
Chapter 2
A Gradient-Free Method for
Multi-objective Optimization Problem

Nantu Kumar Bisui, Samit Mazumder, and Geetanjali Panda

Abstract In this chapter, a gradient-free method is proposed for solving the multi-
objective optimization problem in higher dimension. The concept is developed as
a modification of the Nelder-Mead simplex technique for the single-objective case.
The proposed algorithm is verified and compared with the existing methods with a
set of test problems.

Keywords Nelder-Mead simplex method · Multi-objective programming ·
Gradient-free method · n dimension simplex

2.1 Introduction

A general multi-objective optimization problem is stated as

(MOP) min
x∈S⊂Rn

F(x),

F(x) = ( f1(x), f2(x) . . . , fm(x))T , f j : Rn → R, j = 1, 2, . . . ,m,m ≥ 2. In prac-
tice, (MOP) involves several conflicting and non-commensurate objective functions
which have to be optimized simultaneously over Rn . If x∗ ∈ R

n minimizes all the
objective functions simultaneously, then certainly an ideal solution is achieved. But
in general, improvement in one criterion results in loss in another criterion, leading
to the unlikely existence of an ideal solution. For this reason one has to look for
the “best” compromise solution, which is known as an efficient or Pareto optimal
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solution. The concept of efficiency arises from a pre-specified partial ordering on
R

m . The points satisfying the necessary condition for efficiency are known as criti-
cal points. Application of these kinds of problems are found in engineering design,
statistics, management science, etc.

Classical methods for solving (MOP) are either scalarization methods or heuris-
tic methods. Scalarization methods reduce the main problem to a single objective
optimization problem using predetermined parameters. A widely used scalariza-
tion method is due to Geofforion [15], which computes proper efficient solutions.
Geofforion’s approach has been further developed by several researchers in several
directions. Other parameter-free techniques use the concept of order of importance
of the objective functions, which have to be specified in advance. Another widely
used general solution strategy for multi-objective optimization problems is the ε-
constrained method [10, 21]. All the above methods are summarized in [1, 8, 19,
23]. These scalarization methods are user-dependent and often have difficulties in
finding an approximation to the Pareto front. Heuristic methods [7] do not guarantee
the convergence property but usually provide an approximate Pareto front. Some
well-known heuristic methods are genetic algorithms, particle swarm optimization,
etc. NSGA-II [7] is a well-known genetic algorithm.

Recently, many researchers have developed line search methods for (MOP),
which are different from the scalarization process and heuristic approach. These line
search numerical techniques are possible extensions of gradient-based line search
techniques for the single-objective optimization problem to the multi-objective case.
In every gradient-based line search method, the descent direction at an iterative
point x is determined by solving a subproblem at x , and a suitable step length α

at x in this direction is obtained using the Armijio type condition with respect to
each objective function to ensure f j (x + αd) < f j (x). Then a descent sequence is
generated, which can converge to a critical point. Some recent developments in this
direction are summarized below.

The steepest descent method, which is the first line search approach for (MOP),
was developed by Fliege and Svaiter [12] in 2000 to find a critical point of (MOP).
In this method, descent direction d at every iterating point x is the solution of the
following subproblem,

inf
d∈Rn

max
j

∇ f j (x)
T d,

which is same as

min
t,d

t + 1

2
dT d

subject to ∇ f j (x)
T d − t ≤ 0, j = 1, 2, ...,m

t ∈ R, d ∈ R
n.

The Newton method for single-objective optimization problem is extended to
(MOP) by Fliege et al. [11] in 2009, which uses convexity criteria. Newton direc-
tion for (MOP) at x is obtained by solving the following min-max problem, which
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involves the quadratic approximation of all the objective functions.

inf
d∈Rn

max
j∈�m

∇ f j (x)
T d + 1

2
dT 	2 f j (x)d

This is equivalent to the following subproblem.

min
t∈R,d∈Rn

t

subject to ∇ f j (x)
T d + 1

2
dT∇2 f j (x)d − t ≤ 0, j = 1, 2, ...,m.

