
Chapter 12
On Minty Variational Principle
for Nonsmooth Interval-Valued
Multiobjective Programming Problems

Balendu Bhooshan Upadhyay and Priyanka Mishra

Abstract In this chapter, we consider a class of nonsmooth interval-valued multi-
objective programming problems and a class of approximate Minty and Stampac-
chia vector variational inequalities. Under generalized approximate LU -convexity
hypotheses, we establish the relations between the solutions of approximate Minty
and Stampacchia vector variational inequalities and the approximate LU -efficient
solutions of the nonsmooth interval-valued multiobjective programming problem.
The results of this chapter extend and unify the corresponding results of [14, 22, 23,
30, 33] for nonsmooth interval-valued multiobjective programming problems.

Keywords Approximate LU-convexity · Approximate LU-efficient solutions ·
Interval-valued programming problems

12.1 Introduction

In multiobjective programming problems, two or more objective functions are min-
imized on some set of constraints. Usually, optimization problems are considered
to deal with deterministic values, and therefore, we get precise solutions. How-
ever, in many real-life applications, optimization problems occur with uncertainty.
Interval-valued optimization is one of the deterministic optimization models to deal
with inexact, imprecise, or uncertain data. In interval-valued optimization, the coef-
ficients of objective and constraint functions are compact intervals. To deal with
the functions with interval coefficients, Moore [25, 26] introduced the concept of
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interval analysis. Wu [31] established the Karush–Kuhn–Tucker optimality condi-
tions for interval-valued optimization problem. Antczak [1] established Fritz John
and Karush–Kuhn–Tucker necessary and sufficient optimality conditions for nons-
mooth interval-valued multiobjective programming problem. For more details about
interval-valued optimization problems, we refer to [2, 8, 9, 16, 17] and the references
cited therein.

The notion of efficiency or Pareto optimality is a widely used solution concept
in multiobjective programming problems. Due to complexity of multiobjective pro-
gramming problems, several variants of efficient solutions have been studied by
many researchers, see [4, 5, 13, 15, 18] and the references cited therein. Loridan
introduced the notion of ε-efficient solution for multiobjective programming prob-
lems. Recently, many authors have shown interest in the study of characterization
and applications of approximate efficient solutions of multiobjective programming
problems, see [12, 13, 21, 22] and the references cited therein.

In 1980,Giannessi [10] introduced the notion of vector variational inequality prob-
lems. Vector variational inequality problems havewider applications in optimization,
optimal control, and economics equilibrium problems, see for example [7, 11, 19]
and the references cited therein. The equivalence between the solutions of vector
variational inequalities and solutions of multiobjective programming problems have
been studied extensively bymany authors, see [20, 24, 27–30, 32] and the references
cited therein. Mishra and Laha [22] established the relations between the solutions of
approximate vector variational inequalities and approximate efficient solution of the
nonsmooth multiobjective programming problems. Further, Gupta and Mishra [14]
extend the results of [22] for generalized approximate convex functions. Zhang et al.
[33] established the relations between the solutions of interval-valued multiobjective
programming problems and vector variational inequalities.

12.1.1 The Proposed Work

The novelty and contributions of our work are of three folds:
In the first fold, motivated by the work of Gupta and Mishra [14], we have

introduced a new class of generalized approximate LU -convex functions, namely;
approximate LU -pseudoconvex of type I, approximate LU -pseudoconvex of type II,
approximate LU -quasiconvex of type I, and approximate LU -quasiconvex of type II
functions. These classes of generalized approximate LU -convex functions are more
general than the classes of generalized approximate convex functions used in Gupta
and Mishra [14], Mishra and Laha [22] and Mishra and Upadhyay [23].

In the second fold, we extend the works of Lee and Lee [20], Mishra and Upad-
hyay [23] and Upadhyay et al. [30] for the class of interval-valued multiobjective
programming problems.

In the third fold, we generalize the works of [14, 20, 23, 30] fromEuclidean space
to a more general space such as Banach space.
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The rest of the chapter is organized as follows: In Sect. 12.2, some basic def-
initions and preliminaries are given which will be used throughout the sequel. In
Sect. 12.3, we establish the relations between the solutions of approximate vector
variational inequalities and approximate LU -efficient solutions of the nonsmooth
interval-valued multiobjective programming problem by using generalized approx-
imate LU -convex functions. The numerical example has also been given to justify
the significance of these results.

