
Chapter 13
On Constraint Qualifications for
Multiobjective Optimization Problems
with Switching Constraints

Yogendra Pandey and Vinay Singh

Abstract In this chapter, we consider multiobjective optimization problems with
switching constraint (MOPSC). We introduce linear independence constraint quali-
fication (LICQ), Mangasarian–Fromovitz constraint qualification (MFCQ), Abadie
constraint qualification (ACQ), and Guignard constraint qualification (GCQ) for
multiobjective optimization problems with switching constraint (MOPSC). Further,
we introduce the notion of Weak stationarity, Mordukhovich stationarity, and Strong
stationarity, i.e., W-stationarity, M-stationarity, and S-stationarity, respectively, for
the MOPSC. Also, we present a survey of the literature related to existing constraint
qualifications and stationarity conditions for mathematical programs with equilib-
rium constraints (MPEC), mathematical programs with complementarity constraints
(MPCC), mathematical programs with vanishing constraints (MPVC), and for math-
ematical programs with switching constraints (MPSC). We establish that the M-
stationary conditions are sufficient optimality conditions for the MOPSC using gen-
eralized convexity. Further, we propose aWolfe-type dual model for theMOPSC and
establish weak duality and strong duality results under assumptions of generalized
convexity.

Keywords Switching constraints · Constraint qualifications · Optimality
conditions · Duality

13.1 Introduction

We consider the followingmultiobjective optimization problemswith switching con-
straints (MOPSC):
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(MOPSC) min ( f1(x), . . . , fm(x))

subject to : gi (x) ≤ 0, i = 1, . . . , p,

hi (x) = 0, i = 1, . . . , q,

Gi (x)Hi (x) = 0, i = 1, . . . , l.

All the functions f1, . . . , fm, g1, . . . , gp, h1, . . . , hq ,G1, . . . ,Gl , H1, . . . , Hl :
R

n → R are assumed to be continuously differentiable.
In optimal control, the concept of control switching became very important, for

details see, [13, 14, 23, 27, 35, 59, 61, 63, 67] and references therein. Mathematical
programs with switching constraints (MPSC) are related to mathematical programs
with vanishing constraints (MPVC) andmathematical programswith complementar-
ity constraints (MPCC) (see [38, 51]). Similarly, multiobjective optimization prob-
lems with switching constraints (MOPSC) are also closely related to multiobjective
optimization problems with vanishing constraints (MOPVC), see [44]. Mehlitz [42]
introduced the notions of weak, Mordukhovich, and strong stationarities for mathe-
matical programs with switching constraints (MPSC). Recently, Kanzow et al. [34]
proposed several relaxation schemes for the MPSC.

Constraint qualifications are regularity conditions for Kuhn–Tucker necessary
optimality in nonlinear programming problems. The Slater constraint qualification,
the weak Arrow–Hurwicz–Uzawa constraint qualification, the weak reverse convex
constraint qualification, the Kuhn–Tucker constraint qualification, the linear inde-
pendence constraint qualification (LICQ), the Mangasarian–Fromovitz constraint
qualification (MFCQ), the Abadie constraint qualification (ACQ), and the Guignard
constraint qualification (GCQ) are some of the important constraint qualifications
among several constraint qualifications in nonlinear programming problems (see, [1,
24, 41]). Many authors studied these constraint qualifications and found relations
for different types of optimization problems under smooth and nonsmooth environ-
ments. We refer to [9, 12, 22, 36, 37, 39, 40, 56, 57] for more details about several
constraint qualifications and relationships among them for nonlinear programming
problems and multiobjective programming problems.

Motivated by the above-mentioned works our aim is to study several constraint
qualifications and stationarity conditions of theMOPSC. The chapter is structured as
follows: We begin with some preliminary results in Sect. 13.2. Section 13.3 is dedi-
cated to the study of constraint qualifications like LICQ, MFCQ, generalized ACQ,
and generalized GCQ for the MOPSC. In Sect. 13.4, we introduce weak stationarity
(W-stationarity), Mordukhovich stationarity (M-stationarity), and strong stationar-
ity (S-stationarity) for the MOPSC. In Sect. 13.5, we establish that the M-stationary
conditions are sufficient optimality conditions for the MOPSC using generalized
convexity. In Sect. 13.6, we propose a Wolfe type dual for the MOPSC and establish
weak duality and strong duality results under assumptions of generalized convexity.
In Sect. 13.7, we discuss some future research work.
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13.2 Preliminaries

This section contains some preliminaries which will be used throughout the chapter.
Consider the following multiobjective optimization problem (MOP):

(MOP) f̂ (x) := ( f̂1(x), . . . , f̂m̂(x))

s.t. ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂, (13.1)

ĥi (x) = 0,∀i = 1, 2, . . . , q̂,

where all the functions f̂i , ĝi , ĥi : R
n → R are continuously differentiable. Set F to

be the feasible set of the MOP.
For each k = {1, . . . , m̂} ⊂ N, the nonempty sets Ŝk and Ŝ are given as follows:

Ŝk := {x ∈ R
n| ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂,

ĥi (x) = 0,∀i = 1, 2, . . . , q̂, (13.2)

f̂i (x) ≤ f̂i (x̄),∀1, 2, . . . , m̂, and i �= k},

and

Ŝ := {x ∈ R
n| ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂,

ĥi (x) = 0,∀i = 1, 2, . . . , q̂, (13.3)

f̂i (x) ≤ f̂i (x̄),∀i = 1, 2, . . . , m̂}.

