
Chapter 4
Copositive Optimization and Its
Applications in Graph Theory

S. K. Neogy and Vatsalkumar N. Mer

Abstract Recently, copositive optimization has received a lot of attention to the
Operational Research community, and it is rapidly expanding and becoming a fertile
field of research. In this chapter, we demonstrate the diversity of copositive for-
mulations in different domains of optimization: continuous, discrete, and stochastic
optimization problems. Further, we discuss the role of copositivity for local and
global optimality conditions. Finally, we talk about some applications of copositive
optimization in graph theory and game theory.

Keywords Nonconvex quadratic program · Completely positive program ·
Fractional quadratic optimization · Lifted problem · Graph theory · Maximum
weight clique problem

4.1 Introduction

Copositive matrices appear in various applications in mathematics, and especially,
in the characterization of the solution set of constrained optimization problems and
the linear complementarity problem. Recently, Copositive optimization has been an
object of research because many NP-hard combinatorial problems have a representa-
tion in this domain. Copositive optimization deals with minimizing a linear function
in matrix variables subject to linear constraints and the constraint that the matrix
should be in the convex cone of copositive matrices. In what follows, we make use
of the following notations.
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Sn Set of symmetric matrices of order n
Cn Set of copositive matrices of order n
C∗n Set of comp. positive matrices of order n
E Matrix of all-ones
conv(M) Convex hull of a set M
Copositive cone Cn {A ∈ Sn | xT Ax ≥ 0 ∀x ∈ Rn }
Completely positive cone C∗n {BBT ∈ Sn | B ≥ 0}
For an arbitrary givn cone K ⊆ S, dual cone K∗ = {∑n

i=1 ai
T ai | ai ∈ Rn+ ∀ i}

{A ∈ S |〈A, B〉 ≥ 0, ∀ B ∈ K}
Recession cone of A, rec(A) := {y ∈ R

n : ∀x ∈ A, ∀λ ≥ 0 : x + λy ∈ A}
Inner Product 〈A, B〉 trace〈B, A〉 = ∑n

i, j=1 ai j bi j

Consider the standard quadratic problem (stQP)

min xT Qx s.t. eT x = 1, x ≥ 0.

where e denotes the all-ones vector. This optimization problem asks for theminimum
of a (not necessarily convex) quadratic function over the standard simplex� = {x ∈
R

n+ : eT x = 1}.
Note that 〈xT Qx〉 = 〈Q, xxT 〉 E is square matrix consisting entirely of unit

entries, so that xT Ex = (eT x)2 = 1 on �.

So eT x = 1 transforms to 〈E, xxT 〉 = 1.
Hence, the problem stQP can be written as

min〈Q, X〉

s. t. 〈E, X〉 = 1,

X ∈ C∗n.

More generally, a primal-dual pair in copositive optimization (COP) is of the
following form:

min〈C, X〉 (4.1)

s.t. 〈Ai , X〉 = bi (i = 1, . . . ,m)

X ∈ Cn,

where Cn = {A ∈ Sn : xT Ax ≥ 0 ∀ x ∈ R
n+} is the cone of copositive matrices.

Bundfuss and Dür [8] developed an efficient algorithm to solve the optimization
problem (4.1) over the copositive cone using iteratively polyhedral inner and outer
approximations of the copositive cone.

Associated with problem (4.1), there is a dual problem which involves the con-
straint that the dual variable lies in the dual cone of Cn, that is, the convex cone C∗n
of completely positive matrices: C∗n = conv{xxT : x ∈ R

n+}
The dual of (4.1) is
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max
m∑

i=1

bi yi (4.2)

s.t. C −
m∑

i=1

yi Ai ∈ C∗n, yi ∈ R,

where C∗n = conv{xxT : x ∈ R
n+} is the cone of completely positive matrices.

Clearly, (4.1) and (4.2) are convex optimization problems since both Cn and C∗n
are convex cones. Note that KKT optimality conditions hold if Slater’s condition
is satisfied and imposing a constraint qualification guarantees strong duality, i.e.,
equality of the optimal values of (4.1) and (4.2). It is well known that most com-
mon constraint qualification assume that both problems are feasible and one of them
strictly feasible.

