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Foreword

It is my pleasure to contribute a short foreword to this proceedings volume. This
work is a result of collaboration between India and France in applied mathematics,
at the interface with physics, computer science and engineering. Both countries held
during February 02–04, 2020, the Indo-French Seminar on Optimization,
Variational Analysis and Applications (IFSOVAA2020). This seminar was
organized by the Department of Mathematics of the Institute of Science, Banaras
Hindu University at Varanasi, India, in collaboration with the Institut de
Mathématiques de Toulouse de l’Université Paul Sabatier, under the auspices of the
Indo-French Centre for the Promotion of Advanced Research (IFCPAR/
CEFIPRA) supported by the Department of Science and Technology, Government
of India, and the Ministry for Europe and Foreign Affairs of France. The goal was to
promote collaborative research between India and France in the area of Variational
Analysis and Optimization.

This volume consists of 19 articles on various aspects of optimization theory
written by Indian and French researchers and is based on the invited talks. It is my
hope and expectation that it will provide an effective learning experience and
reference resource for young students and researchers in India and France. If these
contributions lead to discovering new directions of research in optimization, they
will have served their purpose.

Finally, I would like to congratulate my colleagues Vivek Laha, S. K. Mishra
and Pierre Maréchal for this excellent initiative.

October 2020 Michel Théra
University of Limoges

Limoges, France

Federation University Australia
Ballarat, Australia
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Preface

Variational analysis is a powerful tool which uses the combination and extension of
methods from convex optimization and the classical calculus of variations to a more
general theory for applications. The theory of variational analysis is a trending area
of research nowadays due to its increasing applications in a number of important
optimization problems such as vector optimization, copositive optimization,
topology optimization, set optimization, portfolio optimization, particle swarm
optimization, fuzzy optimization, semi-infinite optimization, minimax program-
ming, unconstrained optimization, variational inequalities, mathematical programs
with equilibrium and vanishing constraints, robust optimization, interval-valued
programming, convex and nonconvex optimization, nonsmooth analysis and the
related topics. The tools of variational analysis and generalized differentiation allow
us to derive necessary and sufficient conditions of optimality of a feasible solution
for some difficult optimization problems which in general are not possible by
classical methods of analysis. Moreover, it provides a suitable infrastructure to
construct useful algorithms to detect optimal or approximate solutions from a point
of view for applications.

This book contains chapters based on the invited talks during Indo-French
Seminar on Optimization, Variational Analysis and Applications (IFSOVAA2020)
organized by Department of Mathematics, Institute of Science, Banaras Hindu
University, Varanasi, India, in collaboration with Institut De Mathématiques De
Toulouse, Universite Paul Sabatier, France, during February 02–04, 2020. The
leading experts both from France and India in the areas of optimization and vari-
ational analysis have contributed extraordinary chapters leading to the most recent
developments in the field of the study. The subjects covered in this book include set
optimization, multiobjective optimization, mathematical programs with comple-
mentary, equilibrium, vanishing and swiching constraints, copositive optimization,
interval-valued optimization, sequential quadratic programming, bound-constrained
optimization, variational inequalities, etc. These problems of real-life origin have a
wide variety of applications in different branches of applied mathematics, engi-
neering, economics, finance, medical sciences, robot motion planning, morpho-
logical image analysis, computer-aided design and manufacturing, consumer
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demand, medical image registration, uncertain optimization, coherent risk measures
in financial mathematics, optimal control, global analysis, career development
theories, probability and statistics, computational geometry, data fitting, inverse
problems, food processing, retail chain management and so on. The construction of
each chapter is in such a way that it not only provides a detailed survey of the topic
but also builds systematic theories and suitable algorithms to deduce the most
recent findings of the literature. Needless to say, this book will serve as a useful
reference for the scholars, professors and researchers both from academia and
industry working in the area as a significant contribution to knowledge.

We are extremely grateful to our main sponsor Indo-French Centre for the
Promotion of Advanced Research (IFCPAR/CEFIPRA) supported by the
Department of Science and Technology, Government of India, and the Ministry for
Europe and Foreign Affairs, Government of France, without whose financial sup-
port this collaborative research seminar was not possible. We are also thankful to
the Institute of Science, Banaras Hindu University, Varanasi, India, for its financial
assistance to support the seminar. We wish to thank the local organizing committee,
the chairs, the speakers and the participants of the seminar whose collective efforts
made the seminar a huge success. We are cordially thankful to all the contributors
and reviewers for their hard work and dedication to construct this high-quality
proceeding. At long last, we warmly express gratitude toward Springer for their
assistance in publishing this book.

Varanasi, India Vivek Laha
Toulouse, France

August 2020

Pierre Maréchal
Varanasi, India S. K. Mishra
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Chapter 1
Linear and Pascoletti–Serafini
Scalarizations in Unified Set
Optimization

Khushboo and C. S. Lalitha

Abstract This chapter is devoted to the study of linear and nonlinear scalariza-
tion schemes in unified set optimization in terms of approximate minimal solutions.
Characterization of a preference set relation is employed to characterize approx-
imate minimal solutions in terms of approximate minimal solutions of linearized
scalar problems. Similar characterizations are derived using a nonlinear scalariza-
tion scheme, namely the Pascoletti–Serafini scalarization scheme for set optimiza-
tion, which is an extension of the scheme considered in [Pascoletti, A., Serafini, P.:
Scalarizing vector optimization problems, J. Optim. Theory Appl. 42(4), 499–524,
1984] for vector optimization problems.

Keywords Unified set optimization · Linear scalarization · Nonlinear
scalarization · Pascoletti–Serafini scalarization

1.1 Introduction

In the last few decades, the study of set optimization problems has received much
attention due to its wide applications inmany fields, for instance, finance, economics,
engineering, game theory and optimal control. For details, we refer to [1] and refer-
ences therein.

In the case of the scalar optimization problem, the objective function values are
compared with the natural ordering. However, due to the absence of total ordering
relations for vector and set optimization problems, comparing objective function val-
ues is harder than scalar ones. To deal with this disadvantage, one of the extensive

Khushboo
Department of Mathematics, University of Delhi, Delhi 110 007, India
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Department of Mathematics, University of Delhi South Campus, Benito Juarez Road,
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2 Khushboo and C. S. Lalitha

and efficient schemes employed to solve vector and set optimization problems is
scalarization. In this scheme, a parametric scalar problem is assigned to the original
problem and minimal solutions are characterized through minimal solutions of the
scalarized problem. By varying the parameters, one can determine all the minimal
solutions to the original problem. Hence, scalarization can be regarded as an algo-
rithm where the same parametric scalar optimization problem is solved for different
choices of parameters.

Several linear and nonlinear scalarizations have been developed for vector opti-
mization problems. The most commonly used nonlinear scalar functions are the
Gerstewitz function and the oriented distance function, (see [2, 3]). There is an
extensive literature dealing with these scalar functions in set optimization as well;
for more details, refer to [1, 4–10].

In the literature, optimization problems have been investigated by researchers
in a unified setting using general preference relations. In this direction, Rubinov
and Gasimov [11] proposed a preference relation using a conic set unifying several
well-known ordering relations of vector optimization problems. A unified notion
of minimal solution with respect to a preference relation induced by a nonempty
proper set was proposed by Flores-Bazán and Hernández [12] and Flores-Bazán
et al. [13] which was further investigated in [14] to study scalarization schemes.
Later, Khushboo and Lalitha [8] proposed a preference set relation with respect to
a nonempty proper set and established scalarization using a generalized Gerstewitz
function.

Usually, iterative algorithms lead to an approximate solution rather than an exact
solution when applied to solve an optimization problem, which led to growing inter-
est in the study of approximate solutions in the past few years. Scalarization schemes
have been employed to characterize approximate minimal solutions of vector opti-
mization problems in the literature (see [12, 13, 15, 16]). Later, Dhingra and Lalitha
[9] studied scalarization for approximate minimal solutions using a generalized Ger-
stewitz function in set optimization.

In this work, we investigate two scalarization schemes for a unified set optimiza-
tion problem in terms of approximate minimal solutions. We define a unified notion
of approximate minimal solutions with respect to a preference set relation considered
in [8]. We first establish linear scalar characterizations of the preference set relation
and approximate minimal solutions and compare it with an existing one established
in [17]. Further, we propose a nonlinear scalarization scheme based on the Pascoletti–
Serafini scalarization scheme of vector optimization problem considered in [18].

This chapter is organized as follows. In Sect. 1.2, we introduce a notion of
approximate minimal solutions which unify various notions of minimal and approx-
imate minimal solutions considered in the literature. Section 1.3 provides a concise
detail of linear and nonlinear scalarization schemes. Section 1.4 deals with linear
scalar characterizations of preference set relation and approximate minimal solu-
tions. Section 1.5 is devoted to the study of the Pascoletti–Serafini scalarization
scheme for the set optimization problem.
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1.2 Preliminaries

Let Y be a real topological linear space and S ⊂ Y be a nonempty proper set. We
denote the family of all nonempty subsets of Y byP(Y ). The topological interior, the
topological closure and the complement of a set A ⊆ Y are denoted by intA, clA and
Ac, respectively. The set A is said to be (−S)-closed if A − S is closed and A∞ :=
{d ∈ Y : a + td ∈ A, for all a ∈ A, t ∈ R+} is referred to the recession cone of A
where R+ = {t ∈ R : t ≥ 0}.

In the case of the vector optimization problem, a unified notion ofminimal solution
is proposed by Flores-Bazán et al. [13], which led to a unified notion of a minimal
solution, namely S-minimal solution, based on a preference set relation induced by
the set S in [8]. For A, B ∈ P(Y )

A �l
S B ⇐⇒ B ⊆ A − S.

Generally, the preference relation�l
S is neither reflexive nor transitive. However, the

preference relation �l
S is reflexive, if 0Y ∈ S and transitive, if S + S ⊆ S. Evidently,

a convex cone satisfies both these conditions. Besides cones, there are numerous sets
that satisfy these conditions. For instance, S = {(y1, y2) ∈ R

2 : y1 + y2 ≥ 0, y2 ≥
0} ∪ {(y1, y2) ∈ R

2 : y2 ≥ 1}.
The following remark investigates that the preference relation �l

S is a unification
of certain well-known preference relations studied by researchers.

Remark 1.1 1. Let K ⊂ Y be a closed convex pointed conewith nonempty interior.
If S = −K (S = −intK ), then the preference relation�l

S reduces to the lower set
order relation �l

K (≺l
K ) considered in [19] ([6]).

2. If S = −E , where E is an improvement set, then the preference relation �l
S is

the set relation considered in [20].
3. If A = {a} and B = {b} where a, b ∈ Y, then �l

S is the preference relation �S

considered in [8] defined as a �S b iff a − b ∈ S.

We now consider the set-valued optimization problem

(P) S-Minimize F(x)

subject to x ∈ X,

where F : X ⇒ Y is a set-valued map and X is an arbitrary nonempty set.

Throughout the chapter, we assume that F(x) �= ∅, for each x ∈ X , and ε ∈ R+
unless specified otherwise and 0 �= q ∈ Y.

We define a notion of approximate minimal solutions of (P) extending the notion
of approximate l-minimal solutions considered in [9]. This notion is a special case
of a notion of approximate minimal solution given in Definition 6.3 of [21].

Definition 1.1 An element x̄ ∈ X is said to be an ε-S-l-minimizer of (P), if there
does not exist any x ∈ X such that F(x) + εq �l

S F(x̄).
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We denote the set of ε-S-l-minimizers of (P) by ε-S-l-Mzer. For ε = 0 the set
of minimizers, namely S-l-minimizers, is denoted by S-l-Mzer. If −q ∈ S∞, then it
can be easily verified that for 0 < ε1 < ε2,

S-l-Mzer ⊆ ε1-S-l-Mzer ⊆ ε2-S-l-Mzer, (1.1)

as in Proposition 6.1 of [21]. Clearly, every S-l-minimizer is an S-l-minimal consid-
ered in [8] but the converse is not true; see (Example 3.1 in [8]). Under appropriate
assumptions, characterization for S-l-minimizers is given in [8, Lemma 3.1].

Remark 1.2 We have the following observations regarding the notions of ε-S-l-
minimizers and S-l-minimizers.

1. If S = −intK andq ∈ intK , then ε-S-l-Mzer reduces to the set ε-l-WMzer,where
ε-l-WMzer denotes the set of ε-l-weakminimal solutions considered in [9]. Also,
if S = −εq − intK , then S-l-Mzer reduces to set ε-l-WMzer.

2. If S = −intK , then the notion of S-l-minimizer reduces to the notion of weak
l-minimal solution considered in [22].

3. If S = −E where E is an improvement set, then under certain assumptions of
Proposition 3.3 in [20], the notion of S-l-minimizer reduces to the notion of
E-l-minimal solution considered in [20].

1.3 Scalarization

This section provides a brief outline of scalarization techniques for vector and set
optimization problems.

We first recall a notion of minimal solutions for vector optimization problem
from [23]. Let K ⊂ Y be a closed convex pointed cone with nonempty interior and
f : X → Y . An element x̄ ∈ X is said to be a weak minimal solution of minimizing
the vector function f over X if

f (X) ∩ ( f (x̄) − intK ) = ∅,

where f (X) := ∪x∈X f (x). Evidently, if S = −intK and F is vector-valued map,
then the notion of S-l-minimizer reduces to the above notion of weak minimal solu-
tion.

Scalarization schemes are mainly based on separation theorems in which a para-
metric scalar problem is associated with the given problem and minimal solutions
are determined in terms of minimal solutions of the scalarized problems. Now, the
question that arises is how to choose the objective function of the scalarized problem.
From the definition of the weak minimal solution, it is evident that the solution con-
cept of a vector optimization problem is based on the separation of two sets. So, if one
is able to determine a functional separating these two sets, then that can be chosen
as the objective function of the scalarized problem. By virtue of separation theorems
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Fig. 1.1 The set of weak
minimal solutions of f are
marked in red in the figure
(Failure of linear
scalarization)

for convex sets, linear scalarizations are handy for convex vector optimization prob-
lems. However, it can be observed from Fig. 1.1 that in general, linear scalarization
fails to hold. To deal with nonconvex optimization problems, Gerth and Weidner [2]
introduced a nonlinear scalar function satisfying some nonconvex separation prop-
erties. Further, in the literature this function is referred to as the Gerstewitz function
and used in mathematical finance [24] and mathematical economics [25] under the
names of measures of risk and shortage function, respectively.

Let 0 �= q ∈ Y and A ∈ P(Y ). The Gerstewitz function ξq,A : Y −→ R ∪
{±∞} is defined as

ξq,A(y) := inf{t ∈ R : y ∈ tq + A}.

Wenext recall the following nonconvex separation properties of theGerstewitz
function ξq,A from [13].

Proposition 1.1 [13] Let λ ∈ R and 0 �= q ∈ Y be such that −q ∈ A∞. Then, the
following assertions hold.

1. {y ∈ Y : ξq,A(y) < λ} ⊆ λq + A ⊆ {y ∈ Y : ξq,A(y) ≤ λ}.
2. If clA − R++q ⊆ A, then {y ∈ Y : ξq,A(y) ≤ λ} = λq + clA.

3. If A − R++q ⊆ intA, then {y ∈ Y : ξq,A(y) < λ} = λq + intA.

By virtue of Proposition 1.1, for λ = 0 it may be noted that for any nonempty
set A ⊆ Y , the function ξq,A separates the set A from any set of B ⊆ Ac in the
following sense, provided there exists 0 �= q ∈ Y such that clA − R++q ⊆ intA.
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1. ξq,A(y) < 0 ⇐⇒ y ∈ intA.
2. ξq,A(y) = 0 ⇐⇒ y ∈ ∂A.
3. ξq,A(y) > 0 ⇐⇒ y ∈ intAc.

On account of the above separation properties, we provide the following scalar-
ization for the weak minimal solution of a vector optimization problem.

Theorem 1.3.1 If f : X → Y , x̄ ∈ X and q ∈ intK , then x̄ is a weak minimal solu-
tion of f over X if and only if x̄ is a strict minimal solution of ξq, f (x̄)−intK over X,
that is, for all x ∈ X\{x̄}

ξq, f (x̄)−intK ( f (x̄)) < ξq, f (x̄)−intK f (x).

Proof By taking A = f (x̄)− intK , proof follows immediately through the definition
of weak minimal solution and the above separation properties. �

In 1984, Pascoletti and Serafini [18] introduced a nonlinear scalarization
scheme for the vector-valued optimization problem. This scheme is known to encom-
pass many of the well-known scalairzation schemes such as weighted sum method,
ε-constraint method and normal boundary intersection method. For more details,
refer to the book by Eichfelder [26]. For p, q ∈ Y, Pascoletti–Serafini scalar prob-
lem corresponding to (p, q) is given by

(P(p, q)) Minimize t

subject to

p + tq − f (x) = λ,

t ∈ R, x ∈ X, λ ∈ K ,

where f : X → Y is a vector-valuedmap, X is an arbitrary set and K ⊂ Y is a closed
convex pointed cone. Solution of the problem is based on finding the minimal value
of t , say t̄ for which (p + t̄q − K ) ∩ f (X) �= ∅ and then, the tuple (t̄, x̄, λ̄) cor-
responds to the optimal solution of (P(p, q)) where f (x̄) ∈ (p + t̄q − K ) ∩ f (X)

and λ̄ = p + t̄q − f (x̄). However, the problem can be equivalently formulated as

(P(p, q)) Minimize ξq,−K ( f (x) − p)

subject to x ∈ X.

Using the Pascoletti–Serafini scalarization scheme, Huong and Yen [27] gave
minimal representation formulae for efficient and weakly efficient solution sets
and further studied the connectedness of the solution sets of Pascoletti–Serafini’s
scalar problems. Schematic visualization of Pascoletti–Serafini scheme discussed in
Sect. 1.5 is presented in Fig. 1.2.

Another nonlinear scalar function, known as oriented distance function, was
proposed by Hiriart-Urruty [3] in the setting of normed linear spaces. Let Y be
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Fig. 1.2 Visualization of Pascoletti–Serafini Scalar problem

a real normed linear space. For A ⊆ Y , the oriented distance function �A : Y →
R ∪ {±∞} is defined as

�A(y) := dA(y) − dAc(y),

where dA(y) := infa∈A ‖y − a‖ . Conventionally, for d∅(y) = +∞, any y ∈ Y and
thus �∅(y) = +∞ and �Y (y) = −∞.

This function was primarily introduced to investigate the geometry of nons-
mooth optimization problems and to obtain necessary and sufficient optimality con-
ditions. In comparison to the Gerstewitz function, this function is more compatible
in calculation as well as in visualization sense. Analogous to the Gerstewitz function,
it has the following separation properties without any restrictions on the set A.

Proposition 1.2 [28] For A ∈ P(Y ) and A �= Y, the following assertions hold:

1. �A(y) < 0 ⇐⇒ y ∈ intA.

2. �A(y) = 0 ⇐⇒ y ∈ ∂A.

3. �A(y) > 0 ⇐⇒ y ∈ intAc.

For vector optimization problems, a scalarization scheme based on an
axiomatic approach, mainly on properties known as order (strict order) representing
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and order (strict order) preserving properties, was proposed byMiglierina andMolho
[29]. Amending these properties, this study is further investigated by many authors
including set optimization problems as well; see [10, 14, 30]. It has been shown that
the Gerstewitz and oriented distance functions satisfy these properties under suitable
assumptions. The notions of order and strict order preserving properties correspond
to monotonicity properties and help in establishing sufficient optimality conditions
using scalarization, while order and strict order representing properties help in estab-
lishing necessary optimality conditions using scalarization. Hence, the class of such
type scalarizing functions provides complete scalarizations for minimal solutions of
a given problem.

Similar to vector optimization problems, scalarization schemes have been
broadly used for set optimization problems. In 2007, Hernández and Rodríguez–
Marín [6] extended the Gerstewitz function over family of sets and established com-
plete scalarizations of minimal solutions for set optimization.

Definition 1.2 [6, Definition 3.1] Let K ⊂ Y be a closed convex pointed cone with
nonempty interior andq ∈ −intK .ThegeneralizedGerstewitz functionGq : P(Y ) ×
P(Y ) → R ∪ {±∞} is defined as

Gq(A, B) := sup
b∈B

ξq,A(b).

Analogous to the Gerstewitz and oriented distance functions, this nonlinear
function has the following separation properties required to establish scalarizations.
In this regard, we first recall some notions from [6]. A set A ∈ P(Y ) is referred to
as K -proper if the set A + K �= Y . The set A is referred to as K -compact if for any
open cover of A of the form {Uα + K : Uα are open sets in Y } there exists a finite
subcover.

Theorem 1.3.2 Let A and B be K -proper and K -compact sets. Then, the following
assertions hold:

1. Gq(A, B) < 0 ⇐⇒ A ≺l
K B.

2. Gq(A, B) = 0 ⇐⇒ A �l
K B, A ⊀

l
K B.

3. Gq(A, B) > 0 ⇐⇒ A �
l
K B, A ⊀

l
K B.

Using these separation properties, Hernández and Rodríguez–Marín [6] estab-
lished scalarizations for minimal and weak minimal solutions with respect to lower
set order relation. Later, Xu and Li [7] established scalarizations for minimal and
weak minimal solutions with respect to upper set order relation using a generalized
oriented distance function. In the literature, various scalarization schemes for set
optimization problems based on the Gerstewitz function, oriented distance function
or their generalizations have been considered; see [1, 5–8, 10]. Recently, Jahn [17]
derived linear scalar characterizations for various set order relations defined with
respect to closed convex pointed cone. Using these characterizations, he established
scalarizations for certain notions of minimal solutions.
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1.4 Linear Scalarizations

Inspired by the work of Jahn [17], this section aims to provide linear scalar character-
izations for the unified preference set relation�l

S and the corresponding approximate
minimal solution. In this section, we consider Y to be a locally convex space.

We first give a characterization of the preference set relation.

Theorem 1.4.3 Let −q ∈ S∞ and A, B ∈ P(Y ) be such that A − S is closed and
convex. Then, A + εq �l

S B if and only if for all l ∈ Y ∗\{0Y ∗ }with l(q) ≤ 0 we have

sup
a∈A

l(a) − inf
s∈S l(s) ≥ sup

b∈B
l(b) − εl(q). (1.2)

Proof We first assume that A + εq �l
S B. Suppose on the contrary there exists l ∈

Y ∗\{0Y ∗ } such that l(q) ≤ 0 but (1.2) does not hold. Then,

sup
a−s∈A−S

l(a − s + εq) = sup
a∈A

l(a) − inf
s∈S l(s) + εl(q) < sup

b∈B
l(b)

which further implies that there exists b̄ ∈ B such that

sup
a−s∈A−S

l(a − s + εq) < l(b̄) ≤ sup
b∈B

l(b).

This leads to the fact that b̄ /∈ A + εq − S, that is, B � A + εq − S which is a
contradiction as A + εq �l

S B.

Conversely, suppose on the contrary B � A + εq − S. Then, there exists some
b ∈ B such that b − εq /∈ A − S. As A − S is closed and convex, therefore by a
separation theorem from [31, Theorem 1.1.5], there exists l ∈ Y ∗\{0Y ∗ } and α ∈ R

such that
l(y) ≤ sup

y∈A−S
l(y) ≤ α < l(b − εq) = l(b) − εl(q), (1.3)

for all y ∈ A − S. Taking y = a − s + λq ∈ A − S + R++q ⊆ A − S, for some
a ∈ A, s ∈ S and λ > 0, in (1.3) we have

l(a) + l(−s) + λl(q) = l(a − s + λq) ≤ α.

Since the above relation holds for all λ > 0, it is clear that l(q) ≤ 0.Also, from (1.3)
we obtain

sup
a−s∈A−S

l(a − s) = sup
a∈A

l(a) − inf
s∈S l(s) < sup

b∈B
l(b) − εl(q)

which is a contradiction to (1.2). �
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Remark 1.3 It may be observed that the characterization obtained in Theorem 1.2
is different from the one established in [17, Lemma 2.1], for particular choices of
ε = 0, S = −K and q ∈ intK where K is a closed convex pointed cone with a
nonempty interior. Also, the above characterization can be derived for any preference
set, not necessarily cone, if there exists an element of its recession cone.

The following example justifies that neither closedness nor convexity of the set
A − S can be relaxed in the above theorem.

Example 1.1 Let Y=R
2, A = [0, 1] × [0, 1], B = {(1, 0)}, S=intR2+, q = (0,−1)

and ε ∈ [0, 1]. A linear function l : R
2 → R is of the form l(y1, y2) = c1y1 + c2y2.

Clearly, l(q) ≤ 0 if and only if c1 ∈ R and c2 ≥ 0. Let (c1, c2) ∈ {(c1, c2) ∈ R
2 :

c1 ∈ R, c2 ≥ 0}\{(0, 0)}. Then,

sup
a∈A

l(a) − inf
s∈S l(s) − sup

b∈B
l(b) + εl(q) =

{
(1 − ε)c2, if c1 ≥ 0,

+∞, if c1 < 0.

Clearly, (1.2) is satisfied, A − S is convex but not closed and B � A + εq − S, for
every ε ∈ [0, 1].

However, if we consider S={(y1, y2) ∈ R
2 : y1+y2 ≥ 0, y2 ≥ 0} ∪ {(y1, y2) ∈

R
2 : y2 ≥ 2} and B = {(3, 0)}, then

sup
a∈A

l(a) − inf
s∈S l(s) − sup

b∈B
l(b) + εl(q) =

{
0, if c1 = 0,

+∞, if c1 �= 0,

and hence, (1.2) holds. Also, A − S is closed but not convex and B � A + εq − S
for every ε ∈ [0, 1].

We next present characterization for approximate minimal solutions of (P).

Theorem 1.4.4 Let −q ∈ S∞, x̄ ∈ X and F(x) − S be closed and convex, for each
x ∈ X. Then, x̄ ∈ ε-S-l-Mzer if and only if for each x ∈ X there exists lx ∈ Y ∗\{0Y ∗ }
such that lx (q) ≤ 0 and

sup
y∈F(x)

lx (y) − inf
s∈S lx (s) < sup

ȳ∈F(x̄)
lx (ȳ) − εlx (q). (1.4)

Proof Using Theorem 1.4.3, it is clear that x̄ ∈ ε-S-l-Mzer if and only if F(x) +
εq �

l
S F(x̄), for all x ∈ X , that is, for each x ∈ X there exists lx ∈ Y ∗\{0Y ∗ } such

that lx (q) ≤ 0 and (1.4) holds. �

We now verify the above theorem by means of an example.

Example 1.2 Let Y = R
2, X = [0, 1], S = R

2+, q = (0,−1), ε ∈ (0, 1] and F :
X ⇒ Y be defined as F(x) = [0, x] × [0, x], for x ∈ X. Clearly, ε-S-l-Mzer =
(1 − ε, 1]. For x̄ = 1,, it can be easily seen that for all x ∈ X there exists a lin-
ear function l : R

2 → R defined as l(y1, y2) = y1 + y2 such that l(q) < 0 and
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sup
y∈F(x)

l(y) − inf
s∈S l(s) − sup

ȳ∈F(x̄)
l(ȳ) + εl(q) = 2(x − 1) − ε < 0.

Moreover, similar to Example 1.1 it can be seen that for x̄ = 0 there exists x = 1

such that for any (c1, c2) ∈ {(c1, c2) ∈ R
2 : c1 ∈ R, c2 ≥ 0}\{(0, 0)},

sup
y∈F(x)

l(y) − inf
s∈S l(s) − sup

ȳ∈F(x̄)
l(ȳ) + εl(q) =

{
c1 + (1 − ε)c2, if c1 ≥ 0,

+∞, if c1 < 0

and hence, (1.4) fails to hold.

Remark 1.4 We observe here that the characterization provided in this section also
holds for S-l-minimizers by taking ε = 0.

1.5 Pascoletti–Serafini Scalarization Scheme

In this section, we extend the Pascoletti–Serafini scalarization scheme to set opti-
mization problem and characterize ε-S-l-minimizer in terms of approximateminimal
solutions of the Pascoletti–Serafini scalar problem. We observe that the characteri-
zations established in this section, except Theorem1.5.5, can be obtained only for
ε-S-l-minimizers but not for S-l-minimizers.

We propose the Pascoletti–Serafini scalar problem (Pq(x̂)) involving set-valued
maps for x̂ ∈ X as

(Pq(x̂)) Minimize t

subject to

F(x) − tq �l
S F(x̂),

t ∈ R, x ∈ X.

We denote the feasible set of (Pq(x̂)) by �q(x̂), that is,

�q(x̂) := {(t, x) ∈ R × X : F(x) − tq �l
S F(x̂)}.

Remark 1.5 We have the following observations regarding the problem (Pq(x̂)).

1. If F(x̂) = {p}, S = −K , where K is a closed convex pointed cone and F
is a vector-valued function, then the problem (Pq(x̂)) reduces to the problem
(P(p, q)).

2. The problem (Pq(x̂)) is equivalent to the scalar problem

Minimize Gq,S(F(x), F(x̂))

subject to x ∈ X,
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where Gq,S(F(x), F(x̂)) := inf{t ∈ R : F(x) − tq �l
S F(x̂)}.

3. In view of Theorem 4.4 in [8], it is easy to verify that

Gq,S(F(x), F(x̂)) = supb∈Bϕq,A(b),

where ϕq,A(b) := inf{t ∈ R : b ∈ tq + A − S}, provided F is (−S)-closed val-
ued, Gq,S(F(x), F(x̂)) < ∞, for each x ∈ X and clS − R++q ⊆ S.

s An element (t̄, x̄) ∈ �q(x̂) is said to be an ε-minimal solution of (Pq(x̂)), if t̄ ≤
t + ε, for any (t, x) ∈ �q(x̂). We observe that x̄ may correspond to an ε-minimal
solution of (Pq(x̂))with infimumvalue−∞.Wedenote the set of ε-minimal solutions
of (Pq(x̂)) by ε-argminPq(x̂). If ε = 0, then the solution is referred to as an minimal
solution and is denoted by argminPq(x̂).

We now establish a relationship between ε-S-l-minimizer of (P) and ε-minimal
solution of (Pq(x̂)). In the following theorem, we show that corresponding to every
ε-S-l-minimizer there exists an ε-minimal solution of (Pq(x)), for some x ∈ X .

Theorem 1.5.5 If −q ∈ S∞ and 0Y ∈ clS, then

ε-S-l-Mzer ⊆
⋃
x∈X

projX (ε-argminPq(x)), (1.5)

where projX (ε-argminPq(x)) denotes the projection of ε-argminPq(x) onto X.

Proof Let x̄∈ε-S-l-Mzer. We claim that x̄∈projX (ε-argminPq(x̄)). Clearly, (t, x̄) ∈
�q(x̄), for all t > 0 as 0Y ∈ clS and −q ∈ S∞ and therefore Gq(F(x̄), F(x̄)) ≤
0. Suppose on the contrary there exists (t, x) ∈ �q(x̄) such that t + ε < 0. Then,
F(x) − tq �l

S F(x̄) which implies that

F(x̄) ⊆ −tq + F(x) − S
= −(t + ε)q + εq + F(x) − S
= εq + F(x) − S,

as −q ∈ S∞. Hence, F(x) + εq �l
S F(x̄) which contradicts the fact that

x̄ ∈ ε-S-l-Mzer. �
The following example justifies that the condition −q ∈ S∞ cannot be relaxed in

the above theorem either when q ∈ S or q /∈ S.

Example 1.3 Let Y = R
2, X = [0, 1], S = {(0, 0), (0,−1)} and F : X ⇒ Y be

defined as

F(x) =
{

{(0, 0), (0, 1)}, if x = 0,

{(0, 0), (0, 2)}, otherwise.

Clearly, −q /∈ S∞, for any 0 �= q ∈ Y. For q = (0,−1) ∈ S (q = (0,−2) /∈ S) it
can be seen that ε-S-l-Mzer = X and projX (ε-argminPq(x)) = (0, 1], for any x ∈ X
and for any ε > 0.
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Remark 1.6 It may be noted that if −q ∈ S∞ and q ∈ S, then 0Y ∈ clS and hence,
Theorem 1.5.5 holds. However, if q /∈ S, then the condition 0Y ∈ clS cannot be
dropped in Theorem 1.5.5 which is illustrated in the following example.

Example 1.4 Let Y = R
2, X = [0, 1], S = {(y1, y2) ∈ R

2 : y1 ≥ 1, y2 ≥ 1} and
F : X ⇒ Y be defined as

F(x) =
{

{(0, 0)}, if x = 0,

{(y, y) : 0 ≤ y ≤ 1}, otherwise.

Let q = (−1,−1) /∈ S. It can be seen that ε-S-l-Mzer = X for any ε ≥ 0 and
projX (ε-argminPq(x)) = projX (argminPq(x)) = (0, 1], for any x ∈ X . Also,
−q ∈ S∞ but (0, 0) /∈ S.

The following example justifies that the reverse inclusion in (1.5) may fail to hold.

Example 1.5 Let Y = R
2, X = [0, 1], q = (−1,−1), S = R

2+ and F : X ⇒ Y be
defined as

F(x) = {(y1, y2) ∈ R
2 : −1 ≤ y1 ≤ x − 1,−1 ≤ y2 ≤ x − 1}.

It can be easily verified that for 0<ε ≤ 1, ε-S-l-Mzer = (1−ε, 1] and ε-argminPq(x)
= {(−t + x, t) : 1 − ε ≤ t ≤ 1}, for all x∈X. Then, 1−ε ∈ projX (ε-argminPq(x))
and 1 − ε /∈ ε-S-l-Mzer, for all x ∈ X.

Under a suitable assumption, we now establish the reverse inclusion of (1.5).

Theorem 1.5.6 If ε > 0, S + S ⊆ S and x ∈ X is such that

|t1 − t2| < ε, (1.6)

for any t1, t2 ∈ proj
R
(ε-argminPq(x)), then

projX (ε-argminPq(x)) ⊆ ε-S-l-Mzer.

Proof Let x̄ ∈ projX (ε-argminPq(x)). Then, there exists t̄ ∈ R such that
(t̄, x̄) ∈ ε-argminPq(x). Clearly, (t̄, x̄) ∈ �q(x) which implies that

F(x̄) �l
S F(x) + t̄q. (1.7)

Suppose on the contrary there exists x ′ ∈ X such that

F(x ′) + εq �l
S F(x̄). (1.8)

Using S + S ⊆ S, (1.7) and (1.8), we have
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F(x ′) �l
S F(x) + (t̄ − ε)q

which implies that (t̄ − ε, x ′) ∈ �q(x). Since (t̄, x̄) ∈ ε-argminPq(x), therefore for
any (t̃, x̃) ∈ �q(x), we have

t̄ − ε < t̄ ≤ t̃ + ε

which implies that (t̄ − ε, x ′) ∈ ε-argminPq(x). As t̄ and t̄ − ε are both in
proj

R
(ε-argminPq(x)), we get a contradiction to (1.6).

The condition given by (1.6) in the above theorem cannot be relaxed, as evident
from Example 1.5. It can be observed that the condition (1.6) does not hold as ε − 1
and −1 both belong to proj

R
(ε-argminPq(0)).

Remark 1.7 From Remark 1.6, it is also worth noting that in addition to −q ∈ S∞
and q ∈ S if S + S ⊆ S, then for all ε > 0 we have ε-S-l-Mzer = ∅ whereas x ∈
projX (ε-argminPq(x)), for each x ∈ X with Gq,S(F(x), F(x)) = −∞. Hence, we
observe that the condition (1.6) is not satisfied in this case and Theorem 1.5.6 fails
to hold.

The following theorem presents a complete scalarization for ε-S-l-minimizers.

Theorem 1.5.7 If ε > 0, 0Y ∈ clS, −q ∈ S∞, S + S ⊆ S and for every x ∈ X we
have |t1 − t2| < ε, for any t1, t2 ∈ proj

R
(ε-argminPq(x)), then

⋃
x∈X

projX (ε-argminPq(x)) = ε-S-l-Mzer.

Proof Proof follows from Theorems 1.5.5 and 1.5.6. �
Remark 1.8 1. In view of Remark 1.7, we note that if there exists 0 �= q ∈ Y for

which all the assumptions of Theorem 1.5.7 holds then q must belong to Sc.
2. In Example 1.5, if we consider F(1) = {(−1,−1)}, then for 0 < ε < 1, ε-S-l-

Mzer = [1 − ε, 1), ε-argminPq(1) = {(−t, t) : 1 − ε ≤ t < 1} and
ε-argminPq(x) = {(−t + x, t) : 1 − ε ≤ t < 1}, for all x �= 1 and hence, The-
orem 1.5.7 is verified. Note that condition (1.6) holds for all x ∈ X .

3. From Remark 1.5(iii), [6, Theorem 3.6] and [9, Theorem 5.2], it may be noted
that if S = −intK and q ∈ intK , then ε-l-weak minimal solutions considered in
[9] can be characterized in terms of ε-minimal solution of (Pq(x)), provided the
sets F(X) and F(x) are K -compact for each x ∈ X , has a finite subcover. The
following example illustrates the fact that Theorem 1.5.7 may hold for ε-l-weak
minimal solutions in the absence of K -compactness assumption.

Example 1.6 Let Y = R
2, X = [0, 1] ∪ {2}, q = (1, 1), K = R

2+ and F : X ⇒ Y
be defined as

F(x) =
{

{(y1, y2) ∈ R
2 : y1 + y2 ≥ 0, y2 ≥ 0}, if x = 2,

{(y1, y2) ∈ R
2 : y1 + y2 ≥ 0.4, y2 ≥ 0.2}, otherwise.
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Clearly, F(2) is not K -compact. For ε ∈ (0, 0.2), ε-l-WMzer= {2}, ε-argminPq(2) =
{(0, 2)} and ε-argminPq(x) = {(−0.2, 2)} for all x ∈ [0, 1] andhence,Theorem1.5.7
is justified. Also, we observe that all the assumptions of Theorem 1.5.7 are satisfied.

In Example 1.5, it was observed that an ε-minimal solution of (Pq(x)) may not
correspond to an ε-S-l-minimizer of (P). However, the following theorem shows that
every minimal solution of (Pq(x)) corresponds to an ε-S-l-minimizer of (P).

Theorem 1.5.8 If ε > 0 and S + S ⊆ S, then

⋃
x∈X

projX (argminPq(x)) ⊆ ε-S-l-Mzer.

Proof Let x̄ ∈ projX (argminPq(x)) for some x ∈ X , which implies that there exists
t̄ ∈ R such that (t̄, x̄) ∈ argminPq(x). Proceeding as in Theorem 1.5.6 there exists a
feasible solution (t̄ − ε, x ′) of (Pq(x)) which contradicts the optimality of (t̄, x̄). �

In the next theorem, we show that if an element is an ε-S-l-minimizer of (P) for
every ε > 0, then it corresponds to a minimal solution of (Pq(x)) for some x ∈ X.

Theorem 1.5.9 If ε > 0 and 0Y ∈ S, then

⋂
ε>0

ε-S-l-Mzer ⊆
⋃
x∈X

projX (argminPq(x)).

Proof Let x̄ ∈ ⋂
ε>0 ε-S-l-Mzer. Clearly, (0, x̄) ∈ �q(x̄), as 0Y ∈ S. If possible,

there exists (t, x) ∈ �q(x̄) such that t < 0, then F(x) − tq �l
S F(x̄) which is a

contradiction as x̄ ∈ ε-S-l-Mzer for ε = −t. �

The following theorem follows from Theorems 1.5.8 and 1.5.9.

Theorem 1.5.10 If ε > 0, 0Y ∈ S and S + S ⊆ S, then

⋂
ε>0

ε-S-l-Minimizer =
⋃
x∈X

projX (argminPq(x)).

1.6 Conclusions

Linear and nonlinear scalarization schemes for a unified notion of approximate min-
imal solutions have been developed for a set optimization problem. It has been
shown that the approximate minimal solutions considered in [9] can be characterized
by means of the Pasoletti–Serafini scalarization in the absence of K -compactness
assumptions as considered by Dhingra and Lalitha [9].
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Chapter 2
A Gradient-Free Method for
Multi-objective Optimization Problem

Nantu Kumar Bisui, Samit Mazumder, and Geetanjali Panda

Abstract In this chapter, a gradient-free method is proposed for solving the multi-
objective optimization problem in higher dimension. The concept is developed as
a modification of the Nelder-Mead simplex technique for the single-objective case.
The proposed algorithm is verified and compared with the existing methods with a
set of test problems.

Keywords Nelder-Mead simplex method · Multi-objective programming ·
Gradient-free method · n dimension simplex

2.1 Introduction

A general multi-objective optimization problem is stated as

(MOP) min
x∈S⊂Rn

F(x),

F(x) = ( f1(x), f2(x) . . . , fm(x))T , f j : Rn → R, j = 1, 2, . . . ,m,m ≥ 2. In prac-
tice, (MOP) involves several conflicting and non-commensurate objective functions
which have to be optimized simultaneously over Rn . If x∗ ∈ R

n minimizes all the
objective functions simultaneously, then certainly an ideal solution is achieved. But
in general, improvement in one criterion results in loss in another criterion, leading
to the unlikely existence of an ideal solution. For this reason one has to look for
the “best” compromise solution, which is known as an efficient or Pareto optimal
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solution. The concept of efficiency arises from a pre-specified partial ordering on
R

m . The points satisfying the necessary condition for efficiency are known as criti-
cal points. Application of these kinds of problems are found in engineering design,
statistics, management science, etc.

Classical methods for solving (MOP) are either scalarization methods or heuris-
tic methods. Scalarization methods reduce the main problem to a single objective
optimization problem using predetermined parameters. A widely used scalariza-
tion method is due to Geofforion [15], which computes proper efficient solutions.
Geofforion’s approach has been further developed by several researchers in several
directions. Other parameter-free techniques use the concept of order of importance
of the objective functions, which have to be specified in advance. Another widely
used general solution strategy for multi-objective optimization problems is the ε-
constrained method [10, 21]. All the above methods are summarized in [1, 8, 19,
23]. These scalarization methods are user-dependent and often have difficulties in
finding an approximation to the Pareto front. Heuristic methods [7] do not guarantee
the convergence property but usually provide an approximate Pareto front. Some
well-known heuristic methods are genetic algorithms, particle swarm optimization,
etc. NSGA-II [7] is a well-known genetic algorithm.

Recently, many researchers have developed line search methods for (MOP),
which are different from the scalarization process and heuristic approach. These line
search numerical techniques are possible extensions of gradient-based line search
techniques for the single-objective optimization problem to the multi-objective case.
In every gradient-based line search method, the descent direction at an iterative
point x is determined by solving a subproblem at x , and a suitable step length α

at x in this direction is obtained using the Armijio type condition with respect to
each objective function to ensure f j (x + αd) < f j (x). Then a descent sequence is
generated, which can converge to a critical point. Some recent developments in this
direction are summarized below.

The steepest descent method, which is the first line search approach for (MOP),
was developed by Fliege and Svaiter [12] in 2000 to find a critical point of (MOP).
In this method, descent direction d at every iterating point x is the solution of the
following subproblem,

inf
d∈Rn

max
j

∇ f j (x)
T d,

which is same as

min
t,d

t + 1

2
dT d

subject to ∇ f j (x)
T d − t ≤ 0, j = 1, 2, ...,m

t ∈ R, d ∈ R
n.

The Newton method for single-objective optimization problem is extended to
(MOP) by Fliege et al. [11] in 2009, which uses convexity criteria. Newton direc-
tion for (MOP) at x is obtained by solving the following min-max problem, which
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involves the quadratic approximation of all the objective functions.

inf
d∈Rn

max
j∈�m

∇ f j (x)
T d + 1

2
dT 	2 f j (x)d

This is equivalent to the following subproblem.

min
t∈R,d∈Rn

t

subject to ∇ f j (x)
T d + 1

2
dT∇2 f j (x)d − t ≤ 0, j = 1, 2, ...,m.

If every f j is a strictly convex function, then the above subproblem is a convex
programming problem. Using the Karush-Kuhn-Tucker (KKT) optimality condition,
the solution of this subproblem becomes the Newton direction dN (x) as

dN (x) = −[�m
j=1λ j (x) 	2 f j (x)]−1�m

j=1λ j (x)∇ f j (x),

where λ j (x) are Lagrange multipliers. This iterative process is locally and quadrat-
ically convergent for Lipschitz continuous functions.

An extension of the Quasi-Newton method for (MOP) is studied by Qu et al. [27] in
2011 for critical point, which avoids convexity assumptions. The method proposed
by Qu et al. [27] uses the approximate Hessian of every objective function. The
subproblem in Qu et al. [27] is

min
t∈R,d∈Rn

t

subject to ∇ f j (x)
T d + 1

2
dT Bj (x)d − t ≤ 0 j = 1, 2, ...,m,

where Bj (x) is the approximation of ∇2 f j (x).
These individual Bj (x) are replaced by a common positive definite matrix in

Ansari and Panda [2] to reduce the complexity of the algorithm. In [2], the descent
direction at every iterating point x is determined by solving the following subprob-
lem which involves linear approximation of every objective function along with the
common positive definite matrix B(x) in place of individual matrices Bj (x).

min
t, d

t + 1

2
dT B(x)d

subject to ∇ f j (x)
T d − t ≤ 0 j = 1, 2, ...,m,

t ∈ R, d ∈ R
n.

Here, a sequence of positive definite matrices is generated during the iterative
process like the quasi-Newton method for the single-objective case. The Armijo-
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Wolfe type line search technique is used to determine the step length. A descent
sequence is generated whose accumulation point is a critical point of (MOP) under
some reasonable assumptions.

The above line search techniques are restricted to unconstrained multi-objective
programming problems, which are further extended to constrained multi-objective
problems. A general constrained multi-objective optimization problem is

(MOPC) :
{
min
x∈Rn

F(x)

subject to gi (x) ≤ 0, i = 1, 2, ..., p

Concept of the line search methods for single objective constrained optimization
problems are extended to the multi-objective case in some recent papers; see [3, 4,
13]. A variant of the sequential quadratic programming (SQP) method is developed
for inequality constrained (MOPC ) in the light of the SQP method for the single-
objective case byAnsari and Panda [4] recently. The following quadratic subproblem
is solved to obtain a feasible descent direction at every iterating point x , which
involves linear approximations of all functions.

min
t, d

t + 1

2
dT d

subject to ∇ f j (x)
T d ≤ t, j = 1, 2, ...,m,

gi (x) + ∇gi (x)
T d ≤ t, i = 1, 2, ..., p,

t ∈ R, d ∈ R
n.

The same authors consider a different subproblem in [3] which involves quadratic
approximations of all the functions, and use the SQCQP technique to develop a
descent sequence. This subproblem is

min
t, d

t

subject to ∇ f j (x)T d + 1
2d

T∇2 f j (x)d − t ≤ 0, j = 1, 2, ...,m

gi (x) + ∇gi (x)T d + 1
2d

T∇2gi (x)d ≤ 0, i = 1, 2, ..., p

t ∈ R, d ∈ R
n.

With these subproblems, a non-differentiable penalty function is used to restrict
constraint violations. To obtain a feasible descent direction, the penalty function is
considered as a merit function with a penalty parameter. The Armijo type line search
technique is used to find a suitable step length. Global convergence of these methods
is discussed under the Slater constraint qualification.

The above iterative schemes are free from the burden of selection of parameters
in advance, and also have the convergence property. These iterative schemes are
gradient-based methods, and large-scale problems can be solved efficiently only if
the gradient information of the functions is available. Some optimization software
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packages perform the finite difference gradient evaluation internally. But this is inap-
propriate when function evaluations are costly and noisy. Hence there is a growing
demand for derivative-free optimization methods which neither require derivative
information nor approximate the derivatives. The reader may refer to the book Cohn
et al. [5] for the recent developments on derivative-free methods for single-objective
optimization problem.

Coordinate search is the simplest derivative-free method for the unconstrained
single-objective optimization problem. It evaluates the objective function of n vari-
ables at 2n points around a current iterate defined by displacements along the coordi-
nate directions, their negatives, and a suitable step length. The set of these directions
form a positive basis. This method is slow but capable of handling noise and guaran-
tees to converge globally. The implicit filtering algorithm is also a derivative-free line
search algorithm that imposes sufficient decrease along a quasi-Newton direction.
Here, the true gradient is replaced by the simplex gradient. Thismethod resembles the
quasi-Newton approach. The trust region-based derivative-free line search method
is also in demand to address noisy functions. In this method, quadratic subproblems
are formulated from polynomial interpolation or regression. The implicit filtering is
less efficient than the trust region but more capable of capturing noise.

The next choice is the widely cited Nelder-Mead method [24], which is a direct
search iterative scheme for single objective optimization problems. This evaluates
a finite number of points in every iteration, which takes care of the function values
at the vertices of the simplex {y0, y1, ..., yn} in n dimension, ordered by increasing
values of the objective function which has to be minimized. Action is taken based
on simplex operations such as reflections, expansions, and contractions (inside or
outside) at every iteration. The Nelder-Mead method attempts to replace the simplex
vertex that has the worst function value. In such iterations, the worst vertex yn is
replaced by a point in the line that connects yn and yc, where

y = yc + δ(yc − yn), yc = 1

n

n−1∑
i=0

yi , δ ∈ R.

δ = 1 indicates a reflection, δ = 2 an expansion, δ = 1/2 an outer contraction, and
δ = −1/2 an inside contraction. Nelder-Mead can also perform shrink. Except for
the shrinks, the emphasis is on replacing the worse vertex rather than improving the
best. The simplices generated by Nelder-Mead may adapt well to the curvature of
the function.

In this chapter, a derivative-free iterative scheme is developed for (MOP). The
idea of the Nelder-Mead simplex method is imposed in a modified form using the
Non-dominated Sorting algorithm to solve (MOP). This algorithm is coded in
MATLAB(2019) to generate the Pareto front. The efficiency of this algorithm is
justified through a set of test problems, and comparison with a scalarization method
and NSGA−II is provided in terms of the number of iterations and CPU time.
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2.2 Notations and Preliminaries

Consider that Rm is partially ordered by a binary relation induced by R
m+, the non-

negative orthant of Rm . For p, q ∈ R
m ,

p �R
m+ q ⇐⇒ q − p ∈ R

m
+;

p �R
m+ q ⇐⇒ q − p ∈ R

m
+ \ {0};

p ≺R
m+ q ⇐⇒ q − p ∈ int (Rm

+).

Definition 2.1 A point x∗ ∈ S is called a weak efficient solution of the (MOP)

if there does not exist x ∈ S such that F(x) ≺R
m+ F(x∗). In other words, whenever

x ∈ S, F(x) − F(x∗) /∈ −int (Rm+). In set notation, this becomes (F(S) − F(x∗)) ∩
−int (Rm+) = φ.

Definition 2.2 A point x∗ ∈ S is called an efficient solution of the (MOP) if
there does not exist x ∈ S such that F(x) �R

m+ F(x∗). In other words, when-
ever x ∈ S, F(x) − F(x∗) /∈ −(Rm+ \ {0}). In set notation, this becomes (F(S) −
F(x∗)) ∩ (−(Rm+ \ {0})) = φ. This solution is also known as the Pareto optimal or
non-inferior solution. If X∗ is the set of all efficient solutions, then the set F(X∗) is
called the Pareto front for (MOP).

Definition 2.3 For x1, x2 ∈ R
n , x1 is said to dominate x2 if and only if F(x1) �R

m+
F(x2), that is, f j (x1) ≤ f j (x2) for all j and F(x1) �= F(x2). x1 weakly dominates x2
if and only if F(x1) ≺R

m+ F(x2), that is, f j (x1) < f j (x2) for all j . A point x1 ∈ R
n

is said to be non-dominated if there does not exist any x2 such that x2 dominates x1.

This concept can also be extended to find a non-dominated set of solutions of a
multi-objective programming problem. Consider a set of N points {x1, x2, ..., xN },
each having m(> 1) objective function values. So F(xi ) = ( f1(xi ), f2(xi ), ...,
fm(xi )). The following algorithm fromDeb [6] can be used to find the non-dominated
set of points. This algorithm is used in the next section to order the objective values
at every vertex of the simplex.

Algorithm 1[6]
Step 0 : Begin with i = 1.
Step 1 : For all j �= i , compare solutions xi and x j for domination using Definition
2.3 for all m objectives.
Step 2 : If for any j , xi is dominated by x j , mark xi as “dominated”.
Step 3 : If all solutions (that is, when i = N is reached) in the set are considered, go
to Step 4, else increment i by one and go to Step 1.
Step 4 :All solutions that are not marked “dominated” are non-dominated solutions.



2 A Gradient-Free Method for Multi-objective Optimization Problem 25

2.3 Gradient-Free Method for MOP

In this section, we develop a gradient-free algorithm as an extension of the Nelder-
Mead simplex method, which is a widely used algorithm for the single-objective
case. The dominance property as explained in Algorithm 1 helps to compare F(x)
at different points in Rm .

Consider a simplex of n + 1 vertices in R
n as Y = {y0, y1, ..., yn} ordered by

component-wise increasing values of F . To order the vertices component-wise, one
can use the “Non-dominated Sorting Algorithm 1”. The most common Nelder-Mead
iterations for the single-objective case perform a reflection, an expansion, or a con-
traction (the latter can be inside or outside the simplex). In such iterations, the worst
vertex yn is replaced by a point in the line that connects yn and yc,

y = yc + δ(yc − yn), δ ∈ R,

where yc =
n−1∑
i=0

yi

n is the centroid of the best n vertices. The value of δ indicates

the type of iteration. For instance, when δ = 1 we have a (genuine or isometric)
reflection, when δ = 2 an expansion, when δ = 1

2 an outside contraction, and when
δ = − 1

2 an inside contraction. A Nelder-Mead iteration can also perform a simplex
shrink, which rarely occurs in practice. When a shrink is performed, all the vertices
in Y are thrown away except the best one y0. Then n new vertices are computed by
shrinking the simplex at y0, that is, by computing, for instance, y0 + 1

2 (y
i − y0),

i = 1, 2, ..., n. Note that the “shape” of the resulting simplices can change by being
stretched or contracted, unless a shrink occurs.

2.3.1 Modified Nelder-Mead Algorithm

Choose an initial point of vertices Y0 = {y00 , y10 , ..., yn0 }. Evaluate F at the points in
Y0. Choose constants:

0 < γ s < 1,−1 < δic < 0 < δoc < δr < δe.

For k = 0, 1, 2, ..., set Y = Yk .

1. Order the n + 1 vertices of Y = {y0, y1, ..., yn} using Algorithm 1 so that

F(y0) �R
m+ F(y1) �R

m+ ... �R
m+ F(yn).

Denote F(yt ) = Ft , t = 0, 1, . . . , n
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2. Reflect the worst vertex yn over the centroid yc =
n−1∑
i=0

yi

n of the remaining n

vertices:
yr = yc + δ(yc − yn)

Evaluate Fr = F(yr ). If F0 dominates Fr and Fr dominates weakly Fn−1, then
replace yn by the reflected point yr and terminate the iteration:

Yk+1 = {y0, y1, ..., yr }.

3. If Fr dominates weakly F0, then calculate the expansion point

ye = yc + δr (yc − yn)

and evaluate Fe = F(ye). If Fe dominates Fr , replace yn by the expansion point
ye and terminate the iteration:

Yk+1 = {y0, y1, ..., ye}.

Otherwise, replace yn by the reflected point yr and terminate the iteration:

Yk+1 = {y0, y1, ..., yr }.

4. If Fn−1 dominates Fr , then a contraction is performed between the best of yr

and yn .

(a) If Fr dominates weakly Fn , perform an outside contraction

yoc = yc + δoc(yc − yn)

and evaluate Foc = F(yoc). If Foc dominates Fr , then replace yn by the
outside contraction point yoc and terminate the iteration:

Yk+1 = {y0, y1, ..., yoc}.

Otherwise, perform a shrink.
(b) If Fn dominates Fr , perform an inside contraction

yic = yc + δic(yc − yn)

and evaluate Fic = F(yic). If Fic dominates weakly Fn , then replace yn by
the inside contraction point yic and terminate the iteration:

Yk+1 = {y0, y1, ..., yic}.

Otherwise, perform a shrink.
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5. Evaluate f at the n points y0 + γ s(yi − y0), i = 1, ..., n, and replace y1, ..., yn

by these points, terminating the iteration:

Yk+1 = y0 + γ s(yi − y0), i = 0, ..., n.

2.4 Numerical Illustrations and Performance Assessment

In this section, the algorithm is executed on some test problems, which are collected
from different sources and summarized in Table 2.1 (see Appendix). The results
obtained by Algorithm 2.3.1 are compared with the existing methods: the scalariza-
tion method (Weighted sum) and NSGA-II. MATLAB code (R2017b) for these three
methods is developed. The comparison is provided in Table 2.2 (see Appendix). In
this table, “Iter” corresponds to the number of iterations and “CPU time” corresponds
to the time for executing the Algorithms. Denote the algorithms in short term as

Algorithm 2.3.1—(NMSM)
Weighted Sum Method—(WSM)
NSGA-II

Pareto front: To generate the Pareto front by Algorithm 2.3.1, the RAND strat-
egy is considered for selecting the initial point. 500 uniformly distributed random
initial points between lower bound and upper bound are selected. Every test problem
is executed 10 times with random initial points. The Pareto front of the test problem
“BK1” in NSGA-II, NMSM, and WSM is provided in Fig. 2.1 with red, green, and
blue stars, respectively.

2.5 Performance Profile

Performance profile is defined by a cumulative function ρ(τ) representing a perfor-
mance ratio with respect to a given metric, for a given set of solvers. Given a set
of solvers S and a set of problems P , let ζp,s be the performance of solver s on
solving problem p. The performance ratio is then defined as rp,s = ζp,s/min

s∈S ζp,s .

The cumulative function ρs(τ ) (s ∈ S) is defined as

ρs(τ ) = |{p ∈ P : rp,s ≤ τ }|
|P| .

It is observed that the performance profile is sensitive to the number and types of
algorithms considered in the comparison; see [16]. So the algorithms are compared
pairwise. In this chapter, the performance profile is compared using purity, , �

spread metrics.
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Purity metric: Let Pp,s be the approximated Pareto front of problem p obtained
by method s. Then an approximation to the true Pareto front Pp can be built by
considering ∪

s∈SPp,s first and removing the dominated points. The purity metric for

algorithms s and problem p is defined by the ratio

¯tp,s = |Pp,s ∩ Pp|/|Pp,s |.

Clearly, ¯tp,s ∈ [0, 1]. When computing the performance profiles of the algorithms for
the purity metric, it is required to set t ′p,s = 1/ ¯tp,s . t ′ = 0 implies that the algorithm
is unable to solve p.

Spread metrics: Two types of spread metrics ( and �) are used in order to ana-
lyze if the points generated by an algorithm are well-distributed in the approximated
Pareto front of a given problem. Let x1, x2, . . . , xN be the set of points obtained by
a solver s for problem p and let these points be sorted by objective function j , that
is, f j (xi ) ≤ f j (xi+1) (i = 1, 2, . . . , N − 1). Suppose x0 is the best known approxi-
mation of global minimum of f j and xN+1 is the best known global maximum of f j ,
computed over all approximated Pareto fronts obtained by different solvers. Define

δi, j = f j (xi+1) − f j (xi ).

Then  spread metric is defined by

p,s = max
j∈�m

max
i∈{0,1,...,N } δi, j .

Define δ j to be the average of the distances δi, j , i = 1, 2, . . . , N − 1. For an algo-
rithm s and a problem p, the spread metric � is

�p,s = max
j∈�m

δ0, j + δN , j + ∑N−1
i=1 |δi, j − δ̄ j |

δ0, j + δN , j + (N − 1)δ̄ j
.

Result Analysis: A deep insight into Figs. 2.2, 2.3, and 2.4 clearly indicates the
advantage of the proposed method (NMSM) to the existing methods WSM and
NSGA−II. In RAND, NMSM has a better performance ratio in the  metric than
WSM and NSGA−II and purity and δ metrics than NSGA−II in most of the test
problems. Also from the computational details tables, one may observe that NMSM
takes less number of iterations and time than WSM and NSGA−II in most of the
test problems.
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2.6 Conclusions

In this chapter, a Nelder-mead simplex method is developed for solving uncon-
strained multi-objective optimization problems. This method is modified from the
existing Nelder-mead simplex method for single-objective optimization problems.
Justification of this iterative process is carried out through numerical computations.
This chapter can be further studied for the constrained multi-objective programming
problem and for the better spreading technique to generate the Pareto points, which
can be considered as the future scope of the present contribution.

Acknowledgements We thank the anonymous reviewers for the valuable comments that greatly
helped to improve the content of this chapter.

Appendix

Table 2.1 Multi-objective test problems

Problem Source Problem Source Problem Source

BK1 [17] Jin2 [20] TKLY1 [26]

Deb41 [6] Jin3 [20] LE1 [17]

Deb513 [6] Jin4 [20] I1 [17]

Deb521aa [6] lovison1 [22] Far1 [17]

Deb521b [6] lovison2 [22] SK1 [17]

DG01 [17] lovison3 [22] SK2 [17]

ex005 [18] lovison4 [22] SP1 [17]

ZDT3 [28] LRS1 [17] SSFYY1 [17]

Fonseca [14] MOP2 [17] SSFYY2 [17]

Deb53 [9] MHHM2 [17] VFM1 [17]

GE5 [9] MLF1 [17] ZDT1 [28]

IKK1 [17] MLF2 [17] VU1 [17]

ZDT2 [28] SCH1 [17] VU2 [17]

Jin1 [20] MOP1 [17] KW2 [9]

OKA1 [25] MOP3 [17] MOP7 [17]

OKA2 [25] MOP5 [17] ZDT4 [28]

QV1 [17] MOP6 [17] CEC09_1 [3]

CEC09_2 [3] CEC09_3 [3] CEC09_7 [3]

CEC09_8 [3] CEC09_10 [3] Deb512a [6]

Deb512b [6] Deb512c [6] DTLZ1 [6]

DTLZ1n2 [6] DTLZ2 [6] DTLZ2n2 [6]

DTLZ3 [6] DTLZ3n2 [6] DTLZ4 [6]

DTLZ4n2 [6] DTLZ5_a [6] DTLZ5n2_a [6]

DTLZ6 [6] DTLZ6n2 [6] FES1 [17]

FES2 [17] FES3 [17] IM1 [17]



30 N. K. Bisui et al.

Fig. 2.1 Pareto front of BK1
for Weighted Sum,
Nelder-Mead Simplex, and
NSGA−II

Table 2.2 Computation details

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

BK1 100 175.7102 1000 17.3119 1000 96.1962

CEC09_1 40 40.8337 39185 85.1831 1000 125.0616

CEC09_2 15 14.7780 29659 62.3473 1000 149.2667

CEC09_3 30 43.5034 17463 47.0575 1000 261.1938

CEC09_7 50 58.12 66763 115.43 1000 246.4144

CEC09_8 10 39.5513 11881 24.811 1000 414.9251

CEC09_10 1 7.1234 26521 61.1016 500 424.4517

Deb41 225 46.961 3451 13.1149 200 54.7721

Deb53 1 3.148 4779 16.182 1000 226.228

Deb512a 95 30.8398 6831 16.2914 1000 67.5017

Deb512b 1 1.6304 5665 22.007 500 236.7293

Deb512c 1 1.3482 4169 13.0784 1000 105.0796

Deb513 100 286.7849 1105 8.2348 500 233.5419

Deb521a 200 40.6678 2074 16.2494 500 178.9993

Deb521b 200 34.7894 1832 9.5663 500 86.927

DG01 100 383.6649 3527 10.0337 500 114.6849

DTLZ1 1 8.0783 829 11.3604 500 604.637

DTLZ1n2 50 51.4517 1533 10.5865 500 329.7814

(continued)
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Table 2.2 (continued)

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

DTLZ2 1 9.1068 4384 12.1977 500 201.0205

DTLZ2n2 30 92.2633 1705 9.2817 500 90.3009

DTLZ3 1 8.5647 546 11.3052 500 180.3397

DTLZ3n2 25 59.364 1489 12.3074 500 837.8227

DTLZ5 5 37.5631 2361 11.2001 500 263.9273

DTLZ5n2 4 19.6248 2417 10.2009 500 277.3301

DTLZ6 100 40.4558 3696 13.6023 500 159.34

DTLZ6n2 150 266.6435 2416 9.9722 500 186.7189

ex005 2 8.6635 2066 9.0123 500 280.0558

Far1 50 54.4216 6633 21.8326 500 122.3895

hline FES1 65 211.8147 22021 69.7231 500 293.3888

FES2 1 3.6761 24335 80.9286 500 146.9458

FES3 1 3.6302 26324 96.1848 500 142.7173

Fonseca 50 83.6762 3872 11.3395 500 95.5476

GE5 1 5.932 2412 9.7671 500 433.6827

I1 4 9.8997 1610 18.8042 500 115.2193

IKK1 1 2.9279 1539 8.1619 500 95.1506

IM1 1 4.971 2353 9.4475 500 185.6666

Jin1 50 35.5375 1091 7.9041 500 83.9951

Jin2 28 5.6778 3834 11.2386 500 152.2696

Fig. 2.2 Purity performance profile between NMSM,WSM, and NSGA-II
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Table 2.3 Computation details continued

Problem NMSM WSM NSGA−II

Iter CPU time Iter CPU time Iter CPU time

Jin3 100 15.7487 1565 8.3628 500 196.8463

Jin4 150 24.6867 2815 10.8569 500 111.2916

KW2 50 89.2429 4885 15.7046 500 118.0532

LE1 50 240.3437 9798 19.4636 500 182.9293

Lovison1 1 2.968 1752 9.9745 500 111.5821

Lovison2 150 25.9414 2316 10.4402 500 207.9985

Lovison3 1 2.5782 2389 10.3237 500 206.382

Lovison4 1 4.0833 1949 10.1973 500 279.6307

LRS1 50 336.4876 1002 7.7188 500 142.3477

MHHM2 3 11.0745 3681 11.4456 500 344.4489

MLF1 50 122.7622 1927 9.1655 500 104.0309

MLF2 2 8.4472 4347 11.103 500 358.7373

MOP1 1 5.2652 1006 8.604 500 119.9713

MOP2 50 154.4144 3373 10.4286 500 99.4147

MOP3 2 4.551 4403 12.7004 500 95.9286

MOP5 1 1.2941 4007 10.4313 500 113.9832

MOP6 45 117.3724 1111 8.6546 500 278.6248

MOP7 1 5.1297 3765 12.0097 500 166.5825

OKA1 60 80.5031 5412 17.0589 500 118.3507

OKA2 50 33.6682 5753 16.9394 83 19.2191

QV1 55 251.9818 962 11.4491 500 76.7295

SCH1 50 61.1843 1387 9.228 500 97.6939

SK1 50 53.5915 2171 9.5896 500 98.0009

SK2 50 164.0477 2202 9.9194 500 146.5663

SP1 75 164.2625 3035 10.2907 500 133.1876

SSFYY1 100 323.6209 1002 7.9782 500 91.426

SSFYY2 50 186.4307 2745 10.4761 500 106.6671

TKLY1 55 29.4778 3106 10.9727 500 108.0413

VFM1 1 5.7106 1000 8.5332 500 121.1181

VU1 100 31.6459 1802 8.9375 500 138.3799

VU2 1 3.3975 2116 9.6255 500 400.1829

ZDT1 100 64.8696 4584 19.4772 500 252.9595

ZDT2 100 49.0452 1967 10.6646 500 361.0973

ZDT3 50 44.126 4499 13.469 500 480.667

ZDT4 50 83.5181 8527 19.4524 100 836.2467
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Fig. 2.3  performance profile between NMSM,WSM, and NSGA-II

Fig. 2.4 � performance profile between NMSM,WSM, and NSGA-II
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Chapter 3
The New Butterfly Relaxation Method
for Mathematical Programs with
Complementarity Constraints

J.-P. Dussault, M. Haddou, and T. Migot

Abstract We propose a new family of relaxation schemes for mathematical pro-
grams with complementarity constraints. We discuss the properties of the sequence
of relaxed non-linear programs as well as stationary properties of limiting points. A
sub-family of our relaxation schemes has the desired property of converging to an
M-stationary point. A stronger convergence result is also proved in the affine case. A
comprehensive numerical comparison between existing relaxation methods is per-
formed on the library of test problems MacMPEC which shows promising results
for our new method.

