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for Nonsmooth Interval-Valued
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Balendu Bhooshan Upadhyay and Priyanka Mishra

Abstract In this chapter, we consider a class of nonsmooth interval-valued multi-
objective programming problems and a class of approximate Minty and Stampac-
chia vector variational inequalities. Under generalized approximate LU -convexity
hypotheses, we establish the relations between the solutions of approximate Minty
and Stampacchia vector variational inequalities and the approximate LU -efficient
solutions of the nonsmooth interval-valued multiobjective programming problem.
The results of this chapter extend and unify the corresponding results of [14, 22, 23,
30, 33] for nonsmooth interval-valued multiobjective programming problems.

Keywords Approximate LU-convexity + Approximate LU-efficient solutions -
Interval-valued programming problems

12.1 Introduction

In multiobjective programming problems, two or more objective functions are min-
imized on some set of constraints. Usually, optimization problems are considered
to deal with deterministic values, and therefore, we get precise solutions. How-
ever, in many real-life applications, optimization problems occur with uncertainty.
Interval-valued optimization is one of the deterministic optimization models to deal
with inexact, imprecise, or uncertain data. In interval-valued optimization, the coef-
ficients of objective and constraint functions are compact intervals. To deal with
the functions with interval coefficients, Moore [25, 26] introduced the concept of
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interval analysis. Wu [31] established the Karush—Kuhn-Tucker optimality condi-
tions for interval-valued optimization problem. Antczak [1] established Fritz John
and Karush—Kuhn-Tucker necessary and sufficient optimality conditions for nons-
mooth interval-valued multiobjective programming problem. For more details about
interval-valued optimization problems, we refer to [2, 8, 9, 16, 17] and the references
cited therein.

The notion of efficiency or Pareto optimality is a widely used solution concept
in multiobjective programming problems. Due to complexity of multiobjective pro-
gramming problems, several variants of efficient solutions have been studied by
many researchers, see [4, 5, 13, 15, 18] and the references cited therein. Loridan
introduced the notion of e-efficient solution for multiobjective programming prob-
lems. Recently, many authors have shown interest in the study of characterization
and applications of approximate efficient solutions of multiobjective programming
problems, see [12, 13, 21, 22] and the references cited therein.

In 1980, Giannessi [ 10] introduced the notion of vector variational inequality prob-
lems. Vector variational inequality problems have wider applications in optimization,
optimal control, and economics equilibrium problems, see for example [7, 11, 19]
and the references cited therein. The equivalence between the solutions of vector
variational inequalities and solutions of multiobjective programming problems have
been studied extensively by many authors, see [20, 24, 27-30, 32] and the references
cited therein. Mishra and Laha [22] established the relations between the solutions of
approximate vector variational inequalities and approximate efficient solution of the
nonsmooth multiobjective programming problems. Further, Gupta and Mishra [14]
extend the results of [22] for generalized approximate convex functions. Zhang et al.
[33] established the relations between the solutions of interval-valued multiobjective
programming problems and vector variational inequalities.

12.1.1 The Proposed Work

The novelty and contributions of our work are of three folds:

In the first fold, motivated by the work of Gupta and Mishra [14], we have
introduced a new class of generalized approximate LU-convex functions, namely;
approximate LU -pseudoconvex of type I, approximate LU -pseudoconvex of type II,
approximate L U-quasiconvex of type I, and approximate LU -quasiconvex of type II
functions. These classes of generalized approximate LU -convex functions are more
general than the classes of generalized approximate convex functions used in Gupta
and Mishra [14], Mishra and Laha [22] and Mishra and Upadhyay [23].

In the second fold, we extend the works of Lee and Lee [20], Mishra and Upad-
hyay [23] and Upadhyay et al. [30] for the class of interval-valued multiobjective
programming problems.

In the third fold, we generalize the works of [14, 20, 23, 30] from Euclidean space
to a more general space such as Banach space.
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The rest of the chapter is organized as follows: In Sect. 12.2, some basic def-
initions and preliminaries are given which will be used throughout the sequel. In
Sect. 12.3, we establish the relations between the solutions of approximate vector
variational inequalities and approximate LU -efficient solutions of the nonsmooth
interval-valued multiobjective programming problem by using generalized approx-
imate LU-convex functions. The numerical example has also been given to justify
the significance of these results.