If every f j is a strictly convex function, then the above subproblem is a convex
programming problem. Using the Karush-Kuhn-Tucker (KKT) optimality condition,
the solution of this subproblem becomes the Newton direction dN (x) as

dN (x) = −[�m
j=1λ j (x) 	2 f j (x)]−1�m

j=1λ j (x)∇ f j (x),

where λ j (x) are Lagrange multipliers. This iterative process is locally and quadrat-
ically convergent for Lipschitz continuous functions.

An extension of the Quasi-Newton method for (MOP) is studied by Qu et al. [27] in
2011 for critical point, which avoids convexity assumptions. The method proposed
by Qu et al. [27] uses the approximate Hessian of every objective function. The
subproblem in Qu et al. [27] is

min
t∈R,d∈Rn

t

subject to ∇ f j (x)
T d + 1

2
dT Bj (x)d − t ≤ 0 j = 1, 2, ...,m,

where Bj (x) is the approximation of ∇2 f j (x).
These individual Bj (x) are replaced by a common positive definite matrix in

Ansari and Panda [2] to reduce the complexity of the algorithm. In [2], the descent
direction at every iterating point x is determined by solving the following subprob-
lem which involves linear approximation of every objective function along with the
common positive definite matrix B(x) in place of individual matrices Bj (x).

min
t, d

t + 1

2
dT B(x)d

subject to ∇ f j (x)
T d − t ≤ 0 j = 1, 2, ...,m,

t ∈ R, d ∈ R
n.

Here, a sequence of positive definite matrices is generated during the iterative
process like the quasi-Newton method for the single-objective case. The Armijo-
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Wolfe type line search technique is used to determine the step length. A descent
sequence is generated whose accumulation point is a critical point of (MOP) under
some reasonable assumptions.

The above line search techniques are restricted to unconstrained multi-objective
programming problems, which are further extended to constrained multi-objective
problems. A general constrained multi-objective optimization problem is

(MOPC) :
{
min
x∈Rn

F(x)

subject to gi (x) ≤ 0, i = 1, 2, ..., p

Concept of the line search methods for single objective constrained optimization
problems are extended to the multi-objective case in some recent papers; see [3, 4,
13]. A variant of the sequential quadratic programming (SQP) method is developed
for inequality constrained (MOPC ) in the light of the SQP method for the single-
objective case byAnsari and Panda [4] recently. The following quadratic subproblem
is solved to obtain a feasible descent direction at every iterating point x , which
involves linear approximations of all functions.

min
t, d

t + 1

2
dT d

subject to ∇ f j (x)
T d ≤ t, j = 1, 2, ...,m,

gi (x) + ∇gi (x)
T d ≤ t, i = 1, 2, ..., p,

t ∈ R, d ∈ R
n.

The same authors consider a different subproblem in [3] which involves quadratic
approximations of all the functions, and use the SQCQP technique to develop a
descent sequence. This subproblem is

min
t, d

t

subject to ∇ f j (x)T d + 1
2d

T∇2 f j (x)d − t ≤ 0, j = 1, 2, ...,m

gi (x) + ∇gi (x)T d + 1
2d

T∇2gi (x)d ≤ 0, i = 1, 2, ..., p

t ∈ R, d ∈ R
n.

With these subproblems, a non-differentiable penalty function is used to restrict
constraint violations. To obtain a feasible descent direction, the penalty function is
considered as a merit function with a penalty parameter. The Armijo type line search
technique is used to find a suitable step length. Global convergence of these methods
is discussed under the Slater constraint qualification.

The above iterative schemes are free from the burden of selection of parameters
in advance, and also have the convergence property. These iterative schemes are
gradient-based methods, and large-scale problems can be solved efficiently only if
the gradient information of the functions is available. Some optimization software



2 A Gradient-Free Method for Multi-objective Optimization Problem 23

packages perform the finite difference gradient evaluation internally. But this is inap-
propriate when function evaluations are costly and noisy. Hence there is a growing
demand for derivative-free optimization methods which neither require derivative
information nor approximate the derivatives. The reader may refer to the book Cohn
et al. [5] for the recent developments on derivative-free methods for single-objective
optimization problem.