Keywords Non-linear programming · MPCC · MPEC · Relaxation methods ·
Non-linear optimization model · Complementarity

3.1 Introduction

We consider the Mathematical Program with Complementarity Constraints (MPCC)

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0, 0 ≤ G(x) ⊥ H(x) ≥ 0, (3.1)

where f : Rn → R, g : Rn → R
m ,h : Rn → R

p, andG, H : Rn → R
q are assumed

continuously differentiable. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in
R

q is a shortcut for u ≥ 0, v ≥ 0 and uT v = 0. This problem has become an active
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subject in the literature in the last two decades. The wide variety of applications that
can be cast as an MPCC is one of the reasons for this popularity.

The MPCC is a non-linear program, but with a special structure since, apart from
the usual equality and inequality constraints, they have the additional complemen-
tarity constraints, which may be equivalently rewritten as

Gi (x) ≥ 0, Hi (x) ≥ 0,Gi (x)Hi (x) ≤ 0, ∀i ∈ {1, . . . , q}. (3.2)

A popular approach to tackle a non-linear program computes the KKT conditions,
which require that some constraint qualification holds at the solution to be an opti-
mality condition. However, it is well-known that these constraint qualifications don’t
hold in general for (3.1) due to the complementarity constraint. For instance, the clas-
sicalMangasarian-Fromowitz constraint qualification is violated at any feasible point
[38].

During the past two decades, many researchers introduced necessary optimality
conditions such as the Clarke (C-), Mordukhovich (M-), strong (S-), and Bouligand
(B-) stationarity conditions for the MPCC; see, e.g., [11, 18, 30, 35–38]. Among
these stationarities, the B-stationarity is known to be a good candidate for optimality,
but since it is computationally difficult, it is rarely used in algorithmic analysis; the
S-stationarity is the strongest and equivalent to the KKT conditions, see, e.g., [10,
15], but its interest is reduced since it does not always hold for the MPCC. The M-
stationarity, which has already widely been investigated, see, e.g., [11, 18, 26, 35–
38], is the most relevant concept since it is the weakest necessary condition holding,
under suitable constraint qualifications, at any local minimizer of the MPCC and is
computationally tractable.

The feasible set of the MPCC involves a complementarity constraint equivalent
to G(x) = 0 OR H(x) = 0. This is a thin set exhibiting some irregularity when
G(x) = 0 AND H(x) = 0. It is this thinness that makes constraint qualifications
fail at any feasible point. In view of the constraint qualification issues that plague the
MPCC, the relaxation methods provide an intuitive answer. The complementarity
constraint is relaxed using a parameter so that the new feasible domain is not thin
anymore. It is assumed here that the classical constraints g(x) ≤ 0 and h(x) = 0
are not more difficult to handle than the complementarity constraint. Finally, as the
relaxing parameter is reduced, convergence to the feasible set of (3.1) is obtained
similarly to a homotopy technique.

These methods have been suggested in the literature back in 2000 by Scheel
and Scholtes in [30, 31]. Their natural approach was later extended by Demiguel,
Friedlander, Nogales, and Scholtes in [6]. In [23], Lin and Fukushima improved this
relaxation by expressing the same set with two constraints instead of three. This
improvement leads to an improved constraint qualification satisfied by the relaxed
sub-problem. Even so, the feasible set is not modified; this improved regularity
does not come as a surprise, since a constraint qualification measures the way the
feasible set is described and not necessarily the geometry of the feasible set itself. In
[33], the authors consider a relaxation of the same type but only around the corner
G(x) = H(x) = 0. In the corresponding papers it has been shown that under classical
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conditions convergence to some spurious points, called C-stationary points, may still
happen, the convergence to M-stationary points being guaranteed only under some
second-order condition.

Anewperspective for those schemes has beengiven in [17] relaxing the constraints
(3.2) by t ≥ 0 as

(Gi (x) − t)(Hi (x) − t) ≤ 0, ∀i ∈ {1, . . . , q}. (3.3)

This approximation scheme converges as t decreases to 0 under classical assumptions
to M-stationary points without second-order or strict complementarity-type condi-
tions. This is not a relaxation since the feasible domain of (3.1) is not included in
the feasible set of the sub-problems. The method has been extended as a relaxation
method in [19] through an NCP function φ:

φ(Gi (x) − t, Hi (x) − t) ≤ 0, ∀i ∈ {1, . . . , q}, (3.4)

where φ(a, b) := {ab, if a + b ≥ 0,− 1
2 (a

2 + b2), otherwise}.
Themain aimof this chapter is to continue this discussion and extend the relaxation

of Kanzow and Schwartz [19] by introducing the new butterfly relaxation:

φ
(
Gi (x) − t2θt1(Hi (x)), Hi (x) − t2θt1(Gi (x))

) ≤ 0, ∀i ∈ {1, . . . , q}.

This new method handling two relaxing parameters, t1 and t2, allows a non-linear
perturbation, θ , of the domain. Thus, we extend the butterfly relaxation introduced
in [8] for the mathematical program with vanishing constraints to the case of com-
plementarity constraints.

The following example shows that the butterfly relaxation may improve the relax-
ations from [17, 19]. Indeed, it illustrates an example where there is no sequence of
stationary point1 that converges to a non-optimal point.

Example 3.1
min
x∈R2

−x1 s.t. x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

In this example, there are two stationary points: an S-stationary point (1, 0) that is the
global minimum and an M-stationary point (0, 0), which is not a local minimum.2

Unlike the relaxations (3.3) and (3.4) where for tk = 1
k a sequence xk = (tk, 2tk)T ,

with the Lagrange multiplier associated with the regularized constraint λ�,k = k,
may converge to (0, 0) as k goes to infinity, there is no sequence of stationary points
that converges to this undesirable point with the butterfly relaxation.

Our main contributions in this chapter are the following:

1. We prove convergence of the butterfly relaxation scheme to A-stationary points,
and to M-stationary points for t2,k = o(t1,k).

1 Definitions of stationary points of a non-linear program at the beginning of Sect. 3.2.1.
2 Definitions of M- and S-stationarity points are given in Definition 3.3.



38 J.-P. Dussault et al.

2. We prove for the affine MPCC that the butterfly relaxation scheme converges to
S-stationary points under MPCC-LICQ, thus generalizing the situation of Exam-
ple 3.1.

3. We prove that the butterfly relaxation scheme computing approximate stationary
points at each step converges to anM-stationary point assuming t2,k = o(t1,k) and
εk = o(max(Gi (xk), Hi (xk)).

4. We provide extensive numerical results showing that the butterfly relaxation can
efficiently solve the MPCC.

In Sect. 3.2, we introduce classical definitions and results from non-linear pro-
gramming and MPCC literature. In Sect. 3.3, we define the relaxation scheme with
the new butterfly relaxation. In Sect. 3.4, we prove theoretical results on conver-
gence and the existence of multipliers of the relaxed sub-problems. We also provide
an analysis of the convergence of approximate stationary points. We also generalize
the situation of Example 3.1 to illustrate a situation where the non-linear perturbation
allows us to escape from undesirable points. In Sect. 3.5, we provide an extensive
numerical study by giving details on the implementation and a comparisonwith other
methods. Finally, in Sect. 3.6, we discuss some perspectives of this work.

3.2 Preliminaries

In this section, we introduce classical notations and definitions for non-linear pro-
grams and mathematical programs with complementarity constraints used in the
sequel.

3.2.1 Non-Linear Programming

Let a general non-linear program be

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0, (3.5)

with f : Rn → R, g : Rn → R
m , and h : Rn → R

p. Denote F the feasible region
of (3.5), and Ig(x) := {i ∈ {1, ...,m} : gi (x) = 0} the set of active indices. The
Lagrangian function of (3.5) is defined as L(x, λ) := f (x) + g(x)Tλg + h(x)Tλh,

where λ = (λg, λh) ∈ R
m × R

p is the vector of Lagrange multipliers.
We call a KKT point a couple (x, λ)with x ∈ F such that∇xL(x, λ) = 0, λg ≥ 0

and g(x)Tλg = 0. We call x a stationary point if there exists λ such that (x, λ) is a
KKT point. We remind that the tangent cone of a set X ⊆ R

n at x∗ ∈ X is a closed
cone defined by

TX (x∗) := {d ∈ R
n | ∃τk ≥ 0 and X � xk →k→∞ x∗ s.t. τk(xk − x∗) →k→∞ d}.
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Another useful tool for our study is the linearized cone of (3.5) at x∗ ∈ F defined by

L (x∗) := {d ∈ R
n | ∇gi (x)

T d ≤ 0,∀i ∈ Ig(x∗), ∇hi (x)
T d = 0,∀i = 1, . . . , p}.

In the context of solving non-linear programs, that is finding a local minimum
of (3.5), one widely used technique is to compute necessary conditions. The main
tool is the Karush-Kuhn-Tucker (KKT) conditions. Let x∗ be a local minimum of
(3.5) that satisfies a constraint qualification, then there exists a Lagrange multiplier
λ∗ such that (x∗, λ∗) is a KKT point of (3.5). Constraint qualifications are used to
ensure the existence of the multiplier at x∗.

We now define some of the classical constraint qualifications. Note that there
exists a wide variety of such notions and we define here those that are essential for
our purpose.

Definition 3.1 Let x∗ ∈ F .

(a) Linear Independence CQ (LICQ) holds at x∗ if the family of gradients
{∇gi (x∗) (i ∈ Ig(x∗)), ∇hi (x∗) (i = 1, ..., p)} is linearly independent.

(b) Mangasarian-Fromovitz CQ (MFCQ) holds at x∗ if the family of gradients
{∇hi (x∗) (i = 1, . . . , p)} is linearly independent and there exists a d ∈ R

n such
that ∇gi (x∗)T d < 0 (i ∈ Ig(x∗)) and ∇hi (x∗)T d = 0 (i = 1, . . . , p).

Remark 3.1 The definition of MFCQ given here is the most classical. It can be
shown using some theorem of the alternative that this definition is equivalent to the
family of active gradients being positively linearly independent, so that underMFCQ,
the only solution of

∑
i∈Ig(x∗) λ

g
i ∇gi (x∗) + ∑p

i=1 λh
i ∇hi (x∗) = 0 with λ

g
i ≥ 0,∀i ∈

Ig(x∗) is the trivial solution.

A local minimum is characterized by the fact that there is no feasible descent
direction for the objective function of (3.5), that is, −∇ f (x∗) ∈ TF (x∗)◦, where
T ◦ denotes the polar cone of T . Given a cone K ⊆ R

n , the polar of K is the
cone defined by K ◦ := {z ∈ R

n|zT x ≤ 0,∀x ∈ K }. On the other hand, the KKT
conditions build ∇ f using a linearization of the active constraints. In a classical
way, we say that a point x∗ ∈ F satisfies Guignard CQ if TF (x∗)◦ = L (x∗)◦ and
Abadie CQ if TF (x∗) = L (x∗).

In the context of numerical computations, it is almost never possible to compute
stationary points. Hence, it is of interest to consider ε-stationary points.

Definition 3.2 Given a general non-linear program (3.5) and ε ≥ 0. We say that
(x, λ) ∈ R

n × R
m+p is an ε-KKT point if it satisfies

‖∇xL(x, λ)‖∞ ≤ ε, ‖h(x)‖∞ ≤ ε,

gi (x) ≤ ε, λ
g
i ≥ 0,

∣∣λg
i gi (x)

∣∣ ≤ ε, ∀i ∈ {1, . . . ,m}.

We say that x is an ε-stationary point if there exists λ such that (x, λ) is an ε-KKT
point.
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3.2.2 Mathematical Programs with Complementarity
Constraints

We now specialize the general notions above to our specific case of (3.1). Let Z be
the set of feasible points of (3.1). Given x∗ ∈ Z , we denote

I+0 := {i ∈ {1, . . . , q} | Gi (x
∗) > 0 and Hi (x

∗) = 0},
I0+ := {i ∈ {1, . . . , q} | Gi (x

∗) = 0 and Hi (x
∗) > 0},

I00 := {i ∈ {1, . . . , q} | Gi (x
∗) = 0 and Hi (x

∗) = 0}.

In the sequel, we always consider these sets in x∗. In order to derive weaker opti-
mality conditions, we consider an enhanced Lagrangian function. Let LMPCC be the
generalized MPCC-Lagrangian function of (3.1) defined as

LMPCC (x, λ) := f (x) + g(x)Tλg + h(x)Tλh − G(x)TλG − H(x)TλH

with λ := (λg, λh, λG, λH ) ∈ R
m × R

p × R
q × R

q .
We introduce more stationary concepts as in [24, 26, 27, 30, 35–37]. Those

concepts are needed for two reasons:

• unless assuming a restrictive constraint qualification, a local minimizer x∗ may
fail to be a stationary point, so that optimality conditions need to be weakened in
order to obtain a necessary condition;

• when analyzing cluster points of algorithms, other weak stationarity conditions
appear naturally.

Definition 3.3 A point x∗ ∈ Z is said to be

• W-stationary if there exists λ ∈ R
m × R

p × R
q × R

q such that

∇xLMPCC (x∗, λ) = 0,
λg ≥ 0, λg

i = 0,∀i /∈ Ig,
λG
i = 0,∀i ∈ I+0, and, λH

i = 0,∀i ∈ I0+;

• C-stationary, if it is W-stationary and λG
i λH

i ≥ 0,∀i ∈ I00;
• A-stationary, if it is W-stationary and λG

i ≥ 0 or λH
i ≥ 0, ∀i ∈ I00;

• M-stationary, if it is W-stationary and either λG
i > 0, λH

i > 0 or λG
i λH

i = 0, ∀i ∈
I00;

• S-stationary, if it is W-stationary and λG
i ≥ 0, λH

i ≥ 0,∀i ∈ I00.

Relations between these definitions are straightforward from the definitions.
As pointed out in [10], strong stationarity is equivalent to the standard KKT

conditions of an MPCC. In order to guarantee that a local minimum x∗ of (1) is a
stationary point in any of the previous senses, one needs to assume that a constraint
qualification (CQ) is satisfied in x∗. Since most standard CQs are violated at any
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feasible point of (3.1), many MPCC-analogues of these CQs have been developed.
Here, we mention only those needed later.

Definition 3.4 Let x∗ ∈ Z .

1. MPCC-LICQ holds at x∗ if the only solution of

∑

i∈Ig(x∗)

λ
g
i ∇gi (x

∗) +
p∑

i=1

λh
i ∇hi (x

∗) −
∑

i∈I0+∪I00

λG
i ∇Gi (x

∗) −
∑

i∈I+0∪I00

λH
i ∇Hi (x

∗) = 0

(3.6)
is the trivial solution.

2. MPCC-MFCQ holds at x∗ if the only solution of (3.6) with λ
g
i ≥ 0,∀i ∈ Ig(x∗)

is the trivial solution.
3. MPCC-GMFCQ holds at x∗ if the only solution of (3.6) with λ

g
i ≥ 0,∀i ∈ Ig(x∗)

and either λG
i λH

i = 0 or λG
i > 0, λH

i > 0, ∀i ∈ I00 is the trivial solution.

Note here that MPCC-MFCQ and MPCC-GMFCQ have been defined using the
alternative form of MFCQ mentioned in Remark 3.1. Note that each of these CQs
implies that a local minimum is M-stationary, see [9, 36], but only MPCC-LICQ
is sufficient to guarantee strong stationarity of a local minimum; see [10, 24, 28].
The MPCC-LICQ is among the first MPCC-tailored constraint qualifications and
may already be found in [24, 30]; the MPCC-MFCQ was introduced in [30] and
presented in the form above in [16].

3.3 The Butterfly Relaxation Method

Consider a family of continuously differentiable non-decreasing concave functions
θ : R →] − ∞, 1] such that

θ(0) = 0, and, lim
x→∞ θ(x) = 1 ∀x ∈ R++.

Then, for t1 > 0, we introduce θt1(x) := θ
(

x
t1

)
if x ≥ 0, and completed in a smooth

way for negative values by considering θt1(x) = xθ ′(0)/t1 if x < 0.

Example 3.2 Examples of such functions are

θ1
t1(x) := { x

x + t1
, for x ≥ 0,

x

t1
, for x < 0.},

and
θ2
t1(x) := {1 − exp− x

t1 , for x ≥ 0,
x

t1
, for x < 0.}.

Those functions have already been used in the context of complementarity con-
straints, for instance, in [1, 2].
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To simplify the notation, we denote t := (t1, t2). Using this family of functions, we
denote

F1i (x; t) := Hi (x) − t2θt1(Gi (x)), and, F2i (x; t) := Gi (x) − t2θt1(Hi (x)).

We propose a new family of relaxation of the complementarity constraint with
two positive parameters (t1, t2) defined such that for all i ∈ {1, . . . , q}

�B
i (G(x), H(x); t) :=

{
F1i (x; t)F2i (x; t), if F1i (x; t) + F2i (x; t) ≥ 0,

− 1
2

(
F1i (x; t)2 + F2i (x; t)2

)
otherwise.

(3.7)

This new relaxation uses two parameters t1 and t2 chosen such that

t2θ
′(0) < t1. (3.8)

This condition ensures that the intersection of the sets {x ∈ R
n | F1(x; t1, t2) = 0}

and {x ∈ R
n | F2(x; t1, t2) = 0} is reduced to the origin. In other words, the two

branches of the relaxation do not cross each other. A typical choice will be to take
t2 = o(t1) motivated by strong convergence properties as discussed in Sect. 3.4.1.

The parametric non-linear program related to the butterfly relaxation of the com-
plementarity constraints defined in (3.7), and augmented with a regularization of the
non-negativity constraints parametrized by t̄ , is given by

min
x∈Rn

f (x) s.t x ∈ X B
t,t̄ , (RB

t,t̄ )

with

X B
t,t̄ := {x ∈ R

n : g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄ e, H(x) ≥ −t̄ e,�B(G(x), H(x); t) ≤ 0},

where e denotes the vector of all ones.
This method is similar to the methods (3.3) from [17] and (3.4) from [19] in the

sense that they can also be written as a product of two functions. The main difference
is that handling two parameters allows bringing the two “wings” of the relaxation
closer. A comparison of the feasible set of these relaxations can be seen in Fig. 3.1.

The sets of indices used in the sequel are defined in the following way:
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Fig. 3.1 The feasible set of the butterfly relaxation, the approximation from [17] and the relaxation
from [19]

IG(x; t̄) := {i = 1, . . . , q | Gi (x) + t̄ = 0},
IH (x; t̄) := {i = 1, . . . , q | Hi (x) + t̄ = 0},
IGH (x; t) := {i = 1, . . . , q | �B

i (G(x), H(x); t) = 0},
I0+
GH (x; t) := {i ∈ IGH (x; t) | F1i (x; t) = 0, F2i (x; t) > 0},

I+0
GH (x; t) := {i ∈ IGH (x; t) | F1i (x; t) > 0, F2i (x; t) = 0},

I00
GH (x; t) := {i ∈ IGH (x; t) | F1i (x; t) = F2i (x; t) = 0}.

Several relations between these sets follow directly from the definition of the relax-
ation. For instance, it holds that

IG ∩ IGH = IH ∩ IGH = ∅.

Additionally, by definition of the relaxation mapping, it holds

�B
i (G(x), H(x); t) = 0 =⇒ F1i (x; t) + F2i (x; t) ≥ 0.

The following two lemmas give more insights on the relaxation.

Lemma 3.3.1 Let x ∈ X B
t,t̄ , then it is true for the relaxation (3.7) that

(a) {i ∈ IGH (x; t) | F1i (x; t) = 0, F2i (x; t) < 0} = {i ∈ IGH (x; t) | F1i (x; t) <

0, F2i (x; t) = 0} = ∅;
(b) i ∈ IGH (x; t) =⇒ Gi (x) ≥ 0, Hi (x) ≥ 0.

Proof Case (a) is directly considering that �B
i (G(x), H(x); t1, t2) �= 0 for

F1i (x; t) + F2i (x; t) < 0.
By symmetry of the relaxation, it is sufficient to assume that F1i (x; t) = Hi (x) −

t2θt1(Gi (x)) = 0 for some i = 1, . . . , q. Then, by definition of F2i (x; t), it holds that

F2i (x; t) = Gi (x) − t2θt1(Hi (x)) = Gi (x) − t2θt1(t2θt1(Gi (x))),

so Gi (x) ≥ 0 since in the other case, i.e., Gi (x) < 0, it would follow that
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F2i (x; t) = Gi (x)(1 − (θ ′(0)t2/t1)2),

which would be negative using (3.8). Note that previous inequality holds true since,
by definition of the function θ , it holds that t2θt1(z) = t2θ ′(0)z/t1 for z ≤ 0. Finally,
Gi (x) ≥ 0 implies that Hi (x) ≥ 0 since F1i (x; t) = 0.

The following lemma states two of the key features of the relaxation and follows
from the observation that �B

i (G(x), H(x); t) → Gi (x)Hi (x) as ‖t‖ ↓ 0.

Lemma 3.3.2 The set X B
t,t̄ satisfies the following properties:

1. lim
‖t,t̄‖→0

X B
t,t̄ = Z where the limit is assumed pointwise3;

2.
⋂

t,t̄≥0 X B
t,t̄ = Z .

If the feasible set of the (3.1) is non-empty, then the feasible sets of the relaxed sub-
problems are also non-empty for all t ≥ 0. If for some parameter t ≥ 0 the set X B

t,t̄

is empty, then it implies that Z is empty. Finally, if a local minimum of RB
t,t̄ already

belongs to Z , then it is a local minimum of the (3.1).
Finally, numerical results will be presented in Sect. 3.5 and we will show that

these new methods are very competitive compared to existing methods.
Beforemoving to ourmain statements regarding convergence and regularity prop-

erties of the butterfly relaxation, we provide two technical lemmas. Direct computa-
tion gives the gradient of �B(G(x), H(x); t) in the following lemma.

Lemma 3.3.3 For all i ∈ {1, . . . , q}, the gradient of �B
i (G(x), H(x); t) w.r.t. x for

the relaxation (3.7) is given by

∇x�
B
i (G(x), H(x); t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
F1i (x; t) − t2θ ′

t1(Gi (x))F2i (x; t)
) ∇Gi (x)

+ (
F2i (x; t) − t2θ ′

t1(Hi (x))F1i (x; t)
) ∇Hi (x),

if F1i (x; t) ≥ −F2i (x; t),(
t2θ ′

t1(Gi (x))F1i (x; t) − F2i (x; t)
) ∇Gi (x)

+ (
t2θ ′

t1(Hi (x))F2i (x; t) − F1i (x; t)
) ∇Hi (x),

if F1i (x; t) < −F2i (x; t).

The following lemma illustrates the behavior of functions θt1 and their derivatives.

Lemma 3.3.4 Given two sequences {t1,k} and {t2,k}, which converge to 0 as k goes
to infinity and ∀k ∈ N, (t1,k, t2,k) ∈ R

2++. It holds true that

lim
k→∞ t2,kθ

′
t1,k (z) = 0 ∀z ∈ R++.

3 lim
k→∞ Ak = A pointwisemeans that for all sequences {xk}with xk ∈ Ak for all k implies lim

k→∞ xk ∈
A and for any x∗ ∈ A there exists a sequence xk with xk ∈ Ak such that lim

k→∞ xk = x∗.
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Furthermore, assuming that t2,k = o(t1,k), yields

lim
k→∞ t2,kθ

′
t1,k (z) = 0 ∀z ∈ R+.

Proof Thefirst part of the lemma follows from thedefinitionof functions θt1,k . Indeed,
it holds for all x ∈ R+ that θt1,k (x) ∈ [0, 1]. Therefore, limk→∞ t2,kθt1,k (xk) = 0.

The second part of the lemma uses the fact that functions θt1,k are defined as
perspective functions, that is, for all z ∈ R+

θt1,k (z) = θ

(
z

rk

)
,

and so, computing the derivative gives

t2,kθ
′
t1,k (z) = t2,k

t1,k
θ ′

(
z

t1,k

)
.

So, for k sufficiently large t1,k ≤ z, and by concavity of θr , we get

0 ≤ lim
k→∞ t2,kθ

′
t1,k (z) ≤ lim

k→∞ t2,kθ
′
t1,k (t1,k) = lim

k→∞
t1,k
t1,k

θ ′(1),

and the result follows. �

We focus on the sequel on the properties of these new relaxation schemes. We
prove that the method converges to an A-stationary point in Theorem 3.4.1 and to an
M-stationary point, Theorem 3.4.2, with some relation between the sequences {t2,k}
and {t1,k}. Furthermore, we prove in the affine case convergence to S-stationary point
under MPCC-LICQ (Theorem 3.4.3).

Themainmotivation to consider relaxationmethods for (3.1) is to solve a sequence
of regular problems. Under classical assumptions, the butterfly relaxed non-linear
programs satisfy the Guignard CQ, as proved in Theorem 3.4.4.

3.4 Theoretical Properties

The study of the theoretical properties of the butterfly relaxation method is split
into three parts: convergence of the sequence of stationary points, the existence of
Lagrange multipliers for the relaxed non-linear program, and convergence of the
sequence of approximate stationary points.
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3.4.1 Convergence

In this section, we focus on the convergence properties of the butterfly relaxation
method and the constraint qualifications guaranteeing convergence of the sequence
of stationary points generated by the method. Our aim is to compute an M-stationary
point or, at least, provide a certificate if we converge to an undesirable point.

We prove in Theorem 3.4.1 that the butterfly relaxation converges to an A-
stationary point. This result is improved to convergence to M-stationary points for
some choices on the parameters t2 and t1 in Theorem 3.4.2.

Finally, we prove convergence to the S-stationary point in a specific situation in
Theorem 3.4.3. To the best of our knowledge, this kind of result without the second-
order condition is new from the literature and allows the butterfly relaxation to escape
from spurious points.

Theorem 3.4.1 Given two sequences {tk} and {t̄k} of positive parameters satisfying
(3.8) and decreasing to zero. Let {xk, ηg,k, ηh,k, ηG,k, ηH,k, η�,k} be a sequence of
KKT points of (RB

t,t̄ ) with xk → x∗ such that MPCC-MFCQ holds at x∗. Then, x∗ is
an A-stationary point.

Proof First, we identify the expressions of the multipliers of the complementarity
constraint in Definition 3.3 through the stationary points of (RB

t,t̄ ). The representation
of ∇�B immediately gives ∇�B

i (G(xk), H(xk); tk) = 0, ∀i ∈ I00
GH (xk; tk). Thus,

we can write

−∇ f (xk)=
m∑

i=1

λ
g,k
i ∇gi (x

k)+
p∑

i=1

λ
h,k
i ∇hi (x

k)−
q∑

i=1

λ
G,k
i ∇Gi (x

k)−
q∑

i=1

λ
H,k
i ∇Hi (x

k),

(3.9)
where λg,k = ηg,k , λh,k = ηh,k and

λ
G,k
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η
G,k
i , if i ∈ IG(xk; t̄k),

η
�,k
i t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk), if i ∈ I0+
GH (xk; tk),

−η
�,k
i F1i (xk; tk), if i ∈ I+0

GH (xk; tk),
0, otherwise,

λ
H,k
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η
H,k
i , if i ∈ IH (xk; t̄k),

η
�,k
i t2,kθ ′

t1,k (Hi (xk))F1i (xk; tk), if i ∈ I+0
GH (xk; tk),

−η
�,k
i F2i (xk; tk), if i ∈ I0+

GH (xk; tk),
0, otherwise.

First, by (3.9), it holds that ∇LMPCC (xk, λk) = 0 for all k. Thus, the first condition
of the W-stationary conditions is satisfied. Moreover, by definition of {λg,k} it holds
that Ig(xk) ⊆ Ig(x∗) and so lim

k→∞ λ
g,k
i = 0,∀i /∈ Ig(x∗).
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Denote ‖λk‖∞ := ‖λg,k, λh,k, λG,k, λH,k‖∞. Using the definition of λG,k and λH,k

in (3.9) and since by (3.8) it holds that tkθ ′
t1,k (Gi (xk)) ≤ tkθ ′

t1,k (0) < 1 for all i ∈
IGH (xk; tk), it can be observed that4

‖λk‖∞ = ‖ηg,k, ηh,k, ηG,k, ηH,k, η�,k ◦ F2(x
k; tk), η�,k ◦ F1(x

k; tk))‖∞, (3.10)

where ◦ denotes the component-wise product of two vectors.
We now verify that λG,k

i /‖λk‖∞ → 0 for indices i ∈ I+0. By symmetry, it would
follow that λH,k

i /‖λk‖∞ → 0 for indices i ∈ I0+.
Let i ∈ I+0. Clearly, i ∈ I0+

GH (xk; tk) as otherwise Gi (xk) = t̄k for i ∈ IG(xk; tk)
or Gi (xk) = t2,kθt1,k (Hi (xk)) for i ∈ I+0

GH (xk; tk) which in both cases, for k suf-
ficiently large, contradicts the fact Gi (xk) → Gi (x∗) > 0. Now, i ∈ I0+

GH (xk; tk)
yields

λ
G,k
i = η

�,k
i t2,kθ

′
t1,k (Gi (x

k))F2i (x
k; tk).

Moreover, ‖λk‖∞ ≥ |η�,k
i F2i (xk; tk)| by (3.10), thus

λ
G,k
i

‖λk‖∞
≤ η

�,k
i t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk)
|η�,k

i F2i (xk; tk)|
= t2,kθ

′
t1,k (Gi (x

k)) → 0

since Gi (xk) → G(x∗) > 0 and using Lemma 3.3.4.
Now, let us prove that the sequence {λk} is bounded. Assume by contradiction

that is not bounded, then the sequence {λk/‖λk‖∞} is bounded and converges, up to a
subsequence to a non-trivial limit λ̂. Therefore, dividing (3.9) by ‖λk‖∞ and passing
to the limit gives

∑

i∈Ig(x∗)

λ̂g
i∇gi (x

∗) +
p∑

i=1

λ̂h
i∇hi (x

∗) −
∑

i∈I0+∪I00

λ̂G
i∇Gi (x

∗) −
∑

i∈I+0∪I00

λ̂H
i∇Hi (x

∗) = 0,

which leads to a contradiction since x∗ satisfies MPCC-MFCQ.
So, the sequence {λk} is bounded, hence λ

G,k
i → 0,∀i ∈ I+0 and λ

H,k
i → 0,∀i ∈

I0+. Therefore, x∗ is a W-stationary point of the MPCC.
Finally, let us now verify that x∗ is anA-stationary point. Denote λ∗ the limit, up to

a subsequence, of the sequence {λk}. Let i ∈ I00. Assume without loss of generality
thatλG,∗

i < 0 (the other casewill be similar by symmetry) andwe show thatλH,∗
i ≥ 0.

λ
G,∗
i < 0 implies that i ∈ I+0

GH (xk; tk) for k sufficiently large by definition of λ
G,k
i .

So, λ
H,k
i = η

�,k
i t2,kθ ′

t1,k (Hi (xk))F1i (xk; tk), which is non-negative. So x∗ is an A-
stationary point. �

4 For indices i ∈ I0+
GH (xk; tk) (symmetry for indices i ∈ I+0

GH (xk; tk)), then λ
G,k
i =

η
�,k
i t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk) and λ
H,k
i = η

�,k
i F2i (xk; tk). Therefore, considering that

tkθ ′
t1,k (Gi (xk)) < 1, we get λ

G,k
i < λ

H,k
i . All in all the infinite norm is not obtained at these

components.
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The following example shows that the result of Theorem 3.4.1 is sharp since
convergence cannot be ensured, assuming only that MPCC-GMFCQ holds at the
limit point.

Example 3.3 Consider the following two-dimensional example:

min
x∈R2

x2 s.t. 0 ≤ x1 + x22 ⊥ x1 ≥ 0.

MPCC-GMFCQ holds at (0, 0)T . The point (0, 0)T is even not a W-stationary point.
In this case, there exists a sequence of stationary points of the relaxation such that

{xk} converges to the origin. Given a sequence {xk}, with {1} ∈ IGH (xk; tk), such
that xk → (0, 0)T then ηG,k = ηH,k = 0 and we can choose η�,k that satisfies

λG,k = −λH,k = 1

2xk2
.

The sequence {xk} converges to an undesirable point.
The result of Theorem 3.4.1 can be tightened if we consider a particular choice

of parameter. It is an essential result since it shows that a subfamily of the butterfly
relaxation has the desired property to converge to an M-stationary point.

Theorem 3.4.2 Given two sequences {tk} and {t̄k} of positive parameters satisfying
(3.8) and decreasing to zero. Let {xk, ηg,k, ηh,k, ηG,k, ηH,k, η�,k} be a sequence of
KKT points of (RB

t,t̄ ) with xk → x∗ such that MPCC-GMFCQ holds at x∗. If t2,k =
o(t1,k), then, x∗ is an M-stationary point.

Proof In the proof of Theorem 3.4.1, we already showed that ∇LMPCC (xk, λk) = 0
for all k, lim

k→∞ λ
g,k
i = 0,∀i /∈ Ig(x∗), lim

k→∞ λ
G,k
i /‖λk‖∞ = 0,∀i ∈ I+0, and

lim
k→∞ λ

H,k
i /‖λk‖∞ = 0,∀i ∈ I0+.

Let us now check that either lim
k→∞ λ

G,k
i λ

H,k
i /‖λk‖2∞ = 0 or lim

k→∞ λ
G,k
i /‖λk‖∞ >

0, lim
k→∞ λ

H,k
i /‖λk‖∞ > 0 using the contrapositive, i.e.,

lim
k→∞ λ

G,k
i /‖λk‖∞ < 0 =⇒ lim

k→∞ λ
H,k
i /‖λk‖∞ = 0,

and the other case will be similar by symmetry.
Let i ∈ I00. lim

k→∞ λ
G,k
i /‖λk‖∞ < 0 implies that i ∈ I+0

GH (xk; tk) for k sufficiently

large by definition of λG,k
i as the function θ is non-decreasing. So, λH,k

i = η
�,k
i t2,kθ ′

t1,k

(Hi (xk))F1i (xk; tk). Moreover, limk→∞ t2,kθ ′
t1,k (Hi (xk)) = 0 by Lemma 3.3.4 with

t2,k = o(t1,k) and

lim
k→∞ η

�,k
i F1i (x

k; tk)/‖λk‖∞ = lim
k→∞ −λ

G,k
i /‖λk‖∞ < ∞.
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Thus, limk→∞ λ
H,k
i /‖λk‖∞ = 0.

Finally, following the same reasoning as in the proof of Theorem 3.4.1, using
MPCC-GMFCQ, the sequence {λk} is bounded, and x∗ is an M-stationary point. �

The following example shows that this result is sharp, since it illustrates a situation
where MPCC-GMFCQ does not hold and the method converges to an undesirable
W-stationary point. This phenomenon only happens if the sequence of multipliers
defined in (3.9) is unbounded.

Example 3.4 Consider the problem

min
x∈R2

x22 s.t. 0 ≤ x21 ⊥ x1 + x22 ≥ 0.

The feasible set is Z = {(x1, x2)T ∈ R
2 | x1 = 0} ∪ {(x1, x2)T ∈ R

2 | x1 = −x22 }.
(0, 0)T is the unique M-stationary, with (λG, λH = 0).

MPCC-GMFCQ fails to hold at any point (0, a ∈ R)T since the gradient of x21 is
non-zero only for x �= 0.

Consider a sequence such that for (t1,k, t2,k) sufficiently small F2(xk; tk) = 0 and

xk1 = t2,kθ
′
t1,k (x

k
1 + a2), xk2 = a, η�,k F1i (x

k; tk) = 1

−t2,kθ ′
t1,k (x

k
1 + a2)

.

Obviously, the sequence xk goes to x∗ = (0, a �= 0)T , which is not a W-stationary
point. Indeed, we have

λG,k = 1

t2,kθ ′
t1,k (x

k
1 + a2)

→ ∞ and λH,k = −1 �= 0.

The following result motivated by Example 3.1 shows that the butterfly relaxation
may improve its behavior in some specific cases. Example 3.1 also indicates that this
cannot be expected with the other relaxations. In the sequel, we denote supp(z) :=
{i | zi �= 0} the non-zero indices of z.

Theorem 3.4.3 Assume that f, g, h,G, H are affine functions. Given two sequences
{tk} and {t̄k} of positive parameters satisfying (3.8) and decreasing to zero as k goes
to infinity. Let {xk, ηg,k, ηh,k, ηG,k, ηH,k, η�,k} be a sequence of KKT points of (RB

t,t̄ )

with xk → x∗ such that MPCC-LICQ holds at x∗. If t2,k = o(t1,k), and, for all k
sufficiently large

supp(η�,k) ∩ (I+0 ∪ I0+) = ∅, (3.11)

then, x∗ is an S-stationary point.

Proof Theorem 3.4.2 already proves that x∗ is an M-stationary point. Assume by
contradiction that x∗ is not an S-stationary point. Then, it holds that this point cannot
be a stationary point of (RB

t,t̄ ).
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We already mention in the proof of Theorem 3.4.1 that for all k it holds

−∇ f =
m∑

i=1

λ
g,k
i ∇gi +

p∑

i=1

λ
h,k
i ∇hi −

q∑

i=1

λ
G,k
i ∇Gi −

q∑

i=1

λ
H,k
i ∇Hi ,

where we omit the dependence in k in the expression of the gradients, since they
are constant by linear/affine assumption. Clearly, for k sufficiently large, it holds
that supp(λg,k) ⊆ Ig(x∗), supp(λG,k) ⊂ I0+ ∪ I00, and supp(λH,k) ⊆ I00 ∪ I+0 by
(3.11).

Now, by continuity, linear independence of these gradients holds in a neighbor-
hood of x∗. So, we get finite convergence of the λk , and for k sufficiently large it
holds

λg,k = λg,∞, λh,k = λh,∞, λG,k = λG,∞, λH,k = λH,∞. (3.12)

Let i ∈ I00 ∩ supp(η�,∞), where we remind that supp(η�,∞) ⊆ supp(η�,k)

⊆ IGH (xk; tk). If no such index exists, then for all k sufficiently large η�,k is zero
and x∗ is S-stationary.

By stationarity assumption on x∗, we assume that λG,∞
i < 0 (the case λ

H,∞
i will

be symmetrical). It implies that i ∈ I+0
GH by definition of the multipliers in (3.9) and

so
λ
G,k
i = −η

�,k
i F1i (x

k; tk), and, λH,k
i = η

�,k
i t2,kθ

′
t1,k (Hi (x

k))F1i (x
k; tk).

We proved in Theorem 3.4.2 that λG,k and λH,k have bounded limits, so by
Lemma 3.3.4 with t2,k = o(t1,k) we have limk→∞ λ

H,k
i = 0. By (3.12), we get

η
�,k
i = 0 for all k sufficiently large, which contradicts λ

G,∞
i < 0. �

3.4.2 Existence of Lagrange Multipliers for the Relaxed
Sub-Problems

In this section, we study some regularity properties of the relaxed non-linear pro-
grams. Indeed, to guarantee the existence of a sequence of stationary points, the
relaxed non-linear programs must satisfy some constraint qualifications in the neigh-
borhood of the limit point.

Theorem 3.4.4 Let x∗ ∈ Z , satisfying MPCC-LICQ. Then, there exists t∗ > 0 and
a neighborhood U (x∗) of x∗ such that

∀t ∈ (0, t∗] : x ∈ U (x∗) ∩ X B
t,t̄ =⇒ standard GCQ holds at x for (RB

t,t̄ ).

Proof Let x ∈ U (x∗) ∩ X B
t,t̄ . We know thatLX B

t,t̄
(x)◦ ⊆ TX B

t,t̄
(x)◦. So, it is sufficient

to show the converse inclusion.
The linearized cone of (RB

t,t̄ ) is given by
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LX B
t,t̄

(x) = {d ∈ R
n | ∇gi (x)

T d ≤ 0, ∀i ∈ Ig(x), ∇hi (x)
T d = 0, ∀i = 1, . . . , p,

∇Gi (x)
T d ≥ 0, ∀i ∈ IG(x; t̄), ∇Hi (x)

T d ≥ 0,∀i ∈ IH (x; t̄),
∇�B

i (G(x), H(x); t)T d ≤ 0, ∀i ∈ I0+GH (x; t) ∪ I+0
GH (x; t)

}
,

using that ∇�B
i (G(x), H(x); t) = 0 for all i ∈ I00

GH (x, t).
Let us compute the polar of the tangent cone. Consider the following set of non-

linear constraints parametrized by z ∈ X B
t,t̄ and a partition (I, I c, I−) of I00

GH (z; t),5
defined by

S(I,I c,I−)(z) := {x ∈ R
n | g(x) ≤ 0, h(x) = 0,G(x) ≥ −t̄ e, H(x) ≥ −t̄ e,

�B
i (G(x), H(x); t) ≤ 0, i /∈ I00

GH (z; t),
F1i (x; t) ≤ 0, F2i (x; t) ≥ 0, i ∈ I,

F1i (x; t) ≥ 0, F2i (x; t) ≤ 0, i ∈ I c,

F1i (x; t) ≤ 0, F2i (x; t) ≤ 0, i ∈ I−}.
(3.13)

Since z ∈ X B
t,t̄ , it is obvious that z ∈ S(I,I c,I−)(z).

By construction of U (x∗) and t∗, the gradients {∇gi (x∗) (i ∈ Ig(x∗)),
∇hi (x∗) (i = 1, . . . ,m),∇Gi (x∗) (i ∈ I00 ∪ I0+),∇Hi (x∗) (i ∈ I+0 ∪ I00)}
remain linearly independent for all x ∈ U (x∗) by continuity of the gradients, and
we have

Ig(x) ⊆ Ig(x∗), IG(x; t̄) ⊆ I00 ∪ I0+, IH (x; t̄) ⊆ I+0 ∪ I00,

I00
GH (x; t) ∪ I+0

GH (x; t) ⊆ I00 ∪ I0+,

I00
GH (x; t) ∪ I0+

GH (x; t) ⊆ I+0 ∪ I00.

(3.14)

Therefore, by Lemma 3.7.6, LICQ holds for (3.13) at x . Furthermore, by [32, Lemma
8.10], and since LICQ in particular implies Abadie CQ it follows that

TX B
t,t̄
(x) =

⋃

∀(I,I c,I−)

TS(I,I c ,I−)(x)
(x) =

⋃

∀(I,I c,I−)

LS(I,I c ,I−)(x)
(x).

By [5, Theorem 3.1.9], passing to the polar, we get

TX B
t,t̄
(x)◦ =

⋂

∀(I,I c,I−)

LS(I,I c ,I−)(x)
(x)◦.

By [5, Theorem 3.2.2], we know that

5 (I, I c, I−) is a partition of I00
GH (z; t) means that I ∪ I c ∪ I− = I00

GH (z; t) and I ∩ I c = I ∩
I− = I c ∩ I− = ∅.
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LS(I,I c ,I−)(x)
(x)◦ = {

∑

i∈Ig(x)

η
g
i ∇gi (x) +

p∑

i=1

ηh
i ∇hi (x)

−
∑

i∈IG (x;t̄)
ηG
i ∇Gi (x) −

∑

i∈IH (x;t̄)
ηH
i ∇Hi (x)

+
∑

i∈I+0
GH (x;t)∪I0+

GH (x;t)
η�
i ∇�B

i (G(x), H(x); t)

−
∑

i∈I
ηG
i ∇Gi (x) +

∑

i∈I c
ηG
i ∇Gi (x)

+
∑

i∈I
ηH
i ∇Hi (x) −

∑

i∈I c
ηH
i ∇Hi (x)

+
∑

i∈I−
δGi ∇Gi (x) +

∑

i∈I−
δH
i ∇Hi (x) : (ηg, ηG, ηH , η�) ≥ 0}.

For v ∈ TX B
t,t̄
(x)◦, we have v ∈ LS(I,I c ,I−)(x)

(x)◦ for any partition (I, I c, I−) of

I00
GH (x; t). If we fix I and set I− = ∅, then there exists some multipliers ηh and

ηg, ηG, ηH , η� ≥ 0 so that

v =
∑

i∈Ig(x)

η
g
i ∇gi (x) +

p∑

i=1

ηh
i ∇hi (x) −

∑

i∈IG (x;t̄)
ηG
i ∇Gi (x) −

∑

i∈IH (x;t̄)
ηH
i ∇Hi (x)

+
∑

i∈I+0
GH (x;t)∪I0+

GH (x;t)
η�
i ∇�B

i (G(x), H(x); t)

−
∑

i∈I
ηG
i ∇Gi (x) +

∑

i∈I c
ηG
i ∇Gi (x) −

∑

i∈I
ηH
i ∇Hi (x) +

∑

i∈I c
ηH
i ∇Hi (x).

Now, it also holds that v ∈ LS(I c ,I,I−)(x)
(x)◦ and so there exists some multipliers ηh

and ηg, ηG, ηH , η� ≥ 0 such that

v =
∑

i∈Ig(x)

η
g
i ∇gi (x) +

p∑

i=1

ηh
i ∇hi (x) −

∑

i∈IG (x;t̄)
ηG
i ∇Gi (x) −

∑

i∈IH (x;t̄)
ηH
i ∇Hi (x)

+
∑

i∈I+0
GH (x;t)∪I0+

GH (x;t)
η�
i ∇�B

i (G(x), H(x); t)

+
∑

i∈I
ηG
i ∇Gi (x) −

∑

i∈I c
ηG
i ∇Gi (x) +

∑

i∈I
ηH
i ∇Hi (x) −

∑

i∈I c
ηH
i ∇Hi (x).

By the construction of t∗ and U (x∗), the gradients involved here are linearly inde-
pendent and so the multipliers in both previous equations must be equal. Thus, the
multipliers ηG

i and ηH
i with indices i in I ∪ I c vanish.
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Therefore, v ∈ LX B
t,t̄
(x)◦ and as v has been chosen arbitrarily then TX B

t,t̄
(x)◦ ⊆

LX B
t,t̄
(x)◦, which concludes the proof. �

This result is sharp, as shown by the following example since Abadie CQ does
not hold.

Example 3.5 Consider the problem

min
x∈R2

f (x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

At x∗ = (0, 0)T it holds that∇�B(G(x), H(x); t) = (0, 0)T and soLX B
t,t̄
(x∗) = R

2,

which is obviously different from the tangent cone at x∗ for t2θ ′(0) < t1 and t̄ > 0.

The following example shows that we cannot have a similar result using MPCC-
GMFCQ.

Example 3.6 Consider the set

C := {(x1, x2)T | 0 ≤ x1 + x22 ⊥ x1 ≥ 0}.

MPCC-GMFCQ holds at x∗ = (0, 0)T , since the gradients are linearly dependent
but only with coefficients λG = −λH that does not satisfy the condition given in
Definition 3.4.

Now, we can choose a sequence of points such that xk → x∗ and

F2(x
k; tk) = 0,−t2,kθ

′
t1,k (H(xk)) → −1.

Since ∇G(x∗) = ∇H(x∗), it holds that ∇F2(x∗; 0) = (0 0)T and so MFCQ does
not hold for (3.13).

It is disappointing to requireMPCC-LICQ to obtain the only GCQ, but when I00
GH

is empty, we get the stronger LICQ.

Theorem 3.4.5 Let x∗ ∈ Z , satisfying MPCC-LICQ. Then, there exists t∗ > 0 and
a neighborhood U (x∗) of x∗ such that

∀t ∈ (0, t∗] : x ∈ U (x∗) ∩ X B
t,t̄ and I00

GH (x; t) = ∅ =⇒ LICQ holds at x for (RB
t,t̄ ).

Proof Let x ∈ U (x∗) ∩ X B
t,t̄ and t sufficiently small. We prove that the gradients of

the constraints involved in (RB
t,t̄ ) are linearly independent, by verifying that the trivial

solution is the only solution to the following equation:
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0 =
∑

i∈Ig(x)

η
g
i ∇gi (x) +

p∑

i=1

ηh
i ∇hi (x) +

∑

i∈IG (x;t̄)
∇Gi (x)η

G
i +

∑

i∈IH (x;t̄)
∇Hi (x)η

H
i

+
∑

i∈I+0
GH (x;t)

∇Gi (x)
(
η�
i (F1i (x; t) − F2i (x; t)t2θ ′

t1(Gi (x)))
)

+
∑

i∈I0+
GH (x;t)

∇Hi (x)
(
η�
i (F2i (x; t) − F1i (x; t)t2θ ′

t1(Hi (x)))
)
.

MPCC-LICQ and the inclusions (3.14) give that the only solution is the
trivial one. �

3.4.3 Convergence of the Epsilon-Stationary Points

Non-linear programming algorithms usually compute sequences of approximate sta-
tionary points or ε-stationary points (see Definition 3.2). We present below in rela-
tions (3.16)–(3.21) our specific definition and hypothesis of ε-stationary points. This
approach, which has become an active subject recently, can significantly alter the
convergence analysis of relaxation methods, as shown in [17, 20, 21, 29].

Previous results in [21] prove convergence to C-stationary point for the relaxation
from Scheel and Scholtes [31] and the one fromLin and Fukushima [23], under some
hypotheses on the sequence εk , respectively εk = O(tk) and εk = o(t2k ). Furthermore,
the authors in [21] also provide a counter-example with a sequence converging to a
W-stationary point if these conditions do not hold. Additionally, the authors in [21],
prove that relaxations (3.3) and (3.4) converge only to aW-stationary point, and they
require more hypotheses on the sequences εk and xk to prove the convergence to a
C- or an M-stationary point.

In the same way as in Theorem 3.4.1, we consider through this section a sequence
of multipliers that should verify the stationary conditions. We denote for all i ∈
{1, . . . , q}

λ
G,k
i :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η
G,k
i +η

�,k
i

(
t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk)−F1i (xk; tk)
)

,

if F1i (xk; tk)≥−F2i (xk; tk)
η
G,k
i +η

�,k
i

(
F2i (xk; tk)−t2,kθ ′

t1,k (Gi (xk))F1i (xk; tk)
)

,

if F1i (xk; tk)<−F2i (xk; tk),

λ
H,k
i :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η
H,k
i +η

�,k
i

(
t2,kθ ′

t1,k (Hi (xk))F1i (xk; tk)−F2i (xk; tk)
)

,

if F1i (xk; tk)≥−F2i (xk; tk)
η
H,k
i +η

�,k
i

(
F1i (xk; tk)−t2,kθ ′

t1,k (Hi (xk))F2i (xk; tk)
)

,

if F1i (xk; tk)<−F2i (xk; tk).

(3.15)
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The representation of ∇�B
i (G(xk), H(xk); tk) immediately gives for all i ∈

I00
GH (xk; tk) and all k that∇�B

i (G(xk), H(xk); tk) = 0.Thus, xk being a εk-stationary
point for (RB

t,t̄ ) satisfies

∥∥LMPCC (xk, λk)
∥∥∞ ≤ εk,

with (λg,k, λh,k) = (ηg,k, ηh,k) and λG,k, λH,k defined in (3.15), and

|hi (xk)| ≤ εk,∀i = 1, . . . , p, (3.16)

gi (x
k) ≤ εk, η

g,k
i ≥ 0,

∣∣∣ηg,k
i gi (x

k)

∣∣∣ ≤ εk,∀i = 1, . . . ,m, (3.17)

Gi (x
k) + t̄k ≥ −εk, η

G,k
i ≥ 0,

∣
∣∣ηG,k

i (Gi (x
k) + t̄k)

∣
∣∣ ≤ εk,∀i =1, . . . , q, (3.18)

Hi (x
k) + t̄k ≥ −εk, η

H,k
i ≥ 0,

∣∣∣ηH,k
i (Hi (x

k) + t̄k)
∣∣∣ ≤ εk,∀i =1, . . . , q, (3.19)

�B
i (G(xk), H(xk); tk) ≤ εk, η

�,k
i ≥ 0, (3.20)

∣∣∣η�,k
i �B

i (G(xk), H(xk); tk)
∣∣∣ ≤ εk,∀i = 1, . . . , q. (3.21)

In order to prove ourmain convergence theorem, we first prove a technical lemma.

Lemma 3.4.5 Consider the same assumptions as Theorem 3.4.6 below. Addition-
ally, assume that for i ∈ I+0 ∪ I00, lim

k→∞ η
G,k
i = lim

k→∞ η
�,k
i F1i (xk; tk) = 0 and for k

sufficiently large F1i (xk; tk)≥−F2i (xk; tk). Then,

lim
k→∞

|η�,k
i t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk)|
‖λk‖∞

= 0.

As a consequence, lim
k→∞

λ
G,k
i

‖λk‖ = 0.

Proof Without loss of generality, let us assume that limk→∞ η
�,k
i F2i (xk; tk) �=

0, otherwise we are done. Since ‖λk‖∞ ≥ |λH,k
i |, by (3.15) and limk→∞ η

�,k
i

F1i (xk; tk) = 0, it is sufficient to show that

lim
k→∞

|η�,k
i t2,kθ ′

t1,k (Gi (xk))F2i (xk; tk)|
|ηH,k

i − η
�,k
i F2i (xk; tk)|

= 0. (3.22)

We now consider two cases: either limk→∞ η
H,k
i = 0 or limk→∞ η

H,k
i �= 0.

• If lim
k→∞ η

H,k
i = 0. Then, the left-hand side in (3.22) is equal to lim

k→∞ t2,kθ ′
t1,k (Gi (xk)),

which goes to zero by Lemma 3.3.4 as t2,k = o(t1,k).
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• Consider the case, lim
k→∞ η

H,k
i �= 0. Dividing by t̄k in the complementarity condition

in (3.19) implies Hi (xk) ∼ −t̄k as εk = o(t̄k). Thus, Hi (xk) < 0 for k sufficiently
large.
We prove that lim

k→∞ η
�,k
i F2i (xk; tk) = 0. Dividing by Hi (xk) in the complementar-

ity condition in (3.20) gives for Hi (xk) ∼ −t̄k that

∣
∣∣∣η

�,k
i F2i (x

k; tk)
(
1 − t2,kθt1,k (Gi (xk))

Hi (xk)

)∣
∣∣∣ ≤ εk

|Hi (xk)| → 0, (3.23)

as εk = o(t̄k). However, lim
k→∞

t2,kθt1,k (Gi (xk ))

Hi (xk )
�= 1, otherwise Gi (xk) ≤ 0 and

|Gi (xk)| ≥ |Hi (xk)| would yield lim
k→∞

t2,kθt1,k (Gi (xk ))

Hi (xk )
≤ lim

k→∞
t2,kθt1,k (Hi (xk ))

Hi (xk )
= 0 as θ

is non-decreasing and t2,k = o(t1,k). Therefore, (3.22) follows as (3.23) implies
lim
k→∞ η

�,k
i F2i (xk; tk) = 0. �

The following result proves convergence of the butterfly relaxation in this context.

Theorem 3.4.6 Given the three sequences {tk}, {t̄k}, {εk} decreasing to zero and
satisfying (3.8). Assume that εk = o(max(|G(xk)|, |H(xk)|)), εk = o(t̄k), and t2,k =
o(t1,k). Let {xk, ηg,k, ηh,k, ηG,k, ηH,k, η�,k} be a sequence of εk-KKT points of (RB

t,t̄ )

with xk → x∗ such that MPCC-GMFCQ holds at x∗. Then, x∗ is an M-stationary
point.

The notation εk = o(max(|G(xk)|, |H(xk)|)) means here that for all i = 1, . . . , q,
εk = o(max(|Gi (xk)|, |Hi (xk)|)). For two sequences {gk}, {hk} with the same signs
for k sufficiently large, we also denote gk ∼ hk whenever limk→∞ gk/hk = 1.

Proof Proceeding in the same way as Theorem 3.4.2, we verify that

(i) x∗ ∈ Z , lim
k→∞ ∇LMPCC (xk, λk) = 0, lim

k→∞ λ
g,k
i = 0,∀i /∈ Ig(x∗),

(ii) lim
k→∞ λ

G,k
i /‖λk‖∞ = 0,∀i ∈ I+0, lim

k→∞ λ
H,k
i /‖λk‖∞ = 0,∀i ∈ I0+,

(iii) lim
k→∞ λ

G,k
i λ

H,k
i /‖λk‖2∞ = 0 or lim

k→∞ λ
G,k
i /‖λk‖∞

> 0, lim
k→∞ λ

H,k
i /‖λk‖∞ > 0,∀i ∈ I00.

Clearly (i) follows from the stationarity of xk as εk ↓ 0.
Let us now show that for indices i ∈ I+0, lim

k→∞ λ
G,k
i /‖λk‖∞ = 0. The opposite

case for indices i ∈ I0+ would follow in a completely similar way. So, let i be in
I+0.

The complementarity condition in (3.18) gives that lim
k→∞ η

G,k
i = 0, since εk ↓ 0

and Gi (xk) + t̄k → Gi (x∗) > 0.
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Note that we are necessarily in the case F1i (xk; tk) + F2i (xk; tk) ≥ 0, as
F1i (xk; tk) + F2i (xk; tk) → Gi (x∗) > 0.6 In this case, we get lim

k→∞ F1i (xk; tk)η�,k
i = 0

since
∣∣∣η�,k

i �B
i (G(xk), H(xk); tk)

∣∣∣ ≤ εk by (3.20) and lim
k→∞ F2i (xk; tk) > 0.

Since lim
k→∞ F1i (xk; tk)η�,k

i = lim
k→∞ η

G,k
i = 0, applying Lemma 3.4.5, we obtain

that lim
k→∞ λ

G,k
i /‖λk‖∞ = 0 for i ∈ I+0.

We now consider indices i ∈ I00. Without loss of generality suppose that
max(|Gi (xk)|, |Hi (xk)|) = |Gi (xk)|, and so lim

k→∞
εk

|Gi (xk )| = 0. Let α (possibly infi-

nite) be such that

α := lim
k→∞

|Gi (xk)|
|t2,kθt1,k (Hi (xk))| . (3.24)

It should be noticed that α > 1, otherwise for k sufficiently large there would exist
a constant C such that |Gi (xk)| ≤ C |t2,kθt1,k (Hi (xk))|, which is a contradiction with
|Gi (xk)| ≥ |Hi (xk)| and t2,k = o(t1,k).

Another consequence is that F2i (xk; tk) ∼ Gi (xk), since F2i (xk; tk) ≤ Gi (xk) +
t2,kθt1,k (|Gi (xk)|) and by definition of functions θs.

We consider separately the two cases: (a) F1i (xk; tk) + F2i (xk; tk) ≥ 0, and (b)
F1i (xk; tk) + F2i (xk; tk) < 0.

(a) When F1i (xk; tk) + F2i (xk; tk) ≥ 0, dividing by |Gi (xk)| in the complementarity
condition in (3.20) yields

εk

|Gi (xk)| ≥
∣∣∣∣η

�,k
i F1i (x

k; tk)
(
1 − t2,kθt1,k (Hi (xk))

Gi (xk)

)∣∣∣∣ ,

so η
�,k
i F1i (xk; tk) → 0 since α > 1.

Now, consider two cases either {ηG,k
i } tends to zero or not. In the former case,

the conclusion of case a) would follow by applying Lemma 3.4.5.
So, let lim

k→∞ λ
G,k
i �= 0. Dividing by Gi (xk) in the complementarity condition in

(3.18) gives |ηG,k
i (1 + t̄k/Gi (xk))| ≤ εk/|Gi (xk)| and so Gi (xk) ∼ −t̄k .

Besides, it can be noted that for k sufficiently large there is no constant C > 0
such that Hi (xk) ≤ Cεk as this would lead to a contradiction with F1i (xk; tk) +
F2i (xk; tk) ≥ 0. Indeed, as Hi (xk) ≥ Gi (xk), we would obtain

F1i (x
k; tk) + F2i (x

k; tk) ≤ Gi (x
k) + Cεk − 2t2,kθt1,k (Gi (x

k)),

which is negative for k sufficiently large by definition of θ and εk = o(Gi (xk)).
So, εk = o(Hi (xk)) and Hi (xk) > 0. Thus, dividing by Hi (xk) in the com-
plementarity condition (3.20), we obtain lim

k→∞ η
�,k
i F2i (xk; tk) = 0. This con-

6 We remind that F1i (xk ; tk ) = Hi (x) − t2,kθt1,k (Gi (x)) and F2i (x
k ; tk ) = Gi (x) − t2,kθt1,k (Hi (x)).

Thus, limk→∞(F2i (xk; tk), F1i (xk; tk)) = (Gi (x∗), 0) and Gi (x∗) > 0.
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cludes case a), since lim
k→∞ η

�,k
i F2i (xk; tk) = lim

k→∞ η
�,k
i F1i (xk; tk) = 0 gives that

(λ
G,∗
i , λ

H,∗
i ) = lim

k→∞(ηG,k, ηH,k) ≥ 0.

(b) When F1i (xk; tk) + F2i (xk; tk) < 0, the complementarity condition in (3.20)

gives
∣∣
∣η�,k

i F2i (xk; tk)2
∣∣
∣ ≤ 2εk , and dividing by |Gi (xk)| yields

∣
∣∣∣η

�,k
i F2i (x

k; tk)
(
1 − t2,kθt1,k (Hi (xk))

Gi (xk)

)∣
∣∣∣ ≤ 2εk

|Gi (xk)| .

This implies that lim
k→∞ η

�,k
i F2i (xk; tk) = 0, by assumption on εk and α > 1. Now,

by definition of functions θs and the triangle inequality, we get

∣∣F1i (x
k; tk) + F2i (x

k; tk)
∣∣ ≤ 2|Gi (x

k)| + 2t2,kθt1,k (|Gi (x
k)|) ∼ 2|Gi (x

k)|. (3.25)

Using that F2i (xk; tk) ∼ Gi (xk) as noticed in the beginning of case (iii), we
obtain that lim

k→∞ η
�,k
i F2i (xk; tk) = lim

k→∞ η
�,k
i Gi (xk) = 0. So,multiplying by η

�,k
i

and going to the limit in (3.25) yields lim
k→∞ η

�,k
i

(
F1i (xk; tk) + F2i (xk; tk)

) = 0.

As a consequence, it holds that lim
k→∞(λ

G,k
i , λ

H,k
i )/‖λk‖∞ = lim

k→∞(ηG,k, ηH,k) ≥
0.

All in all, we completed cases (a) and (b), so (iii) is satisfied.
Finally, since (i)–(iii) are satisfied, we conclude as in Theorem 3.4.2 so that under

MPCC-GMFCQ the sequence {λk} is bounded and x∗ is an M-stationary point. �

The assumption in Theorem 3.4.6 is not entirely satisfactory since the sequence of
parameter εk depends on the iterates. However, this is in the same vein as the existing
results in [7, 21]. Further research may try to exploit this weak point to propose more
adequate conditions.