12.2 Definition and Preliminaries

Let 2 be a Banach space and Q* be its dual space equipped with norms ||.|| and ||. |4,
respectively. Let (, ., ) denotes the dual pair between 2 and Q* and I" be a nonempty
subset of 2. Let B(z; §) be an open ball centered at z and radius § > 0. Let 0 denotes
the zero vector in IR".

For z, y € R", following notion for equality and inequalities will be used through-
out the sequel:

) z=y, < zi=y,Vi=12,...
) z<y, < zi<y,Vi=1,2,...,

(i) zZ8y, <= z <y, Vi=12,...,m
(iv) 25y, <= z <y, VYi=12,...,n,i# jand z; < y; for some j.

s Iy

n:
n:

)

The following notions of interval analysis are from Moore [25].
Let I denotes the class of all closed intervalsinIR. A = [a”, aV] € I denotesaclosed
interval, where a” and aV denote the lower and upper bounds of A, respectively.
For A = [al, aV], B = [b%, bVY] € T, we have
(i) A+B={a+b:ac Aand b e B} = [ar +b",aV +bY];
(i) —A={—a:aeA)=[-a¥, —a"];
(iii) Ax B={ab:a € A and b € B} = [min,,, max,,], where min,, = min
{atbr, atbY, aVb", aV bV} and max,, = max{a’b®, alb¥, aVb", aVbY}.

Then, we can show that

A—B=A+(=B)=[a"=bY,d" — "],
[ka®, kaV], k>0,

12.1
lk|[-aY, —at], k <0, (12.1)

kA =lka:ae A} =

where k € R. The real number a can be considered as a closed interval A, = [a, a].
Let A = [a%, aY], B = [b%, bY] € I, then we define

l. A<y B < al <blanda¥ <Y,
2. A<y B < A =<,y Band A # B, that is, one of the following is satisfied:

a. al < b and aV < bY; or
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b. al < bt anda¥ < bY; or
c. at < b and aV < bY.

Remark 12.1 A = [a’,aY], B =[b",bY] € T are comparable if and only if
A <py Bor A >y B. A and B are not comparable if one of the following holds:

ab <bPanda? > bY; ab < b anda? > bY; at < bt and a? > BY;

al > branda? < bY;: a > br anda’ <bY; b > br and eV < bY.

LetA = (A4, ..., A,) be an interval-valued vector, where each component A; =
[akL, a,? 1, k=1,2,...,nis a closed interval. Let A and B be two interval-valued
vectors, if Ay and By are comparable for eachk = 1,2, ..., n, then

1. A <,y Bifand only if Ay <py Byforeachk =1,2,...,n;
2. A <y Bifandonlyif Ay <,y By foreachk =1,2,...,n,and A, <,y B, for
at least one index r.

The function g : R"* — I is called an interval-valued function, if g(z) = [g(2),
gV (2)], where g” and gY are real-valued functions defined on R” satisfying g% (z) <
gY(2), forall z € R".

Definition 12.1 ([24]) The set I' is said to be a convex set, if for all z, y € I, one
has
z4+A(y—2z)el, VA el0,1].

The following notions are from [6].

Definition 12.2 A function g : I' — IR is said to be Lipschitz near z, € T, if there
exist two positive constants L, § > 0, such that for all y, z € B(z.; §) N T', one has

lg(y) —g@I = Llly — z|.
The function g is locally Lipschitz on T, if it is Lipschitz near every z € T'.

Definition 12.3 Let g : I' — IR be Lipschitz near z € I'. The Clarke generalized
directional derivative of g at z € T in the direction d € €2, is given as

td) —
g°(z; d) := lim sup M

y—z t
110

Definition 12.4 Let g : I’ — R be Lipschitz near z € I'. The Clarke generalized
subdifferential of g at z € I is given as

0°g(2) == {E € Q" : g°(z;d) > (£,d), Vd € Q).
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Definition 12.5 [13] A function g : I' — IR is said to be approximate convex at
z, € I', if for all € > 0, there exists 6 > 0, such thatforall z, y € B(z,;8) N T, one
has

8(y) — 8@ = (&, y—z) —elly —zl, V& €d().

The following notions of generalized approximate convexity are from Bhatia et
al. [3].

Definition 12.6 A function g : I' — R is said to be approximate pseudoconvex
of type I at z, € T, if for all € > 0, there exists § > 0, such that for all z,y €
B(z,;8) NT, and if

(€,y —z) = 0, forsome & € 9g(z),

then
g(y) —g@ = —¢lly — zll.

