A + C is a closed set;
(c) C-bounded if, for each neighborhood U of 0 ∈ Y , there is a positive number t

such that A ⊂ tU + C ;
(d) C-compact if each cover of A of the form {Uλ + C : Uλ is an open set, λ ∈ �}

admits a finite subcover, where � denotes the index set.

Clearly, if C is a closed convex cone, so is −C . The replacement of C by −C in
the above definition produces (−C)-closed, (−C)-bounded, etc. For more detail and
examples on cone-topological concepts, we refer to [9, 127].

We denote by �C the family of all C-proper subsets of Y and by �cb
C the family

of all nonempty, C-proper, closed, and bounded subsets of Y .

6.3 Set Order Relations

This section deals with different kinds of set order relations to study set optimization
problems.
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Fig. 6.1 Visualization of sets A, B, A + B, A − B, and A−̇B

Definition 6.4 [92, 115] Let Y be a topological vector space, A, B ∈ P(Y ), and C
be a proper convex cone in Y . The set order relations on P(Y ) with respect to C are
defined as follows:

(a) The lower set less order relation l
C is defined by

A l
C B ⇔ B ⊆ A + C,

or equivalently, for all b ∈ B, there exists a ∈ A such that a C b.
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Fig. 6.2 Illustration of set order relations in R
2 with C = R

2+

(b) The upper set less order relation u
C is defined by

A u
C B ⇔ A ⊆ B − C,

or equivalently, for all a ∈ A, there exists b ∈ B such that a C b.
(c) The set less order relation s

C is defined by

A s
C B ⇔ B ⊆ A + C and A ⊆ B − C,

or equivalently, for all b ∈ B, there exists a ∈ A such that a C b, and for all
a ∈ A, there exists b ∈ B such that a C b.

(d) The certainly set less order relation c
C is defined by

A c
C B ⇔ (A = B) or (A �= B, for all b ∈ B, for all a ∈ A such that a C b),

or equivalently, A = B, or B − A ⊂ C whenever A �= B.
(e) The possibly set less order relation p

C is defined by

A p
C B ⇔ there exists b ∈ B, there exists a ∈ A such that a C b,

which is equivalent to A ∩ (B − C) �= ∅ or B ∩ (A + C) �= ∅.
When the cone C has nonempty interior, that is, intC �= ∅, then we can define the

corresponding weak set order relations ≺α
C , α ∈ {l, u, s, c, p} as the relations α

C ,
α ∈ {l, u, s, c, p} by replacing C with intC .

For instance, the weak lower set less order relation ≺l
C is defined as

A ≺l
C B ⇔ B ⊆ A + intC,

and the weak upper set less order relation ≺u
C is defined as
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A ≺u
C B ⇔ A ⊆ B − intC.

Note that the set less order relation s
C has been independently introduced by

Young [150] and Nishnianidze [134]. Chiriaev and Walster [31] used the set order
relations s

C , c
C , and p

C in the interval arithmetic and implemented in the FOR-
TRAN compiler f95 of SUN Microsystems [146]. These set order relations have
been presented by Kuroiwa [115] in the modified form as defined in Definition6.4.
See Fig. 6.2 for an illustration of these set order relations.

The following proposition gives the properties of the set order relations defined
as above.

Proposition 6.2 [92]

(a) The set order relations l
C , u

C , and s
C are pre-order and compatible with

respect to addition and scalar multiplication on P(Y ).
(b) The set order relation c

C is a pre-order and compatible with respect to addition
and scalar multiplication on P(Y ). If the ordering cone C is pointed, then the
set order relation c

C is antisymmetric and hence, a partial order relation.
(c) The set order relation p

C is reflexive and compatible with respect to addition
and scalar multiplication on P(Y ). In general, it is not transitive and not anti-
symmetric.

(d) In general, the set order relations l
C ,u

C , and s
C are not antisymmetric. More

precisely, for arbitrary sets A, B ∈ P(Y ), we have

(1) (A l
C B and B l

C A) ⇔ A + C = B + C;
(2) (A u

C B and B u
C A) ⇔ A − C = B − C;

(3) (A s
C B and B s

C A) ⇔ (A + C = B + C and A − C = B − C).

Remark 6.1 The pointedness of the coneC in Proposition6.2(b) cannot be relaxed.
Indeed, let Y = R

2 and C = R × {0}. Then C is not pointed. For A = [−1, 1] × {0}
and B = [3, 5] × {0}, we have A c

C B and B c
C A but A �= B.

The following example shows that the set order relationp
C is in fact not transitive

and not antisymmetric.

Example 6.2 Let Y = R
2 and C = R

2+. Consider the sets

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 22, y1 ≥ 0, y2 ≥ 0},

A2 = {(y1, y2) ∈ R
2 : (y1 − 3)2 + (y2 + 1)2 ≤ 1},

A3 = conv{(4,−2), (6,−2), (6,−4)},

where conv denotes the convex hull. One can easily see from Fig. 6.3 that

A1 p
C A2 and A2 p

C A1 but A1 �= A2,

and
A1 p

C A2 and A2 p
C A3 but A1 �

p
C A3.
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Fig. 6.3 Visualization of Example6.2 with C = R
2+

We have the following relation between the lower set less order relation l
C and

the upper set less order relation u
C :

A l
C B ⇔ B ⊆ A + C ⇔ B ⊆ A − (−C) ⇔ B u

−C A ⇔ (−B) u
C (−A).

Similarly,

A ≺l
C B ⇔ B ⊆ A + intC ⇔ B ⊆ A − (−intC) ⇔ B ≺u−C A ⇔ (−B) ≺u

C (−A).

Proposition 6.3 [92] Let A, B ∈ P(Y ) with A �= B. Then,

(a) A s
C B ⇒ A l

C B ⇒ A p
C B;

(b) A s
C B ⇒ A u

C B ⇒ A p
C B;

(c) A l
C B does not always imply A u

C B, and A u
C B does not always imply

A l
C B.

The following example shows that the implications in Proposition6.3 are strict,
that is, the converse implications do not hold.

Example 6.3 Let Y = R
2 and C = R

2+. Consider the sets



116 Q. H. Ansari and P. K. Sharma

Fig. 6.4 Visualization of Example6.3 with C = R
2+

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 22, y1 ≥ 0, y2 ≥ 0},

A2 = conv{(2, 0), (4, 0), (4,−2)},
A3 = {(y1, y2) ∈ R

2 : (y1 − 2)2 + (y2 − 0.5)2 ≤ 0.52},
A4 = {(y1, y2) ∈ R

2 : (y1 + 0.5)2 + (y2 − 1)2 ≤ 0.72}.

From Fig. 6.4, it can be easily visualized that

A1 p
C A2 but A1 �

l
C A2 and A1 �

u
C A2,

A1 l
C A3 but A1 �

u
C A3 and hence A1 �

s
C A3,

and
A4 u

C A1 but A4 �
l
C A1 and hence A4 �

s
C A1.

Let us illustrate the set order relations by the following example with order inter-
vals.

Example 6.4 [92] Let a1, a2, b1, b2 ∈ Y be arbitrarily given with a1 C a2 and
b1 C b2, and consider the intervals

A = [a1, a2] := {y ∈ R : a1 C y C a2}

and
B = [b1, b2] := {y ∈ R : b1 C y C b2}.
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(a) [a1, a2] s
C [b1, b2] ⇔ a1 C b1 and a2 C b2.

(b) [a1, a2] c
C [b1, b2] ⇔ a2 C b1.

(c) [a1, a2] p
C [b1, b2] ⇔ a1 C b2.

(d)

A s
C B ⇔

{
min A ∈ min B − C, min B ∈ min A + C,

max A ∈ max B − C, max B ∈ max A + C,

⇔ min B − min A ∈ C and max B − max B ∈ C.

and

A c
C B ⇔ min B ∈ max A + C and max A ∈ min B − C,

where min A := {a ∈ A : A ∩ (a − C) = {a}} and max A := {a ∈ A : A ∩
(a + C) = {a}} are the sets of minimal elements and maximal elements, respec-
tively, with respect to the convex pointed cone C .

This observation was one of the motivations to Jahn and Ha [92] to introduce new
set order relations involving minimal and maximal elements.

From a practical point of view, the set order relations s
C and c

C are more appro-
priate in applications than the other set order relations. In the case of order intervals,
the set order relations s

C and c
C are described by a pre-order of the minimal and

maximal elements of these intervals. But for general nonempty sets A and B, which
possess minimal elements and maximal elements, this property may not be fulfilled.
The following figure illustrates two sets A, B ∈ P(Y ) with A s

C B and the proper-
ties max A ⊆ max B − C but max B � max A + C . This means that there may be
elements b ∈ max B and a ∈ max A which are not comparable with respect to the
pre-order (see Fig. 6.5). In order to avoid this drawback, Jahn and Ha [92] defined
new set order relations involving the minimal and maximal elements of a set. This
leads to various definitions of “minmax less” set order relations. For further details,
see [92].

We denote by � := {A ∈ P(Y ) : min A �= ∅ and max A �= ∅}, where min A :=
{a ∈ A : A ∩ (a − C) = {a}} and max A := {a ∈ A : A ∩ (a + C) = {a}} are the
sets of minimal elements and maximal elements, respectively, with respect to the
convex pointed cone C in a topological vector space Y .

Definition 6.5 [92] Let A, B ∈ � and C be a proper, convex, and pointed cone in
a toplogical vector space Y . The minmax set order relations on � with respect to C
are defined as follows:

(a) The minmax set less order relation m
C is defined by

A m
C B ⇔ min A s

C min B and max A s
C max B.

(b) The minmax certainly set less order relation mc
C is defined by
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Fig. 6.5 Illustration of two
sets A, B ∈ P(Y ) with
A s

C B, and a ∈ max A and
b ∈ max B with a �C b and
b �C a, and C = R

2+

Fig. 6.6 Illustration of two sets A, B ∈ � with A m
C B and A mc

C B, and C = R
2+

A mc
C B ⇔ (A = B) or (A �= B, min A c

C min B and max A c
C max B).

(c) The minmax certainly nondominated set less order relation mn
C is defined by

A mn
C B ⇔ (A = B) or (A �= B, max A s

C min B).

Neukel [132, 133] used set order relations defined in Definitions6.4 and 6.5 to
deal with the building conflict situation in the surroundings of the Frankfurt airport
and cryptanalysis of substitution ciphers. See Fig. 6.2 and Fig. 6.6 for an illustration
of these set order relations.

Definition 6.6 [92] A set A ∈ � is said to have the quasi domination property if
and only if the following equivalent conditions hold:

(a) min A + C = A + C and max A − C = A − C .
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(b) A ⊆ min A + C and A ⊆ max A − C .

Proposition 6.4 [92]

(a) The set order relations m
C and mc

C are pre-order on � and compatible with
respect to the scalar multiplication with nonnegative real numbers. In general,
they are not antisymmetric.

(b) Let A, B ∈ � have the quasi domination property. The set order relation mn
C

is pre-order on � and compatible with respect to the scalar multiplication with
nonnegative real numbers. If the ordering cone C is pointed, then the set order
relation mn

C is antisymmetric.

Remark 6.2 The pointedness of the coneC in Proposition6.4(b) cannot be dropped.
From Remark6.1, it is easy to see that for the sets A and B, we have A mn

C B and
B mn

C A but A �= B.

More precisely, for any A, B ∈ �, we have

(a) (A m
C B and B m

C A) ⇔ (min A + C = min B + C, min A − C = min
B − C, max A + C = max B + C, and max A − C = max B − C).

(b) If C is pointed, then

(A mc
C B and B mc

C A) ⇔ (min A = min B and max A = max B),

(c) If C is pointed and A, B have the quasi domination property, then

(A m
C B and B m

C A) ⇔ (min A = min B and max A = max B).

The following result provides the relation among different kinds of set order
relations.

Proposition 6.5 [92] Let A, B ∈ � with A �= B. Suppose that A and B have the
quasi domination property. Then,

(a) A c
C B ⇒ A mc

C B ⇒ A m
C B ⇒ A s

C B;
(b) A c

C B ⇒ A mn
C B ⇒ A m

C B;
(c) A mn

C B does not always imply A mc
C B and A mc

C B does not always imply
A mn

C B.

The following example illustrates that the implications in the above proposition
are strict, that is, the converse implications do not hold.