Coordinate search is the simplest derivative-free method for the unconstrained
single-objective optimization problem. It evaluates the objective function of n vari-
ables at 2n points around a current iterate defined by displacements along the coordi-
nate directions, their negatives, and a suitable step length. The set of these directions
form a positive basis. This method is slow but capable of handling noise and guaran-
tees to converge globally. The implicit filtering algorithm is also a derivative-free line
search algorithm that imposes sufficient decrease along a quasi-Newton direction.
Here, the true gradient is replaced by the simplex gradient. Thismethod resembles the
quasi-Newton approach. The trust region-based derivative-free line search method
is also in demand to address noisy functions. In this method, quadratic subproblems
are formulated from polynomial interpolation or regression. The implicit filtering is
less efficient than the trust region but more capable of capturing noise.

The next choice is the widely cited Nelder-Mead method [24], which is a direct
search iterative scheme for single objective optimization problems. This evaluates
a finite number of points in every iteration, which takes care of the function values
at the vertices of the simplex {y0, y1, ..., yn} in n dimension, ordered by increasing
values of the objective function which has to be minimized. Action is taken based
on simplex operations such as reflections, expansions, and contractions (inside or
outside) at every iteration. The Nelder-Mead method attempts to replace the simplex
vertex that has the worst function value. In such iterations, the worst vertex yn is
replaced by a point in the line that connects yn and yc, where

y = yc + δ(yc − yn), yc = 1

n

n−1∑
i=0

yi , δ ∈ R.

δ = 1 indicates a reflection, δ = 2 an expansion, δ = 1/2 an outer contraction, and
δ = −1/2 an inside contraction. Nelder-Mead can also perform shrink. Except for
the shrinks, the emphasis is on replacing the worse vertex rather than improving the
best. The simplices generated by Nelder-Mead may adapt well to the curvature of
the function.

In this chapter, a derivative-free iterative scheme is developed for (MOP). The
idea of the Nelder-Mead simplex method is imposed in a modified form using the
Non-dominated Sorting algorithm to solve (MOP). This algorithm is coded in
MATLAB(2019) to generate the Pareto front. The efficiency of this algorithm is
justified through a set of test problems, and comparison with a scalarization method
and NSGA−II is provided in terms of the number of iterations and CPU time.
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2.2 Notations and Preliminaries

Consider that Rm is partially ordered by a binary relation induced by R
m+, the non-

negative orthant of Rm . For p, q ∈ R
m ,

p �R
m+ q ⇐⇒ q − p ∈ R

m
+;

p �R
m+ q ⇐⇒ q − p ∈ R

m
+ \ {0};

p ≺R
m+ q ⇐⇒ q − p ∈ int (Rm

+).

Definition 2.1 A point x∗ ∈ S is called a weak efficient solution of the (MOP)

if there does not exist x ∈ S such that F(x) ≺R
m+ F(x∗). In other words, whenever

x ∈ S, F(x) − F(x∗) /∈ −int (Rm+). In set notation, this becomes (F(S) − F(x∗)) ∩
−int (Rm+) = φ.

Definition 2.2 A point x∗ ∈ S is called an efficient solution of the (MOP) if
there does not exist x ∈ S such that F(x) �R

m+ F(x∗). In other words, when-
ever x ∈ S, F(x) − F(x∗) /∈ −(Rm+ \ {0}). In set notation, this becomes (F(S) −
F(x∗)) ∩ (−(Rm+ \ {0})) = φ. This solution is also known as the Pareto optimal or
non-inferior solution. If X∗ is the set of all efficient solutions, then the set F(X∗) is
called the Pareto front for (MOP).

Definition 2.3 For x1, x2 ∈ R
n , x1 is said to dominate x2 if and only if F(x1) �R

m+
F(x2), that is, f j (x1) ≤ f j (x2) for all j and F(x1) �= F(x2). x1 weakly dominates x2
if and only if F(x1) ≺R

m+ F(x2), that is, f j (x1) < f j (x2) for all j . A point x1 ∈ R
n

is said to be non-dominated if there does not exist any x2 such that x2 dominates x1.