Copositive programming can be visualized as a convexification approach for non-
convex quadratic programs. In many cases, nonconvex optimization problems admit
exact copositive formulation. In this chapter, we show that some nonconvex quadratic
programming problems that arise in graph theory can be converted into a convex
quadratic problem. The first account of copositive optimization goes back to [4],
which established a copositive representation of a subclass of particular interest,
namely, in standard quadratic optimization (StQP).

4.1.1 Quadratic Programming Problem with Binary and
Continuous Variables

Burer [6] considered an extremely large class of nonconvex quadratic programs with
a mixture of binary and continuous variables, and showed that they can be expressed
as completely positive program (CPPs).

We consider the following problem:

min xT Qx + 2cT x (4.3)

s.t. aT
i x = bi (i = 1, . . . ,m)

x ≥ 0,

x j ∈ {0, 1} ∀ j ∈ B where B ⊆ {1, . . . , n}.

Burer [6] showed that (4.3) is equivalent to the following linear problem over the
cone of completely positive matrices.
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min 〈Q, X〉 + 2cT x (4.4)

s.t. aT
i x = bi (i = 1, . . . ,m)

〈aiaT
i , X〉 = b2i (i = 1, . . . ,m)

x j = X j j ( j ∈ B)
[
1 x
x X

]

∈ C∗n+1.

This is a nice result since a nonconvex quadratic integer problem is equivalently
written as a linear problem over a convex cone. Note that the dual problem of a
completely positive program is an optimization problem over the cone of copositive
matrices. Clearly, both problem classes are NP-hard since they are equivalent to an
integer programming problem.Bundfuss andDür [8] posed an open questionwhether
problems with general quadratic constraints can similarly be restated as completely
positive problems. Bomze [2] demonstrated the diversity of copositive formulations
in various domains of optimization, namely, continuous and discrete, deterministic
and stochastic.

4.1.2 Fractional Quadratic Optimization Problem

Consider the fractional quadratic optimization problem

min
x

f (x) = min
x

xTCx + 2cT x + γ

xT Bx + 2bT x + β
: Ax = a, x ∈ R

n
+, (4.5)

where B is positive semidefinite matrix and C = CT ∈ R
n×n , {b, c} ⊂ R

n , A ∈
R

m×n , a ∈ R
m and β, γ ∈ R.

Now define the symmetric (n + 1) × (n + 1) matrices

Ã =
[

aT a −at A
−AT a AT A

]

, B̃ =
[
β bT

b B

]

, C̃ =
[
γ ct

c C

]

. We further assume that the

problem in (4.5) is well defined. Amral et al. [1] observed that the problem (4.5) can
be written as the completely positive problem:

min{< C̃, X > :< B̃, X >= 1, < Ã, X >= 0, X ∈ C∗n+1}.

The above problem occurs in many engineering applications. For further details,
see [2] and references therein.
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4.1.3 More on Nonconvex Quadratic Programming Problems

Burer [7] generalized the sign constraints x ∈ R
n+ to arbitrary cone constraints x ∈ K ,

where K is a closed, convex cone, and studied the following (nonconvex) quadratic
cone-constrained problem.

min xT Qx + 2cT x (4.6)

s.t. Ax = b

x ∈ K .

Note that the dimension of the problem is increased by one by passing from the
cone K ⊆ R

n to the cone K̂ = R+ × K . Let CK̂ = conv{zzT : z ∈ K}, the dual

cone C∗
K̂ of all K̂ -copositive (n + 1) × (n + 1) matrices.

In [2, 7, 13], it has been shown that (4.6) is equivalent to the (generalized) com-
pletely positive problem of the following form.

min 〈Q̃,Y 〉 + 2cT x (4.7)

s.t. Ax = b

(AX AT )i i = b2i (i = 1, . . . ,m)

Y =
[
1 x
x X

]

∈ C∗
K̂ ,

where Q̃ =
[
0 cT

c Q

]

.

4.1.4 Quadratic Optimization Problem and the Concept of
Lifted Problem

Nguyen [17] presents a general concept of lifting a nonconvex quadratic optimiza-
tion problem into an equivalent convex optimization problem with matrix variables.
Further, they apply this lifting concept to a class of quadratic optimization problem
with linear inequality and mixed binary constraints.