12.2 Definition and Preliminaries

Let� be a Banach space and�∗ be its dual space equipped with norms ‖.‖ and ‖.‖∗,
respectively. Let 〈, ., 〉 denotes the dual pair between � and �∗ and � be a nonempty
subset of�. Let B(z; δ) be an open ball centered at z and radius δ > 0. Let 0 denotes
the zero vector in IRn.

For z, y ∈ IRn , following notion for equality and inequalities will be used through-
out the sequel:

(i) z = y, ⇐⇒ zi = yi , ∀i = 1, 2, . . . , n;
(ii) z < y, ⇐⇒ zi < yi , ∀i = 1, 2, . . . , n;
(iii) z � y, ⇐⇒ zi ≤ yi , ∀i = 1, 2, . . . , n;
(iv) z ≤ y, ⇐⇒ zi ≤ yi , ∀i = 1, 2, . . . , n, i �= j and z j < y j for some j.

The following notions of interval analysis are from Moore [25].
LetIdenotes the class of all closed intervals in IR. A = [aL , aU ] ∈ Idenotes a closed
interval, where aL and aU denote the lower and upper bounds of A, respectively.

For A = [aL , aU ], B = [bL , bU ] ∈ I, we have

(i) A + B = {a + b : a ∈ A and b ∈ B} = [aL + bL , aU + bU ];
(ii) −A = {−a : a ∈ A} = [−aU ,−aL ];
(iii) A × B = {ab : a ∈ A and b ∈ B} = [minab,maxab], where minab = min

{aLbL , aLbU , aUbL , aUbU } and maxab = max{aLbL , aLbU , aUbL , aUbU }.
Then, we can show that

A − B = A + (−B) = [aL − bU , aU − bL ],

k A = {ka : a ∈ A} =
{

[kaL , kaU ], k ≥ 0,

|k|[−aU ,−aL ], k < 0,
(12.1)

where k ∈ IR. The real number a can be considered as a closed interval Aa = [a, a].
Let A = [aL , aU ], B = [bL , bU ] ∈ I, then we define

1. A LU B ⇐⇒ aL ≤ bL and aU ≤ bU ,

2. A ≺LU B ⇐⇒ A LU B and A �= B, that is, one of the following is satisfied:

a. aL < bL and aU < bU ; or
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b. aL ≤ bL and aU < bU ; or
c. aL < bL and aU ≤ bU .

Remark 12.1 A = [aL , aU ], B = [bL , bU ] ∈ I are comparable if and only if
A LU B or A �LU B. A and B are not comparable if one of the following holds:

aL ≤ bL and aU > bU ; aL < bL and aU ≥ bU ; aL < bL and aU > bU ;

aL ≥ bL and aU < bU ; aL > bL and aU ≤ bU ; aL > bL and aU < bU .

LetA = (A1, . . . , An) be an interval-valued vector, where each component Ak =
[aL

k , aUk ], k = 1, 2, . . . , n is a closed interval. Let A and B be two interval-valued
vectors, if Ak and Bk are comparable for each k = 1, 2, . . . , n, then

1. A LU B if and only if Ak LU Bk for each k = 1, 2, . . . , n;
2. A ≺LU B if and only if Ak LU Bk for each k = 1, 2, . . . , n, and Ar ≺LU Br for

at least one index r.

The function g : IRn → I is called an interval-valued function, if g(z) = [gL(z),
gU (z)],where gL and gU are real-valued functions defined on IRn satisfying gL(z) ≤
gU (z), for all z ∈ IRn.

Definition 12.1 ([24]) The set � is said to be a convex set, if for all z, y ∈ �, one
has

z + λ(y − z) ∈ �, ∀λ ∈ [0, 1].

The following notions are from [6].

Definition 12.2 A function g : � → IR is said to be Lipschitz near z◦ ∈ �, if there
exist two positive constants L , δ > 0, such that for all y, z ∈ B(z◦; δ) ∩ �, one has

|g(y) − g(z)| ≤ L‖y − z‖.