Another benefit of considering approximate stationary points is that they may
exist even though the assumptions presented in the previous section are not satisfied;
see [3, 4].

The following example, from [19], shows that the butterfly relaxation with t2,k =
o(t1,k)may converge to an undesirable A-stationary point without the hypothesis that
εk = o(max(|G(xk)|, |H(xk)|).
Example 3.7 Consider the problem

min
x∈R2

x2 − x1 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

Let t2,k = t1,k2 and choose any positive sequences {t1,k} and {εk} such that t1,k, εk →
0. Consider the following ε-stationary sequence

xk = (εk, εk/2)
T , ηG,k = 0, ηH,k = 1 − η�,k(t1,k

2θt1,k

(εk

2

)
F1(x

k; tk) − F2(x
k; tk))
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and

η�,k = 1

t1,k2θt1,k (εk) F2(xk; tk) − F1(xk; tk) .

This sequence converges to x∗ = (0, 0), which is an A-stationary point.

The ε-feasible set of the butterfly relaxation is similar to the relaxation from [31].
Therefore, it is not surprising that we can only expect to converge to a C-stationary
point without strong hypotheses. Those issues clearly deserve a specific study that
is left for further research.

3.5 Numerical Results

In this section, we focus on the numerical implementation of the butterfly relaxation.
Our aim is to compare the new method with the existing ones in the literature and
to show some of its features. This comparison uses the collection of test problems
MacMPEC [22]. This collection has been widely used in the literature to compare
relaxation methods as in [16, 17, 33]. The test problems included in MacMPEC are
extracted from the literature and real-world applications.

3.5.1 On the Implementation of the Butterfly Relaxation

Practical implementation could consider a slightly different model, by skipping the
relaxation of the positivity constraint and adding a new parameter t3 in order to shift
the intersection of both wings to the point (G(x), H(x)) = (t3, t3). This can be done
by redefining F1(x; t1, t2, t3) and F2(x; t1, t2, t3) such that

F1i (x; t1, t2, t3) = Hi (x) − t3 − t2θt1(Gi (x) − t3),

F2i (x; t1, t2, t3) = Gi (x) − t3 − t2θt1(Hi (x) − t3).

Even if we did not give any theoretical proof regarding this modified system, this
modification does not alter the behavior of the butterfly relaxation. This formulation
is clearly an extension of the relaxation (3.4).

The numerical comparison of the butterfly relaxation with other existing methods
considers three schemes:

1. B(t2=t1): t3 = 0, t2 = t1;
2. B(t2=t13/2): t3 = 0, t2 = t13/2;
3. B(t3=t2,2t2=t1): t3 = t2, 2t2 = t1.

In all these tests, we fixed t̄ = 0. Our tests concern many variants, not all of which
were covered by our analysis, but they give a broader insight into the new relaxations.
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3.5.2 Comparison of the Relaxation Methods

We provide in this section and Algorithm 1 somemore details on the implementation
and the comparison between relaxation methods. It is to be noted that we aim to
compare the methods and so no attempt to optimize any method has been carried
out.We use 101 test problems fromMacMPEC, which omit the problems that exceed
the limit of 300 variables or constraints and some problems with the evaluation error
of the objective function or the constraints.

Algorithm 1 is coded in Matlab and uses the AMPL API. Rtk denotes the relaxed
non-linear program associated with a generic relaxation, where except the butterfly
methods, the parameter t1,k does not play any role. At each step, we compute xk+1

as a solution of Rtk starting from xk . Therefore, at each step, the initial point is more
likely to be infeasible for Rtk . The iterative process stops when t2,k and t1,k are smaller
than some tolerance, denoted by pmin which is set as 10−15 here, or when the solution
xk+1 of Rtk is considered an ε-solution of (3.1). To consider xk+1 as a ε-solution,
with ε set as 10−7, we check three criteria:

(a) Feasibility of the last relaxed non-linear program:

ν f (x) := max(−g(x), |h(x)|,−�(x));

(b) Feasibility of the complementarity constraint: νcomp(x) := min(G(x), H(x))2;
(c) The complementarity between the Lagrange multipliers and the constraints of

the last relaxed non-linear program:

νc(x) := ∥∥g(x) ◦ ηg, h(x) ◦ ηh,G(x) ◦ ηG, H(x) ◦ ηH ,�B(x) ◦ η�
∥∥∞ .

Obviously, it is hard to ask a tighter condition on the complementarity constraint
since the feasibility only guarantees that the product component-wise is less than ε.
Using these criteria, we define a measure of optimality

optimal(x) := max
(
ν f (x), νcomp(x), νc(x)

)
.

A fourth criterion could be the dual feasibility, which is the norm of the gradient of
the Lagrangian. However, solvers like SNOPT or MINOS do not use this criterion
as a stopping criterion, but use the gradient of the Lagrangian scaled by the norm of
the Lagrange multiplier. One reason among others to discard such a criterion could
be numerical issues implied by the degeneracy in the KKT conditions. In the case
of an infeasible or unbounded sub-problem Rtk , the algorithm stops and returns a
certificate.
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Data:
starting vector x0; initial relaxation parameter t0; update parameter
(σt1 , σt2) ∈ (0, 1)2; pmin the minimum parameter value; ε the precision
tolerance ;

1 Begin ;
2 Set k := 0 ;
3 while max(t2,k, t1,k) > pmin and optimal(xk) > ε do
4 xk+1 solution of Rt1,k ,t2,k with xk initial point;
5 (t1k+1, t2k+1) := (t1,kσt1 , t2,kσt2) ;
6 return: fopt the optimal value at the solution xopt or a decision of infeasibility
or unboundedness.

Algorithm 1: Basic Relaxation methods for (3.1), with a relaxed non-linear
program Rtk .
Step 4 inAlgorithm 1 is performed using three different solvers accessible through

AMPL [13], which are SNOPT 7.2-8 [14], MINOS 5.51 [25], and IPOPT 3.12.4
[34] with their default parameters. A previous similar comparison in the literature in
[16] only considered SNOPT to solve the sub-problems. We compare the butterfly
schemes with the most popular relaxations SS from [30] and (3.4). We also take into
account the results of the non-linear programming solver without specific MPCC
tuning denoted by NL.

In order to compare the various relaxation methods, we need to have a coher-
ent use of the parameters. In a similar way as in [16], we consider the value of
the “intersection between G and H”, which is (t, t) for (3.4) and (3.7), (

√
t,

√
t)

for SS. Then, we run a sensitivity analysis on several values of the parame-
ters T ∈ {100, 25, 10, 5, 1, 0.5, 0.05} and S ∈ {0.1, 0.075, 0.05, 0.025, 0.01},which
corresponds to t0 and σt as described in Table 3.1. In [16], the authors consider as a
stopping criterion the feasibility of the last non-linear parametric program in particu-
lar by considering the complementarity constraint by the minimum component-wise.
Table 3.2 provides our result with this criterion. We report elementary statistics by
considering the percentage of success for each set of parameters. A problem is con-
sidered solved if criteria (a) and (b) are satisfied.

First, we see that the method NL is giving decent results. It is not a surprise,
as was pointed out in [12]. Practical implementation of relaxation methods would
select the best choice of parameters so that we focus most of our attention on the line
“best”. In all cases, the relaxations manage to improve or at least equal the number of
problems solved byNL. By using SNOPT, KS, and butterfly with t2 = t13/2 methods,
we get 1% of improvement, and with IPOPT, the method butterfly with t2 = t13/2 is

Table 3.1 Parameter links among the methods

Relaxation NL SS KS Butterfly

t0 none T 2 T T

σt none S2 S S
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Table 3.2 Sensitivity analysis for MacMPEC test problems considering the feasibility of (3.1).
Results are a percentage of success. Best: percentage of success with the best set of parameters
(independent of the problem);worst: percentage of successwith theworst set of parameters; average:
average percentage of success among the distribution of (T, s); std: standard deviation

Solver
SNOPT

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 97.03 97.03 98.02 97.03 97.03 98.02

Average 97.03 95.02 94.71 95.39 93.89 94.88

Worst 97.03 91.09 91.09 92.08 91.09 91.09

Std 0 1.64 2.09 1.50 1.97 2.42

Solver
MINOS

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 89.11 94.06 93.07 90.10 95.05 89.11

Average 89.11 91.20 90.89 83.54 91.06 81.92

Worst 89.11 87.13 87.13 77.23 86.14 76.24

Std 0 1.50 1.44 2.81 2.15 2.89

Solver
IPOPT

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 98.02 99.01 98.02 99.01 98.02 100

Average 98.02 98.16 96.38 94.03 93.89 94.79

Worst 98.02 95.05 93.07 89.11 88.12 88.12

Std 0 0.97 1.99 2.62 2.80 3.60

the only one that attains 100%. The relaxation methods seem to make a significant
improvement over NL withMINOS. In this case, it is clear that the butterfly methods
benefit from the introduction of the parameter s, and themethodwith t3 = t2, 2t2 = t1
is very competitive.

Our goal by solving (3.1) is to compute a local minimum. The results using the
local minimum criterion defined above as a measure of success are given in Table
3.3. Once again, we provide percentages of success.

In comparison with Table 3.2, this new criterion appears to be more selective.
Independent of the solver, the relaxation methods with some correct choices of
parameters provide improved results. Using SNOPT as a solver, the methods KS and
butterfly give the highest number of results. Themethod butterflywith t2 = t13/2 even
improved the number of problems that SNOPT alone solved on average. Similarly,
as in the previous experiment, the butterfly method benefits from the introduction of
the parameter s when using MINOS as a solver.
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Table 3.3 Sensitivity analysis for MacMPEC test problems considering the optimality of (3.1).
The results are percentages of success. Best: percentage of success with the best set of parameters;
worst: percentage of success with the worst set of parameters; average: average percentage of
success among the distribution of (T, s); std: standard deviation

Solver
SNOPT

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 92.08 94.06 96.04 96.04 97.03 96.04

Average 92.08 90.78 91.17 92.08 90.04 92.33

Worst 92.08 83.17 86.14 87.13 82.18 87.13

Std 0 3.15 2.59 2.45 2.86 2.77

Solver
MINOS

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 85.15 94.06 93.07 88.11 94.06 87.13

Average 85.15 90.94 90.18 81.92 90.04 80.11

Worst 85.15 87.13 86.14 76.23 85.15 74.26

Std 0 1.50 1.62 2.65 2.31 2.95

Solver
IPOPT

NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

Best 91.09 93.07 93.07 94.06 93.07 94.06

Average 91.09 91.82 89.84 89.05 88.80 89.02

Worst 91.09 90.10 86.14 84.16 84.16 81.19

Std 0 1.14 2.19 3.09 2.72 3.86

3.6 Concluding Remarks

This chapter proposes a new family of relaxation schemes for the mathematical
program with complementarity constraints. We prove convergence of the method in
the general case and show that a specific relation between the parameters allows the
method to converge to the desired M-stationary point. Additionally, in the particular
case where MPCC-LICQ holds, S-stationary conditions can be expected to hold at
a local minimum. We prove that in the affine case, the butterfly relaxation method
converges to such a point without assuming any second-order conditions or strict
complementarity-type conditions, which is an improvement over other methods.

We provide a complete numerical study with remarks regarding the implementa-
tion as well as a comparison with existing methods in the literature. These numerical
experiments show that the butterfly schemes are very competitive.

Future researchwill focus on themain difficulty regarding relaxation schemes that
are the convergence of approximate stationary sequences. A discussion regarding the
above problem has been initiated in [7, 21] and appeal for further study.
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Appendix

3.7 Proof of a Technical Lemma

In the proof of Theorem 3.4.4 and Theorem 3.4.5, we use the following lemma that
links the gradients of G and H with the gradients of F1(x; t) and F2(x; t).
Lemma 3.7.6 Let (I, I c, I−) be any partition of I00

GH (x; t). Assume that the gradi-
ents

{∇gi (x) (i ∈ Ig(x)), ∇hi (x) (i = 1, . . . , p),

∇Gi (x) (i ∈ IG(x; t̄) ∪ I00
GH (x; t) ∪ I+0

GH (x; t)),
∇Hi (x) (i ∈ IH (x; t̄) ∪ I00

GH (x; t) ∪ I0+
GH (x; t))}

are linearly independent. Then, LICQ holds at x for (3.13).

Proof We show that the gradients of the constraints of (3.13) are positively linearly
independent. For this purpose, we prove that the trivial solution is the only solution
to the equation

0 =
∑

i∈Ig(x)

η
g
i ∇gi (x) +

p∑

i=1

ηh
i ∇hi (x) −

∑

i∈IG (x;t̄)
ηG
i ∇Gi (x) −

∑

i∈IH (x;t̄)
ηH
i ∇Hi (x)

+
∑

i∈I+0
GH (x;t)∪I0+

GH (x;t)
η�
i ∇�B

i (G(x), H(x); t)

+
∑

i∈I00
GH (x;t)

(
ν
F1(x;t)
i − μ

F1(x;t)
i + δ

F1(x;t)
i

)
∇F1i (x; t)

+
(
−ν

F2(x;t)
i + μ

F2(x;t)
i + δ

F2(x;t)
i

)
∇F2i (x; t),

where supp(ηg) ⊆ Ig(x), supp(ηG) ⊆ IG(x; t̄), supp(ηH ) ⊆ IH (x; t̄), supp(η�) ⊆
I+0
GH (x; t) ∪ I0+

GH (x; t), supp(νF1(x;t)) ⊆ I , supp(νF2(x;t)) ⊆ I , supp(μF1(x;t)) ⊆ I c,
supp(μF2(x;t)) ⊆ I c, supp(δF1(x;t)) ⊆ I−, and supp(δF2(x;t)) ⊆ I− where I ∪ I c ∪
I− = I00

GH (x; t) and I, I c, I− have a two-by-two empty intersection.
By definition of F1(x; t) and F2(x; t), it holds that

∇F1i (x; t) = ∇Hi (x) − t2θ
′
t1(Gi (x))∇Gi (x),

∇F2i (x; t) = ∇Gi (x) − t2θ
′
t1(Hi (x))∇Hi (x).

The gradient of �B(G(x), H(x); t) is given by Lemma 3.3.3.
We now replace those gradients in the equation above

0 =
∑

i∈Ig(x)

λ
g
i ∇gi (x) +

p∑

i=1

λh
i ∇hi (x) +

q∑

i=1

λG
i ∇Gi (x) +

q∑

i=1

λH
i ∇Hi (x),
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with

λGi = −ηGi + η�
i F1i (x; t) −

(
η�
i F2i (x; t)+ν

F1(x;t)
i −μ

F1(x;t)
i +δ

F1(x;t)
i

)
t2θ

′
t1(Gi (x))

− ν
F2(x;t)
i + μ

F2(x;t)
i + δ

F2(x;t)
i ,

λH
i = −ηHi + η�

i F2i (x; t) −
(
η�
i F1i (x; t)−ν

F2(x;t)
i +μ

F2(x;t)
i +δ

F2(x;t)
i

)
t2θ

′
t1(Hi (x))

+ ν
F1(x;t)
i − μ

F1(x;t)
i + δ

F1(x;t)
i .

By linear independence assumption, we obtain

ηg = 0, ηh = 0, ηG = 0, ηH = 0, η�
i = 0 ∀i ∈ I0+GH (x; t) ∪ I+0

GH (x; t),
− ν

F1(x;t)
i t2θ

′
t1 (Gi (x)) − ν

F2(x;t)
i = 0 and ν

F2(x;t)
i t2θ

′
t1(Hi (x)) + ν

F1(x;t)
i = 0, ∀i ∈ I,

μ
F1(x;t)
i t2θ

′
t1(Gi (x))+μ

F2(x;t)
i = 0 and −μ

F2(x;t)
i t2θ

′
t1(Hi (x)) − μ

F1(x;t)
i = 0,∀i ∈ I c,

−δ
F1(x;t)
i t2θ

′
t1(Gi (x))+δ

F2(x;t)
i = 0 and −δ

F2(x;t)
i t2θ

′
t1(Hi (x))+δ

F1(x;t)
i = 0, ∀i ∈ I−.

So, it follows for i ∈ I− that

δ
F2(x;t)
i = δ

F1(x;t)
i t2θ

′
t1(Gi (x)) and δ

F1(x;t)
i = δ

F2(x;t)
i t2θ

′
t1(Hi (x)).

So δ
F1(x;t)
i = δ

F2(x;t)
i = 0, since i ∈ I00

GH (x; t) gives

t2θ
′
t1(Gi (x))t2θ

′
t1(Hi (x)) = t2θ

′
t1(0)t2θ

′
t1(0) < 1

by properties of θ and (3.8). Similarly, we get μ
F1(x;t)
i = μ

F2(x;t)
i = ν

F2(x;t)
i =

ν
F1(x;t)
i = 0. �
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Chapter 4
Copositive Optimization and Its
Applications in Graph Theory

S. K. Neogy and Vatsalkumar N. Mer

Abstract Recently, copositive optimization has received a lot of attention to the
Operational Research community, and it is rapidly expanding and becoming a fertile
field of research. In this chapter, we demonstrate the diversity of copositive for-
mulations in different domains of optimization: continuous, discrete, and stochastic
optimization problems. Further, we discuss the role of copositivity for local and
global optimality conditions. Finally, we talk about some applications of copositive
optimization in graph theory and game theory.

Keywords Nonconvex quadratic program · Completely positive program ·
Fractional quadratic optimization · Lifted problem · Graph theory · Maximum
weight clique problem

4.1 Introduction

Copositive matrices appear in various applications in mathematics, and especially,
in the characterization of the solution set of constrained optimization problems and
the linear complementarity problem. Recently, Copositive optimization has been an
object of research because many NP-hard combinatorial problems have a representa-
tion in this domain. Copositive optimization deals with minimizing a linear function
in matrix variables subject to linear constraints and the constraint that the matrix
should be in the convex cone of copositive matrices. In what follows, we make use
of the following notations.
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Sn Set of symmetric matrices of order n
Cn Set of copositive matrices of order n
C∗n Set of comp. positive matrices of order n
E Matrix of all-ones
conv(M) Convex hull of a set M
Copositive cone Cn {A ∈ Sn | xT Ax ≥ 0 ∀x ∈ Rn }
Completely positive cone C∗n {BBT ∈ Sn | B ≥ 0}
For an arbitrary givn cone K ⊆ S, dual cone K∗ = {∑n

i=1 ai
T ai | ai ∈ Rn+ ∀ i}

{A ∈ S |〈A, B〉 ≥ 0, ∀ B ∈ K}
Recession cone of A, rec(A) := {y ∈ R

n : ∀x ∈ A, ∀λ ≥ 0 : x + λy ∈ A}
Inner Product 〈A, B〉 trace〈B, A〉 = ∑n

i, j=1 ai j bi j

Consider the standard quadratic problem (stQP)

min xT Qx s.t. eT x = 1, x ≥ 0.

where e denotes the all-ones vector. This optimization problem asks for theminimum
of a (not necessarily convex) quadratic function over the standard simplex� = {x ∈
R

n+ : eT x = 1}.
Note that 〈xT Qx〉 = 〈Q, xxT 〉 E is square matrix consisting entirely of unit

entries, so that xT Ex = (eT x)2 = 1 on �.

So eT x = 1 transforms to 〈E, xxT 〉 = 1.
Hence, the problem stQP can be written as

min〈Q, X〉

s. t. 〈E, X〉 = 1,

X ∈ C∗n.

More generally, a primal-dual pair in copositive optimization (COP) is of the
following form:

min〈C, X〉 (4.1)

s.t. 〈Ai , X〉 = bi (i = 1, . . . ,m)

X ∈ Cn,

where Cn = {A ∈ Sn : xT Ax ≥ 0 ∀ x ∈ R
n+} is the cone of copositive matrices.

Bundfuss and Dür [8] developed an efficient algorithm to solve the optimization
problem (4.1) over the copositive cone using iteratively polyhedral inner and outer
approximations of the copositive cone.

Associated with problem (4.1), there is a dual problem which involves the con-
straint that the dual variable lies in the dual cone of Cn, that is, the convex cone C∗n
of completely positive matrices: C∗n = conv{xxT : x ∈ R

n+}
The dual of (4.1) is
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max
m∑

i=1

bi yi (4.2)

s.t. C −
m∑

i=1

yi Ai ∈ C∗n, yi ∈ R,

where C∗n = conv{xxT : x ∈ R
n+} is the cone of completely positive matrices.

Clearly, (4.1) and (4.2) are convex optimization problems since both Cn and C∗n
are convex cones. Note that KKT optimality conditions hold if Slater’s condition
is satisfied and imposing a constraint qualification guarantees strong duality, i.e.,
equality of the optimal values of (4.1) and (4.2). It is well known that most com-
mon constraint qualification assume that both problems are feasible and one of them
strictly feasible.

Copositive programming can be visualized as a convexification approach for non-
convex quadratic programs. In many cases, nonconvex optimization problems admit
exact copositive formulation. In this chapter, we show that some nonconvex quadratic
programming problems that arise in graph theory can be converted into a convex
quadratic problem. The first account of copositive optimization goes back to [4],
which established a copositive representation of a subclass of particular interest,
namely, in standard quadratic optimization (StQP).

4.1.1 Quadratic Programming Problem with Binary and
Continuous Variables

Burer [6] considered an extremely large class of nonconvex quadratic programs with
a mixture of binary and continuous variables, and showed that they can be expressed
as completely positive program (CPPs).

We consider the following problem:

min xT Qx + 2cT x (4.3)

s.t. aT
i x = bi (i = 1, . . . ,m)

x ≥ 0,

x j ∈ {0, 1} ∀ j ∈ B where B ⊆ {1, . . . , n}.

Burer [6] showed that (4.3) is equivalent to the following linear problem over the
cone of completely positive matrices.
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min 〈Q, X〉 + 2cT x (4.4)

s.t. aT
i x = bi (i = 1, . . . ,m)

〈aiaT
i , X〉 = b2i (i = 1, . . . ,m)

x j = X j j ( j ∈ B)
[
1 x
x X

]

∈ C∗n+1.

This is a nice result since a nonconvex quadratic integer problem is equivalently
written as a linear problem over a convex cone. Note that the dual problem of a
completely positive program is an optimization problem over the cone of copositive
matrices. Clearly, both problem classes are NP-hard since they are equivalent to an
integer programming problem.Bundfuss andDür [8] posed an open questionwhether
problems with general quadratic constraints can similarly be restated as completely
positive problems. Bomze [2] demonstrated the diversity of copositive formulations
in various domains of optimization, namely, continuous and discrete, deterministic
and stochastic.

4.1.2 Fractional Quadratic Optimization Problem

Consider the fractional quadratic optimization problem

min
x

f (x) = min
x

xTCx + 2cT x + γ

xT Bx + 2bT x + β
: Ax = a, x ∈ R

n
+, (4.5)

where B is positive semidefinite matrix and C = CT ∈ R
n×n , {b, c} ⊂ R

n , A ∈
R

m×n , a ∈ R
m and β, γ ∈ R.

Now define the symmetric (n + 1) × (n + 1) matrices

Ã =
[

aT a −at A
−AT a AT A

]

, B̃ =
[
β bT

b B

]

, C̃ =
[
γ ct

c C

]

. We further assume that the

problem in (4.5) is well defined. Amral et al. [1] observed that the problem (4.5) can
be written as the completely positive problem:

min{< C̃, X > :< B̃, X >= 1, < Ã, X >= 0, X ∈ C∗n+1}.

The above problem occurs in many engineering applications. For further details,
see [2] and references therein.



4 Copositive Optimization and Its Applications in Graph Theory 73

4.1.3 More on Nonconvex Quadratic Programming Problems

Burer [7] generalized the sign constraints x ∈ R
n+ to arbitrary cone constraints x ∈ K ,

where K is a closed, convex cone, and studied the following (nonconvex) quadratic
cone-constrained problem.

min xT Qx + 2cT x (4.6)

s.t. Ax = b

x ∈ K .

Note that the dimension of the problem is increased by one by passing from the
cone K ⊆ R

n to the cone K̂ = R+ × K . Let CK̂ = conv{zzT : z ∈ K}, the dual

cone C∗
K̂ of all K̂ -copositive (n + 1) × (n + 1) matrices.

In [2, 7, 13], it has been shown that (4.6) is equivalent to the (generalized) com-
pletely positive problem of the following form.

min 〈Q̃,Y 〉 + 2cT x (4.7)

s.t. Ax = b

(AX AT )i i = b2i (i = 1, . . . ,m)

Y =
[
1 x
x X

]

∈ C∗
K̂ ,

where Q̃ =
[
0 cT

c Q

]

.

4.1.4 Quadratic Optimization Problem and the Concept of
Lifted Problem

Nguyen [17] presents a general concept of lifting a nonconvex quadratic optimiza-
tion problem into an equivalent convex optimization problem with matrix variables.
Further, they apply this lifting concept to a class of quadratic optimization problem
with linear inequality and mixed binary constraints.

Nguyen [17] consider the following quadratic optimization problem (QP)

min xT Qx (4.8)

s.t. x ∈ F(QP),

where Q ∈ Sn and F(QP) is some non-empty feasible set in Rn .
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Consider the following subsets of Sn .

C := conv{xxT : x ∈ F(QP)},

R := conv{yyT : y ∈ recF(QP)}.

The optimization problem

min 〈Q, X〉 (4.9)

s.t. X ∈ C + R,

is called the lifted problem according to the original quadratic problem (4.8).

Proposition 4.1 (Proposition 2.2, [17]) Assume that an optimal solution of (4.8)
exists. Then the problem (4.8) and (4.9) are equivalent in the sense that they have
the same optimal value, and any optimal solution of (4.9) is a convex combination
of matrices xi (xi )T , where xi are optimal solution of (4.8).

Note that the original Problem (4.8) of minimizing is not necessarily a convex
quadratic function over a not necessarily convex set. However, the lifted problem
(4.9) is a convex optimization problem. Therefore, as every local optimal solution
obtained by solving (4.9) is a global one, we can obtain global optimal solutions for
(4.8) by computing local optimal solutions of (4.9).

4.1.5 Quadratic Optimization Problem and the Role of
Special Matrix Classes

In this section, we discuss about some matrix classes that plays a role in quadratic
optimization problem. Consider QP(q, A) : [min xT (Ax + q); x ≥ 0, Ax + q ≥
0]. We denote by S1(q, A), the set of optimal solutions of QP(q, A) and feasible
solutions by F(q, A) = {x : Ax + q ≥ 0, x ≥ 0}.Applying the Farkas-Lemma, the
feasibility is equivalent to the following condition:

x ≥ 0, AT x ≤ 0 ⇒ qT x ≥ 0.

Let us consider the polyhedral convex cone

CA = {x ≥ 0 | AT x ≤ 0}

and its polar cone
C∗

A = {x∗ | xT x∗ ≤ 0 ∀x ∈ CA}.
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Thus QP(q, A) is feasible iff −q ∈ C∗
A.

S1(q, A) �= ∅ if and only if − q ∈ C∗
A.

Assume that x∗ ∈ S1(q, A). Then in view of KKT-condition for optimality there
exist u, v ∈ R

n such that

(A + AT )x∗ + q − AT u − v = 0, (4.10)

x∗, u, v, Ax∗ + q ≥ 0, (4.11)

x∗T v = uT (Ax∗ + q) = 0. (4.12)

We denote by S2(q, A) the set of points for which such u and v exist. S2(q, A) is
called the set of KKT-stationary points. We are interested in conditions implying that
S2(q, A) = S1(q, A).

In what follows, we introduce the following matrix classes. A is said to be column
sufficient if for all x ∈ R

n the following implication holds:

xi (Ax)i ≤ 0 ∀ i ⇒ xi (Ax)i = 0 ∀ i.

A is said to be row sufficient if AT is column sufficient. A is sufficient if A
and AT are both column sufficient. We say that A is positive semidefinite (PSD) if
xT Ax ≥ 0 ∀ x ∈ R

n and A is positive definite (PD) if xT Ax > 0 ∀ 0 �= x ∈ R
n . A

matrix A ∈ R
n×n is a positive subdefinite (PSBD) matrix if for all x ∈ R

n

xT Ax < 0 implies either AT x ≤ 0 or AT x ≥ 0.

Amatrix A ∈ R
n×n is said to be generalized positive subdefinite matrix (GPSBD)

if there exist two nonnegative diagonal matrices S and T with S + T = I such that

∀ z ∈ R
n, zt Az < 0 ⇒

{
either − Sz + T AT z ≥ 0
or − Sz + T AT z ≤ 0.

(4.13)

Amatrix A is calledmerely GPSBDmatrix (MGPSBD) if it is not a PSBDmatrix.
For details on these classes, see [9, 10, 16]. We now state the following theorem.

Theorem 4.1.1 Assume any one of the following conditions hold:

(i) A is a copositive PSBD matrix with rank(A) ≥ 2.
(ii) A is a copositive MGPSBD matrix with 0 < ti < 1 for all i.

Then A is a row sufficient matrix.

The following result is an immediate consequence of the above theorem.
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Lemma 4.1.1 Suppose A is a copositive PSBD matrix with rank(A) ≥ 2 or a
copositive MGPSBD matrix with 0 < ti < 1 for all i. For each vector q ∈ R

n, if
(x̃, ũ) is a Karush–Kuhn–Tucker (KKT) pair of the quadratic program QP(q, A) :
[min xT (Ax + q); x ≥ 0, Ax + q ≥ 0], then x̃ solves QP(q, A).

4.2 Applications of Copositive Optimization in Graph
Theory

We discuss the connection between nonconvex quadratic optimization and coposi-
tive optimization that allows the reformulation of nonconvex quadratic problems as
convex ones in a unified way. Copositive optimization is a new approach for analyz-
ing the specific, difficult case of optimizing a general nonconvex quadratic function
over a polyhedron {x : Ax = b, x ≥ 0}. In this section, we consider graph theoretic
problems and reformulate stQP discussed in Sect. 4.1 as a convex quadratic opti-
mization problem. We begin with some preliminaries on graph theory which will be
used throughout the section. A graph G is a set of points V (G) called vertices along
with a set of line segments E(G) called edges joining pairs of vertices. We say that
two vertices are adjacent if there is an edge joining them. The set of vertices adjacent
to v is the neighborhood of v which we denote as N (v). If e is an edge joining v

to one of its neighbors, we say e is incident to v. The degree of a vertex v, denoted
deg(v), is the number of vertices adjacent to v. A graph is connected if there exists
a path between every pair of distinct vertices. A closed walk is a walk with the same
starting and ending vertex. An open walk is a walk in which the start and end vertices
differ. A path is a walk in which no vertex is repeated. The distance between two
vertices v andw is the length of the shortest path between v andw.A cycle is a closed
walk in which no vertex is repeated (except that the starting and ending vertices are
the same). The diameter of a connected graph G, denoted diam(G) is the greatest
distance between any two vertices of G. A tree is a connected graph that contains
no cycles. A pendant vertex is a vertex whose degree is one. A tree on n vertices has
n − 1 edges. Let G = (V, E) be a connected graph with vertex set V (G) and edge
set E(G). Let c : V (G) → R

+ be a nonnegative vertex weight function such that
the total weight of the vertices is N =

∑

v∈V (G)

c(v).

Suppose dG(u, v) (or simply d(u, v)) denotes the usual distance (the length of the
shortest path) between u and v in G. Then the total distance of G with respect to c,
is defined by

dc(G) =
∑

{u.v}⊆V (G)

c(u)c(v)dG(u, v).

Among all nonnegative weight functions c of given weight N , we seek to find one
that maximizes dc(G).
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Let G be a graph with vertices {1, 2, . . . , n}. The distance matrix of G is defined
as D = [di j ] where di j (which we also denote as d(i, j)) is the distance between
vertices i and j. As an example, consider the tree

◦1

��
��

��
��

◦5

◦2 ◦4 ◦6

3

��������

The distance matrix of the tree is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 2 3 3
1 0 1 1 2 2
2 1 0 2 3 3
2 1 2 0 1 1
3 2 3 1 0 2
3 2 3 1 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

LetD be the distance matrix of a tree with n vertices. Let� = {x ∈ R
n+ : eT x =

1}. We consider the problem:

Problem I max xTDx subject to x ∈ �.

If T is a tree on n vertices with distance matrix D, then clearly, Problem I is
equivalent to maximizing dc(T ) over all nonnegative weight functions with given
fixed weight N .

Note that Problem I and more general versions of it have occurred in the literature
in different contexts. Apart from graph theory literature (see [11] and the references
therein) there are at least two other areas where the problem has been considered.
These areas are: (i) a generalized notion of diameter of finite metric space and (ii)
Nash equilibria of symmetric bimatrix games associated with the distance matrix
involving tree and resistance distance.

Theorem 4.2.2 Let T be a tree with vertex set {1, . . . , n} and letD be the distance
matrix of T . Then, there exists α0 such that for all α > α0, the matrix αE − D is
positive definite, where E is a m × m matrix of all-ones.

Note that D is a copositive matrix and the Problem I is a nonconvex quadratic
Programming (NQP) problem, and we may write the equivalent convex quadratic
programming (CQP) problem. By Theorem 4.2.2 there exists k such that D̃ = kE −
D is positive definite. We remark that to construct D̃, it is sufficient to find the
diameter (length of the longest path) of the tree. This can be done in polynomial
time. Note that the maximum of 1

2 x
TDx over all x ∈ � is attained at x∗ if and only
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if the minimum of 1
2 x

T D̃x over all x ∈ � is attained at x∗. Therefore, we solve
Problem II.

Problem II: min 1
2 x

T D̃x subject to Ax ≥ b and x ≥ 0 where A =
[

eTn
−eTn

]

and

and b =
[

1
−1

]

.

A vertex of a tree of degree 1 is called an end vertex (or a pendant vertex) of T .

The following result is useful for subsequent discussion.

Lemma 4.2.2 [11, Proposition 2, p. 15] Given a tree T on at least two vertices and
a real N > 0. Let c be a nonnegative weight function on V (T ) of total weight N
that maximizes dc(T ) among all such weight functions. Then, c(v) > 0 only if v is
an end vertex of T

In view of Lemma 4.2.2, we may replace D̃ in Problem II by the principal sub-
matrix D̃p of D̃ corresponding to the end vertices of the tree. The matrix A will be
modified to Ap by replacing en by ep, where p is the number of pendant vertices.
We denote this problem as

Problem III: min 1
2 y

T D̃p y subject to Apy ≥ b and y ∈ Rp
+ where Ap =

[
eTp

−eTp

]

and and b =
[

1
−1

]

.

Lemma 4.2.3 Problem II has a unique solution if and only if Problem III has a
unique solution.

We will write PD for positive definite and PSD for positive semidefinite. We
may rewrite Problem II or III as a linear complementarity problem (denoted as
LCP(q, M)) which is defined as follows. Given a real square matrix A ∈ R

n×n and
a vector q ∈ R

n, the linear complementarity problem is to find w, z ∈ R
n such

that w − Mz = q, w ≥ 0, z ≥ 0 and wT z = 0.
The Karush–Kuhn–Tucker (KKT) necessary and sufficient optimality conditions

specialized to Problem III yields the linear complementarity problem LCP(q, M)

with M =
[ D̃p −AT

p

Ap 0

]

, q =
[

0
−b

]

. If (w, z) solves LCP(q, M) where w =
[
u
v

]

and z =
[
x
y

]

then x solves Problem III. It is easy to see that M is a PSD

matrix.
Granot and Skorin-Kapov [14] extend Tardos’ results and present a polynomial

algorithm for solving strictly convex quadratic programming problems, in which, the
number of arithmetic steps is independent of the size of the numbers on the right-
hand side and the linear cost coefficients. Under the assumption that M is positive
semidefinite, Kojima et al. [15] present a polynomial time algorithm that solves
LCP(q, M) in O(n3L) arithmetic operations.

Remark 4.1 Dubey and Neogy [12] consider the question of solving the quadratic
programming problem of finding maximum of xTRx subject to x ∈ � = {x ∈ R

n+ :
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eT x = 1} and observe that this problem can be solved in polynomial time for the
class of simple graphs with resistance distance matrix (R) which are not necessarily
a tree by reformulating this problem as a strictly convex quadratic programming
problem.

4.2.1 Maximum Weight Clique Problem

We consider a copositive reformulation for the maximum weight clique problem.
Consider an undirected graphG = (V, E)with n nodes. A cliqueS is a subset of the
node set V which corresponds to a complete subgraph of G (i.e., any pair of nodes
in S is an edge in E, the edge set). A clique S is said to be maximal if there is no
larger clique containing S.

Let AG denotes the adjacency matrix of the graph G. Let f ∗ denotes the opti-
mal value of the standard quadratic optimization problem max f (x), x ∈ � where
f (x) = xT AGx . Then 1

(1− f ∗) is the size of a maximum clique. This approach has
served as the basis of many clique-finding algorithms and to determine theoretical
bounds on the maximum clique size.

In [3], this problemwas reformulated as a standard quadratic optimization problem
and in [4] standard quadratic optimization problems were, in turn, reformulated as a
copositive optimization problems. Therefore, the maximum weight clique problem
is equivalent to copositive optimization problems.

4.3 The Notion of Transfinite Diameter in a Finite Metric
Space and Copositive Optimization Problem

Let M = (X, d) be a finite metric space, where X = {x1, . . . , xn}. The distance
matrix D of the metric space is the n × n matrix D = [di j ], where di j = d(xi , x j ).

The metric space is completely described by its distance matrix. As a generalization
of the diameter, the notion of transfinite diameter has been introduced. The notion
of transfinite diameter (the maximal average distance in a multiset of points placed
in the space), is a natural generalization of the diameter. The ∞-extender is the
load vectors realizing the transfinite diameter provide strong structural information
about metric spaces. It is, therefore, natural to study conditions under which ∞-
extender are unique. The transfinite diameter of M equals the maximum of xT Dx
over x ∈ �. The vector that attains the maximum has been called ∞-extender of
M can be posed as a copositive optimization problem. In what follows, we need the
following definition to state a result related to a unique ∞-extender. The matrix A
is said to be conditionally negative definite (c.n.d.) if xT Ax ≤ 0 for all x ∈ R

n such

that
n∑

i=1

xi = 0. Furthermore, a c.n.d. matrix is said to be strictly c.n.d. if xT Ax = 0
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only for x = 0. The matrix space M is said to be of negative type if D is c.n.d.,
while it is of strictly negative type if D is strictly c.n.d. Now we have the following
theorem.

Theorem 4.3.3 Let (X, d) be a finite metric space. If (X, d) is of strictly negative
type, then (X, d) has a unique ∞-extender.

4.4 Symmetric Bimatrix Game as a Copositive
Optimization Problem

A bimatrix game is a noncooperative two-person game described by a pair (A,B)

of m × n matrices. There are two players, Player 1 and Player 2, with m and n pure
strategies respectively. If Player 1 chooses the i-th strategy and Player 2 chooses
the j-th strategy, then ai j and bi j are the payoffs to Players 1 and 2, respectively.
The mixed strategy spaces of Players 1 and 2 are �m and �n, respectively. A pair
of strategies (x∗, y∗) ∈ �m × �n is a Nash equilibrium if xTAy∗ ≤ x∗TAy∗ and
x∗TBy ≤ x∗TBy∗, for all x ∈ �m, y ∈ �n.

The celebrated theorem of Nash guarantees the existence of an equilibrium pair
in any bimatrix game.

A bimatrix game is said to be symmetric if there is symmetry in strategies and
payoffs, that is, if m = n and B = AT . A symmetric bimatrix game there is at
least one symmetric Nash equilibrium, that is, an equilibrium of the form (x∗, x∗) ∈
�n × �n. It can be seen that (x∗, x∗) is a symmetric Nash equilibrium of (A,AT ) if
and only if (Ax∗)i ≤ x∗TAx∗, i = 1, . . . , n; or equivalently, x∗ maximizes xTAx
over x ∈ �n. In what follows, we consider symmetric bimatrix game associated with
a tree.

Let T be a tree with n vertices and let D be the distance matrix of T . Consider
the symmetric bimatrix game (D,D) in [5]. This game is interpreted as follows.
Players 1 and 2 both choose a vertex each of the trees and tries to be as away from
each other as possible. In view of the preceding discussion, (x∗, x∗) ∈ �n × �n is
a symmetric Nash equilibrium of the game (D,D) if and only if x∗ is a solution of
Problem I. Note that the game (D,D) has a unique symmetric Nash equilibrium. The
symmetric bimatrix game associated with a tree is extended by Dubey and Neogy
[12] for resistance matrix as payoff matrix.

Let G be a connected graph with vertex set {1, . . . , n} and R be the resistance
matrix where R = [ri j ] with its (i, j)-entry ri j equal to the resistance distance
between the i-th and the j-th vertices. In [12], Dubey and Neogy consider the sym-
metric bimatrix game (R,R). (x̃, x̃) ∈ �n × �n is a symmetric Nash equilibrium
of the game (R,R) if and only if x̃ is a solution of Problem I. By using the same
argument, it is easy to see that the game (R,R) has a unique symmetric Nash equi-
librium.
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Chapter 5
Hermite–Hadamard Type Inequalities
For Functions Whose Derivatives Are
Strongly η-Convex Via Fractional
Integrals

Nidhi Sharma, Jaya Bisht, and S. K. Mishra

Abstract In this chapter, we establish some Hermite–Hadamard and Féjer type
inequalities for stronglyη-convex functions.Wederive fractional integral inequalities
for strongly η-convex functions. Further, some applications of these results to special
means of real numbers are also discussed. Moreover, our results include several new
and known results in particular cases.

Keywords Convex functions · Strongly η-convex functions · Hermite-Hadamard
Féjer inequalities · Hölder’s inequality
Mathematics Subject Classification (2010): 26A51, 26D15

5.1 Introduction

In 1969, Karamardian [8] introduced a strongly convex function and established
a relationship between the generalized convexity of the function and the concepts
of monotonicity of its gradient functions. Karamardian [8] also showed that every
bidifferentiable function is strongly convex if and only if itsHessianmatrix is strongly
positive definite. For more details, one can refer to [10, 12].

Işcan [6] established Hermite–Hadamard–Féjer inequality for fractional inte-
grals. Further, Park [14] obtained new estimates on the generalization of Hermite–
Hadamard–Féjer type inequalities for differentiable functions whose derivatives in
absolute value at certain powers are convex. Gordji et al. [4] introduced the new
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class of convex functions known as η-convex functions and investigated the Jensen
and Hermite–Hadamard type inequalities related to η-convex functions. Gordji et
al. [4] showed that if ξ : I ⊆ R → R is ϕ-convex and ϕ is bounded from above on
ξ(I ) × ξ(I ) with Mϕ as an upper bound. Then ξ satisfies the Lipschitz condition on
any closed interval [c, d] contained in the interior I 0 of I. Hence, ξ is absolutely
continuous on [c, d] and continuous on I 0.

Awan et al. [1] introduced the notion of strongly η-convex functions and obtained
some new integral inequalities of Hermite–Hadamard andHermite–Hadamard–Féjer
type for strongly η-convex functions. In 2019, Mishra and Sharma [11] introduced
the concept of strongly η-convex functions of higher order, as a generalization of the
strongly η-convex functions and investigated the Hermite–Hadamard and Hermite–
Hadamard–Féjer type inequalities for strongly η-convex functions of higher order.
For more details on Hermite–Hadamard inequalities, we refer the interested reader
[2, 3, 7, 15].

The fractional inequalities play an important role in calculating different means
for generalized convexity, so researchers are attracting to develop fractional integral
inequalities for generalized convexity. Recently, Kwun et al. [9] establishedHermite–
Hadamard and Féjer type inequalities and derived fractional integral inequalities
for η-convex functions. Further, Yang [17] investigated some Hermite–Hadamard
type fractional integral inequalities for generalized h-convex functions. However,
fractional integral inequalities for strongly η-convex functions have not been studied.
Thus, the purpose of this chapter is to establish some Hermite–Hadamard and Féjer
type inequalities for strongly η-convex functions. We derive some fractional integral
inequalities for strongly η-convex functions. Further, we discuss some applications
to special means of real numbers with the help of these results.

5.2 Preliminaries

Throughout this chapter, let I be an interval in real lineR and I 0 denotes the interior
of I.
Let ξ : [c, d] → R be a convex function with c < d. Then the following double
inequality is known as Hermite–Hadamard inequality in the literature.

ξ

(
c + d

2

)
≤ 1

d − c

∫ d

c
ξ(x)dx ≤ ξ(c) + ξ(d)

2
. (5.1)

Definition 5.1 [5] A function ξ : I ⊆ R −→ R is said to be η-convex function with
respect to η : R × R −→ R, if

ξ(δx + (1 − δ)y) ≤ ξ(y) + δη(ξ(x), ξ(y)), ∀x, y ∈ I, δ ∈ [0, 1].
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Definition 5.2 [1] A function ξ : I ⊆ R → R is said to be strongly η-convex func-
tion with respect to η : R × R → R and modulus μ > 0 if

ξ(δx + (1 − δ)y) ≤ ξ(y) + δη(ξ(x), ξ(y)) − μδ(1 − δ)(x − y)2, ∀ x, y ∈ I, δ ∈ [0, 1].
(5.2)

Lemma 5.2.1 [16] Let ξ : I ⊆ R → R be a differentiable function on I 0 such that
ξ ′ ∈ L1[c, d], where c, d ∈ I with c < d. If α, β ∈ R, then

αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

= d − c

4

∫ 1

0

[
(1 − α − δ)ξ ′

(
δc + (1 − δ)

c + d

2

)

+ (β − δ)ξ ′
(

δ
c + d

2
+ (1 − δ)d

)]
dδ.

Lemma 5.2.2 [16] For m > 0 and 0 ≤ ρ ≤ 1, we have

∫ 1

0
|ρ − δ|mdδ = ρm+1 + (1 − ρ)m+1

m + 1

and ∫ 1

0
δ|ρ − δ|mdδ = ρm+2 + (m + ρ + 1)(1 − ρ)m+1

(m + 1)(m + 2)
.

Lemma 5.2.3 For m > 0 and 0 ≤ ρ ≤ 1, we have

∫ 1

0
δ2|ρ − δ|mdδ = 2ρm+3 + (1 − ρ)m+3

m + 3
+ 2ρ(1 − ρ)m+2

m + 2
+ ρ2(1 − ρ)m+1

m + 1
.

Lemma 5.2.4 [9] Let ξ : I ⊆ R → R be a differentiable mapping on I 0 with ξ ′′ ∈
L1[c, d], where c, d ∈ I and c < d. Then

1

d − c

∫ d

c
ξ(x)dx − ξ

(
c + d

2

)
= (d − c)2

16

[∫ 1

0
δ2ξ ′′

(
δ
c + d

2
+ (1 − δ)c

)
dδ

+
∫ 1

0
(δ − 1)2ξ ′′

(
δd + (1 − δ)

c + d

2

)
dδ

]
.

Theorem 5.2.1 [9] Let ξ : I ⊆ R → R be an η-convex function with ξ ∈ L1[c, d],
where c, d ∈ I with c < d. Then
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ξ

(
c + d

2

)
− 1

2(d − c)

∫ d

c
η(ξ(c + d − x), ξ(x))dx

≤ 1

d − c

∫ d

c
ξ(x)dx ≤ ξ(d) + 1

2
η(ξ(c), ξ(d)).

5.3 Main Results

In this section, first, we prove Hermite–Hadamard and Féjer type inequalities for
strongly η-convex functions.

Theorem 5.3.2 Let ξ : I ⊂ R → R be an strongly η-convex function with modulus
μ and ξ ∈ L1[c, d] where c, d ∈ I with c < d, Then

ξ

(
c + d

2

)
− 1

2(d − c)

∫ d

c
η(ξ(c + d − x), ξ(x))dx + μ

12
(c − d)2

≤ 1

(d − c)

∫ d

c
ξ(x)dx

≤ ξ(d) + 1

2
η(ξ(c), ξ(d)) − μ

6
(c − d)2.

Proof From the definition of strong η-convexity, we have

ξ(δx + (1 − δ)y) ≤ ξ(y) + δη(ξ(x), ξ(y)) − μδ(1 − δ)(x − y)2, ∀ x, y ∈ I, δ ∈ [0, 1].

Using x = tc + (1 − t)d, y = (1 − t)c + td and δ = 1
2 , we get

ξ

(
1

2
(tc + (1 − t)d) + 1

2
((1 − t)c + td)

)

≤ ξ((1 − t)c + td) + 1

2
η(ξ(tc + (1 − t)d), ξ((1 − t)c + td)) − μ

4
((2t − 1)(c − d))2.

This implies

ξ

(
c + d

2

)
≤ ξ((1 − t)c + td) + 1

2
η(ξ(tc + (1 − t)d), ξ((1 − t)c + td))

− μ

4
((2t − 1)(c − d))2.

Integrating above inequality from 0 to 1 with respect to t on both sides, we have
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ξ

(
c + d

2

)
≤

∫ 1

0
ξ((1 − t)c + td)dt + 1

2

∫ 1

0
η(ξ(tc + (1 − t)d), ξ((1 − t)c + td))dt

− μ

4
(c − d)2

∫ 1

0
(2t − 1)2dt.

Using the change of variable technique in above inequality, we have

ξ

(
c + d

2

)
≤ 1

d − c

∫ d

c
ξ(x)dx + 1

2(d − c)

∫ d

c
η(ξ(c + d − x), ξ(x))dx

− μ

12
(c − d)2,

that is,

ξ

(
c + d

2

)
− 1

2(d − c)

∫ d

c
η(ξ(c + d − x), ξ(x))dx + μ

12
(c − d)2 ≤ 1

d − c

∫ d

c
ξ(x)dx .

(5.3)

We now prove the second pair of inequality. Using x = c and y = d in the definition
of strong η-convexity, then we have

ξ(δc + (1 − δ)d) ≤ ξ(d) + δη(ξ(c), ξ(d)) − μδ(1 − δ)(c − d)2, δ ∈ [0, 1].
Integrating above inequality from 0 to 1 on both sides with respect to δ, we get

∫ 1

0
ξ(δc + (1 − δ)d)dδ ≤ ξ(d)

∫ 1

0
dδ + η(ξ(c), ξ(d))

∫ 1

0
δdδ − μ(c − d)2

∫ 1

0
δ(1 − δ)dδ.

This implies

1

d − c

∫ d

c
ξ(x)dx ≤ ξ(d) + 1

2
η(ξ(c), ξ(d)) − μ

6
(c − d)2. (5.4)

From (5.3) and (5.4), we have

ξ

(
c + d

2

)
− 1

2(d − c)

∫ d

c
η(ξ(c + d − x), ξ(x))dx + μ

12
(c − d)2

≤ 1

(d − c)

∫ d

c
ξ(x)dx

≤ ξ(d) + 1

2
η(ξ(c), ξ(d)) − μ

6
(c − d)2.

This completes the proof. �

Remark 5.1 When μ = 0, then above theorem reduces to Theorem 2.1 of [9]. If
μ = 0 and η(x, y) = x − y, then above theorem reduces to (5.1).
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Theorem 5.3.3 Let ξ and φ be nonnegative strongly η-convex functions with mod-
ulus μ1 and μ2, respectively, and ξφ ∈ L1[c, d], where c, d ∈ I , c < d. Then

1

(d − c)

∫ d

c
ξ(x)φ(x)dx ≤ P(c, d),

where

P(c, d) = ξ(d)φ(d) + 1

2
[ξ(d)η(φ(c), φ(d)) + φ(d)η(ξ(c), ξ(d))]

+ 1

3
η(ξ(c), ξ(d))η(φ(c), φ(d)) − (c − d)2

12
(μ1η(φ(c), φ(d)) + μ2η(ξ(c), ξ(d)))

− (c − d)2

6
(μ1φ(d) + μ2ξ(d)) + μ1μ2

30
(c − d)4.

Proof Since ξ and φ are strongly η-convex functions with modulus μ1 and μ2,

respectively, therefore

ξ(δc + (1 − δ)d) ≤ ξ(d) + δη(ξ(c), ξ(d)) − μ1δ(1 − δ)(c − d)2, ∀ δ ∈ [0, 1]
(5.5)

and

φ(δc + (1 − δ)d) ≤ φ(d) + δη(φ(c), φ(d)) − μ2δ(1 − δ)(c − d)2, ∀ δ ∈ [0, 1].
(5.6)

From (5.5) and (5.6), we obtain

ξ(δc + (1 − δ)d)φ(δc + (1 − δ)d) ≤ ξ(d)φ(d) + δ(ξ(d)η(φ(c), φ(d))

+ φ(d)η(ξ(c), ξ(d))) + δ2η(ξ(c), ξ(d))η(φ(c), φ(d))

− δ2(1 − δ)(c − d)2(μ1η(φ(c), φ(d)) + μ2η(ξ(c), ξ(d)))

− δ(1 − δ)(c − d)2(μ1φ(d) + μ2ξ(d)) + δ2(1 − δ)2μ1μ2(c − d)4.

Integrating above inequality from 0 to 1 on both sides with respect to δ, we have

∫ 1

0
ξ(δc + (1 − δ)d)φ(δc + (1 − δ)d)dδ ≤ ξ(d)φ(d)

+ 1

2
[ξ(d)η(φ(c), φ(d)) + φ(d)η(ξ(c), ξ(d))] + 1

3
η(ξ(c), ξ(d))η(φ(c), φ(d))

− (c − d)2

12
(μ1η(φ(c), φ(d)) + μ2η(ξ(c), ξ(d))) − (c − d)2

6
(μ1φ(d) + μ2ξ(d))

+ μ1μ2

30
(c − d)4.

This implies
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1

(d − c)

∫ d

c
ξ(x)φ(x)dx ≤ P(c, d).

This completes the proof. �

Remark 5.2 When μ = 0, then above theorem reduces to Theorem 2.2 of [9]. If
μ = 0 and η(x, y) = x − y, then above theorem reduces to Theorem 1 of [13].

Theorem 5.3.4 Let ξ be an strongly η-convex function with modulus μ and ξ ∈
L1[c, d], where c, d ∈ I, c < d and φ : [c, d] → R be nonnegative, integrable, and
symmetric about

(
c+d
2

)
. Then

∫ d

c
ξ(x)φ(x)dx ≤

(
ξ(d) + 1

2
η(ξ(c), ξ(d))

) ∫ d

c
φ(x)dx − μ

∫ d

c
(x − c)(d − x)φ(x)dx .

Proof Since ξ be an strongly η-convex function with modulusμ, and φ nonnegative,
integrable, and symmetric about

(
c+d
2

)
, therefore, we have

∫ d

c
ξ(x)φ(x)dx = 1

2

[∫ d

c
ξ(x)φ(x)dx +

∫ d

c
ξ(c + d − x)φ(c + d − x)dx

]

= 1

2

[∫ d

c
ξ(x)φ(x)dx +

∫ d

c
ξ(c + d − x)φ(x)dx

]

= 1

2

∫ d

c

[
ξ

(
d − x

d − c
c + x − c

d − c
d

)
+ ξ

(
x − c

d − c
c + d − x

d − c
d

)]
φ(x)dx

≤ 1

2

∫ d

c

[(
ξ(d) +

(
d − x

d − c

)
η(ξ(c), ξ(d))

− μ

(
x − c

d − c

) (
d − x

d − c

)
(c − d)2

)
+

(
ξ(d) +

(
x − c

d − c

)
η(ξ(c), ξ(d))

− μ

(
x − c

d − c

) (
d − x

d − c

)
(c − d)2

)]
φ(x)dx

=
(

ξ(d) + 1

2
η(ξ(c), ξ(d))

)∫ d

c
φ(x)dx − μ

∫ d

c
(x − c)(d − x)φ(x)dx .

This completes the proof. �

Remark 5.3 Whenμ = 0, then above theorem reduces toTheorem2.3 of [9]. Ifμ =
0, η(x, y) = x − y and φ(x) = 1, then above theorem reduces to second inequality
of (5.1).

Now we establish the results on fractional integral inequalities for strongly η-convex
functions.

Theorem 5.3.5 Let ξ : I ⊆ R → R, be a differentiable mapping on I 0 with ξ ′ ∈
L1[c, d], where c, d ∈ I, c < d. If |ξ ′(x)|q for q ≥ 1 is strongly η-convex with mod-
ulus μ on [c, d] and 0 ≤ α, β ≤ 1, then
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∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤

(
d − c

8

) (
1

24

)1/q [
(2α2 − 2α + 1)1−

1
q (24(2α2 − 2α + 1)|ξ ′(d)|q

+ 4(−2α3 + 12α2 − 9α + 4)η(|ξ ′(c)|q , |ξ ′(d)|q)
− μ(−7α4 + 28α3 − 30α2 + 12α)(c − d)2)1/q

+ (2β2 − 2β + 1)1−
1
q (24(2β2 − 2β + 1)|ξ ′(d)|q

+ 4(2β3 − 3β + 2)η(|ξ ′(c)|q , |ξ ′(d)|q)
− μ(−7β4 + 8β3 − 8β + 5)(c − d)2)1/q

]
.

Proof Recall Lemma5.2.1;

αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

= d − c

4

∫ 1

0

[
(1 − α − δ)ξ ′

(
δc + (1 − δ)

c + d

2

)

+ (β − δ)ξ ′
(

δ
c + d

2
+ (1 − δ)d

)]
dδ.

This implies

∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ d − c

4

[∫ 1

0
|1 − α − δ|

∣∣∣∣ξ ′
(

δc + (1 − δ)
c + d

2

)∣∣∣∣ dδ

+
∫ 1

0
|β − δ|

∣∣∣∣ξ ′
(

δ
c + d

2
+ (1 − δ)d

)∣∣∣∣ dδ

]
. (5.7)

Applying Hölder’s inequality and the definition of strong η-convexity in (5.7), we
have
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∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ d − c

4

[(∫ 1

0
|1 − α − δ|dδ

)1− 1
q
(∫ 1

0
|1 − α − δ| (|ξ ′(d)|q

+
(
1 + δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q) − μ

(
1 + δ

2

) (
1 − δ

2

)
(c − d)2

)
dδ

)1/q

+
(∫ 1

0
|β − δ|dδ

)1− 1
q
(∫ 1

0
|β − δ|

(
|ξ ′(d)|q +

(
δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q)

− μ

(
δ

2

) (
1 − δ

2

)
(c − d)2

)
dδ

)1/q
]

. (5.8)

Using Lemmas5.2.2 and 5.2.3, we calculate

∫ 1

0
|1 − α − δ|

(
|ξ ′(d)|q +

(
1 + δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(1 − δ2)(c − d)2

)
dδ

=
(

|ξ ′(d)|q + 1

2
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(c − d)2

)∫ 1

0
|1 − α − δ|dδ

+ 1

2
η(|ξ ′(c)|q , |ξ ′(d)|q )

∫ 1

0
δ|1 − α − δ|dδ + μ

4
(c − d)2

∫ 1

0
δ2|1 − α − δ|dδ

= 1

2
(2α2 − 2α + 1)|ξ ′(d)|q + 1

12
(−2α3 + 12α2 − 9α + 4)η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ

48
(−7α4 + 28α3 − 30α2 + 12α)(c − d)2 (5.9)

and

∫ 1

0
|β − δ|

(
|ξ ′(d)|q +

(
δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q) − μ

(
δ

2

)(
1 − δ

2

)
(c − d)2

)
dδ

= |ξ ′(d)|q
∫ 1

0
|β − δ|dδ +

(
1

2
η(|ξ ′(c)|q , |ξ ′(d)|q) − μ

2
(c − d)2

) ∫ 1

0
δ|β − δ|dδ

+ μ

4
(c − d)2

∫ 1

0
δ2|β − δ|dδ

= 1

2
(2β2 − 2β + 1)|ξ ′(d)|q + 1

12
(2β3 − 3β + 2)η(|ξ ′(c)|q , |ξ ′(d)|q)

− μ

48
(−7β4 + 8β3 − 8β + 5)(c − d)2. (5.10)

From (5.8)–(5.10) and Lemma5.2.2, we have



92 N. Sharma et al.

∣∣∣∣∣
αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣
≤

(
d − c

8

) (
1

24

)1/q [
(2α2 − 2α + 1)1−

1
q (24(2α2 − 2α + 1)|ξ ′(d)|q

+ 4(−2α3 + 12α2 − 9α + 4)η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ(−7α4 + 28α3 − 30α2 + 12α)(c − d)2)1/q

+ (2β2 − 2β + 1)1−
1
q (24(2β2 − 2β + 1)|ξ ′(d)|q

+ 4(2β3 − 3β + 2)η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ(−7β4 + 8β3 − 8β + 5)(c − d)2)1/q
]
.

This completes the proof. �

Remark 5.4 When μ = 0, then above theorem reduces to Theorem 3.1 of [9].

Corollary 5.1 If α = β in above theorem, then

∣∣∣∣α2 (ξ(c) + ξ(d)) + (1 − α)ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤

(
d − c

8

)(
1

24

)1/q

(2α2 − 2α + 1)1−
1
q

× [(24(2α2 − 2α + 1)|ξ ′(d)|q + 4(−2α3 + 12α2 − 9α + 4)η(|ξ ′(c)|q , |ξ ′(d)|q)
− μ(−7α4 + 28α3 − 30α2 + 12α)(c − d)2)1/q + (24(2α2 − 2α + 1)|ξ ′(d)|q
+ 4(2α3 − 3α + 2)η(|ξ ′(c)|q , |ξ ′(d)|q) − μ(−7α4 + 8α3 − 8α + 5)(c − d)2)1/q ].

Corollary 5.2 If α = β = 1
2 in Corollary5.1, then

∣∣∣∣∣
1

2

[
ξ(c) + ξ(d)

2
+ ξ

(
c + d

2

)]
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣
≤

(
d − c

16

)(
1

192

)1/q
[(192|ξ ′(d)|q + 144η(|ξ ′(c)|q , |ξ ′(d)|q ) − 25μ(c − d)2)1/q

+ (192|ξ ′(d)|q + 48η(|ξ ′(c)|q , |ξ ′(d)|q ) − 25μ(c − d)2)1/q ].

Corollary 5.3 If q = 1 in Corollary5.2, then∣∣∣∣12
[
ξ(c) + ξ(d)

2
+ ξ

(
c + d

2

)]
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤

(
d − c

1536

)
[192|ξ ′(d)| + 96η(|ξ ′(c)|, |ξ ′(d)|) − 25μ(c − d)2].

Theorem 5.3.6 Let ξ : I ⊆ R → R, be a differentiable mapping on I 0 with ξ ′ ∈
L1[c, d], where c, d ∈ I, c < d. If |ξ ′(x)|q for q ≥ 1 is strongly η-convex with
modulus μ on [c, d] and 0 ≤ α, β ≤ 1, then
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∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ d − c

4

[((
(1 − α)q+1 + αq+1

q + 1

)
|ξ ′(d)|q

+
(

(q + 2)((1 − α)q+1 + 2αq+1) + (1 − α)q+2 − αq+2

2(q + 1)(q + 2)

)
η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ

4
(c − d)2

(
(1 − α)q+1 − αq+3 + 2αq+2

q + 1
− 2(1 − α)αq+2

q + 2
− 2(1 − α)q+3αq+3

q + 3

))1/q

+
((

(1 − β)q+1 + βq+1

q + 1

)
|ξ ′(d)|q +

(
(q + β + 1)(1 − β)q+1 + βq+2

2(q + 1)(q + 2)

)

× η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(c − d)2

×
(
2(q + β + 1)(1 − β)q+1 − 2(q + 1)β(1 − β)q+2 − (q + 2)β2(1 − β)q+1 + 2βq+2

(q + 1)(q + 2)

− 2βq+3 + (1 − β)q+3

q + 3

))1/q
]

.

Proof From Lemma5.2.1, we have

∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ d − c

4

[∫ 1

0
|1 − α − δ|

∣∣∣∣ξ ′
(

δc + (1 − δ)
c + d

2

)∣∣∣∣ dδ

+
∫ 1

0
|β − δ|

∣∣∣∣ξ ′
(

δ
c + d

2
+ (1 − δ)d

)∣∣∣∣ dδ

]
.

Using Hölder’s inequality and the definition of strong η-convexity, we have

∣∣∣∣∣
αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣

≤ d − c

4

⎡
⎣

(∫ 1

0
dδ

)1− 1
q

(∫ 1

0
|1 − α − δ|q

∣∣∣∣ξ ′
(

δc + (1 − δ)
c + d

2

)∣∣∣∣
q
dδ

)1/q

+
(∫ 1

0
dδ

)1− 1
q

(∫ 1

0
|β − δ|q

∣∣∣∣ξ ′
(

δ
c + d

2
+ (1 − δ)d

)∣∣∣∣
q
dδ

)1/q
⎤
⎦

≤ d − c

4

[(∫ 1

0
|1 − α − δ|q

(
|ξ ′(d)|q +

(
1 + δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ

4
(1 − δ2)(c − d)2

)
dδ

)1/q +
(∫ 1

0
|β − δ|q (|ξ ′(d)|q

+
(

δ

2

)
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

(
δ

2

)(
1 − δ

2

)
(c − d)2

)
dδ

)1/q
]
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= d − c

4

[((
|ξ ′(d)|q + 1

2
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(c − d)2

) ∫ 1

0
|1 − α − δ|qdδ

+ 1

2
η(|ξ ′(c)|q , |ξ ′(d)|q )

∫ 1

0
δ|1 − α − δ|qdδ + μ

4
(c − d)2

∫ 1

0
δ2|1 − α − δ|qdδ

)1/q

+
(

|ξ ′(d)|q
∫ 1

0
|β − δ|qdδ +

(
1

2
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

2
(c − d)2

)∫ 1

0
δ|β − δ|qdδ

+μ

4
(c − d)2

∫ 1

0
δ2|β − δ|qdδ

)1/q
⎤
⎦ .