Example 6.5 [92] Let Y = R
2 and C = R

2+. Consider the sets
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Fig. 6.7 Visualization of Example6.5 with C = R
2+

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1},

A2 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + (y2 − 1)2 ≤ 1},

A3 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + y22 ≤ 1},

A4 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + (y2 − 1)2 ≤ 1, y21 + y22 ≥ 1},

A5 = conv{(−2, 0), (−3,−1), (0,−2)},
A6 = conv{(4, 2), (0, 2), (4,−2)}.

From Fig. 6.7, one can easily visualize that

A1 mc
C A2 but A1 �

mn
C A2 and A1 �

c
C A2,

A1 m
C A3 but A1 �

mn
C A3 and hence A1 �

mc
C A3,

A1 mn
C A4 but A1 �

c
C A4,

A5 mn
C A6 but A5 �

mc
C A6.

Remark 6.3 From Propositions6.2 and 6.5, it is clear that the set order relation p
C

is the weakest one and the set order relation c
C is the strongest one. Furthermore,

in contrast to the set order relations c
C and mn

C , the set order relations α
C , α ∈

{l, u, s,m,mc} are generally not antisymmetric. To see this, it suffices to consider
the case with the set order relationmc

C because this set order relation is the strongest
one among all other set order relations.

Let Y = R
2 and C = R

2+. Consider the sets

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1},

A2 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1,−1 ≤ y1 − y2 ≤ 1}.
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Then we can see that A �= B, A mc
C B, and B mc

C A.

6.3.1 Set Order Relations in Terms of the Minkowski
Difference

Recently, Karaman et al. [96] introduced the following set order relations on the
family of sets by using the Minkowski difference.

Definition 6.7 [96] Let Y be a normed space and A, B, K ∈ P(Y ).

(a) The m-upper set less order relation, denoted by mu
K , is defined as

A mu
K B ⇔ (B−̇A) ∩ K �= ∅.

(b) The m-lower set less order relation, denoted by ml
K , is defined as

A ml
K B ⇔ (A−̇B) ∩ (−K ) �= ∅.

If A and B are bounded and A−̇B �= ∅, B−̇A �= ∅, then A mu
K B if and only if

A ml
K B. If A and B are singleton sets and K is a convex and pointed cone with

0 ∈ K , then mu
K and ml

K coincide with the vector order relation C on Y , that is,
for any a, b ∈ Y , we have

{a} mu
K {b} ⇔ {a} ml

K {b} ⇔ a K b.

It is pointed out in [96] that

(a) if K is a convex cone in Y and 0 ∈ K , then mu
K and ml

K are pre-order on P(Y );
(b) if K is a pointed convex cone in Y with 0 ∈ K , then mu

K and ml
K are partial

order on B(Y );
(c) mu

K and ml
K are compatible with addition;

(d) mu
K andml

K are compatible with scalar multiplication if and only if K is a cone.

From now onward, we consider the ordering cone C on Y instead of K , then mu
K

and ml
K turn to mu

C and ml
C .

The set order relations mu
C and ml

C and the set order relations u
C and l

C have
the following relations: For any A, B ∈ P(Y ),

A mu
C B ⇒ A u

C B and A ml
C B ⇒ A l

C B,

but the converse of the above implications may not be true.
The following example illustrates that the set order relation u

C does not imply
mu

C .
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(b)(a)

Fig. 6.8 (a) Illustration of sets in Example6.6. (b) Illustration of sets in Example6.7

Example 6.6 Let Y = R
2 and C = R

2+. Consider the sets

A = conv{(2, 0), (3, 3), (0, 2)}

and
B = {(y1, y2) ∈ R

2 : (y1 − 5)2 + (y2 − 5)2 ≤ 1}.

As in Fig. 6.8 (a), A ⊆ B − C which gives us A u
C B. On the other hand, there does

not exist any x ∈ R
2 such that x + A ⊆ B. Hence, we have (B−̇A) ∩ C = ∅, that

is, A �
mu
C B.

The following example shows that the set order relation l
C does not imply the

set order relation ml
C .

Example 6.7 Let Y = R
2 and C = R

2+. Consider the sets

A = {(y1, y2) ∈ R
2 : (y1 + 1)2 + (y2 + 1)2 ≤ 1}

and
B = conv{(0, 0), (3, 2), (2, 3)}.

As in Fig. 6.8 (b), B ⊆ A + C which gives us A l
C B. On the other hand, there does

not exist any x ∈ R
2 such that x + B ⊆ A. Hence, we have (A−̇B) ∩ (−C) = ∅,

that is, A �
ml
C B.

The strict version of mu
C and ml

C is defined as follows:

Definition 6.8 [96] Let Y be a normed space, A, B ∈ P(Y ), andC be a convex cone
in Y with intC �= ∅.
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(a) The strictly m-upper set less order relation, denoted by ≺mu
C , is defined as

A ≺mu
C B ⇔ (B−̇A) ∩ intC �= ∅.

(b) The strictly m-lower set less order relation, denoted by ≺ml
C , is defined as

A ≺ml
C B ⇔ (A−̇B) ∩ int(−C) �= ∅.

Remark 6.4 Let α ∈ {mu,ml} and A, B ∈ P(Y ). If A ≺α
C B, then A α

C B.

It is pointed out in [96] that

(a) ≺mu
C and ≺ml

C are compatible with addition;
(b) ≺mu

C and ≺ml
C are compatible with scalar multiplication.

IfC is a pointed convex cone, even then the relations≺mu
C and≺ml

C are not reflexive
unless C = Y , and hence, ≺mu

C and ≺ml
C are not partial order. The following example

clarifies this fact.

Example 6.8 Let Y=R
2,C=R

2+, and A = {(x, y) : x2 + y2 ≤ 1}. Since A−̇A =
{0}, we have {0} ∩ intC = ∅ and A ⊀

mu
C A. Similarly, since (A−̇A) ∩ int(−C) �= ∅,

we obtain A ⊀
ml
C A.

6.3.2 Set Order Relations with Respect to Variable
Domination Structures

In the recent past, Eichfelder and Pilacka [42, 44] and Köbis et al. [7, 101, 102] are
amongmajor contributors to study set optimization problems with respect to variable
ordering structures with applications to different real-world problems. The impor-
tance of incorporating variable ordering structures for intensity-modulated radiation
therapy (IMRT) in order to allow an improved modeling of the decision-making
problem is already discussed in [40, Chap.10]. Another significant application of set
optimization problems with respect to variable domination structures can be found in
the theory of consumer demand [119], medical image registration [104], and uncer-
tain optimization [7].

To study set optimization problems with respect to variable domination structures
by using a set approach, we recall the following six kinds of generalized variable set
order relations to compare sets in a topological vector space Y .

Definition 6.9 [104] Let A, B ∈ P(Y ) and K : Y ⇒ Y be a set-valued map. The
following binary relations on P(Y ) with respect to K are defined as follows:

(a) The variable generalized lower set less order relation K
l is defined by

A K
l B ⇔ B ⊆

⋃

a∈A

(a + K(a)).
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(b) The variable generalized upper set less order relation K
u is defined by

A K
u B ⇔ A ⊆

⋃

b∈B
(b − K(b)).

(c) The variable generalized certainly lower set less order relation K
cl is defined

by
A K

cl B ⇔ B ⊆
⋂

a∈A

(a + K(a)).

(d) The variable generalized certainly upper set less order relation K
cu is defined

by
A K

cu B ⇔ A ⊆
⋂

b∈B
(b − K(b)).

(e) The variable generalized possible lower set less order relation K
pl is defined

by
A K

pl B ⇔ B ∩
⋃

a∈A

(a + K(a)) �= ∅.

(f) The variable generalized possible upper set less order relation K
pu is defined

by
A K

pu B ⇔ A ∩
⋃

b∈B
(b − K(b)) �= ∅.

Remark 6.5 For all y ∈ Y , ifK(y) = C is a convex cone with intC �= ∅ in Y , then
the set order relations K

l and K
u reduce to the set order relations l

C and u
C ,

respectively. See Fig. 6.9 for illustration of variable generalized set order relations.

Proposition 6.6 [119] Let A, B ∈ P(Y ). Then, the following assertions hold:

(a) A K
u B ⇔ B −K

l A;
(b) A K

cu B ⇔ B −K
cl A;

(c) A K
pu B ⇔ B −K

pl A;

(d) A K
cl B ⇒ A K

l B ⇒ A K
pl B;

(e) A K
cu B ⇒ A K

u B ⇒ A K
pu B.

Köbis et al. [104] established the following useful properties of the set order
relations K

t , t ∈ {l, u, cl, cu, pl, pu}
Proposition 6.7 [104] Let K : Y ⇒ Y be a set-valued map. The following state-
ments hold:

(a) If 0 ∈ K(y) for all y ∈ Y , then the set order relations K
l , K

u , K
pl , and K

pu
are reflexive.
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Fig. 6.9 Visualization of variable generalized set order relations defined in Definition6.9

(b) IfK(y) + K(y) ⊆ K(y) for all y ∈ Y andK(y + d) ⊆ K(y) for all y ∈ Y and
all d ∈ K(y), then the set order relations K

l and K
cl are transitive.

(c) IfK(y) + K(y) ⊆ K(y) for all y ∈ Y andK(y − d) ⊆ K(y) for all y ∈ Y and
all d ∈ K(y), then the set order relations K

u and K
cu are transitive.

(d) If K(y) ∩ (−K(z)) = {0} for all y, z ∈ Y , then the set order relations K
cl andK

cu are antisymmetric.

6.4 Nonlinear Scalarization Functions

We first recall the linear scalarization method for vectors. The most representative
example of linear scalarizing functions is an inner product. For any y, k ∈ Y , in case
of vector, the linear scalarizing function is defined by

hk(y) := 〈y, k〉. (6.1)

Based on this scalarization, we can consider the following scalarizing functions
for a set A ⊆ Y defined by

ϕk(A) := inf
y∈A

〈y, k〉 and φk(A) := sup
y∈A

〈y, k〉.

Rest of this section, we assume that C is a proper, solid, closed convex cone in
a topological vector space Y and k ∈ intC . The nonlinear scalarization functional
ϕC,k : Y → (−∞,∞] is defined by
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ϕC,k(y) = inf{t ∈ R : y C tk} = inf{t ∈ R : y ∈ tk − C}, for all y ∈ Y. (6.2)

As mentioned in [103], Fig. 6.10 visualizes the functional ϕC,k with C = R
2+ and

k ∈ intC . We can see that the set−C is moved along the line R · k up until y belongs
to tk − C . The functional ϕC,k assigns the smallest value t such that the property
y ∈ tk − C is fulfilled.

It can be shown that all minimal elements of a vector optimization problem can
be found by means of ϕC,k if k ∈ C \ {0}, and all weakly minimal elements of a
vector optimization problem can be determined if k ∈ intC (see [54]). In Fig. 6.10,
we can easily see that for the given cone C = R

2+, by a variation of the vector
k ∈ C \ {0}, all minimal elements of the vector optimization problem without any
convexity assumptions can be found. The scalarizing functional ϕC,k was used in
[54] to prove nonconvex separation theorems and has applications in coherent risk
measures in financial mathematics (see, for instance, [66, 85]).

We note that the set {t ∈ R : y ∈ tk − C} may be empty, and in this case ϕC,k

will take +∞ as by convention inf ∅ = +∞. For further details, see [56]. On the
other hand, if k ∈ C , then the lower level set of ϕC,k at each height t coincides with
a parallel translation of −C at offset tk, that is,

{y ∈ Y : ϕC,k(y) ≤ t} = tk − C,

and hence ϕC,k is the smallest strictlymonotonic functionwith respect to the ordering
cone C in case k ∈ intC . Also, this scalarization function has a dual form as follows:

−ϕC,k(−y) = sup{t ∈ R : tk C y} = sup{t ∈ R : y ∈ tk + C}, for all y ∈ Y.

The importance of this function is due to the fact that it characterizes, under some
appropriate assumptions, the relation C as

Fig. 6.10 Illustration of the
functional (6.2) with
C = R

2+
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y1 C y2 ⇔ ϕC,k(y1 − y2) ≤ 0.

Another essential feature of this function is the so-called translativity property
(see [56] for details), that is,

for all y ∈ Y and all α ∈ R : ϕC,k(y + αk) = ϕC,k(y) + α.