The function g is locally Lipschitz on �, if it is Lipschitz near every z ∈ �.

Definition 12.3 Let g : � → IR be Lipschitz near z ∈ �. The Clarke generalized
directional derivative of g at z ∈ � in the direction d ∈ �, is given as

g◦(z; d) := lim sup
y→z
t↓0

g(y + td) − g(y)

t
.

Definition 12.4 Let g : � → IR be Lipschitz near z ∈ �. The Clarke generalized
subdifferential of g at z ∈ � is given as

∂cg(z) := {ξ ∈ �∗ : g◦(z; d) ≥ 〈ξ, d〉, ∀d ∈ �}.
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Definition 12.5 [13] A function g : � → IR is said to be approximate convex at
z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, one
has

g(y) − g(z) ≥ 〈ξ, y − z〉 − ε‖y − z‖, ∀ξ ∈ ∂cg(z).

The following notions of generalized approximate convexity are from Bhatia et
al. [3].

Definition 12.6 A function g : � → IR is said to be approximate pseudoconvex
of type I at z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈
B(z◦; δ) ∩ �, and if

〈ξ, y − z〉 ≥ 0, for some ξ ∈ ∂cg(z),

then
g(y) − g(z) ≥ −ε‖y − z‖.

Definition 12.7 A function g : � → IR is said to be approximate pseudoconvex of
type II (or strictly approximate pseudoconvex of type II) at z◦ ∈ �, if for all ε > 0,
there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, and if

〈ξ, y − z〉 + ε‖y − z‖ ≥ 0, for some ξ ∈ ∂cg(z),

then
g(y) ≥ (>)g(z).

Definition 12.8 Afunction g : � → IR is said to beapproximate quasiconvex of type
I at z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �,

and if
g(y) ≤ g(z),

then
〈ξ, y − z〉 − ε‖y − z‖ ≤ 0, ∀ξ ∈ ∂cg(z).

Definition 12.9 A function g : � → IR is said to be approximate quasiconvex of
type II (or strictly approximate quasiconvex of type II) at z◦ ∈ �, if for all ε > 0,
there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, and if

g(y) ≤ (<)g(z) + ε‖y − z‖,

then
〈ξ, y − z〉 ≤ 0, ∀ξ ∈ ∂cg(z).

Definition 12.10 An interval-valued function g : � → I is said to be an approxi-
mate LU-pseudoconvex function of type I (or approximate LU-pseudoconvex func-
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tion of type II) at z◦ ∈ �, if and only if the real-valued functions gL(z) and gU (z)
are approximate pseudoconvex functions of type I (or approximate pseudoconvex
functions of type II) at z◦ ∈ �.

Definition 12.11 An interval-valued function g : � → I is said to be a strictly
approximate LU-pseudoconvex function of type II at z◦ ∈ �, if and only if the real-
valued functions gL(z) and gU (z) are approximate pseudoconvex functions of type II
and at least one of the gL(z) and gU (z) is strictly approximate pseudoconvex function
of type II at z◦ ∈ �.

Definition 12.12 An interval-valued function g : � → I is said to be an approx-
imate LU-quasiconvex function of type I (approximate LU-quasiconvex function
of type II) at z◦ ∈ �, if and only if the real-valued functions gL(z) and gU (z) are
approximate quasiconvex functions of type I (or approximate quasiconvex function
of type II) at z◦ ∈ �.

We consider the following nonsmooth interval-valued multiobjective program-
ming problem:

(NIVMPP) Minimize g(z) = (g1(z), . . . , gp(z)),

subject to z ∈ �,

where gi = [gL
i , gUi ] : � → I, i ∈ I := {1, . . . , p} are locally Lipschitz interval-

valued functions and � be a nonempty, closed, and convex subset of �.

The following notions of approximate LU -efficient solution are the adaptation of
the notions of approximate efficient solution introduced by Mishra and Laha [22].

Let ε = (ε, . . . , ε), a point z◦ ∈ � is said to be an approximate LU -efficient
solution:

(ALUES)1, if and only if for any sufficiently small ε > 0, there does not exist
δ > 0 such that, for all z ∈ B(z◦; δ) ∩ �, z �= z◦, one has

g(z) ≺LU g(z◦) + ε‖z − z◦‖.