Applying Lemmas5.2.2 and 5.2.3, we obtain

∣∣∣∣αξ(c) + βξ(d)

2
+ 2 − α − β

2
ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ d − c

4

[((
(1 − α)q+1 + αq+1

q + 1

)
|ξ ′(d)|q

+
(

(q + 2)((1 − α)q+1 + 2αq+1) + (1 − α)q+2 − αq+2

2(q + 1)(q + 2)

)
η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ

4
(c − d)2

(
(1 − α)q+1 − αq+3 + 2αq+2

q + 1
− 2(1 − α)αq+2

q + 2

− 2(1 − α)q+3 + αq+3

q + 3

))1/q

+
((

(1 − β)q+1 + βq+1

q + 1

)
|ξ ′(d)|q +

(
(q + β + 1)(1 − β)q+1 + βq+2

2(q + 1)(q + 2)

)

× η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(c − d)2

×
(
2(q + β + 1)(1 − β)q+1 − 2(q + 1)β(1 − β)q+2 − (q + 2)β2(1 − β)q+1 + 2βq+2

(q + 1)(q + 2)

− 2βq+3 + (1 − β)q+3

q + 3

))1/q
]

.

This completes the proof. �

Remark 5.5 When μ = 0, then above theorem reduces to [9, Theorem 3.2].

Corollary 5.4 If α = β in above theorem, then
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∣∣∣∣∣
α

2
(ξ(c) + ξ(d)) + (1 − α)ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣
≤ d − c

4

[((
(1 − α)q+1 + αq+1

q + 1

)
|ξ ′(d)|q

+
(

(q + 2)((1 − α)q+1 + 2αq+1) + (1 − α)q+2 − αq+2

2(q + 1)(q + 2)

)
η(|ξ ′(c)|q , |ξ ′(d)|q )

− μ

4
(c − d)2

(
(1 − α)q+1 − αq+3 + 2αq+2

q + 1
− 2(1 − α)αq+2

q + 2
− 2(1 − α)q+3αq+3

q + 3

))1/q

+
((

(1 − α)q+1 + αq+1

q + 1

)
|ξ ′(d)|q

+
(

(q + α + 1)(1 − α)q+1 + αq+2

2(q + 1)(q + 2)

)
η(|ξ ′(c)|q , |ξ ′(d)|q ) − μ

4
(c − d)2

×
(
2(q + α + 1)(1 − α)q+1 − 2(q + 1)α(1 − α)q+2 − (q + 2)α2(1 − α)q+1 + 2αq+2

(q + 1)(q + 2)

− 2αq+3 + (1 − α)q+3

q + 3

))1/q
⎤
⎦ .

Theorem 5.3.7 Let ξ : I ⊂ [0,∞) → R be a differentiable mapping on I 0 with
ξ ′′ ∈ L1[c, d], where c, d ∈ I and c < d. If |ξ ′′| is strongly η-convex with modulus
μ on [c, d], then

∣∣∣∣∣ξ
(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣
≤ (d − c)2

16

[
1

3

(
|ξ ′′(c)| +

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
)

+ 1

4

(
η

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ , |ξ ′′(c)|
)

+ 1

3
η

(
|ξ ′′(d)|,

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
))

− μ

40
(d − c)2

]
.

Proof Recall Lemma5.2.4, we have

∣∣∣∣∣ξ
(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣ ≤ (d − c)2

16

[∫ 1

0
δ2

∣∣∣∣ξ ′′
(

δ
c + d

2
+ (1 − δ)c

)∣∣∣∣ dδ

+
∫ 1

0
(δ − 1)2

∣∣∣∣ξ ′′
(

δd + (1 − δ)
c + d

2

)∣∣∣∣ dδ

]
.

Using the definition of strong η-convexity, we obtain
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∣∣∣∣ξ
(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ (d − c)2

16

[∫ 1

0
δ2

(
|ξ ′′(c)| + δη

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ , |ξ ′′(c)|
)

− μδ(1 − δ)

(
d − c

2

)2
)
dδ

+
∫ 1

0
(δ − 1)2

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ + δη

(
|ξ ′′(d)|,

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
)

− μδ(1 − δ)

(
d − c

2

)2
)
dδ

]

= (d − c)2

16

[(
1

3
|ξ ′′(c)| + 1

4
η

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ , |ξ ′′(c)|
)

− μ

20

(
d − c

2

)2
)

+
(
1

3

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ + 1

12
η

(
|ξ ′′(d)|,

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
)

− μ

20

(
d − c

2

)2
)]

= (d − c)2

16

[
1

3

(
|ξ ′′(c)| +

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
)

+ 1

4

(
η

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣ , |ξ ′′(c)|
)

+ 1

3
η

(
|ξ ′′(d)|,

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
))

− μ

40
(d − c)2

]
.

This completes the proof. �

Remark 5.6 When μ = 0, then above theorem reduces to Theorem 3.3 of [9].

Theorem 5.3.8 Let ξ : I ⊂ [0,∞) → R be a differentiable mapping on I 0 with
ξ ′′ ∈ L1[c, d], where c, d ∈ I and c < d. If |ξ ′′|q for q ≥ 1 with 1

p + 1
q = 1 is

strongly η-convex with modulus μ on [c, d], then
∣∣∣∣ξ

(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣
≤ (d − c)2

16

(
1

3

) 1
p
[(

1

3
|ξ ′′(c)|q + 1

4
η

(∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
q

, |ξ ′′(c)|q
)

− μ

80
(d − c)2

) 1
q +

(
1

3

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
q

+ 1

12
η

(
|ξ ′′(d)|q ,

∣∣∣∣ξ ′′
(
c + d

2

)∣∣∣∣
q)

− μ

80
(d − c)2

) 1
q

]
.

Proof From Lemma5.2.4, we have

∣∣∣∣∣ξ
(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx

∣∣∣∣∣ ≤ (d − c)2

16

[∫ 1

0
δ2

∣∣∣∣ξ ′′
(

δ
c + d

2
+ (1 − δ)c

)∣∣∣∣ dδ

+
∫ 1

0
(δ − 1)2

∣∣∣∣ξ ′′
(

δd + (1 − δ)
c + d

2

)∣∣∣∣ dδ

]
.
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Using Hölder’s inequality, we have

∣∣∣∣ξ
(
c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx
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2
p δ

2
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(

δ
c + d

2
+ (1 − δ)c

)∣∣∣∣ dδ

+
∫ 1

0
(δ − 1)

2
p (δ − 1)

2
q
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(

δd + (1 − δ)
c + d

2
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]
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16

[(∫ 1

0
δ2dδ

) 1
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(∫ 1

0
δ2
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(

δ
c + d

2
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) 1
q

+
(∫ 1
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(
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2
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q

dδ

) 1
q
]

.

Since |ξ ′′| is strongly η-convex function with modulus μ > 0, therefore

∣∣∣∣∣ξ
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c + d

2

)
− 1

d − c

∫ d

c
ξ(x)dx
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(
c + d

2

)∣∣∣∣
q)
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4
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)
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⎤
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) 1
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3
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(
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(
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2
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80
(d − c)2

) 1
q

⎤
⎦ .

This completes the proof. �

Remark 5.7 When μ = 0, then above theorem reduces to Theorem 3.4 of [9].
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5.3.1 Application to Means

Now, we consider the following special means for positive real numbers c, d > 0:

• Arithmetic mean: A(c, d) = c+d
2 .

• Geometric mean: G(c, d) = √
cd.

• Harmonic mean: H(c, d) = 2
1
c + 1

d
.

• Generalized logarithmic mean: L(c, d) =
⎧⎨
⎩

[
dm+1−cm+1

(m+1)(d−c)

]1/m
, if c �= d,

c, if c = d.

• Identric mean: I (c, d) =
⎧⎨
⎩

1
e

(
dd

cc

)1/(d−c)
, if c �= d,

c, if c = d.

• Heronian mean: Hw,m(c, d) =
⎧⎨
⎩

[
cm+w(cd)

m
2 +dm

(w+2)

]1/m
, if m �= 0,√

cd, if m = 0,
for 0 ≤ w < ∞.

Now, using the above results in previous theorems, we have some applications to the
special means of positive real numbers.

Theorem 5.3.9 Let c, d > 0, c �= d, q ≥ 1, and either m > 1 and (m − 1)q ≥ 1 or
m < 0. Then

∣∣∣∣A(αcm , βdm) + 2 − α − β

2
Am(c, d) − Lm(c, d)

∣∣∣∣
≤

(
d − c

8

) (
1

24

)1/q [
(2α2 − 2α + 1)1−

1
q (24(2α2 − 2α + 1)|mdm−1|q

+ 4(−2α3 + 12α2 − 9α + 4)η(|mcm−1|q , |mdm−1)|q )

− μ(−7α4 + 28α3 − 30α2 + 12α)(c − d)2)1/q + (2β2 − 2β + 1)1−
1
q

× (24(2β2 − 2β + 1)|mdm−1)|q + 4(2β3 − 3β + 2)η(|mcm−1|q , |mdm−1|q )

− μ(−7β4 + 8β3 − 8β + 5)(c − d)2)1/q
]
.

Proof Applying Theorem5.3.5 with ξ(x) = xm . Then we obtain the result immedi-
ately. �

Example 5.1 Let ξ(x) = x2, η(x, y) = x + y + (x − y)2, μ = 1, α = β = 1, c =
1, d = 2, q = 1. Then above theorem is verified.

Theorem 5.3.10 Let c, d > 0, c �= d, q ≥ 1, Then
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∣∣∣∣∣
lnG2(cα, dβ)

2
+ 2 − α − β

2
ln A(c, d) − ln I (c, d)

∣∣∣∣∣
≤

(
d − c

8

)(
1

24

)1/q [
(2α2 − 2α + 1)1−

1
q

(
24(2α2 − 2α + 1)

(
1

d

)q

+ 4(−2α3 + 12α2 − 9α + 4)η

((
1

c

)q
,

(
1

d

)q)

− μ(−7α4 + 28α3 − 30α2 + 12α)(c − d)2
)1/q

+ (2β2 − 2β + 1)1−
1
q

(
24(2β2 − 2β + 1)

(
1

d

)q
+ 4(2β3 − 3β + 2)η

((
1

c

)q
,

(
1

d

)q)

− μ(−7β4 + 8β3 − 8β + 5)(c − d)2
)1/q]

.

Proof Applying Theorem5.3.5 with ξ(x) = ln x . Then we obtain the result imme-
diately. �

Theorem 5.3.11 For d > c > 0, c �= d, w ≥ 0, and s ≥ 4 or 0 �= s < 1, we have

∣∣∣∣12
[
Hm

w,m(c, d)

H(cm, dm)
+ Hm

w,m

(
c

d
+ d

c
, 1

)]
− Hm

w,m

(
L

(
c

d
,
d

c

)
, 1

)∣∣∣∣
≤ (d − c)A(c, d)

768 G2(c, d)
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192|m|
w + 2

(
G2(m−1)

(
d,

1

c

)
+ w

2
G2( m

2 −1)

(
d,

1

c

))

+ 96η

( |m|
w + 2

(
G2(m−1)

(
c,

1

d

)
+ w

2
G2( m

2 −1)

(
c,

1

d

))
,

|m|
w + 2

(
G2(m−1)

(
d,

1

c

)
+ w

2
G2( m

2 −1)

(
d,

1

c

)))
− 100μ(d − c)2A2(c, d)

G2(c2, d2)

]
.

Proof From Corollary5.3, we have

∣∣∣∣∣
1

2

[
ξ

(
c
d

) + ξ
(
d
c

)
2

+ ξ

(
c
d + d

c

2

)]
− 1

d
c − c

d

∫ d
c

c
d

ξ(x)dx

∣∣∣∣∣
≤

(
d
c − c

d

1536

) [
192

∣∣∣∣ξ ′
(
d

c

)∣∣∣∣ + 96η

(∣∣∣ξ ′
( c

d

)∣∣∣ ,
∣∣∣∣ξ ′

(
d

c

)∣∣∣∣
)

− 25μ

(
c

d
− d

c

)2
]

.

(5.11)

Applying ξ(x) = xm+wx
m
2 +1

w+2 for x > 0 andm /∈ (1, 4) in above inequality, we obtain
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ξ
(
c
d

) + ξ
(
d
c

)
2

=
(
c
d

)m + w
(
c
d

) m
2 + 1

2(w + 2)
+

(
d
c

)m + w
(
d
c

) m
2 + 1

2(w + 2)

= 1

2(w + 2)

[
c2m + wcm(cd)

m
2 + 2cmdm + wdm(cd)

m
2 + d2m

cmdm

]

= 1

2(w + 2)

[
(cm + w(cd)

m
2 + dm)(cm + dm)

cmdm

]

= Hm
w,m(c, d)

H(cm, dm)
, (5.12)

ξ

(
c
d + d

c

2

)
=

( c
d + d

c
2

)m + w
( c

d + d
c

2

) m
2 + 1

(w + 2)
= Hm

w,m

(
c
d + d

c

2
, 1

)
, (5.13)

1
d
c − c

d

∫ d
c

c
d

ξ(x)dx = 1

(w + 2)

[{
( dc )m+1 − ( cd )m+1

(m + 1)( dc − c
d )

}
+ w

{
( dc )

m
2 +1 − ( cd )

m
2 +1

(m2 + 1)( dc − c
d )

}
+ 1

]

= Hm
w,m

(
L

(
c

d
,
d

c

)
, 1

)
, (5.14)

and
(

d
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d
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]
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c
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1

d
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(
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1

c
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G2(m2 −1)

(
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1

c

)))
− 100μ(d − c)2A2(c, d)

G2(c2, d2)

]
.

(5.15)

Applying (5.12)–(5.15) in (5.11), we have
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∣∣∣∣12
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(
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d
,
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)
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1

d

)
+ w

2
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1
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,
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1
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2
G2( m

2 −1)

(
d,

1

c

)))
− 100μ(d − c)2A2(c, d)

G2(c2, d2)

]
.

5.4 Conclusion

In this chapter, we derived some Hermite–Hadamard type and fractional integral
inequalities for strongly η-convex functions. The results obtained in this chapter
are generalizations of the previously known results. Our results may have further
applications in future research work.
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Chapter 6
Set Order Relations, Set Optimization,
and Ekeland’s Variational Principle

Qamrul Hasan Ansari and Pradeep Kumar Sharma

Abstract This chapter provides a brief survey on different kinds of set order rela-
tions which are used to compare the objective values of set-valued maps and play
a key role to study set optimization problems. The solution concepts of set opti-
mization problems and their relationships with respect to different kinds of set order
relations are provided. The nonlinear scalarization functions for vector-valued maps
as well as for set-valued maps are very useful to study the optimality solutions of
vector optimization/set optimization problems. A survey of such nonlinear scalar-
ization functions for vector-valued maps/set-valued maps is given. We give some
new results on the existence of optimal solutions of set optimization problems. In
the end, we gather some recent results, namely, Ekeland’s variational principle and
some equivalent variational principle for set-valued maps with respect to different
kinds of set order relations.

Mathematics Subject Classification (2010): 49J53, 90C29, 90C30, 90C46,
58E30

6.1 Introduction

An optimization problem whose objective function is a set-valued map is known as
set optimization or set-valued optimization problem.

Let S be a nonempty subset of a vector space X , Y be a topological vector space,
and F : S ⇒ Y be a set-valued map with nonempty values. The set optimization
problem is defined as follows:
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min F(x)

subject to x ∈ S.
(SOP)

The study of such problems is known as set optimization or set-valued optimiza-
tion. Since the set-valued maps include single-valued maps as well as vector-valued
maps, the set optimization can be considered as an extension of scalar optimization
and/or vector optimization. Since the middle of eighties, the theory of set opti-
mization has received increasing interest in the optimization community and many
authors have studied and investigated set optimization problems due to its extensive
applications in different branches of applied mathematics, engineering, economics,
finance, and medical sciences. Note that several problems from game theory [73],
multivariate statistics [70, 106], radiotherapy treatment (medical image registration,
intensity-modulated radiation therapy) [42, 104, 120], uncertain optimization [7,
105], welfare economics [16], socio-economics [132], mathematical finance [36,
69], optimal control [75], etc. can be written in the form of mathematical formula-
tion of set optimization problems. Not only this, the robust optimization problems
and stochastic/fuzzy programming problems can also be modeled as set optimization
problems. For an overview and further detailed investigations, we refer to the books
[68, 97].

Let us consider and distinguish simple examples of scalar optimization problem,
vector optimization problem, and set optimization problem.

• To find the fastest bowler from a set of cricket players is the scalar optimization
problem (maximization problem) where the objective function gives the speed of
a player.

• To find the bowler(s) from a set of cricket players in such a way that he/she (they)
is (are) having several qualities, namely, speed, in swing/out swing, etc., is a vector
optimization problem. Consider an objective function from a set of players to the
set of all such qualities, that is, the value of the objective function can be regarded
as a vector whose coordinates consist of one’s ability, speed, in swing/out swing,
etc. In other words, the objective function is vector-valued.

• Consider the objective function whose values are teams and assume that a team is
a set of players and each player is regarded as a vector whose coordinates consist
of one’s ability, speed, in swing/out swing, popularity, and so on. Then one can
formulate the problem of choosing a good team for a cricket league in the form of
set optimization problem with the objective function defined as above.

For a set optimization problem, it seems natural the first thing that has to be done
is to decide how to define the solution of a set optimization problem. There are two
popular approaches to define the solution concepts of a set optimization problem:
one is the vector approach and another is the set approach.

In vector approach, one directly generalizes the concepts known from vector
optimization to set optimization, that is, we try to find the best element, in some sense,
of the union of all image sets of the set-valued objective map over the feasible set. In
other words, in vector approach, a minimizer (x̄, ȳ) depends on only certain special
element ȳ of F(x̄) and other elements of F(x̄) are ignored. That is, an element x̄ ∈ S



6 Set Order Relations, Set Optimization, and Ekeland’s Variational Principle 105

for which there exists at least one element ȳ ∈ F(x̄)which is Pareto minimal point of
the image set of F even if there exists many bad elements in F(x̄) is a solution of the
set optimization problem (SOP). The set optimization problemswith vector approach
have been studied and investigated by Corley [33, 34]; Luc [128]; Lin [123]; Jahn
and Rauh [93]; Chen and Jahn [29]; Götz and Jahn [55]; Li [122]; Crespi, Ginchev,
and Rocca [35], Alonso and Rodríguez-Marín [2], Hernández, Rodríguez-Marín and
Sama [84], Hernández [79], etc. For more detail, we refer to the books [90, 97], the
survey papers [41, 64, 79] and the references therein. Of course, vector optimization
problems provide a very important special case of set optimization with numerous
applications. Moreover, the answer to certain problems in vector optimization can be
found, if the vector optimization problem is considered in a set-valued framework,
see [67]. Note that the solution concept based on vector approach is of mathematical
interest but it can not be often used in practice. This solution concept is not suitable
to deal with the set optimization problem defined in the above example. For example,
we can see that a team which has at least one good player is a solution, though most
of the members of such teams are useless. Is it true that such team can achieve good
results?

These solutions must be almost invalid and improper. This drawback gave birth
to the set approach which is based on the comparison of values (sets) of objective
set-valued map, that is, using the set approach, the sets F(x) are compared by using
some kinds of set order relations with the aim to choose the best one in some sense.
The credit for the birth of set approach goes to Kuroiwa [109]. To resolve this
problem, Kuroiwa [109] introduced six kinds of set order relations which are further
studied and investigated in [1, 25, 72, 79–82, 84, 110, 111, 115, 132] and the
references therein. Note that these set order relations were independently introduced
in different fields, for example, in terms of algebraic structures by Young [150] in
1931, in the theory of fixed points of monotonic operators by Nishnianidze [134] in
1984, in interval arithmetic by Chiriaev and Walster [31] in 1998, and in theoretical
computer science by Brink [22] in 1993. In 2011, Jahn and Ha [92] introduced the,
so-called, minmax set order relations to deal with the solutions of the problem (SOP)
where the above mentioned six kinds of set order relations fail. Since the notion
of the set approach was introduced, there has been rapid growth in this field. On
the contrary, the main disadvantage of the set approach over the vector approach
is the loss of lineal structure. Hamel [67] studied the structure of the power set
of Y by introducing a conlineal space. In order to avoid such a problem, several
authors have considered specializations of F or tools to study the problem (SOP) via
a structure well known or simpler than a conlineal space. For instance, Hernández
[80] characterized the solutions of the problem (SOP) via nonlinear scalarization, see
also [13, 129]. Kuroiwa and Nuriya [114] constructed an embedding vector space.
Maeda’s [130]work on n-dimensional Euclidean spaces shows that whenever the set-
valued map is rectangle-valued (SOP), then it is equivalent to a pair of vector-valued
optimization problems.

In general, there is no relation among solutions of the problem (SOP) obtained
by vector approach and solutions obtained by set approach. Moreover, the existence
of solutions by one approach does not imply the existence of solutions of the other
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approach, see [1, 63, 84, 99] and the references therein. Even though both criteria
are different but under certain assumptions, the relation among solution concepts of
the problem (SOP) with vector approach and set approach has been studied in [1,
79, 84, 129, 130] and the references therein.

In 2017, Chen et al. [30] introduced a set order relation called weighted set order
relation. This weighted set order relation is the combination of Kuroiwa’s [109]
upper and lower set order relations. So, under some assumptions, this new set order
relation is more general than Kuroiwa’s upper and lower set order relations. It is
useful for formulating solution concepts for researchers who do not specifically rely
on either the upper or lower set order relation. Recently, Ansari et al. [6] studied
Ekeland’s variational principle and some equivalent results for set-valued maps by
using weighted set order relations and gave some applications to order intervals.

In 2018, Karaman et al. [96] introduced set order relations on the family of sets
based on the Minkowski difference. In comparison to Kuroiwa’s set order relations,
these set order relations are partial ordered on the family of bounded sets, and hence
provide a new approach to study set optimization problems. Khushboo and Lalitha
[99] studied the relationship among different kinds of solution sets of set optimiza-
tion problems defined by means of Kuroiwa’s set order relations and Karaman’s set
order relations. They also investigated that the solution sets of a set optimization
problem defined by different kinds of set order relations are different. Therefore, it
is interesting and important to investigate the set optimization problems by using
Karaman’s set order relations. Very recently, the set optimization problems have
been investigated and studied in [12, 94–96, 99, 139] by using Karaman’s set order
relations.

Besides the set order relations with fixed ordering cone, the interest in set order
relations with variable cone has increased during the last years due to some applica-
tions in different problems, see [7, 10, 20, 40, 42–44, 101, 102, 104, 105, 119, 120]
and references therein. Therefore, in the order relations defined by convex cone to
compare sets, the cone is replaced by a variable domination structure. This variable
domination structure is defined by a set-valued map, called ordering map, which
associates with each element of the space an individual set of preferred or domi-
nated directions. In 2016, Eichfelder and Pilecka [42, 44] introduced the set order
relations equipped with variable domination structures. They provided scalarization
results for obtaining optimality conditions for the solutions of the problem (SOP).
Further, Köbis [101, 102] introduced new set order relations equipped with vari-
able domination structures and differentiated between a concept of domination and
preference. In the recent years, set optimization problems with respect to variable
domination structures have been studied and investigated in [7, 10, 20, 42, 44, 101,
102, 104, 119] and the references therein.

In the recent years, the set order relations has played an important role to deal with
several problems from nonlinear analysis and optimization with set-valued maps,
for instance, Ekeland’s variational principle and related results [12, 13, 63, 72],
continuity and convexity of set-valued maps [115, 117], minimax theorem for set-
valued maps [116], well-posedness [62], stabilty [77], connectedness [78], concepts
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of efficiency for uncertain multi-objective optimiztion [88], optimality notions for
(SOP) [1, 84, 94], and so on.

There are various techniques to deal with the set optimization problems, for
instance, scalarization, vectorization, etc., see [13, 14, 72, 80, 91, 99, 151] and
the references therein. One of the most and widely used techniques to deal with set
optimization problems is the scalarization by which we can convert a set optimiza-
tion problem into a scalar optimization problem, that is, by using scalarization, set
optimization problem is replaced by a family of scalar optimization problems which
allow to relate the solutions of both problems and solve the set optimization problem
by a numerical method applicable for the scalar problems. To study set optimization
problems, scalarization functions are one of the most essential tools from a theoret-
ical as well as computational point of view. Several scalarization techniques for set
optimization problems are available in the literature. Most of them are based on Ger-
stewitz function [54], oriented distance function [86], or their extensions [11, 13, 14,
72, 80, 96, 99, 151]. The original idea of the nonlinear scalarization functions was
given by Krasnosel’skij [107] and Rubinov [140]. Krasnosel’skij [107] used them in
order to establish necessary and sufficient conditions for a cone to be normal. Also,
these types of functionals have been used in theoretical investigations within the
framework of ordered linear spaces, see the book [38] by M. M. Day as an elegant
tool for proof of the fact that the Hahn–Banach extension and a linear closure prop-
erty imply the interpolation property. Furthermore, Feldman [48] and Rubinov [140]
investigated the dual properties of such kinds of functionals, namely, their so-called
support sets. The nonlinear scalarization functional for vector optimization with its
concrete definition was given by Tammer (Gerstewitz) [52] in 1983 and applied to
study separation theorems for not necessary convex sets by Tammer (Gerstewitz)
and Iwanow [53] in 1985. Such nonlinear scalarization functions are now known as
Gerstewitz nonlinear scalarization functional. Luc [125–127] also gave early contri-
butions to this topic. On the other hand, Hiriart-Urruty [86] introduced the notion of
oriented distance function to study optimality conditions of nonsmooth optimization
problems from the geometric point of view. For more details on oriented distance
function and their extensions, we refer [7, 8, 35, 60, 99, 151, 152] and the references
therein.

The idea of nonlinear scalarization for sets was first investigated in 2000 by
Tanaka–Georgiev [51]. In 2006, Hamel and Löhne [72] extended the above functions
to two different functions on a power set of Y corresponding to the set order relations.
Further, Hernández and Rodríguez-Marín, [80] investigated nonlinear scalarizing
functions for sets by introducing cone-topological concepts, see [9]. Furthermore,
in 2009, Knwano–Tanaka–Yamada [118] introduced a unified approach for such
scalarizations for sets using Kuroiwa’s set order relations. In the recent past, Araya
[13, 14] investigated six types of nonlinear scalarizing functions for set-valued maps
and their relationships. In the literature, expressions using inf–sup of the Gerstewitz
function can be found in [60, 61] which were used to study necessary and suffi-
cient optimality conditions in set optimization problems with set order relations.
Khoshkhabar-amiranloo et al. [98] and Sach [141] also introduced slightly differ-
ent nonlinear scalarization functions to study set optimization problmes. Recently,
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Karaman et al. [96] introduced nonlinear scalarization functions by using the set
order relations defined by the Minkowski difference and studied optimality notions
for (SOP). Very recently, Ansari et al. [6] introduced the notions of nonlinear scalar-
ization functions by using weighted set order relations. Several applications of the
nonlinear scalarization functions can be found in the literature, for instance, to study
Ekeland’s variational principle and related variational principle [6, 12, 13, 63, 65,
72]; nonconvex separation type theorems [13, 14, 54]; Gordan’s type alternative
theorems [13, 135]; equilibrium problems [9, 56]; minimax theorems [116]; vector
variational inequalities [9, 56]; robustness and stochastic programming [100]; and
stability and well-posedness [62, 77]. In the recent years, several authors have stud-
ied and investigated nonlinear scalarizing technique for set optimization problem,
see [6, 12, 60, 61, 72, 97, 98, 141] and their references therein.

In recent years, scalarization functions with variable domination structures also
gained increasing interest in the optimization community. Eichfelder and Pilecka
[44] introduced a nonlinear scalarization function when the images of ordering maps
are Bishop Phelps cones. Further, Köbis et al. [104] and Ansari et al. [7] introduced
nonlinear scalarizing methods to characterize several set order relations and minimal
solutions for set optimization problems equippedwith variable domination structures
with their applications in medical image registration and uncertain multi-objective
optimization and to derive necessary optimality conditions for solutions of set opti-
mization problems with respect to variable domination structures. Very recently,
Kobis et al. [105] introduced a new nonlinear scalarization functional in set opti-
mization equipped with variable domination structures, which are further studied by
Ansari and Sharma [10] to obtain Ekeland’s variational principle. For more details
on scalarization functions with respect to variable domination structures, we refer
[7, 10, 44, 104, 105] and the references therein.

The present chapter is organized as follows: In the next section, we recall some
definitions and concepts which will be used in the sequel. In Sect. 6.3, we gather
different kinds for set order relations with their properties. The relationships among
these set order relations are provided along with theoretical and geometrical illus-
trations. In Sect. 6.4, a survey of nonlinear scalarization functions for vector-valued
maps/set-valued maps is given. Such nonlinear scalarization functions for vector-
valued maps as well as for set-valued maps are very useful to study the optimality
solutions of vector optimization/set optimization problems and to study some set
order relations. In Sect. 6.5, solution concepts for set optimization problems based
on vector approach and set approach and relations among them are given. Several
examples are given to illustrate each type of solution concept. Some new results on
the existence of optimal solutions of set optimization problems are given in Sect. 6.6.
In the last section, we investigate Ekeland’s variational principle for set-valued maps
in different settings and also by using different kinds of set order relations. Further,
we investigate some other equivalent variational principles, namely minimal ele-
ment theorem, Takahashi minimization theorem, and Caristi fixed point theorem for
set-valued maps.
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6.2 Preliminaries

Throughout the chapter, all vector spaces are assumed to be defined over the field of
real numbers, and we adopt the following notations, unless otherwise specified.

We denote by N, Q, and R the set of all natural numbers, the set of all rational
numbers, and the set of all real numbers, respectively, and R+ = [0,∞). We denote
by R

n the n-dimensional Euclidean space and by R
n+ the nonnegative orthant in R

n .
The zero element in a vector space will be denoted by 0. Let Y be a topological
vector space with its topological dual Y ∗. We denote by 2Y (respectively, P(Y )) and
B(Y ) the family of all (respectively, nonempty) subsets of Y and the family of all
nonempty bounded subsets of Y , respectively. For a set A ⊆ Y , we denote by intA,
A or clA, ∂A, and Ac, the interior, the closure, the boundary, and the complement of
A, respectively.

For arbitrary nonempty sets X and Y , we denote by PX and PY , the projection of
X × Y onto X and Y , respectively, that is,

PX (x, y) = x and PY (x, y) = y, for all (x, y) ∈ X × Y.

A function F : X → 2Y is said to be a set-valued map, and it is denoted by
F : X ⇒ Y . For the set-valued map F : X ⇒ Y , the image of F at x ∈ X is a subset
F(x) of Y . The domain of F is

dom F = {x ∈ X : F(x) �= ∅},

and the image of F is

Im F = {y ∈ Y : there exists x ∈ X such that y ∈ F(x)}.

The set-valued map F : X ⇒ Y can be identified by its graph which is defined as

graph F = {(x, y) ∈ X × Y : x ∈ X, y ∈ F(x)}.

The image of the set S ⊆ X under F is

F(S) :=
⋃

x∈S
F(x),

so, Im F = F(X). The set

Graph F = {(x, V ) ∈ X × P(Y ) : V = F(x)}

is designated as graph of F by Hamel and Löhne [72].
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A subset C of a vector space Y is said to be a cone if for all x ∈ C and λ ≥ 0, we
have λy ∈ C . The set C of Y is called a convex cone if it is convex and a cone, that
is, for all x, y ∈ C and λ,μ ≥ 0, we have λx + μy ∈ C .

Definition 6.1 A cone C in Y is said to be

(a) solid if it has nonempty interior, that is, intC �= ∅;
(b) nontrivial or proper if C �= {0} and C �= Y ;
(c) reproducing if C − C = Y ;
(d) pointed if for 0 �= x ∈ C , we have −x /∈ C , that is, C ∩ (−C) = {0};
(e) closed cone if it is also closed.

The dual of a cone C ⊆ Y is defined by

C∗ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ C},

where 〈y∗, y〉 denotes the value of the functional y∗ at y.
The convex cone C ⊆ Y induces an ordering on Y as

x C y ⇔ y − x ∈ C, for all x, y ∈ Y.

If intC �= ∅, then we have

x ≺C y ⇔ y − x ∈ intC, for all x, y ∈ Y.

Further, if C is pointed, then the ordering C is a partial ordering on Y .
Note that there is a one-to-one correspondence between an ordering and a convex

cone (see [9]).

Definition 6.2 Let A, B ∈ P(Y ).

• The algebraic sum of A and B is defined as

A + B := {a + b : a ∈ A, b ∈ B}.

• The algebraic difference of A and B is defined as

A − B := {a − b : a ∈ A, b ∈ B}.

• The Minkowski (Pontryagin) difference of A and B is defined as

A−̇B := {y ∈ Y : y + B ⊆ A} =
⋂

b∈B
(A − b).

• For λ ∈ R, λA := {λx : x ∈ A}.
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It is worth to mention that the set equation A + A = 2A does not hold in general
for a nonempty subset A of a vector space. The Minkowski difference of a set
and a vector coincides with their algebraic difference, that is, A−̇a = A − a for all
A ∈ P(Y ) and a ∈ Y .

Note that the Minkowski (Pontryagin) difference plays a very important role in
many applications such as robot motion planning [124], morphological image anal-
ysis [143], and computer-aided design and manufacturing [121]. For further details
onMinkowski (Pontryagin) difference, we refer to the book [136].

The following example illustrates different types of set addition and set difference.

Example 6.1 Let A = [−1, 1] × [−1, 1] and B = [−1, 0] × [−1, 0]. Then,
A + B = [−2, 1] × [−2, 1], A − B = [−1, 2] × [−1, 2], and A−̇B = [0, 1] × [0, 1].

See, Fig. 6.1 for an illustration of the sets A, B, A + B, A − B, and A−̇B.

We present some basic properties of theMinkowski (Pontryagin) difference.

Proposition 6.1 [96] Let Y be a normed space, A, B ∈ P(Y ), and α ∈ Y . The fol-
lowing assertions hold.

(a) (α + A)−̇B = α + (A−̇B).
(b) A−̇(α + B) = −α + (A−̇B).
(c) If A is closed, then A−̇B is also closed.
(d) If A is bounded, then A−̇A = {0}.
Definition 6.3 [9, 127] Let C be a closed convex cone in Y . A nonempty subset A
of Y is said to be

(a) C-proper if A + C �= Y ;
(b) C-closed if A + C is a closed set;
(c) C-bounded if, for each neighborhood U of 0 ∈ Y , there is a positive number t

such that A ⊂ tU + C ;
(d) C-compact if each cover of A of the form {Uλ + C : Uλ is an open set, λ ∈ �}

admits a finite subcover, where � denotes the index set.

Clearly, if C is a closed convex cone, so is −C . The replacement of C by −C in
the above definition produces (−C)-closed, (−C)-bounded, etc. For more detail and
examples on cone-topological concepts, we refer to [9, 127].

We denote by �C the family of all C-proper subsets of Y and by �cb
C the family

of all nonempty, C-proper, closed, and bounded subsets of Y .

6.3 Set Order Relations

This section deals with different kinds of set order relations to study set optimization
problems.
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Fig. 6.1 Visualization of sets A, B, A + B, A − B, and A−̇B

Definition 6.4 [92, 115] Let Y be a topological vector space, A, B ∈ P(Y ), and C
be a proper convex cone in Y . The set order relations on P(Y ) with respect to C are
defined as follows:

(a) The lower set less order relation l
C is defined by

A l
C B ⇔ B ⊆ A + C,

or equivalently, for all b ∈ B, there exists a ∈ A such that a C b.
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Fig. 6.2 Illustration of set order relations in R
2 with C = R

2+

(b) The upper set less order relation u
C is defined by

A u
C B ⇔ A ⊆ B − C,

or equivalently, for all a ∈ A, there exists b ∈ B such that a C b.
(c) The set less order relation s

C is defined by

A s
C B ⇔ B ⊆ A + C and A ⊆ B − C,

or equivalently, for all b ∈ B, there exists a ∈ A such that a C b, and for all
a ∈ A, there exists b ∈ B such that a C b.

(d) The certainly set less order relation c
C is defined by

A c
C B ⇔ (A = B) or (A �= B, for all b ∈ B, for all a ∈ A such that a C b),

or equivalently, A = B, or B − A ⊂ C whenever A �= B.
(e) The possibly set less order relation p

C is defined by

A p
C B ⇔ there exists b ∈ B, there exists a ∈ A such that a C b,

which is equivalent to A ∩ (B − C) �= ∅ or B ∩ (A + C) �= ∅.
When the cone C has nonempty interior, that is, intC �= ∅, then we can define the

corresponding weak set order relations ≺α
C , α ∈ {l, u, s, c, p} as the relations α

C ,
α ∈ {l, u, s, c, p} by replacing C with intC .

For instance, the weak lower set less order relation ≺l
C is defined as

A ≺l
C B ⇔ B ⊆ A + intC,

and the weak upper set less order relation ≺u
C is defined as
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A ≺u
C B ⇔ A ⊆ B − intC.

Note that the set less order relation s
C has been independently introduced by

Young [150] and Nishnianidze [134]. Chiriaev and Walster [31] used the set order
relations s

C , c
C , and p

C in the interval arithmetic and implemented in the FOR-
TRAN compiler f95 of SUN Microsystems [146]. These set order relations have
been presented by Kuroiwa [115] in the modified form as defined in Definition6.4.
See Fig. 6.2 for an illustration of these set order relations.

The following proposition gives the properties of the set order relations defined
as above.

Proposition 6.2 [92]

(a) The set order relations l
C , u

C , and s
C are pre-order and compatible with

respect to addition and scalar multiplication on P(Y ).
(b) The set order relation c

C is a pre-order and compatible with respect to addition
and scalar multiplication on P(Y ). If the ordering cone C is pointed, then the
set order relation c

C is antisymmetric and hence, a partial order relation.
(c) The set order relation p

C is reflexive and compatible with respect to addition
and scalar multiplication on P(Y ). In general, it is not transitive and not anti-
symmetric.

(d) In general, the set order relations l
C ,u

C , and s
C are not antisymmetric. More

precisely, for arbitrary sets A, B ∈ P(Y ), we have

(1) (A l
C B and B l

C A) ⇔ A + C = B + C;
(2) (A u

C B and B u
C A) ⇔ A − C = B − C;

(3) (A s
C B and B s

C A) ⇔ (A + C = B + C and A − C = B − C).

Remark 6.1 The pointedness of the coneC in Proposition6.2(b) cannot be relaxed.
Indeed, let Y = R

2 and C = R × {0}. Then C is not pointed. For A = [−1, 1] × {0}
and B = [3, 5] × {0}, we have A c

C B and B c
C A but A �= B.

The following example shows that the set order relationp
C is in fact not transitive

and not antisymmetric.

Example 6.2 Let Y = R
2 and C = R

2+. Consider the sets

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 22, y1 ≥ 0, y2 ≥ 0},

A2 = {(y1, y2) ∈ R
2 : (y1 − 3)2 + (y2 + 1)2 ≤ 1},

A3 = conv{(4,−2), (6,−2), (6,−4)},

where conv denotes the convex hull. One can easily see from Fig. 6.3 that

A1 p
C A2 and A2 p

C A1 but A1 �= A2,

and
A1 p

C A2 and A2 p
C A3 but A1 �

p
C A3.
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Fig. 6.3 Visualization of Example6.2 with C = R
2+

We have the following relation between the lower set less order relation l
C and

the upper set less order relation u
C :

A l
C B ⇔ B ⊆ A + C ⇔ B ⊆ A − (−C) ⇔ B u

−C A ⇔ (−B) u
C (−A).

Similarly,

A ≺l
C B ⇔ B ⊆ A + intC ⇔ B ⊆ A − (−intC) ⇔ B ≺u−C A ⇔ (−B) ≺u

C (−A).

Proposition 6.3 [92] Let A, B ∈ P(Y ) with A �= B. Then,

(a) A s
C B ⇒ A l

C B ⇒ A p
C B;

(b) A s
C B ⇒ A u

C B ⇒ A p
C B;

(c) A l
C B does not always imply A u

C B, and A u
C B does not always imply

A l
C B.

The following example shows that the implications in Proposition6.3 are strict,
that is, the converse implications do not hold.

Example 6.3 Let Y = R
2 and C = R

2+. Consider the sets
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Fig. 6.4 Visualization of Example6.3 with C = R
2+

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 22, y1 ≥ 0, y2 ≥ 0},

A2 = conv{(2, 0), (4, 0), (4,−2)},
A3 = {(y1, y2) ∈ R

2 : (y1 − 2)2 + (y2 − 0.5)2 ≤ 0.52},
A4 = {(y1, y2) ∈ R

2 : (y1 + 0.5)2 + (y2 − 1)2 ≤ 0.72}.

From Fig. 6.4, it can be easily visualized that

A1 p
C A2 but A1 �

l
C A2 and A1 �

u
C A2,

A1 l
C A3 but A1 �

u
C A3 and hence A1 �

s
C A3,

and
A4 u

C A1 but A4 �
l
C A1 and hence A4 �

s
C A1.

Let us illustrate the set order relations by the following example with order inter-
vals.

Example 6.4 [92] Let a1, a2, b1, b2 ∈ Y be arbitrarily given with a1 C a2 and
b1 C b2, and consider the intervals

A = [a1, a2] := {y ∈ R : a1 C y C a2}

and
B = [b1, b2] := {y ∈ R : b1 C y C b2}.



6 Set Order Relations, Set Optimization, and Ekeland’s Variational Principle 117

(a) [a1, a2] s
C [b1, b2] ⇔ a1 C b1 and a2 C b2.

(b) [a1, a2] c
C [b1, b2] ⇔ a2 C b1.

(c) [a1, a2] p
C [b1, b2] ⇔ a1 C b2.

(d)

A s
C B ⇔

{
min A ∈ min B − C, min B ∈ min A + C,

max A ∈ max B − C, max B ∈ max A + C,

⇔ min B − min A ∈ C and max B − max B ∈ C.

and

A c
C B ⇔ min B ∈ max A + C and max A ∈ min B − C,

where min A := {a ∈ A : A ∩ (a − C) = {a}} and max A := {a ∈ A : A ∩
(a + C) = {a}} are the sets of minimal elements and maximal elements, respec-
tively, with respect to the convex pointed cone C .

This observation was one of the motivations to Jahn and Ha [92] to introduce new
set order relations involving minimal and maximal elements.

From a practical point of view, the set order relations s
C and c

C are more appro-
priate in applications than the other set order relations. In the case of order intervals,
the set order relations s

C and c
C are described by a pre-order of the minimal and

maximal elements of these intervals. But for general nonempty sets A and B, which
possess minimal elements and maximal elements, this property may not be fulfilled.
The following figure illustrates two sets A, B ∈ P(Y ) with A s

C B and the proper-
ties max A ⊆ max B − C but max B � max A + C . This means that there may be
elements b ∈ max B and a ∈ max A which are not comparable with respect to the
pre-order (see Fig. 6.5). In order to avoid this drawback, Jahn and Ha [92] defined
new set order relations involving the minimal and maximal elements of a set. This
leads to various definitions of “minmax less” set order relations. For further details,
see [92].

We denote by � := {A ∈ P(Y ) : min A �= ∅ and max A �= ∅}, where min A :=
{a ∈ A : A ∩ (a − C) = {a}} and max A := {a ∈ A : A ∩ (a + C) = {a}} are the
sets of minimal elements and maximal elements, respectively, with respect to the
convex pointed cone C in a topological vector space Y .

Definition 6.5 [92] Let A, B ∈ � and C be a proper, convex, and pointed cone in
a toplogical vector space Y . The minmax set order relations on � with respect to C
are defined as follows:

(a) The minmax set less order relation m
C is defined by

A m
C B ⇔ min A s

C min B and max A s
C max B.

(b) The minmax certainly set less order relation mc
C is defined by
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Fig. 6.5 Illustration of two
sets A, B ∈ P(Y ) with
A s

C B, and a ∈ max A and
b ∈ max B with a �C b and
b �C a, and C = R

2+

Fig. 6.6 Illustration of two sets A, B ∈ � with A m
C B and A mc

C B, and C = R
2+

A mc
C B ⇔ (A = B) or (A �= B, min A c

C min B and max A c
C max B).

(c) The minmax certainly nondominated set less order relation mn
C is defined by

A mn
C B ⇔ (A = B) or (A �= B, max A s

C min B).

Neukel [132, 133] used set order relations defined in Definitions6.4 and 6.5 to
deal with the building conflict situation in the surroundings of the Frankfurt airport
and cryptanalysis of substitution ciphers. See Fig. 6.2 and Fig. 6.6 for an illustration
of these set order relations.

Definition 6.6 [92] A set A ∈ � is said to have the quasi domination property if
and only if the following equivalent conditions hold:

(a) min A + C = A + C and max A − C = A − C .
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(b) A ⊆ min A + C and A ⊆ max A − C .

Proposition 6.4 [92]

(a) The set order relations m
C and mc

C are pre-order on � and compatible with
respect to the scalar multiplication with nonnegative real numbers. In general,
they are not antisymmetric.

(b) Let A, B ∈ � have the quasi domination property. The set order relation mn
C

is pre-order on � and compatible with respect to the scalar multiplication with
nonnegative real numbers. If the ordering cone C is pointed, then the set order
relation mn

C is antisymmetric.

Remark 6.2 The pointedness of the coneC in Proposition6.4(b) cannot be dropped.
From Remark6.1, it is easy to see that for the sets A and B, we have A mn

C B and
B mn

C A but A �= B.

More precisely, for any A, B ∈ �, we have

(a) (A m
C B and B m

C A) ⇔ (min A + C = min B + C, min A − C = min
B − C, max A + C = max B + C, and max A − C = max B − C).

(b) If C is pointed, then

(A mc
C B and B mc

C A) ⇔ (min A = min B and max A = max B),

(c) If C is pointed and A, B have the quasi domination property, then

(A m
C B and B m

C A) ⇔ (min A = min B and max A = max B).

The following result provides the relation among different kinds of set order
relations.

Proposition 6.5 [92] Let A, B ∈ � with A �= B. Suppose that A and B have the
quasi domination property. Then,

(a) A c
C B ⇒ A mc

C B ⇒ A m
C B ⇒ A s

C B;
(b) A c

C B ⇒ A mn
C B ⇒ A m

C B;
(c) A mn

C B does not always imply A mc
C B and A mc

C B does not always imply
A mn

C B.

The following example illustrates that the implications in the above proposition
are strict, that is, the converse implications do not hold.

Example 6.5 [92] Let Y = R
2 and C = R

2+. Consider the sets
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Fig. 6.7 Visualization of Example6.5 with C = R
2+

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1},

A2 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + (y2 − 1)2 ≤ 1},

A3 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + y22 ≤ 1},

A4 = {(y1, y2) ∈ R
2 : (y1 − 1)2 + (y2 − 1)2 ≤ 1, y21 + y22 ≥ 1},

A5 = conv{(−2, 0), (−3,−1), (0,−2)},
A6 = conv{(4, 2), (0, 2), (4,−2)}.

From Fig. 6.7, one can easily visualize that

A1 mc
C A2 but A1 �

mn
C A2 and A1 �

c
C A2,

A1 m
C A3 but A1 �

mn
C A3 and hence A1 �

mc
C A3,

A1 mn
C A4 but A1 �

c
C A4,

A5 mn
C A6 but A5 �

mc
C A6.

Remark 6.3 From Propositions6.2 and 6.5, it is clear that the set order relation p
C

is the weakest one and the set order relation c
C is the strongest one. Furthermore,

in contrast to the set order relations c
C and mn

C , the set order relations α
C , α ∈

{l, u, s,m,mc} are generally not antisymmetric. To see this, it suffices to consider
the case with the set order relationmc

C because this set order relation is the strongest
one among all other set order relations.

Let Y = R
2 and C = R

2+. Consider the sets

A1 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1},

A2 = {(y1, y2) ∈ R
2 : y21 + y22 ≤ 1,−1 ≤ y1 − y2 ≤ 1}.
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Then we can see that A �= B, A mc
C B, and B mc

C A.

6.3.1 Set Order Relations in Terms of the Minkowski
Difference

Recently, Karaman et al. [96] introduced the following set order relations on the
family of sets by using the Minkowski difference.

Definition 6.7 [96] Let Y be a normed space and A, B, K ∈ P(Y ).

(a) The m-upper set less order relation, denoted by mu
K , is defined as

A mu
K B ⇔ (B−̇A) ∩ K �= ∅.

(b) The m-lower set less order relation, denoted by ml
K , is defined as

A ml
K B ⇔ (A−̇B) ∩ (−K ) �= ∅.

If A and B are bounded and A−̇B �= ∅, B−̇A �= ∅, then A mu
K B if and only if

A ml
K B. If A and B are singleton sets and K is a convex and pointed cone with

0 ∈ K , then mu
K and ml

K coincide with the vector order relation C on Y , that is,
for any a, b ∈ Y , we have

{a} mu
K {b} ⇔ {a} ml

K {b} ⇔ a K b.

It is pointed out in [96] that

(a) if K is a convex cone in Y and 0 ∈ K , then mu
K and ml

K are pre-order on P(Y );
(b) if K is a pointed convex cone in Y with 0 ∈ K , then mu

K and ml
K are partial

order on B(Y );
(c) mu

K and ml
K are compatible with addition;

(d) mu
K andml

K are compatible with scalar multiplication if and only if K is a cone.

From now onward, we consider the ordering cone C on Y instead of K , then mu
K

and ml
K turn to mu

C and ml
C .

The set order relations mu
C and ml

C and the set order relations u
C and l

C have
the following relations: For any A, B ∈ P(Y ),

A mu
C B ⇒ A u

C B and A ml
C B ⇒ A l

C B,

but the converse of the above implications may not be true.
The following example illustrates that the set order relation u

C does not imply
mu

C .
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(b)(a)

Fig. 6.8 (a) Illustration of sets in Example6.6. (b) Illustration of sets in Example6.7

Example 6.6 Let Y = R
2 and C = R

2+. Consider the sets

A = conv{(2, 0), (3, 3), (0, 2)}

and
B = {(y1, y2) ∈ R

2 : (y1 − 5)2 + (y2 − 5)2 ≤ 1}.

As in Fig. 6.8 (a), A ⊆ B − C which gives us A u
C B. On the other hand, there does

not exist any x ∈ R
2 such that x + A ⊆ B. Hence, we have (B−̇A) ∩ C = ∅, that

is, A �
mu
C B.

The following example shows that the set order relation l
C does not imply the

set order relation ml
C .

Example 6.7 Let Y = R
2 and C = R

2+. Consider the sets

A = {(y1, y2) ∈ R
2 : (y1 + 1)2 + (y2 + 1)2 ≤ 1}

and
B = conv{(0, 0), (3, 2), (2, 3)}.

As in Fig. 6.8 (b), B ⊆ A + C which gives us A l
C B. On the other hand, there does

not exist any x ∈ R
2 such that x + B ⊆ A. Hence, we have (A−̇B) ∩ (−C) = ∅,

that is, A �
ml
C B.

The strict version of mu
C and ml

C is defined as follows:

Definition 6.8 [96] Let Y be a normed space, A, B ∈ P(Y ), andC be a convex cone
in Y with intC �= ∅.
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(a) The strictly m-upper set less order relation, denoted by ≺mu
C , is defined as

A ≺mu
C B ⇔ (B−̇A) ∩ intC �= ∅.

(b) The strictly m-lower set less order relation, denoted by ≺ml
C , is defined as

A ≺ml
C B ⇔ (A−̇B) ∩ int(−C) �= ∅.

Remark 6.4 Let α ∈ {mu,ml} and A, B ∈ P(Y ). If A ≺α
C B, then A α

C B.

It is pointed out in [96] that

(a) ≺mu
C and ≺ml

C are compatible with addition;
(b) ≺mu

C and ≺ml
C are compatible with scalar multiplication.

IfC is a pointed convex cone, even then the relations≺mu
C and≺ml

C are not reflexive
unless C = Y , and hence, ≺mu

C and ≺ml
C are not partial order. The following example

clarifies this fact.

Example 6.8 Let Y=R
2,C=R

2+, and A = {(x, y) : x2 + y2 ≤ 1}. Since A−̇A =
{0}, we have {0} ∩ intC = ∅ and A ⊀

mu
C A. Similarly, since (A−̇A) ∩ int(−C) �= ∅,

we obtain A ⊀
ml
C A.

6.3.2 Set Order Relations with Respect to Variable
Domination Structures

In the recent past, Eichfelder and Pilacka [42, 44] and Köbis et al. [7, 101, 102] are
amongmajor contributors to study set optimization problems with respect to variable
ordering structures with applications to different real-world problems. The impor-
tance of incorporating variable ordering structures for intensity-modulated radiation
therapy (IMRT) in order to allow an improved modeling of the decision-making
problem is already discussed in [40, Chap.10]. Another significant application of set
optimization problems with respect to variable domination structures can be found in
the theory of consumer demand [119], medical image registration [104], and uncer-
tain optimization [7].

To study set optimization problems with respect to variable domination structures
by using a set approach, we recall the following six kinds of generalized variable set
order relations to compare sets in a topological vector space Y .

Definition 6.9 [104] Let A, B ∈ P(Y ) and K : Y ⇒ Y be a set-valued map. The
following binary relations on P(Y ) with respect to K are defined as follows:

(a) The variable generalized lower set less order relation K
l is defined by

A K
l B ⇔ B ⊆

⋃

a∈A

(a + K(a)).



124 Q. H. Ansari and P. K. Sharma

(b) The variable generalized upper set less order relation K
u is defined by

A K
u B ⇔ A ⊆

⋃

b∈B
(b − K(b)).

(c) The variable generalized certainly lower set less order relation K
cl is defined

by
A K

cl B ⇔ B ⊆
⋂

a∈A

(a + K(a)).

(d) The variable generalized certainly upper set less order relation K
cu is defined

by
A K

cu B ⇔ A ⊆
⋂

b∈B
(b − K(b)).

(e) The variable generalized possible lower set less order relation K
pl is defined

by
A K

pl B ⇔ B ∩
⋃

a∈A

(a + K(a)) �= ∅.

(f) The variable generalized possible upper set less order relation K
pu is defined

by
A K

pu B ⇔ A ∩
⋃

b∈B
(b − K(b)) �= ∅.

Remark 6.5 For all y ∈ Y , ifK(y) = C is a convex cone with intC �= ∅ in Y , then
the set order relations K

l and K
u reduce to the set order relations l

C and u
C ,

respectively. See Fig. 6.9 for illustration of variable generalized set order relations.

Proposition 6.6 [119] Let A, B ∈ P(Y ). Then, the following assertions hold:

(a) A K
u B ⇔ B −K

l A;
(b) A K

cu B ⇔ B −K
cl A;

(c) A K
pu B ⇔ B −K

pl A;

(d) A K
cl B ⇒ A K

l B ⇒ A K
pl B;

(e) A K
cu B ⇒ A K

u B ⇒ A K
pu B.

Köbis et al. [104] established the following useful properties of the set order
relations K

t , t ∈ {l, u, cl, cu, pl, pu}
Proposition 6.7 [104] Let K : Y ⇒ Y be a set-valued map. The following state-
ments hold:

(a) If 0 ∈ K(y) for all y ∈ Y , then the set order relations K
l , K

u , K
pl , and K

pu
are reflexive.
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Fig. 6.9 Visualization of variable generalized set order relations defined in Definition6.9

(b) IfK(y) + K(y) ⊆ K(y) for all y ∈ Y andK(y + d) ⊆ K(y) for all y ∈ Y and
all d ∈ K(y), then the set order relations K

l and K
cl are transitive.

(c) IfK(y) + K(y) ⊆ K(y) for all y ∈ Y andK(y − d) ⊆ K(y) for all y ∈ Y and
all d ∈ K(y), then the set order relations K

u and K
cu are transitive.

(d) If K(y) ∩ (−K(z)) = {0} for all y, z ∈ Y , then the set order relations K
cl andK

cu are antisymmetric.

6.4 Nonlinear Scalarization Functions

We first recall the linear scalarization method for vectors. The most representative
example of linear scalarizing functions is an inner product. For any y, k ∈ Y , in case
of vector, the linear scalarizing function is defined by

hk(y) := 〈y, k〉. (6.1)

Based on this scalarization, we can consider the following scalarizing functions
for a set A ⊆ Y defined by

ϕk(A) := inf
y∈A

〈y, k〉 and φk(A) := sup
y∈A

〈y, k〉.

Rest of this section, we assume that C is a proper, solid, closed convex cone in
a topological vector space Y and k ∈ intC . The nonlinear scalarization functional
ϕC,k : Y → (−∞,∞] is defined by
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ϕC,k(y) = inf{t ∈ R : y C tk} = inf{t ∈ R : y ∈ tk − C}, for all y ∈ Y. (6.2)

As mentioned in [103], Fig. 6.10 visualizes the functional ϕC,k with C = R
2+ and

k ∈ intC . We can see that the set−C is moved along the line R · k up until y belongs
to tk − C . The functional ϕC,k assigns the smallest value t such that the property
y ∈ tk − C is fulfilled.

It can be shown that all minimal elements of a vector optimization problem can
be found by means of ϕC,k if k ∈ C \ {0}, and all weakly minimal elements of a
vector optimization problem can be determined if k ∈ intC (see [54]). In Fig. 6.10,
we can easily see that for the given cone C = R

2+, by a variation of the vector
k ∈ C \ {0}, all minimal elements of the vector optimization problem without any
convexity assumptions can be found. The scalarizing functional ϕC,k was used in
[54] to prove nonconvex separation theorems and has applications in coherent risk
measures in financial mathematics (see, for instance, [66, 85]).

We note that the set {t ∈ R : y ∈ tk − C} may be empty, and in this case ϕC,k

will take +∞ as by convention inf ∅ = +∞. For further details, see [56]. On the
other hand, if k ∈ C , then the lower level set of ϕC,k at each height t coincides with
a parallel translation of −C at offset tk, that is,

{y ∈ Y : ϕC,k(y) ≤ t} = tk − C,

and hence ϕC,k is the smallest strictlymonotonic functionwith respect to the ordering
cone C in case k ∈ intC . Also, this scalarization function has a dual form as follows:

−ϕC,k(−y) = sup{t ∈ R : tk C y} = sup{t ∈ R : y ∈ tk + C}, for all y ∈ Y.

The importance of this function is due to the fact that it characterizes, under some
appropriate assumptions, the relation C as

Fig. 6.10 Illustration of the
functional (6.2) with
C = R

2+
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y1 C y2 ⇔ ϕC,k(y1 − y2) ≤ 0.

Another essential feature of this function is the so-called translativity property
(see [56] for details), that is,

for all y ∈ Y and all α ∈ R : ϕC,k(y + αk) = ϕC,k(y) + α.

In [148], functionals of type (6.2) have been applied in order to obtain vector-
valued variants of Ekeland’s variational principle. For this topic, see also [59] and
[65]. Note that the originality of the approach in [54, 148] relies on the fact that the
set C defining a functional via (6.2) was assumed neither to be a cone nor convex.
In some papers, this functional has been treated and regarded as a generalization of
the Chebyshev scalarization, see the books [9, 56, 127]. Essentially, it is equivalent
to the smallest strictly monotonic function with respect to intC defined by Luc in
[127].

Recently, Köbis et al. [103] characterized the upper and lower set less order
relations defined in Definition6.4(a) and (b) by using the scalarization functional
ϕC,k as follows.

Theorem 6.4.1 [103, Theorems 3.3 and 3.8] Let C be a proper closed convex cone
in a topological vector space Y and A, B ∈ P(Y ).

(a) If k0 ∈ C\{0} is such that inf
b∈B ϕC,k0(a − b) is attained for all a ∈ A, then

sup
a∈A

inf
b∈B ϕC,k0(a − b) ≤ 0 ⇔ A ⊆ B − C.

(b) If k1 ∈ C\{0} is such that inf
a∈A

ϕC,k1(a − b) is attained for all b ∈ B, then

sup
b∈B

inf
a∈A

ϕC,k1(a − b) ≤ 0 ⇔ B ⊆ A + C.

Recently, Köbis et al. [105] and Ansari et al. [10] studied and investigated new
nonlinear scalarization functions for the relations K

l and K
u and discussed some

of its properties.
Let A, B ∈ P(Y ) and K : Y ⇒ Y be a set-valued map. For each k ∈ Y \ {0}, let

[0,+∞)k + K(y) ⊆ K(y), for all y ∈ Y. (6.3)

Let B ∈ P(Y ) be arbitrary but fixed. Consider the scalarization functionals ϕk,B :
P(Y ) → R ∪ {+∞} and φk,B : P(Y ) → R ∪ {+∞} defined by

ϕk,B(A) := inf{t ≥ 0 : A K
u tk + B}, for all A ∈ P(Y ), (6.4)

and
φk,B(A) := inf{t ≥ 0 : A K

l tk + B}, for all A ∈ P(Y ), (6.5)
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respectively.
If we consider B = {0}, then the scalarization functionals ϕk,B and φk,B defined

by (6.4) and (6.5) can be written as huk : P(Y ) → R ∪ {+∞} and hlk : P(Y ) →
R ∪ {+∞}, respectively, and we have huk : P(Y ) → R ∪ {+∞} and hlk : P(Y ) →
R ∪ {+∞}, respectively, and we have

huk (A) = inf {t ≥ 0 : A K
u tk}, (6.6)

and
hlk(A) = inf {t ≥ 0 : A K

l tk}, (6.7)

for all A ∈ P(Y ).
For more details, we refer to [10, 105].

6.4.1 Weighted Set Order Relations

Rest of this subsection, we assume the following assumption.

Assumption 1 The ordering coneC �= Y is solid, closed, and convex in a Hausdorff
topological vector space Y and k ∈ intC is such that inf

b∈B ϕC,k(a − b) is attained for

all a ∈ A and inf
a∈A

ϕC,k(a − b) is attained for all b ∈ B whenever A and B are closed

and bounded sets in Y .

By using the characterization of the set order relations l
C and u

C given in The-
orem6.4.1, Chen et al. [30] introduced the so-called weighted set order relations as
follows.

Definition 6.10 Let A, B ∈ �cb and λ ∈ [0, 1]. The weighted set order relation λ
C

for sets A, B ∈ P(Y ) is defined by

A λ
C B ⇔ λgu(A, B) + (1 − λ)gl(A, B) ≤ 0,

where

gu(A, B) := sup
a∈A

inf
b∈B ϕC,k(a − b) and gl(A, B) := sup

b∈B
inf
a∈A

ϕC,k(a − b).

Remark 6.6 [30] For any λ ∈ [0, 1], the relation λ
C is reflexive and transitive, that

is,λ
C is a pre-order.Moreover, the relationλ

C is compatible with nonnegative scalar
multiplication, that is, for any A, B ∈ P(Y ) and α ≥ 0, one has

A λ
C B ⇒ αA λ

C αB.
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Remark 6.7 For λ = 1, λ
C reduces to u

C , and for λ = 0, λ
C reduces to l

C . If u
C

and l
C hold, then λ

C is true for all λ ∈ [0, 1], but the converse is not true and this
was exactly the intention of introducing λ

C .
Note that the parameter λ serves as aweight vector which indicates the importance

of either of the two relations u
C and l

C . The relation which is more important
should be associated with a higher weight factor. For instance, if gu(A, B) ≤ 0
and gl(A, B) > 0, then, for large enough λ, A λ

C B can hold and the A u
C B

“outweighs” the effects of A �
l
C B.

Remark 6.8 Chen et al. [30] gave the definition of the weighted set order relation
under the assumption of Y being a quasicompact topological space. Recalling that
usually a Hausdorff (separated) topological space is called compact if it is quasi-
compact, one may realize that [30, Definition 2.5] is basically empty (as well as the
following results, for example, [30, Proposition 2.9]): Up to trivial examples, there
are no (quasi) compact topological linear spaces; not even the real line with the usual
topology satisfies this assumption. Therefore, we modified Assumption 2.4 in [30]
to the version above: It is certainly satisfied in any finite-dimensional space when
the usual topology since every closed bounded set in such a space is compact and
the function ϕC,k is continuous for k ∈ intC .

We provide an example below to illustrate the weighted set order relations λ
C

and discuss the role of the parameter λ.

Example 6.9 [30] Let A = [a, c] and B = [b, d] be compact sets in R. We choose
C = R+ and k = 1. Then,

gu(A, B) = sup
a∈A

inf
b∈B ϕC,k(a − b) = sup

a∈A
inf
b∈B inf{t ∈ R : a − b ≤ t}

= sup
a∈A

inf
b∈B(a − b) = sup

a∈A
a − sup

b∈B
b = c − d,

gu(A, B) = a − b, gu(B, A) = d − c, gl(B, A) = b − a.

Consider a = 5, c = 10, b = 0, and d = 11. Then B �
u
C A, but B l

C A. Also,
A u

C B, but A �
l
C B. However, we can see that the “amount” of B that is big-

ger than the supremum of A is very small compared to how the lower bound of B
is smaller than the lower bound of A. In that sense, when a decision-maker has no
clear understanding of how to choose a set, the weighted set order relationλ

C can be
helpful. We have gu(A, B) = −1, gl(A, B) = 5. So, in order for A λ

C B to hold,
λ ∈ [ 56 , 1]. Similarly, as gu(B, A) = 1, gl(B, A) = −5, λ ∈ [0, 5

6 ] for B λ
C A to

hold true.
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6.5 Solution Concepts in Set Optimization

This section deals with the solution concepts of the set optimization problem (SOP)
with vector approach and set approach. The solution concept based on the vector
approach is of mathematical interest but it cannot be often used in practice.