Nguyen [17] consider the following quadratic optimization problem (QP)

min xT Qx (4.8)

s.t. x ∈ F(QP),

where Q ∈ Sn and F(QP) is some non-empty feasible set in Rn .
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Consider the following subsets of Sn .

C := conv{xxT : x ∈ F(QP)},

R := conv{yyT : y ∈ recF(QP)}.

The optimization problem

min 〈Q, X〉 (4.9)

s.t. X ∈ C + R,

is called the lifted problem according to the original quadratic problem (4.8).

Proposition 4.1 (Proposition 2.2, [17]) Assume that an optimal solution of (4.8)
exists. Then the problem (4.8) and (4.9) are equivalent in the sense that they have
the same optimal value, and any optimal solution of (4.9) is a convex combination
of matrices xi (xi )T , where xi are optimal solution of (4.8).

Note that the original Problem (4.8) of minimizing is not necessarily a convex
quadratic function over a not necessarily convex set. However, the lifted problem
(4.9) is a convex optimization problem. Therefore, as every local optimal solution
obtained by solving (4.9) is a global one, we can obtain global optimal solutions for
(4.8) by computing local optimal solutions of (4.9).

4.1.5 Quadratic Optimization Problem and the Role of
Special Matrix Classes

In this section, we discuss about some matrix classes that plays a role in quadratic
optimization problem. Consider QP(q, A) : [min xT (Ax + q); x ≥ 0, Ax + q ≥
0]. We denote by S1(q, A), the set of optimal solutions of QP(q, A) and feasible
solutions by F(q, A) = {x : Ax + q ≥ 0, x ≥ 0}.Applying the Farkas-Lemma, the
feasibility is equivalent to the following condition:

x ≥ 0, AT x ≤ 0 ⇒ qT x ≥ 0.

Let us consider the polyhedral convex cone

CA = {x ≥ 0 | AT x ≤ 0}

and its polar cone
C∗

A = {x∗ | xT x∗ ≤ 0 ∀x ∈ CA}.
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Thus QP(q, A) is feasible iff −q ∈ C∗
A.

S1(q, A) �= ∅ if and only if − q ∈ C∗
A.

Assume that x∗ ∈ S1(q, A). Then in view of KKT-condition for optimality there
exist u, v ∈ R

n such that

(A + AT )x∗ + q − AT u − v = 0, (4.10)

x∗, u, v, Ax∗ + q ≥ 0, (4.11)

x∗T v = uT (Ax∗ + q) = 0. (4.12)

We denote by S2(q, A) the set of points for which such u and v exist. S2(q, A) is
called the set of KKT-stationary points. We are interested in conditions implying that
S2(q, A) = S1(q, A).

In what follows, we introduce the following matrix classes. A is said to be column
sufficient if for all x ∈ R

n the following implication holds:

xi (Ax)i ≤ 0 ∀ i ⇒ xi (Ax)i = 0 ∀ i.

A is said to be row sufficient if AT is column sufficient. A is sufficient if A
and AT are both column sufficient. We say that A is positive semidefinite (PSD) if
xT Ax ≥ 0 ∀ x ∈ R

n and A is positive definite (PD) if xT Ax > 0 ∀ 0 �= x ∈ R
n . A

matrix A ∈ R
n×n is a positive subdefinite (PSBD) matrix if for all x ∈ R

n

xT Ax < 0 implies either AT x ≤ 0 or AT x ≥ 0.

Amatrix A ∈ R
n×n is said to be generalized positive subdefinite matrix (GPSBD)

if there exist two nonnegative diagonal matrices S and T with S + T = I such that

∀ z ∈ R
n, zt Az < 0 ⇒

{
either − Sz + T AT z ≥ 0
or − Sz + T AT z ≤ 0.

(4.13)

Amatrix A is calledmerely GPSBDmatrix (MGPSBD) if it is not a PSBDmatrix.
For details on these classes, see [9, 10, 16]. We now state the following theorem.

Theorem 4.1.1 Assume any one of the following conditions hold:

(i) A is a copositive PSBD matrix with rank(A) ≥ 2.
(ii) A is a copositive MGPSBD matrix with 0 < ti < 1 for all i.

Then A is a row sufficient matrix.