(ALUES)2, if and only if for any sufficiently small ε > 0, there exists δ > 0 such
that, for all z ∈ B(z◦; δ) ∩ �, one has

g(z) ⊀LU g(z◦) + ε‖z − z◦‖.

(ALUES)3, if and only if for any ε > 0, there exists δ > 0 such that, for all
z ∈ B(z◦; δ) ∩ �, one has

g(z) ⊀LU g(z◦) − ε‖z − z◦‖.

For more details about approximate efficient solution, we refer to [14, 22].
From now onward, ε := (ε, . . . , ε), unless otherwise specified.
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Now, for interval-valued functions, we formulate the following approximate
Minty and Stampacchia vector variational inequalities in terms of Clarke subdif-
ferential:

(AMVI)1 To find z◦ ∈ � such that, for any sufficiently small ε > 0, there does
not exist δ > 0 such that, for all z ∈ B(z◦; δ) ∩ �, z �= z◦ and ξ L

i ∈ ∂cgL
i (z) and

ξU
i ∈ ∂cgUi (z), i ∈ I, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖.

(AMVI)2 To find z◦ ∈ � such that, for any sufficiently small ε > 0, there exists
δ > 0 such that, for all z ∈ B(z◦; δ) ∩ � and ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I,
one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) � ε‖z − z◦‖.

(AMVI)3 To find z◦ ∈ � such that, for any ε > 0, there exists δ > 0 such that, for
all z ∈ B(z◦; δ) ∩ � and ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) � −ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) � −ε‖z − z◦‖.

(ASVI)1 To find z◦ ∈ � such that, for any ε > 0 sufficiently small, there exist
z ∈ �, z �= z◦, ζ L

i ∈ ∂cgL
i (z◦) and ζU

i ∈ ∂cgUi (z◦), i ∈ I, such that

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) ≤ ε‖z − z◦‖.

(ASVI)2 To find z◦ ∈ � such that, for any sufficiently small ε > 0, for all z ∈ �,

ζ L
i ∈ ∂cgL

i (z◦) and ζU
i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � ε‖z − z◦‖.

(ASVI)3 To find z◦ ∈ � such that, for any ε > 0, there exists δ > 0 such that, for
all z ∈ B(z◦; δ) ∩ �, ζ L

i ∈ ∂cgL
i (z◦) and ζU

i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � −ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � −ε‖z − z◦‖.

Remark 12.2 If each gi , i ∈ I is real-valued function, then the above vector varia-
tional inequalties coincide with the vector variational inequalities given in [14, 22].
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12.3 Relationship Among (NIVMPP), (ASVI) and (AMVI)

In this section, we establish some relationships between the nonsmooth interval-
valued multiobjective programming problem (NIVMPP) and approximate vec-
tor variational inequalities (AMVI), (ASVI) under generalized approximate LU -
convexity.

The following theorem states the condition under which an approximate LU -
efficient solution becomes a solution of approximate Minty variational inequality.

Theorem 12.3.1 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then,

1. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦ is
an (ALUES)1 of the (NIVMPP), then z◦ also solves (AMVI)1;

2. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦ is
an (ALUES)2 of the (NIVMPP), then z◦ also solves (AMVI)2;

3. if each gi , i ∈ I is strictly approximate LU-pseudoconvex of type II at z◦ ∈ �

and z◦ is an (ALUES)3 of the (NIVMPP), then z◦ also solves (AMVI)3.

Proof 1. On contrary assume that z◦ is an (ALUES)1 of the (NIVMPP) but does not
solves (AMVI)1. Then, for some ε > 0 sufficiently small, there exists δ̄ > 0, such
that for all z ∈ B(z◦; δ̄) ∩ �, ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I , we get

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖,

that is,
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, ∀i ∈ I, i �= j,
and
〈ξ L

j , z◦ − z〉 + ε‖z − z◦‖ > 0
〈ξU

j , z◦ − z〉 + ε‖z − z◦‖ > 0, for some j ∈ I.