In [148], functionals of type (6.2) have been applied in order to obtain vector-
valued variants of Ekeland’s variational principle. For this topic, see also [59] and
[65]. Note that the originality of the approach in [54, 148] relies on the fact that the
set C defining a functional via (6.2) was assumed neither to be a cone nor convex.
In some papers, this functional has been treated and regarded as a generalization of
the Chebyshev scalarization, see the books [9, 56, 127]. Essentially, it is equivalent
to the smallest strictly monotonic function with respect to intC defined by Luc in
[127].

Recently, Köbis et al. [103] characterized the upper and lower set less order
relations defined in Definition6.4(a) and (b) by using the scalarization functional
ϕC,k as follows.

Theorem 6.4.1 [103, Theorems 3.3 and 3.8] Let C be a proper closed convex cone
in a topological vector space Y and A, B ∈ P(Y ).

(a) If k0 ∈ C\{0} is such that inf
b∈B ϕC,k0(a − b) is attained for all a ∈ A, then

sup
a∈A

inf
b∈B ϕC,k0(a − b) ≤ 0 ⇔ A ⊆ B − C.

(b) If k1 ∈ C\{0} is such that inf
a∈A

ϕC,k1(a − b) is attained for all b ∈ B, then

sup
b∈B

inf
a∈A

ϕC,k1(a − b) ≤ 0 ⇔ B ⊆ A + C.

Recently, Köbis et al. [105] and Ansari et al. [10] studied and investigated new
nonlinear scalarization functions for the relations K

l and K
u and discussed some

of its properties.
Let A, B ∈ P(Y ) and K : Y ⇒ Y be a set-valued map. For each k ∈ Y \ {0}, let

[0,+∞)k + K(y) ⊆ K(y), for all y ∈ Y. (6.3)

Let B ∈ P(Y ) be arbitrary but fixed. Consider the scalarization functionals ϕk,B :
P(Y ) → R ∪ {+∞} and φk,B : P(Y ) → R ∪ {+∞} defined by

ϕk,B(A) := inf{t ≥ 0 : A K
u tk + B}, for all A ∈ P(Y ), (6.4)

and
φk,B(A) := inf{t ≥ 0 : A K

l tk + B}, for all A ∈ P(Y ), (6.5)
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respectively.
If we consider B = {0}, then the scalarization functionals ϕk,B and φk,B defined

by (6.4) and (6.5) can be written as huk : P(Y ) → R ∪ {+∞} and hlk : P(Y ) →
R ∪ {+∞}, respectively, and we have huk : P(Y ) → R ∪ {+∞} and hlk : P(Y ) →
R ∪ {+∞}, respectively, and we have

huk (A) = inf {t ≥ 0 : A K
u tk}, (6.6)

and
hlk(A) = inf {t ≥ 0 : A K

l tk}, (6.7)

for all A ∈ P(Y ).
For more details, we refer to [10, 105].

6.4.1 Weighted Set Order Relations

Rest of this subsection, we assume the following assumption.

Assumption 1 The ordering coneC �= Y is solid, closed, and convex in a Hausdorff
topological vector space Y and k ∈ intC is such that inf

b∈B ϕC,k(a − b) is attained for

all a ∈ A and inf
a∈A

ϕC,k(a − b) is attained for all b ∈ B whenever A and B are closed

and bounded sets in Y .

By using the characterization of the set order relations l
C and u

C given in The-
orem6.4.1, Chen et al. [30] introduced the so-called weighted set order relations as
follows.

Definition 6.10 Let A, B ∈ �cb and λ ∈ [0, 1]. The weighted set order relation λ
C

for sets A, B ∈ P(Y ) is defined by

A λ
C B ⇔ λgu(A, B) + (1 − λ)gl(A, B) ≤ 0,

where

gu(A, B) := sup
a∈A

inf
b∈B ϕC,k(a − b) and gl(A, B) := sup

b∈B
inf
a∈A

ϕC,k(a − b).

Remark 6.6 [30] For any λ ∈ [0, 1], the relation λ
C is reflexive and transitive, that

is,λ
C is a pre-order.Moreover, the relationλ

C is compatible with nonnegative scalar
multiplication, that is, for any A, B ∈ P(Y ) and α ≥ 0, one has

A λ
C B ⇒ αA λ

C αB.
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Remark 6.7 For λ = 1, λ
C reduces to u

C , and for λ = 0, λ
C reduces to l

C . If u
C

and l
C hold, then λ

C is true for all λ ∈ [0, 1], but the converse is not true and this
was exactly the intention of introducing λ

C .
Note that the parameter λ serves as aweight vector which indicates the importance

of either of the two relations u
C and l

C . The relation which is more important
should be associated with a higher weight factor. For instance, if gu(A, B) ≤ 0
and gl(A, B) > 0, then, for large enough λ, A λ

C B can hold and the A u
C B

“outweighs” the effects of A �
l
C B.

Remark 6.8 Chen et al. [30] gave the definition of the weighted set order relation
under the assumption of Y being a quasicompact topological space. Recalling that
usually a Hausdorff (separated) topological space is called compact if it is quasi-
compact, one may realize that [30, Definition 2.5] is basically empty (as well as the
following results, for example, [30, Proposition 2.9]): Up to trivial examples, there
are no (quasi) compact topological linear spaces; not even the real line with the usual
topology satisfies this assumption. Therefore, we modified Assumption 2.4 in [30]
to the version above: It is certainly satisfied in any finite-dimensional space when
the usual topology since every closed bounded set in such a space is compact and
the function ϕC,k is continuous for k ∈ intC .

We provide an example below to illustrate the weighted set order relations λ
C

and discuss the role of the parameter λ.

Example 6.9 [30] Let A = [a, c] and B = [b, d] be compact sets in R. We choose
C = R+ and k = 1. Then,

gu(A, B) = sup
a∈A

inf
b∈B ϕC,k(a − b) = sup

a∈A
inf
b∈B inf{t ∈ R : a − b ≤ t}

= sup
a∈A

inf
b∈B(a − b) = sup

a∈A
a − sup

b∈B
b = c − d,

gu(A, B) = a − b, gu(B, A) = d − c, gl(B, A) = b − a.

Consider a = 5, c = 10, b = 0, and d = 11. Then B �
u
C A, but B l

C A. Also,
A u

C B, but A �
l
C B. However, we can see that the “amount” of B that is big-

ger than the supremum of A is very small compared to how the lower bound of B
is smaller than the lower bound of A. In that sense, when a decision-maker has no
clear understanding of how to choose a set, the weighted set order relationλ

C can be
helpful. We have gu(A, B) = −1, gl(A, B) = 5. So, in order for A λ

C B to hold,
λ ∈ [ 56 , 1]. Similarly, as gu(B, A) = 1, gl(B, A) = −5, λ ∈ [0, 5

6 ] for B λ
C A to

hold true.
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6.5 Solution Concepts in Set Optimization

This section deals with the solution concepts of the set optimization problem (SOP)
with vector approach and set approach. The solution concept based on the vector
approach is of mathematical interest but it cannot be often used in practice.

In the vector approach, an element x̄ ∈ S forwhich there exists at least one element
ȳ ∈ F(x̄) which is Pareto minimal point of the image set of F is a solution of the set
optimization problem (SOP). In the past, solution concepts based on vector approach
has been studied and investigated in [1, 2, 29, 33–35, 41, 55, 59, 61, 64, 80, 93,
122, 123] and the references therein.

Definition 6.11 [1, 80] An element x̄ ∈ S is said to be

(a) a minimal solution of the problem (SOP) if there exists ȳ ∈ F(x̄) such that ȳ is
a minimal element of image set F(S), that is,

({ȳ} − C) ∩ F(S) = {ȳ}.

(b) a weak minimal solution of the problem (SOP) if there exists ȳ ∈ F(x̄) such that
ȳ is a weak minimal element of image set F(S), that is,

({ȳ} − intC) ∩ F(S) = ∅.

We denote the set of minimal and weak minimal elements of (SOP) by Min(F, S)

and WMin(F, S), respectively.
Recall that min A := {a ∈ A : A ∩ (a − C) = {a}} and wminA := {a ∈ A : A ∩

(a − intC) = ∅} are the sets of minimal elements and weak minimal elements,
respectively, with respect to the convex pointed cone C in a topological vector space
Y .

Note that Definition6.11 can also be written as follows:
An element x̄ ∈ S is said to be

(a) a minimal solution [99] of the problem (SOP) if there exists ȳ ∈ F(x̄) such that

(F(S) − {ȳ}) ∩ (−C) = {0};

(b) aweak minimal solution [99] of the problem (SOP) if there exists ȳ ∈ F(x̄) such
that

(F(S) − {ȳ}) ∩ (−intC) = ∅.

Another form of Definition6.11 can also be written as follows:
An element x̄ ∈ S is said to be

(a) a minimal solution [96] of the problem (SOP) if F(x̄) ∩ min F(S) �= ∅;
(b) a weak minimal solution [96] of the problem (SOP) if F(x̄) ∩ wminF(S) �= ∅.
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Fig. 6.11 Illustration of
Example6.10 with C = R

2+

It is clear that Min(F, S) ⊆ WMin(F, S). However, the reverse inclusion may
not hold.

Example 6.10 Let X=R, S=[0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by

F(x) =
{

{(y1, y2) ∈ R
2 : (y1 − 3/2)2 + (y2 − 3/2)2 = (3/2)2}, if x = 0,

conv{(0, 0), (2, 0), (2, 2)}, otherwise.

From Fig. 6.11, we can see that there exists ȳ ∈ F(0) such that ({ȳ} − intC) ∩
F(S) = ∅ and hence 0 ∈ WMin(F, S) but there does not exist any ȳ ∈ F(0) such
that ({ȳ} − C) ∩ F(S) = {ȳ}, so 0 /∈ Min(F, S).

As we have seen above, in the vector approach, we consider only a minimal ele-
ment ȳ of the image set F(S). However, only one minimal element does not imply
that thewhole set F(x̄) be in a certain senseminimalwith respect to all sets F(x)with
x ∈ S. To overcome this drawback, the solution concepts based on the set approach
are very helpful and important. In the set approach, solution concepts are defined by
using different kinds of set order relations, and these solutions are based on the com-
parison of values of set-valued objective map using set order relations. In the recent
past, solution concepts based on set approach have been studied and investigated in
[1, 8, 25, 30, 67, 79–84, 92, 96, 109, 110, 112, 115] and the references therein.

As the set order relationsl
C ,u

C ,s
C ,c

C on P(Y );m
C ,mc

C ,mn
C on�; andλ

C
on �cb are pre-order, we can define optimal solutions with respect to the pre-order
t

C , where t ∈ {l, u, s, c,m,mc,mn, λ}. For the set order relation t
C , we assume

the following condition:

F takes values on

⎧
⎪⎨

⎪⎩

P(Y ), if t ∈ {l, u, s, c},
�, if t ∈ {m,mc,mn},
�cb, if t = λ.
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Definition 6.12 [30, 92] Let t ∈ {l, u, s, c,m,mc,mn, λ}. An element x̄ ∈ S is said
to be

(a) a t-minimal solution of the problem (SOP) with respect to the set order relation
t

C if and only if

F(x) t
C F(x̄) for some x ∈ S ⇒ F(x̄) t

C F(x);

(b) a t-strongly minimal solution of the problem (SOP) with respect to the set order
relation t

C if and only if

F(x̄) t
C F(x), for all x ∈ S;

(c) a t-weak minimal solution of the problem (SOP) with respect to the set order
relation ≺t

C , t �= λ if and only if

F(x) ≺t
C F(x̄) for some x ∈ S ⇒ F(x̄) ≺t

C F(x).

We denote the family of t-minimal, t-strongly minimal, and t-weak minimal
elements of S by t − Min(F, S), t − SMin(F, S), and t − WMin(F, S), respectively,
where t ∈ {l, u, s, c,m,mc,mn, λ}.

It is clear that t − Min(F, S) ⊆ t − WMin(F, S) for t ∈ {l, u}. However, the
reverse inclusion may not hold.

Example 6.11 Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

[(−1,−1), (1, 1)], if x = 0,

{(u, v) ∈ R
2 : u2 + v2 ≤ x2}, otherwise.

Then it can be easily seen that l − Min(F, S) = {0} and l − WMin(F, S) = {0, 1}.
Example 6.12 Let X = R, S = [−1, 0],Y = R

2,C = R
2+, and F : S ⇒ Y be

defined by

F(x) =
{

[0,−2] × [0,−2], if x = 0,

[0,−3) × (0,−3), otherwise.