The following concept of the linearized cone to Ŝ at x̄ ∈ Ŝ was introduced in [39]
for the MOP.

Definition 13.1 The linearized cone to Ŝ at x̄ ∈ Ŝ is the set L
(
Ŝ; x̄

)
given by

L
(
Ŝ; x̄

)
:= {d ∈ R

n| ∇ ĝi (x̄)
T d ≤ 0,∀i ∈ Iĝ,

∇ĥi (x̄)
T d = 0,∀i ∈ Iĥ,

∇ f̂i (x̄)
T d ≤ 0,∀i ∈ I f̂ }.

where

Iĝ := {i ∈ {1, . . . , p̂} | ĝi (x̄) = 0},
Iĥ := {1, . . . , q̂},
I f̂ := {1, . . . , m̂}.

Some of the important convex cones that play a vital role in optimization are
the polar cone, tangent cone, and normal cone. The notion of tangent cones may
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be considered a generalization of the tangent concept in a smooth case to that in a
nonsmooth case.

For the sake of convenience, let us recall the definition of a well-known concept
having a crucial role to define constraint qualifications.

Definition 13.2 ([8, 58]) Let Ŝ be a nonempty subset of R
n. The tangent cone to Ŝ

at x̄ ∈ cl Ŝ is the set T
(
Ŝ; x̄

)
defined by

T (Ŝ; x̄) :=
{
d ∈ R

n|∃{xn} ⊆ Ŝ, {tn} ↓ 0 : xn → x̄,
xn − x̄

tn
→ d

}
,

where cl Ŝ denotes the closure of Ŝ.

The following definitions of constraint qualifications for the MOP are taken from
[39].

Definition 13.3 Let x̄ ∈ F be a feasible solution of the MOP. Then the linear inde-
pendence constraint qualification (LICQ) holds at x̄, if the gradients

∇ f̂i (x̄)
(
i ∈ I f̂

)
,

∇ ĝi (x̄)
(
i ∈ Iĝ

)
,

∇ ĥi (x̄)
(
i ∈ Iĥ

)
,

are linearly independent.

Definition 13.4 Let x̄ ∈ F be a feasible solutionof theMOP.Then theMangasarian–
Fromovitz constraint qualification (MFCQ) holds at x̄, if the gradients

∇ f̂i (x̄)
(
i ∈ I f̂

)
,

∇ ĥi (x̄)
(
i ∈ Iĥ

)
,

are linearly independent, and the system

∇ f̂i (x̄)
T d = 0∀i ∈ I f̂ ,

∇ ĝi (x̄)
T d < 0,∀i ∈ Iĝ,

∇ ĥi (x̄)
T d = 0,∀i ∈ Iĥ,

has a solution d ∈ R
n.

Definition 13.5 Let x̄ ∈ F be a feasible solution of the MOP. Then the Abadie
constraint qualification (ACQ) holds at x̄ if

L
(
Ŝ; x̄

)
⊆ T

(
Ŝ; x̄

)
.
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Definition 13.6 Let x̄ ∈ F be a feasible solution of the MOP. Then the generalized
Abadie constraint qualification (GACQ) holds at x̄ if

L
(
Ŝ; x̄

)
⊆

m̂⋂
k=1

T
(
Ŝk; x̄

)
.

The following concept of efficiency was introduced by Pareto [52].

Definition 13.7 Let x̄ ∈ F be a feasible solution of the MOP . Then x̄ is said to be
a local efficient solution of the MOP , if there exists a number δ > 0 such that, there
is no x ∈ F

⋂
B (x̄; δ) satisfying

f̂i (x) ≤ f̂i (x̄),∀i = 1, . . . , m̂,

f̂i (x) < f̂i (x̄), at least one i,

where B (x̄; δ) denotes the open ball of radius δ and centre x̄ .

Definition 13.8 Let x̄ ∈ F be a feasible solution of the MOP. Then x̄ is said to be
an efficient solution of the MOP, if there is no x ∈ F satisfying

f̂i (x) ≤ f̂i (x̄),∀i = 1, . . . , m̂,

f̂i (x) < f̂i (x̄), at least one i.

The following definitions and results are taken from [41].

Definition 13.9 Let f be a differentiable real-valued function definedon a nonempty
open convex set X ⊆ R

n. Then the function f is said to be pseudoconvex at x̄ ∈ X
if the following implication holds:

x, x̄ ∈ X, 〈∇ f (x̄), x − x̄〉 ≥ 0 ⇒ f (x) ≥ f (x̄).