In the vector approach, an element x̄ ∈ S forwhich there exists at least one element
ȳ ∈ F(x̄) which is Pareto minimal point of the image set of F is a solution of the set
optimization problem (SOP). In the past, solution concepts based on vector approach
has been studied and investigated in [1, 2, 29, 33–35, 41, 55, 59, 61, 64, 80, 93,
122, 123] and the references therein.

Definition 6.11 [1, 80] An element x̄ ∈ S is said to be

(a) a minimal solution of the problem (SOP) if there exists ȳ ∈ F(x̄) such that ȳ is
a minimal element of image set F(S), that is,

({ȳ} − C) ∩ F(S) = {ȳ}.

(b) a weak minimal solution of the problem (SOP) if there exists ȳ ∈ F(x̄) such that
ȳ is a weak minimal element of image set F(S), that is,

({ȳ} − intC) ∩ F(S) = ∅.

We denote the set of minimal and weak minimal elements of (SOP) by Min(F, S)

and WMin(F, S), respectively.
Recall that min A := {a ∈ A : A ∩ (a − C) = {a}} and wminA := {a ∈ A : A ∩

(a − intC) = ∅} are the sets of minimal elements and weak minimal elements,
respectively, with respect to the convex pointed cone C in a topological vector space
Y .

Note that Definition6.11 can also be written as follows:
An element x̄ ∈ S is said to be

(a) a minimal solution [99] of the problem (SOP) if there exists ȳ ∈ F(x̄) such that

(F(S) − {ȳ}) ∩ (−C) = {0};

(b) aweak minimal solution [99] of the problem (SOP) if there exists ȳ ∈ F(x̄) such
that

(F(S) − {ȳ}) ∩ (−intC) = ∅.

Another form of Definition6.11 can also be written as follows:
An element x̄ ∈ S is said to be

(a) a minimal solution [96] of the problem (SOP) if F(x̄) ∩ min F(S) �= ∅;
(b) a weak minimal solution [96] of the problem (SOP) if F(x̄) ∩ wminF(S) �= ∅.
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Fig. 6.11 Illustration of
Example6.10 with C = R

2+

It is clear that Min(F, S) ⊆ WMin(F, S). However, the reverse inclusion may
not hold.

Example 6.10 Let X=R, S=[0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by

F(x) =
{

{(y1, y2) ∈ R
2 : (y1 − 3/2)2 + (y2 − 3/2)2 = (3/2)2}, if x = 0,

conv{(0, 0), (2, 0), (2, 2)}, otherwise.

From Fig. 6.11, we can see that there exists ȳ ∈ F(0) such that ({ȳ} − intC) ∩
F(S) = ∅ and hence 0 ∈ WMin(F, S) but there does not exist any ȳ ∈ F(0) such
that ({ȳ} − C) ∩ F(S) = {ȳ}, so 0 /∈ Min(F, S).

As we have seen above, in the vector approach, we consider only a minimal ele-
ment ȳ of the image set F(S). However, only one minimal element does not imply
that thewhole set F(x̄) be in a certain senseminimalwith respect to all sets F(x)with
x ∈ S. To overcome this drawback, the solution concepts based on the set approach
are very helpful and important. In the set approach, solution concepts are defined by
using different kinds of set order relations, and these solutions are based on the com-
parison of values of set-valued objective map using set order relations. In the recent
past, solution concepts based on set approach have been studied and investigated in
[1, 8, 25, 30, 67, 79–84, 92, 96, 109, 110, 112, 115] and the references therein.

As the set order relationsl
C ,u

C ,s
C ,c

C on P(Y );m
C ,mc

C ,mn
C on�; andλ

C
on �cb are pre-order, we can define optimal solutions with respect to the pre-order
t

C , where t ∈ {l, u, s, c,m,mc,mn, λ}. For the set order relation t
C , we assume

the following condition:

F takes values on

⎧
⎪⎨

⎪⎩

P(Y ), if t ∈ {l, u, s, c},
�, if t ∈ {m,mc,mn},
�cb, if t = λ.
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Definition 6.12 [30, 92] Let t ∈ {l, u, s, c,m,mc,mn, λ}. An element x̄ ∈ S is said
to be

(a) a t-minimal solution of the problem (SOP) with respect to the set order relation
t

C if and only if

F(x) t
C F(x̄) for some x ∈ S ⇒ F(x̄) t

C F(x);

(b) a t-strongly minimal solution of the problem (SOP) with respect to the set order
relation t

C if and only if

F(x̄) t
C F(x), for all x ∈ S;

(c) a t-weak minimal solution of the problem (SOP) with respect to the set order
relation ≺t

C , t �= λ if and only if

F(x) ≺t
C F(x̄) for some x ∈ S ⇒ F(x̄) ≺t

C F(x).

We denote the family of t-minimal, t-strongly minimal, and t-weak minimal
elements of S by t − Min(F, S), t − SMin(F, S), and t − WMin(F, S), respectively,
where t ∈ {l, u, s, c,m,mc,mn, λ}.

It is clear that t − Min(F, S) ⊆ t − WMin(F, S) for t ∈ {l, u}. However, the
reverse inclusion may not hold.

Example 6.11 Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

[(−1,−1), (1, 1)], if x = 0,

{(u, v) ∈ R
2 : u2 + v2 ≤ x2}, otherwise.

Then it can be easily seen that l − Min(F, S) = {0} and l − WMin(F, S) = {0, 1}.
Example 6.12 Let X = R, S = [−1, 0],Y = R

2,C = R
2+, and F : S ⇒ Y be

defined by

F(x) =
{

[0,−2] × [0,−2], if x = 0,

[0,−3) × (0,−3), otherwise.

Then we see that 0 ∈ u − WMin(F, S) but 0 /∈ u − Min(F, S).

Definition 6.13 [77, 78] Let S be a nonempty convex subset of X . A set-valued map
F : S ⇒ Y is said to be

(a) strictly natural l-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2 and
all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺l
C λF(x1) + (1 − λ)F(x2);
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(b) strictly natural u-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺u
C λF(x1) + (1 − λ)F(x2).

Proposition 6.8 [77, 78] Assume that S is a convex subset of X, F : S ⇒ Y is a
strictly natural l-type C-quasi-convex map on S with nonempty compact values.
Then, l − Min(F, S) = l − WMin(F, S).

Proposition 6.9 [77, 78] Assume that S is a convex subset of X, F : S ⇒ Y is a
strictly natural u-type C-quasi-convex map on S with nonempty compact values.
Then, u − Min(F, S) = u − WMin(F, S).

The following examples show that there is no relation between minimal and l-
minimal solutions.

Example 6.13 [79]Let X = R, S = R+,Y = R
2,C = R

2+, and F : S ⇒ Y bedefined
by

F(x) =
{

{(0, 0)}, if x = 0,

[(0, 0), (−x, 1
x )], otherwise.

Then we can easily obtain Min(F, S) = S and l − Min(F, S) = ∅.
Example 6.14 [79] Let X = R, S = [−1, 0],Y = R

2,C = R
2+, and F : S ⇒ Y be

defined by

F(x) =
{

{(u,−u2) ∈ R
2 : −1 < u ≤ 0}, if x = −1,

[(x, 0), (x,−x2)], otherwise.

After a short calculation, we get Min(F, S) = ∅ and l − Min(F, S) = {−1}.
The following examples show that there is no relation between minimal and u-

minimal solutions.

Example 6.15 [1] Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =

⎧
⎪⎨

⎪⎩

{(u, v) ∈ R
2 : u2 + v2 = x2, v > 0}, if x �= −1, 0,

(−1/2, 1), if x = −1,

(1/2, 1), if x = 0.

We can easily check that Min(F, S) = ∅ and u − Min(F, S) = {−1}.
Example 6.16 Let X=R, S = [0, 1],Y=R

2,C = R
2+, and F : S ⇒ Y be defined

by
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F(x) =
{

[[(2, 2), (3, 3)]], if x = 0,

[[(0, 0), (4, 4)]], otherwise.

where [[(a, b), (c, d)]] = {(y1, y2) : a ≤ y1 ≤ c, b ≤ y2 ≤ d}. After a short calcu-
lation, we get Min(F, S) = (0, 1] and u − Min(F, S) = {0}.

We now recall the notions of optimal solutions of the problem (SOP) with respect
to the relations ∗

C and ≺∗
C , where ∗ ∈ {ml,mu}. For the set order relations ∗

C and
≺∗

C , we assume that Y is a normed space, F(x) ∈ B(Y ) for all x ∈ S, K := C is a
closed convex and pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Definition 6.14 Let ∗ ∈ {ml,mu}. An element x̄ ∈ S is called

(a) a ∗-minimal solution of the problem (SOP) with respect to ∗
C if there does

not exist any x ∈ S such that F(x) ∗
C F(x̄) and F(x) �= F(x̄), that is, either

F(x) �
∗
C F(x̄) or F(x) = F(x̄) for any x ∈ S;

(b) a ∗-weak minimal solution of the problem (SOP) with respect to ≺∗
C if

F(x) ≺∗
C F(x̄) for some x ∈ S ⇒ F(x̄) ≺∗

C F(x).

We denote the set of ∗-minimal and ∗-weak minimal solutions of the problem
(SOP) by ∗ − Min(F, S) and ∗ − WMin(F, S), respectively.

Remark 6.9 (a) Since the set order relations ∗
C , ∗ ∈ {ml,mu}, are partial order,

Definition6.14(a) can also be written as follows:
An element x̄ ∈ S is said to be a ∗-minimal solution of the problem (SOP) if

F(x) ∗
C F(x̄) for some x ∈ S ⇒ F(x̄) = F(x).

Furthermore, if t
C is partial order for any t ∈ {l, u, s, c,m,mc,mn, λ}, then

the above also holds true for Definition6.12(a).
(b) Definition6.12(c) and Definition6.14(b) can also be written as follows:

An element x̄ ∈ S is said to be a t-weak minimal solution (∗-weak minimal
solution) of the problem (SOP) if there does not exist any x ∈ S such that
F(x) ≺t

C F(x̄) (F(x) ≺∗
C F(x̄)).

Clearly, ∗ − Min(F, S) ⊆ ∗ − WMin(F, S). However, the reverse inclusion may
not hold.

Example 6.17 Let X = R, S = [0, 1],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

{(u, v) ∈ R
2 : u2 + v2 ≤ 4, u > 0, v > 0}, if x = 0,

(0, 3) × (0, 3), otherwise.

Then, 0 ∈ ml − WMin(F, S) but 0 /∈ ml − Min(F, S).
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Example 6.18 Let X = R, S = [−1, 0],Y = R
2,C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

{(u, v) ∈ R
2 : u2 + v2 ≤ 9, u < 0, v < 0}, if x = 0,

(0,−1) × (0,−1), otherwise.

Then, 0 ∈ mu − WMin(F, S) but 0 /∈ mu − Min(F, S).

Definition 6.15 Let S be a nonempty convex subset of X . A set-valued map F :
S ⇒ Y is said to be

(a) strictly natural ml-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺ml
C λF(x1) + (1 − λ)F(x2).

(b) strictly natural u-type C-quasi-convex on S if for all x1, x2 ∈ S with x1 �= x2
and all t ∈ (0, 1), there exists λ ∈ [0, 1] such that

F(t x1 + (1 − t)x2) ≺mu
C λF(x1) + (1 − λ)F(x2).

Proposition 6.10 Assume that S is a convex subset of X, F : S ⇒ Y is a strictly
natural l-type C-quasi-convex map on S with nonempty compact values. Then, ml −
Min(F, S) = ml − WMin(F, S).

Proposition 6.11 Assume that S is a convex subset of X, F : S ⇒ Y is a strictly
natural u-typeC-quasi-convexmap on S with nonempty compact values. Then, mu −
Min(F, S) = mu − WMin(F, S).

We now give the following example to show that anml-minimal solution may not
be a minimal solution and vice-versa.

Example 6.19 Let X = R, S = [−1, 1], Y = R
2, C = R

2+, and F : S ⇒ Y be
defined by

F(x) =
{

(0, 4) × (0, 4), if x = −1,

[0, 2] × [0, 2], otherwise.

Then, Min(F, S) = (−1, 1] and ml − Min(F, S) = [−1, 1].
In the above example, if F(−1) = [0, 4] × [0, 4] is replacedby F(−1) = (0, 4) ×

(0, 4), then Min(F, S) = [−1, 1] and ml − Min(F, S) = {−1}.
We now give the following examples to show that an mu-minimal solution may

not be a minimal solution and vice-versa.

Example 6.20 Let X = R, S = {0, 1},Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by



136 Q. H. Ansari and P. K. Sharma

Fig. 6.12 Illustration of Example6.20 with C = R
2+

F(x) =
{
conv{(0, 0), (2, 3), (3, 2)}, if x = 0,

conv{(2, 0), (0, 2), (2, 2)}, if x = 1.

From Fig. 6.12, we can see that there does not exist any ȳ ∈ F(1) such that ({ȳ} −
C) ∩ F(S) = {ȳ}. Therefore, 1 /∈ Min(F, S) but 1 ∈ mu − Min(F, S) because
F(0) �

mu
C F(1).

Example 6.21 Let X = R, S = {0, 1},Y = R
2,C = R

2+, and F : S ⇒ Y be defined
by

F(x) =
{

{(x, y) ∈ R
2 : x2 + y2 ≤ 1}, if x = 0,

{(−√
2

2 , −√
2

2 )}, if x = 1.

Then we can easily obtain Min(F, S) = {0, 1} but ml − Min(F, S) = {1}. Indeed,
F(1)−̇F(0) = ∅. Therefore, F(1)−̇F(0) ∩ C = ∅. Thus, F(0) �

mu
C F(1) and there-

fore 1 ∈ mu − Min(F, S). Moreover, F(0)−̇F(1) �= ∅ (see Fig. 6.13). Therefore,
F(1)−̇F(0) ∩ C �= ∅. Thus, F(1) mu

C F(0) and therefore 0 /∈ mu − Min(F, S).

The following example shows that an mu-minimal solution may not be a u-
minimal solution and vice-versa.

Example 6.22 Let X = R, Y = R
2, S = [0, 1], and C = R

2+. Let F : S ⇒ Y be
defined by

F(x) =
{

[0,−1] × [0,−1], if x = 0,

(0,−2) × (0,−2), otherwise.

Then,
mu − MinF = [0, 1] and u − MinF = (0, 1].
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Fig. 6.13 Illustration of Example6.21 with C = R
2+

Furthermore, if we replace the value of F(x) for all x ∈ (0, 1] by [0,−2] × [0,−2],
then

mu − MinF = {0} and u − MinF = [0, 1].

Example 6.23 Let X = R, Y = R
2, S = [−1, 1], and C = R

2+. Let F : S ⇒ Y be
defined by

F(x) =
{

(0, 1) × (0, 1), if x = −1,

[0, 1/2] × [0, 1/2], otherwise.

We can easily see that

ml − MinF = [−1, 1] and l − MinF = (−1, 1].

Furthermore, if we replace the value of F(−1) by [0, 1] × [0, 1], then

ml − MinF = {−1} and l − MinF = [−1, 1].

The following theorem shows that every weak minimal solution of (SOP) is a
ml-weak minimal solution of the problem (SOP).

Theorem 6.5.1 [99] If C is a closed convex pointed cone in Y with intC �= ∅, then

WMin(F, S) ⊆ ml − WMin(F, S).

From Example6.17, it is clear that the reverse inclusion of the above theorem fails
because 0 ∈ ml − WMin(F, S) but 0 /∈ WMin(F, S).
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Fig. 6.14 Relationship between different kinds of solution concepts of the problem (SOP)

The following theorem shows that every l-weak (u-weak) minimal solution of
(SOP) is a ml-weak (mu-weak) minimal solution of the problem (SOP).

Theorem 6.5.2 [99] If C is a closed convex pointed cone in Y with intC �= ∅, then
u − WMin(F, S) ⊆ mu − WMin(F, S) and l − WMin(F, S) ⊆ ml − WMin(F, S).

However, the converse of the above theoremmay not hold. For instance, in Exam-
ple6.22, 0 ∈ mu − WMin(F, S) but 0 /∈ u − WMin(F, S) and in Example6.23,
−1 ∈ ml − WMin(F, S) but −1 /∈ l − WMin(F, S).

In the following diagram, we summarize the relations among various notions of
minimal and weak minimal solutions involving the set order relations l

C and ml
C .

In a similar way, we can establish relations among various notions of minimal and
weak minimal solutions using different set order relations (Fig. 6.14).

6.5.1 Solution Concepts in Set Optimization with Respect to
Variable Domination Structures

This section introduces different concepts forminimal elements of a family of sets and
solution concepts for the problem (SOP) with respect to variable ordering structures.



6 Set Order Relations, Set Optimization, and Ekeland’s Variational Principle 139

These concepts are defined based on set relations introduced in Definition6.9. In
addition, we present the relationship between the sets of different minimal elements.

Definition 6.16 [104] Let A be a family of nonempty sets in Y and K : Y ⇒ Y be
a set-valued map.

(a) A set Ā ∈ A is called a minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if

∀ A ∈ A, A K
t Ā ⇒ Ā K

t A.

(b) A set Ā ∈ A is called a strong minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if
∀ A ∈ A, Ā K

t A.

(c) A set Ā ∈ A is called a strict minimal element of A with respect to K
t , t ∈

{l, u, cl, cu, pl, pu}, if

∀ A ∈ A, A K
t Ā ⇒ Ā = A.

The sets of all minimal, strong minimal, and strict minimal elements of A with
respect toK

t , t∈{l, u, cl, cu, pl, pu}, are denoted byMin(A,K
t ), SoMin(A,K

t ),
and SiMin(A,K

t ), respectively.

Remark 6.10 (a) WhenA is a family of singleton sets andK(y) is a closed, convex
and pointed cone for each y ∈ Y , then the definition of strictly minimal element
of A with respect to K

t reduces to the definition of nondominated element of
A with respect to K (see [40, Definition 2.7]).

(b) If Ā ∈ Min(A,K
t ), then for all B ∼ Ā, we have B ∈ Min(A,K

t ). From Def-
inition6.16, we obtain

SiMin(A,K
t ) ⊆ Min(A,K

t ) and SoMin(A,K
t ) ⊆ Min(A,K

t ).

However, neither SiMin(A,K
t ) ⊆ SoMin(A,K

t ) nor SoMin(A,K
t )

⊆ SiMin(A,K
t ) always holds (see [104]).

(b)
SoMin(A,K

cl ) ⊆ SoMin(A,K
l ) ⊆ SoMin(A,K

pl)

SiMin(A,K
pl) ⊆ SiMin(A,K

l ) ⊆ SiMin(A,K
cl )

SoMin(A,K
cu) ⊆ SoMin(A,K

u ) ⊆ SoMin(A,K
pu)

SiMin(A,K
pu) ⊆ SiMin(A,K

u ) ⊆ SiMin(A,K
cu).

The following example illustrates that neither SiMin(A,K
t ) ⊆ SoMin(A,K

t )

nor SoMin(A,K
t ) ⊆ SiMin(A,K

t ) always holds.
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Example 6.24 [104] Let

A1 = {(y1, y2) ∈ R
2 : 2 ≤ y1, y2 ≤ 3, y1 + y2 ≤ 5},

A2 = {(2, y2) ∈ R
2 : 2 ≤ y2 ≤ 3} ∪ {(y1, 2) ∈ R

2 : 2 ≤ y1 ≤ 3},
A3 = {(5, 5)},
A4 = {(y1, y2) ∈ R

2 : 3 ≤ y1 ≤ 5, 0 ≤ y2 ≤ 1},

and the set-valued map K : R
2 ⇒ R

2 be defined as

K(t) =
{

{(d1, d2) : 0 ≤ d1 ≤ 2d2}, ift ∈ R
2 \ {(1, 3)},

R
2+, ift = {(1, 3)}.

From Fig. 6.15, we can easily see that

A1 K
l A2, A1 K

l A3, A1 �
K
l A4,

A2 K
l A1, A2 K

l A3, A1 �
K
2 A4,

A3 K
l A1, A3 K

l A2, A3 �
K
l A4,

A4 �
K
l A1, A4 �

K
l A2, A4 K

l A1.

Let A := {A1, A2, A3}. Then we have

Min(A,K
l ) = {A1, A2}, SoMin(A,K

l ) = {A1, A2}, SiMin(A,K
l ) = ∅.

Let A′ := {A1, A2, A3, A4}. Then we have

Min(A′
, K

l ) = {A1, A2, A4}, SoMin(A′
, K

l ) = {A1, A2}, SiMin(A′
, K

l ) = {A4}.

Let A′′ := {A3, A4}. Then we have

Min(A′′
,K

l ) = SoMin(A′′
,K

l ) = SiMin(A′′
,K

l ) = {A4}.

Proposition 6.12 Let A be a family of sets in P(Y ), S ∈ P(Y ), and |S| denote the
number of elements in S. Then, for t ∈ {l, u, cl, cu, pl, pu}, the following statements
hold.

(a) If |SoMin(A,K
t )| > 1, then SiMin(A,K

t ) = ∅.
(b) If |SiMin(A,K

t )| > 1, then SoMin(A,K
t ) = ∅.

(c) If SoMin(A,K
t ) ∩ SiMin(A,K

t ) �= ∅, then
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Fig. 6.15 Illustration of
Example6.24

{
|SoMin(A,K

t )| = |SiMin(A,K
t )| = 1,

SoMin(A,K
t ) = SiMin(A,K

t ).

Now, we define the solution concepts of set optimization problem (SOP) with
respect to the set order relations K

t , t ∈ {l, u, cl, cu, pl, pu}. Note that the solution
concepts in the following definition are given in the preimage space X , whereas the
solution concepts in Definition6.16 are formulated in the image space Y .

Definition 6.17 [104] Let F : X ⇒ Y andK : Y ⇒ Y be two set-valued maps such
that F(x) and K(y) are nonempty sets for all x ∈ X, y ∈ Y .

(a) An element x̄ ∈ X is called a minimal element of (SOP) with respect to K
t ,

t ∈ {l, u, cl, cu, pl, pu}, if

x ∈ X, F(x) K
t F(x̄) ⇒ F(x̄) K

t F(x).

(b) An element x̄ ∈ X is called a strong minimal element of (SOP) with respect to
K

t , t ∈ {l, u, cl, cu, pl, pu}, if

∀ x ∈ X \ {x̄}, F(x̄) K
t F(x).

(c) An element x̄ ∈ X is called a strict minimal element of (SOP) with respect to
K

t , t ∈ {l, u, cl, cu, pl, pu}, if



142 Q. H. Ansari and P. K. Sharma

x ∈ X, F(x) K
t F(x̄) or F(x) = F(x̄) ⇒ x = x̄ . (6.8)

The sets of all minimal, strong minimal, and strict minimal elements of (SOP)
with respect to K

t , t ∈ {l, u, cl, cu, pl, pu}, are denoted by Min(F(X),K
t ),

SoMin(F(X),K
t ), and SiMin(F(X),K

t ), respectively.

Remark 6.11 [104]

(a) If the relation K
t is reflexive, then Definition6.17(c) is equivalent to

x ∈ X, F(x) K
t F(x̄) ⇒ x = x̄ .

(b) Definition6.17 implies that SoMin(F(X),K
t ) and SiMin(F(X),K

t ) are sub-
sets of Min(F(X),K

t ). Furthermore, the following relations for the sets of
minimal solutions of (SOP) with respect to the lower set order relations K

l ,K
cl , and K

pl hold:

SoMin(F(X),K
cl ) ⊆ SoMin(F(X),K

l ) ⊆ SoMin(F(X),K
pl)

and
SiMin(F(X),K

pl) ⊆ SiMin(F(X),K
l ) ⊆ SiMin(F(X),K

cl ).

Similarly, the following relations for the sets of minimal solutions of (SOP) with
respect to the upper set order relations K

u , K
cu , and K

pu hold:

SoMin(F(X),K
cu) ⊆ SoMin(F(X),K

u ) ⊆ SoMin(F(X),K
pu)

SiMin(F(X),K
pu) ⊆ SiMin(F(X),K

u ) ⊆ SiMin(F(X),K
cu).

6.6 Existence of Solutions

It is well known that the semicontinuity for set-valuedmaps plays a significant role to
study the set optimization problems. Kuroiwa [113] and Jahn and Ha [92] extended
the concept of semicontinuities for set-valued maps by using the set order relations
l

C andu
C and applied them to obtain the existence of solutions for set optimization

problems. Hernández et al. [84] further used and investigated the semicontinuity
for set-valued maps to study the existence of solutions of the problem (SOP) and
the relation among solutions using vector approach and set approach. Very recently,
Zhang and Huang [153] introduced the notion of lower semicontinuity from above
and used it to obtain the existence of results and discussed the link between solutions
of the problem (SOP) obtained by vector approach and set approach.
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6.6.1 Generalized Semicontinuity for Set-Valued Maps

In this subsection, we introduce the notions of generalized semicontinuity for set-
valued maps involving the partial set order relation ml

C . Further, we study some
properties of the generalized semicontinuity for set-valued maps, which are then
applied to study the existence of solutions for set optimization problems.

Throughout this subsection, we assume that S is a nonempty subset of a Hausdorff
topological vector space X and Y is a real normed space. Further, we assume that
F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and pointed cone with intC �= ∅
and F(x) �= ∅ for all x ∈ X .

Definition 6.18 The set-valued map F : X ⇒ Y is said to have

(a) ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ml

C
F(x̄);

(b) ≺ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ≺ml

C
F(x̄);

(c) strictly≺ml
C -lower property at x̄ ∈ S if there exists a point x ∈ S such that F(x) ∩

F(x̄) = ∅ and F(x) ≺ml
C F(x̄).

Definition 6.19 Let {Aα}α∈I be a net and (I,<) be a directed set. The net {Aα}α∈I
is said to be

(a) ml
C -increasing if for α, β ∈ I with α < β, we have Aα ml

C Aβ ;
(b) ml

C -decreasing if for α, β ∈ I with α < β, we have Aβ ml
C Aα .

Definition 6.20 A set-valued map F : S ⇒ Y is said to be ml-type Demi-lower
semicontinuous at x̄ ∈ S if for any net {xα}α∈I in S such that xα → x̄ and {F(xα)}α∈I
is a ml

C -decreasing net, the following condition holds:

F(x̄) ml
C Limsupα(F(xα) + C),

where Limsupα(F(xα) + C) denotes the set of all cluster points of {yα : yα ∈
(F(xα) + C)}α∈I .

We say that F is ml-type Demi-lower semicontinuous on S if it is ml-type Demi-
lower semicontinuous at each point x̄ ∈ S.

Definition 6.21 Let X be a topological space. A set-valued map F : X ⇒ Y is said
to be

(a) ml
C -lower semicontinuous from above at x̄ ∈ X if for any net {xα}α∈I in X with

xα → x̄ such that {F(xα)}α∈I is a ml
C -decreasing net, one has F(x̄) ml

C F(xα)

for all α ∈ I ;
(b) ml

C -upper semicontinuous from below at x̄ ∈ X if for any net {xα}α∈I in X with
xα → x̄ such that {F(xα)}α∈I is a ml

C -increasing net, one has F(xα) ml
C F(x̄)

for all α ∈ I .
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We say that F is ml
C -lower semicontinuous from above (respectively, ml

C -upper
semicontinuous from below) on X if it is ml

C -lower semicontinuous from above
(respectively, ml

C -upper semicontinuous from below) at each point x̄ ∈ X .

Remark 6.12 Theml-typeDemi-lower semicontinuity implies theml
C -lower semi-

continuity from above, but the following example shows that the converse is not true.

Example 6.25 Let S = R
2, Y = R

2, and C = R
2+. Let F : S ⇒ Y be defined by

F(x) =

⎧
⎪⎨

⎪⎩

{(0, 1)}, if x > 0,

{(0, ε) : 0 < ε < 2}, if x = 0,

{(0,−1)}, if x < 0.

At x̄ = 0, one can easily see that for any net {xα}α∈I in S with xα → 0, {F(xα)}α∈I
is a ml

C -decreasing net and F(0) ml
C F(xα) for all α ∈ I . Hence, F is ml

C -
lower semicontinuous from above at x̄ = 0. However, F is not ml-type Demi-
lower semicontinuous at x̄ = 0. Indeed, taking a sequence {xn} = { 1n }n∈N, we get
Limsupn→+∞(F(xn) + C) = C . After a short calculation, we obtain F(0) �

ml
C

Limsupn→+∞(F(xn) + C). Hence, F is not ml-type Demi-lower semicontinuous
at x̄ = 0.

Definition 6.22 A set-valued map F : X ⇒ Y is said to be ml
C -lower semicontinu-

ous at x̄ ∈ X if the set {x ∈ X : F(x) ml
C F(x̄)} is closed.We say that F isml

C -lower
semicontinuous on X if it is ml

C -lower semicontinuous at each point x̄ ∈ X .

Proposition 6.13 If the set-valued map F is ml
C -lower semicontinuous on X, then

it is ml
C -lower semicontinuous from above on X.

Proof Let {xα}α∈I be a net in X such that xα → x̄ and F(xβ) ml
C F(xα) for α < β

with α, β ∈ I . Then for each α ∈ I , the net {xβ}α<β satisfies xβ → x̄ . By ml
C -lower

semicontinuity of F , one has x̄ ∈ {x ∈ X : F(x) ml
C F(xα)} for all α ∈ I . This

shows that F is ml
C -lower semicontinuous from above on X .

�
The following example shows that the reverse of the above proposition is not true.

Example 6.26 Let X = R, Y = R, and C = R+. Let F : X ⇒ Y be defined by

F(x) =

⎧
⎪⎨

⎪⎩

{0}, if x > 0,

[0, 2), if − 1 < x ≤ 0,

{1}, if x ≤ −1.

At x̄ = 0, one can easily see that for any net {xα}α∈I in X with xα → 0, {F(xα)}α∈I
is ml

C -decreasing net and F(0) ml
C F(xα) for all α ∈ I . Hence, F is ml

C -lower
semicontinuous from above at x̄ = 0. However, the set {x ∈ X : F(x) ml

C F(0)} =
{x ∈ X : −1 < x ≤ 0} is not closed. Hence, F is not ml

C -lower semicontinuous at
x̄ = 0.
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Remark 6.13 In a similar way, we can introduce the notions of generalized semi-
continuity with respect to other different kinds of set order relations.

6.6.2 Existence of Solutions in Set Optimization Problems

In this subsection, we study the existence of results for solutions of set optimization
problems with respect to the partial set order relation ml

C by using generalized
semicontinuity. Since existence results for other set order relations can be obtained
in a similar way, we skip such a study.

Throughout this subsection, unless otherwise specified, we assume that S is a
nonempty subset of a Hausdorff topological vector space X and Y is a real normed
space. Further, we assume that F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and
pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Let A, B ∈ P(Y ) and x̄ ∈ S, we write

A ∼ B ⇔ A ml
C B and B ml

C A,

E(x̄,ml
C ) = {x ∈ S : F(x̄) ∼ F(x)},

and the level set of F at x̄ ∈ S is given by

L(x̄,ml
C ) = {x ∈ S : F(x) ml

C F(x̄)}.

It is simple to verify that E(x̄,ml
C ) ⊆ L(x̄,ml

C ). The converse holds for a ml-
minimal solution of the problem (SOP).

Proposition 6.14 x̄ ∈ ml − Min(F, S) if and only if E(x̄,ml
C ) = L(x̄,ml

C ).

The following result is obvious and so we skip its proof.

Proposition 6.15 If x̄ ∈ ml − Min(F, S), then E(x̄,ml
C ) ⊆ ml − Min(F, S).

Theorem 6.6.1 Let S be a nonempty compact subset of a Hausdorff topological
vector space X. If the set-valued map F : S ⇒ Y is ml

C -lower semicontinuous from
above on S, then the problem (SOP) has ml-minimal solution.

Proof We define a relation  on the quotient set P(Y )/ ∼ as follows: For any [A]
and [B] in P(Y )/ ∼, [A]  [B] ⇔ A ml

C B. Let {[F(xα)]}α∈I be a totally ordered
set in the quotient set P(Y )/ ∼. Without loss of generality, let α, β ∈ I with α < β

such that [F(xβ)]  [F(xα)]. Then the compactness of S implies that there exist
Ĩ ⊆ I and a subnet {xα̃}α̃∈ Ĩ of {xα}α∈I such that xα̃ → x̄ . Thus, by the ml

C -lower
semicontinuous fromaboveof F ,weknow that F(x̄) ml

C F(xα̃) for all α̃ ∈ Ĩ .Hence,
[F(x̄)]  [F(xα̃)] for all α̃ ∈ Ĩ .

Nextwe prove that [F(x̄)]  [F(xα)] for allα ∈ I . If it is not true, then there exists
ᾱ ∈ I such that [F(x̄)] � [F(xᾱ)]. For each α

′ ∈ Ĩ with ᾱ < α
′
, we have [F(x̄α

′ )] 



146 Q. H. Ansari and P. K. Sharma

[F(xᾱ)]. Since [F(x̄)]  [F(xα̃)] for all α̃ ∈ Ĩ , one has [F(x̄)]  [F(xα
′ )] and so

[F(x̄)]  [F(xᾱ)], which is a contradiction. Therefore, [F(x̄)]  [F(xα)] for all
α ∈ I . Now by Zorn’s lemma, we know that {[F(x̄)]}x∈S has a minimal element.
That is, the problem (SOP) has a ml-minimal set.

�

Definition 6.23 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y be a set-valued map. We say that S satisfies the condition (A) if for
each net {xα}α∈I in S such that {F(xα)}α∈I is a ml

C -decreasing net, there exist Ī ⊆ I
and a subnet {xᾱ}ᾱ∈ Ī of {xα}α∈I such that {xᾱ} → x̄ ∈ S.

Similar to the proof of Theorem6.6.1, we can obtain the following theorem.

Theorem 6.6.2 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y be a set-valued map. If S satisfies the condition (A) and F is ml

C -
lower semicontinuous from above on S, then the problem (SOP) has a ml-minimal
solution.

6.6.3 Relation Between Minimal Solutions with Respect to
Vector and Set Approach

In this subsection, we study the relations between minimal solutions for set opti-
mization problems with respect to vector approach and set approach involving the
partial set order relation ml

C .
Throughout this subsection, unless otherwise specified, we assume that S is a

nonempty subset of a Hausdorff topological vector space X and Y is a real normed
space. Further, we assume that F(x) ∈ B(Y ) for all x ∈ S, C is a closed convex and
pointed cone with intC �= ∅ and F(x) �= ∅ for all x ∈ X .

Now, we show how the set relation ml
C can help to find the minimal solutions by

vector approach.

Lemma 6.6.1 If x̄ ∈ Min(F, S) with F(x) ml
C F(x̄) for each x ∈ S, then x ∈

Min(F, S).

Proof Assume that x̄ ∈ Min(F, S). Let ȳ ∈ F(x̄) be such that ȳ ∈ min F(S). We
only need to show that ȳ ∈ F(x). Assume that ȳ /∈ F(x). Then by the hypothesis,
we have F(x) ml

C F(x̄), that is, F(x)−̇F(x̄) ∩ (−C) �= ∅. Hence, there exists a c ∈
C such that −c ∈ F(x)−̇F(x̄), equivalently −c + F(x̄) ⊆ F(x). Therefore, there
exists ȳ ∈ F(x̄) such that −c + ȳ = y for some y ∈ F(x). Then we have ȳ = ỹ + c
for some ỹ ∈ F(x). This implies that ȳ ∈ ỹ + C , that is, ỹ C ȳ for some ỹ ∈ F(x)
which contradicts to ȳ ∈ min F(S). Thus ȳ ∈ F(x) and hence x ∈ Min(F, S).

�



6 Set Order Relations, Set Optimization, and Ekeland’s Variational Principle 147

Proposition 6.16 Let x̄ ∈ Min(F, S). Then, only one of the following two assertions
holds.

(a) x̄ is a ml-minimal solution of the problem (SOP).
(b) There exists a minimal solution x̂ ∈ Min(F, S) of the problem (SOP) such that

F(x̂) ml
C F(x̄) and F(x̂) � F(x̄).

Proof By the definition of ml-minimal solution, (b) is false if (a) holds. Assume
that (a) does not hold. Then there exists x̂ ∈ S such that F(x̂) ml

C F(x̄) and F(x̂) �

F(x̄). Since x̄ ∈ Min(F, S), by Lemma6.6.1, we have that x̂ ∈ Min(F, S) and (b)
holds.

�
Definition 6.24 A set-valued map F : S ⇒ Y is said to be strongly injective on S
if for any x1, x2 ∈ S, F(x2) ml

C F(x1) and F(x1) �
ml
C F(x2) imply that F(x1) ∩

F(x2) �= ∅.
Lemma 6.6.2 If x̄ ∈ Min(F, S) and F is strongly injective on S, then x̄ ∈ ml −
Min(F, S).

Proof Let x̄ ∈ Min(F, S). Assume that x̄ /∈ ml − Min(F, S). Then there exists x̃ ∈
S such that F(x̃) ml

C F(x̄) and F(x̄) �= F(x̃). Since x̄ ∈ Min(F, S), we can choose
ȳ ∈ F(x̄) such that ȳ ∈ min F(S). By Lemma6.6.1, we have ȳ ∈ F(x̃), which con-
tradicts the fact that F is strongly injective. Therefore, x̄ ∈ ml − Min(F, S).

�
Theorem 6.6.3 Let S be a nonempty subset of a Hausdorff topological vector space
and F : S ⇒ Y satisfy ml

C -lower property at x̄ ∈ S with F(x̄) ∩ F(x̃) = ∅, x̃ ∈ S.
If min F(x̄) �= ∅ and x̄ ∈ ml − Min(F, S), then x̄ ∈ Min(F, S).

Proof Let x̄ ∈ ml − Min(F, S) with min F(x̄) �= ∅. Assume to the contrary that
x̄ /∈ Min(F, S). Then F(x̄) ∩ min F(S) = ∅. Since min F(x̄) ⊆ F(x̄) ⊆ F(S), we
have min F(x̄) ∩ min F(S) = ∅. Since F has the ml

C -lower property at x̄ ∈ S, there
exists x̃ ∈ S such that F(x̃) ≺ml

C F(x̄). Then, there exists a c ∈ C such that −c +
F(x̄) ⊆ F(x̃). Therefore, there exists ȳ ∈ F(x̄) such that −c + ȳ = ỹ for some ỹ ∈
F(x̃). This implies that ȳ ∈ ỹ + C , that is, ỹ C ȳ for some ỹ ∈ F(x̃). Since x̄ ∈
ml − Min(F, S), we have F(x̄) ≺ml

C F(x̃) and F(x̄) �= F(x̃). By F(x̄) ∩ F(x̃) = ∅
and ỹ ∈ F(x̃), there exists a ŷ ∈ F(x̄) such that ŷ C ỹ. Using the transitivity of the
order relationC , we get ŷ C ȳ. Thus ȳ /∈ min F(x̄), which contradicts the fact that
min F(x̄) �= ∅. Thus, we have F(x̄) ∩ min F(S) �= ∅ and hence x̄ ∈ Min(F, S). �

6.7 Ekeland’s Variational Principle for Set-Valued Maps

Ekeland’s variational principle (in short, EVP) is one of the fundamental results
from nonlinear analysis which was developed in the pioneer papers [45–47] by
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I. Ekeland. One of the most important ideas of EVP is that in the absence of a
known minimum, one can use EVP to reach close to a minimum. It is found that
several other fundamental results from nonlinear analysis, namely, Caristi’s fixed
point theorem [23, 24], Takahashi’s minimization theorem [147], Phelps’s minimal
element theorem [137, 138], etc., are equivalent to EVP in the sense that they can
be achieved by using EVP and vice-versa. The EVP is one of the most powerful
tools to deal withmany applications in optimization, optimal control, global analysis,
mathematical economy, partial differential equations, etc., see [3, 39, 45–47]. During
the last three decades, EVP has been extended for vector-valued/set-valued maps and
also under different space settings, see, for example, [3–6, 10, 12, 15, 17, 18, 20,
26–28, 50, 56, 58, 61, 63, 65, 71, 72, 76, 87, 89, 97, 131, 148, 149] and the
references therein.

Ekeland’s variational principle for vector-valued maps was explored by Németh
[131], Tammer [148], and Isac [89]. However, each of these vector-valued versions
have different conditions on the involved function. In 1998, Chen and Huang [27]
unified these results. In [58, 59], a variational principle for a vector-valued map was
presented as a consequence of the minimal point theorem on the product space. It
is worth to mention that the minimal element theorems were established by Göpfert
and Tammer [57] and further generalized by Göpfert, et al. [58, 59], Hamel and
Löhne [71], Hamel [65], and Hamel and Tammer [74] on the product space X × Y
in different settings. Such theorems played an important role to derive Ekeland’s
variational principle for vector-valued maps. These minimal element theorems are
the extension of Phelps’s minimal element theorem [137, 138].

Hamel and Löhne [72] considered a subset A ⊆ X × P(Y ), where X is a sepa-
rated uniform space and Y is a topological vector space and introduced the following
notation:

V(A) := {V ∈ P(Y ) : ∃x ∈ X : (x, V ) ∈ A}.

Let � be the directed set and {qλ}λ∈� be the family of quasi-metrics which gen-
erates the topology of the uniform space X . We write q� if and only if an assertion
holds for all λ ∈ �. Using the relationl

C andu
C , Hamel and Löhne [72] introduced

the following ordering relations on X × P(Y ): For all x1, x2 ∈ X , V1, V2 ∈ P(Y ),
and k ∈ C \ −clC ,

(x1, V1) k
l (x2, V2) ⇔ V1 + q�(x1, x2)k l

C V2,

and
(x1, V1) k

u (x2, V2) ⇔ V1 + q�(x1, x2)k u
C V2.

Note that the previous relations can be read as

for all λ ∈ �, V1 + qλ(x1, x2)k l
C V2,

and
for all λ ∈ �, V1 + qλ(x1, x2)k u

C V2.
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The relations k
l and k

u are reflexive and transitive on X × P(Y ).
Hamel and Löhne [72] introduced the minimal element theorems for set-valued

maps in the separated uniform spaces involving the set order relations l
C and u

C .
Such minimal element theorems are the extensions of minimal element theorems
presented in [58, 59].

Moreover, they [72] introduced the concept of the domain of a set-valued map F
for the set order relations l

C and u
C in the following way:

l
C − dom F := {x ∈ X : F(x) l

C V for some nonempty V ⊆ Y },

and

u
C − dom F := {x ∈ X : F(x) l

C V for some topologically bounded V ⊆ Y }.

They derived variational principle for set-valuedmaps involving the set order relation
l

C /u
C .

In [12], we studied minimal element theorem, Ekeland’s variational principle,
Caristi’s fixed point theorem, and Takahashi’s minimization theorem involving set
order relationsml

k andmu
k defined on X × P(Y ) by usingml

C andmu
C as follows:

Let C be a solid convex cone in a normed space Y and (X, d) be a metric space.
For all x1, x2 ∈ X , V1, V2 ∈ P(Y ), and k ∈ intC , define

(x1, V1) ml
k (x2, V2) ⇔ V1 + d(x1, x2)k ml

C V2,

and
(x1, V1) mu

k (x2, V2) ⇔ V1 + d(x1, x2)k mu
C V2.

It can be easily seen that the relations ml
k and mu

k are reflexive and transitive on
X × P(Y ).

We now consider the following assumptions.

Assumption 2 Let (X, d) be a complete metric space, Y be a real normed vector
space, C be a solid closed convex pointed cone in Y , and k ∈ intC . Let F : X →
P(Y ) be a closed-valued map such that

(i) F is ml-bounded below (that is, there exists V ∈ P(Y ) such that V ml
C F(x)

for all x ∈ X ),
(ii) S̃(x) = {x̃ ∈ X : (x̃, F(x̃)) ml

k (x, F(x))} is closed for all x ∈ X .

Assumption 3 Let (X, d) be a complete metric space, Y be a real normed vector
space, C be a solid closed convex pointed cone in Y , and k ∈ intC . Let F : X →
P(Y ) be a closed-valued map such that

(i) F is mu-bounded below (that is, there exists V ∈ P(Y ) such that V mu
C F(x)

for all x ∈ X ),
(ii) Ŝ(x) = {x̂ ∈ X : (x̂, F(x̂)) mu

k (x, F(x))} is closed for all x ∈ X .
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The minimal element theorems involving the set order relations ml
k and mu

k on
X × P(Y ) are presented in [12]. Here, we mention such result only for the set order
relation ml

C .

Theorem 6.7.1 [12] Let (X, d) be a complete metric space, Y be a real normed
space, C be a solid closed convex pointed cone in Y , k ∈ intC, andA ⊂ X × P(Y )

be a nonempty set. Assume that the following conditions hold:

(i) A is ml-bounded below (that is, there exists V ∈ P(Y ) such that V ml
C

PP(Y )(A) for all x ∈ X);
(ii) For allml

k −decreasing sequence {(xn, Vn)}n∈N ⊂ A (that is, (xn+1, Vn+1) ml
k

(xn, Vn) for all n ∈ N), there exists (x, V ) ∈ A such that (x, V ) ml
k (xn, Vn)

for all n ∈ N.

Then for every (x0, V0) ∈ A, there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) ml
k (x0, V0),

(b) for any (x̃, Ṽ ) ∈ A such that (x̃, Ṽ ) ml
k (x̄, V̄ ), then x̃ = x̄ .

In [12], we established Ekeland’s variational principle for set-valuedmaps involv-
ing the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.2 [12]Assume that theAssumption2holds. If for k ∈ intC and x0 ∈ X,
F(x0) �⊂ F(X) + k + intC, then there exists x̄ ∈ X such that

(a) F(x̄) + d(x̄, x0)k ml
C F(x0),

(b) F(x) + d(x̄, x)k �
ml
C F(x̄) for all x �= x̄ ,

(c) d(x̄, x0) ≤ 1.

In [12], we further obtained Caristi’s fixed point theorems for set-valued maps
under the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.3 [12] Suppose that the Assumption2 and the following condition
hold.

(Caristi-ml
C ) Condition. Let T : X → 2X be a set-valued map such that for every x ∈ X,

there exists y ∈ T (x) such that

F(y) + d(x, y)k ml
C F(x).

Then T has a fixed point in X, that is, there exists x̄ ∈ X with x̄ ∈ T (x̄).

In [12], we also obtained Takahashi’s minimization theorems for set-valued maps
under the set order relations ml

C and mu
C . Here we mention such result only for the

set order relation ml
C .

Theorem 6.7.4 [12] Suppose that the Assumption2 and the following condition
hold.
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(Takahashi-ml
C Condition). For every y ∈ X with F(y) /∈ ml − WMin(F, X), there exists

z ∈ X \ {y} such that
F(z) + d(y, z)k ml

C F(y).

Then there exists x̄ ∈ X such that F(x̄) ∈ ml − WMin(F, X).

We remark that the following implications hold

Theorem 6.7.2 ⇔ Theorem 6.7.3 ⇔ Theorem 6.7.4.

6.7.1 A Minimal Element Theorem and Ekeland’s Principle
with Mixed Set Order Relations

Throughout this subsection, unless otherwise specified, we assume that Y is a
Hausdorff topological vector space and C is a nontrivial, solid convex cone.
Let W be a nonempty set with a transitive relation  on W . We say that the
sequence {wn}n∈N ⊂ W is -decreasing [76] if wn+1  wn for all n ∈ N. We
set S(w0) := {w ∈ W : w  w0} for each w0 ∈ W . Of course, S : W ⇒ W is
a set-valued map whose domain is dom S := {w0 ∈ W : S(w0) �= ∅}. Clearly,
w ∈ S(w0) ⇒ S(w) ⊂ S(w0) and dom S = W when  is a pre-order, that is,
a reflexive and transitive order relation on W .

The following variational principle for minimal points on a pre-ordered set played
a key role to establish the main results of this subsection.

Theorem 6.7.5 (Extended Brézis–Browder Principle) [21, 76] Let  be a transi-
tive relation and φ : W → R := R ∪ {±∞} be a function such that the following
conditions hold.

(i) φ is -increasing (that is, w1  w2 implies φ(w1) ≤ φ(w2));
(ii) For every -decreasing sequence {wn}n∈N ⊆ W, there exists w ∈ W such that

w  wn for all n ∈ N.

Then for every w0 ∈ dom S, there exists w̄ ∈ S(w0) such that φ(ŵ) = φ(w̄) for
all ŵ ∈ S(w̄).

Let (X, d) be a metric space and λ ∈ [0, 1]. For x1, x2 ∈ X , V1, V2 ∈ �cb
C , and

k ∈ intC , in [6], we introduced the following set order relation λ
k on X × �cb as

follows:
(x1, V1) λ

k (x2, V2) ⇔ V1 + d(x1, x2)k λ
C V2.

It can be easily seen that the set order relation λ
k is reflexive and transitive on

X × �cb.
By using the technique of [12, 72], but for the weighted set order relation λ

k
on X × �cb

C , we [6] established the following minimal element theorem. It is worth
to mention that Hamel and Löhne [72] used the set relations l

k and u
k , which are

special cases of the set relation λ
k , to obtain a minimal element theorem.
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Let (X, d) be a complete metric space. For a set A ⊆ X × �cb, we denote by
P�cb(A) the projection of A onto its second component, that is,

P�cb(A) = {A ∈ �cb : ∃x ∈ X with (x, A) ∈ A}.

Theorem 6.7.6 [6] LetA ⊂ X × �cb be a nonempty set. Assume that the following
condition holds:

(M) For all λ
k -decreasing sequence {(xn, Vn)}n∈N ⊂ A (that is, (xn+1, Vn+1) λ

k
(xn, Vn) for all n ∈ N), there exists (x, V ) ∈ A such that (x, V ) λ

k (xn, Vn)

for all n ∈ N.

Then for every (x0, V0) ∈ A, there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) λ
k (x0, V0),

(b) if (x̂, V̂ ) ∈ A such that (x̂, V̂ ) λ
k (x̄, V̄ ), then x̂ = x̄ .

Assumption 4 Let F : X → �cb be a C−closed-valued map such that

(i) F is bounded below (that is, there exists V ∈ �cb such that V λ
C F(x) for all

x ∈ X ),
(ii) Ŝ(x) = {x̂ ∈ X : (x̂, F(x̂)) λ

k (x, F(x))} is closed for all x ∈ X .

In [6], we established Ekeland’s variational principle for set-valued maps involv-
ing set order relation λ

C .

Theorem 6.7.7 Assume that Assumption4 is satisfied. If for k ∈ intC and x0 ∈ X,
F(X) + k �

λ
C F(x0) holds, then there exists x̄ ∈ X such that

(a) F(x̄) + d(x̄, x0)k λ
C F(x0),

(b) F(x) + d(x̄, x)k �
λ
C F(x̄) for x �= x̄ ,

(c) d(x̄, x0) ≤ 1.

Remark 6.14 It is worth to mention that Theorems6.7.6 and 6.7.7 are more general
than [12, Theorems 4.4 and 4.6], [72, Theorems 5.1 and 6.1], and [76, Theorem
5.1] under certain assumptions. However, due to strong assumptions on the order
relationλ

C , Theorems6.7.6 and 6.7.7 are not completely comparable with the results
mentioned above.

We derived in [6] the following Caristi fixed point theorem for set-valued maps
with set order relation λ

C .

Theorem 6.7.8 Suppose that Assumption4 and the following condition hold.

(Caristi-λ
C ) Condition. Let T : X ⇒ X be a set-valued map with nonempty values such

that for every x ∈ X, there exists y ∈ T (x) satisfying

F(y) + d(x, y)k λ
C F(x).

Then T has a fixed point in X, that is, there exists x̄ ∈ X such that x̄ ∈ T (x̄).
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We further obtained in [6] the following Takahashi minimization theorem for
set-valued maps with mixed set order relation λ

C .

Theorem 6.7.9 Suppose that Assumption4 and the following condition hold.

(Takahashi-λ
C Condition). For every y ∈ X with F(y) /∈ λ − Min(F, X), there exists

z ∈ X \ {y} such that
F(z) + d(y, z)k λ

C F(y).

Then there exists x̄ ∈ X such that F(x̄) ∈ λ-Min(F, X).

In [6], we verified that Theorems6.7.7, 6.7.8, and 6.7.9 are equivalent to each
other in the sense that each one can be derived by using the other.

6.7.2 Ekeland’s Variational Principle for Set-Valued Maps in
Quasi-Metric Spaces

We recall the definition of a quasi-metric space. For further details and definitions,
we refer to [32].

Definition 6.25 Let X be a nonempty set. A quasi-metric on X is a function q :
X × X → R+ := [0,+∞) that satisfies the following conditions:

(Q1) q(x, y) ≥ 0 and q(x, x) = 0 for all x ∈ X ;
(Q2) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X ;
(Q3) q(x, y) = q(y, x) = 0 ⇒ x = y for all x, y ∈ X .

The set X equipped with a quasi-metric q is called a quasi-metric space and
it is denoted by (X, q). If, in addition, the quasi-metric q satisfies the symmetry
property, that is, q(x, y) = q(y, x) for all x, y ∈ X , then q is called a metric. The
topological space equipped with a quasi-metric is known as the Sorgenfrey line.
Every quasi-metric space (X, q) can be viewed as a topological space on which the
topology is induced by taking the collection of balls {Br (x) : r > 0} as a base of the
neighborhood filter for every x ∈ X , where the (left) ball Br (x) is defined by

Br (x) := {y ∈ X : q(x, y) < r}.

We present some basic notions from quasi-metric spaces, which are needed in
this subsection.

Definition 6.26 Let (X, q) be a quasi-metric space and � be a nonempty subset of
X .

(a) We say that the sequence {xn} ⊂ X (left-sequentially) converges to x̄ ∈ X if
lim
n→∞ q(xk, x∗) = 0, and it is denoted by xn → x∗ ∈ X .
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(b) We say that the set � is left-sequentially closed if for any sequence xn → x∗
with {xn} ⊂ �, x∗ ∈ �.

(c) We say that the sequence {xn} ⊂ X is left-sequentially Cauchy if for each β ∈ N,
there is a natural number Nβ such that

q(xn, xm) < 1/β, for all m ≥ n ≥ Nβ.

(d) We say that the quasi-metric space (X, q) is left-sequentially complete if each
left-sequentially Cauchy sequence is convergent and its limit belongs to X .

(e) A quasi-metric space is the Hausdorff topological space if

[
lim
n→∞ q(xn, x̄) = 0 and lim

n→∞ q(xn, ū) = 0
]

⇒ x̄ = ū. (6.9)

(f) A quasi-metric space (X, q) ordered by a pre-order  (that is, a reflexive and
transitive relation) is said to satisfy the Hausdorff decreasing condition if for
every decreasing sequence {xn} ⊂ X and x̄, ū ∈ X with x̄  ū the implication
in (6.9) holds.

In 1983, Dancs, Hegedüs, and Medvegyev [37] (in short, DHM) established a
fixed point theorem for set-valued maps on a complete metric space by using the
generalized Picard iteration under some appropriate assumptions. Since then, many
authors have generalized this fixed point theorem under different assumptions and in
different settings. Recently, Bao et al. [17] extended DHM’s fixed point theorem for
parametric dynamic systems in quasi-metric spaces. Motivated by the result in [17],
we, in [10], introduced the extended Picard iterative process for set-valued maps on
the product spaces and obtained the extended version of DHM’s fixed point theorem.
We defined the extended Picard sequence in the following way:

Let X be a nonempty set, Y be a topological vector space, and � : X × P(Y ) ⇒
X × P(Y ) be a set-valuedmap.We say that the sequence {(xn, Vn)}n∈N is an extended
Picard sequence/iterative process if

(x2, V2) ∈ �(x1, V1), (x3, V3) ∈ �(x2, V2), . . . , (xn, Vn) ∈ �(xn−1, Vn−1),

for all n ∈ N.
In [10], we established the following extended parametric fixed point theorem on

the product space X × P(Y ).

Theorem 6.7.10 Let (X, q) be a complete Hausdorff quasi-metric space, Y be
a topological vector space, and ∅ �=  ⊂ X × P(Y ). Assume that the parametric
dynamical system � : X × P(Y ) ⇒ X × P(Y ) satisfies the following conditions:

(F1) (x, V ) ∈ �(x, V ) for all (x, V ) ∈ .
(F2) Forall (x1, V1), (x2, V2) ∈  such that (x2, V2) ∈ �(x1, V1), wehave�(x2, V2)

⊂ �(x1, V1).
(F3) For each extended Picard sequence {(xn, Vn)}n∈N ⊂  with xn → x∗ as n →

∞, there exists V ∗ ∈ P(Y ) such that
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(x∗, V ∗) ∈  and (x∗, V ∗) ∈ �(xn, Vn), for all n ∈ N, (6.10)

and
(x∗, V ) ∈  ∩ �(x∗, V ∗) implies V = V ∗. (6.11)

(F4) For each extended Picard sequence {(xn, Vn)}n∈N ⊂ , q(xn, xn+1) → 0 as
n → ∞.

Then for every (x0, V0) ∈ , there is an extended Picard sequence {(xn, Vn)}n∈N ⊂ 

starting from (x0, V0) and ending at a fixed point (x∗, V ∗) of � in the sense that
�(x∗, V ∗) = {(x∗, V ∗)}.

From now onward, we assume that K : Y ⇒ Y is a set-valued map and the fol-
lowing conditions hold.

• 0 ∈ K(y).
• K(y) + K(y) ⊆ K(y) for all y ∈ Y .
• [0,+∞)k + K(y) ⊆ K(y) for all y ∈ Y and all k ∈ Y \ {0}.
• For all y ∈ Y and all v ∈ K(y), we have

K(y − v) ⊆ K(y). (6.12)

• For all A, B, D, E ∈ P(Y ), we have

∀b ∈ B, ∀e ∈ E we have K(b) + K(e) ⊆ K(b + e). (6.13)

• For all y ∈ Y and all v ∈ K(y), we have

K(y + v) ⊆ K(y). (6.14)

• For all A, B, D, E ∈ P(Y ), we have

∀a ∈ A and ∀d ∈ D we have K(a) + K(d) ⊆ K(a + d). (6.15)

Let X be a quasi-metric space. For all x1, x2 ∈ X and V1, V2 ∈ P(Y ), we [10]
defined the set order relations u

k and l
k on X × P(Y ) as follows:

(x1, V1) u
k (x2, V2) ⇔ V1 + q(x2, x1)k K

u V2, (6.16)

and
(x1, V1) l

k (x2, V2) ⇔ V1 + q(x2, x1)k K
l V2. (6.17)

We note that the above set order relations on X × P(Y ) are pre-order. Note that
the relationu

k is reflexive and transitive on X × P(Y ) if (6.12) and (6.13) hold, and
the relation l

k is reflexive and transitive on X × P(Y ) if (6.14) and (6.15) hold.
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Based on the idea of [49, 56, 59, 149], we, in [10], also defined the following
order relations on X × P(Y ), which are stronger than u

k and l
k .

(x1, V1) u
k,huk

(x2, V2) ⇔

⎧
⎪⎨

⎪⎩

(x1, V1) = (x2, V2),

or

(x1, V1) u
k (x2, V2) and huk (V1) < huk (V2).

(x1, V1) l
k,hlk

(x2, V2) ⇔

⎧
⎪⎨

⎪⎩

(x1, V1) = (x2, V2),

or

(x1, V1) l
k (x2, V2) and hlk(V1) < hlk(V2).

It can be easily seen that u
k,huk

and l
k,hlk

are reflexive and transitive on X × P(Y ).
Recently, Bao et al. [17, 19] have developed a constructive dynamical approach to

prove the existence of a minimal element of a nonempty subset of the product space
X × Y ordered by some preference. Such a result is called parametric minimal point
theorem. They applied the parametric minimal point theorem to derive the Ekeland
type variational principle for set-valued maps in the setting of quasi-metric spaces.
They used the preferences given by a set-valued mapK : Y ⇒ Y , but their approach
depends on the vector approach. It is worth to mention that the set approach is used
in [12, 72] to obtain minimal element theorems and the Ekeland type variational
principle for set-valued maps in the setting of complete metric spaces with a constant
ordering cone. Since the set-valued optimization problems with variable domination
structures have their own importance not only in the theoretical areas but also in real-
life applications (see, [40, 42, 44, 104]), we [10] extended the results of [17, 19] in
the setting of product space X × P(Y ) for the generalized variable upper/lower less
set order relations K

u /K
l .

Definition 6.27 [10] Let X be a nonempty set, Y be a topological vector space, and
 ⊂ X × P(Y ) be a nonempty set pre-ordered by u

k [l
k].

(a) A sequence {(xn, Vn)}n∈N ⊂  is said to be decreasing with respect to the pre-
orderu

k [l
k] if (xn, Vn) u

k (xn−1, Vn−1) [(xn, Vn) l
k (xn−1, Vn−1)] for all n ∈

N.
(b) An element (x̄, V̄ ) of  is said to be partial minimal element with respect to the

pre-order u
k [l

k] if (x, V ) ∈  and (x, V ) u
k (x̄, V̄ ) [(x, V ) l

k (x̄, V̄ )], then
x = x̄ .

(c) An element (x̄, V̄ ) of is said to beminimal elementwith respect to the pre-order
u

k [l
k] if (x, V ) ∈  and (x, V ) u

k (x̄, V̄ ) [(x, V ) l
k (x̄, V̄ )], then (x, V ) =

(x̄, V̄ ).

In [10], we derived the following minimal element theorem for the set order
relation K

u .
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Theorem 6.7.11 [10] Let (X, q) be a Hausdorff quasi-metric space, Y be a topo-
logical vector space,K : Y ⇒ Y be a set-valued map that satisfies (6.12) and (6.13),
and  ⊂ X × P(Y ) be a nonempty set. For a given (x0, V0) ∈ , define the set

A0 := A(x0, V0) = {(x̃, Ṽ ) ∈  : (x̃, Ṽ ) u
k (x0, V0)}.

Let {(xn, Vn)}n∈N ⊂ A0 be a u
k -decreasing sequence such that the following con-

ditions hold.

(M1) q(xn, xn+1) → 0 as n → ∞.
(M2) If {xn} is a left-sequentially Cauchy sequence, then there exists (x̄, V̄ ) ∈ A0

such that (x̄, V̄ ) u
k (xn, Vn) for all n ∈ N.

Then there is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and
ending at a partially minimal element (x̄, V̄ ) of  with respect tou

k . If, furthermore,
(x̄, V̄ ) satisfies the domination condition

(x̄, V ) u
k (x̄, V̄ ) ⇒ V = V̄ , for all (x̄, V ) ∈ A0, (6.18)

then it can be chosen as a minimal element of the set  with respect to u
k .

Moreover, if we replace u
k by u

k,huk
, then, under the assumption (6.18), there

is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and ending at a
minimal point (x̄, V̄ ) of � with respect to u

k,huk
.

We also derived the following minimal element theorem for the set order relation
K

l .

Theorem 6.7.12 [10] Let (X, q) be a Hausdorff quasi-metric space, Y be a topo-
logical vector space,K : Y ⇒ Y be a set-valued map that satisfy (6.14) and (6.15),
and  ⊂ X × P(Y ) be a nonempty set. For a given (x0, V0) ∈ , define the set

A0 := A(x0, V0) = {(x̃, Ṽ ) ∈  : (x̃, Ṽ ) l
k (x0, V0)}.

Let {(xn, Vn)}n∈N ⊂ A0 be a l
k -decreasing sequence such that the following condi-

tions hold.

(M1′) q(xn, xn+1) → 0 as n → ∞.
(M2′) If {xn} is a left-sequentially Cauchy sequence, then there exists (x̄, V̄ ) ∈ A0

such that (x̄, V̄ ) l
k (xn, Vn) for all n ∈ N.

Then, there is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and
ending at a partially minimal element (x̄, V̄ ) of  with respect tol

k . If, furthermore,
(x̄, V̄ ) satisfies the domination condition

(x̄, V ) l
k (x̄, V̄ ) ⇒ V = V̄ for all (x̄, V ) ∈ A0, (6.19)

then it can be chosen as a minimal element of the set  with respect to l
k .
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Moreover, if we replace u
k by l

k,hlk
, then, under the assumption (6.19), there

is a decreasing sequence {(xn, Vn)}n∈N ⊂  starting from (x0, V0) and ending at a
minimal element (x̄, V̄ ) of  with respect to l

k,hlk
.

Recall that (X, q) be a quasi-metric space and Y be a topological vector space. A
set-valued map F : X → P(Y ) is said to be

(a) level-decreasingly-closed on domF with respect toK
u [K

l ] if for any sequence
{(xn, Vn)} ⊂ GraphF such that xn → x̄ ∈ X as n → ∞ and {Vn} is a sequence
decreasing with respect to K

u [K
l ], there exists V̄ = F(x̄) ∈ Min(F(X);K

u
[K

l ]) such that V̄ K
u [K

l ]Vn for all n ∈ N.
(b) quasi-bounded from below with respect to a closed convex cone C in Y if there

is a bounded subset M ⊂ Y such that F(X) ⊆ M + C .

In [10], we established the following Ekeland type variational principle for set-
valued maps under variable ordering structures.