This concept can also be extended to find a non-dominated set of solutions of a
multi-objective programming problem. Consider a set of N points {x1, x2, ..., xN },
each having m(> 1) objective function values. So F(xi ) = ( f1(xi ), f2(xi ), ...,
fm(xi )). The following algorithm fromDeb [6] can be used to find the non-dominated
set of points. This algorithm is used in the next section to order the objective values
at every vertex of the simplex.

Algorithm 1[6]
Step 0 : Begin with i = 1.
Step 1 : For all j �= i , compare solutions xi and x j for domination using Definition
2.3 for all m objectives.
Step 2 : If for any j , xi is dominated by x j , mark xi as “dominated”.
Step 3 : If all solutions (that is, when i = N is reached) in the set are considered, go
to Step 4, else increment i by one and go to Step 1.
Step 4 :All solutions that are not marked “dominated” are non-dominated solutions.
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2.3 Gradient-Free Method for MOP

In this section, we develop a gradient-free algorithm as an extension of the Nelder-
Mead simplex method, which is a widely used algorithm for the single-objective
case. The dominance property as explained in Algorithm 1 helps to compare F(x)
at different points in Rm .

Consider a simplex of n + 1 vertices in R
n as Y = {y0, y1, ..., yn} ordered by

component-wise increasing values of F . To order the vertices component-wise, one
can use the “Non-dominated Sorting Algorithm 1”. The most common Nelder-Mead
iterations for the single-objective case perform a reflection, an expansion, or a con-
traction (the latter can be inside or outside the simplex). In such iterations, the worst
vertex yn is replaced by a point in the line that connects yn and yc,

y = yc + δ(yc − yn), δ ∈ R,

where yc =
n−1∑
i=0

yi

n is the centroid of the best n vertices. The value of δ indicates

the type of iteration. For instance, when δ = 1 we have a (genuine or isometric)
reflection, when δ = 2 an expansion, when δ = 1

2 an outside contraction, and when
δ = − 1

2 an inside contraction. A Nelder-Mead iteration can also perform a simplex
shrink, which rarely occurs in practice. When a shrink is performed, all the vertices
in Y are thrown away except the best one y0. Then n new vertices are computed by
shrinking the simplex at y0, that is, by computing, for instance, y0 + 1

2 (y
i − y0),

i = 1, 2, ..., n. Note that the “shape” of the resulting simplices can change by being
stretched or contracted, unless a shrink occurs.

2.3.1 Modified Nelder-Mead Algorithm

Choose an initial point of vertices Y0 = {y00 , y10 , ..., yn0 }. Evaluate F at the points in
Y0. Choose constants:

0 < γ s < 1,−1 < δic < 0 < δoc < δr < δe.

For k = 0, 1, 2, ..., set Y = Yk .

1. Order the n + 1 vertices of Y = {y0, y1, ..., yn} using Algorithm 1 so that

F(y0) �R
m+ F(y1) �R

m+ ... �R
m+ F(yn).

Denote F(yt ) = Ft , t = 0, 1, . . . , n
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2. Reflect the worst vertex yn over the centroid yc =
n−1∑
i=0

yi

n of the remaining n

vertices:
yr = yc + δ(yc − yn)

Evaluate Fr = F(yr ). If F0 dominates Fr and Fr dominates weakly Fn−1, then
replace yn by the reflected point yr and terminate the iteration:

Yk+1 = {y0, y1, ..., yr }.

3. If Fr dominates weakly F0, then calculate the expansion point

ye = yc + δr (yc − yn)

and evaluate Fe = F(ye). If Fe dominates Fr , replace yn by the expansion point
ye and terminate the iteration:

Yk+1 = {y0, y1, ..., ye}.

Otherwise, replace yn by the reflected point yr and terminate the iteration:

Yk+1 = {y0, y1, ..., yr }.

4. If Fn−1 dominates Fr , then a contraction is performed between the best of yr

and yn .

(a) If Fr dominates weakly Fn , perform an outside contraction

yoc = yc + δoc(yc − yn)

and evaluate Foc = F(yoc). If Foc dominates Fr , then replace yn by the
outside contraction point yoc and terminate the iteration:

Yk+1 = {y0, y1, ..., yoc}.