Then we see that 0 ∈ u − WMin(F, S) but 0 /∈ u − Min(F, S).

Definition 6.13 [77, 78] Let S be a nonempty convex subset of X . A set-valued map
F : S ⇒ Y is said to be

(a) strictly natural l-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2 and
all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺l
C λF(x1) + (1 − λ)F(x2);



6 Set Order Relations, Set Optimization, and Ekeland’s Variational Principle 133

(b) strictly natural u-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺u
C λF(x1) + (1 − λ)F(x2).

Proposition 6.8 [77, 78] Assume that S is a convex subset of X, F : S ⇒ Y is a
strictly natural l-type C-quasi-convex map on S with nonempty compact values.
Then, l − Min(F, S) = l − WMin(F, S).

Proposition 6.9 [77, 78] Assume that S is a convex subset of X, F : S ⇒ Y is a
strictly natural u-type C-quasi-convex map on S with nonempty compact values.
Then, u − Min(F, S) = u − WMin(F, S).

The following examples show that there is no relation between minimal and l-
minimal solutions.

Example 6.13 [79]Let X = R, S = R+,Y = R
2,C = R

2+, and F : S ⇒ Y bedefined
by

F(x) =
{

{(0, 0)}, if x = 0,

[(0, 0), (−x, 1
x )], otherwise.

Then we can easily obtain Min(F, S) = S and l − Min(F, S) = ∅.
Example 6.14 [79] Let X = R, S = [−1, 0],Y = R

2,C = R
2+, and F : S ⇒ Y be

defined by

F(x) =
{

{(u,−u2) ∈ R
2 : −1 < u ≤ 0}, if x = −1,

[(x, 0), (x,−x2)], otherwise.

After a short calculation, we get Min(F, S) = ∅ and l − Min(F, S) = {−1}.
The following examples show that there is no relation between minimal and u-

minimal solutions.

Example 6.15 [1] Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =

⎧
⎪⎨

⎪⎩

{(u, v) ∈ R
2 : u2 + v2 = x2, v > 0}, if x �= −1, 0,

(−1/2, 1), if x = −1,

(1/2, 1), if x = 0.

We can easily check that Min(F, S) = ∅ and u − Min(F, S) = {−1}.
Example 6.16 Let X=R, S = [0, 1],Y=R

2,C = R
2+, and F : S ⇒ Y be defined

by
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F(x) =
{

[[(2, 2), (3, 3)]], if x = 0,

[[(0, 0), (4, 4)]], otherwise.

where [[(a, b), (c, d)]] = {(y1, y2) : a ≤ y1 ≤ c, b ≤ y2 ≤ d}. After a short calcu-
lation, we get Min(F, S) = (0, 1] and u − Min(F, S) = {0}.

We now recall the notions of optimal solutions of the problem (SOP) with respect
to the relations ∗

C and ≺∗
C , where ∗ ∈ {ml,mu}. For the set order relations ∗

C and
≺∗

C , we assume that Y is a normed space, F(x) ∈ B(Y ) for all x ∈ S, K := C is a
closed convex and pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Definition 6.14 Let ∗ ∈ {ml,mu}. An element x̄ ∈ S is called

(a) a ∗-minimal solution of the problem (SOP) with respect to ∗
C if there does

not exist any x ∈ S such that F(x) ∗
C F(x̄) and F(x) �= F(x̄), that is, either

F(x) �
∗
C F(x̄) or F(x) = F(x̄) for any x ∈ S;

(b) a ∗-weak minimal solution of the problem (SOP) with respect to ≺∗
C if

F(x) ≺∗
C F(x̄) for some x ∈ S ⇒ F(x̄) ≺∗

C F(x).

We denote the set of ∗-minimal and ∗-weak minimal solutions of the problem
(SOP) by ∗ − Min(F, S) and ∗ − WMin(F, S), respectively.

Remark 6.9 (a) Since the set order relations ∗
C , ∗ ∈ {ml,mu}, are partial order,

Definition6.14(a) can also be written as follows:
An element x̄ ∈ S is said to be a ∗-minimal solution of the problem (SOP) if

F(x) ∗
C F(x̄) for some x ∈ S ⇒ F(x̄) = F(x).

Furthermore, if t
C is partial order for any t ∈ {l, u, s, c,m,mc,mn, λ}, then

the above also holds true for Definition6.12(a).
(b) Definition6.12(c) and Definition6.14(b) can also be written as follows:

An element x̄ ∈ S is said to be a t-weak minimal solution (∗-weak minimal
solution) of the problem (SOP) if there does not exist any x ∈ S such that
F(x) ≺t

C F(x̄) (F(x) ≺∗
C F(x̄)).

Clearly, ∗ − Min(F, S) ⊆ ∗ − WMin(F, S). However, the reverse inclusion may
not hold.

Example 6.17 Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

{(u, v) ∈ R
2 : u2 + v2 ≤ 4, u > 0, v > 0}, if x = 0,

(0, 3) × (0, 3), otherwise.

Then, 0 ∈ ml − WMin(F, S) but 0 /∈ ml − Min(F, S).
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Example 6.18 Let X = R, S = [−1, 0],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

{(u, v) ∈ R
2 : u2 + v2 ≤ 9, u < 0, v < 0}, if x = 0,

(0,−1) × (0,−1), otherwise.

Then, 0 ∈ mu − WMin(F, S) but 0 /∈ mu − Min(F, S).

Definition 6.15 Let S be a nonempty convex subset of X . A set-valued map F :
S ⇒ Y is said to be

(a) strictly natural ml-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺ml
C λF(x1) + (1 − λ)F(x2).

(b) strictly natural u-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺mu
C λF(x1) + (1 − λ)F(x2).

Proposition 6.10 Assume that S is a convex subset of X, F : S ⇒ Y is a strictly
natural l-type C-quasi-convex map on S with nonempty compact values. Then, ml −
Min(F, S) = ml − WMin(F, S).

Proposition 6.11 Assume that S is a convex subset of X, F : S ⇒ Y is a strictly
natural u-typeC-quasi-convexmap on S with nonempty compact values. Then, mu −
Min(F, S) = mu − WMin(F, S).

We now give the following example to show that anml-minimal solution may not
be a minimal solution and vice-versa.

Example 6.19 Let X = R, S = [−1, 1], Y = R
2, C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

(0, 4) × (0, 4), if x = −1,

[0, 2] × [0, 2], otherwise.

Then, Min(F, S) = (−1, 1] and ml − Min(F, S) = [−1, 1].
In the above example, if F(−1) = [0, 4] × [0, 4] is replacedby F(−1) = (0, 4) ×

(0, 4), then Min(F, S) = [−1, 1] and ml − Min(F, S) = {−1}.
We now give the following examples to show that an mu-minimal solution may

not be a minimal solution and vice-versa.

Example 6.20 Let X = R, S = {0, 1},Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by
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Fig. 6.12 Illustration of Example6.20 with C = R
2+

F(x) =
{
conv{(0, 0), (2, 3), (3, 2)}, if x = 0,

conv{(2, 0), (0, 2), (2, 2)}, if x = 1.

From Fig. 6.12, we can see that there does not exist any ȳ ∈ F(1) such that ({ȳ} −
C) ∩ F(S) = {ȳ}. Therefore, 1 /∈ Min(F, S) but 1 ∈ mu − Min(F, S) because
F(0) �

mu
C F(1).

Example 6.21 Let X = R, S = {0, 1},Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by

F(x) =
{

{(x, y) ∈ R
2 : x2 + y2 ≤ 1}, if x = 0,

{(−√
2

2 , −√
2

2 )}, if x = 1.

Then we can easily obtain Min(F, S) = {0, 1} but ml − Min(F, S) = {1}. Indeed,
F(1)−̇F(0) = ∅. Therefore, F(1)−̇F(0) ∩ C = ∅. Thus, F(0) �

mu
C F(1) and there-

fore 1 ∈ mu − Min(F, S). Moreover, F(0)−̇F(1) �= ∅ (see Fig. 6.13). Therefore,
F(1)−̇F(0) ∩ C �= ∅. Thus, F(1) mu

C F(0) and therefore 0 /∈ mu − Min(F, S).

The following example shows that an mu-minimal solution may not be a u-
minimal solution and vice-versa.

Example 6.22 Let X = R, Y = R
2, S = [0, 1], and C = R

2+. Let F : S ⇒ Y be
defined by

F(x) =
{

[0,−1] × [0,−1], if x = 0,

(0,−2) × (0,−2), otherwise.

Then,
mu − MinF = [0, 1] and u − MinF = (0, 1].
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Fig. 6.13 Illustration of Example6.21 with C = R
2+

Furthermore, if we replace the value of F(x) for all x ∈ (0, 1] by [0,−2] × [0,−2],
then

mu − MinF = {0} and u − MinF = [0, 1].

Example 6.23 Let X = R, Y = R
2, S = [−1, 1], and C = R

2+. Let F : S ⇒ Y be
defined by

F(x) =
{

(0, 1) × (0, 1), if x = −1,

[0, 1/2] × [0, 1/2], otherwise.

We can easily see that

ml − MinF = [−1, 1] and l − MinF = (−1, 1].

Furthermore, if we replace the value of F(−1) by [0, 1] × [0, 1], then

ml − MinF = {−1} and l − MinF = [−1, 1].

The following theorem shows that every weak minimal solution of (SOP) is a
ml-weak minimal solution of the problem (SOP).

Theorem 6.5.1 [99] If C is a closed convex pointed cone in Y with intC �= ∅, then

WMin(F, S) ⊆ ml − WMin(F, S).

From Example6.17, it is clear that the reverse inclusion of the above theorem fails
because 0 ∈ ml − WMin(F, S) but 0 /∈ WMin(F, S).
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Fig. 6.14 Relationship between different kinds of solution concepts of the problem (SOP)

The following theorem shows that every l-weak (u-weak) minimal solution of
(SOP) is a ml-weak (mu-weak) minimal solution of the problem (SOP).

Theorem 6.5.2 [99] If C is a closed convex pointed cone in Y with intC �= ∅, then
u − WMin(F, S) ⊆ mu − WMin(F, S) and l − WMin(F, S) ⊆ ml − WMin(F, S).

However, the converse of the above theoremmay not hold. For instance, in Exam-
ple6.22, 0 ∈ mu − WMin(F, S) but 0 /∈ u − WMin(F, S) and in Example6.23,
−1 ∈ ml − WMin(F, S) but −1 /∈ l − WMin(F, S).

In the following diagram, we summarize the relations among various notions of
minimal and weak minimal solutions involving the set order relations l

C and ml
C .

In a similar way, we can establish relations among various notions of minimal and
weak minimal solutions using different set order relations (Fig. 6.14).

6.5.1 Solution Concepts in Set Optimization with Respect to
Variable Domination Structures

This section introduces different concepts forminimal elements of a family of sets and
solution concepts for the problem (SOP) with respect to variable ordering structures.
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These concepts are defined based on set relations introduced in Definition6.9. In
addition, we present the relationship between the sets of different minimal elements.

Definition 6.16 [104] Let A be a family of nonempty sets in Y and K : Y ⇒ Y be
a set-valued map.

(a) A set Ā ∈ A is called a minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if

∀ A ∈ A, A K
t Ā ⇒ Ā K

t A.

(b) A set Ā ∈ A is called a strong minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if
∀ A ∈ A, Ā K

t A.

(c) A set Ā ∈ A is called a strict minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if

∀ A ∈ A, A K
t Ā ⇒ Ā = A.

The sets of all minimal, strong minimal, and strict minimal elements of A with
respect toK

t , t∈{l, u, cl, cu, pl, pu}, are denoted byMin(A,K
t ), SoMin(A,K

t ),
and SiMin(A,K

t ), respectively.

Remark 6.10 (a) WhenA is a family of singleton sets andK(y) is a closed, convex
and pointed cone for each y ∈ Y , then the definition of strictly minimal element
of A with respect to K

t reduces to the definition of nondominated element of
A with respect to K (see [40, Definition 2.7]).

(b) If Ā ∈ Min(A,K
t ), then for all B ∼ Ā, we have B ∈ Min(A,K

t ). From Def-
inition6.16, we obtain

SiMin(A,K
t ) ⊆ Min(A,K

t ) and SoMin(A,K
t ) ⊆ Min(A,K

t ).

However, neither SiMin(A,K
t ) ⊆ SoMin(A,K

t ) nor SoMin(A,K
t )

⊆ SiMin(A,K
t ) always holds (see [104]).