(12.2)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦ ∈ �, it
follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II.
Hence, for all ε > 0, there exists δ̂ > 0, such that, for all z ∈ B(z◦, δ̂) ∩ �, if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≤ 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,
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then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̂, δ̄}, from (12.2) and the definition of approximate LU -pseudo-
convexity of type II, we have

g(z) − g(z◦) LU 0 ≺LU ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, which contradicts our assumption.
2. On contrary assume that z◦ is an (ALUES)2 of the (NIVMPP) but does not solves

(AMVI)2. Then, for some ε > 0, sufficiently small and for all δ̄ > 0, there exists
z ∈ B(z◦; δ̄) ∩ �, ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I, we get

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖,

that is
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0,
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, ∀i ∈ I, i �= j,
and
〈ξ L

j , z◦ − z〉 + ε‖z − z◦‖ > 0,
〈ξU

j , z◦ − z〉 + ε‖z − z◦‖ > 0, for some j ∈ I.

(12.3)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦ ∈ �, it
follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II.
Hence, for all ε > 0, there exists δ̂ > 0, such that whenever z ∈ B(z◦; δ̂) ∩ � and
if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≤ 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,

then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̂, δ̄}, then from (12.3) and the definition of approximate LU -
convexity of type II, one has

g(z) − g(z◦) LU 0 ≺LU ε‖z − z◦‖,
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for some z ∈ B(z◦; δ) ∩ �, which contradicts our assumption.
3. On contrary assume that z◦ is an (ALUES)3 of the (NIVMPP) but does not solves

(AMVI)3. Then, for some ε > 0 and for all δ̄ > 0, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ −ε‖z − z◦‖ < ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ −ε‖z − z◦‖ < ε‖z − z◦‖,

for all z ∈ B(z◦; δ̄) ∩ �, ξ L
i ∈ ∂cgL

i (z) and ξU
i ∈ ∂cgUi (z),

that is,
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ > 0,
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ > 0, ∀i ∈ I.
(12.4)

Since, each gi , i ∈ I is strictly approximate LU -pseudoconvex of type II at z◦ ∈
�, it follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II
and atleast one of the gL

i and gUi , i ∈ I is strictly approximate pseudoconvex of
type II at z◦ ∈ �.Without loss of generality, assume that each gL

i , i ∈ I is strictly
approximate pseudoconvex of type II. Hence, for all ε > 0, there exists δ̂ > 0,
such that whenever z ∈ B(z◦; δ̂) ∩ � and if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) < 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,

then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̄, δ̂}, from (12.4) and the definition of strictly approximate LU -
pseudo convexity of type II, we have

gi (z) − gi (z◦) ≺LU 0, ∀i ∈ I, (12.5)

for all z ∈ B(z◦; δ) ∩ �.

From (12.5), we can get an ε > 0 sufficiently small, such that

g(z) − g(z◦) ≺LU −ε‖z − z◦‖,

which contradicts our assumption. �

Theorem 12.3.2 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then
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1. if each gi , i ∈ I is approximate LU-quasiconvex of type II at z◦ ∈ � and z◦ solves
(ASVI)1, then z◦ is also an (ALUES)1 of the (NIVMPP);

2. if each gi , i ∈ I is approximate LU-quasiconvex of type II at z◦ ∈ � and z◦ solves
(ASVI)2, then z◦ is also an (ALUES)2 of the (NIVMPP);

3. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦
solves (ASVI)3, then z◦ is also an (ALUES)3 of the (NIVMPP).

Proof 1. On contrary assume that z◦ is a solution of (ASVI)1 but not an (ALUES)1
of the (NIVMPP). Then, for some ε > 0, sufficiently small, there exists δ̄ > 0,
such that

g(z) − g(z◦) ≺LU ε‖z − z◦‖, (12.6)

for all z ∈ B(z◦; δ̄) ∩ �, z �= z◦. Since, each gi , i ∈ I is approximate LU -
quasiconvex of type II at z◦, it follows that each gL

i and gUi , i ∈ I are approximate
quasiconvex of type II at z◦. Hence, for all ε > 0, there exists δ̂ > 0, such that
for all z ∈ B(z◦; δ̂) ∩ �, if

gL
i (z) ≤ gL

i (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζ L

i , z − z◦〉 ≤ 0, ∀ζ L
i ∈ ∂cgL

i (z◦), i ∈ I.