Theorem 6.7.13 [10] Let (X, q) be a complete Hausdorff quasi-metric space, Y be
a topological vector space, and K : Y ⇒ Y be a set-valued map such that (6.12)
and (6.13) hold. Let C be a convex cone in Y and F : X → P(Y ) be a set-valued
map which is quasi-bounded from below with respect to C. Assume that the following
conditions are satisfied:

(E1) For every y ∈ Y , K(y) is a closed set in Y .
(E2) For any A, B ∈ P(Y ), if A K

u B, then K(a) + K(b) ⊆ K(b) for all a ∈ A
and b ∈ B.

(E3) For any sequence {(xn, Vn)} ⊂ GraphF such that xn → x̄ ∈ X as n → ∞
and {Vn} is decreasing with respect to K

u , there exists a minimal element
V̄ ∈ Min(F(X);K

u ) for which V̄ K
u Vn for all n ∈ N.

(E4) k /∈ cl(−C − K(V0))).

Then, for every (x0, F(x0)) ∈ GraphF, there exists (x̄, F(x̄)) ∈ GraphF with F(x̄) ∈
Min(F(X);K

u ) such that

(a) F(x̄) + q(x0, x̄)k K
u F(x0),

(b) F(x) + q(x̄, x)k �
K
u F(x̄) for all x �= x̄ .

Furthermore, assume that F(x̄) + k �
K
u F(x0) for all k ∈ Y \ {0} and x0 ∈ X,

then
(c) q(x0, x̄) ≤ 1.

In [10], we also obtained the Ekeland type variational principle for set-valued
maps involving variable order structure K

l .

Remark 6.15 Bao et al. [17] considered the main issues of Sen’s capability theory
[108, 142] and the variational rationality model of human behavior. They developed
dynamical aspects of capability theory and discussed the major findings in this direc-
tions by applying the parametric fixed point theorem, parametric minimal element
theorem, and Ekeland’s variational principle. By using variational rationality [17, 18,
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144, 145] technique, we can consider modeling the functionings/preferences dynam-
ics in termof acceptable stays and changes,whichmainly relates to the extended para-
metric fixed point theorem. Then we can find the functionings/preferences dynamics
in term of worthwhile stays and changes, which relates to the obtained variational
principle for maps with variable domination structures. Very recently, Bao et al. [20]
also introduced a new version of Ekeland’s variational principle in set optimiza-
tion with domination structure and gave some applications to career development
theories; in particular, changing the job process.
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Characterizations and Generating
Efficient Solutions to Interval
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Amit Kumar Debnath and Debdas Ghosh

Abstract In this study, we propose a method to obtain complete efficient solu-
tion sets of the optimization problems with interval-valued functions. The proposed
method is based on the cone method for multiobjective optimization problems.
Toward developing the method, a bi-objective characterization of efficient solutions
to the problem under consideration is reported. In addition, we provide a saddle
point characterization of efficient solutions to the problem with the help of a newly
defined Lagrangian function. Finally, we provide an algorithmic implementation of
the proposed method and support it with two numerical examples.
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7.1 Introduction

In the present realistic decision-making field, optimization problems with vague
parameters, such as fuzzy-valued and interval-valued parameters, play vital roles
due to the inevitable presence of uncertainty and imprecision in real-life phenom-
ena. The optimization problems with interval-valued functions (IVFs) are known as
Interval Optimization Problems (IOPs). Generally, the coefficients of IVFs of IOPs
are considered as compact intervals. Due to the practical importance of IOP, it has
been a substantial topic of research for the past two decades.

7.1.1 Literature Survey

In [18], Moore proposed interval arithmetic to deal with intervals and IVFs. After
that, Ishibuchi and Tanaka [13] developed a few ordering relations for intervals. It
is to mention that the interval arithmetic, proposed in [18], has a few limitations,
such as it cannot provide the additive inverse of a nondegenerate interval, i.e., an
interval whose boundary points are different. Initially, this difficulty was fixed by
applying a rule of the difference of intervals, known as H -difference [12]. However,
it is found that the H -difference is quite restrictive [9]. Finally, the difficulty of
getting additive inverse for any interval has been resolved by the development of a
new rule of the difference of intervals, known as gH -difference of intervals [19].
Very recently, Ghosh et al. [8] investigated variable ordering relations for intervals.

Based on the aforesaid interval arithmetic and ordering relations, many
researchers, see [1–3, 5, 9–11, 15, 16, 20, 21], to mention a few have proposed
various results and methods for characterizing and obtaining the solutions to IOPs.
In [3], the concepts of continuity and differentiability have been discussed for the
one variable IVFs. Chalco-Cano et al. [2] and Ghosh [5] illustrated calculus and
algebras of gH -differentiable IVFs. The concepts of fractional derivatives for one-
dimensional IVFs have been developed by Lupulescu [16]. In [9], the concepts of
Gâteaux and Fréchet derivatives for IVFs have been developed; in addition, the opti-
mality conditions for an IOP whose objective function is Gâteaux differentiable has
also been found in [9]. Ghosh et al. [10], further, characterized the solutions to IOPs
by parametric representations of IVFs. For general nonlinear IOPs, Wu [20] and
Chalco-Cano et al. [1] presented the Karush–Kuhn–Tucker (KKT) optimality condi-
tions. A generalized KKT condition to obtain the solution to IOPs has been reported
in [11]. In [21], some duality theorems for IOPs in weak and strong senses have been
provided. In [15], a numerical technique to solve a quadratic IOP has been presented.
In order to obtain a solution to an IOP, Ghosh [5] introduced a Newton method and
a quasi-Newton method [6] for IOPs.
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7.1.2 Motivation and Contribution

From the literature on IOPs, it is observed that an IOP generally has an infinite
number of solutions; for instance, see Example7.1 of this chapter. Although there
are many theories and techniques, please see [1, 4, 5, 9, 10, 14–16, 21] for details
to obtain the solutions to IOPs, but it is found that none of the techniques endeavor
to generate the complete solution set of an IOP.

In this chapter, we develop a technique to generate the complete solution set
of an IOP and illustrate its algorithmic implementation. In order to develop the
technique, we characterize the solutions to IOPs in the light of conventional bi-
objective optimization problems. In addition, we study a saddle point criterion to
find a condition by which the saddle point of an IOP will be its efficient solution and
vice versa.

7.1.3 Organization

The proposed work is delineated in the following way. The next section briefly
presents interval arithmetic, dominance relations of intervals, and the concept of
IVFs. The concepts of IOPs and their efficient solutions are also included in Sect. 7.2.
Further, two types of characterizations—bi-objective characterization and saddle
point characterization—are illustrated in Sect. 7.3. In Sect. 7.4, a technique to capture
the entire efficient solution set is illustrated, and its algorithmic implementation is
provided. Finally, in Sect. 7.5, a brief conclusion and a few future scopes of this study
are provided.

7.2 Preliminaries

In this section, at first, we illustrate the arithmetic of intervals and the concept of
dominance relation of intervals that are used throughout the chapter. Thereafter, we
study IVFs and the concept of optimal solutions for IOPs.

7.2.1 Interval Arithmetic

Let I (R) be the set of all compact intervals. Bold capital letters are used to represent
the elements of I (R). Also, an elementA of I (R) is represented by its corresponding
small letter in the way A = [

a, a
]
.

For any two elements A = [a, a] and B = [
b, b

]
in I (R), the addition of A and

B is defined by
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A ⊕ B = [
a + b, a + b

]
,

and substraction of B from A is defined by

A � B = [
a − b, a − b

]
.

The multiplication of A by a real number γ is defined by

γ � A =
{[

γ a, γ a
]

if γ ≥ 0
[
γ a, γ a

]
if γ < 0.

Definition 7.1 (gH-difference of intervals [19]). The gH -difference of an interval
B from an interval A is defined by

A �gH B = [
min

{
a − b, a − b

}
,max

{
a − b, a − b

}]
.

Definition 7.2 (Dominance relations of intervals [20]). LetA, B ∈ I (R). IfA � B,
i.e., a ≤ b and a ≤ b, then B is called dominated by A.

If A ≺ B, i.e., either ‘a ≤ b and a < b’ or ‘a < b and a ≤ b’, then B is called
strictly dominated by A.

7.2.2 Interval-Valued Functions and Interval Optimization
Problems

LetXbe a nonempty subset ofRn . For each x ∈ X, an IVFF : X → I (R) is presented
by

F(x) =
[
f (x), f (x)

]
,

where f and f are real-valued functions on X such that

f (x) ≤ f (x) ∀ x ∈ X.

Unlessmentioned otherwise, throughout the chapter,we considerX as a nonempty
subset of R

n .

Definition 7.3 (Convex IVF [20]). LetX be convex. An IVFF : X → I (R) is called
a convex IVF on X if for any two elements x1 and x2 in X,

F(γ x1 + (1 − γ )x2) � γ � F(x1) ⊕ (1 − γ ) � F(x2) ∀ γ ∈ [0, 1].
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Remark 7.1 (See [20]). Let X be convex. An IVF F is convex on X if and only if f

and f are convex on X.
Remark 7.2 Let an IVF F be convex on a convex set X. Then, for any nonzero
μ = (μ1, μ2) ∈ [0,∞)2, the function μ1 f + μ2 f is convex on X.

In the literature of interval optimization, an IOP is defined as follows:

(IOP)

⎧
⎪⎨

⎪⎩

min F(x)

subject to Gi (x) � 0, i ∈ I = {1, 2, . . . , p}
x ∈ X,

(7.1)

where F : X → I (R) and Gi : X → I (R) are IVFs for each i ∈ I, and 0 = [0, 0].
Throughout the chapter, for each x ∈ X, we present F(x) and Gi (x), i ∈ I, by

F(x) =
[
f (x), f (x)

]
and Gi (x) =

[
g
i
(x), gi (x)

]
, respectively.

Denoting S = {
x ∈ X ∣∣ Gi (x) � 0 ∀ i ∈ I}

, we can precisely present the IOP (7.1)
by

min
x∈S

F(x).

Since for each i ∈ I,

gi (x) ≤ 0 ⇐⇒ Gi (x) =
[
g
i
(x), gi (x)

]
� 0 ∀ x ∈ X,

the constraint set S of (7.1) can be presented by

S = {
x ∈ X ∣

∣ gi (x) ≤ 0 ∀ i ∈ I}
.

Definition 7.4 (Efficient solution (ES) [21]). An x̄ ∈ S is known as an ES to the IOP
(7.1) if � any x �= x̄ ∈ S such that F(x) ≺ F(x̄).

Remark 7.3 A point x̄ ∈ S is an ES to the IOP (7.1) if and only if � any x �=
x̄ ∈ S such that

[
f (x), f (x)

]
≺

[
f (x̄), f (x̄)

]
, i.e., � any x �= x̄ ∈ S such that the

following relation holds:

ρ ⇐⇒ either ‘ f (x) ≤ f (x̄) and f (x) < f (x̄)′

or ‘ f (x) < f (x̄) and f (x) ≤ f (x̄)′. (7.2)

Definition 7.5 (Nondominated solutions (NS) to IOP [21]). If x̄ in S is an ES to the
IOP (7.1), then F(x̄) is known as a NS to the IOP (7.1).
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Note 7.1 It is to note here that Wu [21] named the ES of this article as NS and NS
of this article as nondominated objective value. However, throughout this article, we
follow Definition7.4 for ES and Definition7.5 for NS to the IOP (7.1).

7.3 Characterizations of Efficient Solutions

This section provides two characterizations—bi-objective and saddle point—of the
ESs to the IOP (7.1).

7.3.1 Bi-objective Characterization

In this subsection, we characterize the ESs to the IOP (7.1) with the help of the
following conventional bi-objective optimization problem:

(BOP) min
x∈S

f (x), where f (x) =
(
f (x), f (x)

)
. (7.3)

Definition 7.6 (Pareto optimal solution (POS) [7]). A point x̄ ∈ S is called a POS
to the BOP (7.3) if � any x �= x̄ ∈ S such that the relation ρ, defined in (7.2), holds.

Definition 7.7 (NS to BOP [7]). If an x̄ ∈ S is a POS to the BOP (7.3), then the

corresponding vector
(
f (x̄), f (x̄)

)
is called a NS to the BOP (7.3).

Theorem 7.3.1 (Bi-objective characterization of ESs). A point x̄ ∈ S is an ES to
the IOP (7.1) if and only if x̄ is a POS to the BOP (7.3).

Proof The proof is obvious in the light of Remark7.3 and Definition7.6. �

Corollary 7.1 Consider the IOP (7.1). Let X be convex, and F and Gi for all i ∈ I
be convex IVFs on X. Then, a point x̄ ∈ S is an ES to the IOP (7.1) if and only if ∃ a
nonzero μ = (μ1, μ2) ∈ [0,∞)2 such that x̄ is an optimal solution to the following
weighted optimization problem:

min
x∈S

(
μ1 f (x) + μ2 f (x)

)
.

Corollary 7.2 If F(x̄) =
[
f (x̄), f (x̄)

]
is a NS to the IOP (7.1), then

(
f (x̄), f (x̄)

)

of F(x̄) is a NS to the BOP (7.3) and vice versa.

Example 7.1 Consider the following IVF

F(x) = [1, 1]x5 � [8, 8]x4 ⊕ [21, 22]x3 � [16, 18]x2 ⊕ [4, 5]
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Fig. 7.1 The ES set with its closer view of the IOP (7.4) in Example7.1

and the IOP
min
x∈[0,4] F(x). (7.4)

The graph of the objective function

F(x) =
[
f (x), f (x)

]
=

[
x5 − 8x4 + 21x3 − 18x2 + 4, x5 − 8x4 + 22x3 − 16x2 + 5

]

of the IOP (7.4) is presented in Fig. 7.1 by the gray region. From Fig. 7.1a, b, it
is evident that the ES set of the IOP (7.4) is the interval [0.692, 1], i.e, for each
x̄ ∈ [0.692, 1], the interval F(x̄) is a NS to the IOP (7.4). The ES set of the IOP (7.4)
is presented in each of Fig. 7.1a, b by the bold black line segment on the x-axis.

Corresponding to the IOP (7.4), consider the following BOP:

min
x∈[0,4]

(
f (x), f (x)

)
, (7.5)

i.e.,

min
x∈[0,4]

(
x5 − 8x4 + 21x3 − 18x2 + 4, x5 − 8x4 + 22x3 − 16x2 + 5

)
.

The objective space and the set of NSs to the BOP (7.5) are illustrated in Fig. 7.2
by the gray curve and the bold black arc, respectively. From Fig. 7.1b and Fig. 7.2, it

is evident that, for each x̄ ∈ [0.692, 1], the point
(
f (x̄), f (x̄)

)
is a NS to the BOP

(7.5).
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Fig. 7.2 NS set of the BOP
(7.5) in Example7.1

7.3.2 Saddle Point Characterization

In this subsection, we define a saddle point of the IOP (7.1) and characterize its ESs
with the help of the following Lagrangian function, which is real-valued. For a given
μ = (μ1, μ2) ∈ [0,∞)2, a Lagrangian function corresponding to the IOP (7.1) is
defined by

Lμ(x, ϑ) = μ1 f (x) + μ2 f (x) +
p∑

i=1

ϑi gi (x), (7.6)

where ϑ = (
ϑ1, ϑ2, . . . ϑp

)
is a nonzero element of [0,∞)p.

Definition 7.8 (Saddle point (SP)). A point x̄ ∈ S is said to be a SP of the IOP (7.1)
if for a given μ = (μ1, μ2) ∈ [0,∞)2, ∃ a ϑ̄ = (

ϑ̄1, ϑ̄2, . . . ϑ̄p
)
, such that

(
x̄, ϑ̄

)

satisfies

Lμ(x̄, ϑ) ≤ Lμ(x̄, ϑ̄) ≤ Lμ(x, ϑ̄) ∀ x ∈ S and ϑ ∈ [0,∞)p. (7.7)

We say that the IOP (7.1) satisfies the Slater constraint qualification if ∃ an x ′ in
X such that

Gi (x
′) ≺ 0 ∀ i ∈ I. (7.8)

Theorem 7.3.2 (SP characterization of ESs). Consider the IOP (7.1). Let X be
convex and the IVFs F and Gi for all i ∈ I be convex on X. Further, suppose that
the IOP (7.1) satisfies the Slater constraint qualification (7.8). Then, x̄ ∈ X is an ES



7 Characterizing and Generating Efficient Solutions of IOPS 175

to the IOP (7.1) if and only if ∃ a ϑ̄ = (
ϑ̄1, ϑ̄2, . . . ϑ̄p

) ∈ [0,∞)p, such that

p∑

i=1

ϑ̄i gi (x̄) = 0 (7.9)

and (x̄, ϑ̄) satisfies the SP criterion (7.7) for a nonzero μ = (μ1, μ2) ∈ [0,∞)2.

Proof We claim that the constraint set S of the IOP (7.1) is convex. As the IVFs Gi

for all i ∈ I are convex on X, for x1, x2 ∈ X, we have

Gi
(
γ x1 + (1 − γ )x2

) � γ � Gi (x1) ⊕ (1 − γ ) � Gi (x2) � 0,

where γ ∈ [0, 1]. Thus, γ x1 + (1 − γ )x2 ∈ S for all γ ∈ [0, 1]. Hence, our claim is
true.

Let x̄ be an ES to the IOP (7.1). Since F andGi for all j ∈ J are convex, in view
of Corollary7.1, ∃ a nonzero μ = (μ1, μ2) ∈ [0,∞)2 so that x̄ is a solution to

min
x∈S

(
μ1 f (x) + μ2 f (x)

)
.

Therefore,

(
μ1 f (x) + μ2 f (x)

)
≥

(
μ1 f (x̄) + μ2 f (x̄)

)
∀ x ∈ S. (7.10)

Consider the following function on X:

ψ(x) = μ1

(
f (x) − f (x̄)

)
+ μ2

(
f (x) − f (x̄)

)
.

SinceF(x̄) is a fixed interval andF is a convex IVF onX, the functionF(x) �gH F(x̄)
is a convex IVF onX. Therefore, by Remark7.1, ψ is convex onX. From Eq. (7.10),
we then observe that the following system is inconsistent:

⎧
⎪⎨

⎪⎩

ψ(x) < 0,

gi (x) < 0 ∀ i ∈ I,

x ∈ X.

Hence, by the generalized Gordan theorem of alternatives on convex functions [17],
we obtain ξ ≥ 0 and βi ≥ 0 for all i ∈ I such that

ξ ψ(x) +
p∑

i=1

βi gi (x) ≥ 0 ∀ x ∈ X. (7.11)
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Further, it can be claimed that ξ > 0. On the contrary, let ξ = 0. Then, the inequality
(7.11) yields

p∑

i=1

βi gi (x) ≥ 0 ∀ x ∈ X. (7.12)

As the IOP (7.1) is assumed to satisfy the Slater constraint qualification, ∃ an x ′ ∈ X
such that

Gi (x
′) =

[
g
i
(x ′), gi (x

′)
]

≺ 0 = [0, 0]

for all i ∈ I.
Therefore,

∑p
i=1 βi gi (x

′) < 0, which is clearly contradictory to Eq. (7.12). There-
fore, ξ must be greater than 0. So, Eq. (7.11) yields

ψ(x) +
p∑

i=1

ϑ̄i gi (x) ≥ 0 ∀ x ∈ X, (7.13)

where

ϑ̄i = βi

ξ
≥ 0 ∀ i ∈ I.

As ψ(x̄) = 0, from (7.13), we obtain

p∑

i=1

ϑ̄i gi (x̄) ≥ 0. (7.14)

Next, since x̄ ∈ S, we get

Gi (x̄) =
[
g
i
(x̄), gi (x̄)

]
� 0 = [0, 0] ∀ i ∈ I. (7.15)

Thus,
p∑

i=1

ϑ̄i gi (x̄) ≤ 0. (7.16)

Hence, by the inequalities (7.14) and (7.16), we have

p∑

i=1

ϑ̄i gi (x̄) = 0. (7.17)

Therefore, by (7.6), we obtain



7 Characterizing and Generating Efficient Solutions of IOPS 177

Lμ(x, ϑ̄) − Lμ(x̄, ϑ̄) = μ1 f (x) + μ2 f (x) +
p∑

i=1

ϑ̄i gi (x) − μ1 f (x̄) − μ2 f (x̄)

= μ1

(
f (x) − f (x̄)

)
+ μ2

(
f (x) − f (x̄)

) +
p∑

i=1

ϑ̄i gi (x)

= ψ(x) +
p∑

i=1

ϑ̄i gi (x)

≥ 0 by the inequality (7.13). (7.18)

Further, in view of (7.15), we have

p∑

i=1

ϑi gi (x̄) ≤ 0 ∀ ϑ = (
ϑ1, ϑ2, . . . ϑp

) ∈ [0,∞)p. (7.19)

Thus,

Lμ(x̄, ϑ) = μ1 f (x̄) + μ2 f (x̄) +
p∑

i=1

ϑi gi (x̄)

≥ μ1 f (x̄) + μ2 f (x̄) by the inequality (7.19)

= μ1 f (x̄) + μ2 f (x̄) +
p∑

i=1

ϑ̄i gi (x̄) by Eq. (7.17)

= Lμ(x̄, ϑ̄). (7.20)

Hence, for all x ∈ S and ϑ ∈ [0,∞)p, in view of the inequalities (7.18) and (7.20),
we have

Lμ(x̄, ϑ) ≤ Lμ(x̄, ϑ̄) ≤ Lμ(x, ϑ̄).

Therefore, (x̄, ϑ̄) satisfies SP criteria (7.7) for the IOP (7.1).
For the converse part, we use the method of contradiction. Let ∃ a nonzero μ =

(μ1, μ2) ∈ [0,∞)2 such that the corresponding Lμ of IOP (7.1) satisfies the SP
criterion (7.7) at (x̄, ϑ̄) for some ϑ̄ with the property (7.9). Hence, for all ϑ =(
ϑ1, ϑ2, . . . ϑp

) ∈ [0,∞)p, we get

Lμ(x̄, ϑ) ≤ Lμ(x̄, ϑ̄) ≤ Lμ(x, ϑ̄) ∀ x ∈ S
=⇒ Lμ(x̄, ϑ̄) ≤ Lμ(x, ϑ̄) ∀ x ∈ S.

Further, if possible, let x̄ be not the ES to the IOP (7.1). Hence, ∃ an x ′ ∈ S such
that
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F(x ′) ≺ F(x̄)

=⇒
[
f (x ′), f (x ′)

]
≺

[
f (x̄), f (x̄)

]

=⇒ μ1 f (x
′) + μ2 f (x

′) < μ1 f (x̄) + μ2 f (x̄)

=⇒ μ1 f (x
′) + μ2 f (x

′) +
p∑

i=1

ϑ̄i gi (x
′) < μ1 f (x̄) + μ2 f (x̄)

since Gi (x
′) � 0 for each i ∈ I

=⇒ μ1 f (x
′) + μ2 f (x

′) +
p∑

i=1

ϑ̄i gi (x
′) < μ1 f (x̄) + μ2 f (x̄) +

p∑

i=1

ϑ̄i gi (x̄)

by Eq. (7.9)

=⇒ Lμ(x ′, ϑ̄) < Lμ(x̄, ϑ̄),

which contradicts the SP criterion at (x̄, ϑ̄) of Lμ. Therefore, x̄ is an ES to the IOP
(7.1). �

In the following example, we verify Theorem7.3.2.

Example 7.2 Consider the following IOP:

min F(x1, x2) = [4, 6] � x21 ⊕ [7, 10] � x22 ⊕ [−5, 2],
subject to G1(x1, x2) = [1, 2] � x21 � [−3, 4] � x2 ⊕ [−9,−7] � 0,

G2(x1, x2) = [2, 3] � x1 ⊕ [1, 3] � x22 � [6, 10] � 0,

− 2 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 4.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7.21)

Here the setX = {
(x1, x2) ∈ R

2
∣
∣ − 2 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 4

}
is convex. OnX, the

functions F, G1, and G2 can be explicitly expressed as

F(x1, x2) =
[
f (x), f (x)

]
= [

4x21 + 7x22 − 5, 6x21 + 10x22 + 2
]
,

G1(x1, x2) =
[
g
1
(x), g1(x)

]
= [

x21 − 4x2 − 9, 2x21 + 3x2 − 7
]
,

and G2(x1, x2) =
[
g
2
(x), g2(x)

]
= [

2x1 + x22 − 10, 3x1 + 3x22 − 6
]
.

Since the functions f , f , g
1
, g1, g2, and g2 are convex on X, it can be said by

Remark7.1 that the functions F, G1, and G2 are convex on X.

Since at the point x̄ = (0, 1) ∈ X,

G1(x̄) =
[
g
1
(x̄), g1(x̄)

]
= [−11, −4] ≺ 0 and G2(x̄) =

[
g
2
(x̄), g2(x̄)

]
= [−9, −3] ≺ 0.
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Therefore, the point x̄ satisfies the Slater constraint qualification of the IOP (7.21).
It can be claimed that x̄ is an ES of IOP (7.21). On contrary, let there exist two

real numbers δ1 and δ2 with (δ1, δ2 + 1) ∈ S such that

F(δ1, δ2 + 1) ≺ F(0, 1),

or [4, 6] � δ21 ⊕ [7, 10] � (δ2 + 1)2 ⊕ [−5, 2] ≺ [2, 12],
or [4δ21 + 7δ22 + 14δ2 + 2, 6δ21 + 10δ22 + 20δ2 + 12] ≺ [2, 12],

which implies

either 4δ21 + 7δ22 + 14δ2 < 0 or 6δ21 + 10δ22 + 20δ2 < 0.

Thus, δ2 < 0, which is not possible, as 1 ≤ δ2 + 1 ≤ 4. Therefore, � any x �= x ∈ S
such that F(x) ≺ F(x). Hence, x̄ = (0, 1) is an ES of the IOP (7.21).

We show that ∃ a ϑ̄ ∈ [0,∞)2 such that (x̄, ϑ̄) satisfies SP criteria (7.7) for the
IOP (7.21).
Let us choose ϑ̄ = (

ϑ̄1, ϑ̄2
) = (2, 0) for which we get

ϑ̄1g1(x̄) + ϑ̄2g2(x̄) = 0.

Therefore, for any μ = (μ1, μ2) ∈ [0,∞)2 and for all ϑ = (ϑ1, ϑ2) ∈ [0,∞)2, we
have

Lμ(x̄, ϑ) = μ1 f (x̄) + μ2 f (x̄) + ϑ1g1(x̄) + ϑ2g2(x̄)

= −5μ1 + 2μ2 − 3ϑ2

≤ −5μ1 + 2μ2

= μ1 f (x̄) + μ2 f (x̄)

= μ1 f (x̄) + μ2 f (x̄) + ϑ̄1g1(x̄) + ϑ̄2g2(x̄)

= Lμ(x̄, ϑ̄),

and for all x ∈ S,

Lμ(x, ϑ̄) − Lμ(x̄, ϑ̄) = μ1

(
f (x) − f (x̄)

)
+ μ2

(
f (x) − f (x̄)

) + ϑ̄1
(
g1(x) − g1(x̄)

)

= (4μ1 + 6μ2 + 4) x21 + (7μ1 + 10μ2)
(
x22 − 1

)
+ 6(x2 − 1)

≥ 0,

i.e.,
Lμ(x̄, ϑ̄) ≤ Lμ(x, ϑ̄) for all x ∈ S.

Hence, (x̄, ϑ̄) satisfies SP criteria (7.7) for the IOP (7.21).
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7.4 Generating the Complete Efficient Solution Set of IOPs

This section deals with a method to generate the complete ES set of the IOP (7.1).
Due to Theorem7.3.1, each POS to the BOP (7.3) is an ES to the IOP (7.1). Hence,
we attempt to generate the complete POS set to the BOP (7.3). To do so, we apply the
cone method [7] on the BOP (7.3). The cone method provides all the POSs and weak
POSs of any multiobjective optimization problem [7]. In the following, we briefly
sketch the cone method for the BOP (7.3).

In order to apply the cone method on the BOP (7.3), we assume that

(i) each of f and f of the BOP (7.3) has nonnegative minimum value on S,
(ii) the sets S and Y = f (S) are compact.

This method relies on the fact that an x̄ ∈ S is a POS if and only if f (S) ∩
(
f (x̄) −

R
2
�

)
= { f (x̄)}, where

R
2
� = {

x = (x1, x2) ∈ R
2
∣∣ x � 0, i.e., x1 ≥ 0, x2 ≥ 0

}
.

The geometrical representation of the conemethod for the BOP (7.3) is as follows.
To capture a POS, we translate the nonpositive quadrant of R

2, i.e., −R
2
� along the

direction of an unit vector α̂ = (
α̂1, α̂2

) ∈ R
2
� until it does not hitY. The translation

process must be carried out in such a manner that the vertex of the cone is always
kept up on the line of vector zα̂, where z is a real number. In that process, the cone

K =
(
zα̂ − R

2
�

)
with z > 0 can hit the boundary of Y in one of the following

possible ways:

(i) The first contact portion ofK withY is the vertex ofK . Then, the contact point
of K on Y is a NS to the BOP (7.3).

(ii) The first contact portion of K with Y is the one (or more) of the boundary
line(s) ofK . In that case, if the contact portion ofY is a single point, then this
point is also a NS to the BOP (7.3). Further, if the contact portion of Y is a
set of points, then the extreme point of the contact portion is a NS to the BOP
(7.3).

The pictorial representation of the cone method for the BOP (7.3) is depicted in
Fig. 7.3, where it is assumed that each of f and f of the BOP (7.3) has zerominimum
value on S. The bold black arcs of the boundary of Y (bd(Y)) represent the region
of NSs to the BOP (7.3).
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Fig. 7.3 Illustration of the
cone method for the BOP
(7.3)

Now, we consider the set N = {
y | zα̂ � f (x), y = f (x), x ∈ S, z ∈ R

}
. For

each particular value of z, N represents the region K ∩ Y. If we try to minimize
the region K ∩ Y by translating the cone K along the direction of α̂ such that
K ∩ Y �= ∅, and in the optimum situation, if the intersecting regionK ∩ Y contains
only one point, then that point is certainly a NS to the BOP (7.3).

It is noteworthy that the intersecting regionminimization process is the minimiza-
tion of z-value satisfying the zα̂ � f (x), x ∈ S. Hence, to obtain a NS to the BOP
(7.3), we need to solve the following optimization problem:

CMIOP(α̂)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z

subject to zα̂1 � f (x),

zα̂2 � f (x),

x ∈ S.

(7.22)

Any solution x̄ ∈ S of the optimization problem (7.22) is a Pareto optimal (possibly
weak) solution and f (x̄) is a NS to the BOP (7.3). Solving the optimization problem
(7.22) for various values of α̂, one can generate the complete POS set of the BOP
(7.3) as well as the complete ES set of the IOP (7.1). Normally, we can consider the
unit vector α̂ = (cos θ, sin θ), where θ ∈ [0, π

2 ], and to obtain various α̂, we have to
consider different values of θ .
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The algorithmic implementation of the proposed method is depicted in Algo-
rithm2.

Require: Given an interval optimization problem

(IOP) min
x∈S

F(x),

where S = {
x ∈ X ∣∣ Gi (x) � 0 ∀ i ∈ I} = {

x ∈ X ∣∣ gi (x) ≤ 0 ∀ i ∈ I}
.

1: Set E ← ∅
2: Give n, the number of grid points for θ

3: for θ = 0 : π
2n : π

2 do
4: α̂ = (cos θ, sin θ)

5: Solve

CMIOP(α̂)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min z

subject to zα̂1 � f (x),

zα̂2 � f (x),

x ∈ S,

6: E ← E ⋃ {x̄}
7: end for

return The set E as the ES set to the problem (IOP)

Algorithm 2: To obtain complete ES set of an IOP
In MATLAB R2015a platform with Intel Core i5-2430M, 2:40GHz CPU, 3 GB

RAM, 32-bit Windows 7 environment, applying Algorithm2 on the IOP of Exam-
ple7.1 for 10 and 25 values of α̂ (i.e., n = 10, 25 in Algorithm2), we obtain 5 and
13 ESs, respectively, to the IOP (7.4). It is observed that all of the generated ESs lie
in the interval [0.692, 1].

In Figs. 7.4a and 7.5a, the objective space of the IOP (7.4) is depicted by the
shaded region. The ESs and corresponding NSs to the IOP (7.4), generated by the
Algorithm2 for n = 10 are, respectively, presented by the black dots on the x-axis
and the black vertical line segments in Fig. 7.4a. Similarly, Fig. 7.5a presents for
n = 25.

On the other hand, in Fig. 7.4b (and Fig. 7.5b), depicting the objective space of
the BOP (7.5) by gray curve, the NSs to the BOP (7.5) corresponding to NSs to the
IOP (7.4) of Fig. 7.4a (and Fig. 7.5a) are presented by the black dots on the objective
space.

From Figs. 7.4a and 7.5a, it is noteworthy that if we increase the number of α̂-
directions in Algorithm2, we can generate more ESs to the IOP (7.4). Evidently,
the more the α̂’s, the more the generated ESs to the IOP (7.4). Ideally, as n → ∞,
Algorithm2 will generate the complete ES set of the IOP (7.4).

Similarly, by applying Algorithm2 on the IOP of Example7.2 for 25 values of α̂

(i.e., n = 25), we obtain the ES (0, 1) to the IOP (7.21). The objective space and the
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Fig. 7.4 ESs and NSs to the IOP (7.4) and the corresponding BOP (7.5) obtained by Algorithm2
for n = 10

Fig. 7.5 ESs and NSs to the IOP (7.4) and the corresponding BOP (7.5) obtained by Algorithm2
for n = 25

Fig. 7.6 Generated NS to
the BOP corresponding to
the IOP (7.21) by the
Algorithm2
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NS (2, 12) to the corresponding BOP of the IOP (7.21) are illustrated by the shaded
region and the black dot, respectively, in Fig. 7.6.

7.5 Conclusion

In this chapter, a bi-objective characterization and a SP characterization of the ESs
to IOPs have been provided. With the help of the bi-objective characterization (The-
orem7.3.1), we have described a technique to get the complete ES set to IOPs. An
algorithmic implementation (Algorithm2) of the technique has been illustrated. In
order to find the SP characterization, we have studied a SP criterion for IOPs and
proposed a condition for which the SP of an IOP will be its ES and vice versa
(Theorem7.3.2).

In the next step of this study, we will attempt to apply the proposed technique to
solve practical IOPs, such as interval-valued portfolio optimization problems. One
of the interval-valued portfolio optimization problems may be defined as follows:

min (x1, x2, . . . xn) � Q � (x1, x2, . . . , xn)
t

subject to
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n,

where xi is the proportion of the investment corresponding to i th asset, and Q is the
interval-valued risk, i.e., variance–covariance matrix of the interval-valued returns.
Also, we shall endeavor to find a method to obtain the complete ES set of multiob-
jective IOPs.
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Chapter 8
Unconstrained Reformulation of
Sequential Quadratic Programming and
Its Application in Convex Optimization

R. Sadhu, C. Nahak, and S. P. Dash

Abstract A convex optimization problem with linear equality constraints is solved
by the unconstrained minimization of a sequence of convex quadratic functions.
The idea of sequential quadratic programming is combined with the concept of
regularized gap function to construct an exact differentiable penalty function. A
descent algorithm is proposed along with some numerical illustrations.

Keywords Convex optimization · Sequential quadratic programming ·
Regularized gap function · Exact penalty function · Unconstrained reformulation

8.1 Introduction

A large variety of practical problems involving decision-making (or system design,
analysis, and operation) can be cast in the form of an optimization problem or some
variation such as a multi-criterion optimization problem. Indeed, optimization has
become an important tool in many areas. It is widely used in engineering, in elec-
tronic design automation, automatic control systems, and optimal design problems
arising in civil, chemical, mechanical, and aerospace engineering. Optimization is
used for problems arising in network design and operation, finance, supply chain
management, scheduling, and many other areas. Recently in the year 2019 Xin-She
Yang [1] introduced the essential ideas of algorithms and optimization techniques in
the field of data mining and machine learning. The list of applications is still steadily
expanding.
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A convex optimization problem is one of the form

minimize f0(x)

subject to fi (x) ≤ bi , i = 1, . . . ,m,

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy fi (αx + βy) ≤
α fi (x) + β fi (y) for all x, y ∈ R

n and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.
The least-squares problem and linear programming problem are both special cases
of the general convex optimization problem. A variety of applications of convex
optimization are used in areas like probability and statistics, computational geometry,
and data fitting.

There is, in general, no analytical formula for the solution of convex optimization
problems, but there are very effective methods for solving them. Interior-point meth-
ods work very well in practice. Sequential quadratic programming (SQP) method
is another most successful methods for solving constrained nonlinear optimization
problems. This is an iterative procedure which generates a sequence of points (not
necessarily feasible points), obtained by solving quadratic programming subprob-
lems, and converges to the Karush–Kuhn–Tucker (KKT) point. This idea was first
proposed byWilson [2] in 1963. Since then the SQP method has been studied exten-
sively by many researchers [3]. The readers may see Boggs [4], Gould et al. [5],
Schittkowski et al. [6] for some good reviews on SQP algorithms.

To give an overview of the SQP method, we consider an equality constrained
problem. At each iteration, the method solves a quadratic subproblem of the form

(QP) min
x

q(x) = 1

2
xT Hx + cT x

subject to Ax = b. (8.1)

Given a general nonlinear optimization problem, the quadratic subproblem (QP) is
the quadratic approximation to the original problem at some current iterate. Thus
the vector c ∈ R

n usually stands for the gradient vector of the objective function ∇ f
or the gradient of the Lagrangian; the n × n symmetric matrix H represents either
the Hessian of the Lagrangian or an approximation to it and the solution x to the
(QP) represents a search direction for the original problem. The linearization of the
equality constraints at a current iterate of an optimization algorithm produces the
system of linear equations Ax = b. We will assume here that A is an m × n matrix,
with m < n, and that A has full row rank, i.e., the system constitutes m linearly
independent equations. We also assume for convenience that H is positive semi-
definite on the null space of the constraint matrix A, as this guarantees that (8.1) has
a solution.

By first-order necessary optimality condition, the (QP) problem (8.1) associates
with it aKKTsystemwhich is a systemofn + m linear equations inn + m unknowns;
this reduces the optimization problem to the problem of solving a system of linear
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equations. Several factorizing techniques are available for solving the KKT system
directly, see [7–9] or else different iterative methods, see [10] can be used to solve the
system up to a desired level of accuracy, these methods suit well for large systems.

In this chapter, we solve a convex optimization problem with equality constraints
by using the SQP method. Instead of attempting to solve the KKT system associated
with the SQP, here we propose an exact unconstrained reformulation of the problem
(8.1) by using a projection map on the feasible set. The reformulation makes heavy
use of regulari zed gap f unction for variational inequality problem, introduced by
Fukushima [11]. Several variety of gap function for variational inequality are avail-
able in the literature [12–14]. A detailed survey on gap function is available in [15].
The regularized gap function was first used by Li and Peng [16] to propose an exact
penalty function for the problem of minimizing a twice continuously differentiable
function over a convex set. It was proved theoretically in [16] that under certain
assumptions both the original and the reformulated problems have the same set of
local and global solutions. Although from the theoretical point of view the refor-
mulation is extremely sound, but its practical implementation to a general class of
function encounters several difficulties. This motivates us to investigate the favorable
cases, where the theory proposed in [16] is most applicable. The convex program-
ming problem with equality constraints when solved via SQP suits extremely well to
the proposed reformulation. Instead of solving the quadratic subproblem, we propose
an unconstrained reformulation to it. This enables us to achieve the solution to the
original convex programming problem by unconstrained minimization of a sequence
of convex quadratic functions.

The chapter is structured as follows. In Sect. 8.2 we briefly discuss the mathe-
matical backgrounds and introduce the exact penalty function for the general class
of functions. Section8.3 deals with the convex programming problem. The idea of
sequential quadratic programming is used to implement an unconstrained reformu-
lation to the convex problem. A geometrical illustration with a suitable example is
provided in Sect. 8.4. Section8.5 supports our work by providing four numerical
examples. The conclusion is given in Sect. 8.6.

Notation: The following notation is used throughout the chapter, the vector norm

||x || is the Euclidean norm, i.e., ‖x‖ =
√
√
√
√

n
∑

i=1

x2i , where x = (x1, x2, . . . , xn)t . xk

denotes the vector at kth iteration, fk = f (xk),∇ fk and ∇2 fk , respectively, denotes
the gradient andHessaian of f at xk .Thematrix norm ||A|| denotes the usual operator

norm and ‖A‖F denotes the Frobenius norm of the matrix A, ‖A‖F =
√
√
√
√

m
∑

i=1

n
∑

j=1

a2i j ,

where A = (ai j ) is a m × n matrix.
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8.2 Mathematical Backgrounds

Let f : Rn → R be a twice continuously differentiable function and S ⊆ R
n is a

closed convex set, a constrained optimization problem is

min
x∈S f (x). (8.2)

A point x̄ is said to be a stationary point for the constrained minimization problem
(8.2) if x̄ satisfies the following variational inequality problem:

(y − x)T∇ f (x) � 0 for all y ∈ S. (8.3)

In order to solve the variational inequality problem (8.3) [11] introduced the
concept of regularized gap function and by virtue of which he reformulated the
problem (8.3) as an equivalent optimization problem. Recently [16], by using the
idea of regularized gap function, proposed an exact unconstrained reformulation of
the problem (8.2). The gap function used by them in reformulation (8.2) is as follows:

Gα(x) = max
x∈S {(x − y)T∇ f (x) − 1

2α
||x − y||2}

= (x − Hα(x))T∇ f (x) − 1

2α
||x − Hα(x)||2

= α

2
||∇ f (x)||2 − 1

2α
||(Hα(x) − x) + α∇ f (x)||2, (8.4)

where α is a positive penalty parameter dependent on the objective function f and

Hα(x) = ProjS(x − α∇ f (x)).

Here ProjS(x) denotes the unique orthogonal projection of the vector x onto the
closed convex set S.

Thus the unconstrained reformulation of the problem (8.2) as proposed in [16] is

min
x∈Rn

Pα(x) = f (x) − Gα(x). (8.5)

Thus the explicit structure of Pα(x) is as follows:

Pα(x) = f (x) + (Hα(x) − x)T∇ f (x) + 1

2α
||x − Hα(x)||2. (8.6)

It is interesting to note that Pα(x) thus obtained is differentiable and its gradient is
given by the following lemma:

Lemma 8.2.1 (see [16]) Suppose that Pα(x) defined as in (8.6) and f (x) is twice
continuously differentiable then
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∇Pα(x) = 1

α
(I − α∇2 f (x))(x − Hα(x)). (8.7)

The expression for the gradient of Pα(x) shows that any fixed point of Hα(x) is
always a stationary point of Pα(x). The following characterization of Hα(x) stands
a basis for many iterative algorithm.

Lemma 8.2.2 (see [17]) A vector x̄ ∈ R
n is a solution of (8.3) if and only if x̄ =

Hα(x̄).

Thus from the above two lemma it is clear that any stationary point of problem
(8.2) is also a stationary point of Pα(x). The equivalence of the original constrained
minimization problem (8.2) and the unconstrained minimization of Pα(x) on R

n is
evident from the following theorem:

Theorem 8.2.1 (See [16]) For any x̄ ∈ R
n, the following statements hold.

(i) Suppose α||∇2 f (x̄)|| < 1. Then x̄ is a local minimizer of f (x) in S if and only
if x̄ is a local minimizer of Pα(x) in Rn.

(ii) Suppose α||∇2 f (x)|| < 1 for all x ∈ R
n. Then x̄ is a global minimizer of f (x)

in S if and only if x̄ is a global minimizer of Pα(x) in Rn.

The theorem says that by proper choice of the penalty parameter α, the uncon-
strainedminimization of the penalized objective function over whole ofRn will solve
the original problem. Thus under suitable assumption every local and global mini-
mizer of Pα(x) are also the local and global minimizer of original objective function
over the feasible set S. In spite of this strong theoretical results, the exact penalty
function proposed above has two major difficulties.

• The penalty parameter α can be chosen explicitly, only when, the norm of the
Hessian matrix is bounded on the whole of Rn .

• The construction of the penalty function demands the formula for orthogonal
projection of a vector on the set S, i.e., the explicit form of Hα(x) is needed.

In order to circumvent these drawback, in this chapter we choose a convex opti-
mization problem and illustrate the above reformulation in that context.

8.3 Unconstrained Reformulation of the Convex
Programming

Let us consider a convex programming of the form

(CP) min
x

f (x)

subject to Ax = b, (8.8)
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where f : Rn → R is a twice continuously differentiable convex function, A is a
m × n (m < n) full rank matrix of rank m and b ∈ R

m . The motivation behind the
SQP approach is to model (CP) at the current iterate xk by a quadratic programming
subproblem, then use the minimizer of the subproblem to define a new iterate xk+1.
Consider the following quadratic programming problem as an approximate model
of (CP) at xk :

(QPk) min
d

qk(d) = 1

2
dT∇2 fkd + ∇ f Tk d + fk

subject to Ad = b − Axk . (8.9)

The first-order necessary KKT optimality conditions of (QPk) are as follows:

∇2 fkd + ∇ fk − ATλ = 0 (8.10a)

Ad + Axk − b = 0, (8.10b)

where λ is the Lagrange multiplier corresponding to the equality constraints. The
KKT system (8.10) is a system of n + m linear equations in n + m unknowns (d; λ).
In existing Newton-SQP method (8.10) is solved to obtain (dk; λk), which is used to
generate the next iterate point xk+1.

In this chapter, instead of solving the KKT system (8.10) associated with the
(QPk), we aimed at unconstrained reformulation of the quadratic subproblem (QPk).
The theory discussed in the previous section is used in the context of the problem
(QPk). Now we proceed to construct the penalized objective function of the form:

Pk
α (d) = qk(d) − Gk

α(d). (8.11)

For simplicity of notation, in our further discussion wewrite Qk = ∇2 fk, Ck = ∇ fk
and bk = b − Axk .

As discussed in the previous section the construction of the penalty function Pα(x)
requires

• formula for orthogonal projection on the affine subset S.

• a proper estimate of the penalty parameter α.

The orthogonal projection of a point z ∈ R
n on an affine subset S = {x ∈

R
n|Ax = bk} is given by

ProjS(z) = [In − AT (AAT )−1A]z + AT (AAT )−1bk . (8.12)

Thus to construct Pk
α (8.11) we use the projection formulae (8.12) for computing

the gap function Gk
α . By substituting (8.12) in (8.4), the gap function Gk

α(d) takes
the form:
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Gk
α(d) = α

2
||Qkd + Ck ||2 − 1

2α
||AT (AAT )−1bk − AT (AAT )−1A[(In − αQk )d − αCk ]||2.

(8.13)

Therefore, by using the expression forGk
α(d) in (8.11) and simplifying the expres-

sion (8.11), we obtain Pk
α (d) in the form:

Pk
α (d) = dT Q̄kd + c̄k

T d + d̄k, (8.14)

where

Q̄k = 1

2α
[In − (In − αQk)(In − Ā)](In − αQk)

c̄k
T = [CT

k (In − Ā) − 1

α
bTk (AAT )−1A](In − αQk)

d̄k = 1

2α
bTk (AAT )−1bk − α

2
CT
k (In − Ā)Ck + CT

k AT (AAT )−1bk + fk

Ā = AT (AAT )−1A.

Thus, our required reformulated problem is

(UQPk) min
d∈Rn

Pk
α (d). (8.15)

The new objective function Pk
α (d) thus obtained is a quadratic polynomial in d,

and hence twice continuously differentiable for any value of the penalty parameter
α > 0. Also, it is interesting to note that since the Hessian of the quadratic objec-
tive function qk(d) is the matrix Qk , its norm is bounded throughout Rn . Thus the
penalty parameter α > 0 in the reformulated objective function Pk

α (d) can be chosen
explicitly, i.e., any α satisfying 0 < α||Qk ||F < 1 will ensure the exactness of the
reformulated problem. Moreover the function f being convex its Hessian matrix
Qk = ∇2 fk is positive semi-definite at each iterate point xk . Also if we assume that
Qk is positive definite on the affine search space S, then (UQPk) possesses a unique
solution say dk . Hence we generate the next iteration point xk+1 = xk + dk . The
iteration process continues unless a suitable stopping criterion is satisfied.

The following theorem establishes the equality of the solution set of the quadratic
subproblem (QPk) and the reformulated unconstrained problem (UQPk).

Theorem 8.3.2 If 0 < α||Qk ||F < 1, then dk is a minimizer of qk(d) = 1

2
dT Qkd +

CT d + fk in S if and only if dk is minimizer of Pk
α (d) in Rn.

Proof The proof of the theorem follows from Theorem 3.1 [18]. �

Remark 8.1 The KKT system (8.10) associated with (QPk) involves a system of
n + m linear equations in n + m unknowns, this increases the dimensionality of the
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search space from n to n + m. The reformulated problem (UQPk), however, deals
with an unrestricted minimization of the objective function in the n-dimensional
Euclidian space, thusmaintaining the same dimensionality. Themajor computational
cost involved in the construction of the exact penalty function Pk

α is a m × m matrix
inversion. Thus when m is relatively small than n, the reformulation is extremely
useful.

We state the algorithm for solving the convex programming via unconstrained-SQP
(USQP) in its simplest form. The algorithm runs as follows:

Select a starting point x0

do { Evaluate fk , ∇ fk , ∇2 fk and bk ;
Evaluate Q̄k , c̄k and d̄k ;
Solve (UQPk) to obtain dk ;
Set xk+1 ← xk + dk ;

} Until (A Convergence test is not satisfied);

Algorithm 1: Algorithm for convex programming via USQP

8.4 Geometrical Illustration

We plot the contour of the objective function and the constraint set of the example
below. We start the (USQP) iteration with the initial guess x0 = (−4,−5). The
sequence of iterates generated is plotted and we observe that it converges to the
solution x∗ in 5 steps.

min f (x, y) = 2x4 + 3y4 + 3x2y2 − xy

Subject to 3x + 2y = 6.
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In this figure the contours of the objective function are plotted in green, the black
line is the constraint set, and the ∗ denotes the iteration point. The contour of the
objective corresponding to the optimal solution is plotted in red.

8.5 Numerical Examples

The following examples are examined with the proposed algorithm and the results
are analyzed. The algorithmwill terminate whenever the norm of the direction vector
dk comes close to zero. Each of the objective function below is chosen to be convex,
along with a set of affine equality constraints.

Example 1:

(P1) : min x4 + y4 + z4 − x − y − z + 1

Subject to x + y − z = 1

x − y + z = 1.

Example 2:

(P2) : min 300x2 + 100y2 − 4300x − 2500y

Subject to 300x + 200y = 1000.
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Example 3:

(P3) : min ex
2 + ey

2 + x + y

Subject to 100x − 50y = 15.

Example 4:

(P4) : min (x2 + y2 + z2) log(1 + x2 + y2 + z2)

Subject to 10x − 5y + z = 1

x − y + 3z = 2.

The above problems are solved in MATLAB 2015 by USQP method. The algorithm
stops whenever the norm of the direction vector dk goes below the tolerance limit
10−8. The examples are tested with different initial guesses, and the corresponding
number of iterations to reach the solution is also accounted in Table8.1.

Note: It is interesting to note the effect of initial guess, on convergence, and the
number of iterations required to reach the solution of a problem, up to a desired
level of accuracy. In particular, for the problem (P3), it is worth mentioning that
whenever the initial guess is chosen to be (−10,10) the ‘fmincon’ (default program)
of MATLAB fail to converge to the solution, whereas our method (USQP) converges
to the solution in 25 steps.

Table 8.1 Numerical solution of the examples via USQP

Minimizer x∗ Minimum value
f ∗

Initial guess x0 No. of iteration

P1 (1,0.62996,0.62996) 0.05506 (1,1,1) 3

(100,−300,500) 18

(−10.1,−5.7,17) 10

P2 (1.9524,2.0714) −12001 (1,1) 1

(−100,50) 1

(1000,5000) 1

P3 (−0.11280,−0.52562) 1.6926 (1,1) 6

(−10,10) 25

(5,−7) 57

P4 (−0.015066,−0.10264,0.63748) 0.14543 (1,1,1) 6

(100,−500,77) 10

(0,1000, −1500) 10

(0,0,0) 8
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8.6 Conclusion

In this chapter we have solved a convex programming problem with affine equality
constraints via unconstrained sequential quadratic programming. By virtue of the
exact penalty function proposed by [16], we provided an exact reformulation of
the quadratic subproblem. A geometrical illustration of the scheme is given, and a
suitable descent algorithm is proposed. The iteration scheme is tested and analyzed
on a set of four test problems.

Acknowledgements The authors thank the anonymous reviewers very much for their constructive
and detailed feedback.
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Chapter 9
A Note on Quadratic Penalties for Linear
Ill-Posed Problems: From Tikhonov
Regularization to Mollification

Pierre Maréchal

Abstract The variational form ofmollification fits in an extension of the generalized
Tikhonov regularization. Using tools from variational analysis, we prove asymptotic
consistency results for both this extended framework and the particular form of
mollification that one obtains when building on the notion of target object.

Keywords Ill-posed problems · Regularization theory · Mollification

9.1 Introduction

Ill-posed inverse problems appear in many areas of applied mathematics, such as
signal and image recovery, partial differential equations and statistics. Many of them
take the form of a linear operator equation

T f = g, f ∈ F,

in which T : F → G is a bounded linear operator between the Hilbert spaces F
and G and g ∈ G is the data. Unfortunately, it frequently occurs that

inf
{‖T f ‖ ∣∣ f ∈ (ker T )⊥, ‖ f ‖ = 1

} = 0,

a condition under which the pseudo-inverse T † of T is unbounded. It results that the
natural solution T †g does not depend continuously on the data g and that the problem
must be reformulated. Tikhonov regularization (see [15] and the references therein)
initiated a vast theoretical corpus. It consists in approximating T † by the bounded
operator Rα = (T ∗T + α I )−1T ∗, in which T ∗ denotes the adjoint of T and α > 0 is
a regularization parameter. The identity I may also be replaced by the more general
selfadjoint operator Q∗Q, where Q is a bounded operator from F to some Hilbert
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space H .We then speak of generalized Tikhonov regularization. From the variational
viewpoint, the generalized Tikhonov solution fα = (T ∗T + αQ∗Q)−1T ∗g is well
known to be the minimizer of the quadratic functional

Fα( f ) := ∥∥T f − g
∥∥2 + α

∥∥Q f
∥∥2

. (9.1)

Inmany cases, the solution space F is a functional space such as L2(�d) or a subspace
of it, and the quadratic penalty term α‖Q f ‖2 may be used to enforce smoothness
of the approximate solution. For example, Q may be a second-order differential
operator (see [3, Chap. 8] for a detailed exposition).

Another way to promote smoothness is via the Fourier–Plancherel transform f̂
of f : the variational counterpart of mollification [1, 6, 7, 9–11] essentially consists
in penalizing (1 − ϕ̂α) f̂ , in which ϕα is a convolution kernel indexed by α > 0. The
function ϕα is commonly defined, for α ∈ (0, 1], as

ϕα(x) = 1

αd
ϕ

( x

α

)
, x ∈ �d , (9.2)

in which ϕ is a nonnegative integrable kernel function with unit integral, and the fam-
ily (ϕα)α∈(0,1] is referred to as an approximate unity. The penalty term ofmollification
then takes the form ‖(I − Cα) f ‖2, in which

Cα f = ϕα ∗ f.

Mollifiers were introduced in partial differential equations by Friedrichs [4, 16].
The term mollification has been used in regularization theory since the eighties.
Mollification was developed in several directions. In the earlier works on the subject,
mollifiers served the purpose of smoothing the data prior to inversion, whenever
an explicit inversion formula was available (see [5, 12] and the references therein).
In [8], an alternative approach was proposed, which gave rise to the so-called method
of approximate inverses. In this approach, the operator under consideration is not
assumed to have explicit inverse, but the adjoint equation has explicit solutions. This
approach opens the way to application to a large class of inverse problems and can
be extended to problems in Banach spaces [14]. A third approach appeared in the
same period of time. In [7], a variational formulation of the idea of mollification was
proposed, in the context of Fourier synthesis and deconvolution. This formulation
was further studied and extended in [1, 6, 9, 11] and is the one we consider in this
paper.

Unlike Tikhonov’s regularization, mollification appeals to a parameter α which
is not interpreted as a weighting of the penalty term, but rather as an objective reso-
lution. Therefore, strictly speaking, mollification does not belong to the generalized
Tikhonov family. However, obviously, letting α go to zero makes the penalization
vanish in both cases. This suggests that Tikhonov and the mollification could be
put in the same framework. To phrase it differently, we could widen the contours of
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the generalized Tikhonov regularization to the point of admitting mollification in its
realm. This is what we propose to do here.

The paper is organized as follows. In Sect. 9.2 we consider the consistency issue
in the aforementioned enlarged framework. In Sect. 9.3, we build on the notion of
target object, absent from the original Tikhonov regularization, but present in the
original works on mollification [1, 2, 7].

9.2 Generalizing Tikhonov Regularization

It is sometimes convenient to consider vector-valued regularization parameters. We
may call parameter choice rule a function

α : �+ × G −→ P
(δ, gδ) �−→ α(δ, gδ)

inwhichP is a subset of�p
+ \ {0}, and an a priori parameter choice rule the particular

case for which α depends on its first argument only. Following [3, Definition 3.1],
we now state:

Definition 9.1 A parametrized family (Rα) of bounded operators is a regularization
of T † if for every g ∈ D(T †), there exists a parameter choice rule α such that

(1) sup
{‖α(δ, gδ)‖ ∣∣ gδ ∈ G, ‖gδ − g‖ ≤ δ

} → 0 as δ ↓ 0;
(2) sup

{‖Rα(δ,gδ)gδ − T †g‖ ∣∣ gδ ∈ G, ‖gδ − g‖ ≤ δ
} → 0 as δ ↓ 0.

In this case, we say that the pair (Rα, α) is a convergent regularization method for
solving T f = g.

Recall that the domain of the operator T † is the vector subspace D(T †) =
ran T + (ran T )⊥, in which E⊥ denotes the orthogonal complement of E . From [3,
Proposition 3.4], we straightforwardly infer that:

Proposition 9.1 If the family of bounded operators (Rα)α∈P converges pointwise
to T † onD(T †) asα → 0 inP , then (Rα)α∈P is a regularization of T † and, for every
g ∈ D(T †), there exists an a priori parameter choice rule α(δ) such that (Rα, α) is
a convergent regularization method for solving T f = g.

The operators T : F → G and Q : F → H are said to satisfy Morozov’s com-
pletion condition if there exists a constant γ > 0 such that

∀ f ∈ F, ‖T f ‖2 + ‖Q f ‖2 ≥ γ ‖ f ‖2. (9.3)

Under the completion condition, the operator T ∗T + Q∗Q admits a bounded inverse,
as can be easily shown. In some cases of interest, it may happen that T ∗T and Q∗Q
can be diagonalized in the same Hilbert basis. In this case, it can be shown that



202 P. Maréchal

∀ f ∈ F,
∥∥(T ∗T + Q∗Q)−1T ∗T f

∥∥
F ≤ ∥∥ f

∥∥
F . (9.4)

The latter assumption is in force in the rest of this paper.

Theorem 9.2.1 Let F,G be infinite dimensional Hilbert spaces and let T : F → G
be injective. Let Qα : F → H be a family of operators such that

• for every fixed α ∈ P , T and Qα satisfy the completion condition (9.3) and Con-
dition (9.4);

• for every f ∈ F, ‖Qα f ‖ → 0 as α → 0 in �p.

Then, for every g ∈ D(T †) = ran T + ran T⊥, fα := (T ∗T + Q∗
αQα)−1T ∗g con-

verges strongly to f †, the unique least square solution of the equation T f = g.

Proof We shall prove that, for every P-valued sequence (αn) which converges to
zero, the corresponding sequence ( fαn ) strongly converges to f †. By assumption,
g = T f † + g⊥, in which f † ∈ F and g⊥ ∈ (ran T )⊥ = ker T ∗. We have

∥∥ fα
∥∥
F = ∥∥(T ∗T + Q∗

αQα)−1T ∗(T f † + g⊥)
∥∥
F

= ∥∥(T ∗T + Q∗
αQα)−1T ∗T f †

∥∥
F

≤ ∥∥ f †
∥∥
F .

In particular, the family fα is bounded. Now, let (αn) be a sequence in P which
converges to 0. In order to simplify the notation, let fn := fαn and Qn := Qαn . Since
the sequence ( fn) is bounded, we can extract a weakly convergent subsequence ( fnk ).
Let then f̃ be the weak limit of this subsequence. On the one hand,

T ∗T fnk ⇀ T ∗T f̃ as k → ∞ (9.5)

since T ∗T is bounded. On the other hand,

Q∗
nk Qnk fnk ⇀ 0 as k → ∞

since fnk is bounded and Q∗
nk Qnk converges pointwise to the null operator, so that

T ∗T fnk = (T ∗T + Q∗
nk Qnk ) fnk − Q∗

nk Qnk fnk
= T ∗g − Q∗

nk Qnk fnk

= T ∗T f † − Q∗
nk Qnk fnk

⇀ T ∗T f †

�
as k → ∞. Together with (9.5), this shows that T ∗T f̃ = T ∗T f †, that is, by the
injectivity of T , that f̃ = f †. It follows that the whole sequence ( fn) converges
weakly to f †. Finally, by the weak lower semicontinuity of the norm,
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‖ f †‖ ≤ lim inf
n→∞ ‖ fn‖ ≤ lim sup

n→∞
‖ fn‖ ≤ ‖ f †‖,

which establishes that fn → f † as n → ∞.

In the familiar case where F = L2(�d) or subspaces of it and H = L2(�d),
the choice Qα = I − Cα corresponds to the mollification method described in the
introduction. The previous theorem applies in this case since, as is well known, if
(Cα) is as in (9.2), then

Cα f → f as α ↓ 0.

Notice that Morozov’s completion condition is automatically satisfied in the impor-
tant case where F = L2(V ), the space of square integrable functions with essential
support in V , whenever V is a compact domain. As a matter of fact, in this case, it
follows from [1, Lemma 12 and Proposition 5] that there exists a positive constant να

such that
∀ f ∈ L2(V ), ‖(I − Cα) f ‖2 ≥ να‖ f ‖2.

9.3 Target Objects

In a number of cases, the operator T gives rise to an explicit intertwining relationship.
By this, we mean the existence of a bounded operator �α : G → G such that

TCα = �αT . (9.6)

Note that Eq. (9.6) constrains �α only on the range of T . In order to extend its
definition to the whole space G, we first use the unique bounded extension of �α

to the closure of ran T , and then extend it further by zero on (ran T )⊥. With this
definition of �α , it is easy to see that

�α = cl (TCαT
†), (9.7)

in which cl (·) denotes the extension by closure. More generally, it has been shown
in [2] that whenever the operator TCαT † is bounded, its closure to G minimizes
� �→ ‖�T − TCα‖ over all the bounded operators on G which vanish on (ran T )⊥.

At all events, we may consider the following variational form of mollification:

fα := argmin
∥∥T f − �αg

∥∥2 + ∥∥(I − Cα) f
∥∥2

. (9.8)

This form can be justified by the following heuristics. Since our target object isCα f †,
the tautology f † = Cα f † + (I − Cα) f † indicates that in addition to penalizing (I −
Cα) f one should also aim at fitting the data corresponding to the mollified object. If
g � T f †, then
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�αg � TCα f †

by Eq. (9.6), whence the adequacy term in (9.8). The regularized solution is then
given by

fα := (
T ∗T + (I − Cα)∗(I − Cα)

)−1
T ∗�αg.

Important applications allow for the introduction of the intertwining operator �β

corresponding to approximate unities such as the above-defined families (Cα). We
now review a few examples.

Example 9.1 In [7], the authors studied the problem of spectral extrapolation, which
underlies aperture synthesis in astronomy and space imaging. This problem corre-
sponds to the case where

T = f rm[o]−−eWU

with W a bounded domain containing an open set. Here, U denotes the Fourier–
Plancherel operator. We refer to TW as the Fourier truncation operator. Since Cα =
U−1

[
ϕ̂α

]
U , we see that

TCα = 1WUU−1
[
ϕ̂α

]
U = [

ϕ̂α]1WU = [
ϕ̂α

]
T,

from which we infer that �α = [
ϕ̂α

]
.

Example 9.2 In the problem of deconvolution, as considered, e.g., in [6, 9], the
situation is even simpler: since convolution operators commute, we readily see that
�β = Cα .

Example 9.3 Finally, in computerized tomography [13], the underlying operator is
the Radon transformation

(T f )(θ , s) =
∫

f (x)δ(s − 〈θ , x〉) dx, θ ∈ S 1, s ∈ �.

A consequence of the so-called Fourier slice theorem is that, for any two functions
f1, f2,

T ( f1 ∗ f2) = T f1 � T f2,

in which � denotes the convolution with respect to the variable s. It follows that, in
this case,

�α = (g �→ Tϕα � g),

a relationship which was in force in [11].

We now establish a consistency theorem for the form of mollification given
in (9.8).
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Theorem 9.3.1 Let F = L2(�d) and let T : F → G be a bounded injective oper-
ator from F to the infinite dimensional Hilbert space G. Let Cα : F → F be an
approximate unity as in (9.2). Assume that, for every fixed α ∈ (0, 1], T and I − Cα

satisfy the completion condition (9.3). Assume at last that, for every fixed α ∈ (0, 1],
the intertwining operator �α exists. Then, for every g ∈ D(T †) = ran T + ran T⊥,
fα := (T ∗T + (I − Cα)∗(I − Cα))−1T ∗�αg converges strongly to f †.