Equivalently,

x, x̄ ∈ X, f (x) < f (x̄) ⇒ 〈∇ f (x̄), x − x̄〉 < 0.

Definition 13.10 Let f be a differentiable real-valued function defined on a
nonempty open convex set X ⊆ R

n. Then the function f is said to be quasicon-
vex at x̄ ∈ X iff the following implication holds:

x, x̄ ∈ X, f (x) ≤ f (x̄) ⇒ 〈∇ f (x̄), x − x̄〉 ≤ 0.
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13.3 Constraint Qualifications for Multiobjective
Optimization Problems with Switching Constraint

The standard constraint qualifications for nonlinear optimization problems (LICQ or
MFCQ) are always violated at every feasible point for mathematical programs with
equilibrium constraints (MPEC)(see, [65]), for mathematical programswith comple-
mentarity constraints (MPCC) (see, [60]), for mathematical programswith vanishing
constraints (MPVC)(see, [29]) and for mathematical programs with switching con-
straints (MPSC)(see,[42]).

Ye [66] introduced several constraint qualifications for the KKT-type necessary
optimality conditions involvingMordukhovich co-derivatives formathematical prob-
lems with variational inequality constraints (MPVIC). The standard Abadie con-
straint qualification is unlikely to be satisfied by the MPEC, the MPVC, and MPSC.
Flegel and Kanzow [16] introduced the modified Abadie constraint qualification
for the MPEC. Ye [64] proposed new constraint qualifications namely MPEC weak
reverse convex constraint qualification, MPEC Arrow–Hurwicz–Uzawa constraint
qualification, MPEC Zangwill constraint qualification, MPEC Kuhn–Tucker con-
straint qualification, MPEC Abadie constraint qualification. He also proved the rela-
tionship among them. For more details about several new constraint qualifications
for the MPEC, the MPCC and the MPVIC, (see, [10, 11, 18–21, 25, 26]).

Hoheisel and Kanzow [30] introduced the Abadie and Guignard constraint qual-
ifications for mathematical programs with vanishing constraints. Mishra et al.
[44] introduced suitable modifications in constraint qualifications like Cottle con-
straint qualification, Slater constraint qualification, Mangasarian–Fromovitz con-
straint qualification, linear independence constraint qualification, linear objective
constraint qualification, generalized Guignard constraint qualification for multiob-
jective optimization problems with vanishing constraints and established relation-
ships among them. We refer to [2, 28, 29, 31, 32] and references their in for more
details about constraint qualifications for the MPVC.

Recently, Ardakani et al. [3] introduced two new Abadie-type constraint quali-
fications and presented some necessary conditions for properly efficient solutions
of the problem, using convex subdifferential for multiobjective optimization prob-
lems with nondifferentiable convex vanishing constraints. Mehlitz [42] introduced
MPSC-tailored versions of MFCQ and LICQ and studied MPSC-tailored versions
of the Abadie and Guignard constraint qualification for the MPSC.

Given a feasible point x̄ ∈ S, we consider the following index sets:

Ig(x̄) := {i = 1, 2, . . . , p : gi (x̄) = 0},
α := α(x̄) = {i = 1, 2, . . . , l : Gi (x̄) = 0, Hi (x̄) �= 0},
β := β(x̄) = {i = 1, 2, . . . , l : Gi (x̄) = 0, Hi (x̄) = 0},
γ := γ (x̄) = {i = 1, 2, . . . , l : Gi (x̄) �= 0, Hi (x̄) = 0}.
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Let us define a feasible set S of MOPSC by

S := {x ∈ R
n : gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , l}.

Consider the following function:

ηi (x) := Gi (x)Hi (x),∀i = 1, 2, . . . , l (13.4)

its gradient is given by

∇ηi (x) = Gi (x)∇Hi (x) + Hi (x)∇Gi (x),∀i = 1, 2, . . . , l. (13.5)

By the definition of the index sets, we get

∇ηi (x̄) =

⎧⎪⎨
⎪⎩

Hi (x̄)∇Gi (x̄), if i ∈ α,

0, if i ∈ β,

Gi (x̄)∇Hi (x̄), if i ∈ γ,

(13.6)

For each k = 1, 2, . . . ,m, the nonempty sets Sk and S are defined as follows:

Sk := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , r,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, i �= k},

and

S := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , r,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, }.

The following result gives the standard linearized cone to Sk, k = 1, 2, . . . ,m, at
an efficient solution x̄ ∈ S of the MOPSC .

Lemma 13.3.1 Let x̄ ∈ S be an efficient solution of theMOPSC. Then, the linearized
cone to Sk, k = 1, 2, . . . ,m, at x̄ is given by
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L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.7)

∇Hi (x̄)
T d = 0,∀i ∈ γ,

∇Gi (x̄)
T d = 0,∀i ∈ α}.