Otherwise, perform a shrink.
(b) If Fn dominates Fr , perform an inside contraction

yic = yc + δic(yc − yn)

and evaluate Fic = F(yic). If Fic dominates weakly Fn , then replace yn by
the inside contraction point yic and terminate the iteration:

Yk+1 = {y0, y1, ..., yic}.

Otherwise, perform a shrink.
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5. Evaluate f at the n points y0 + γ s(yi − y0), i = 1, ..., n, and replace y1, ..., yn

by these points, terminating the iteration:

Yk+1 = y0 + γ s(yi − y0), i = 0, ..., n.

2.4 Numerical Illustrations and Performance Assessment

In this section, the algorithm is executed on some test problems, which are collected
from different sources and summarized in Table 2.1 (see Appendix). The results
obtained by Algorithm 2.3.1 are compared with the existing methods: the scalariza-
tion method (Weighted sum) and NSGA-II. MATLAB code (R2017b) for these three
methods is developed. The comparison is provided in Table 2.2 (see Appendix). In
this table, “Iter” corresponds to the number of iterations and “CPU time” corresponds
to the time for executing the Algorithms. Denote the algorithms in short term as

Algorithm 2.3.1—(NMSM)
Weighted Sum Method—(WSM)
NSGA-II

Pareto front: To generate the Pareto front by Algorithm 2.3.1, the RAND strat-
egy is considered for selecting the initial point. 500 uniformly distributed random
initial points between lower bound and upper bound are selected. Every test problem
is executed 10 times with random initial points. The Pareto front of the test problem
“BK1” in NSGA-II, NMSM, and WSM is provided in Fig. 2.1 with red, green, and
blue stars, respectively.

2.5 Performance Profile

Performance profile is defined by a cumulative function ρ(τ) representing a perfor-
mance ratio with respect to a given metric, for a given set of solvers. Given a set
of solvers S and a set of problems P , let ζp,s be the performance of solver s on
solving problem p. The performance ratio is then defined as rp,s = ζp,s/min

s∈S ζp,s .

The cumulative function ρs(τ ) (s ∈ S) is defined as

ρs(τ ) = |{p ∈ P : rp,s ≤ τ }|
|P| .

It is observed that the performance profile is sensitive to the number and types of
algorithms considered in the comparison; see [16]. So the algorithms are compared
pairwise. In this chapter, the performance profile is compared using purity, , �

spread metrics.
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Purity metric: Let Pp,s be the approximated Pareto front of problem p obtained
by method s. Then an approximation to the true Pareto front Pp can be built by
considering ∪

s∈SPp,s first and removing the dominated points. The purity metric for

algorithms s and problem p is defined by the ratio

¯tp,s = |Pp,s ∩ Pp|/|Pp,s |.

Clearly, ¯tp,s ∈ [0, 1]. When computing the performance profiles of the algorithms for
the purity metric, it is required to set t ′p,s = 1/ ¯tp,s . t ′ = 0 implies that the algorithm
is unable to solve p.

Spread metrics: Two types of spread metrics ( and �) are used in order to ana-
lyze if the points generated by an algorithm are well-distributed in the approximated
Pareto front of a given problem. Let x1, x2, . . . , xN be the set of points obtained by
a solver s for problem p and let these points be sorted by objective function j , that
is, f j (xi ) ≤ f j (xi+1) (i = 1, 2, . . . , N − 1). Suppose x0 is the best known approxi-
mation of global minimum of f j and xN+1 is the best known global maximum of f j ,
computed over all approximated Pareto fronts obtained by different solvers. Define

δi, j = f j (xi+1) − f j (xi ).

Then  spread metric is defined by

p,s = max
j∈�m

max
i∈{0,1,...,N } δi, j .

Define δ j to be the average of the distances δi, j , i = 1, 2, . . . , N − 1. For an algo-
rithm s and a problem p, the spread metric � is

�p,s = max
j∈�m

δ0, j + δN , j + ∑N−1
i=1 |δi, j − δ̄ j |

δ0, j + δN , j + (N − 1)δ̄ j
.