Proof We shall prove that, for every positive sequence (αn) converging to zero,
fαn → f † as n → ∞. Let g = T f † + g⊥, with f † ∈ F and g⊥ ∈ (ran T )⊥. Since
�αg = TCα f †, we have:

∥∥ fα
∥∥
F = ∥∥(T ∗T + (I − Cα)∗(I − Cα))−1T ∗TCα f †

∥∥
F

≤ ∥∥Cα f †
∥∥
F

≤ ∥∥ϕα

∥∥
1 · ∥∥ f †

∥∥
F = ∥∥ f †

∥∥
F .

The last equality stems from the fact that, in Eq. (9.2), ϕ is assumed to be positive and
to have unit integral. Therefore, the family ( fα) is bounded. Let (αn) be a sequence
in (0, 1] which converges to 0, and let fn := fαn , Cn := Cαn and �n := �αn . Since
the sequence ( fn) is bounded, we can extract a weakly convergent subsequence ( fnk ).
Let then f̃ be the weak limit of this subsequence. On the one hand,

T ∗T fnk ⇀ T ∗T f̃ as k → ∞ (9.9)

since T ∗T is bounded. On the other hand,

(I − Cnk )
∗(I − Cnk ) fnk ⇀ 0 as k → ∞

since fnk is bounded and (I − Cnk )
∗(I − Cnk ) converges pointwise to the null oper-

ator, so that

T ∗T fnk = (T ∗T + (I − Cnk )
∗(I − Cnk )) fnk − (I − Cnk )

∗(I − Cnk ) fnk
= T ∗�nk g − (I − Cnk )

∗(I − Cnk ) fnk
⇀ T ∗T f †

�
as k → ∞, since T ∗�nk g = T ∗TCnk f

† goes to T ∗T f †. Together with (9.9), this
shows that T ∗T f̃ = T ∗T f †, that is, by the injectivity of T , that f̃ = f †. There-
fore, the whole sequence ( fn) converges weakly to f †. Finally, by the weak lower
semicontinuity of the norm,

‖ f †‖ ≤ lim inf
n→∞ ‖ fn‖ ≤ lim sup

n→∞
‖ fn‖ ≤ ‖ f †‖,

which establishes that fn → f † as n → ∞.
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9.4 Conclusion

We have shown that the variational form of mollification fits in an extension of the
generalized Tikhonov regularization setting. Using tools from variational analysis,
we have obtained asymptotic consistency results for both this extended framework
and the particular form of mollification that one obtains when developing the notion
of target object.

Acknowledgements The author wishes to thank Nathaël Alibaud for fruitful discussions on the
subject, which led to significant improvements of this paper.
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Chapter 10
A New Regularization Method for Linear
Exponentially Ill-Posed Problems

Walter Cedric Simo Tao Lee

Abstract This chapter provides a new regularization method which is particularly
suitable for linear exponentially ill-posed problems. Under logarithmic source con-
ditions (which have a natural interpretation in terms of Sobolev spaces in the afore-
mentioned context), concepts of qualifications as well as order-optimal rates of con-
vergence are presented. Optimality results under general source conditions expressed
in terms of index functions are also studied. Finally, numerical experiments on three
test problems attest the better performance of the new method compared to the well-
known Tikhonov method in instances of exponentially ill-posed problems.

Keywords Exponentially ill-posed problems · Regularization method ·
Logarithmic source conditions · Order-optimality

10.1 Introduction

In this chapter, we are interested in the solution to the equation

T x = y, (10.1)

where T : X → Y is a linear bounded operator between two infinite dimensional
Hilbert spaces X and Y with non-closed range. The data y belongs to the range of T
and we assume that we only have approximated data yδ satisfying

||yδ − y|| ≤ δ. (10.2)

In such a setting, Eq. (10.1) is ill-posed in the sense that the Moore Penrose gener-
alized inverse T † of T which maps y to the best-approximate solution x† of (10.1)
is not continuous. Consequently a little perturbation on the data y may induce an
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arbitrarily large error in the solution x†. Instances of such ill-posed inverse problems
are encountered in several fields in applied sciences among which: signal and image
processing, computer tomography, immunology, satellite gradiometry, heat conduc-
tion problems, inverse scattering problems, statistics, and econometrics to name just
a few, see, e.g., [11, 14, 20, 21, 31]. As a result of the ill-posedness of Eq. (10.1), a
regularization method needs to be applied in order to recover from the noisy data yδ a
stable approximation xδ of the solution x†. A regularization method can be regarded
as a family of continuous operators Rα : Y → X such that there exists a function
� : R+ × Y → R+ satisfying the following: for every y ∈ D(T †) ⊂ Y and yδ ∈ Y
satisfying (10.2)

R�(δ,yδ)y
δ → x† as δ ↓ 0. (10.3)

Some examples of regularizations methods are Tikhonov, Landweber, spectral cut-
off, asymptotic regularization, approximate inverse, and mollification, see, e.g., [1,
7, 11, 21, 23, 24]. As a matter of fact, we would like to get estimates on the error
committed while approximating x† by xδ = R�(δ,yδ)yδ .

It is well known that for arbitrary x† ∈ X , the convergence of xδ toward x† is arbi-
trarily slow, see, e.g., [11, 35]. But still, by allowing smoothness of the solution x†,
convergence rates could be established. Standard smoothness conditions known as
Hölder type source condition take the form

x† ∈ Xμ(ρ) = {(T ∗T )μw, w ∈ X s.t. ||w|| ≤ ρ
}
, (10.4)

where μ and ρ are two positive constants. However such source conditions have
shown their limitations as they are too restrictive in many problems and do not
yield a natural interpretation. For this reason, general source conditions have been
introduced in the following form:

x† ∈ Xϕ(ρ) = {ϕ(T ∗T )w, w ∈ X s.t. ||w|| ≤ ρ
}
, (10.5)

where ρ is a positive constant and ϕ : [0, ||T ∗T ||] → R+ is an index function, i.e.,
a non-negative monotonically increasing continuous function satisfying ϕ(λ) → 0
as λ ↓ 0. An interesting discussion on these source conditions can be found in [29]
where the author explores how general source conditions of the form (10.5) are.
Once the solution x† satisfies a smoothness condition, i.e., x† belongs to a proper
subspace M of X , it is possible to derive convergence rates and the next challenge
is about optimality. More precisely, for a regularization method R : Y → X , we are
interested in the worst case error:

�(δ, R, M) := sup
{||Ryδ − x†||, x† ∈ M, yδ ∈ Y, s.t. ||yδ − T x†|| ≤ δ

}
,

(10.6)
and we would like a regularization which minimizes this worst case error. In this
respect, a regularization method R̄ : Y → X is said to be optimal if it achieves the
minimum worst case error over all regularization methods, i.e., if
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�(δ, R̄, M) = �(δ, M) := inf
R

�(δ, R, M).

Similarly, a regularization is said to be order optimal if it achieves the minimum
worst case error up to a constant greater than one, i.e., if

�(δ, R̄, M) ≤ C�(δ, M)

for some constant C > 1. When the subset M is convex and balanced, it is shown in
[30] that

ω(δ, M) ≤ �(δ, M) ≤ 2ω(δ, M), (10.7)

where ω(δ, M) is the modulus of continuity of the operator T over M , i.e.,

ω(δ, M) = sup {||x ||, x ∈ M, s.t. ||T x || ≤ δ} . (10.8)

In other words, we get the following:

�(δ, Xϕ(ρ)) = O (ω(δ, Xϕ(ρ))
)
. (10.9)

Recall that, under mild assumptions on the index function ϕ, the supremum defining
the modulus of continuity is achieved and a simple expression of ω(δ, Xϕ(ρ)) in
term of function ϕ is available, see, e.g., [20, 28, 37]. Let us remind that a relevant
notion in the study of optimality of a regularization method is qualification. In fact,
the qualification of a regularizationmeasures the capability of themethod to take into
account smoothness assumptions on the solution x†, i.e., the higher the qualification,
the more the method is able to provide best rates for very smooth solutions.

Besides optimality, converse results and saturation results are also important
aspects of regularization algorithms, see, [11, 27, 33, 34]. For converse results,
we are interested in the following: given a particular convergence rate of ||xδ − x†||
toward 0, which smoothness condition does the solution x† needs to satisfy? Sat-
uration results are about the maximal smoothness on the solution x† for which a
regularization method can still deliver the best rates of convergence. Finally, another
significant aspect of regularization is the selection of the regularization parameter,
i.e., finding a function �(δ, yδ) which guarantees convergence and possibly order-
optimality.

Coming back to (10.5), notice that a very interesting subclass of general source
conditions are logarithmic source conditions expressed as

x† ∈ X fp (ρ) = {(− ln(T ∗T ))−pw, w ∈ X s.t. ||w|| ≤ ρ
}
, (10.10)

where p and ρ are positive constants and T satisfies ‖T ∗T ‖ < 1. Such smoothness
conditions have clear interpretations in term of Sobolev spaces in exponentially ill-
posed problems, see, e.g., [20, 37]. The latter class includes several problems of
great importance such as backward heat equation, sideways heat equation, inverse
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problem in satellite gradiometry, control problem in heat equation, inverse scattering
problems, andmany others, see, [20]. Because of the importance of exponentially ill-
posed problems, it is desirable to design regularization methods particularly suitable
for this class of problems. It is precisely the aim of this chapter to provide such a
regularization scheme.

In the next section, we define the new regularization method using both the varia-
tional formulation and the definition in terms of the so-called generator function gα .
A brief comparison with the Tikhonov method is done. Moreover basic estimates on
the generator function gα and its corresponding residual function rα are also carried
out.

Section 10.3 is devoted to optimality of the new method. Here we recall well-
known optimality results under general source conditions of the form (10.5), see, [19,
20, 28, 32, 37]. For the specific case of logarithmic source conditions, qualification
of themethod is given and order-optimality is shown. Next we study optimality under
general source conditions.

In Sect. 10.4, we present a comparative analysis of the newmethod with Tikhonov
method, spectral cut-off, asymptotic regularization, and conjugate gradient.

Section 10.5 is about numerical illustrations. In this section, in order to confirm
our prediction of better performance of the new method compared to Tikhonov and
spectral cut-off in instance of exponentially ill-posed problems, we numerically com-
pare the efficiency of the five regularization methods on three test problems coming
from literature: A problem of image reconstruction taken from [36], a Fredholm
integral equation of the first kind found in [2] and an inverse heat equation problem.

Finally in Sect. 10.6, for a fully applicability of the new method, we exhibit
heuristic selection rules which fit with the new regularization technique. Moreover,
we also compare the five regularization methods for each heuristic parameter choice
rule under consideration.

10.2 The New Regularization Method

For the sake of simplicity, we assume henceforth that the operator T is injective.
Hereafter, we set a positive number a such that the operator norm of T ∗T is less than
a, i.e., ||T ∗T || ≤ a. In the sequel, we assume that a < 1 which is always possible
by scaling Eq. (10.1).

Let us consider the general variational formulation of a regularization method

xα = argmin
x∈X F (T x, y) + P(x, α), (10.11)

whereF (T x, y) is the fit term,P(x, α) is the penalty term, and α > 0 is the regu-
larization parameter. We recall that the fit term aims at fitting the model, the penalty
term aims at introducing stability in the initial model T x = y and the regularization
parameter α controls the level of regularization.
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In most cases, the fit termF (T x, y) is nothing but

F (T x, y) = ||T x − y||2 (10.12)

and the penalty term depends on the regularization method. For instance, for
Tikhonov regularization, P(x, α) is given by

P(x, α) = α||x ||2. (10.13)

This penalization can sometimes compromises the quality of the resulting approxi-
mate solution xα . Indeed, let X = L2(Rn), then by Parseval identity, we see that

P(x, α) = α||x̂ ||2L2(Rn), (10.14)

where x̂ is the Fourier transform of x . Equation (10.14) implies that the stability
is introduced by uniformly penalizing all frequency components irrespective of the
magnitude of frequencies. Yet, it is well known that the instability of the initial
problem comes from high frequency components on the contrary to low frequency
components.

Let us introduce the following penalty term where the regularization parameter α

is no more defined as a weight but as an exponent:

P(x, α) = ‖
[
I − (T ∗T )

√
α
]
x‖2. (10.15)

In (10.15), (T ∗T )
√

α is defined via the spectral family (Eλ)λ associated with the
self-adjoint operator T ∗T , i.e.,

(T ∗T )
√

αx =
∫ ||T ∗T ||+

λ=0
λ

√
αdEλx .

We keep the fit term defined in (10.12) and then the variational formulation of our
new regularization method is given by

xα = argmin
x∈X ||T x − y||2 + ‖

[
I − (T ∗T )

√
α
]
x‖2. (10.16)

From the first-order optimality condition, we get that xα is the solution to the linear
equation: [

T ∗T +
(
I − (T ∗T )

√
α
)2]

x = T ∗y,

that is,

xα =
[
T ∗T +

(
I − (T ∗T )

√
α
)2]−1

T ∗y. (10.17)
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From (10.17), we see that the new method can also be defined via the so-called
generator function gα , i.e.,

xα = gα(T ∗T )T ∗y, (10.18)

with the function gα defined by

gα(λ) = 1

λ + (1 − λ
√

α)2
, λ ∈ (0, ||T ∗T ||]. (10.19)

Let us also define the residual function rα corresponding to gα as follows:

rα(λ) := 1 − λgα(λ) = (1 − λ
√

α)2

λ + (1 − λ
√

α)2
, λ ∈ (0, ||T ∗T ||]. (10.20)

The functions gα and rα defined in (10.19) and (10.20) are important since they will
be repeatedly used in the convergence analysis of the regularization method. In fact,
the regularization error x† − xα and the propagated error xα − xδ

α are expressed via
the functions rα and gα as follows:

x† − xα = rα(T ∗T )x†, xα − xδ
α = gα(T ∗T )T ∗(y − yδ).

Finally, notice that the function gα defined in (10.19) indeed satisfies the basic require-
ments for defining a regularization method, i.e.,

(a) gα is continuous,
(b) ∀α > 0, supλ∈(0,||T ∗T ||] λgα(λ) ≤ 1 < ∞,
(c) limα↓0 gα(λ) = 1/λ.

From (b) and (c), we deduce the convergence of the new regularization method
by application of [11, Theorem 4.1]. Before going to optimality results, let us state
some basic estimates (proven in the appendix) about the functions gα and rα .

Proposition 10.1 Let the function gα be defined by (10.19). Then for all a < 1 and
α < 1,

sup
λ∈(0,a]

√
λgα(λ) = O

(
1√
α

)
. (10.21)

Lemma 10.2.1 For all α and λ satisfying 0 < α ≤ λ < 1, the following estimates
hold for the function rα defined in (10.20):

rα(λ) ≤ 9

4

(
α| ln(λ)|2

λ + α| ln(λ)|2
)

. (10.22)
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10.3 Optimality Results

Before studying the optimality of the method presented in Sect. 10.2, we need first
to recall general optimality results under source condition of the form (10.5). For
doing so, let us specify assumptions on the function ϕ which defines the source set
Xϕ(ρ).

Assumption 5 The function ϕ : (0, a] → R+ is continuous, monotonically increas-
ing and satisfies

(i) limλ↓0 ϕ(λ) = 0,
(ii) the function φ : (0, ϕ2(a)] → (0, aϕ2(a)] defined by

φ(λ) = λ(ϕ2)−1(λ) (10.23)

is convex.

�

Under Assumption 5 on the function ϕ, the following result from [37] holds and
we can then define optimality under source condition (10.5).

Theorem 10.3.1 Let Xϕ(ρ) be as in (10.5) and let Assumption 5 be fulfilled. Let the
function φ be defined by (10.23). Then

ω(δ, Xϕ(ρ)) ≤ ρ

√

φ−1

(
δ2

ρ2

)
. (10.24)

Moreover, if δ2/ρ2 ∈ σ
(
T ∗Tϕ2(T ∗T )

)
, then equality holds in (10.24).

A similar result to this theorem can be found in [20, Sect. 2], and [28, Sect. 3].

Remark 10.1 In [28], the results corresponding to Theorem 10.3.1 are given in term
of the function � : (0, a] → (0, aϕ(a)] defined by

�(λ) = √
λϕ(λ). (10.25)

Then, by simple computations, we can find that

ρ

√

φ−1

(
δ2

ρ2

)
= ρ ϕ

(
�−1(δ/ρ)

)
. (10.26)

In such a case, the convexity of the function φ defined in (10.23) is equivalent to
the convexity of the function χ(λ) = �2

(
(ϕ2)−1(λ)

)
and the condition δ2/ρ2 ∈

σ
(
T ∗Tϕ2(T ∗T )

)
which allows to get the equality in (10.24) is equivalent to δ/ρ ∈

σ (�(T ∗T )).
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From Theorem 10.3.1 and Remark 10.1, we can deduce that under the source condi-
tion (10.5) and Assumption 5, the best possible worst case error is ρ ϕ

(
�−1(δ/ρ)

)

whence the following definition.

Definition 10.1 (Optimality under general source conditions) Let Assumption 5
be satisfied and consider the source condition x† ∈ Xϕ(ρ). A regularization method
R(δ) : Y → X is said to be

1. optimal if �(δ, R(δ), Xϕ(ρ)) ≤ ρ ϕ
(
�−1(δ/ρ)

)
;

2. order optimal if�(δ, R(δ), Xϕ(ρ)) ≤ Cρ ϕ
(
�−1(δ/ρ)

)
for some constant C ≥

1;
3. quasi-order optimal if for all ε > 0, �(δ, R(δ), Xϕ(ρ)) = O ( fε(δ)) , where the

function fε : R+ → R+ converges to ϕ
(
�−1(δ/ρ)

)
as ε decreases to 0, i.e., for

all δ > 0, fε(δ) → ϕ
(
�−1(δ/ρ)

)
as ε decreases to 0.

Having defined the optimality under general source conditions, let us now con-
sider the particular case of logarithmic source conditions. For logarithmic source
conditions, the function ϕ equals the function f p : (0, a] → R+ defined by

f p(λ) = (− ln(λ))−p. (10.27)

Next it is easy to see that the only point to check in Assumption 5 is the convexity of
the function φ defined in (10.23). Precisely, for the index function f p, this function
is φp : (0, ln(1/a)−2p] → (0, a ln(1/a)−2p] defined by

φp(λ) = λ exp(−λ−1/2p)

which was proven to be convex on the interval [0, 1] in [26]. In order to fulfill
Assumption 5 and avoid the singularity of the function f p at λ = 1, we assume
that a ≤ exp(−1) < 1, i.e., ||T ∗T || ≤ exp(−1). Notice that this is not actually a
restriction, since Eq. (10.1) can always be rescaled in order to meet this criterion.

Due to (10.24) it suffices to compute
√

φ−1
p
(
δ2/ρ2

)
in order to define the opti-

mality in logarithmic source conditions. Thanks again to [26], we have that

√
φ−1
p (s) = f p(s)(1 + o(1)) as s → 0. (10.28)

Hence, we deduce the following definition of optimality in case of logarithmic
source condition.

Definition 10.2 (Optimality under logarithmic source condition) Consider logarith-
mic source condition (10.10), on defining f p as in (10.27), a regularization method
R(δ) : Y → X is said to be

• optimal if �(δ, R(δ), X fp (ρ)) ≤ ρ f p(δ2/ρ2)(1 + o(1)) as δ → 0,
• order optimal if �(δ, R(δ), X fp (ρ)) ≤ Cρ f p(δ2/ρ2)(1 + o(1)) as δ → 0 .
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In the sequel, we are interested in optimality with respect to the noise level δ.
In this respect, we can characterize the order-optimality under logarithmic source
conditions as follows.

Remark 10.2 Bydefinitionof the function f p ,weget thatO( f p(δ2/ρ2)) = O( f p(δ))
as δ → 0. Hence, equivalently to Definition 10.2, a regularization method R(δ) :
Y → X is said to be order optimal under logarithmic source condition if

�(δ, R(δ), X fp (ρ)) = O( f p(δ)) as δ → 0.

10.3.1 Optimality Under Logarithmic Source Conditions

Having given all the necessary definitions, let us now study the optimality of the
method proposed in Sect. 10.2.

Proposition 10.2 The regularization gα defined by (10.19) has qualification f p.
That is:

sup
0<λ≤a

|rα(λ)| f p(λ) = O ( f p(α)
)
. (10.29)

The proof the Proposition 10.2 heavily relies on the following lemmawhich is proven
in the appendix.

Lemma 10.3.2 Let p and α be two positive numbers with α ≤ ᾱ < 1, let a ∈ (0, 1)
and �p,α : (0, a] → R+ be the function defined by

�p,α(λ) = | ln(λ)|2−p

λ + α| ln(λ)|2 . (10.30)

Then, the following hold:

(i) The function �p,α is well defined and differentiable on (0, a], and its derivative
is given by

� ′
p,α(λ) = λ−1| ln(λ)|1−p

(λ + α| ln(λ)|2)2 h(λ), (10.31)

where
h(λ) = αp| ln(λ)|2 − λ (2 − p + | ln(λ)|) . (10.32)

(ii) If p ≤ 2, there exists at least one λ(α, p) where h vanishes. Moreover for every
such λ(α, p), the following holds

λ(α, p) � α| ln(α)|, (10.33)

that is, there exists two constants c1 and c2 depending on p only such that
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c1α| ln(α)| ≤ λ(α, p) ≤ c2α| ln(α)|.

Moreover, this result still holds if p > 2, λ < c ≤ exp(2 − p) and α is small.
(iii) The supremum of the function �p,α on (0, a] satisfies

sup
0<λ≤a

�p,α(λ) = O (α−1| ln(α)|−p
)
. (10.34)

Having stated the above lemma, the proof of Proposition 10.2 easily follows:

Proof If λ ≤ α then the monotonicity of the function f p and the fact that the
residual function rα is bounded by 1 on (0, a] yields (10.29). If λ ≥ α then from
Lemma 10.3.2, we deduce that

sup
0<λ≤a

α| ln(λ)|2
λ + α| ln(λ)|2 f p(λ) = O ( f p(α)

)

which together with Lemma 10.2.1 yields (10.29). �

From Proposition 10.2, we deduce the following optimality result.

Theorem 10.3.2 Let p > 0, x† ∈ X fp (ρ), and yδ ∈ Y satisfying (10.2) with y =
T x†. Assume that ||T ∗T || ≤ exp(−1) and let x(δ) = gα(δ)(T ∗T )T ∗yδ with the func-
tion gα being defined by (10.19) and let α(δ) = �−1

p (δ) with �p defined by

�p(λ) = √
λ(ln(1/λ))−p. (10.35)

Then the order-optimal estimate

||x† − x(δ)|| = O ( f p(δ)
)

as δ → 0 (10.36)

holds. Thus the regularization gα defined by (10.19) is order optimal under logarith-
mic source conditions.

Proof As usual, we start with the following splitting

||x† − xδ
α|| ≤ ||x† − xα|| + ||xα − xδ

α||. (10.37)

Using that x† − xα = rα(T ∗T )x†, xα − xδ
α = gα(T ∗T )T ∗(y − yδ) together with the

source condition x† ∈ X fp(ρ), we deduce that

||x† − xα|| ≤ C1 sup
λ∈(0,a]

rα(λ) f p(λ) (10.38)

and
||xα − xδ

α|| ≤ δ C2 sup
λ∈(0,a]

√
λgα(λ). (10.39)
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By applying the Propositions 10.1 and 10.2 to (10.38), (10.39) and using (10.37),
we get that

||x† − xδ
α|| ≤ C ′

1 f p(α) + C ′
2

δ√
α

, (10.40)

whereC ′
1 andC

′
2 are constants independent ofα andλ.Hence, by takingα := �−1

p (δ),
the estimate in (10.36) follows from

||x† − x(δ)|| = O( f p(�
−1
p (δ))) = O( f p(δ

2)) = O( f p(δ)).

Corollary 10.1 Let p > 0, x† ∈ X fp (ρ), and yδ ∈ Y satisfying (10.2) with y =
T x†. Assume that ||T ∗T || ≤ exp(−1) and let x(δ) = gα(δ)(T ∗T )T ∗yδ with the func-
tion gα being defined by (10.19) and α(δ) = δ. Then the order-optimal estimate

||x† − x(δ)|| = O ( f p(δ)
)

as δ → 0

holds. Thus the regularization gα defined by (10.19) is order optimal under loga-
rithmic source conditions with an a-priori parameter choice rule independent of the
smoothness of the solution x†.

Proof By considering α(δ) = δ in (10.40), we get

||x† − xδ
α|| ≤ C ′

1 f p(δ) + C ′
2

√
δ = O( f p(δ)) as δ → 0,

since
√

δ = O( f p(δ)) as δ → 0. �

The next proposition describes a Morozov-like discrepancy rule which leads to
order-optimal convergence rates under logarithmic source conditions.

Proposition 10.3 Let p > 0, x† ∈ X fp (ρ), and yδ ∈ Y satisfying (10.2) with y =
T x†. Assume that ||T ∗T || ≤ exp(−1) and consider the a-posteriori parameter
choice rule

α(δ, yδ) = sup
{
α > 0, ||T xδ

α − yδ|| ≤ δ + √
δ
}

. (10.41)

Let x(δ) = gα(δ,yδ)(T ∗T )T ∗yδ with the function gα defined by (10.19), then the order-
optimal estimate

||x† − x(δ)|| = O ( f p(δ)
)

as δ → 0 (10.42)

holds. Thus the regularization gα defined by (10.19) is order optimal under loga-
rithmic source conditions with the a-posteriori parameter choice rule defined by
(10.41).

The proof of Proposition 10.3 is deferred to Appendix.

A Converse Result
Theorem 10.3.2 establishes that the logarithmic source condition (10.10) is sufficient
to imply the rate f p(δ) in (10.36). Now we are going to prove that the logarithmic



218 W. C. Simo Tao Lee

source condition (10.10) is not only sufficient but also almost necessary. The follow-
ing result based on [20, Theorem 8] establishes a converse result in the noise-free
case for the new regularization method.

Theorem 10.3.3 Let xα = gα(T ∗T )T y with y = T x† and let the function gα be
defined in (10.19). Then the estimate

||x† − xα|| = O( f p(α)) (10.43)

implies that x† ∈ X fq (ρ) for some ρ > 0 for all 0 < q < p.

The proof consists in checking that the function gα defined in (10.19) satisfies all the
conditions stated in Theorem 8 of [20]. More precisely, we just need to check that
there exists a constant Cg > 0 such that

sup
λ∈(0,||T ∗T ||]

gα(λ) ≤ Cg

α
.

But, from (10.62), we see that the latter condition is obviously fulfilled.

10.3.2 Optimality Under General Source Conditions

Let us state the following quasi-optimal result under general source conditions.

Theorem 10.3.4 Let p > 0, x† ∈ Xϕ(ρ), where ϕ is a concave index function
satisfying Assumption 5 and yδ ∈ Y satisfying ||y − yδ|| ≤ δ with y = T x† and
δ ≤ �(a). Assume that ||T ∗T || ≤ a ≤ exp(−1) and let x(δ) = gα(δ)(T ∗T )T ∗yδ

with the function gα defined in (10.19). For small positive ε, let α(δ) = �−1
ε (δ)

where the function �ε is defined by �ε(λ) = λ−ε�(λ) with � given in (10.25).
Then the estimate

||x† − x(δ)|| = O ((�−1
ε (δ))−εϕ(�−1

ε (δ))
)

as δ → 0

holds. Moreover, as ε ↓ 0, (�−1
ε (δ))−εϕ(�−1

ε (δ)) → ϕ(�−1(δ)). Thus the regular-
ization method defined via the function gα given in (10.19) is quasi-order optimal
under general source conditions.

Proof We study two cases: α ≥ λ and α < λ. In the first case, sup(0,exp (−1)] rα(λ)ϕ

(λ) ≤ ϕ(α) by monotonicity of the function ϕ and the order-optimality follows triv-
ially. Let us study the main case when α < λ. From Lemma 10.2.1, we get, for
λ ∈ (0, a],
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rα(λ)ϕ(λ) ≤ 9

4
| ln(λ)|2 α

λ + α| ln(λ)|2 ϕ(λ)

≤ 9

4
| ln(α)|2 α

λ + α| ln(a)|2 ϕ(λ)

≤ 9

4
α−ε(αε/2| ln(α)|)2 α

λ + α| ln(a)|2 ϕ(λ)

≤ 9

4

4

ε2
α−ε αλ

λ + α| ln(a)|2
ϕ(λ)

λ

≤ 9

4

4

ε2
α−ε αλ

λ + α| ln(a)|2
ϕ(α)

α
by concavity of ϕ

≤ Cεα
−εϕ(α). (10.44)

�
Hence sup(0,a] rα(λ)ϕ(λ) ≤ Cεα

−εϕ(α). From (10.38) and (10.39), and (10.21) we
get

||x† − xδ
α|| ≤ Cεα

−εϕ(α) + δ√
α

.

By taking α(δ) = �−1
ε (δ) with �ε(λ) = λ1/2−εϕ(λ), we get

||x† − x(δ)|| = O ((�−1
ε (δ))−εϕ(�−1

ε (δ))
)
.

Now, it remains to show that (�−1
ε (δ))−εϕ(�−1

ε (δ)) converges to the optimal rate
ϕ(�−1(δ)) as ε goes to 0. Let α∗ = �−1(δ) and αε = �−1

ε (δ), let us show that αε

converges to α∗ as ε goes to 0. By the monotonicity of �ε for ε ∈ (0, 1/2) and the
fact that δ ≤ �(a) and a < 1, we get that, for all ε ∈ (0, 1/2),

δ

�(a)
≤ 1 < a−ε ⇒ δ ≤ a−ε�(a) = �ε(a) ⇒ αε = �−1

ε (δ) ≤ a.

Hence αε ∈ (0, a] and the sequence (αε)ε is bounded and thus it admits a converging
subsequence. Let (αεn )n a converging subsequence of (αε)ε , and let α̃ be its limit.
Let us show that α̃ = α∗.

Since αεn → α̃ and � is continuous, �(αεn ) → �(α̃). But �(αεn ) = αεn
εn

�(α∗)
since δ = �(α∗) and δ = �ε(αε) for all small positive ε. So we get

αεn
εn

�(α∗) → �(α̃) i.e., αεn
εn

→ �(̃α)

�(α∗)
. (10.45)

By the convergence of the sequence (αεn )n , we get that αεn
εn

= exp (εn ln(αεn )) con-
verges to 1, (10.45) proves that �(α̃) = �(α∗) and by bijectivity of the function �,
we deduce that α̃ = α∗. Since the sequence (εn)n was arbitrarily chosen, we deduce
that thewhole sequence (αε)ε converges toα∗ as ε ↓ 0. Thuswe deduce thatα−ε

ε → 1
and ϕ(αε) → ϕ(α∗) which implies that
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(�−1
ε (δ))−εϕ(�−1

ε (δ)) → ϕ(�−1(δ)).

For Holder type source conditions, Theorem 10.3.4 reduces to the following the-
orem.

Theorem 10.3.5 Consider the settingof Theorem10.3.4with the functionϕ(t) = tμ,
i.e., x† ∈ (T ∗T )μ, then there exists an a-priori selection rule α(δ) such that the
following holds:

‖x† − xδ
α(δ)‖ =

⎧
⎨

⎩

O
(
δ

2σ
2σ+1

)
∀ σ < μ, if μ ≤ 1

O
(
δ

2
3

)
, if μ > 1.

(10.46)

Remark 10.3 By defining a variant of the new regularization method where the
approximate solution xδ

α is defined as the solution of the optimization problem

xδ
α = argmin

x∈X ||(T ∗T )
√

α yδ − T x ||2 + ||
[
I − (T ∗T )

√
α
]
x ||2,

we can prove order-optimal rate under Holder type source condition but with a
lower qualification index μ0 = 1/2. This variant is motivated by the mollification
regularization method, where a target object defined as a smooth version of x† is
fixed prior to the regularization (see, e.g., [1, 7]). In this respect, the target object
here is given as (T ∗T )

√
αx†. This choice is legitimated by the smoothness property

of the operator T and the fact that as α goes to 0, this target object converges to
the solution x†. The study of this variant and the corresponding optimality results is
beyond the scope of this chapter.

10.4 A Framework for Comparison

In the sequel, we are going to compare the new method with three continuous reg-
ularization methods: Tikhonov [38], spectral cut-off [11], Showalter [11] and one
iterative regularization method: conjugate gradient [11, 21]. We recall that the first
three methods (Tikhonov, spectral cut-off and Showalter) are linear methods on the
contrary to conjugate gradient which is an iterative non-linear regularization method.
Obviously the new method, Tikhonov, spectral cut-off and Showalter are members
of the family of general regularization methods defined via a generator function.
Roughly speaking, each regularization method is defined via a so-called generator
function gregα (λ)which converges pointwise to 1/λ as α goes to 0 and the regularized
solution xδ

α,reg is defined by

xδ
α,reg = gregα (T ∗T )T ∗yδ. (10.47)
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In this respect, the functions gregα (λ) associated with Tikhonov, spectral cut-off,
Showalter and the new method are defined as follows:

gtikα (λ) = 1

λ + α
, gscα (λ) = 1

λ
1{λ≥α}, gswα (λ) = 1 − e−λ/α

λ
,

gnrmα (λ) = 1

λ + (1 − λ
√

α)2
, (10.48)

where λ ∈ (0, a] with ||T ∗T || ≤ a < 1.
Before getting into comparison of the new method to other regularization tech-

niques, let us first point out a way of computing the regularized solution xδ
α,nrm of

the new method.

10.4.1 Computation of the Regularized Solution xδ
α,nrm

One way of computing the regularized solution xδ
α,nrm of the new method is by

computing the singular value decomposition of operator T . That is to find a system
(uk, σk, vk) such that

• the sequence (uk)k forms a Hilbert basis of X ,
• the sequence (vk)k forms a Hilbert basis of the closure of the range of T ,
• the sequence (σ )k is positive, decreasing and satisfies Tuk = σkvk and
T ∗vk = σkuk .

Given that decomposition of T , it is trivial to see that the operator T ∗T is diagonal in
the Hilbert basis (uk)k . Therefore, given a function g defined on the interval (0, σ 2

1 ),
the operator g(T ∗T ) is nothing but the diagonal operator defined on the Hilbert
basis (uk)k by g(T ∗T )uk = g(σ 2

k )uk . Hence given the singular value decomposition
(uk, σk, vk) of T , from (10.47) (with reg = nrm), the regularized solution xδ

α,nrm
can be computed as

xδ
α,nrm =

∑

k

gnrmα (σ 2
k ) 〈T ∗yδ, uk〉 uk =

∑

k

σk

σ 2
k +

(
1 − σ

2
√

α

k

)2 〈yδ, vk〉 uk .

(10.49)

Remark 10.4 Theabove singular valuedecompositionof operatorT is only possible
if T is a compact operator. However, it is important to notice that the new method
does not apply only to compact operator. Indeed, the new method is based on the
spectral family (Eλ)λ associated with the self-adjoint operator T ∗T , and spectral
family exists even for non-compact operator as pointed out in [11, Proposition 2.14].
This allows for the definition of a function applied to a self-adjoint non-compact
operator. Of course, one might ask how we can compute the regularized solution
xδ

α,nrm in such a case. By noticing that in practice, we always discretize Eq. (10.1)
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into matrix formulation, we can compute the singular value decomposition of the
matrix representing the discretizationof operatorT and then apply (10.49) to compute
xδ

α,nrm .

It is important to notice that a crucial step in the computation of the regularized
solution xδ

α,nrm is the singular value decomposition step which should be done rig-
orously especially for exponentially ill-posed problems. That is why we propose a
state of the art algorithm as LAPACK’s dgesvd() routine for SVD computation
(see, e.g., [12, Sect. 8.6] for description of method). For an easy application, it is
to be noted that this routine is implemented in the function svd() in Matlab.
In Sect. 10.5, we will see that even for a very ill-conditioned matrix, we can still
compute the regularized solution xδ

α,nrm very efficiently using the function svd()
in Matlab.

Above, we saw that the new approximate solution xδ
α,nrm is computable using

the singular value decomposition of operator T which might be delicate to compute.
However, in somecases, there is an alternative for computing xδ

α,nrm when theoperator
log(T ∗T ) is explicitly known. Indeed, if the operator log(T ∗T ) is explicitly known,
then the solution u : R+ → X to the initial value problem:

{
u′(t) − log(T ∗T )u(t) = 0, t ∈ R+

u(0) = x,
(10.50)

evaluated at t = √
α is nothing but (T ∗T )

√
αx , i.e., (T ∗T )

√
αx = u(

√
α). Hence,

through the resolution of the ordinary differential equation (10.50), the penalty term

‖
[
I − (T ∗T )

√
α
]
x‖2 can be computed and this allows to compute the approximate

solution xδ
α,nrm .

An example of exponentially ill-posed problems for which the operator log(T ∗T )

is known is the backward heat equation. More precisely, let � be a smooth subset of
R

n with n ≤ 3 and u : � × (0, t̄] → R be the solution to the initial boundary value
problem ⎧

⎪⎨

⎪⎩

∂u
∂t = �u, � × (0, t̄)

u(·, 0) = f, �

u = 0 or ∂u
∂ν

= 0, on ∂� × (0, t̄].
(10.51)

Assumewewant to recover the initial temperature f ∈ L2(�) given the final temper-
ature u(·, t̄). By interpreting the heat Eq. (10.51) as an ordinary differential equation
for the function U : [0, t̄]→ D(�) ⊂ L2(�), t → U (t) = u(·, t), with the initial
value U (0) = f , where

D(�) = H 2(�) ∩ H 1
0 (�) or D(�) =

{
f ∈ H 2(�),

∂ f

∂ν
= 0 on ∂�

}
,
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we get that U (t) = exp (t�) f for t ∈ (0, t̄], where (exp (t�))t>0 is the strongly
continuous semi-group generated by the unbounded self-adjoint linear operator �.
This implies that the equation satisfied by the initial temperature f is nothing but

exp(t̄�) f = u(·, t̄). (10.52)

From (10.52), we deduce that T ∗T = exp (2t̄�) and log(T ∗T ) = 2t̄� and thus oper-
ator (T ∗T )

√
α can be evaluated at a function x ∈ L2(�) as the solution to the initial

value problem ⎧
⎪⎨

⎪⎩

u′(t) − 2t̄�u(t) = 0, t ∈ R+
u(0) = x,

u(t) ∈ D(�), for t ∈ R+

(10.53)

evaluated at t = √
α.

In addition to the backward heat equation, there are other exponentially ill-
posed problems for which log(T ∗T ) is known. This includes sideways heat equation
(see [20, Sect. 8.3]) and more generally inverse heat conduction problems (see, e.g.,
[31, Sects. 3 & 4]).

10.4.2 Tikhonov Versus New Method

From the variational formulation of Tikhonov and the new method, we can see that
both methods differ by the penalty term. For Tikhonov method, the penalty term is

α‖x‖2 whereas for the new method, the penalty term is
∥∥∥
[
I − (T ∗T )

√
α
]
x
∥∥∥
2
. By

considering X = L2(Rn) for instance, by using the Parseval identity, we see that
the penalty term is equal to α

∥∥x̂
∥∥
L2(Rn)

. Therefore the weight α equally penalizes
all frequency components irrespective of the magnitude of frequencies even though
instability mainly comes from high frequency components. This is actually a draw-
back of the Tikhonov method which may induce an unfavorable trade-off between
stability and fidelity to the model (see, e.g., [1], Fig. 10.4). On the contrary, for the
new regularization method, high frequency components are much more regularized
compared to low frequency components which are less and less regularized as the
singular values increase to 1. In this way, we expect the new method to achieve a
better trade-off between stability and fidelity to the model. Moreover, for exponen-
tially ill-posed problems, the ill-posedness is accentuated due to the magnitude of
singular values, the instability introduced by high frequency components are more
pronounced and we expect the new regularization method to yield better approxima-
tions of x†.
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10.4.3 Spectral Cut-Off Versus New Method

On the contrary to Tikhonov method, both spectral cut-off and the new method
treat high frequency components and low frequency components differently. How-
ever, spectral cut-off regularized high frequency components by a mere cut-off and
this may be too violent in several situations. Indeed even though high frequency
components induce instability, they also carry some information which should not
completely left out. For instance, for mildly ill-posed problems, this truncation will
be very damaging on the quality of the approximation while for exponentially ill-
posed problem, this truncation will be less damaging. A smooth transition (in term
of regularization) from small singular values to other singular values would be more
meaningful and desirable. This is actually what is done for the new method. Another
advantage of the new method compared to spectral cut-off is the variational formu-
lation of the new method which allows to add to the problem a-priori constraint on
the solution (e.g., positivity, geometrical constraints, etc...).

10.4.4 Showalter Versus New Method

Amajor difference between Showalter method and the newmethod is that Showalter
method does not have a variational formulation.Given that, for the Showaltermethod,
it is not clear what is actually penalized in order to stabilize the problem. Moreover
it would be difficult if not impossible to add a-priori constraints on the solution.
Given a data yδ , by inspecting the Showalter regularized solution which is given by
xδ

α = ∫ 1/α
0 e−sT ∗T ds T ∗yδ , we see that the method introduces stability by truncating

the integral
∫ +∞
0 e−sT ∗T ds T ∗yδ = (T ∗T )−1T ∗yδ on the interval (0, 1/α). On the

other hand, we can see that, as the Tikhonov method, for all regularization parameter
α > 0, the generator function gswα of Showalter method is strictly decreasing on the
contrary to the generator function gnrmα of the new method which always exhibits a
maximum close to λ = 0. This implies that the Showalter method cannot be seen
as a smooth version of spectral cut-off which yields a smooth transition (in term
of regularization) from high frequency components to low frequency components,
on the contrary to the new method. Concerning the computation of the regularized
solution xδ

α,sw for the Showalter method, it is important to notice that xδ
α,sw is the

solution uδ : R+ → X of the initial value problem:

{
u′

δ(t) + T ∗Tuδ(t) = T ∗yδ, t ∈ R+
uδ(0) = 0,

(10.54)

evaluated at t = 1/α, i.e., xδ
α,sw = uδ(1/α). By solving (10.54) using the forward

finite difference of step size h, we get that uδ can be approximated as
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uδ(t + h) ≈ uδ(t) + h
[
T ∗yδ − T ∗Tuδ(t)

]
, with uδ(0) = 0. (10.55)

10.4.5 Conjugate Gradient Versus New Method

Unlike all the other regularization methods under consideration (Tikhonov, spectral
cut-off, Showalter, and the new method), the conjugate gradient method is an iter-
ative non-linear regularization method. The conjugate gradient method regularizes
Problem (10.1) by iteratively approximating x† by the minimizer xk of the functional
f (x) = ||T x − y||2 on finite-dimensional Krylov subspaces

Vk = span
{
T ∗y, (T ∗T )T ∗y, ..., (T ∗T )k−1T ∗y

}
,

where k ≥ 1 and k ∈ N. A major advantage of the conjugate gradient is the easy
computation of regularized solution xk (see, e.g., algorithm given in [21, Fig. 2.2])
and the fast convergence on the contrary to Landweber. However, as pointed out in
[11, Theorem 7.6], the operator Rk which maps the data y to the regularized solution
xk is not always continuous contrarily to the new method. Moreover, compared to
other regularization methods, there is no a-priori rules k(δ) such that xδ

k(δ) converges
to x† as δ → 0 [9].

A comparative plot of the generator functions gregα associated with Tikhonov,
spectral cut-off, Showalter, and the new method is given in Fig. 10.1.

Remark 10.5 On the contrary to generator functions of Tikhonov and Showalter,
the generator function gnrmα associated with the new regularization always exhibits
a maximum close to λ = 0 and the function always equals 1 at λ = 0. Indeed, it is
trivial to check that both functions gtikα and gswα are strictly decreasing for all α > 0.
Hence, the function gnrmα is the only one which can be seen as a smooth version of
the function gscα associated with spectral cut-off which has a very crude transition at
λ = α.

Fig. 10.1 Comparison generator function gregα to function λ �→ 1/λ for the four regularization
methods (reg = tik,sc,nrm,sw)
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10.5 Numerical Illustration

The aim here is to compare the performance of our new regularization method (nrm)
to the classical Tikhonov method (tik), spectral cut-off (tsvd), Showalter (sw),
and conjugate gradient (cg) for some (ill-posed) test problems. We consider three
test problems. The first one is a problem of image reconstruction found in [36]. The
second problem is a Fredholm integral equation of the first kind taken from [2] and
the last one is an inverse heat problem. For the discretization of these problems, we
use the functions shaw(), baart() and heat() of the matlab regularization
tool package (see [18]). For the heat() and shaw() test problems, the discretiza-
tion is done by collocation with approximation of integrals by quadrature rules. For
the baart() test problem, the discretization is done by Galerkin methods with
orthonormal box functions as basis functions. In the matlab regularization tool
package, each of the functions shaw(), baart(), and heat() takes as input a
discretization level n representing either the number of collocations points or the
number of box functions considered on the interval [0, 1]. Given the input n, each
function returns three outputs: a matrix A, a vector x†, and the vector y obtained
by discretization without noise added. In this section, we considered the following
discretization level for the shaw(), baart() and heat() test problem, respec-
tively, nshaw = 160, nbaart = 150 and nheat = 150. For the simulations, we define
noisy data yξ = y + ξ where ξ is a random white noise vector. In order to compute
the regularized solution xδ

α,nrm for the new method, we compute the SVD with the
function svd() in Matlab and applied (10.49).

We consider a 4% noise level, the noise level being defined here by the ratio of
the noise to the exact data. More precisely, given a noisy data yξ = y + ξ , the noise
level is defined by

√
E(||ξ ||2)/||y||. In order to illustrate the ill-posedness of each test

problem, we give on Fig. 10.2 the conditioning associated with each matrix Ashaw,
Abaart , and Aheat obtained from the discretization of each problem.

We perform a Monte Carlo experiment of 3000 replications. In each replication,
we compute the best relative error for each regularization method. Next we compute
the minimum, maximum, average, and standard deviation errors (denoted by emin ,
emax , ē, σ(e) over the 3000 replications for each schemes (nrm and tik, tsvd, sw,
and cg). Figure 10.3 summarizes the results of the overall simulations.

In order to assess and compare the trade-off between stability and fidelity to the
model for Tikhonov and the newmethod, we plot the curve of the conditioning versus
relative error. The conditioning here is the condition number of the reconstructed
operator gregα (T ∗T ) associated with the regularization method. For instance, using
the invariance of conditioning by inversion, for the new method, the conditioning

Fig. 10.2 Conditioning of the matrices Ashaw , Abaart and Aheat for nshaw = 160, nbaart = 150,
and nheat = 150
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Fig. 10.3 Summary of the Monte Carlo experiment. On the right figure, the average relative error
for each method is represented by the vertical stick

Fig. 10.4 Comparison of the trade-off between stability and accuracy of the new method (nrm) to
Tikhonov (tik) for the three test problems: shaw, baart, and heat

corresponds to the condition number of the operator T ∗T +
[
I − (T ∗T )

√
α
]2

while

for Tikhonov method, it corresponds to the condition number of T ∗T + α I . In this
respect, for two regularization methods, the best one is the one whose curve is below
the other one as it achieves the same relative errors with smaller conditioning. On
Fig. 10.4, for each test problem, we compare the curve of conditioning versus relative
error of the new method and Tikhonov method.

Notice that the first two problems (shaw and baart) are mildly ill-posed while
the third problem (heat) is exponentially ill-posed.

Comments:
From Figs. 10.3 and 10.4, we can do the following comments:

• The new method always yields the smallest average relative errors among the five
methods.
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• From Fig. 10.3, we can see that both spectral cut-off and conjugate gradient yield
the worst average relative errors except for the heat test problem where their
average relative errors are smaller than the one of Tikhonov.

• For the twomildly ill-posed problems shaw and baart, Tikhonov method yields
average relative errors close to the smallest one. On the contrary, for the exponen-
tially ill-posed problem heat, Tikhonov method yields the worst average relative
error among all the five methods.

• For the two mildly ill-posed problems (shaw and baart), the errors of the new
method are not significantly smaller than those of Tikhonov on the contrary to the
exponentially ill-posed problem (heat) where the new method produces smaller
error than Tikhonov (about 5% smaller). This confirms our prediction about the
better performance of the new method in instance of exponentially ill-posed prob-
lems compared to Tikhonov.

• For all three test problems, the new method performs better than spectral cut-off
as could be expected. Moreover, the gap between the error is larger for the first
two test problems which are mildly ill-posed. This also confirms the prediction
about the poor performance of spectral cut-off for mildly ill-posed problems.

• On the contrary to the two mildly ill-posed problems (shaw and baart), spec-
tral cut-off performs better than Tikhonov on the last test problem (heat), which
is exponentially ill-posed. This emphasizes, especially in exponentially ill-posed
problems, the drawback of Tikhonovmethodwhich regularizes all frequency com-
ponents in the same way.

• FromFig. 10.4, we can see that the newmethod achieves a better trade-off between
stability and fidelity to the model compared to the Tikhonov method. Indeed, for
the three test problems the curve associated with the new method lies below the
one of Tikhonov. This means that given a stability level κ (measured in term of
conditioning), the newmethod provided a smaller error thanTikhonov.Conversely,
for a given error level ε, the new method provides a lower conditioning of the
reconstructed operator compared to Tikhonov. This also validates the prediction
stated earlier.

10.6 Parameter Selection Rules

In this section, we are interested in the choice of the regularization parameter α.
For practical purposes, we assume that we don’t know the smoothness conditions
satisfied by the unknown solution x†. Consequently, we are left with two types of
parameter choice rules: A-posteriori rules which use information on the noise level
δ and heuristic rules which depend only on the noisy data yδ . However a huge
default of a-posteriori parameter choice rules is their dependence on the noise level
δ which, in practice, is hardly available or well estimated in most circumstances. In
[8], it is shown how an underestimation or overestimation of the noise level δ may
induce serious computation issues for the Morozov principle. Moreover, in [15], it is
illustrated how heuristic rulesmay outperform sophisticated a-posteriori rules. Given
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those reasons, we turn to heuristic (or data driven) selection rules. We recall that,
due to Bakushinskii véto [3], such rules are not convergent. But still, as mentioned
earlier, heuristic rules may yield better approximations compared to sophisticated
a-posteriori rules (see, e.g., [15]) and this is not surprising as the Bakushinskii result
is based on worst case scenario.

We applied five noise-free parameter choice rules to the new method and the four
regularization methods on the three test problems defined in Sect. 10.5: the general-
ized cross validation (GCV), the discrete quasi-optimality rule (DQO), two heuristic
rules (H1 and H2), and a variant of the L-curve method (LCV) each described in
[11, Sect. 4.5]. Roughly speaking, the parameter α chosen by each of those selection
rules is as follows:

• The GCV rule consists in choosing α̂ as

α̂ = argmin
α

||T xδ
α − yδ||

tr(rα(T ∗T ))
,

where rα is the residual function associated with the regularization method under
consideration. For the new method, rα is defined in (10.20).

• The DQO method consists in discretizing the regularization parameter α as

αn = α0q
n, α0 ∈ (0, ||T ∗T ||], and 0 < q < 1.

Next, the parameter α̂ is chosen as

α̂ = αn̂ with n̂ = argmin
n∈N

||xδ
αn+1

− xδ
αn

||. (10.56)

Recall that this rule defined by (10.56) is actually one of the variants of the con-
tinuous quasi-optimality rule defined by

α̂ = argmin
α

||α ∂xδ
α

∂α
||.

• The third rule H1 taken in [11, Sect. 4.5] consists in choosing the parameter α̂ as

α̂ = argmin
α

1√
α

||T xδ
α − yδ||. (10.57)

• The fourth rule H2 which is a variant of the third rule H1 consists in choosing the
parameter α̂ as

α̂ = argmin
α

1

α
||T ∗(T xδ

α − yδ)||. (10.58)

• The variant of the L-curve (LCV) method considered here (see [11, Proposition
4.37]) consists in choosing the regularization parameter α̂ as
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Fig. 10.5 Comparison of the relative error obtained by each selection rules (GCV, DQO, H1, H2,
and LCV) for the two noise levels with the new method for the three tests problems shaw, baart
and heat. On each plot, the x-axis corresponds to relative error and the vertical stick indicates the
average relative error

α̂ = argmin
α

||xδ
α|| ||T xδ

α − yδ||. (10.59)

Recall that this rule actually tries to locate the parameter α̂ corresponding to the
corner of the L-curve plot ||xδ

α|| versus ||T xδ
α − yδ|| in a log-log scale. For more

details about the L-curve method, see, e.g., [10, 16, 17].

For a comprehensive discussion of the above heuristic rules and conditions under
which convergence is established, see [13, 25, 39] for GCV, [4–6, 22] for Quasi-
optimality and [11, Sect. 4.5] for the rules H1, H2 and LCV.

For assessing the performance of each selection rule, we perform a Monte Carlo
experiment of 3000 replications. For each replication, each test problem (baart,
shaw, heat), and each regularization method (nrm, tik, tsvd, sw and cg),
we compute the optimal regularization parameter αOPT , the one chosen by each
selection rule (αGCV , αDQO , αH1, αH2, αLCV ). We also compute the corresponding
relative errors:

||x† − xδ
αOPT

||
||x†|| ,

||x† − xδ
αGCV

||
||x†|| ,

||x† − xδ
αDQO

||
||x†|| ,

||x† − xδ
αH1

||
||x†|| ,

||x† − xδ
αH2

||
||x†|| ,

and
||x†−xδ

αLCV
||

||x†|| . In order to analyze the convergence behavior of the selection rules,
we consider two noise levels: 2% and 4%. The results are shown in Fig. 10.5 and
Tables 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, and 10.9.

From Tables 10.1, 10.2 and Fig. 10.5, we can see the following concerning the
new regularization method:

• For the exponentially ill-posed problem heat, fromTable 10.2 and the last column
of Fig. 10.5, we can see that the discrete quasi-optimality rule and the variant of the
L-curve are very efficient parameter choice rules for the new method. Indeed both
the average relative errors and the average regularization parameters produced by
the DQO and LCV rules are very near the optimal ones and decrease as the noise
level decreases. Moreover, by looking at the standard deviation of the relative error
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Table 10.2 Summary of the Monte carlo experiment with the five heuristic rules GCV, DQO, H1,
H2, and LCV applied to the new method for the test problem heat

heat

OPT GCV DQO H1 H2 LCV

4%nl emax 0.274714 2.44329 0.279108 0.962294 7.22502 0.306221

emin 0.100167 0.109427 0.130933 0.267733 0.267816 0.101507

ē 0.18857 0.23329 0.205499 0.73711 0.647173 0.19349
σ(e) 0.02788 0.13091 0.0209 0.30401 0.47841 0.02709
reg.par. 8.14e-4 6.235e-4 1.145e-3 0.64709 1.677e-4 8.842e-4

2%nl emax 0.207777 2.34338 0.25523 0.261773 7.98943 0.289426

emin 0.073866 0.082679 0.081314 0.187784 0.228114 0.081314

ē 0.13947 0.17187 0.15295 0.2261 0.60093 0.16643
σ(e) 0.01988 0.09237 0.02109 0.01094 0.51234 0.02929
reg.par. 5.204e-4 3.823e-4 6.909e-4 1.642e-3 8.736e-5 3.245e-4

σ(e), we see that those rules are very stable with respect to variations of the error
term in y. Next, the GCV rule exhibit good average relative error, however, the
GCV is not stable with respect to the noise in y, and this is shown by the spreading
of dots along the x-axis or the corresponding large standard deviation σ(e). Finally,
the rule H2 is unstable and produces large relative errors norm whereas the rule
H1 is more stable but does not yield satisfactory errors.

• For the mildly ill-posed test problems shaw and baart, the best heuristic rule
for the new method is the variant of the L-curve method. Indeed, from Table 10.1
and two first columns of Fig. 10.5, we notice that the relative errors produced by
the LCV rule are near the optimal ones. Moreover, the LCV rule is very stable
with respect to the noise in y and both the relatives errors and the regularization
parameters decrease as the noise level decreases. The second best rule is rule H1
which is also stable and convergent but produces relative errors larger than the one
of LCV rule. Finally the rules DQO, GCV, and H2 are unstable and produce large
relative error norm.

From Tables 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, and 10.9, we apply the five selection
rules GCV, DQO, H1, H2, and LCV to each regularization method. Obviously the
GCVrule cannot be applied to conjugate gradientmethoddue to its non-linear charac-
ter. Although the DQO is originally designed for continuous regularization methods,
notice that the rule defined in (10.56) can be applied to regularization methods with
discrete regularization parameter such as truncated singular value decomposition
and conjugate gradient. Indeed, we can applied the DQO rule to tsvd and cg by
replacing xδ

αn
by xδ

k in (10.56). Similarly the rules H1 and H2 originally designed
for continuous regularization methods may be applicable to discrete regularization
by defining the regularization parameter α as the inverse of the discrete parameter k.
Following that idea, we applied the rules H1 and H2 to tsvd and cg by replacing
α by 1/k in (10.57) and (10.58).
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Table 10.7 Summary of the Monte Carlo experiment with rule H1 applied to nrm,tik,tsvd,sw, and
cg for the two noise levels on the test problem heat. The x indicates columns where the average
relative error is greater than 1

H1 heat

nrm tik tsvd sw cg

4%nl emax 0.962294 0.968345 x 0.966995 0.314004

emin 0.267733 0.967581 x 0.966207 0.196006

e 0.73711 0.968 x 0.96665 0.2548
σ(e) 0.3040 1.025e-4 x 1.065e-4 0.02256
reg.par. 0.64709 1 x 1 0.1522

2%nl emax 0.261773 0.413507 x 0.576622 0.235608

emin 0.187784 0.25434 x 0.226524 0.118365

e 0.2261 0.36496 x 0.52891 0.20326
σ(e) 0.01094 0.04828 x 0.10989 0.01554
reg.par. 1.642e-3 8.135e-4 x 5.594e-3 0.1229

From Tables 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, and 10.9, we can do the following
comments:

• The variant of the L-curve method defined through (10.59) is a very efficient
heuristic parameter choice rule for each considered regularization method. Indeed,
from Tables 10.8 and 10.9, by looking at the standard deviation σ(e) of the relative
error, we see that the LCV rule is stable for each regularization method, each test
problem and each noise level. Next, the rule exhibits a convergent behavior for
each test problem and each regularization method since the average relative error
ē and the average regularization parameter reg.par. decrease as the noise level
decreases. Finally from Tables 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, and 10.9, we find
that the LCV rule always yields the smallest average relative error ē among all the
heuristic rules considered except in 4 cases (out of 30 cases in total) : baart test
problem with 4% noise level for Showalter method and heat test problem with
2% noise level for the new method, Tikhonov and Showalter method. Notice that
in each of those four cases, LCV rule yields the second best average relative error
ē after the DQO rule.

• For the exponentially ill-posed test problem heat, Table 10.10 summarizes the
best heuristic rules for each regularization method:

• For the mildly ill-posed test problems shaw and baart, the best heuristic rule is
always the LCV rule. For the new method, Tikhonov, truncated singular value
decomposition and conjugate gradient, the LCV rule is followed by rule H1
whereas for the Showalter method, the LCV rule is followed by rule H2.

• For the exponentially ill-posed test problem heat, by comparing the five regular-
ization methods combined each with its best heuristic selection rule among GCV,
DQO, H1, H2, and LCV, we see that the new method equipped with the DQO
rule (resp. the LCV rule) for 4% noise level (resp. for 2% noise level) yields the
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Table 10.9 Summary of the Monte Carlo experiment with LCV rule applied to nrm,tik,tsvd,sw,
and cg for the two noise levels on the test problem heat

LCV heart

nrm tik tsvd sw cg

4%nl emax 0.306221 0.328995 0.364771 0.334528 0.345675

emin 0.101507 0.113791 0.134865 0.103206 0.120651

e 0.19349 0.20276 0.2104 0.19778 0.19995
σ(e) 0.02709 0.02928 0.03006 0.02904 0.02629
reg.par. 8.842e-4 5.708e-5 0.06756 1.253e-4 0.10016

2%nl emax 0.289426 0.29641 0.345262 0.295178 0.30907

emin 0.081314 0.089006 0.100711 0.083142 0.086875

e 0.16643 0.18146 0.17867 0.16141 0.16292
σ(e) 0.02929 0.02828 0.03907 0.02992 0.03034
reg.par. 3.245e4 1.245e5 0.05105 2.233e-5 0.06903

smallest average relative error ē (about 2% smaller than the second best average
relative error). For 4% noise level, the second smallest average relative error is
achieved by Showalter method equipped with LCV rule whereas for 2% noise
level, the second smallest average relative error is achieved by Tikhonov method
equipped with DQO rule.

• For the two mildly ill-posed problems shaw and baart, by comparing the five
regularization methods combined each with its best heuristic selection rule among
GCV, DQO, H1, H2, and LCV, we notice there is no regularization method which
always yields the smallest average relative error. For the shaw test problem,
Tikhonov method with LCV rule yields the smallest average relative error ē. For
the baart test problem, for 4% noise level, the smallest average relative error
is obtained by the Showalter method equipped with the DQO rule. However, for
this test problem, the DQO rule is not converging for the Showalter method as
the average relative error ē increases from 0.26028 to 0.63955 as the noise level
decreases from 4% to 2%. If we discard Showalter with DQO rule, then for 4%
noise level, the smallest average relative error is obtained by Tikhonov method
equipped with LCV rule while for 2% noise level, the smallest average relative
errors are obtained from conjugate gradient method equipped with LCV rule.

Remark 10.6 FromTables 10.1 , 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, and 10.9we
see that, the heuristic parameter choice rule LCV yields very satisfactory results for
each considered regularizationmethod. This reinforces the idea that the Bakushinskii
véto [3] should not be seen as a limitation of heuristic parameter choice rule but rather
as a safeguard to be taken into account.

In summary,we see that for the exponentially ill-posed test problemheat, the new
regularizationmethod always yields the smallest average relative error among the five
considered regularizationmethods evenwhenwe consider heuristic parameter choice
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Table 10.10 Summary best heuristic rules for each regularization method for the exponentially
ill-posed test problem heat

nrm tik tsvd sw cg

Best heuristic rules DQO,LCV DQO,LCV LCV DQO,LCV LCV

rules. Hence in practical situation of exponentially ill-posed problems, we expect
the new method to perform better than the other regularization methods (Tikhonov,
truncated singular value decomposition, Showalter method, and conjugate gradient).

10.7 Conclusion

In this chapter, we presented a new regularization method which is particularly suit-
able for linear exponentially ill-posed problems. We study convergence analysis of
the new method and we provided order-optimal convergence rates under logarith-
mic source conditions which has a natural interpretation in term of Sobolev spaces
for exponentially ill-posed problems. For general source conditions expressed via
index functions, we only provided quasi-order optimal rates. From the simulations
performed, we saw that the new method performs better than Tikhonov method,
spectral cut-off, Showalter, and conjugate gradient for the considered exponentially
ill-posed problem, even with heuristic parameter choice rules. For the two mildly
ill-posed problems treated, we saw that the new method actually yields results quite
similar to those of Tikhonov and Showalter methods. The results of Sect. 10.6,
where we applied five error-free selection rules to the five regularization methods
suggest that the variant of the L-curve method defined in (10.59) and the discrete
quasi-optimality rule defined in (10.56) are very efficient parameter choice rules for
the new method in the context of exponentially ill-posed problem. In the context
of mildly ill-posed problems, the results of experiments suggest that the LCV rule
described in Sect. 10.6 is preferable.

Interesting perspectives would be a theoretical analysis of the LCV and DQO
rules for the new regularization method in the framework of exponentially ill-posed
problems in order to shed light on their good performances.

Acknowledgements The author would like to thank Pierre Maréchal and Anne Vanhems for their
helpful comments, readings, and remarks.

10.8 Appendix

Proof of Proposition 10.1. Let us state the following standard inequality that we
will use in the sequel:
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∀ t ≥ 0, exp(−t) ≤ 1

1 + t
. (10.60)

Using (10.60) applied with t = −√
α ln(λ) ≥ 0, we get

1 − exp(
√

α ln(λ)) ≥ 1 − 1

1 − √
α ln(λ)

= −√
α ln(λ)

1 − √
α ln(λ)

= √
α

| ln(λ)|
1 + √

α| ln(λ)| .
(10.61)

But since α < 1, 1 + √
α| ln(λ)| < 1 + | ln(λ)|. Furthermore For all λ ≤ a < 1, by

the monotonicity of the function t −→ | ln(t)|/(1 + | ln(t)|) = − ln(t)/(1 − ln(t))
on (0, 1), we get that

| ln(t)|
1 + | ln(t)| ≥ | ln(a)|

1 + | ln(a)| ∀ t ∈ (0, a).

By applying the above inequality to (10.61) and taking the square, we get

∀λ ∈ (0, a), (1 − λ
√

α)2 ≥ Mα with M =
( | ln(a)|
1 + | ln(a)|

)2

.