Proof Let ηi (x) = Gi (x)Hi (x),∀i = 1, 2, . . . , r . By the definitions of the index
sets and in view of Definition of the linearized cone to Sk, k = 1, . . . ,m at x̄ ∈ Sk

is given by

L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih,

∇ηi (x̄)
T d = 0,∀i ∈ α ∪ γ }.

We know that ∇ηi (x̄) = Gi (x̄)∇Hi (x̄) + Hi (x̄)∇Gi (x̄),

∇ηi (x̄)
T d = 0

implies
Gi (x̄)∇Hi (x̄)

T d + Hi (x̄)∇Gi (x̄)
T d = 0.

Since, Gi (x̄) = 0, ∀i ∈ α, and Hi (x̄) = 0, , ∀i ∈ γ , we get

L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih,

∇Hi (x̄)
T d = 0,∀i ∈ γ, (13.8)

∇Gi (x̄)
T d = 0,∀i ∈ α}.

We introduce a tightened nonlinear multiobjective optimization problem (TNL-
MOP) derived from theMOPSC depending on an efficient solution x̄ ∈ S as follows

(TNLMOP) f (x) := ( f1(x), . . . , fm(x))

s.t. gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q, (13.9)

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β.

The feasible set of the TNLMOP is a subset of the feasible set of MOPSC.
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Definition 13.11 Let x̄ ∈ S be a feasible point of the MOPSC. If LICQ holds for
TNLMOP at x̄ . Then x̄ is said to satisfy LICQ–MOPSC.

Definition 13.12 Let x̄ ∈ S be a feasible point of the MOPSC. If MFCQ holds for
TNLMOP at x̄ . Then x̄ is said to satisfy MFCQ–MOPSC.

From the Definitions 13.3 and 13.4 [39] for TNLMOP, one has

LICQ =⇒ MFCQ.

Therefore,
LICQ–MOPSC =⇒ MFCQ-MOPSC.

13.3.1 A Generalized Guignard and Abadie CQ for MOPSC

For each k = 1, 2, . . . ,m, the nonempty sets S
k
and S are defined as follows:

S
k := {x ∈ R

n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, i �= k},

and

S := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m}.

The linearized cone to S
k
at x̄ ∈ S

k
is given by

L(S
k; x̄) = {d ∈ R

n| ∇ fi (x̄)
T d ≤ 0,∀i = 1, . . . ,m, i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.10)

∇Gi (x̄)
T d = 0,∀i ∈ α ∪ β,

∇Hi (x̄)
T d = 0,∀i ∈ γ ∪ β}.
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L(S; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i = 1, . . . ,m,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.11)

∇Gi (x̄)
T d = 0,∀i ∈ α ∪ β,

∇Hi (x̄)
T d = 0,∀i ∈ γ ∪ β}.

We have the following relation:

L
(
S; x̄) =

m⋂
k=1

L
(
S
k; x̄

)
. (13.12)

Definition 13.13 Let x̄ ∈ X be any feasible solution to the MOPSC. Then, aGener-
alizedAbadieConstraintQualification (GACQ) for theMOPSC, denoted byGACQ–
MOPSC, holds at x̄, if

L
(
S; x̄) ⊆

m⋂
k=1

T
(
Sk; x̄) .

The following constraint qualification gives a sufficient condition to the GACQ–
MOPVC.

Definition 13.14 Let x̄ ∈ X be any feasible solution to the TNLMOP. Then a Gen-
eralized Abadie Constraint Qualification (GACQ) for the TNLMOP, denoted by
GACQ–TNLMOP, holds at x̄, if

L (S; x̄) ⊆
m⋂

k=1

T
(
S
k; x̄

)
.

Note 13.1 The standard GACQ gives a sufficient condition for the GACQ–MOPVC
to hold. Since L

(
S; x̄) ⊆ L (S; x̄) .

The following lemma is about relationships between GACQ–TNLMOP and
GACQ–MOPSC.

Lemma 13.3.2 If the GACQ–TNLMOP holds at x̄ then the standard GACQ and the
GACQ–MOPVC both are satisfied at x̄ .

Proof We know that

S
k ⊂ Sk ∀ k = 1, 2 . . .m
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and
T (S

k; x̄) ⊂ T (Sk; x̄) ∀ k = 1, 2 . . .m.

Hence,
m⋂

k=1

T
(
S
k; x̄

)
⊂

m⋂
k=1

T
(
Sk; x̄) .

From Definition 13.14, we have

L
(
S; x̄) ⊆ L (S; x̄) ⊆

m⋂
k=1

T
(
S
k; x̄

)
⊂

m⋂
k=1

T
(
Sk; x̄) .

Therefore, GACQ–MOPSC holds at x̄ .
By Definitions 13.13 and 13.14, we obtain

GACQ–TNLMOP =⇒ GACQ–MOPSC

Now, we discuss the relationship between tangent cone T
(
S
k; x̄

)
, k=1, 2, . . . ,

m, and the linearized cone L(S; x̄).
Lemma 13.3.3 Let x̄ ∈ be a feasible solution of the MOPSC. Then we have

m⋂
k=1

clcoT
(
S
k; x̄

)
⊆ L (S; x̄) .