(b)
SoMin(A,K

cl ) ⊆ SoMin(A,K
l ) ⊆ SoMin(A,K

pl)

SiMin(A,K
pl) ⊆ SiMin(A,K

l ) ⊆ SiMin(A,K
cl )

SoMin(A,K
cu) ⊆ SoMin(A,K

u ) ⊆ SoMin(A,K
pu)

SiMin(A,K
pu) ⊆ SiMin(A,K

u ) ⊆ SiMin(A,K
cu).

The following example illustrates that neither SiMin(A,K
t ) ⊆ SoMin(A,K

t )

nor SoMin(A,K
t ) ⊆ SiMin(A,K

t ) always holds.
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Example 6.24 [104] Let

A1 = {(y1, y2) ∈ R
2 : 2 ≤ y1, y2 ≤ 3, y1 + y2 ≤ 5},

A2 = {(2, y2) ∈ R
2 : 2 ≤ y2 ≤ 3} ∪ {(y1, 2) ∈ R

2 : 2 ≤ y1 ≤ 3},
A3 = {(5, 5)},
A4 = {(y1, y2) ∈ R

2 : 3 ≤ y1 ≤ 5, 0 ≤ y2 ≤ 1},

and the set-valued map K : R
2 ⇒ R

2 be defined as

K(t) =
{

{(d1, d2) : 0 ≤ d1 ≤ 2d2}, ift ∈ R
2 \ {(1, 3)},

R
2+, ift = {(1, 3)}.

From Fig. 6.15, we can easily see that

A1 K
l A2, A1 K

l A3, A1 �
K
l A4,

A2 K
l A1, A2 K

l A3, A1 �
K
2 A4,

A3 K
l A1, A3 K

l A2, A3 �
K
l A4,

A4 �
K
l A1, A4 �

K
l A2, A4 K

l A1.

Let A := {A1, A2, A3}. Then we have

Min(A,K
l ) = {A1, A2}, SoMin(A,K

l ) = {A1, A2}, SiMin(A,K
l ) = ∅.

Let A′ := {A1, A2, A3, A4}. Then we have

Min(A′
, K

l ) = {A1, A2, A4}, SoMin(A′
, K

l ) = {A1, A2}, SiMin(A′
, K

l ) = {A4}.

Let A′′ := {A3, A4}. Then we have

Min(A′′
,K

l ) = SoMin(A′′
,K

l ) = SiMin(A′′
,K

l ) = {A4}.

Proposition 6.12 Let A be a family of sets in P(Y ), S ∈ P(Y ), and |S| denote the
number of elements in S. Then, for t ∈ {l, u, cl, cu, pl, pu}, the following statements
hold.

(a) If |SoMin(A,K
t )| > 1, then SiMin(A,K

t ) = ∅.
(b) If |SiMin(A,K

t )| > 1, then SoMin(A,K
t ) = ∅.

(c) If SoMin(A,K
t ) ∩ SiMin(A,K

t ) �= ∅, then
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Fig. 6.15 Illustration of
Example6.24

{
|SoMin(A,K

t )| = |SiMin(A,K
t )| = 1,

SoMin(A,K
t ) = SiMin(A,K

t ).

Now, we define the solution concepts of set optimization problem (SOP) with
respect to the set order relations K

t , t ∈ {l, u, cl, cu, pl, pu}. Note that the solution
concepts in the following definition are given in the preimage space X , whereas the
solution concepts in Definition6.16 are formulated in the image space Y .

Definition 6.17 [104] Let F : X ⇒ Y andK : Y ⇒ Y be two set-valued maps such
that F(x) and K(y) are nonempty sets for all x ∈ X, y ∈ Y .

(a) An element x̄ ∈ X is called a minimal element of (SOP) with respect to K
t ,

t ∈ {l, u, cl, cu, pl, pu}, if

x ∈ X, F(x) K
t F(x̄) ⇒ F(x̄) K

t F(x).

(b) An element x̄ ∈ X is called a strong minimal element of (SOP) with respect to
K

t , t ∈ {l, u, cl, cu, pl, pu}, if

∀ x ∈ X \ {x̄}, F(x̄) K
t F(x).

(c) An element x̄ ∈ X is called a strict minimal element of (SOP) with respect to
K

t , t ∈ {l, u, cl, cu, pl, pu}, if
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x ∈ X, F(x) K
t F(x̄) or F(x) = F(x̄) ⇒ x = x̄ . (6.8)

The sets of all minimal, strong minimal, and strict minimal elements of (SOP)
with respect to K

t , t ∈ {l, u, cl, cu, pl, pu}, are denoted by Min(F(X),K
t ),

SoMin(F(X),K
t ), and SiMin(F(X),K

t ), respectively.

Remark 6.11 [104]

(a) If the relation K
t is reflexive, then Definition6.17(c) is equivalent to

x ∈ X, F(x) K
t F(x̄) ⇒ x = x̄ .

(b) Definition6.17 implies that SoMin(F(X),K
t ) and SiMin(F(X),K

t ) are sub-
sets of Min(F(X),K

t ). Furthermore, the following relations for the sets of
minimal solutions of (SOP) with respect to the lower set order relations K

l ,K
cl , and K

pl hold:

SoMin(F(X),K
cl ) ⊆ SoMin(F(X),K

l ) ⊆ SoMin(F(X),K
pl)

and
SiMin(F(X),K

pl) ⊆ SiMin(F(X),K
l ) ⊆ SiMin(F(X),K

cl ).

Similarly, the following relations for the sets of minimal solutions of (SOP) with
respect to the upper set order relations K

u , K
cu , and K

pu hold:

SoMin(F(X),K
cu) ⊆ SoMin(F(X),K

u ) ⊆ SoMin(F(X),K
pu)

SiMin(F(X),K
pu) ⊆ SiMin(F(X),K

u ) ⊆ SiMin(F(X),K
cu).

6.6 Existence of Solutions

It is well known that the semicontinuity for set-valuedmaps plays a significant role to
study the set optimization problems. Kuroiwa [113] and Jahn and Ha [92] extended
the concept of semicontinuities for set-valued maps by using the set order relations
l

C andu
C and applied them to obtain the existence of solutions for set optimization

problems. Hernández et al. [84] further used and investigated the semicontinuity
for set-valued maps to study the existence of solutions of the problem (SOP) and
the relation among solutions using vector approach and set approach. Very recently,
Zhang and Huang [153] introduced the notion of lower semicontinuity from above
and used it to obtain the existence of results and discussed the link between solutions
of the problem (SOP) obtained by vector approach and set approach.
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6.6.1 Generalized Semicontinuity for Set-Valued Maps

In this subsection, we introduce the notions of generalized semicontinuity for set-
valued maps involving the partial set order relation ml

C . Further, we study some
properties of the generalized semicontinuity for set-valued maps, which are then
applied to study the existence of solutions for set optimization problems.

Throughout this subsection, we assume that S is a nonempty subset of a Hausdorff
topological vector space X and Y is a real normed space. Further, we assume that
F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and pointed cone with intC �= ∅
and F(x) �= ∅ for all x ∈ X .

Definition 6.18 The set-valued map F : X ⇒ Y is said to have

(a) ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ml

C
F(x̄);

(b) ≺ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ≺ml

C
F(x̄);

(c) strictly≺ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ∩

F(x̄) = ∅ and F(x) ≺ml
C F(x̄).

Definition 6.19 Let {Aα}α∈I be a net and (I,<) be a directed set. The net {Aα}α∈I
is said to be

(a) ml
C -increasing if for α, β ∈ I with α < β, we have Aα ml

C Aβ ;
(b) ml

C -decreasing if for α, β ∈ I with α < β, we have Aβ ml
C Aα .

Definition 6.20 A set-valued map F : S ⇒ Y is said to be ml-type Demi-lower
semicontinuous at x̄ ∈ S if for any net {xα}α∈I in S such that xα → x̄ and {F(xα)}α∈I
is a ml

C -decreasing net, the following condition holds:

F(x̄) ml
C Limsupα(F(xα) + C),

where Limsupα(F(xα) + C) denotes the set of all cluster points of {yα : yα ∈
(F(xα) + C)}α∈I .

We say that F is ml-type Demi-lower semicontinuous on S if it is ml-type Demi-
lower semicontinuous at each point x̄ ∈ S.

Definition 6.21 Let X be a topological space. A set-valued map F : X ⇒ Y is said
to be

(a) ml
C -lower semicontinuous from above at x̄ ∈ X if for any net {xα}α∈I in X with

xα → x̄ such that {F(xα)}α∈I is a ml
C -decreasing net, one has F(x̄) ml

C F(xα)

for all α ∈ I ;
(b) ml

C -upper semicontinuous from below at x̄ ∈ X if for any net {xα}α∈I in X with
xα → x̄ such that {F(xα)}α∈I is a ml

C -increasing net, one has F(xα) ml
C F(x̄)

for all α ∈ I .
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We say that F is ml
C -lower semicontinuous from above (respectively, ml

C -upper
semicontinuous from below) on X if it is ml

C -lower semicontinuous from above
(respectively, ml

C -upper semicontinuous from below) at each point x̄ ∈ X .

Remark 6.12 Theml-typeDemi-lower semicontinuity implies theml
C -lower semi-

continuity from above, but the following example shows that the converse is not true.

Example 6.25 Let S = R
2, Y = R

2, and C = R
2+. Let F : S ⇒ Y be defined by

F(x) =

⎧
⎪⎨

⎪⎩

{(0, 1)}, if x > 0,

{(0, ε) : 0 < ε < 2}, if x = 0,

{(0,−1)}, if x < 0.

At x̄ = 0, one can easily see that for any net {xα}α∈I in S with xα → 0, {F(xα)}α∈I
is a ml

C -decreasing net and F(0) ml
C F(xα) for all α ∈ I . Hence, F is ml

C -
lower semicontinuous from above at x̄ = 0. However, F is not ml-type Demi-
lower semicontinuous at x̄ = 0. Indeed, taking a sequence {xn} = { 1n }n∈N, we get
Limsupn→+∞(F(xn) + C) = C . After a short calculation, we obtain F(0) �

ml
C

Limsupn→+∞(F(xn) + C). Hence, F is not ml-type Demi-lower semicontinuous
at x̄ = 0.

Definition 6.22 A set-valued map F : X ⇒ Y is said to be ml
C -lower semicontinu-

ous at x̄ ∈ X if the set {x ∈ X : F(x) ml
C F(x̄)} is closed.We say that F isml

C -lower
semicontinuous on X if it is ml

C -lower semicontinuous at each point x̄ ∈ X .

Proposition 6.13 If the set-valued map F is ml
C -lower semicontinuous on X, then

it is ml
C -lower semicontinuous from above on X.

Proof Let {xα}α∈I be a net in X such that xα → x̄ and F(xβ) ml
C F(xα) for α < β

with α, β ∈ I . Then for each α ∈ I , the net {xβ}α<β satisfies xβ → x̄ . By ml
C -lower

semicontinuity of F , one has x̄ ∈ {x ∈ X : F(x) ml
C F(xα)} for all α ∈ I . This

shows that F is ml
C -lower semicontinuous from above on X .

�
The following example shows that the reverse of the above proposition is not true.

Example 6.26 Let X = R, Y = R, and C = R+. Let F : X ⇒ Y be defined by

F(x) =

⎧
⎪⎨

⎪⎩

{0}, if x > 0,

[0, 2), if − 1 < x ≤ 0,

{1}, if x ≤ −1.

At x̄ = 0, one can easily see that for any net {xα}α∈I in X with xα → 0, {F(xα)}α∈I
is ml

C -decreasing net and F(0) ml
C F(xα) for all α ∈ I . Hence, F is ml

C -lower
semicontinuous from above at x̄ = 0. However, the set {x ∈ X : F(x) ml

C F(0)} =
{x ∈ X : −1 < x ≤ 0} is not closed. Hence, F is not ml

C -lower semicontinuous at
x̄ = 0.
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Remark 6.13 In a similar way, we can introduce the notions of generalized semi-
continuity with respect to other different kinds of set order relations.

6.6.2 Existence of Solutions in Set Optimization Problems

In this subsection, we study the existence of results for solutions of set optimization
problems with respect to the partial set order relation ml

C by using generalized
semicontinuity. Since existence results for other set order relations can be obtained
in a similar way, we skip such a study.