The following result is an immediate consequence of the above theorem.
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Lemma 4.1.1 Suppose A is a copositive PSBD matrix with rank(A) ≥ 2 or a
copositive MGPSBD matrix with 0 < ti < 1 for all i. For each vector q ∈ R

n, if
(x̃, ũ) is a Karush–Kuhn–Tucker (KKT) pair of the quadratic program QP(q, A) :
[min xT (Ax + q); x ≥ 0, Ax + q ≥ 0], then x̃ solves QP(q, A).

4.2 Applications of Copositive Optimization in Graph
Theory

We discuss the connection between nonconvex quadratic optimization and coposi-
tive optimization that allows the reformulation of nonconvex quadratic problems as
convex ones in a unified way. Copositive optimization is a new approach for analyz-
ing the specific, difficult case of optimizing a general nonconvex quadratic function
over a polyhedron {x : Ax = b, x ≥ 0}. In this section, we consider graph theoretic
problems and reformulate stQP discussed in Sect. 4.1 as a convex quadratic opti-
mization problem. We begin with some preliminaries on graph theory which will be
used throughout the section. A graph G is a set of points V (G) called vertices along
with a set of line segments E(G) called edges joining pairs of vertices. We say that
two vertices are adjacent if there is an edge joining them. The set of vertices adjacent
to v is the neighborhood of v which we denote as N (v). If e is an edge joining v

to one of its neighbors, we say e is incident to v. The degree of a vertex v, denoted
deg(v), is the number of vertices adjacent to v. A graph is connected if there exists
a path between every pair of distinct vertices. A closed walk is a walk with the same
starting and ending vertex. An open walk is a walk in which the start and end vertices
differ. A path is a walk in which no vertex is repeated. The distance between two
vertices v andw is the length of the shortest path between v andw.A cycle is a closed
walk in which no vertex is repeated (except that the starting and ending vertices are
the same). The diameter of a connected graph G, denoted diam(G) is the greatest
distance between any two vertices of G. A tree is a connected graph that contains
no cycles. A pendant vertex is a vertex whose degree is one. A tree on n vertices has
n − 1 edges. Let G = (V, E) be a connected graph with vertex set V (G) and edge
set E(G). Let c : V (G) → R

+ be a nonnegative vertex weight function such that
the total weight of the vertices is N =

∑

v∈V (G)

c(v).

Suppose dG(u, v) (or simply d(u, v)) denotes the usual distance (the length of the
shortest path) between u and v in G. Then the total distance of G with respect to c,
is defined by

dc(G) =
∑

{u.v}⊆V (G)

c(u)c(v)dG(u, v).

Among all nonnegative weight functions c of given weight N , we seek to find one
that maximizes dc(G).
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Let G be a graph with vertices {1, 2, . . . , n}. The distance matrix of G is defined
as D = [di j ] where di j (which we also denote as d(i, j)) is the distance between
vertices i and j. As an example, consider the tree

◦1

��
��

��
��

◦5

◦2 ◦4 ◦6

3

��������

The distance matrix of the tree is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 2 3 3
1 0 1 1 2 2
2 1 0 2 3 3
2 1 2 0 1 1
3 2 3 1 0 2
3 2 3 1 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

LetD be the distance matrix of a tree with n vertices. Let� = {x ∈ R
n+ : eT x =

1}. We consider the problem:

Problem I max xTDx subject to x ∈ �.

If T is a tree on n vertices with distance matrix D, then clearly, Problem I is
equivalent to maximizing dc(T ) over all nonnegative weight functions with given
fixed weight N .

Note that Problem I and more general versions of it have occurred in the literature
in different contexts. Apart from graph theory literature (see [11] and the references
therein) there are at least two other areas where the problem has been considered.
These areas are: (i) a generalized notion of diameter of finite metric space and (ii)
Nash equilibria of symmetric bimatrix games associated with the distance matrix
involving tree and resistance distance.

Theorem 4.2.2 Let T be a tree with vertex set {1, . . . , n} and letD be the distance
matrix of T . Then, there exists α0 such that for all α > α0, the matrix αE − D is
positive definite, where E is a m × m matrix of all-ones.