Proof The proof follows on the lines of the proof of Lemma 3.1 [42]. �

Definition 13.15 Let x̄ ∈ X be any feasible solution to the TNLMOP. Then a Gen-
eralized Guignard Constraint Qualification (GGCQ) for the TNLMOP, denoted by
GGCQ–TNLMOP, holds at x̄, if

L (S; x̄) ⊆
m⋂

k=1

clcoT
(
S
k; x̄

)
.

Definition 13.16 Let x̄ ∈ X be any feasible solution to the MOPSC. Then, a Gen-
eralized Guignard Constraint Qualification (GGCQ) for the MOPSC, denoted by
GGCQ–MOPSC, holds at x̄, if

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

The following result gives the relationship between the GGCQ–TNLMOP and
the GGCQ–MOPVC.
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Lemma 13.3.4 Let x̄ ∈ X be any feasible solution of the MOPVC. If the GGCQ-
TNLMOP holds at x̄, then the GGCQ–MOPVC also holds at x̄ ∈ X.

Proof Assume that x̄ ∈ X is a feasible solution of the MOPSC and GGCQ–
TNLMOP holds at x̄ , then

L (S; x̄) ⊆
m⋂

k=1

clcoT
(
S
k; x̄

)
. (13.13)

Also,
S
k ⊂ Sk ∀ k = 1, 2 . . .m

and
T (S

k; x̄) ⊂ T (Sk; x̄) ∀ k = 1, 2 . . .m.

Hence

m⋂
k=1

clcoT
(
S
k; x̄

)
⊂

m⋂
k=1

clcoT
(
Sk; x̄) . (13.14)

We always have
L

(
S; x̄) ⊆ L (S; x̄) . (13.15)

From Eqs. (13.13), (13.14) and (13.15), we get

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Therefore, GGCQ–MOPVC holds at x̄ ∈ X. This completes the proof.

In the following lemma, we derive a relationship between the GACQ–MOPSC
and the GGCQ–MOPSC.

Lemma 13.3.5 Let x̄ ∈ X be a feasible solution of the MOPSC. If the GACQ–
MOPSC holds at x̄ then the GGCQ-MOPSC is satisfied.

Proof Assume x̄ ∈ X be a feasible solution of theMOPSC and that GACQ–MOPSC
holds at x̄ . From Definition 13.13, we have

L
(
S; x̄) ⊆

m⋂
k=1

T
(
Sk; x̄) .

Since
T

(
Sk; x̄) ⊆ clcoT

(
Sk; x̄) ,
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we have

m⋂
k=1

T
(
Sk; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Which implies

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Therefore, the GGCQ–MOPSC is satisfied at x̄ . This completes the proof. �

By Lemma 13.3.5, we have

GACQ–MOPSC =⇒ GGCQ–MOPSC.

13.4 Stationary Conditions for MOPSC

The standard nonlinear programming has only one dual stationary condition, i.e.,
the Karush–Kuhn–Tucker condition, but we have various stationarity concepts for
mathematical programs with equilibrium constraints (MPEC), mathematical pro-
gram with complementarity constraints (MPCC), mathematical program with van-
ishing constraints (MPVC), and mathematical program with switching constraints
(MPSC).

Outrata [50] introduced the notion of Mordukhovich stationary point (M-
stationary) for mathematical programs with equilibrium constraints (MPEC). Scheel
and Scholtes [60] introduced the concept of strong-stationary point (S-stationary)
and Clarke-stationary (C-stationary) for the mathematical program with comple-
mentarity constraints (MPCC). Flegel and Kanzow [15] introduced the concept of
Alternatively, stationary point (A-stationary) for theMPEC. Further, Flegel andKan-
zow [17] proved that M-stationarity is the first-order optimality condition under a
weak Abadie-type constraint qualification for the MPEC.

Ye [64] introduced various stationarity conditions and obtained new constraint
qualifications for the considered MPEC. Hoheisel and Kanzow [29] introduced sev-
eral stationarity conditions for mathematical programs with vanishing constraints
(MPVC) using weak constraint qualifications. Ardali et al. [4] studied several new
constraint qualifications, GS-stationarity concepts, and optimality conditions for a
nonsmoothmathematical programwith equilibrium constraints based on the convex-
ificators. Mehlitz [42] introduced notions of weak stationary point (W-stationary),
Mordukhovich stationary point (M-stationary), strong stationary point (S-stationary)
for mathematical program with vanishing constraints (MPVC) and obtain that the
S-stationarity conditions of the MPSC equal its KKT conditions in a certain sense.
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In this section, we introduce the notion of weak stationarity, Mordukhovich sta-
tionarity, and strong stationarity, i.e., W-stationarity, M-stationarity, and S-
stationarity, respectively for the MOPSC.

The following stationarity conditions can be treated as a multiobjective analog of
the stationarity conditions for scalar optimization problem with switching constraint
introduced in [42].