Throughout this subsection, unless otherwise specified, we assume that S is a
nonempty subset of a Hausdorff topological vector space X and Y is a real normed
space. Further, we assume that F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and
pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Let A, B ∈ P(Y ) and x̄ ∈ S, we write

A ∼ B ⇔ A ml
C B and B ml

C A,

E(x̄,ml
C ) = {x ∈ S : F(x̄) ∼ F(x)},

and the level set of F at x̄ ∈ S is given by

L(x̄,ml
C ) = {x ∈ S : F(x) ml

C F(x̄)}.

It is simple to verify that E(x̄,ml
C ) ⊆ L(x̄,ml

C ). The converse holds for a ml-
minimal solution of the problem (SOP).

Proposition 6.14 x̄ ∈ ml − Min(F, S) if and only if E(x̄,ml
C ) = L(x̄,ml

C ).

The following result is obvious and so we skip its proof.

Proposition 6.15 If x̄ ∈ ml − Min(F, S), then E(x̄,ml
C ) ⊆ ml − Min(F, S).

Theorem 6.6.1 Let S be a nonempty compact subset of a Hausdorff topological
vector space X. If the set-valued map F : S ⇒ Y is ml

C -lower semicontinuous from
above on S, then the problem (SOP) has ml-minimal solution.

Proof We define a relation  on the quotient set P(Y )/ ∼ as follows: For any [A]
and [B] in P(Y )/ ∼, [A]  [B] ⇔ A ml

C B. Let {[F(xα)]}α∈I be a totally ordered
set in the quotient set P(Y )/ ∼. Without loss of generality, let α, β ∈ I with α < β

such that [F(xβ)]  [F(xα)]. Then the compactness of S implies that there exist
Ĩ ⊆ I and a subnet {xα̃}α̃∈ Ĩ of {xα}α∈I such that xα̃ → x̄ . Thus, by the ml

C -lower
semicontinuous fromaboveof F ,weknow that F(x̄) ml

C F(xα̃) for all α̃ ∈ Ĩ .Hence,
[F(x̄)]  [F(xα̃)] for all α̃ ∈ Ĩ .

Nextwe prove that [F(x̄)]  [F(xα)] for allα ∈ I . If it is not true, then there exists
ᾱ ∈ I such that [F(x̄)] � [F(xᾱ)]. For each α

′ ∈ Ĩ with ᾱ < α
′
, we have [F(x̄α

′ )] 
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[F(xᾱ)]. Since [F(x̄)]  [F(xα̃)] for all α̃ ∈ Ĩ , one has [F(x̄)]  [F(xα
′ )] and so

[F(x̄)]  [F(xᾱ)], which is a contradiction. Therefore, [F(x̄)]  [F(xα)] for all
α ∈ I . Now by Zorn’s lemma, we know that {[F(x̄)]}x∈S has a minimal element.
That is, the problem (SOP) has a ml-minimal set.

�

Definition 6.23 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y be a set-valued map. We say that S satisfies the condition (A) if for
each net {xα}α∈I in S such that {F(xα)}α∈I is a ml

C -decreasing net, there exist Ī ⊆ I
and a subnet {xᾱ}ᾱ∈ Ī of {xα}α∈I such that {xᾱ} → x̄ ∈ S.

Similar to the proof of Theorem6.6.1, we can obtain the following theorem.

Theorem 6.6.2 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y be a set-valued map. If S satisfies the condition (A) and F is ml

C -
lower semicontinuous from above on S, then the problem (SOP) has a ml-minimal
solution.

6.6.3 Relation Between Minimal Solutions with Respect to
Vector and Set Approach

In this subsection, we study the relations between minimal solutions for set opti-
mization problems with respect to vector approach and set approach involving the
partial set order relation ml

C .
Throughout this subsection, unless otherwise specified, we assume that S is a

nonempty subset of a Hausdorff topological vector space X and Y is a real normed
space. Further, we assume that F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and
pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Now, we show how the set relation ml
C can help to find the minimal solutions by

vector approach.

Lemma 6.6.1 If x̄ ∈ Min(F, S) with F(x) ml
C F(x̄) for each x ∈ S, then x ∈

Min(F, S).

Proof Assume that x̄ ∈ Min(F, S). Let ȳ ∈ F(x̄) be such that ȳ ∈ min F(S). We
only need to show that ȳ ∈ F(x). Assume that ȳ /∈ F(x). Then by the hypothesis,
we have F(x) ml

C F(x̄), that is, F(x)−̇F(x̄) ∩ (−C) �= ∅. Hence, there exists a c ∈
C such that −c ∈ F(x)−̇F(x̄), equivalently −c + F(x̄) ⊆ F(x). Therefore, there
exists ȳ ∈ F(x̄) such that −c + ȳ = y for some y ∈ F(x). Then we have ȳ = ỹ + c
for some ỹ ∈ F(x). This implies that ȳ ∈ ỹ + C , that is, ỹ C ȳ for some ỹ ∈ F(x)
which contradicts to ȳ ∈ min F(S). Thus ȳ ∈ F(x) and hence x ∈ Min(F, S).

�
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Proposition 6.16 Let x̄ ∈ Min(F, S). Then, only one of the following two assertions
holds.

(a) x̄ is a ml-minimal solution of the problem (SOP).
(b) There exists a minimal solution x̂ ∈ Min(F, S) of the problem (SOP) such that

F(x̂) ml
C F(x̄) and F(x̂) � F(x̄).

Proof By the definition of ml-minimal solution, (b) is false if (a) holds. Assume
that (a) does not hold. Then there exists x̂ ∈ S such that F(x̂) ml

C F(x̄) and F(x̂) �

F(x̄). Since x̄ ∈ Min(F, S), by Lemma6.6.1, we have that x̂ ∈ Min(F, S) and (b)
holds.

�
Definition 6.24 A set-valued map F : S ⇒ Y is said to be strongly injective on S
if for any x1, x2 ∈ S, F(x2) ml

C F(x1) and F(x1) �
ml
C F(x2) imply that F(x1) ∩

F(x2) �= ∅.
Lemma 6.6.2 If x̄ ∈ Min(F, S) and F is strongly injective on S, then x̄ ∈ ml −
Min(F, S).

Proof Let x̄ ∈ Min(F, S). Assume that x̄ /∈ ml − Min(F, S). Then there exists x̃ ∈
S such that F(x̃) ml

C F(x̄) and F(x̄) �= F(x̃). Since x̄ ∈ Min(F, S), we can choose
ȳ ∈ F(x̄) such that ȳ ∈ min F(S). By Lemma6.6.1, we have ȳ ∈ F(x̃), which con-
tradicts the fact that F is strongly injective. Therefore, x̄ ∈ ml − Min(F, S).

�
Theorem 6.6.3 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y satisfy ml

C -lower property at x̄ ∈ S with F(x̄) ∩ F(x̃) = ∅, x̃ ∈ S.
If min F(x̄) �= ∅ and x̄ ∈ ml − Min(F, S), then x̄ ∈ Min(F, S).

Proof Let x̄ ∈ ml − Min(F, S) with min F(x̄) �= ∅. Assume to the contrary that
x̄ /∈ Min(F, S). Then F(x̄) ∩ min F(S) = ∅. Since min F(x̄) ⊆ F(x̄) ⊆ F(S), we
have min F(x̄) ∩ min F(S) = ∅. Since F has the ml

C -lower property at x̄ ∈ S, there
exists x̃ ∈ S such that F(x̃) ≺ml

C F(x̄). Then, there exists a c ∈ C such that −c +
F(x̄) ⊆ F(x̃). Therefore, there exists ȳ ∈ F(x̄) such that −c + ȳ = ỹ for some ỹ ∈
F(x̃). This implies that ȳ ∈ ỹ + C , that is, ỹ C ȳ for some ỹ ∈ F(x̃). Since x̄ ∈
ml − Min(F, S), we have F(x̄) ≺ml

C F(x̃) and F(x̄) �= F(x̃). By F(x̄) ∩ F(x̃) = ∅
and ỹ ∈ F(x̃), there exists a ŷ ∈ F(x̄) such that ŷ C ỹ. Using the transitivity of the
order relationC , we get ŷ C ȳ. Thus ȳ /∈ min F(x̄), which contradicts the fact that
min F(x̄) �= ∅. Thus, we have F(x̄) ∩ min F(S) �= ∅ and hence x̄ ∈ Min(F, S). �

6.7 Ekeland’s Variational Principle for Set-Valued Maps

Ekeland’s variational principle (in short, EVP) is one of the fundamental results
from nonlinear analysis which was developed in the pioneer papers [45–47] by
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I. Ekeland. One of the most important ideas of EVP is that in the absence of a
known minimum, one can use EVP to reach close to a minimum. It is found that
several other fundamental results from nonlinear analysis, namely, Caristi’s fixed
point theorem [23, 24], Takahashi’s minimization theorem [147], Phelps’s minimal
element theorem [137, 138], etc., are equivalent to EVP in the sense that they can
be achieved by using EVP and vice-versa. The EVP is one of the most powerful
tools to deal withmany applications in optimization, optimal control, global analysis,
mathematical economy, partial differential equations, etc., see [3, 39, 45–47]. During
the last three decades, EVP has been extended for vector-valued/set-valued maps and
also under different space settings, see, for example, [3–6, 10, 12, 15, 17, 18, 20,
26–28, 50, 56, 58, 61, 63, 65, 71, 72, 76, 87, 89, 97, 131, 148, 149] and the
references therein.

Ekeland’s variational principle for vector-valued maps was explored by Németh
[131], Tammer [148], and Isac [89]. However, each of these vector-valued versions
have different conditions on the involved function. In 1998, Chen and Huang [27]
unified these results. In [58, 59], a variational principle for a vector-valued map was
presented as a consequence of the minimal point theorem on the product space. It
is worth to mention that the minimal element theorems were established by Göpfert
and Tammer [57] and further generalized by Göpfert, et al. [58, 59], Hamel and
Löhne [71], Hamel [65], and Hamel and Tammer [74] on the product space X × Y
in different settings. Such theorems played an important role to derive Ekeland’s
variational principle for vector-valued maps. These minimal element theorems are
the extension of Phelps’s minimal element theorem [137, 138].

Hamel and Löhne [72] considered a subset A ⊆ X × P(Y ), where X is a sepa-
rated uniform space and Y is a topological vector space and introduced the following
notation:

V(A) := {V ∈ P(Y ) : ∃x ∈ X : (x, V ) ∈ A}.

Let � be the directed set and {qλ}λ∈� be the family of quasi-metrics which gen-
erates the topology of the uniform space X . We write q� if and only if an assertion
holds for all λ ∈ �. Using the relationl

C andu
C , Hamel and Löhne [72] introduced

the following ordering relations on X × P(Y ): For all x1, x2 ∈ X , V1, V2 ∈ P(Y ),
and k ∈ C \ −clC ,

(x1, V1) k
l (x2, V2) ⇔ V1 + q�(x1, x2)k l

C V2,

and
(x1, V1) k

u (x2, V2) ⇔ V1 + q�(x1, x2)k u
C V2.

Note that the previous relations can be read as

for all λ ∈ �, V1 + qλ(x1, x2)k l
C V2,

and
for all λ ∈ �, V1 + qλ(x1, x2)k u

C V2.
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The relations k
l and k

u are reflexive and transitive on X × P(Y ).
Hamel and Löhne [72] introduced the minimal element theorems for set-valued

maps in the separated uniform spaces involving the set order relations l
C and u

C .
Such minimal element theorems are the extensions of minimal element theorems
presented in [58, 59].

Moreover, they [72] introduced the concept of the domain of a set-valued map F
for the set order relations l

C and u
C in the following way:

l
C − dom F := {x ∈ X : F(x) l

C V for some nonempty V ⊆ Y },

and

u
C − dom F := {x ∈ X : F(x) l

C V for some topologically bounded V ⊆ Y }.

They derived variational principle for set-valuedmaps involving the set order relation
l

C /u
C .

In [12], we studied minimal element theorem, Ekeland’s variational principle,
Caristi’s fixed point theorem, and Takahashi’s minimization theorem involving set
order relationsml

k andmu
k defined on X × P(Y ) by usingml

C andmu
C as follows:

Let C be a solid convex cone in a normed space Y and (X, d) be a metric space.
For all x1, x2 ∈ X , V1, V2 ∈ P(Y ), and k ∈ intC , define

(x1, V1) ml
k (x2, V2) ⇔ V1 + d(x1, x2)k ml

C V2,

and
(x1, V1) mu

k (x2, V2) ⇔ V1 + d(x1, x2)k mu
C V2.