Result Analysis: A deep insight into Figs. 2.2, 2.3, and 2.4 clearly indicates the
advantage of the proposed method (NMSM) to the existing methods WSM and
NSGA−II. In RAND, NMSM has a better performance ratio in the  metric than
WSM and NSGA−II and purity and δ metrics than NSGA−II in most of the test
problems. Also from the computational details tables, one may observe that NMSM
takes less number of iterations and time than WSM and NSGA−II in most of the
test problems.
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2.6 Conclusions

In this chapter, a Nelder-mead simplex method is developed for solving uncon-
strained multi-objective optimization problems. This method is modified from the
existing Nelder-mead simplex method for single-objective optimization problems.
Justification of this iterative process is carried out through numerical computations.
This chapter can be further studied for the constrained multi-objective programming
problem and for the better spreading technique to generate the Pareto points, which
can be considered as the future scope of the present contribution.

Acknowledgements We thank the anonymous reviewers for the valuable comments that greatly
helped to improve the content of this chapter.

Appendix

Table 2.1 Multi-objective test problems

Problem Source Problem Source Problem Source

BK1 [17] Jin2 [20] TKLY1 [26]

Deb41 [6] Jin3 [20] LE1 [17]

Deb513 [6] Jin4 [20] I1 [17]

Deb521aa [6] lovison1 [22] Far1 [17]

Deb521b [6] lovison2 [22] SK1 [17]

DG01 [17] lovison3 [22] SK2 [17]

ex005 [18] lovison4 [22] SP1 [17]

ZDT3 [28] LRS1 [17] SSFYY1 [17]

Fonseca [14] MOP2 [17] SSFYY2 [17]

Deb53 [9] MHHM2 [17] VFM1 [17]

GE5 [9] MLF1 [17] ZDT1 [28]

IKK1 [17] MLF2 [17] VU1 [17]

ZDT2 [28] SCH1 [17] VU2 [17]

Jin1 [20] MOP1 [17] KW2 [9]

OKA1 [25] MOP3 [17] MOP7 [17]

OKA2 [25] MOP5 [17] ZDT4 [28]

QV1 [17] MOP6 [17] CEC09_1 [3]

CEC09_2 [3] CEC09_3 [3] CEC09_7 [3]

CEC09_8 [3] CEC09_10 [3] Deb512a [6]

Deb512b [6] Deb512c [6] DTLZ1 [6]

DTLZ1n2 [6] DTLZ2 [6] DTLZ2n2 [6]

DTLZ3 [6] DTLZ3n2 [6] DTLZ4 [6]

DTLZ4n2 [6] DTLZ5_a [6] DTLZ5n2_a [6]

DTLZ6 [6] DTLZ6n2 [6] FES1 [17]

FES2 [17] FES3 [17] IM1 [17]
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Fig. 2.1 Pareto front of BK1
for Weighted Sum,
Nelder-Mead Simplex, and
NSGA−II

Table 2.2 Computation details

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

BK1 100 175.7102 1000 17.3119 1000 96.1962

CEC09_1 40 40.8337 39185 85.1831 1000 125.0616

CEC09_2 15 14.7780 29659 62.3473 1000 149.2667

CEC09_3 30 43.5034 17463 47.0575 1000 261.1938

CEC09_7 50 58.12 66763 115.43 1000 246.4144

CEC09_8 10 39.5513 11881 24.811 1000 414.9251

CEC09_10 1 7.1234 26521 61.1016 500 424.4517

Deb41 225 46.961 3451 13.1149 200 54.7721

Deb53 1 3.148 4779 16.182 1000 226.228

Deb512a 95 30.8398 6831 16.2914 1000 67.5017

Deb512b 1 1.6304 5665 22.007 500 236.7293

Deb512c 1 1.3482 4169 13.0784 1000 105.0796

Deb513 100 286.7849 1105 8.2348 500 233.5419

Deb521a 200 40.6678 2074 16.2494 500 178.9993

Deb521b 200 34.7894 1832 9.5663 500 86.927

DG01 100 383.6649 3527 10.0337 500 114.6849

DTLZ1 1 8.0783 829 11.3604 500 604.637

DTLZ1n2 50 51.4517 1533 10.5865 500 329.7814

(continued)
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Table 2.2 (continued)