Definition 13.17 (W-stationary point) A feasible point x̄ of MOPSC is called a
weak stationary point (W-stationary point) if there exists λ = (λg, λh, λG, λH ) ∈
R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0 =
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
l∑

i=1

[λGi ∇Gi (x̄) + λH
i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0.

Definition 13.18 (M-stationary point) A feasible point x̄ of MOPSC is called a
Mordukhovich stationary point (M-stationary point) if there exists λ = (λg, λh, λG,
λH ) ∈ R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0 =
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
l∑

i=1

[λGi ∇Gi (x̄) + λH
i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i λH

i = 0.

Definition 13.19 (S-stationary point) A feasible point x̄ of MOPSC is called a
strong stationary point (S-stationary point) if there exists λ = (λg, λh, λG, λH ) ∈
R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0=
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄)+

q∑
i=1

λh
i ∇hi (x̄) +

l∑
i=1

[λG
i ∇Gi (x̄) + λH

i ∇Hi (x̄)],
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∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i = 0 and λH

i = 0.

By Definitions 13.17, 13.18 and 13.19, we have

S − stationari ty =⇒ M − stationari ty =⇒ W − stationari ty.

13.5 Sufficient Optimality Conditions for the MOPSC

Mordukhovich [46] established necessary optimality conditions for multiobjective
equilibriumprogramswith equilibriumconstraints infinite-dimensional spaces based
on advanced generalized differential tools of variational analysis. Bao et al. [5] stud-
ied multiobjective optimization problems with equilibrium constraints (MOPECs)
described by generalized equations in the form

0 ∈ G(x, y) + Q(x, y),

where mappings G and Q are set-valued.
Bao et al. [5] established a necessary optimality conditions for the MOPEC

using tools of variational analysis and generalized differentiation. Mordukhovich
[48] derived new qualified necessary optimality conditions for the MOPEC in finite-
and infinite-dimensional spaces. Movahedian and Nobakhtian [49] derived a nec-
essary optimality result on any Asplund space and established sufficient optimality
conditions for nonsmooth MPEC in Banach spaces. Recently, Pandey and Mishra
[53] introduced the concept of Mordukhovich stationary point in terms of the Clarke
subdifferentials and established that M-stationarity conditions are strong KKT-type
sufficient optimality conditions for the multiobjective semi-infinite mathematical
programming problem with equilibrium constraints.

We divide the index sets as follows. Let
T+ := {i : λh

i > 0}, T− := {i : λh
i < 0}

β+ := {i ∈ β : λG
i > 0, λH

i > 0},
β+
G := {i ∈ β : λG

i = 0, λH
i > 0}, β−

G := {i ∈ β : λG
i = 0, λH

i < 0},
β+
H := {i ∈ β : λH

i = 0, λG
i > 0}, β−

H := {i ∈ β : λH
i = 0, λG

i < 0},
α+ := {i ∈ α : λG

i > 0}, α− := {i ∈ α : λG
i < 0},

γ + := {i ∈ γ : λH
i > 0}, γ − := {i ∈ γ : λH

i < 0}.
Definition 13.20 Let x̄ ∈ X be a feasible point of the MOPSC. We say that the No
Nonzero Abnormal Multiplier Constraint Qualification (NNAMCQ) is satisfied at
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x̄, if there is no nonzero vector λ = (λg, λh, λG, λH ) ∈ R
p+q+2l , such that

0 ∈
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λh
i ∇hi (x̄) +

l∑
i=1

[λG
i ∇Gi (x̄) + λH

i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

and
∀i ∈ β(x̄) : λG

i λH
i = 0.

The following theorem shows that theMOPSCM-stationary conditions are aKKT
type sufficient optimality conditions for weakly efficient solution of the MOPSC.

Theorem 13.5.1 Let x̄ ∈ X be a feasible point of theMOPSCand theM-stationarity
conditions hold at x̄ . Suppose that each fi (i = 1, . . . ,m) is pseudoconvex at
x̄, g j ( j ∈ J (x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i∈α+ ∪ β+

H ∪ β+),−Gi (i ∈ α− ∪
β−
H ), Hi (i ∈ γ + ∪ β+

G ∪ β+),−Hi (i ∈ γ − ∪ β−
G ) are quasiconvex at x̄ . If α− ∪

γ − ∪ β−
G ∪ β−

H = φ, then x̄ is a weakly efficient solution for MOPSC.

Proof Assume that x̄ is not a weakly efficient solution forMOPSC. Then there exists
a feasible point x for MOPSC such that such that

fi (x) < fi (x̄) ∀i = 1, . . . ,m.