It can be easily seen that the relations ml
k and mu

k are reflexive and transitive on
X × P(Y ).

We now consider the following assumptions.

Assumption 2 Let (X, d) be a complete metric space, Y be a real normed vector
space, C be a solid closed convex pointed cone in Y , and k ∈ intC . Let F : X →
P(Y ) be a closed-valued map such that

(i) F is ml-bounded below (that is, there exists V ∈ P(Y ) such that V ml
C F(x)

for all x ∈ X ),
(ii) S̃(x) = {x̃ ∈ X : (x̃, F(x̃)) ml

k (x, F(x))} is closed for all x ∈ X .

Assumption 3 Let (X, d) be a complete metric space, Y be a real normed vector
space, C be a solid closed convex pointed cone in Y , and k ∈ intC . Let F : X →
P(Y ) be a closed-valued map such that

(i) F is mu-bounded below (that is, there exists V ∈ P(Y ) such that V mu
C F(x)

for all x ∈ X ),
(ii) Ŝ(x) = {x̂ ∈ X : (x̂, F(x̂)) mu

k (x, F(x))} is closed for all x ∈ X .



150 Q. H. Ansari and P. K. Sharma

The minimal element theorems involving the set order relations ml
k and mu

k on
X × P(Y ) are presented in [12]. Here, we mention such result only for the set order
relation ml

C .

Theorem 6.7.1 [12] Let (X, d) be a complete metric space, Y be a real normed
space, C be a solid closed convex pointed cone in Y , k ∈ intC, andA ⊂ X × P(Y )

be a nonempty set. Assume that the following conditions hold:

(i) A is ml-bounded below (that is, there exists V ∈ P(Y ) such that V ml
C

PP(Y )(A) for all x ∈ X);
(ii) For allml

k −decreasing sequence {(xn, Vn)}n∈N ⊂ A (that is, (xn+1, Vn+1) ml
k

(xn, Vn) for all n ∈ N), there exists (x, V ) ∈ A such that (x, V ) ml
k (xn, Vn)

for all n ∈ N.

Then for every (x0, V0) ∈ A, there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) ml
k (x0, V0),

(b) for any (x̃, Ṽ ) ∈ A such that (x̃, Ṽ ) ml
k (x̄, V̄ ), then x̃ = x̄ .

In [12], we established Ekeland’s variational principle for set-valuedmaps involv-
ing the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.2 [12]Assume that theAssumption2holds. If for k ∈ intC and x0 ∈ X,
F(x0) �⊂ F(X) + k + intC, then there exists x̄ ∈ X such that

(a) F(x̄) + d(x̄, x0)k ml
C F(x0),

(b) F(x) + d(x̄, x)k �
ml
C F(x̄) for all x �= x̄ ,

(c) d(x̄, x0) ≤ 1.

In [12], we further obtained Caristi’s fixed point theorems for set-valued maps
under the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.3 [12] Suppose that the Assumption2 and the following condition
hold.

(Caristi-ml
C ) Condition. Let T : X → 2X be a set-valued map such that for every x ∈ X,

there exists y ∈ T (x) such that

F(y) + d(x, y)k ml
C F(x).

Then T has a fixed point in X, that is, there exists x̄ ∈ X with x̄ ∈ T (x̄).

In [12], we also obtained Takahashi’s minimization theorems for set-valued maps
under the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.4 [12] Suppose that the Assumption2 and the following condition
hold.
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(Takahashi-ml
C Condition). For every y ∈ X with F(y) /∈ ml − WMin(F, X), there exists

z ∈ X \ {y} such that
F(z) + d(y, z)k ml

C F(y).

Then there exists x̄ ∈ X such that F(x̄) ∈ ml − WMin(F, X).

We remark that the following implications hold

Theorem 6.7.2 ⇔ Theorem 6.7.3 ⇔ Theorem 6.7.4.

6.7.1 A Minimal Element Theorem and Ekeland’s Principle
with Mixed Set Order Relations

Throughout this subsection, unless otherwise specified, we assume that Y is a
Hausdorff topological vector space and C is a nontrivial, solid convex cone.
Let W be a nonempty set with a transitive relation  on W . We say that the
sequence {wn}n∈N ⊂ W is -decreasing [76] if wn+1  wn for all n ∈ N. We
set S(w0) := {w ∈ W : w  w0} for each w0 ∈ W . Of course, S : W ⇒ W is
a set-valued map whose domain is dom S := {w0 ∈ W : S(w0) �= ∅}. Clearly,
w ∈ S(w0) ⇒ S(w) ⊂ S(w0) and dom S = W when  is a pre-order, that is,
a reflexive and transitive order relation on W .

The following variational principle for minimal points on a pre-ordered set played
a key role to establish the main results of this subsection.

Theorem 6.7.5 (Extended Brézis–Browder Principle) [21, 76] Let  be a transi-
tive relation and φ : W → R := R ∪ {±∞} be a function such that the following
conditions hold.

(i) φ is -increasing (that is, w1  w2 implies φ(w1) ≤ φ(w2));
(ii) For every -decreasing sequence {wn}n∈N ⊆ W, there exists w ∈ W such that

w  wn for all n ∈ N.

Then for every w0 ∈ dom S, there exists w̄ ∈ S(w0) such that φ(ŵ) = φ(w̄) for
all ŵ ∈ S(w̄).

Let (X, d) be a metric space and λ ∈ [0, 1]. For x1, x2 ∈ X , V1, V2 ∈ �cb
C , and

k ∈ intC , in [6], we introduced the following set order relation λ
k on X × �cb as

follows:
(x1, V1) λ

k (x2, V2) ⇔ V1 + d(x1, x2)k λ
C V2.

It can be easily seen that the set order relation λ
k is reflexive and transitive on

X × �cb.
By using the technique of [12, 72], but for the weighted set order relation λ

k
on X × �cb

C , we [6] established the following minimal element theorem. It is worth
to mention that Hamel and Löhne [72] used the set relations l

k and u
k , which are

special cases of the set relation λ
k , to obtain a minimal element theorem.
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Let (X, d) be a complete metric space. For a set A ⊆ X × �cb, we denote by
P�cb(A) the projection of A onto its second component, that is,

P�cb(A) = {A ∈ �cb : ∃x ∈ X with (x, A) ∈ A}.

Theorem 6.7.6 [6] LetA ⊂ X × �cb be a nonempty set. Assume that the following
condition holds:

(M) For all λ
k -decreasing sequence {(xn, Vn)}n∈N ⊂ A (that is, (xn+1, Vn+1) λ

k
(xn, Vn) for all n ∈ N), there exists (x, V ) ∈ A such that (x, V ) λ

k (xn, Vn)

for all n ∈ N.

Then for every (x0, V0) ∈ A, there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) λ
k (x0, V0),

(b) if (x̂, V̂ ) ∈ A such that (x̂, V̂ ) λ
k (x̄, V̄ ), then x̂ = x̄ .

Assumption 4 Let F : X → �cb be a C−closed-valued map such that

(i) F is bounded below (that is, there exists V ∈ �cb such that V λ
C F(x) for all

x ∈ X ),
(ii) Ŝ(x) = {x̂ ∈ X : (x̂, F(x̂)) λ

k (x, F(x))} is closed for all x ∈ X .

In [6], we established Ekeland’s variational principle for set-valued maps involv-
ing set order relation λ

C .

Theorem 6.7.7 Assume that Assumption4 is satisfied. If for k ∈ intC and x0 ∈ X,
F(X) + k �

λ
C F(x0) holds, then there exists x̄ ∈ X such that

(a) F(x̄) + d(x̄, x0)k λ
C F(x0),

(b) F(x) + d(x̄, x)k �
λ
C F(x̄) for x �= x̄ ,

(c) d(x̄, x0) ≤ 1.

Remark 6.14 It is worth to mention that Theorems6.7.6 and 6.7.7 are more general
than [12, Theorems 4.4 and 4.6], [72, Theorems 5.1 and 6.1], and [76, Theorem
5.1] under certain assumptions. However, due to strong assumptions on the order
relationλ

C , Theorems6.7.6 and 6.7.7 are not completely comparable with the results
mentioned above.

We derived in [6] the following Caristi fixed point theorem for set-valued maps
with set order relation λ

C .

Theorem 6.7.8 Suppose that Assumption4 and the following condition hold.

(Caristi-λ
C ) Condition. Let T : X ⇒ X be a set-valued map with nonempty values such

that for every x ∈ X, there exists y ∈ T (x) satisfying

F(y) + d(x, y)k λ
C F(x).

Then T has a fixed point in X, that is, there exists x̄ ∈ X such that x̄ ∈ T (x̄).
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We further obtained in [6] the following Takahashi minimization theorem for
set-valued maps with mixed set order relation λ

C .

Theorem 6.7.9 Suppose that Assumption4 and the following condition hold.

(Takahashi-λ
C Condition). For every y ∈ X with F(y) /∈ λ − Min(F, X), there exists

z ∈ X \ {y} such that
F(z) + d(y, z)k λ

C F(y).

Then there exists x̄ ∈ X such that F(x̄) ∈ λ-Min(F, X).

In [6], we verified that Theorems6.7.7, 6.7.8, and 6.7.9 are equivalent to each
other in the sense that each one can be derived by using the other.

6.7.2 Ekeland’s Variational Principle for Set-Valued Maps in
Quasi-Metric Spaces

We recall the definition of a quasi-metric space. For further details and definitions,
we refer to [32].

Definition 6.25 Let X be a nonempty set. A quasi-metric on X is a function q :
X × X → R+ := [0,+∞) that satisfies the following conditions:

(Q1) q(x, y) ≥ 0 and q(x, x) = 0 for all x ∈ X ;
(Q2) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X ;
(Q3) q(x, y) = q(y, x) = 0 ⇒ x = y for all x, y ∈ X .

The set X equipped with a quasi-metric q is called a quasi-metric space and
it is denoted by (X, q). If, in addition, the quasi-metric q satisfies the symmetry
property, that is, q(x, y) = q(y, x) for all x, y ∈ X , then q is called a metric. The
topological space equipped with a quasi-metric is known as the Sorgenfrey line.
Every quasi-metric space (X, q) can be viewed as a topological space on which the
topology is induced by taking the collection of balls {Br (x) : r > 0} as a base of the
neighborhood filter for every x ∈ X , where the (left) ball Br (x) is defined by

Br (x) := {y ∈ X : q(x, y) < r}.

We present some basic notions from quasi-metric spaces, which are needed in
this subsection.

Definition 6.26 Let (X, q) be a quasi-metric space and � be a nonempty subset of
X .

(a) We say that the sequence {xn} ⊂ X (left-sequentially) converges to x̄ ∈ X if
lim
n→∞ q(xk, x∗) = 0, and it is denoted by xn → x∗ ∈ X .
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(b) We say that the set � is left-sequentially closed if for any sequence xn → x∗
with {xn} ⊂ �, x∗ ∈ �.

(c) We say that the sequence {xn} ⊂ X is left-sequentially Cauchy if for each β ∈ N,
there is a natural number Nβ such that

q(xn, xm) < 1/β, for all m ≥ n ≥ Nβ.

(d) We say that the quasi-metric space (X, q) is left-sequentially complete if each
left-sequentially Cauchy sequence is convergent and its limit belongs to X .

(e) A quasi-metric space is the Hausdorff topological space if

[
lim
n→∞ q(xn, x̄) = 0 and lim

n→∞ q(xn, ū) = 0
]

⇒ x̄ = ū. (6.9)

(f) A quasi-metric space (X, q) ordered by a pre-order  (that is, a reflexive and
transitive relation) is said to satisfy the Hausdorff decreasing condition if for
every decreasing sequence {xn} ⊂ X and x̄, ū ∈ X with x̄  ū the implication
in (6.9) holds.