Similarly, if
gUi (z) ≤ gUi (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζU

i , z − z◦〉 ≤ 0, ∀ζU
i ∈ ∂cgUi (z◦), i ∈ I.

Let δ := min{δ̄, δ̂}, from (12.6) and the definition of approximate LU -quasi-
convexity of type II, one has

〈ζ L
i , z − z◦〉 ≤ 0 < ε‖z − z◦‖,

〈ζU
i , z − z◦〉 ≤ 0 < ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, ζ L
i ∈ ∂cgL

i (z◦), ζU
i ∈ ∂cgUi (z◦), i ∈ I, which contra-

dicts our assumption.
2. Assume that z◦ is a solution of (ASVI)2. Then, for any ε > 0 sufficiently small,

for every z ∈ �, ζ L
i ∈ ∂cgL

i (z◦) and ζU
i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � ε‖z − z◦‖,

that is,
(〈ζ L

1 , z − z◦〉, . . . , 〈ζ L
p , z − z◦〉) � 0,

(〈ζU
1 , z − z◦〉, . . . , 〈ζU

p , z − z◦〉) � 0.
(12.7)
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Since, each gi , i ∈ I is approximate LU -quasiconvex of type II at z◦, it follows
that each gL

i and gUi , i ∈ I are approximate quasiconvex of type II at z◦. Hence,
for all ε > 0, there exists δ̂ > 0, such that for all z ∈ B(z◦, δ̂) ∩ �, if

gL
i (z) ≤ gL

i (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζ L

i , z − z◦〉 ≤ 0, ∀ζ L
i ∈ ∂cgL

i (z◦), i ∈ I.

Similarly, if
gUi (z) ≤ gUi (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζU

i , z − z◦〉 ≤ 0, ∀ζU
i ∈ ∂cgUi (z◦), i ∈ I.

From (12.7) and the definition of approximate LU -quasiconvexity of type II, it
follows that

g(z) − g(z◦) ⊀LU ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, z �= z◦. Therefore, z◦ is an (ALUES)2 of the (NIVMPP).
3. On contrary assume that z◦ solves (ASVI)3 but not an (ALUES)3. Then, for some

ε > 0, and for all δ̄ > 0, there exists z ∈ B(z◦; δ̄) ∩ �, such that

g(z) − g(z◦) ≺LU −ε‖z − z◦‖,

that is
gL
i (z) − gL

i (z◦) < 0,
gUi (z) − gUi (z◦) < 0, ∀i ∈ I.

(12.8)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦, it follows
that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II at z◦.Hence,
for all ε > 0, there exists δ̂ > 0, such that for all z ∈ B(z◦; δ̂) ∩ �, if

〈ζ L
i , z − z◦〉 + ε‖z − z◦‖ ≥ 0, for some ζ L

i ∈ ∂cgL
i (z◦), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≥ 0, ∀i ∈ I.

Similarly, if

〈ζU
i , z − z◦〉 + ε‖z − z◦‖ ≥ 0, for some ζU

i ∈ ∂cgUi (z◦), i ∈ I,

then
gUi (z) − gUi (z◦) ≥ 0, ∀i ∈ I.
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Let δ := min{δ̂, δ̄}, from (12.8) and the definition of approximate LU -
pseudoconvexity of type II, one has

〈ζ L
i , z − z◦〉 < −ε‖z − z◦‖,

〈ζU
i , z − z◦〉 < −ε‖z − z◦‖, ∀i ∈ I,

(12.9)

for some z ∈ B(z◦; δ) ∩ � and all ζ L
i ∈ ∂cgL

i (z◦), ζU
i ∈ ∂cgUi (z◦), i ∈ I, which

contradicts our assumption. �

The following corollary is a direct consequence of Theorems 12.3.1 and 12.3.2.

Corollary 12.1 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then,

1. if each gi , i ∈ I is approximate LU-quasiconvex of type II and approximate LU-
pseudoconvex of type II at z◦ ∈ �. Let z◦ is a solution of (ASVI)1, then z◦ is also
a solution of (AMVI)1.

2. if each gi , i ∈ I is approximate LU-quasiconvex of type II and approximate LU-
pseudoconvex of type II at z◦ ∈ �. Let z◦ is a solution of (ASVI)2, then z◦ is also
a solution of (AMVI)2.