Definition 12.7 A function g : I' — IR is said to be approximate pseudoconvex of
type Il (or strictly approximate pseudoconvex of type II) at z, € T, if for all ¢ > 0,
there exists § > 0, such that for all z, y € B(z.; 8) N T, and if

(E,y—2)+¢|ly —z| =0, forsome & € 9°g(z),

then
g(y) = (>)g(2).

Definition 12.8 A functiong : I' — R issaid to be approximate quasiconvex of type
latz, € T, if for all ¢ > 0O, there exists § > 0, such that forall z, y € B(z,;§) N T,
and if

g(y) < g(2),

then
(E.y—2z)—e¢lly—zl <0, V& € 3°g(2).

Definition 12.9 A function g : ' — IR is said to be approximate quasiconvex of
type Il (or strictly approximate quasiconvex of type II) at z, € T, if for all ¢ > 0,
there exists § > 0, such that for all z, y € B(z.;8) N T, and if

g(y) < (<)g) +elly —zll,

then
(E,y—2) <0, V& € 0°¢(2).

Definition 12.10 An interval-valued function g : ' — 7 is said to be an approxi-
mate LU -pseudoconvex function of type I (or approximate LU -pseudoconvex func-
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tion of type II) at z, € T, if and only if the real-valued functions g% (z) and gY (z)
are approximate pseudoconvex functions of type I (or approximate pseudoconvex
functions of type II) at z, € I.

Definition 12.11 An interval-valued function g : I' — 7 is said to be a strictly
approximate LU -pseudoconvex function of type Il at z, € T, if and only if the real-
valued functions g” (z) and gY (z) are approximate pseudoconvex functions of type II
and at least one of the g% (z) and g (z) is strictly approximate pseudoconvex function
of typell atz, € T.

Definition 12.12 An interval-valued function g : I’ — 7 is said to be an approx-
imate LU -quasiconvex function of type I (approximate LU -quasiconvex function
of type 1) at z, € T, if and only if the real-valued functions g’ (z) and gV (z) are
approximate quasiconvex functions of type I (or approximate quasiconvex function
of typeIl) at z, € I'.

We consider the following nonsmooth interval-valued multiobjective program-
ming problem:

(NIVMPP)  Minimize  g(z) = (g1(2), ..., gp(2)),
subject to z €T,

where g; = [gl-L, gl-U] ' > 171,iel:={l,...,p} are locally Lipschitz interval-
valued functions and I" be a nonempty, closed, and convex subset of 2.

The following notions of approximate LU -efficient solution are the adaptation of
the notions of approximate efficient solution introduced by Mishra and Laha [22].

Let € = (g,...,€), a point z, € I' is said to be an approximate LU -efficient
solution:

(ALUES);, if and only if for any sufficiently small ¢ > 0, there does not exist
8 > O such that, for all z € B(z,;§) NI, z # z,, one has

g(2) <ru g(2o) +€llz — 2|l

(ALUES),, if and only if for any sufficiently small ¢ > 0, there exists § > O such
that, for all z € B(z,; §) N T, one has

g2(2) Arv 8(zo) +€llz — zoll-

(ALUES)s, if and only if for any ¢ > 0, there exists § > 0 such that, for all
z € B(z,;8) N T, one has

g(2) 7<LU g2(zo) —€llz — zol.

For more details about approximate efficient solution, we refer to [14, 22].
From now onward, € := (¢, ..., ), unless otherwise specified.
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Now, for interval-valued functions, we formulate the following approximate
Minty and Stampacchia vector variational inequalities in terms of Clarke subdif-
ferential:

(AMVI); To find z, € I" such that, for any sufficiently small ¢ > 0, there does
not exist § > 0 such that, for all z € B(z,;8) NT, z # z, and £* € 3°gX(z) and
£V € 9°gY(2), i € I, one has

(EL 2= 20)s o0 () 2= 20) < €llz — 2,
((%-IU’Z _Zo>’ e (";:}17]71 _Zo>) = EHZ _Zo”'

(AMVI), To find z, € I" such that, for any sufficiently small ¢ > 0, there exists
8 > Osuchthat, forallz € B(z,; §) N l"andéiL € BcgiL(z) andéiU € BcgiU(z), iel,
one has
(&L z—2zo)s s () 2= 20) £ €llz = 2,
(&L 2= 20)s s (Y 2= 20) L €llz = 2oll.