Since each fi is pseudoconvex, we have

〈∇ fi (x̄), x − x̄〉 < 0. (13.16)

Also ηi > 0 for all i ∈ {1, . . . ,m}, we get
〈

m∑
i=1

ηi∇ fi (x̄), x − x̄

〉
< 0. (13.17)

Since x̄ is MOPSC M-stationary point, we have

−
∑
i∈Ig

λ
g
i ∇gi (x̄) −

q∑
i=1

λhi ∇hi (x̄) −
∑
α∪β

λG
i ∇Gi (x̄) −

∑
β∪γ

λH
i ∇Hi (x̄) =

m∑
i=1

ηi∇ fi (x̄).

(13.18)
By Eq. (13.17), we get
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〈⎛
⎝∑

i∈Ig
λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
∑
α∪β

λG
i ∇Gi (x̄) +

∑
β∪γ

λH
i ∇Hi (x̄)

⎞
⎠ , x − x̄

〉
> 0.

(13.19)
For each i ∈ Ig(x̄), gi (x) ≤ 0 = gi (x̄). Hence, by quasiconvexity of gi , we have

〈∇gi (x̄), x − x̄〉 ≤ 0 . (13.20)

For any feasible point x of MOPSC and for each i ∈ T−, 0 = −hi (x̄) = hi (x), by
quasiconvexity of hi , we get

〈∇hi (x̄), x − x̄〉 ≥ 0, ∀i ∈ T−. (13.21)

Similarly, we have
〈∇hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ T+. (13.22)

Also Gi (x) ≤ Gi (x̄), ∀i ∈ α+ ∪ β+
H , and Hi (x) ≤ Hi (x̄), ∀i ∈ γ + ∪ β+

G . Since all
of these functions are quasiconvex, we get

〈∇Gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ α+ ∪ β+
H , (13.23)

〈∇Hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ γ + ∪ β+
G . (13.24)

From Eqs. (13.20)–(13.24), we have

〈∇gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ Ig(x̄),

〈∇hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ T+,

〈∇hi (x̄), x − x̄〉 ≥ 0, i ∈ T−,

〈∇Gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ α+ ∪ β+
H ,

〈∇Hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ γ + ∪ β+
G .

Since α− ∪ γ − ∪ β−
G ∪ β−

H = φ, we get

〈∑
α∪β

λG
i ∇Gi (x̄), x − x̄

〉
≤ 0,

〈∑
β∪γ

λH
i ∇Hi (x̄), x − x̄

〉
≤ 0,

〈 ∑
i∈Ig(x̄)

λ
g
i ∇gi (x̄), x − x̄

〉
≤ 0,

〈
q∑

i=1

λh
i ∇hi (x̄), x − x̄

〉
≤ 0.

So,
〈⎛
⎝ ∑

i∈Ig(x̄)
λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
∑
α∪β

λG
i ∇Gi (x̄) +

∑
β∪γ

λH
i ∇Hi (x̄)

⎞
⎠ , x − x̄

〉
≤ 0,
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which contradicts (13.19). Hence, x̄ is a weakly efficient solution for MOPSC. This
completes the proof. �

Theorem 13.5.2 Let x̄ be a feasible point of MOPSC and the M-stationarity
conditions hold at x̄ . Suppose that each fi (i = 1, . . . ,m) is strictly pseudocon-
vex at x̄, gi (i ∈ Ig(x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i ∈ α+ ∪ β+

H ∪ β+),−Gi (i ∈
α− ∪ β−

H ), Hi (i ∈ γ + ∪ β+
G ∪ β+),−Hi (i ∈ γ − ∪ β−

G )arequasiconvexat x̄ . Ifα− ∪
γ − ∪ β−

G ∪ β−
H = φ, then x̄ is efficient solution for MOPSC.

Proof The proof follows the lines of the proof of Theorem 13.5.1. �

13.6 Duality

In this section, we formulate and study a Wolfe-type dual problem for the MOPSC
under the generalized convexity assumption. TheWolfe-type dual problem is formu-
lated as follows:

WDMOPSC(x̄) max
u,λ

f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λhi hi (u) +
l∑

i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e

subject to:

0 ∈
m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)], (13.25)

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i λH

i = 0,

where, e := (1, . . . , 1) ∈ R
m, λ = (λg, λh, λG, λH ) ∈ R

k+p+2l , ρ = (ρ1, . . . , ρm)

≥ 0 and
∑m

i ρi = 1.

Theorem 13.6.3 (Weak Duality) Let x̄ be feasible for MOPSC, (u, ρ, λ) feasi-
ble for WDMOPSC (x̄) and index sets Ig, α, β, γ defined accordingly. Suppose
that each fi (i = 1, . . . ,m), gi (i ∈ Ig(x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i ∈ α+ ∪
β+
H ∪ β+),−Gi (i ∈ α− ∪ β−

H ), Hi (i ∈ γ + ∪ β+
G ∪ β+) and−Hi (i ∈ γ − ∪ β−

G ) are
pseudoconvex at at u. If α− ∪ γ − ∪ β−

G ∪ β−
H = φ, Then,
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f (x) ≮ f (u) +
[∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Proof Let

f (x) ≤ f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Then there exist n such that

fn(x) < fn(u) +
∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]

and

fi (x) � fi (u) +
∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)],∀i �= n.