Note that D is a copositive matrix and the Problem I is a nonconvex quadratic
Programming (NQP) problem, and we may write the equivalent convex quadratic
programming (CQP) problem. By Theorem 4.2.2 there exists k such that D̃ = kE −
D is positive definite. We remark that to construct D̃, it is sufficient to find the
diameter (length of the longest path) of the tree. This can be done in polynomial
time. Note that the maximum of 1

2 x
TDx over all x ∈ � is attained at x∗ if and only
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if the minimum of 1
2 x

T D̃x over all x ∈ � is attained at x∗. Therefore, we solve
Problem II.

Problem II: min 1
2 x

T D̃x subject to Ax ≥ b and x ≥ 0 where A =
[

eTn
−eTn

]

and

and b =
[

1
−1

]

.

A vertex of a tree of degree 1 is called an end vertex (or a pendant vertex) of T .

The following result is useful for subsequent discussion.

Lemma 4.2.2 [11, Proposition 2, p. 15] Given a tree T on at least two vertices and
a real N > 0. Let c be a nonnegative weight function on V (T ) of total weight N
that maximizes dc(T ) among all such weight functions. Then, c(v) > 0 only if v is
an end vertex of T

In view of Lemma 4.2.2, we may replace D̃ in Problem II by the principal sub-
matrix D̃p of D̃ corresponding to the end vertices of the tree. The matrix A will be
modified to Ap by replacing en by ep, where p is the number of pendant vertices.
We denote this problem as

Problem III: min 1
2 y

T D̃p y subject to Apy ≥ b and y ∈ Rp
+ where Ap =

[
eTp

−eTp

]

and and b =
[

1
−1

]

.

Lemma 4.2.3 Problem II has a unique solution if and only if Problem III has a
unique solution.

We will write PD for positive definite and PSD for positive semidefinite. We
may rewrite Problem II or III as a linear complementarity problem (denoted as
LCP(q, M)) which is defined as follows. Given a real square matrix A ∈ R

n×n and
a vector q ∈ R

n, the linear complementarity problem is to find w, z ∈ R
n such

that w − Mz = q, w ≥ 0, z ≥ 0 and wT z = 0.
The Karush–Kuhn–Tucker (KKT) necessary and sufficient optimality conditions

specialized to Problem III yields the linear complementarity problem LCP(q, M)

with M =
[ D̃p −AT

p

Ap 0

]

, q =
[

0
−b

]

. If (w, z) solves LCP(q, M) where w =
[
u
v

]

and z =
[
x
y

]

then x solves Problem III. It is easy to see that M is a PSD

matrix.
Granot and Skorin-Kapov [14] extend Tardos’ results and present a polynomial

algorithm for solving strictly convex quadratic programming problems, in which, the
number of arithmetic steps is independent of the size of the numbers on the right-
hand side and the linear cost coefficients. Under the assumption that M is positive
semidefinite, Kojima et al. [15] present a polynomial time algorithm that solves
LCP(q, M) in O(n3L) arithmetic operations.

Remark 4.1 Dubey and Neogy [12] consider the question of solving the quadratic
programming problem of finding maximum of xTRx subject to x ∈ � = {x ∈ R

n+ :
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eT x = 1} and observe that this problem can be solved in polynomial time for the
class of simple graphs with resistance distance matrix (R) which are not necessarily
a tree by reformulating this problem as a strictly convex quadratic programming
problem.

4.2.1 Maximum Weight Clique Problem

We consider a copositive reformulation for the maximum weight clique problem.
Consider an undirected graphG = (V, E)with n nodes. A cliqueS is a subset of the
node set V which corresponds to a complete subgraph of G (i.e., any pair of nodes
in S is an edge in E, the edge set). A clique S is said to be maximal if there is no
larger clique containing S.

Let AG denotes the adjacency matrix of the graph G. Let f ∗ denotes the opti-
mal value of the standard quadratic optimization problem max f (x), x ∈ � where
f (x) = xT AGx . Then 1

(1− f ∗) is the size of a maximum clique. This approach has
served as the basis of many clique-finding algorithms and to determine theoretical
bounds on the maximum clique size.

In [3], this problemwas reformulated as a standard quadratic optimization problem
and in [4] standard quadratic optimization problems were, in turn, reformulated as a
copositive optimization problems. Therefore, the maximum weight clique problem
is equivalent to copositive optimization problems.