(AMVI); To find z, € T such that, for any ¢ > 0, there exists 6 > 0 such that, for
all z € B(zo; 8) NT and £F € 9°gL(z) and £V € 9°gY (2), i € I, one has

((ElLﬂz _Zo>7 9< 571 _Zo)) % _6”Z _Zo”a
(('i:luvz _Zo)? cet <§£]’Z _Zo>) ﬁ _GHZ _ZOH'

(ASVI); To find z, € " such that, for any ¢ > 0 sufficiently small, there exist
zel, z# 2z, ;l.L € BcgiL(zo) and g“l.U € 8"gl.U(zO), i € I, such that

(<§1va _Zo)ﬂ ceey (;Ifaz _Zo>) S 6”Z _ZO”v
(<§1U’Z _Zo>a L) (é‘llijz _Zo>) = €||Z _Zo“'

(ASVI), To find z, € I" such that, for any sufficiently small ¢ > 0, forall z € T,
¢t edgl(zo)and ¢V € 9°gY (z.), i € I, one has

((ClL’Z _Zo>v R ({;71 _Zo>) ﬁ EHZ _Zo”s
((C{],Z _Zo>v DR} <§15]1Z _Zo>) ﬁ 6”Z _Zo”'

(ASVI); To find z, € I such that, for any ¢ > 0, there exists 6 > 0 such that, for
allz € B(zo; 8) NT, ¢F € 3°gF(z.) and ¢V € 9°g7 (z,), i € I, one has

{Sf 2= 20)s - (G 2 = 20)) £ —€llz = 2,
((C]Uvz _ZO>’ e <§,€]’Z _Zo>) z _E”Z _Zo”'

Remark 12.2 Ifeach g;, i € I isreal-valued function, then the above vector varia-
tional inequalties coincide with the vector variational inequalities given in [14, 22].
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12.3 Relationship Among (NIVMPP), (ASVI) and (AMVI)

In this section, we establish some relationships between the nonsmooth interval-
valued multiobjective programming problem (NIVMPP) and approximate vec-
tor variational inequalities (AMVI), (ASVI) under generalized approximate LU -
convexity.

The following theorem states the condition under which an approximate LU -
efficient solution becomes a solution of approximate Minty variational inequality.

Theorem 12.3.1 Let each giL, gl.U :I' = R, i € I be locally Lipschitz functions.
Then,

1. ifeach g;, i € I is approximate LU -pseudoconvex of type Il at z, € I and z,, is
an (ALUES), of the (NIVMPP), then z, also solves (AMVI),;

2. ifeach g;, i € I is approximate LU -pseudoconvex of type Il at z, € ' and z,, is
an (ALUES), of the (NIVMPP), then z, also solves (AMVI),;

3. ifeach g;, i € 1 is strictly approximate LU -pseudoconvex of type Il at z, € T’
and z, is an (ALUES); of the (NIVMPP), then z, also solves (AMVI).

Proof 1. On contrary assume that z, is an (ALUES), of the (NIVMPP) but does not
solves (AMVI);. Then, for some ¢ > 0 sufficiently small, there exists § > 0, such
that for all z € B(z,;8) N T, £L € 3°gL(z) and €V € 9°gY (2), i € I, we get

((leaz _Zo>’ ] (Eé’z _Zo>) = EHZ _Zo”s
((‘51(/12 _Zo>a ) (51519Z _Zo)) = GHZ _ZO”v

that is,
EF zo—2)+ellz— 2= 0
(EiU,zo —2)+ellz—2z.ll =0, Viel,i#j,
and (12.2)
(€ zo—2) ez =2l >0
(S,U,zo —2z2)+éllz— 2ol > 0, forsome j € I.

Since, each g;, i € I is approximate LU -pseudoconvex of type Il at z, € T, it
follows that each g* and giU , 1 € I are approximate pseudoconvex of type II.

Hence, for all ¢ > 0, there exists 8 > 0, such that, for all z € B(z., 3) NT,if
(EF 20 —2) +ellz — 20|l = 0, forsome & € 3°gF(2), i € 1,

then
¢h@) —gr(z) <0, Vie L

Similarly, if

(V. 20— 2) + ¢z — 20l = 0, forsome&! € 3¢V (z). i €1,
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then
¢V @) — gV () <0, Viel

Let § := min{(§ , 8}, from (12.2) and the definition of approximate LU -pseudo-
convexity of type II, we have

g(2) — g() 2 0 <1y €llz — |,

for all z € B(z,; 6) NI, which contradicts our assumption.