From the Definition 13.9 and above inequality, we have

〈⎛
⎝

m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)]
⎞
⎠ , x − u

〉
< 0.

Then,

m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)] < 0.

Which is a contradiction to the feasibility of the (u, ρ, λ) for the WDMOPSC,
therefore

f (x) ≮ f (u) +
[∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

This complete the proof. �

Theorem 13.6.4 (Strong Duality) If x̄ is a efficient solution of MOPSC, such that
NNAMCQ is satisfied at x̄ and index sets Ig, α, β, γ defined accordingly. Let fi (i =
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1, . . .m), gi (i ∈ Ig), hi (i ∈ J+),−hi (i ∈ J−),Gi (i ∈ α− ∪ β−
H ),−Gi (i ∈ α+ ∪

β+
H ∪ β+), Hi (i ∈ γ − ∪ β−

G ),−Hi (i ∈ γ + ∪ β+
G ∪ β+) satisfy the assumption of the

Theorem 13.6.3 and If α− ∪ γ − ∪ β−
G ∪ β−

H = φ. Then, there exists (ρ̄, λ̄), such that
(x̄, ρ̄, λ̄) is an efficient solution of WDMOPSC (x̄) and respective objective values
are equal.

Proof Since, x̄ is an efficient solution of MOPSC and the NNAMCQ is satisfied at
x̄ , hence, ∃ λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H ) ∈ R

p+q+2l , such that the M-stationarity conditions
for MOPSC are satisfied, that is,

0 =
m∑
i=1

ρ̄i∇ fi (x̄) +
∑
i∈Ig

λ̄
g
i ∇gi (x̄) +

q∑
i=1

λ̄hi ∇hi (x̄) +
l∑

i=1

[λ̄G
i ∇Gi (x̄) + λ̄H

i ∇Hi (x̄)].

∀i ∈ I g(x̄) : λ
g
i ≥ 0,∀i ∈ α(x̄) : λH

i = 0,∀i ∈ γ (x̄) : λG
i = 0,∀i ∈ β(x̄) : λG

i λH
i = 0.

Therefore, (x̄, ρ̄, λ̄) is feasible for WDMOPSC (x̄). By Theorem 13.6.3, from the
feasibility condition of MOPSC and WDMOPSC (x̄), we have

f (x̄) = f (x̄) +
[ ∑
i∈Ig

λ̄
g
i gi (x̄) +

q∑
i=1

λ̄h
i hi (x̄) +

l∑
i=1

[λ̄G
i Gi (x̄) + λ̄H

i Hi (x̄)]
]
e.

(13.26)
Using Theorem 13.6.3 and from Eq. (13.26), we have

f (x̄) = f (x̄) +
[ ∑
i∈Ig

λ̄
g
i gi (x̄) +

q∑
i=1

λ̄h
i hi (x̄) +

l∑
i=1

[λ̄G
i Gi (x̄) + λ̄H

i Hi (x̄)]
]
e

≮ f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Hence, (x̄, ρ̄, λ̄) is an efficient solution forWDMOPSC (x̄) and the respective objec-
tive values are equal. �

13.7 Future Research Work

In the future, the concept of weak stationarity, Mordukhovich stationarity, and strong
stationarity, i.e., W-stationarity, M-stationarity, and S-stationarity may be extended
for nonsmoothmultiobjective optimization problemswith switching constraint using
Mordukhovich limiting subdifferential and Michel–Penot subdifferential (see, [33,
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45, 47]). Bao et al. [6] established new weak and strong suboptimality conditions for
the general MPEC problems in finite-dimensional and infinite-dimensional spaces
that do not assume the existence of optimal solutions. Bao and Mordukhovich [7]
established necessary optimality conditions to super efficiency using variational prin-
ciples for multiobjective optimization problems with equilibrium constraints. It will
be interesting to obtain super efficiency, strong suboptimality conditions, and estab-
lished necessary conditions for nonsmooth multiobjective optimization problems
with switching constraints in the future.

Duality is an important subject in the study of mathematical programming prob-
lems as theweakduality provides a lower bound to the objective function of the primal
problem. Pandey and Mishra [54, 55] formulated a Mond–Weir-type dual problem
and established weak duality theorems, strong duality theorems under generalized
standard Abadie constraint qualification for nonsmooth optimization problems with
equilibrium constraints and semi-infinite mathematical programming problems with
equilibrium constraints, respectively. Further, Mishra et al. [43] obtained a several
duality theorems formathematical programswith vanishing constraints. Recently, Su
and Dinh [62] introduced the Mangasarian–Fromovitz-type regularity condition and
the two Wolfe and Mond–Weir dual models for interval-valued pseudoconvex opti-
mization problem with equilibrium constraints, as well as provided weak and strong
duality theorems for the same using the notion of contingent epiderivatives with
pseudoconvex functions in real Banach spaces. It will be interesting to study duality
results in real Banach spaces for nonsmooth multiobjective optimization problems
with switching constraint.
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