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

DTLZ2 1 9.1068 4384 12.1977 500 201.0205

DTLZ2n2 30 92.2633 1705 9.2817 500 90.3009

DTLZ3 1 8.5647 546 11.3052 500 180.3397

DTLZ3n2 25 59.364 1489 12.3074 500 837.8227

DTLZ5 5 37.5631 2361 11.2001 500 263.9273

DTLZ5n2 4 19.6248 2417 10.2009 500 277.3301

DTLZ6 100 40.4558 3696 13.6023 500 159.34

DTLZ6n2 150 266.6435 2416 9.9722 500 186.7189

ex005 2 8.6635 2066 9.0123 500 280.0558

Far1 50 54.4216 6633 21.8326 500 122.3895

hline FES1 65 211.8147 22021 69.7231 500 293.3888

FES2 1 3.6761 24335 80.9286 500 146.9458

FES3 1 3.6302 26324 96.1848 500 142.7173

Fonseca 50 83.6762 3872 11.3395 500 95.5476

GE5 1 5.932 2412 9.7671 500 433.6827

I1 4 9.8997 1610 18.8042 500 115.2193

IKK1 1 2.9279 1539 8.1619 500 95.1506

IM1 1 4.971 2353 9.4475 500 185.6666

Jin1 50 35.5375 1091 7.9041 500 83.9951

Jin2 28 5.6778 3834 11.2386 500 152.2696

Fig. 2.2 Purity performance profile between NMSM,WSM, and NSGA-II
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Table 2.3 Computation details continued

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

Jin3 100 15.7487 1565 8.3628 500 196.8463

Jin4 150 24.6867 2815 10.8569 500 111.2916

KW2 50 89.2429 4885 15.7046 500 118.0532

LE1 50 240.3437 9798 19.4636 500 182.9293

Lovison1 1 2.968 1752 9.9745 500 111.5821

Lovison2 150 25.9414 2316 10.4402 500 207.9985

Lovison3 1 2.5782 2389 10.3237 500 206.382

Lovison4 1 4.0833 1949 10.1973 500 279.6307

LRS1 50 336.4876 1002 7.7188 500 142.3477

MHHM2 3 11.0745 3681 11.4456 500 344.4489

MLF1 50 122.7622 1927 9.1655 500 104.0309

MLF2 2 8.4472 4347 11.103 500 358.7373

MOP1 1 5.2652 1006 8.604 500 119.9713

MOP2 50 154.4144 3373 10.4286 500 99.4147

MOP3 2 4.551 4403 12.7004 500 95.9286

MOP5 1 1.2941 4007 10.4313 500 113.9832

MOP6 45 117.3724 1111 8.6546 500 278.6248

MOP7 1 5.1297 3765 12.0097 500 166.5825

OKA1 60 80.5031 5412 17.0589 500 118.3507

OKA2 50 33.6682 5753 16.9394 83 19.2191

QV1 55 251.9818 962 11.4491 500 76.7295

SCH1 50 61.1843 1387 9.228 500 97.6939

SK1 50 53.5915 2171 9.5896 500 98.0009

SK2 50 164.0477 2202 9.9194 500 146.5663

SP1 75 164.2625 3035 10.2907 500 133.1876

SSFYY1 100 323.6209 1002 7.9782 500 91.426

SSFYY2 50 186.4307 2745 10.4761 500 106.6671

TKLY1 55 29.4778 3106 10.9727 500 108.0413

VFM1 1 5.7106 1000 8.5332 500 121.1181

VU1 100 31.6459 1802 8.9375 500 138.3799

VU2 1 3.3975 2116 9.6255 500 400.1829

ZDT1 100 64.8696 4584 19.4772 500 252.9595

ZDT2 100 49.0452 1967 10.6646 500 361.0973

ZDT3 50 44.126 4499 13.469 500 480.667

ZDT4 50 83.5181 8527 19.4524 100 836.2467
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Fig. 2.3  performance profile between NMSM,WSM, and NSGA-II

Fig. 2.4 � performance profile between NMSM,WSM, and NSGA-II
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