2. On contrary assume that z,, is an (ALUES), of the (NIVMPP) but does not solves
(AMVI),. Then, for some ¢ > 0, sufficiently small and for all § > 0, there exists
7€ B(zo;8) NI, EF € 0°gl(z) and £V € 3°gY (2), i € I, we get

(EL z—2o), .. (EE 2 — 20)) < €llz — 2ol
(€ 2= 20), s (6] 2= 20) < €llz =zl

that is
(&l 2o —2) +ellz— 2ol 2 0,
YV zo—2)+elz—2ll =0, Viel,i#j,
and (12.3)
(6L 20— 2) + ellz — 2]l > 0,
(E}/,Zo —z)+¢llz— 2]l > 0, forsome j € I.

Since, each g;, i € I is approximate LU -pseudoconvex of type Il at z, € T, it
follows that each g and giU , I € I are approximate pseudoconvex of type IL.
Hence, forall ¢ > 0, there exists § > 0, such that whenever z € B(z,; 3) NI and
if

(&F, 2o —2) +ellz — 20|l = 0, forsome&r € 3°gF(2), i €1,

then
¢t — gtz <0, Viel

Similarly, if
(Y, 20 —2) +ellz— 20l = 0, forsome&! € 8¢V (2), i € I,

then
¢V @) —g'(z) <0, Viel.

Let 6 := min{g, 8}, then from (12.3) and the definition of approximate LU -
convexity of type II, one has

g(Z) - g(Zo) =Lu 0 <LU 6”Z - Zo”,
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for some z € B(z,; §) N T", which contradicts our assumption.
3. On contrary assume that z, is an (ALUES); Qf the (NTVMPP) but does not solves
(AMVI);. Then, for some ¢ > 0 and for all § > 0, one has

(&l 2= 20), s 6y 2= 20) < —€llz = 2ol < €llz = Zoll,
(&l 2= 20)s o n (Y 2= 20)) < —€llz — 20|l < €llz — 2,

forallz € B(z.; ) NT, SiL € acgiL(z) and él-U € 8CgiU(z),
that is,
<%‘l‘Lv Zo — Z) + 8||Z - Zo” > 07

&V 2o —2)+ellz—zoll >0, Vi e I. (124

Since, each g;, i € I is strictly approximate LU -pseudoconvex of type Il at z, €
I, it follows that each g* and g, i € I are approximate pseudoconvex of type II
and atleast one of the g~ and g, i € [ is strictly approximate pseudoconvex of
type Il at z, € I". Without loss of generality, assume that each g-, i € I is strictly
approximate pseudoconvex of type II. Hence, for all ¢ > 0, there exists §>0,
such that whenever z € B(z,; 3) N T and if

(F, 2o —2) +ellz — 2ol = 0, forsome&’ € 3°gF(2), i €1,

then
gl —gF(zo) <0, Vi e I

Similarly, if
(€Y. 20— 2) +ellz — zoll = 0, forsomeg’ € 3°gV (2), i € I,

then
¢V (@) —gYz.) <0, Viel.

Let 8 := min{3, 3}, from (12.4) and the definition of strictly approximate LU -
pseudo convexity of type I, we have

8i(z) — 8i(zo) <Lv 0, Vi €1, (12.5)

forall z € B(zo;8) NT.
From (12.5), we can get an ¢ > 0O sufficiently small, such that

8(2) — g(zo) <Lu —€llz — 2ol
which contradicts our assumption. (]

Theorem 12.3.2 Let each gF, giU :I' - R, i € I be locally Lipschitz functions.
Then
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1. ifeachg;, i € I isapproximate LU -quasiconvex of typell at z, € T" and 7, solves
(ASVI)y, then z, is also an (ALUES); of the (NIVMPP);

2. ifeachg;, i € I isapproximate LU -quasiconvex oftype Il at z, € T" and z,, solves
(ASVI),, then z, is also an (ALUES), of the (NIVMPP);

3. ifeach g;, i € I is approximate LU -pseudoconvex of type Il at z, € I and z,
solves (ASVI)s, then z, is also an (ALUES)s of the (NIVMPP).