3. if each gi , i ∈ I is strictly approximate LU-pseudoconvex of type II at z◦ ∈ �.

Let z◦ is a solution of (ASVI)3, then z◦ is also a solution of (AMVI)3.

Now, to illustrate the significance of Theorems 12.3.1, 12.3.2 and Corollary 12.1,
we have the following example.

Example 12.1 Consider the following nonsmooth interval-valued multiobjective
programming problem

(P) Minimize g(z) = (g1(z), g2(z))

subject to z ∈ � ⊆ IR,

where � = [−1, 1] and g1, g2 : � → I are defined as

gL
1 (z) =

{
z3 + z, z ≥ 0,

2z, z < 0,
gU1 (z) =

{
z3 + 2z, z ≥ 0,

z, z < 0,

and

gL
2 (z) =

{
z − z2, z ≥ 0,

2z, z < 0,
gU2 (z) =

{
z + 1, z ≥ 0,

2z + ez, z < 0.

The Clarke generalized subdifferentials of g1 and g2 are given by

∂cgL
1 (z) =

⎧⎪⎨
⎪⎩
3z2 + 1, z > 0,

[1, 2], z = 0,

2, z < 0,

∂cgU1 (z) =

⎧⎪⎨
⎪⎩
3z2 + 2, z > 0,

[1, 2], z = 0,

1, z < 0,
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and

∂cgL
2 (z) =

⎧⎪⎨
⎪⎩
1 − 2z, z > 0,

[1, 2], z = 0,

2, z < 0,

∂cgU2 (z) =

⎧⎪⎨
⎪⎩
1, z > 0,

[1, 3], z = 0,

2 + ez, z < 0,

For any 0 < ε < 1, let δ = 1
10 , such that for all z, y ∈ B(0; δ) ∩ �, ξ L

1 ∈ ∂cgL
1 (z),

ξU
1 ∈ ∂cgU1 (z), ξ L

2 ∈ ∂cgL
2 (z) and ξU

2 ∈ ∂cgU2 (z), one has

〈ξ L
1 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3z2 + 1)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(3z2 + 1)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(3z2 + 1)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
2(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
k1(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, k1 ∈ [1, 2];
k1(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, k1 ∈ [1, 2],

〈ξU1 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3z2 + 2)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(3z2 + 2)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(3z2 + 2)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
k2(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, k2 ∈ [1, 2];
k2(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, k2 ∈ [1, 2],

〈ξ L
2 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 2z)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(1 − 2z)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(1 − 2z)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
2(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
t1(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, t1 ∈ [1, 2];
t1(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, t2 ∈ [1, 2];

and

〈ξU2 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
(2 + ez)(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
(2 + ez)(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
(2 + ez)(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
t2(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, t2 ∈ [1, 3];
t2(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, t2 ∈ [1, 3].
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Also,

gL
1 (y) − gL

1 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(y2 + zy + z2 + 1), z > 0, y > 0, y − z > 0;
y3 + y − 2z, z < 0, y > 0;
2(y − z), z < 0, y < 0, y − z > 0;
y3 + y, z = 0, y > 0,

> 0,

gU1 (y) − gU1 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(y2 + zy + z2 + 2), z > 0, y > 0, y − z > 0;
y3 + 2y − z, z < 0, y > 0;
y − z, z < 0, y < 0, y − z > 0;
y3 + 2y, z = 0, y > 0,

> 0,

gL
2 (y) − gL

2 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(1 − z − y), z > 0, y > 0, y − z > 0;
y − y2 − 2z, z < 0, y > 0;
2(y − z), z < 0, y < 0, y − z > 0;
y − y2, z = 0, y > 0,

> 0,

and

gU2 (y) − gU2 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y − z, z > 0, y > 0, y − z > 0;
y + 1 − 2z − ez, z < 0, y > 0;
2(y − z) + ey − ez, z < 0, y < 0, y − z > 0;
y, z = 0, y > 0,

> 0.