In 1983, Dancs, Hegedüs, and Medvegyev [37] (in short, DHM) established a
fixed point theorem for set-valued maps on a complete metric space by using the
generalized Picard iteration under some appropriate assumptions. Since then, many
authors have generalized this fixed point theorem under different assumptions and in
different settings. Recently, Bao et al. [17] extended DHM’s fixed point theorem for
parametric dynamic systems in quasi-metric spaces. Motivated by the result in [17],
we, in [10], introduced the extended Picard iterative process for set-valued maps on
the product spaces and obtained the extended version of DHM’s fixed point theorem.
We defined the extended Picard sequence in the following way:

Let X be a nonempty set, Y be a topological vector space, and � : X × P(Y ) ⇒
X × P(Y ) be a set-valuedmap.We say that the sequence {(xn, Vn)}n∈N is an extended
Picard sequence/iterative process if

(x2, V2) ∈ �(x1, V1), (x3, V3) ∈ �(x2, V2), . . . , (xn, Vn) ∈ �(xn−1, Vn−1),

for all n ∈ N.
In [10], we established the following extended parametric fixed point theorem on

the product space X × P(Y ).

Theorem 6.7.10 Let (X, q) be a complete Hausdorff quasi-metric space, Y be
a topological vector space, and ∅ �=  ⊂ X × P(Y ). Assume that the parametric
dynamical system � : X × P(Y ) ⇒ X × P(Y ) satisfies the following conditions:

(F1) (x, V ) ∈ �(x, V ) for all (x, V ) ∈ .
(F2) Forall (x1, V1), (x2, V2) ∈  such that (x2, V2) ∈ �(x1, V1), wehave�(x2, V2)

⊂ �(x1, V1).
(F3) For each extended Picard sequence {(xn, Vn)}n∈N ⊂  with xn → x∗ as n →

∞, there exists V ∗ ∈ P(Y ) such that
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(x∗, V ∗) ∈  and (x∗, V ∗) ∈ �(xn, Vn), for all n ∈ N, (6.10)

and
(x∗, V ) ∈  ∩ �(x∗, V ∗) implies V = V ∗. (6.11)

(F4) For each extended Picard sequence {(xn, Vn)}n∈N ⊂ , q(xn, xn+1) → 0 as
n → ∞.

Then for every (x0, V0) ∈ , there is an extended Picard sequence {(xn, Vn)}n∈N ⊂ 

starting from (x0, V0) and ending at a fixed point (x∗, V ∗) of � in the sense that
�(x∗, V ∗) = {(x∗, V ∗)}.

From now onward, we assume that K : Y ⇒ Y is a set-valued map and the fol-
lowing conditions hold.

• 0 ∈ K(y).
• K(y) + K(y) ⊆ K(y) for all y ∈ Y .
• [0,+∞)k + K(y) ⊆ K(y) for all y ∈ Y and all k ∈ Y \ {0}.
• For all y ∈ Y and all v ∈ K(y), we have

K(y − v) ⊆ K(y). (6.12)

• For all A, B, D, E ∈ P(Y ), we have

∀b ∈ B, ∀e ∈ E we have K(b) + K(e) ⊆ K(b + e). (6.13)

• For all y ∈ Y and all v ∈ K(y), we have

K(y + v) ⊆ K(y). (6.14)

• For all A, B, D, E ∈ P(Y ), we have

∀a ∈ A and ∀d ∈ D we have K(a) + K(d) ⊆ K(a + d). (6.15)

Let X be a quasi-metric space. For all x1, x2 ∈ X and V1, V2 ∈ P(Y ), we [10]
defined the set order relations u

k and l
k on X × P(Y ) as follows:

(x1, V1) u
k (x2, V2) ⇔ V1 + q(x2, x1)k K

u V2, (6.16)

and
(x1, V1) l

k (x2, V2) ⇔ V1 + q(x2, x1)k K
l V2. (6.17)

We note that the above set order relations on X × P(Y ) are pre-order. Note that
the relationu

k is reflexive and transitive on X × P(Y ) if (6.12) and (6.13) hold, and
the relation l

k is reflexive and transitive on X × P(Y ) if (6.14) and (6.15) hold.
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Based on the idea of [49, 56, 59, 149], we, in [10], also defined the following
order relations on X × P(Y ), which are stronger than u

k and l
k .

(x1, V1) u
k,huk

(x2, V2) ⇔

⎧
⎪⎨

⎪⎩

(x1, V1) = (x2, V2),

or

(x1, V1) u
k (x2, V2) and huk (V1) < huk (V2).

(x1, V1) l
k,hlk

(x2, V2) ⇔

⎧
⎪⎨

⎪⎩

(x1, V1) = (x2, V2),

or

(x1, V1) l
k (x2, V2) and hlk(V1) < hlk(V2).

It can be easily seen that u
k,huk

and l
k,hlk

are reflexive and transitive on X × P(Y ).
Recently, Bao et al. [17, 19] have developed a constructive dynamical approach to

prove the existence of a minimal element of a nonempty subset of the product space
X × Y ordered by some preference. Such a result is called parametric minimal point
theorem. They applied the parametric minimal point theorem to derive the Ekeland
type variational principle for set-valued maps in the setting of quasi-metric spaces.
They used the preferences given by a set-valued mapK : Y ⇒ Y , but their approach
depends on the vector approach. It is worth to mention that the set approach is used
in [12, 72] to obtain minimal element theorems and the Ekeland type variational
principle for set-valued maps in the setting of complete metric spaces with a constant
ordering cone. Since the set-valued optimization problems with variable domination
structures have their own importance not only in the theoretical areas but also in real-
life applications (see, [40, 42, 44, 104]), we [10] extended the results of [17, 19] in
the setting of product space X × P(Y ) for the generalized variable upper/lower less
set order relations K

u /K
l .

Definition 6.27 [10] Let X be a nonempty set, Y be a topological vector space, and
 ⊂ X × P(Y ) be a nonempty set pre-ordered by u

k [l
k].

(a) A sequence {(xn, Vn)}n∈N ⊂  is said to be decreasing with respect to the pre-
orderu

k [l
k] if (xn, Vn) u

k (xn−1, Vn−1) [(xn, Vn) l
k (xn−1, Vn−1)] for all n ∈

N.
(b) An element (x̄, V̄ ) of  is said to be partial minimal element with respect to the

pre-order u
k [l

k] if (x, V ) ∈  and (x, V ) u
k (x̄, V̄ ) [(x, V ) l

k (x̄, V̄ )], then
x = x̄ .

(c) An element (x̄, V̄ ) of is said to beminimal elementwith respect to the pre-order
u

k [l
k] if (x, V ) ∈  and (x, V ) u

k (x̄, V̄ ) [(x, V ) l
k (x̄, V̄ )], then (x, V ) =

(x̄, V̄ ).

In [10], we derived the following minimal element theorem for the set order
relation K

u .
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Theorem 6.7.11 [10] Let (X, q) be a Hausdorff quasi-metric space, Y be a topo-
logical vector space,K : Y ⇒ Y be a set-valued map that satisfies (6.12) and (6.13),
and  ⊂ X × P(Y ) be a nonempty set. For a given (x0, V0) ∈ , define the set

A0 := A(x0, V0) = {(x̃, Ṽ ) ∈  : (x̃, Ṽ ) u
k (x0, V0)}.

Let {(xn, Vn)}n∈N ⊂ A0 be a u
k -decreasing sequence such that the following con-

ditions hold.

(M1) q(xn, xn+1) → 0 as n → ∞.
(M2) If {xn} is a left-sequentially Cauchy sequence, then there exists (x̄, V̄ ) ∈ A0

such that (x̄, V̄ ) u
k (xn, Vn) for all n ∈ N.

Then there is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and
ending at a partially minimal element (x̄, V̄ ) of  with respect tou

k . If, furthermore,
(x̄, V̄ ) satisfies the domination condition

(x̄, V ) u
k (x̄, V̄ ) ⇒ V = V̄ , for all (x̄, V ) ∈ A0, (6.18)

then it can be chosen as a minimal element of the set  with respect to u
k .

Moreover, if we replace u
k by u

k,huk
, then, under the assumption (6.18), there

is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and ending at a
minimal point (x̄, V̄ ) of � with respect to u

k,huk
.

We also derived the following minimal element theorem for the set order relation
K

l .

Theorem 6.7.12 [10] Let (X, q) be a Hausdorff quasi-metric space, Y be a topo-
logical vector space,K : Y ⇒ Y be a set-valued map that satisfy (6.14) and (6.15),
and  ⊂ X × P(Y ) be a nonempty set. For a given (x0, V0) ∈ , define the set

A0 := A(x0, V0) = {(x̃, Ṽ ) ∈  : (x̃, Ṽ ) l
k (x0, V0)}.

Let {(xn, Vn)}n∈N ⊂ A0 be a l
k -decreasing sequence such that the following condi-

tions hold.

(M1′) q(xn, xn+1) → 0 as n → ∞.
(M2′) If {xn} is a left-sequentially Cauchy sequence, then there exists (x̄, V̄ ) ∈ A0

such that (x̄, V̄ ) l
k (xn, Vn) for all n ∈ N.

Then, there is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and
ending at a partially minimal element (x̄, V̄ ) of  with respect tol

k . If, furthermore,
(x̄, V̄ ) satisfies the domination condition

(x̄, V ) l
k (x̄, V̄ ) ⇒ V = V̄ for all (x̄, V ) ∈ A0, (6.19)

then it can be chosen as a minimal element of the set  with respect to l
k .
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Moreover, if we replace u
k by l

k,hlk
, then, under the assumption (6.19), there

is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and ending at a
minimal element (x̄, V̄ ) of  with respect to l

k,hlk
.

Recall that (X, q) be a quasi-metric space and Y be a topological vector space. A
set-valued map F : X → P(Y ) is said to be

(a) level-decreasingly-closed on domF with respect toK
u [K

l ] if for any sequence
{(xn, Vn)} ⊂ GraphF such that xn → x̄ ∈ X as n → ∞ and {Vn} is a sequence
decreasing with respect to K

u [K
l ], there exists V̄ = F(x̄) ∈ Min(F(X);K

u
[K

l ]) such that V̄ K
u [K

l ]Vn for all n ∈ N.
(b) quasi-bounded from below with respect to a closed convex cone C in Y if there

is a bounded subset M ⊂ Y such that F(X) ⊆ M + C .

In [10], we established the following Ekeland type variational principle for set-
valued maps under variable ordering structures.

Theorem 6.7.13 [10] Let (X, q) be a complete Hausdorff quasi-metric space, Y be
a topological vector space, and K : Y ⇒ Y be a set-valued map such that (6.12)
and (6.13) hold. Let C be a convex cone in Y and F : X → P(Y ) be a set-valued
map which is quasi-bounded from below with respect to C. Assume that the following
conditions are satisfied:

(E1) For every y ∈ Y , K(y) is a closed set in Y .
(E2) For any A, B ∈ P(Y ), if A K

u B, then K(a) + K(b) ⊆ K(b) for all a ∈ A
and b ∈ B.

(E3) For any sequence {(xn, Vn)} ⊂ GraphF such that xn → x̄ ∈ X as n → ∞
and {Vn} is decreasing with respect to K

u , there exists a minimal element
V̄ ∈ Min(F(X);K

u ) for which V̄ K
u Vn for all n ∈ N.

(E4) k /∈ cl(−C − K(V0))).

Then, for every (x0, F(x0)) ∈ GraphF, there exists (x̄, F(x̄)) ∈ GraphF with F(x̄) ∈
Min(F(X);K

u ) such that

(a) F(x̄) + q(x0, x̄)k K
u F(x0),

(b) F(x) + q(x̄, x)k �
K
u F(x̄) for all x �= x̄ .

Furthermore, assume that F(x̄) + k �
K
u F(x0) for all k ∈ Y \ {0} and x0 ∈ X,

then
(c) q(x0, x̄) ≤ 1.

In [10], we also obtained the Ekeland type variational principle for set-valued
maps involving variable order structure K

l .

Remark 6.15 Bao et al. [17] considered the main issues of Sen’s capability theory
[108, 142] and the variational rationality model of human behavior. They developed
dynamical aspects of capability theory and discussed the major findings in this direc-
tions by applying the parametric fixed point theorem, parametric minimal element
theorem, and Ekeland’s variational principle. By using variational rationality [17, 18,
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144, 145] technique, we can consider modeling the functionings/preferences dynam-
ics in termof acceptable stays and changes,whichmainly relates to the extended para-
metric fixed point theorem. Then we can find the functionings/preferences dynamics
in term of worthwhile stays and changes, which relates to the obtained variational
principle for maps with variable domination structures. Very recently, Bao et al. [20]
also introduced a new version of Ekeland’s variational principle in set optimiza-
tion with domination structure and gave some applications to career development
theories; in particular, changing the job process.
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