Proof 1. On contrary assume that z, is a solution of (ASVI); but not an (ALUES),
of the (NIVMPP). Then, for some ¢ > 0, sufficiently small, there exists 5§ >0,
such that

8(z) — 8(zo) <ru €llz — ol (12.6)

for all z € B(z,;8)NT, 2 # 7,. Since, each g;, i € I is approximate LU-
quasiconvex of type Il at z,, it follows thateach g~ and g", i € I are approximate
quasiconvex of type II at z,. Hence, for all ¢ > 0, there exists § > 0, such that
forall z € B(zo; 8) N T, if

gk (@) < gfzo) +ellz—zoll, Viel,

then
(¢l z—z2,) <0, Yok € 0°gF(z0), i € I

Similarly, if
gV(2) < gV (o) +ellz — 2ol Vi €1,

then
(V. z2—z) <0, V¢V € 9°gY (z0), i € I

Let & := min{3, 5}, from (12.6) and the definition of approximate LU -quasi-
convexity of type II, one has

(¢ e—2) <0 <ellz—zl,
(é-jUaZ _Zo> S 0 < 8||Z _Zo”v

for all z € B(zo;6) N T, giL IS Z)CgiL(zo), ;l.U € BCgI.U(zO), i € I, which contra-
dicts our assumption.

2. Assume that z, is a solution of (ASVI),. Then, for any ¢ > 0 sufficiently small,
forevery z € ', ¢t € 9°gL(zo) and ¢V € 9°gY (z.), i € I, one has

((g‘lLvZ _Zo>v e <§l€"z _Zo)) $ 6||Z —Zo||,
((é‘]UvZ _Zo)s D) <§£]7Z _Zo>) ﬁ 6”Z _Zo”s

that is,
((é-]L7Z_Zo>7"'ﬂ (f,{‘,Z—Zo)) foa

(¥ 2= zo)ens £V 2= 20) £0. (12.7)
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Since, each g;, i € I is approximate LU -quasiconvex of type II at z,, it follows
that each g~ and gl.U , i € I are approximate quasiconvex of type II at z,. Hence,

for all € > 0, there exists 8 > 0, such that for all z € B(z,, 8) NT,if
L L .
8 (2) =g (o) +elz—zoll, Viel,

then
(¢l z—z2,) <0, Yok € 0°gF(z0), i € I

Similarly, if
gV (@) < g¥ (o) +ellz—2zoll, Viel,

then
(V. z2—2) <0, Vel € 3¢V (o), i € I

From (12.7) and the definition of approximate LU -quasiconvexity of type II, it
follows that
8(2) — 8(z0) Aru €llz — zoll,

forall z € B(z.; 8) N T, z # z,. Therefore, z, is an (ALUES), of the (NIVMPP).

3. On contrary assume that z, solves (ASVI); but not an (ALUES)3. Then, for some
e > 0, and for all § > 0, there exists z € B(z,; ) N T", such that

£2(2) — g(zo) <Lv —€llz — Zll,
that is ; ;
8 (2) — 8 (z0) <0,
¢V (@) — gV (z.) <0, Vi € 1. (12.8)

Since, each g;, i € I is approximate LU -pseudoconvex of type Il at z,,, it follows
that each g* and giU , I € I are approximate pseudoconvex of type Il at z,. Hence,
for all £ > 0, there exists § > 0, such that for all z € B(z.; 3) NT,if

(;l-L, 2 —20) +¢€llz — 2ol = 0, for some {iL € 8"giL(zo), iel,

then
¢t —gtz) =0, Viel

Similarly, if
&V, 72— z0) +ellz — 20| = 0, forsome ¢! € 3¢ (zo), i € 1,

then
¢V@) —g'(z) =0, Viel.
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Let §:= min{S,S}, from (12.8) and the definition of approximate LU-
pseudoconvexity of type II, one has

(¢l z—z0) < —ellz — zolls
¢V, z2—z0) < —¢ellz — zoll, Vi €1, (12.9)

for some z € B(zo; 8) NT" and all {F € 8°gF(z.), ¢V € 3°gY (z0), i € I, which
contradicts our assumption. (]

The following corollary is a direct consequence of Theorems 12.3.1 and 12.3.2.