4.3 The Notion of Transfinite Diameter in a Finite Metric
Space and Copositive Optimization Problem

Let M = (X, d) be a finite metric space, where X = {x1, . . . , xn}. The distance
matrix D of the metric space is the n × n matrix D = [di j ], where di j = d(xi , x j ).

The metric space is completely described by its distance matrix. As a generalization
of the diameter, the notion of transfinite diameter has been introduced. The notion
of transfinite diameter (the maximal average distance in a multiset of points placed
in the space), is a natural generalization of the diameter. The ∞-extender is the
load vectors realizing the transfinite diameter provide strong structural information
about metric spaces. It is, therefore, natural to study conditions under which ∞-
extender are unique. The transfinite diameter of M equals the maximum of xT Dx
over x ∈ �. The vector that attains the maximum has been called ∞-extender of
M can be posed as a copositive optimization problem. In what follows, we need the
following definition to state a result related to a unique ∞-extender. The matrix A
is said to be conditionally negative definite (c.n.d.) if xT Ax ≤ 0 for all x ∈ R

n such

that
n∑

i=1

xi = 0. Furthermore, a c.n.d. matrix is said to be strictly c.n.d. if xT Ax = 0
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only for x = 0. The matrix space M is said to be of negative type if D is c.n.d.,
while it is of strictly negative type if D is strictly c.n.d. Now we have the following
theorem.

Theorem 4.3.3 Let (X, d) be a finite metric space. If (X, d) is of strictly negative
type, then (X, d) has a unique ∞-extender.

4.4 Symmetric Bimatrix Game as a Copositive
Optimization Problem

A bimatrix game is a noncooperative two-person game described by a pair (A,B)

of m × n matrices. There are two players, Player 1 and Player 2, with m and n pure
strategies respectively. If Player 1 chooses the i-th strategy and Player 2 chooses
the j-th strategy, then ai j and bi j are the payoffs to Players 1 and 2, respectively.
The mixed strategy spaces of Players 1 and 2 are �m and �n, respectively. A pair
of strategies (x∗, y∗) ∈ �m × �n is a Nash equilibrium if xTAy∗ ≤ x∗TAy∗ and
x∗TBy ≤ x∗TBy∗, for all x ∈ �m, y ∈ �n.

The celebrated theorem of Nash guarantees the existence of an equilibrium pair
in any bimatrix game.

A bimatrix game is said to be symmetric if there is symmetry in strategies and
payoffs, that is, if m = n and B = AT . A symmetric bimatrix game there is at
least one symmetric Nash equilibrium, that is, an equilibrium of the form (x∗, x∗) ∈
�n × �n. It can be seen that (x∗, x∗) is a symmetric Nash equilibrium of (A,AT ) if
and only if (Ax∗)i ≤ x∗TAx∗, i = 1, . . . , n; or equivalently, x∗ maximizes xTAx
over x ∈ �n. In what follows, we consider symmetric bimatrix game associated with
a tree.

Let T be a tree with n vertices and let D be the distance matrix of T . Consider
the symmetric bimatrix game (D,D) in [5]. This game is interpreted as follows.
Players 1 and 2 both choose a vertex each of the trees and tries to be as away from
each other as possible. In view of the preceding discussion, (x∗, x∗) ∈ �n × �n is
a symmetric Nash equilibrium of the game (D,D) if and only if x∗ is a solution of
Problem I. Note that the game (D,D) has a unique symmetric Nash equilibrium. The
symmetric bimatrix game associated with a tree is extended by Dubey and Neogy
[12] for resistance matrix as payoff matrix.

Let G be a connected graph with vertex set {1, . . . , n} and R be the resistance
matrix where R = [ri j ] with its (i, j)-entry ri j equal to the resistance distance
between the i-th and the j-th vertices. In [12], Dubey and Neogy consider the sym-
metric bimatrix game (R,R). (x̃, x̃) ∈ �n × �n is a symmetric Nash equilibrium
of the game (R,R) if and only if x̃ is a solution of Problem I. By using the same
argument, it is easy to see that the game (R,R) has a unique symmetric Nash equi-
librium.
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