Hence, g1 = [gL
1 , gU1 ] and g2 = [gL

2 , gU2 ] are approximate LU -pseudoconvex of type
II at z◦ = 0.
Evidently, z◦ = 0, solves (ASVI)3. Since, for any z > 0, z ∈ B(z◦; δ) ∩ �, ζ L

1 ∈
∂cgL

1 (z◦), ζU
1 ∈ ∂cgU1 (z◦), ζ L

2 ∈ ∂cgL
2 (z◦) and ζU

2 ∈ ∂cgU2 (z◦), we have

〈ζ L
1 , z − z◦〉 + ε‖z − z◦‖ = k1z + ε‖z‖ > 0, k1 ∈ [1, 2],

〈ζU
1 , z − z◦〉 + ε‖z − z◦‖ = k2z + ε‖z‖ > 0, k2 ∈ [1, 2],

〈ζ L
2 , z − z◦〉 + ε‖z − z◦‖ = t1z + ε‖z‖ > 0, t1 ∈ [1, 2],

and 〈ζU
2 , z − z◦〉 + ε‖z − z◦‖ = t2z + ε‖z‖ > 0, t2 ∈ [1, 3],
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that is
(〈ζ L

1 , z − z◦〉, 〈ζ L
2 , z − z◦〉) � −ε‖z − z◦‖,

(〈ζU
1 , z − z◦〉, 〈ζU

2 , z − z◦〉) � −ε‖z − z◦‖.

Moreover, z◦ = 0 is an (ALUES)3 of the problem (P). Since, for any ε > 0, let δ = 1
2 ,

such that for all z > 0, z ∈ B(z◦; δ) ∩ �, we have

gL
1 (z) − gL

1 (z◦) + ε‖z − z◦‖ = z3 + z + ε‖z‖ > 0,

gU1 (z) − gU1 (z◦) + ε‖z − z◦‖ = z3 + 2z + ε‖z‖ > 0,

gL
2 (z) − gL

2 (z◦) + ε‖z − z◦‖ = z − z2 + ε‖z‖ > 0,

gU2 (z) − gU2 (z◦) + ε‖z − z◦‖ = z + ε‖z‖ > 0,

that is
g(z) − g(z◦) + ε‖z − z◦‖ ⊀LU 0.

Furthermore, z◦ = 0 solves (AMVI)3. Since, for any ε > 0, sufficiently small, let
δ = 1

2 , such that for all z > 0, z ∈ B(z◦; δ) ∩ �, ξ L
1 ∈ ∂cg1(z), ξU

1 ∈ ∂cgU1 (z), ξ L
2 ∈

∂cgL
2 (z) and ξU

2 ∈ ∂cgU2 (z), we have

〈ξ L
1 , z − z◦〉 + ε‖z − z◦‖ = 3z3 + z + ε‖z‖ > 0,

〈ξU
1 , z − z◦〉 + ε‖z − z◦‖ = 3z3 + 2z + ε‖z‖ > 0,

〈ξ L
2 , z − z◦〉 + ε‖z − z◦‖ = 1 − 2z + ε‖z‖ > 0,

〈ξU
2 , z − z◦〉 + ε‖z − z◦‖ = z + ε‖z‖ > 0,

that is
(〈ξ L

1 , z − z◦〉, 〈ξ L
2 , z − z◦〉) � −ε‖z − z◦‖,

(〈ξU
1 , z − z◦〉, 〈ξU

2 , z − z◦〉) � −ε‖z − z◦‖.

12.4 Conclusions

In this chapter, we have considered a class of nonsmooth interval-valued multiobjec-
tive programming problems (NIVMPP) and certain classes of approximateMinty and
Stampacchia vector variational inequalities; namely, (AMVI)1, (AMVI)2, (AMVI)3,
(ASVI)1, (ASVI)2, and (ASVI)3. We have established the equivalence among the
solutions of these vector variational inequalities and the approximate LU -efficient
solutions; namely, (ALUES)1, (ALUES)2, (ALUES)3 of the nonsmooth interval-
valued multiobjective programming problem (NIVMPP). The numerical example
has been given to justify the significance of these results. The results of the chapter
extend and unify the corresponding results of [14, 22, 23, 30, 33] to a more gen-
eral class of nonsmooth optimization problems, namely, nonsmooth interval-valued
multiobjective programming problem (NIVMPP).
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