Corollary 12.1 Let each gF, giU :I' - R, i €I be locally Lipschitz functions.
Then,

1.

ifeach g;, i € I is approximate LU -quasiconvex of type Il and approximate LU -
pseudoconvex of type Il at z, € T'. Let z, is a solution of (ASVI),, then z, is also
a solution of (AMVI),.

ifeach g;, i € I is approximate LU -quasiconvex of type Il and approximate LU -
pseudoconvex of type Il at 7, € T'. Let 7, is a solution of (ASVI),, then z, is also
a solution of (AMVI),.

if each g;, i € I is strictly approximate LU -pseudoconvex of type Il at z, € T.
Let z, is a solution of (ASVI)s, then z, is also a solution of (AMVI)3.

Now, to illustrate the significance of Theorems 12.3.1, 12.3.2 and Corollary 12.1,

we have the following example.

Example 12.1 Consider the following nonsmooth interval-valued multiobjective
programming problem

(P) Minimize g(z) = (g1(2), £&2(z))
subject to z el CRR,

where I' = [—1, 1] and g1, g : I’ — 7 are defined as

3 3

4z, z=0, 242z, z>=0,
g1 (@) = g/ () =

2z, 7 <0, Z, 7<0,

and

2
L z—2z% 720, U z+1, z=0,
) = ) =
82(2) {2z, 7 <0, 8 () 2z4+¢€*, z<0.

The Clarke generalized subdifferentials of g; and g, are given by

32241, z>0, 32242, z>0,
gl =1401,2], z=0, 3¥g/@=1{01,2], z=0,
2, 7 <0, 1, 7z <0,
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and
1-2z, z>0,
gr(x)=101,2], z=0, ¥gl (@)=
2, z<0,

Forany0 < ¢ < 1,leté§ =
g €3¢l (2). & €

E’
g5 (x) and & €

B2+ Dy —2) +ely—zl >0,
B2+ Dy -2 +ely—zll <0,
B2+ Dy —2) +ely—zl <0,
2b—) +elly—zll >0,
2(y —z) +elly—zll >0,
20—2)+ely—zll <0,
ki(y —2) +elly —zll > 0,
kiy —2) telly—zll <0,

Ey—z)+ely—zll =

B2 +2)(y—2) +ely -zl >0,
B2 +2)(y—2) +ely -zl <0,
B2+2)(y—2) +ely—zll <0,
-2 +ely—zl >0,

-2 +elly—zll <0,

-2 +ely—zl >0,

ky(y —2) +elly —zll >0,

ka(y —2) telly —zll <0,

&y -2 +ely—zl=

(1-22)(y—2)+ely—zI >0,
(1 =220y —2) +elly —zll <0,
(1 =22)(y —2) +elly —zll <0,
20 —2) +elly —zll > 0,
2(y —2) +elly —zll <0,
20— +ely—zl >0,
ny—z+ely—zll >0,
ny—z+ely—zll <0,

Er.y—2)+ely—zl=

and

-2 +tely—zl >0,
-2 +ely—zll <0,
y—2)+elly—zll <0,
2+ —2) +elly—zIl >0,
2+e)y—2)t+elly—zIl <0,
Q+e)y—2) +ely—zI >0,
ny—2+ely—zl >0,
ny—z)+ely—zIl <0,

& y—2)+ely—zl =

L suchthatforallz,y € B(0;8) NT, &F €
Bcgg (z), one has

B. B. Upadhyay and P. Mishra

1, z>0,
[1,3], z=0,
2+, z<0,

gt (2),

z>0,y>0,y—2z>0;
z2>0,y>0,y—2z<0;
z2>0,y<0;

z2<0,y>0;

7<0,y<0,y—2z>0;
72<0,y<0,y—2z<0;
z=0,y >0,k €[1,2];
z=0,y <0,k €[1,2],

z>0,y>0,y—z>0;
z2>0,y>0,y—z<0;
z>0,y<0;

72<0,y<0,y—z>0;
z2<0,y<0,y—z<0;
2<0,y>0;

z=0,y >0,k €[1,2];
z=0,y <0,k €[1,2],

z>0,y>0,y—z>0;
z2>0,y>0,y—z<0;
z2>0,y<0;

72<0,y<0,y—2z>0;
72<0,y<0,y—z<0;
2<0,y>0;

z=0,y>0,1 €[1,2];
z=0,y<0,1 €[1,2];

z2>0,y>0,y—z>0;
z>0,y>0,y—z<0;
z2>0,y <0;

z2<0,y<0,y—2z>0;
7<0,y<0,y—z<0;
z2<0,y>0;

z=0,y>0,n €[l,3];
z=0,y<0,1n €[1,3].
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Also,

-0 +zy+22+1), 2>0,y>0,y—z>0;

’z;
vy +y—2z, z<0,y>0;
gy —gr@ =
2(y — 2), 72<0,y<0,y—2>0;
Y+, z=0,y >0,

> 0,

—2)0*+zy+22+2), 2>0,y>0,y—z>0;

3
+2y — 2z, 72<0,y>0;
M —-gl={" "7
y—2z, 72<0,y<0,y—2>0;
¥+ 2y, z=0,y >0,
> 0,
-2 -z—-y), z>0,y>0,y—2z>0;
2
L L y—y -2z 72<0,y>0;
— gk =

O =8@=1,0" 2<0,y<0,y—z2>0;

y =y, z=0,y >0,
> 0,

and

Y-z, z2>0,y>0,y—2>0;

y4+1—2z7—¢€%, z2<0,y>0;

& —gd@= .

20y—z)+e’ —¢€*, z<0,y<0,y—2z>0;

y, z=0,y >0,
> 0.

Hence, g1 = [gF, gVTand g» = [g}, g¥]are approximate LU -pseudoconvex of type
ITatz, =0.

Evidently, z, = 0, solves (ASVI)s. Since, for any z > 0, z € B(z,;6) N T, CIL €
381 (z0), ¢ € 9°g{(20), ¢F € 9°g5(20) and &Y € 9°gY (z.), we have

(¢f 2 —z0) +ellz — 2ol =kiz + ezl > 0, ki €[1,2],
(¢, 2= 20) +ellz — zoll = koz + llzll > 0, k» € [1,2],
(¢F z—z) +ellz =zl =tiz+ ezl > 0,  €[1,2],
and (§y, 2 — zo) +€llz — zoll = bz +¢llzl > 0, 1, € [1, 3],
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that is
(<§] » 2 — )9((27 _Zo>)$_€||z_zo||s
(&l 2= 20), (&) s 2= 20)) £ —€llz = 2.

Moreover, z, = 01is an (ALUES); of the problem (P). Since, forany ¢ > 0, let§ = %

such that forall z > 0, z € B(z.; 6) NI, we have

8 (@) — gl @) +elz—zl =22 +z+ellzll > 0,

gV (@) — gV (zo) +ellz — zoll = 2* + 2z + &z]l > 0,
8y (@) — g5 (zo) +ellz — zoll =z — 22 + ezl > 0,

8y (@) — gY(z) +ellz — zoll = z +¢llzll > 0,

that is
g() — g(zo) +€llz — zoll ALv 0.

Furthermore Zo = 0 solves (AMVI);. Since, for any ¢ > 0, sufﬁciently small, let
8 = suchthatforallz >0, z€ B(z;8) NT,EF € 3°g1(2), & € 3°¢Y(2), &F €
(z) and 52 (z), we have

(EF z—z) tellz —zoll =32 + 2+ ¢zl > 0,
(Y, 2 —z0) tellz—zoll =32° + 2z + ¢zl > 0,
6y z—zo) +ellz—zll =1—2z+¢|zll > 0,
)

(& 72— z) +ellz — zoll = 2+ €|zl > 0,

that is
(EF 2 — 20), (EF 72— 20)) £ —€llz — 2ol
((%‘1U7Z - Zo)’ <$2U’ - ZO>) ﬁ _EHZ - Zo”'

12.4 Conclusions

In this chapter, we have considered a class of nonsmooth interval-valued multiobjec-
tive programming problems (NIVMPP) and certain classes of approximate Minty and
Stampacchia vector variational inequalities; namely, (AMVI), (AMVI),, (AMVI)3,
(ASVI);, (ASVI),, and (ASVI);. We have established the equivalence among the
solutions of these vector variational inequalities and the approximate LU -efficient
solutions; namely, (ALUES);, (ALUES),, (ALUES); of the nonsmooth interval-
valued multiobjective programming problem (NIVMPP). The numerical example
has been given to justify the significance of these results. The results of the chapter
extend and unify the corresponding results of [14, 22, 23, 30, 33] to a more gen-
eral class of nonsmooth optimization problems, namely, nonsmooth interval-valued
multiobjective programming problem (NIVMPP).
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