Whence the following inequality:

1

λ + (1 − λ
√

α)2
≤ 1

λ + Mα
, (10.62)

which implies that
√

λgα(λ) ≤ λ1/2

λ + Mα
. (10.63)

It is rather straightforward to prove that the supremum over λ ∈ (0, 1) of the right
hand side of (10.63) is of order α−1/2 from which we deduce that

sup
λ∈(0,a]

√
λgα(λ) = O

(
1√
α

)
. (10.64)

�
Proof of Lemma 10.2.1. Let λ ∈ (0, 1). On the one hand, by applying the estimate
(1 − exp(t)) ≥ −t/(1 − t) which holds for all t < 0 to t = √

α ln(λ) and by taking
squares, we have

(1 − λ
√

α)2 ≥ α| ln(λ)|2
(1 + √

α| ln(λ)|)2 . (10.65)

On the other hand, using the estimate t2 ≥ (1 − exp(t))2 valid for all t < 0 to t =√
α ln(λ), we get

(1 − λ
√

α)2 ≤ α| ln(λ)|2. (10.66)
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Now, for α ≤ λ < 1, | ln(α)| ≥ | ln(λ)|which implies that
√

α| ln(λ)| ≤ √
α| ln(α)|.

Using the estimate tμ ln(1/t) ≤ μ which is true for all t in (0, 1) and every positive
μ to t = λ and μ = 1/2, we deduce that

1 + √
α| ln(α)| ≤ 3/2. (10.67)

So, from (10.65) and (10.67), we deduce that

(1 − λ
√

α)2 ≥ 4

9
α| ln(λ)|2, (10.68)

which implies that

rα(λ) ≤ (1 − λ
√

α)2

λ + (4/9)α| ln(λ)|2 . (10.69)

Finally, applying (10.66) and the fact that λ ≥ (4/9)λ to (10.69) yields (10.22). �
Proof of Lemma 10.3.2. (i) It is straightforward to check that (10.31) is indeed the
derivative of the function �p,α .

(ii) First notice that limλ→0 h(λ) = +∞, hence, it suffices to find a λ̄ such that
h(λ̄) < 0 to deduce the existence of a root of the function h on (0, λ̄]. If p < 2, then
h(1) < 0. If p = 2, then h(λ) = | ln(λ)|(2α| ln(λ)| − λ). Thus, h(λ) < 0 for λ close
to 1 but smaller than 1. If p > 2, then limα→0 h(λ) = λ(p − 2 + ln(λ)) < 0 for all
λ < exp(2 − p).

Now let us show that for every λ(p, α) which vanishes h, (10.33) holds.

h(λ) = 0 =⇒ α = λ| ln(λ)|−1

(
2 − p + | ln(λ)|

p| ln(λ)|
)

(10.70)

by monotonicity of the function t → (2 − p + t)/(pt) (irrespective of the sign of
2 − p) and t → | ln(λ)|, we get that the function l(λ) = 2−p+| ln(λ)|

p| ln(λ)| is monotonic. If
p < 2, the function l is increasing and we then get that, for all λ ∈ (0, c] with c < 1,

1

p
≤ l(λ) ≤ l(c). (10.71)

On the other hand, if p ≥ 2, the function l is decreasing and for λ ∈ (0, c] with
c < exp (2 − p), we get

l(c) ≤ l(λ) ≤ 1/p. (10.72)

From (10.70), (10.71) and (10.72), we deduce that

h(λ) = 0 =⇒ α ∼ λ| ln(λ)|−1. (10.73)

From [37, Lemma 3.3], we get that
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α ∼ λ| ln(λ)|−1 ⇒ λ ∼ α| ln(α)|(1 + o(1)) for α → 0.

This shows that the maximizers λ(p, α) of the function �p,α satisfies (10.33). Now
let us deduce (10.34). We have

α| ln(α)|p�p,α(α| ln(α)|) = | ln(α)|p × | ln(α| ln(α)|)|2−p

| ln(α)| + | ln(α| ln(α)|)|2 < | ln(α)|p × | ln(α| ln(α)|)|−p.

With the change of variable � = | ln(α)| (i.e., α = exp (−�)), we have

| ln(α)|p × | ln(α| ln(α)|)|−p = �p

| ln(� exp(−�))|p
= �p

| − � + ln(�)|p
= �p

(� − ln(�))p
→ 1 as � → ∞.

This proves that
α| ln(α)|p�p,α(α| ln(α)|) = O(1)

and thus from (10.33), we deduce that (10.34) holds.
�

Proof of Proposition 10.3. For simplicity of notation, let α := α(δ, yδ). In order
to establish (10.42), we are going to bound the terms ||x† − xα|| and ||xα − xδ

α||
separately. Let us start with the regularization error term. Given that x† ∈ X fp (ρ),
we have x† = f p(T ∗T )w and thus x† − xα = rα(T ∗T )x† = f p(T ∗T )rα(T ∗T )w.
Hence by applying [20, Proposition 1] to x† − xα , we get

||x† − xα|| ≤ ||rα(T ∗T )w||
√

φ−1
p
(||y − T xα||2/ρ2

) ≤ ρ

√
φ−1
p
(||y − T xα||2/ρ2

)
.

(10.74)
From (10.28) and (10.74), we deduce that

||x† − xα|| ≤ ρ f p
(||y − T xα||2/ρ2

)
(1 + o(1)). (10.75)

But

||y − T xα|| ≤ ||yδ − T xδ
α|| + ||y − T xα − (yδ − T xδ

α)||
≤ δ + √

δ + ||rα(T ∗T )(y − yδ)||
≤ 2δ + √

δ

= √
δ(2

√
δ + 1). (10.76)

From (10.75) and (10.76), we deduce that
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||x† − xα|| ≤ ρ f p
(
δ(2

√
δ + 1)2/ρ2

)
(1 + o(1)). (10.77)

Using (10.77) and the fact that

f p
(
δ(2

√
δ + 1)2/ρ2

)

f p(δ)
=
( − ln(δ)

− ln(δ) − 2 ln(1 + 2
√

δ) + 2 ln(ρ)

)p

→ 1 as δ → 0 (10.78)

yields
||x† − xα|| = O( f p(δ)) as δ → 0. (10.79)

Now let us estimate the propagated data noise term. Let ᾱ = qα with q ∈ (1, 2).
From (10.41), since ᾱ > α, we get

||T xδ
ᾱ − yδ|| > δ + √

δ. (10.80)

Therefore,

||T xᾱ − y|| ≥ ||T xδ
ᾱ − yδ|| − ||T (xδ

ᾱ − xᾱ) − (yδ − y)||
> δ + √

δ − ||rᾱ(T ∗T )(yδ − y)||
≥ δ + √

δ − δ

= √
δ. (10.81)

On the other hand, ||T xᾱ − y|| = ||T (xᾱ − x†)||=||(T ∗T )1/2(xᾱ−x†)||=||(T ∗T )1/2

rᾱ(T ∗T )x†||. By applying (10.44) with ϕ(t) = √
t and ε = 1/8, we get that there

exists a constant C such that ||(T ∗T )1/2rᾱ(T ∗T )x†|| ≤ C ᾱ3/8. This implies that

||T xᾱ − y|| ≤ C ᾱ3/8. (10.82)

From (10.81) and (10.82), we deduce that ᾱ3/8 ≥ √
δ/C which implies that ᾱ ≥

C̄δ4/3 with C̄ = C−8/3. From (10.21), (10.39), the above lower bound of ᾱ and the
fact that α > ᾱ/2, we get that, there exists a positive constant C ′ such that

||xα − xδ
α|| ≤ C ′ δ√

α
≤ C ′√2

δ√
ᾱ

≤ C ′
√
2/C̄

δ√
δ4/3

= δ1/3C ′
√
2/C̄ . (10.83)

Given that δ1/3 = O( f p(δ)) as δ → 0, we deduce that ||xα − xδ
α|| = O( f p(δ)) as

δ → 0 which together with (10.79) implies (10.42). �
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Chapter 11
On Minimax Programming with
Vanishing Constraints

Vivek Laha, Rahul Kumar, Harsh Narayan Singh, and S. K. Mishra

Abstract In this chapter, we deal with a class of minimax programming problems
with vanishing constraints. We establish necessary and sufficient optimality results
for such a feasible point to be an optimal solution. Moreover, we formulate Mond–
Weir type dual model for such a minimax programming problem with vanishing
constraints and obtain various duality results. Also, we apply some results obtained
for minimax programming problem with vanishing constraints to a multiobjective
optimization problem with vanishing constraints.

Keywords Vanishing constraints · Minimax programming · Generalized
convexity · Mond-Weir duality · Multiobjective optimization · Weak efficient
solutions

11.1 Introduction

Achtziger andKanzow [1] studiedmathematical programswith vanishing constraints
for the first time. Hoheisel and Kanzow [2–4], Izmailov and Solodov [5] and Khare
andNath [6] derived optimality conditions formathematical programswith vanishing
constraints under several weak modified constraint qualifications. Mishra et al. [7]
andHu et al. [8] gave several dualmodels for themathematical programswith vanish-
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ing constraints. Mishra et al. [9], Guu et al. [10], and Jayswal and Singh [11] studied
multiobjective optimization problems with vanishing constraints. Kazemi and Kanzi
[12], Kazemi et al. [13], Kanzi et al. [14], andMokhtavayi et al. [15] obtained results
for mathematical programs with vanishing constraints with nonsmooth data.

Schmitendorf [16] derived necessary and sufficient conditions of optimality for
minimax programming problems. Mishra [17], Mehra and Bhatia [18], Studniarski
and Taha [19], Antczak [20], Mandal and Nahak [21], and Zemkoho [22] stud-
ied minimax programming problems in detail. Nonsmooth minimax problems were
worked out byMishra and Shukla [23], Antczak [24], and Jayswal et al. [25] whereas
second-order duality results were obtained by Mishra and Rueda [26], Ahmad et al.
[27], Husain et al. [28], and Jayswal and Stancu–Minasian [29]. Lai and Chen [30],
Lai et al. [31], and Lai and Liu [32] derived results for minimax programming in
complex spaces. Semi-infinite minimax programming were dealt by Stefanescu and
Stefanescu [33], and Upadhyay and Mishra [34]. Das and Nahak [35] analyzed set
valued minimax programming problems.

The aim of this chapter is to study and analyze minimax programming prob-
lems with vanishing constraints. In Sect. 11.2, we derive necessary and sufficient
optimality conditions for a feasible point to be an optimal solution of the minimax
programs with vanishing constraints. In Sect. 11.3, we give parametric Mond–Weir
type dual model to deal with the problem under consideration. In Sect. 11.4, we
apply the obtained results to derive necessary and sufficient conditions for a multi-
objective optimization problem with vanishing constraints. Section 11.5 concludes
the findings of the chapter.

11.2 Optimality Conditions

Consider a minimax program with vanishing constraints (MMPVC) as follows:

min
x∈Rn

max
1≤i≤k

θi (x)

subject to

�i (x) ≥ 0, ∀i ∈ L := {1, 2, . . . , l},
ψi (x)�i (x) ≤ 0, ∀i ∈ L ,

where we assume that the functions θi , �i , ψi : Rn → R are continuously differen-
tiable and the set of all feasible solutions� := {x ∈ R

n : �i (x) ≥ 0, ψi (x)�i (x) ≤
0, ∀i ∈ L} is non empty and compact. The (MMPVC) may be connected to the fol-
lowing parametric mathematical program with vanishing constraints (PMPVC):
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min ν

subject to

θi (x) ≤ ν, ∀i ∈ K := {1, 2, . . . , k},
�i (x) ≥ 0, ∀i ∈ L := {1, 2, . . . , l},
ψi (x)�i (x) ≤ 0, ∀i ∈ L ,

(x, ν) ∈ R
n × R,

where ν ∈ R is any parameter and the set of all feasible solutions of the (PMPVC)
is given by

� × V := {(x, ν) ∈ R
n × R : θi (x) ≤ ν, ∀i ∈ K , �i (x) ≥ 0, ψi (x)�i (x) ≤ 0, ∀i ∈ L}.

On the lines of Crouzeix et al. [37] (MMPVC) and (PMPVC) may be related as
follows:

Lemma 11.2.1 If a point (x, ν) is a feasible solution of the (PMPVC), then x is a
feasible solution of the (MMPVC). Moreover, if x is feasible for problem (MMPVC),
then there exists ν ∈ R such that (x, ν) is a feasible solution of the problem (PMPVC).

Lemma 11.2.2 A point x̄ is a local minimum of the (MMPVC) with minimum value
ν̄ if and only if a point (x̄, ν̄) is a local minimum of (PMPVC) with minimum value
ν̄.

The following indexing will be useful for further analysis.

I+(x̄) := {i ∈ L : �i (x̄) > 0};
I0 := {i ∈ L : �i (x̄) = 0};
I+0 := {i ∈ L : �i (x̄) > 0, �i (x̄) = 0};
I+− := {i ∈ L : �i (x̄) > 0, �i (x̄) < 0};
I0− := {i ∈ L : �i (x̄) = 0, �i (x̄) < 0};
I00 := {i ∈ L : �i (x̄) = 0, �i (x̄) = 0};
I0+ := {i ∈ L : �i (x̄) = 0, �i (x̄) > 0}.

Now, we prove parametric necessary optimality conditions for the (MMPVC).

Theorem 11.2.1 (Parametric necessary optimality conditions) If x̄ is a local min-
imum of (MMPVC) with minimum value ν̄ such that the modified Abadie con-
straint qualification (ACQ) is satisfied at (x̄, ν̄), that is, LVC(x̄, ν̄) ⊆ T (x̄, ν̄),where
T (x̄, ν̄) is the standard tangent cone of the (PMPVC) at (x̄, ν̄) given by

T (x̄, ν̄) :=
{
d ∈ R

n+1 : ∃{(xk , νk)} ⊆ � × V and {tk} ↓ 0 such that (xk , νk) → (x̄, ν̄)

and
(xk , νk) − (x̄, ν̄)

tk
→ d

}
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and LVC(x̄, ν̄) is the VC-linearized cone of the (PMPVC) at (x̄, ν̄) given by

LVC(x̄, ν̄) :=
{
d ∈ R

n+1 :
n∑
j=1

∂θi (x̄)

∂x j
d j ≤ dn+1,∀i ∈ {i ∈ K : θi (x̄) = ν̄},

n∑
j=1

∂�i (x̄)

∂x j
d j = 0, ∀i ∈ I0+(x̄),

n∑
j=1

∂�i (x̄)

∂x j
d j ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄),

n∑
j=1

∂ψi (x̄)

∂x j
d j ≤ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄)

}
,

then there exists αi ∈ R(i ∈ K ), βi , γi ∈ R(i ∈ L) such that

∑
i∈K

αi∇θi (x̄) −
∑
i∈L

βi∇�i (x̄) +
∑
i∈L

γi∇ψi (x̄) = 0, (11.1)

αi ≥ 0, αi (θi (x̄) − ν̄) = 0, ∀i ∈ K ,
∑
i∈K

αi = 1, (11.2)

βi = 0, ∀i ∈ I+(x̄), βi ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), βi ∈ R, ∀i ∈ I0+(x̄),
(11.3)

γi = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄), γi ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄). (11.4)

Proof Since x̄ is a local minimum of the (MMPVC) with the minimum value ν̄.
Therefore, by the Lemma 11.2.2, (x̄, ν̄) is a local minimum of the (PMPVC) with
the minimum value ν̄. Also, as modified ACQ is satisfied at (x̄, ν̄), by Theorem 1 in
[1], there exists αi ∈ R(i ∈ K ), βi , γi ∈ R(i ∈ L) such that

∑
i∈K

αi∇θi (x̄) −
∑
i∈L

βi∇�i (x̄) +
∑
i∈L

γi∇ψi (x̄) = 0,

αi ≥ 0, αi (θi (x̄) − ν̄) = 0, ∀i ∈ K ,
∑
i∈K

αi = 1,

βi = 0, ∀i ∈ I+−(x̄) ∪ I+0(x̄), βi ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), βi ∈ R, ∀i ∈ I0+(x̄),

γi = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄), γi ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄).

This completes the proof. �

Now, we recall the notion of invexity introduced by Hanson [36] and derive
sufficient optimality conditions for a feasible point to be optimal.
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Definition 11.1 Let � ⊆ R
n be nonempty, let θ : Rn → R be continuously differ-

entiable on an open set containing � and let η : Rn × R
n → R

n be a vector valued
function. Then,

(a) the function θ is said to be η-invex at x̄ ∈ � over �, iff for any x ∈ �, one
has

θ(x) − θ(x̄) ≥ 〈∇θ(x̄), η(x, x̄)〉;

(b) the function θ is said to be η-quasiinvex at x̄ ∈ � over �, iff for any x ∈ �,

one has
θ(x) ≤ θ(x̄) =⇒ 〈∇θ(x̄), η(x, x̄)〉 ≤ 0;

(c) the function θ is said to be η-pseudoinvex at x̄ ∈ � over �, iff for any x ∈ �,

one has
θ(x) < θ(x̄) =⇒ 〈∇θ(x̄), η(x, x̄)〉 < 0;

(d) the function θ is said to be strictly η-pseudoinvex at x̄ ∈ � over �, iff for any
x ∈ �, one has

θ(x) ≤ θ(x̄) =⇒ 〈∇θ(x̄), η(x, x̄)〉 < 0.

The following theorem gives sufficient conditions for the optimality of a feasible
point of the (MMPVC).

Theorem 11.2.2 (Parametric sufficient optimality conditions) Let (x̄, ν̄) be a feasi-
ble solution of the (PMPVC) for which there exists αi ∈ R(i ∈ K ), βi , γi ∈ R(i ∈
L) such that conditions (11.1)–(11.4) are satisfied.

Let us define the following index sets at x̄ ∈ �

I++
00 := {i ∈ I00 : βi > 0, γi > 0};
I+0
00 := {i ∈ I00 : βi > 0, γi = 0};
I 0+00 := {i ∈ I00 : βi = 0, γi > 0};
I+0
0− := {i ∈ I0− : βi > 0, γi = 0};
I+0
0+ := {i ∈ I0+ : βi > 0, γi = 0};
I−0
0+ := {i ∈ I0+ : βi < 0, γi = 0};
I 0++0 := {i ∈ I+0 : βi = 0, γi > 0}.

Now, assume that
∑

i∈K αiθi is η-pseudoinvex and −�i (i ∈ I++
00 ∪ I+0

00 ∪ I+0
0− ∪

I+0
0+ ), �i (i ∈ I−0

0+ ), and ψi (i ∈ I++
00 ∪ I 0+00 ∪ I 0++0 ) are η-quasiinvex at x̄ over �.

Then,

(a) if I++
00 ∪ I 0+00 ∪ I−0

0+ ∪ I 0++0 = φ, then (x̄, ν̄) is a global minimum of the
(PMPVC).
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(b) if I++
00 ∪ I 0+00 = φ, then (x̄, ν̄) is a local minimum of the (PMPVC).

(c) if x̄ is an interior point with respect to the set � ∩ {x ∈ R
n : �i (x) = 0,

ψi (x) = 0, i ∈ I++
00 ∪ I 0+00 }, then (x̄, ν̄) is a local minimum of the (PMPVC).

Proof (a) Since I++
00 ∪ I 0+00 ∪ I−0

0+ ∪ I 0++0 = φ. Therefore, for any i ∈ I+0
00 ∪ I+0

0− ∪
I+0
0+ , �i (x̄) = 0 and βi > 0, by the η-quasiinvexity of −�i (i ∈ I+0

00 ∪ I+0
0− ∪ I+0

0+ )

at x̄ over �, one has

〈
−

∑

i∈I+0
00 ∪I+0

0− ∪I+0
0+

βi∇�i (x̄), η(x, x̄)

〉
≤ 0, ∀x ∈ �.

By the condition (11.1) in Theorem 11.2.1, it follows that

〈∑
i∈K

αi∇θi (x̄), η(x, x̄)

〉
≥ 0, ∀x ∈ �.

Since
∑
i∈K

αiθi is η-pseudoinvex at x̄ over �, one has

∑
i∈K

αiν ≥
∑
i∈K

αiθi (x) ≥
∑
i∈K

αiθi (x̄) =
∑
i∈K

αi ν̄,

which implies from (11.2) that ν̄ ≤ ν for any (x, ν) ∈ � × V . Hence, (x̄, ν̄) is a
global minima of the (PMPVC).
(b) Here I++

00 ∪ I 0+00 = φ. Now, for any i ∈ I−0
0+ , βi < 0, �i (x̄) = 0, ψi (x̄) > 0,

which implies that �i (x) > 0 for any x sufficiently close to x̄ and hence �i (x) ≤ 0
for any x sufficiently close to x̄ . Now, since �i (x) ≥ 0 for any x ∈ �, therefore
�i (x) = 0 for any x ∈ � sufficiently close to x̄ . By the η-quasiinvexity of �i (i ∈
I−0
0+ ) at x̄ over �, for any x ∈ � sufficiently close to x̄, one has

〈
−

∑

i∈I−0
0+

βi∇�i (x̄), η(x, x̄)

〉
≤ 0. (11.5)

Similarly, for any i ∈ I 0++0 , γi > 0, �i (x̄) > 0, ψi (x̄) = 0, which implies that
�i (x) > 0 for any x sufficiently close to x̄ and hence ψi (x) ≤ 0 = ψi (x̄) for any x
sufficiently close to x̄ . By the η-quasiinvexity of ψi (i ∈ I 0++0 ) at x̄ over �, for any
x ∈ � sufficiently close to x̄, one has

〈 ∑

i∈I 0++0

γi∇ψi (x̄), η(x, x̄)

〉
≤ 0. (11.6)

Adding inequalities (11.5) and (11.6), for any x ∈ � sufficiently close to x̄, one has
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〈
−

∑

i∈I−0
0+

βi∇�i (x̄) +
∑

i∈I 0++0

γi∇ψi (x̄), η(x, x̄)

〉
≤ 0. (11.7)

By the condition (11.1) in Theorem 11.2.1, for any x ∈ � sufficiently close to x̄, it
follows that 〈∑

i∈K
αi∇θi (x̄), η(x, x̄)

〉
≥ 0.

Since
∑
i∈K

αiθi is η-pseudoinvex at x̄ over �, for any x ∈ � sufficiently close to x̄,

one has ∑
i∈K

αiν ≥
∑
i∈K

αiθi (x) ≥
∑
i∈K

αiθi (x̄) =
∑
i∈K

αi ν̄,

which implies by (11.2) that ν̄ ≤ ν for any (x, ν) ∈ � × V sufficiently close to (x̄, ν̄).
Hence, (x̄, ν̄) is a local minima of the (PMPVC).
(c) Since x̄ is an interior point with respect to the set � ∩ {x ∈ R

n : �i (x) =
0, ψi (x) = 0, i ∈ I++

00 ∪ I 0+00 }, therefore for any x ∈ � sufficiently close to x̄ , one
has

�i (x) = 0, ψi (x) = 0, i ∈ I++
00 ∪ I 0+00 .

Since−�i (i ∈ I++
00 ) andψi (i ∈ I++

00 ∪ I 0+00 ) areη-quasiinvex at x̄ over�.Therefore,
for any x ∈ � sufficiently close to x̄, it follows that

〈
−

∑

i∈I++
00

βi∇�i (x̄) +
∑

i∈I++
00 ∪I 0+00

γi∇ψi (x̄), η(x, x̄)

〉
≤ 0.

Using the conditions of cases (a) and (b) above, for any x ∈ � sufficiently close to
x̄, one has

〈
−

∑

i∈I++
00 ∪I+0

00 ∪I+0
0− ∪I+0

0+ ∪I−0
0+

βi∇�i (x̄) +
∑

i∈I++
00 ∪I 0+00 ∪I 0++0

γi∇ψi (x̄), η(x, x̄)

〉
≤ 0.

(11.8)
By the condition (11.1) in Theorem 11.2.1, for any x ∈ � sufficiently close to x̄, it
follows that 〈∑

i∈K
αi∇θi (x̄), η(x, x̄)

〉
≥ 0.

Since
∑
i∈K

αiθi is η-pseudoinvex at x̄ over �, for any x ∈ � sufficiently close to x̄,

one has
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∑
i∈K

αiν ≥
∑
i∈K

αiθi (x) ≥
∑
i∈K

αiθi (x̄) =
∑
i∈K

αi ν̄,

which implies by (11.2) that ν̄ ≤ ν for any (x, ν) ∈ � × V sufficiently close to (x̄, ν̄).
Hence, (x̄, ν̄) is a local minimum of the (PMPVC). �

A parameter-free necessary optimality condition is obtained by replacing ν̄ by
θi (x̄) as follows:

Theorem 11.2.3 (Parameter-free necessary optimality conditions) Let x̄ be a local
minimumof the (MMPVC) such thatmodified ACQ is satisfied at x̄, that is, LVC(x̄) ⊆
T (x̄), where T (x̄) is the tangent cone of the (MMPVC) at x̄ given by

T (x̄) :=
{
d ∈ R

n : ∃{xk} ⊆ � and {t k} ↓ 0 such that xk → x̄ and
xk − x̄

t k
→ d

}

and LVC(x̄) is the VC-linearized cone of the (MMPVC) at x̄ is given by

LVC(x̄) :=
{
d ∈ R

n :
n∑
j=1

∂�i (x̄)

∂x j
d j = 0, ∀i ∈ I0+(x̄),

n∑
j=1

∂�i (x̄)

∂x j
d j ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄),

n∑
j=1

∂ψi (x̄)

∂x j
d j ≤ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄)

}
,

then there exists αi ∈ R(i ∈ K ), βi , γi ∈ R(i ∈ L) such that

∑
i∈K

αi∇θi (x̄) −
∑
i∈L

βi∇�i (x̄) +
∑
i∈L

γi∇ψi (x̄) = 0,

αi ≥ 0, ∀i ∈ K ,
∑
i∈K

αi = 1,

βi = 0, ∀i ∈ I+(x̄), βi ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), βi ∈ R, ∀i ∈ I0+(x̄),

γi = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄) ∪ I+−(x̄), γi ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄).

11.3 Duality Results

AparametricMond–Weir dual model to the (PMPVC), denoted by (PMWD-VC(x)),
depending upon x ∈ �, is given by
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max q

subject to

∑
i∈K

αi∇θi (y) −
∑
i∈L

βi∇�i (y) +
∑
i∈L

γi∇ψi (y) = 0, (11.9)

αi ≥ 0, αi (θi (y) − q) = 0, ∀i ∈ K ,
∑
i∈K

αi = 1, (11.10)

− βi�i (y) ≥ 0, ∀i ∈ L , βi ≥ 0, ∀i ∈ I+(x), βi ∈ R, ∀i ∈ I0(x), (11.11)

γiψi (y) ≥ 0, ∀i ∈ L , γi ≥ 0, ∀i ∈ I0−(x) ∪ I+−(x), γi ≤ 0, ∀i ∈ I0+(x),

γi ∈ R, ∀i ∈ I+0(x) ∪ I00(x).
(11.12)

The set of all feasible solutions of the (PMWD-VC(x)) is given by SMW (x) and the
projection of SMW (x) on R

n is given by prRn SMW (x).
The following theorem establishes weak duality result between (MMPVC) and

(PMWD-VC(x)).

Theorem 11.3.4 (Weak duality) Let (x, ν) ∈ � × V and (y, q, α, β, γ ) ∈
R

n+1+k+2l be feasible solutions for the (PMPVC) and (PMWD-VC(x)), respectively.
If

∑
i∈K

αiθi is η-pseudoinvex and −
∑
i∈L

βi�i +
∑
i∈L

γiψi is η-quasiinvex at y, then

ν ≥ q.

Proof Since (x, ν) ∈ � × V and (y, q, α, β, γ ) ∈ R
n+1+k+2l are feasible solutions

for the (PMPVC) and (PMWD-VC(x)), respectively, therefore

−βi�i (x) ≤ 0 ≤ −βi�i (y), ∀i ∈ I+(x);
−βi�i (x) = 0 ≤ −βi�i (y), ∀i ∈ I0(x);

γiψi (x) ≤ 0 ≤ γiψi (y), ∀i ∈ I+−(x) ∪ I0−(x) ∪ I0+(x);
γiψi (x) = 0 ≤ γiψi (y), ∀i ∈ I+0(x) ∪ I00(x),

which implies that

−
∑
i∈L

βi�i (x) +
∑
i∈L

γiψi (x) ≤ −
∑
i∈L

βi�i (y) +
∑
i∈L

γiψi (y). (11.13)

By η-quasiinvexity of −
∑
i∈L

βi�i +
∑
i∈L

γiψi at y and inequality (11.13), it follows

that 〈
−

∑
i∈L

βi∇�i (y) +
∑
i∈L

γi∇ψi (y), η(x, y)

〉
≤ 0. (11.14)

By dual feasibility condition (11.9) and inequality (11.14), one has
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〈∑
i∈K

αi∇θi (y), η(x, y)

〉
≥ 0.

By the η-pseudoinvexity of
∑

i∈K αiθi at y, the above inequality gives

∑
i∈K

αiν ≥
∑
i∈K

αiθi (x) ≥
∑
i∈K

αiθi (y) ≥
∑
i∈K

αi q,

which implies by (11.10) that ν ≥ q and this completes the proof. �

We have the following weak duality result under stronger assumption of strictly
η-pseudoinvexity.

Theorem 11.3.5 (Weak duality) Let (x, ν) ∈ � × V and (y, q, α, β, γ ) ∈
R

n+1+k+2l be feasible solutions for the (PMPVC) and (PMWD-VC(x)), respectively.
If

∑
i∈K

αiθi is strictly η-pseudoinvex and −
∑
i∈L

βi�i +
∑
i∈L

γiψi is η-quasiinvex at y,

then ν > q.

The following theorem establishes strong duality result between (MMPVC) and
(PMWD-VC(x)).

Theorem 11.3.6 (Strong duality) If x̄ is a local minimum of (MMPVC) with min-
imum value ν̄ such that modified ACQ is satisfied at (x̄, ν̄), then there exist ᾱi ∈
R(i ∈ K ), β̄i , γ̄i ∈ R(i ∈ L) such that (x̄, ν̄, ᾱ, β̄, γ̄ ) is a feasible solution of the
(PMWD-VC(x̄)). Moreover, if

∑
i∈K

ᾱθi is η-pseudoinvex and −
∑
i∈L

β̄�i +
∑
i∈L

γ̄ ψi

is η-quasiinvex on prRn SMW (x̄), then (x̄, ν̄, ᾱ, β̄, γ̄ ) is a global maximizer of the
(PMWD-VC(x̄)).

Proof Since x̄ is a local minimum of (MMPVC) with minimum value ν̄ such that
modified ACQ is satisfied at (x̄, ν̄). Therefore, by Theorem 11.2.1, there exist ᾱi ∈
R(i ∈ K ), β̄i , γ̄i ∈ R(i ∈ L) such that

∑
i∈K

ᾱi∇θi (x̄) −
∑
i∈L

β̄i∇�i (x̄) +
∑
i∈L

γ̄i∇ψi (x̄) = 0,

ᾱi ≥ 0, ᾱi (θi (x̄) − ν̄) = 0, ∀i ∈ K ,
∑
i∈K

ᾱi = 1,

β̄i = 0, ∀i ∈ I+(x̄), β̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), β̄i ∈ R, ∀i ∈ I0+(x̄),

γ̄i = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄), γ̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄),

which implies that (x̄, ν̄, ᾱ, β̄, γ̄ ) is a feasible solution of the (PMWD-VC(x̄)). Since∑
i∈K

ᾱθi is η-pseudoinvex and−
∑
i∈L

β̄�i +
∑
i∈L

γ̄ ψi is η-quasiinvex on prRn SMW (x̄),

by the weak duality Theorem 11.3.4, for any feasible point (y, q, α, β, γ ) of the
(PMWD-VC(x̄)), one has
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ν̄ ≥ q,

which implies that (x̄, ν̄, ᾱ, β̄, γ̄ ) is an optimal solution of the (PMWD-VC(x̄)). �
Similarly, we have the following strong duality result.

Theorem 11.3.7 (Strong duality) If x̄ is a local minimum of (MMPVC) with mini-
mum value ν̄ such that modified ACQ is satisfied at (x̄, ν̄), then there exist ᾱi ∈ R(i ∈
K ), β̄i , γ̄i ∈ R(i ∈ L) such that (x̄, ν̄, ᾱ, β̄, γ̄ ) is a feasible solution of the (PMWD-
VC(x̄)). Moreover, if

∑
i∈K

ᾱθi is strictly η-pseudoinvex and −
∑
i∈L

β̄�i +
∑
i∈L

γ̄ ψi is

η-quasiinvex on prRn SMW (x̄), then (x̄, ν̄, ᾱ, β̄, γ̄ ) is a strict global maximizer of the
(PMWD-VC(x̄)).

Wehave the following converse duality theorembetween (MMPVC)and (PMWD-
VC(x)).

Theorem 11.3.8 (Converse duality) If (ȳ, q̄, ᾱ, β̄, γ̄ ) is a feasible solution of the
PMWD-VC(x) for every x ∈ � such that

∑
i∈K

ᾱiθi is η-pseudoinvex and−
∑
i∈L

β̄i�i +
∑
i∈L

γ̄iψi is η-quasiinvex at ȳ, then (ȳ, q̄) is a global minimizer of the (PMPVC).

Proof Suppose to the contrary that (ȳ, q̄) is not a global minimizer of the (PMPVC).
Then, there exists (x̃, ν̃) ∈ � × V such that

q̄ > ν̃,

which implies that

∑
i∈K

ᾱiθi (ȳ) =
∑
i∈K

ᾱi q̄ >
∑
i∈K

ᾱi ν̃ ≥
∑
i∈K

ᾱiθi (x̃).

By the η-pseudoinvexity of
∑
i∈K

ᾱiθi at ȳ, one has

〈∑
i∈K

ᾱi∇θi (ȳ), η(x̃, ȳ)

〉
< 0. (11.15)

By the feasibility of (x̃, ν̃) for the (PMPVC) and the feasibility of (ȳ, q̄, ᾱ, β̄, γ̄ ) ∈
R

n+1+k+2l for the (PMWD-VC(x)), one has

−β̄i�i (x̃) ≤ 0 ≤ −β̄i�i (ȳ), ∀i ∈ I+(x̃);
−β̄i�i (x̃) = 0 ≤ −β̄i�i (ȳ), ∀i ∈ I0(x̃);

γ̄iψi (x̃) ≤ 0 ≤ γ̄iψi (ȳ), ∀i ∈ I+−(x̃) ∪ I0−(x̃) ∪ I0+(x̃);
γ̄iψi (x̃) = 0 ≤ γ̄iψi (ȳ), ∀i ∈ I+0(x̃) ∪ I00(x̃),
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which implies that

−
∑
i∈L

β̄i�i (x̃) +
∑
i∈L

γ̄iψi (x̃) ≤ −
∑
i∈L

β̄i�i (ȳ) +
∑
i∈L

γ̄iψi (ȳ). (11.16)

By η-quasiinvexity of −
∑
i∈L

β̄i�i +
∑
i∈L

γ̄iψi at ȳ, the inequalities (11.16) implies

that 〈
−

∑
i∈L

β̄i∇�i (ȳ) +
∑
i∈L

γ̄i∇ψi (ȳ), η(x̃, ȳ)

〉
≤ 0. (11.17)

Adding inequalities (11.15) and (11.17), one has

〈∑
i∈K

ᾱ∇θi (ȳ) −
∑
i∈L

β̄i∇�i (ȳ) +
∑
i∈L

γ̄i∇ψi (ȳ), η(x̃, ȳ)

〉
< 0,

which is a contradiction to the feasibility of (ȳ, q̄, ᾱ, β̄, γ̄ ) ∈ R
n+1+k+2l for the

(PMWD-VC(x)) for every x ∈ �. Hence, (ȳ, q̄) is a global minimizer of the
(PMPVC). �

Similarly, we can prove the following result.

Theorem 11.3.9 (Converse duality) If (ȳ, q̄, ᾱ, β̄, γ̄ ) is a feasible solution of the
(PMWD-VC(x)) for every x ∈ � such that

∑
i∈K

ᾱiθi is strictly η-pseudoinvex and

−
∑
i∈L

β̄i�i +
∑
i∈L

γ̄iψi is η-quasiinvex at ȳ, then (ȳ, q̄) is a strict global minimizer

of the (PMPVC).

The following theorem establishes restricted converse duality result between the
(PMPVC) and the (PMWD-VC(x)).

Theorem 11.3.10 (Restricted converse duality) Let (ȳ, q̄, ᾱ, β̄, γ̄ ) be a feasible
solution of the (PMWD-VC(x)) for every x ∈ � and let (x̄, ν̄) be a feasible solu-
tion of the (PMPVC) such that q̄ = ν̄. If

∑
i∈K

ᾱiθi is η-pseudoinvex and−
∑
i∈L

β̄i�i +
∑
i∈L

γ̄iψi is η-quasiinvex at ȳ, then (x̄, ν̄) is a global minimizer of the (PMPVC).

Proof Suppose to contrary that (x̄, ν̄) is not a global minimizer of the (PMPVC).
Then, there exists (x̃, ν̃) ∈ � × V such that

ν̄ > ν̃,

which implies that
q̄ > ν̃,
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which contradicts the weak duality Theorem 11.3.4 and hence the proof. �

Similarly, we have the following restricted converse duality theorem.

Theorem 11.3.11 (Restricted converse duality) Let (ȳ, q̄, ᾱ, β̄, γ̄ ) be a feasible
solution of the (PMWD-VC(x)) for every x ∈ � and let (x̄, ν̄) be a feasible solu-
tion of the (PMPVC) such that q̄ = ν̄. If

∑
i∈K

ᾱiθi is strictly η-pseudoinvex and

−
∑
i∈L

β̄i�i +
∑
i∈L

γ̄iψi is η-quasiinvex at ȳ, then (x̄, ν̄) is a strict global minimizer

of the (PMPVC).

11.4 Applications to Multiobjective Optimization

In this section, we apply the optimality results obtained for minimax programs with
vanishing constraints in the previous section tomultiobjective optimization problems
with vanishing constraints and obtain the corresponding optimality results.

Consider a multiobjective optimization problem with vanishing constraints
(MOPVC) as follows:

min θ(x) := (θ1(x), . . . , θk(x))

subject to

�i (x) ≥ 0, ∀i ∈ L := {1, 2, . . . , l},
ψi (x)�i (x) ≤ 0, ∀i ∈ L ,

where we assume that the functions θi , �i , ψi : Rn → R are continuously differen-
tiable and the set of all feasible solutions� := {x ∈ R

n : �i (x) ≥ 0, ψi (x)�i (x) ≤
0, ∀i ∈ L} is non empty and compact.

A vector x̄ ∈ � ⊆ R
n is said to be a weak efficient solution of the (MOPVC), iff

for all x ∈ �, one has

θ(x) − θ(x̄) := (θ1(x) − θ1(x̄), . . . , θk(x) − θk(x̄)) /∈ −intRk
+.

The following theorem gives the Karush–Kuhn–Tucker necessary optimality con-
dition for weak efficient solutions of the (MOPVC).

Theorem 11.4.12 (Karush–Kuhn–Tucker necessary optimality conditions) Let x̄ ∈
� be a weak efficient solution of the (MOPVC). Further, assume that modified ACQ
from Theorem 11.2.1 is satisfied at (x̄, 0). Then, there exist ᾱi ∈ R(i ∈ K ), β̄i , γ̄i ∈
R(i ∈ L) such that the following conditions hold:
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∑
i∈K

ᾱi∇θi (x̄) −
∑
i∈L

β̄i∇�i (x̄) +
∑
i∈L

γ̄i∇ψi (x̄) = 0,

β̄i = 0, ∀i ∈ I+(x̄), β̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), β̄i ∈ R, ∀i ∈ I0+(x̄),

γ̄i = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄), γ̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄).
(11.18)

Proof Let x̄ ∈ � be a weak efficient solution of the problem (MOPVC) and define

θ̂i (x) := θi (x) − θi (x̄), i ∈ K , x ∈ �.

Then, it can be easily verified that x̄ is a global optimal solution with optimal value
zero of the following minimax mathematical program with vanishing constraints:

min
x∈�

max
i∈K θ̂i (x). (11.19)

Indeed, let us write ξ̂ (x) := maxi∈K θ̂i (x) and prove that

ξ̂ (x̄) ≤ ξ̂ (x),∀x ∈ �. (11.20)

Suppose to contrary that (11.20) does not hold, then there exists x̃ ∈ � such that

ξ̂ (x̄) > ξ̂(x̃).

Since ξ̂ (x̄) = 0, so the above inequality implies that

max
i∈K {θi (x̃) − θi (x̄)} < 0.

Thus,
θi (x̃) − θi (x̄) < 0, ∀i ∈ K ,

which contradicts that x̄ is a weak efficient solution of the (MOPVC). So, we can
employ the parametric necessary optimality condition in Theorem 11.2.1, but applied
to minimax problem (11.19). Thus, we find ᾱi ∈ R (i ∈ K ), β̄i , γ̄i ∈ R (i ∈ L) such
that

∑
i∈K

ᾱi∇ θ̂i (x̄) −
∑
i∈L

β̄i∇�i (x̄) +
∑
i∈L

γ̄i∇ψi (x̄) = 0,

ᾱi ≥ 0, ᾱi (θ̂i (x̄) − ν̂) = 0, ∀i ∈ K ,
∑
i∈K

ᾱi = 1,

β̄i = 0, ∀i ∈ I+(x̄), β̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I0−(x̄), β̄i ∈ R, ∀i ∈ I0+(x̄),

γ̄i = 0, ∀i ∈ I0+(x̄) ∪ I0−(x̄), γ̄i ≥ 0, ∀i ∈ I00(x̄) ∪ I+0(x̄),
(11.21)
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where ν̂ is the corresponding optimal value of the objective function in problem
(11.19) which is nothing else but zero. Then, it is clear that (11.21) implies (11.18).
Hence, the proof is complete. �

In the following theoremwe prove a sufficient condition for the existence of weak
efficient solution of the (MOPVC).

Theorem 11.4.13 (Sufficient Optimality Conditions) Let x̄ ∈ � satisfy (11.18).
Suppose that

∑
i∈K

ᾱiθi is η-pseudoinvex and −�i (i ∈ I++
00 ∪ I+0

00 ∪ I+0
0− ∪ I+0

0+ ),

�i (i ∈ I−0
0+ ), and ψi (i ∈ I++

00 ∪ I 0+00 ∪ I 0++0 ) are η-quasiinvex at x̄ over �. If I++
00 ∪

I 0+00 ∪ I−0
0+ ∪ I 0++0 = �, then x̄ is a weak efficient solution of the (MOPVC).

Proof We proceed on similar lines of the proof of Theorem 11.4.12. Let x̄ ∈ �

satisfy (11.18). Let us write

θ̂i (x) := θi (x) − θi (x̄), i ∈ K , x ∈ �.

Then, it can be easily verified that x̄ also satisfy the conditions (11.21) with α̂i :=
ᾱi
l∑

i=1
ᾱi

, i ∈ K , β̂i := β̄i , γ̂i := γ̄i ∈ R (i ∈ L) and ν̂ = 0.

Also, byη-pseudoinvexity of
∑
i∈K

ᾱiθi , it follows that
∑
i∈K

α̂i θ̂i is alsoη-pseudoinvex at

x̄ ∈ �with respect to same kernel function η.Thus, applying the sufficient optimality
criteria in Theorem 11.2.2, we conclude that x̄ is a global optimal solution of the
minimax programming problem with vanishing constraints

min
x∈�

max
i∈K θ̂i (x).

This implies that,

ξ̂ (x̄) ≤ ξ̂ (x),∀x ∈ �, where ξ̂ (x) := max
i∈K θ̂i (x).

This means that,
max
i∈K {θi (x) − θi (x̄)} ≥ 0, ∀x ∈ �,

which implies that

θ(x) − θ(x̄) := (θ1(x) − θ1(x̄), . . . , θk(x) − θk(x̄)) /∈ −intRk
+, ∀x ∈ �.

Consequently, x̄ is a weak efficient solution of the (MOPVC). �
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11.5 Conclusions

In this chapter, we have analyzed a class of minimax program with vanishing con-
straints. We have obtained parametric necessary and parameter-free necessary opti-
mality conditions for such a problem. Further, we have obtained sufficient opti-
mality conditions under the assumptions of η-pseudoinvexity and η-quasiinvexity.
We have formulated parametric Mond–Weir type dual model and derived several
duality results. Also, we have utilized some results obtained for minimax program
with vanishing constraints to derive necessary and sufficient optimality results for a
multiobjective optimization problem with vanishing constraints.
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Chapter 12
On Minty Variational Principle
for Nonsmooth Interval-Valued
Multiobjective Programming Problems

Balendu Bhooshan Upadhyay and Priyanka Mishra

Abstract In this chapter, we consider a class of nonsmooth interval-valued multi-
objective programming problems and a class of approximate Minty and Stampac-
chia vector variational inequalities. Under generalized approximate LU -convexity
hypotheses, we establish the relations between the solutions of approximate Minty
and Stampacchia vector variational inequalities and the approximate LU -efficient
solutions of the nonsmooth interval-valued multiobjective programming problem.
The results of this chapter extend and unify the corresponding results of [14, 22, 23,
30, 33] for nonsmooth interval-valued multiobjective programming problems.

Keywords Approximate LU-convexity · Approximate LU-efficient solutions ·
Interval-valued programming problems

12.1 Introduction

In multiobjective programming problems, two or more objective functions are min-
imized on some set of constraints. Usually, optimization problems are considered
to deal with deterministic values, and therefore, we get precise solutions. How-
ever, in many real-life applications, optimization problems occur with uncertainty.
Interval-valued optimization is one of the deterministic optimization models to deal
with inexact, imprecise, or uncertain data. In interval-valued optimization, the coef-
ficients of objective and constraint functions are compact intervals. To deal with
the functions with interval coefficients, Moore [25, 26] introduced the concept of
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interval analysis. Wu [31] established the Karush–Kuhn–Tucker optimality condi-
tions for interval-valued optimization problem. Antczak [1] established Fritz John
and Karush–Kuhn–Tucker necessary and sufficient optimality conditions for nons-
mooth interval-valued multiobjective programming problem. For more details about
interval-valued optimization problems, we refer to [2, 8, 9, 16, 17] and the references
cited therein.

The notion of efficiency or Pareto optimality is a widely used solution concept
in multiobjective programming problems. Due to complexity of multiobjective pro-
gramming problems, several variants of efficient solutions have been studied by
many researchers, see [4, 5, 13, 15, 18] and the references cited therein. Loridan
introduced the notion of ε-efficient solution for multiobjective programming prob-
lems. Recently, many authors have shown interest in the study of characterization
and applications of approximate efficient solutions of multiobjective programming
problems, see [12, 13, 21, 22] and the references cited therein.

In 1980,Giannessi [10] introduced the notion of vector variational inequality prob-
lems. Vector variational inequality problems havewider applications in optimization,
optimal control, and economics equilibrium problems, see for example [7, 11, 19]
and the references cited therein. The equivalence between the solutions of vector
variational inequalities and solutions of multiobjective programming problems have
been studied extensively bymany authors, see [20, 24, 27–30, 32] and the references
cited therein. Mishra and Laha [22] established the relations between the solutions of
approximate vector variational inequalities and approximate efficient solution of the
nonsmooth multiobjective programming problems. Further, Gupta and Mishra [14]
extend the results of [22] for generalized approximate convex functions. Zhang et al.
[33] established the relations between the solutions of interval-valued multiobjective
programming problems and vector variational inequalities.

12.1.1 The Proposed Work

The novelty and contributions of our work are of three folds:
In the first fold, motivated by the work of Gupta and Mishra [14], we have

introduced a new class of generalized approximate LU -convex functions, namely;
approximate LU -pseudoconvex of type I, approximate LU -pseudoconvex of type II,
approximate LU -quasiconvex of type I, and approximate LU -quasiconvex of type II
functions. These classes of generalized approximate LU -convex functions are more
general than the classes of generalized approximate convex functions used in Gupta
and Mishra [14], Mishra and Laha [22] and Mishra and Upadhyay [23].

In the second fold, we extend the works of Lee and Lee [20], Mishra and Upad-
hyay [23] and Upadhyay et al. [30] for the class of interval-valued multiobjective
programming problems.

In the third fold, we generalize the works of [14, 20, 23, 30] fromEuclidean space
to a more general space such as Banach space.
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The rest of the chapter is organized as follows: In Sect. 12.2, some basic def-
initions and preliminaries are given which will be used throughout the sequel. In
Sect. 12.3, we establish the relations between the solutions of approximate vector
variational inequalities and approximate LU -efficient solutions of the nonsmooth
interval-valued multiobjective programming problem by using generalized approx-
imate LU -convex functions. The numerical example has also been given to justify
the significance of these results.

12.2 Definition and Preliminaries

Let� be a Banach space and�∗ be its dual space equipped with norms ‖.‖ and ‖.‖∗,
respectively. Let 〈, ., 〉 denotes the dual pair between � and �∗ and � be a nonempty
subset of�. Let B(z; δ) be an open ball centered at z and radius δ > 0. Let 0 denotes
the zero vector in IRn.

For z, y ∈ IRn , following notion for equality and inequalities will be used through-
out the sequel:

(i) z = y, ⇐⇒ zi = yi , ∀i = 1, 2, . . . , n;
(ii) z < y, ⇐⇒ zi < yi , ∀i = 1, 2, . . . , n;
(iii) z � y, ⇐⇒ zi ≤ yi , ∀i = 1, 2, . . . , n;
(iv) z ≤ y, ⇐⇒ zi ≤ yi , ∀i = 1, 2, . . . , n, i �= j and z j < y j for some j.

The following notions of interval analysis are from Moore [25].
LetIdenotes the class of all closed intervals in IR. A = [aL , aU ] ∈ Idenotes a closed
interval, where aL and aU denote the lower and upper bounds of A, respectively.

For A = [aL , aU ], B = [bL , bU ] ∈ I, we have

(i) A + B = {a + b : a ∈ A and b ∈ B} = [aL + bL , aU + bU ];
(ii) −A = {−a : a ∈ A} = [−aU ,−aL ];
(iii) A × B = {ab : a ∈ A and b ∈ B} = [minab,maxab], where minab = min

{aLbL , aLbU , aUbL , aUbU } and maxab = max{aLbL , aLbU , aUbL , aUbU }.
Then, we can show that

A − B = A + (−B) = [aL − bU , aU − bL ],

k A = {ka : a ∈ A} =
{

[kaL , kaU ], k ≥ 0,

|k|[−aU ,−aL ], k < 0,
(12.1)

where k ∈ IR. The real number a can be considered as a closed interval Aa = [a, a].
Let A = [aL , aU ], B = [bL , bU ] ∈ I, then we define

1. A LU B ⇐⇒ aL ≤ bL and aU ≤ bU ,

2. A ≺LU B ⇐⇒ A LU B and A �= B, that is, one of the following is satisfied:

a. aL < bL and aU < bU ; or



268 B. B. Upadhyay and P. Mishra

b. aL ≤ bL and aU < bU ; or
c. aL < bL and aU ≤ bU .

Remark 12.1 A = [aL , aU ], B = [bL , bU ] ∈ I are comparable if and only if
A LU B or A �LU B. A and B are not comparable if one of the following holds:

aL ≤ bL and aU > bU ; aL < bL and aU ≥ bU ; aL < bL and aU > bU ;

aL ≥ bL and aU < bU ; aL > bL and aU ≤ bU ; aL > bL and aU < bU .

LetA = (A1, . . . , An) be an interval-valued vector, where each component Ak =
[aL

k , aUk ], k = 1, 2, . . . , n is a closed interval. Let A and B be two interval-valued
vectors, if Ak and Bk are comparable for each k = 1, 2, . . . , n, then

1. A LU B if and only if Ak LU Bk for each k = 1, 2, . . . , n;
2. A ≺LU B if and only if Ak LU Bk for each k = 1, 2, . . . , n, and Ar ≺LU Br for

at least one index r.

The function g : IRn → I is called an interval-valued function, if g(z) = [gL(z),
gU (z)],where gL and gU are real-valued functions defined on IRn satisfying gL(z) ≤
gU (z), for all z ∈ IRn.

Definition 12.1 ([24]) The set � is said to be a convex set, if for all z, y ∈ �, one
has

z + λ(y − z) ∈ �, ∀λ ∈ [0, 1].

The following notions are from [6].

Definition 12.2 A function g : � → IR is said to be Lipschitz near z◦ ∈ �, if there
exist two positive constants L , δ > 0, such that for all y, z ∈ B(z◦; δ) ∩ �, one has

|g(y) − g(z)| ≤ L‖y − z‖.

The function g is locally Lipschitz on �, if it is Lipschitz near every z ∈ �.

Definition 12.3 Let g : � → IR be Lipschitz near z ∈ �. The Clarke generalized
directional derivative of g at z ∈ � in the direction d ∈ �, is given as

g◦(z; d) := lim sup
y→z
t↓0

g(y + td) − g(y)

t
.

Definition 12.4 Let g : � → IR be Lipschitz near z ∈ �. The Clarke generalized
subdifferential of g at z ∈ � is given as

∂cg(z) := {ξ ∈ �∗ : g◦(z; d) ≥ 〈ξ, d〉, ∀d ∈ �}.
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Definition 12.5 [13] A function g : � → IR is said to be approximate convex at
z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, one
has

g(y) − g(z) ≥ 〈ξ, y − z〉 − ε‖y − z‖, ∀ξ ∈ ∂cg(z).

The following notions of generalized approximate convexity are from Bhatia et
al. [3].

Definition 12.6 A function g : � → IR is said to be approximate pseudoconvex
of type I at z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈
B(z◦; δ) ∩ �, and if

〈ξ, y − z〉 ≥ 0, for some ξ ∈ ∂cg(z),

then
g(y) − g(z) ≥ −ε‖y − z‖.

Definition 12.7 A function g : � → IR is said to be approximate pseudoconvex of
type II (or strictly approximate pseudoconvex of type II) at z◦ ∈ �, if for all ε > 0,
there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, and if

〈ξ, y − z〉 + ε‖y − z‖ ≥ 0, for some ξ ∈ ∂cg(z),

then
g(y) ≥ (>)g(z).

Definition 12.8 Afunction g : � → IR is said to beapproximate quasiconvex of type
I at z◦ ∈ �, if for all ε > 0, there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �,

and if
g(y) ≤ g(z),

then
〈ξ, y − z〉 − ε‖y − z‖ ≤ 0, ∀ξ ∈ ∂cg(z).

Definition 12.9 A function g : � → IR is said to be approximate quasiconvex of
type II (or strictly approximate quasiconvex of type II) at z◦ ∈ �, if for all ε > 0,
there exists δ > 0, such that for all z, y ∈ B(z◦; δ) ∩ �, and if

g(y) ≤ (<)g(z) + ε‖y − z‖,

then
〈ξ, y − z〉 ≤ 0, ∀ξ ∈ ∂cg(z).

Definition 12.10 An interval-valued function g : � → I is said to be an approxi-
mate LU-pseudoconvex function of type I (or approximate LU-pseudoconvex func-
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tion of type II) at z◦ ∈ �, if and only if the real-valued functions gL(z) and gU (z)
are approximate pseudoconvex functions of type I (or approximate pseudoconvex
functions of type II) at z◦ ∈ �.

Definition 12.11 An interval-valued function g : � → I is said to be a strictly
approximate LU-pseudoconvex function of type II at z◦ ∈ �, if and only if the real-
valued functions gL(z) and gU (z) are approximate pseudoconvex functions of type II
and at least one of the gL(z) and gU (z) is strictly approximate pseudoconvex function
of type II at z◦ ∈ �.

Definition 12.12 An interval-valued function g : � → I is said to be an approx-
imate LU-quasiconvex function of type I (approximate LU-quasiconvex function
of type II) at z◦ ∈ �, if and only if the real-valued functions gL(z) and gU (z) are
approximate quasiconvex functions of type I (or approximate quasiconvex function
of type II) at z◦ ∈ �.

We consider the following nonsmooth interval-valued multiobjective program-
ming problem:

(NIVMPP) Minimize g(z) = (g1(z), . . . , gp(z)),

subject to z ∈ �,

where gi = [gL
i , gUi ] : � → I, i ∈ I := {1, . . . , p} are locally Lipschitz interval-

valued functions and � be a nonempty, closed, and convex subset of �.

The following notions of approximate LU -efficient solution are the adaptation of
the notions of approximate efficient solution introduced by Mishra and Laha [22].

Let ε = (ε, . . . , ε), a point z◦ ∈ � is said to be an approximate LU -efficient
solution:

(ALUES)1, if and only if for any sufficiently small ε > 0, there does not exist
δ > 0 such that, for all z ∈ B(z◦; δ) ∩ �, z �= z◦, one has

g(z) ≺LU g(z◦) + ε‖z − z◦‖.

(ALUES)2, if and only if for any sufficiently small ε > 0, there exists δ > 0 such
that, for all z ∈ B(z◦; δ) ∩ �, one has

g(z) ⊀LU g(z◦) + ε‖z − z◦‖.

(ALUES)3, if and only if for any ε > 0, there exists δ > 0 such that, for all
z ∈ B(z◦; δ) ∩ �, one has

g(z) ⊀LU g(z◦) − ε‖z − z◦‖.

For more details about approximate efficient solution, we refer to [14, 22].
From now onward, ε := (ε, . . . , ε), unless otherwise specified.
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Now, for interval-valued functions, we formulate the following approximate
Minty and Stampacchia vector variational inequalities in terms of Clarke subdif-
ferential:

(AMVI)1 To find z◦ ∈ � such that, for any sufficiently small ε > 0, there does
not exist δ > 0 such that, for all z ∈ B(z◦; δ) ∩ �, z �= z◦ and ξ L

i ∈ ∂cgL
i (z) and

ξU
i ∈ ∂cgUi (z), i ∈ I, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖.

(AMVI)2 To find z◦ ∈ � such that, for any sufficiently small ε > 0, there exists
δ > 0 such that, for all z ∈ B(z◦; δ) ∩ � and ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I,
one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) � ε‖z − z◦‖.

(AMVI)3 To find z◦ ∈ � such that, for any ε > 0, there exists δ > 0 such that, for
all z ∈ B(z◦; δ) ∩ � and ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) � −ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) � −ε‖z − z◦‖.

(ASVI)1 To find z◦ ∈ � such that, for any ε > 0 sufficiently small, there exist
z ∈ �, z �= z◦, ζ L

i ∈ ∂cgL
i (z◦) and ζU

i ∈ ∂cgUi (z◦), i ∈ I, such that

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) ≤ ε‖z − z◦‖.

(ASVI)2 To find z◦ ∈ � such that, for any sufficiently small ε > 0, for all z ∈ �,

ζ L
i ∈ ∂cgL

i (z◦) and ζU
i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � ε‖z − z◦‖.

(ASVI)3 To find z◦ ∈ � such that, for any ε > 0, there exists δ > 0 such that, for
all z ∈ B(z◦; δ) ∩ �, ζ L

i ∈ ∂cgL
i (z◦) and ζU

i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � −ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � −ε‖z − z◦‖.

Remark 12.2 If each gi , i ∈ I is real-valued function, then the above vector varia-
tional inequalties coincide with the vector variational inequalities given in [14, 22].
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12.3 Relationship Among (NIVMPP), (ASVI) and (AMVI)

In this section, we establish some relationships between the nonsmooth interval-
valued multiobjective programming problem (NIVMPP) and approximate vec-
tor variational inequalities (AMVI), (ASVI) under generalized approximate LU -
convexity.

The following theorem states the condition under which an approximate LU -
efficient solution becomes a solution of approximate Minty variational inequality.

Theorem 12.3.1 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then,

1. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦ is
an (ALUES)1 of the (NIVMPP), then z◦ also solves (AMVI)1;

2. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦ is
an (ALUES)2 of the (NIVMPP), then z◦ also solves (AMVI)2;

3. if each gi , i ∈ I is strictly approximate LU-pseudoconvex of type II at z◦ ∈ �

and z◦ is an (ALUES)3 of the (NIVMPP), then z◦ also solves (AMVI)3.

Proof 1. On contrary assume that z◦ is an (ALUES)1 of the (NIVMPP) but does not
solves (AMVI)1. Then, for some ε > 0 sufficiently small, there exists δ̄ > 0, such
that for all z ∈ B(z◦; δ̄) ∩ �, ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I , we get

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖,

that is,
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, ∀i ∈ I, i �= j,
and
〈ξ L

j , z◦ − z〉 + ε‖z − z◦‖ > 0
〈ξU

j , z◦ − z〉 + ε‖z − z◦‖ > 0, for some j ∈ I.

(12.2)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦ ∈ �, it
follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II.
Hence, for all ε > 0, there exists δ̂ > 0, such that, for all z ∈ B(z◦, δ̂) ∩ �, if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≤ 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,
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then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̂, δ̄}, from (12.2) and the definition of approximate LU -pseudo-
convexity of type II, we have

g(z) − g(z◦) LU 0 ≺LU ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, which contradicts our assumption.
2. On contrary assume that z◦ is an (ALUES)2 of the (NIVMPP) but does not solves

(AMVI)2. Then, for some ε > 0, sufficiently small and for all δ̄ > 0, there exists
z ∈ B(z◦; δ̄) ∩ �, ξ L

i ∈ ∂cgL
i (z) and ξU

i ∈ ∂cgUi (z), i ∈ I, we get

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ ε‖z − z◦‖,

that is
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0,
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, ∀i ∈ I, i �= j,
and
〈ξ L

j , z◦ − z〉 + ε‖z − z◦‖ > 0,
〈ξU

j , z◦ − z〉 + ε‖z − z◦‖ > 0, for some j ∈ I.

(12.3)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦ ∈ �, it
follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II.
Hence, for all ε > 0, there exists δ̂ > 0, such that whenever z ∈ B(z◦; δ̂) ∩ � and
if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≤ 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,

then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̂, δ̄}, then from (12.3) and the definition of approximate LU -
convexity of type II, one has

g(z) − g(z◦) LU 0 ≺LU ε‖z − z◦‖,
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for some z ∈ B(z◦; δ) ∩ �, which contradicts our assumption.
3. On contrary assume that z◦ is an (ALUES)3 of the (NIVMPP) but does not solves

(AMVI)3. Then, for some ε > 0 and for all δ̄ > 0, one has

(〈ξ L
1 , z − z◦〉, . . . , 〈ξ L

p , z − z◦〉) ≤ −ε‖z − z◦‖ < ε‖z − z◦‖,
(〈ξU

1 , z − z◦〉, . . . , 〈ξU
p , z − z◦〉) ≤ −ε‖z − z◦‖ < ε‖z − z◦‖,

for all z ∈ B(z◦; δ̄) ∩ �, ξ L
i ∈ ∂cgL

i (z) and ξU
i ∈ ∂cgUi (z),

that is,
〈ξ L

i , z◦ − z〉 + ε‖z − z◦‖ > 0,
〈ξU

i , z◦ − z〉 + ε‖z − z◦‖ > 0, ∀i ∈ I.
(12.4)

Since, each gi , i ∈ I is strictly approximate LU -pseudoconvex of type II at z◦ ∈
�, it follows that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II
and atleast one of the gL

i and gUi , i ∈ I is strictly approximate pseudoconvex of
type II at z◦ ∈ �.Without loss of generality, assume that each gL

i , i ∈ I is strictly
approximate pseudoconvex of type II. Hence, for all ε > 0, there exists δ̂ > 0,
such that whenever z ∈ B(z◦; δ̂) ∩ � and if

〈ξ L
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξ L

i ∈ ∂cgL
i (z), i ∈ I,

then
gL
i (z) − gL

i (z◦) < 0, ∀i ∈ I.

Similarly, if

〈ξU
i , z◦ − z〉 + ε‖z − z◦‖ ≥ 0, for some ξU

i ∈ ∂cgUi (z), i ∈ I,

then
gUi (z) − gUi (z◦) ≤ 0, ∀i ∈ I.

Let δ := min{δ̄, δ̂}, from (12.4) and the definition of strictly approximate LU -
pseudo convexity of type II, we have

gi (z) − gi (z◦) ≺LU 0, ∀i ∈ I, (12.5)

for all z ∈ B(z◦; δ) ∩ �.

From (12.5), we can get an ε > 0 sufficiently small, such that

g(z) − g(z◦) ≺LU −ε‖z − z◦‖,

which contradicts our assumption. �

Theorem 12.3.2 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then
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1. if each gi , i ∈ I is approximate LU-quasiconvex of type II at z◦ ∈ � and z◦ solves
(ASVI)1, then z◦ is also an (ALUES)1 of the (NIVMPP);

2. if each gi , i ∈ I is approximate LU-quasiconvex of type II at z◦ ∈ � and z◦ solves
(ASVI)2, then z◦ is also an (ALUES)2 of the (NIVMPP);

3. if each gi , i ∈ I is approximate LU-pseudoconvex of type II at z◦ ∈ � and z◦
solves (ASVI)3, then z◦ is also an (ALUES)3 of the (NIVMPP).

Proof 1. On contrary assume that z◦ is a solution of (ASVI)1 but not an (ALUES)1
of the (NIVMPP). Then, for some ε > 0, sufficiently small, there exists δ̄ > 0,
such that

g(z) − g(z◦) ≺LU ε‖z − z◦‖, (12.6)

for all z ∈ B(z◦; δ̄) ∩ �, z �= z◦. Since, each gi , i ∈ I is approximate LU -
quasiconvex of type II at z◦, it follows that each gL

i and gUi , i ∈ I are approximate
quasiconvex of type II at z◦. Hence, for all ε > 0, there exists δ̂ > 0, such that
for all z ∈ B(z◦; δ̂) ∩ �, if

gL
i (z) ≤ gL

i (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζ L

i , z − z◦〉 ≤ 0, ∀ζ L
i ∈ ∂cgL

i (z◦), i ∈ I.

Similarly, if
gUi (z) ≤ gUi (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζU

i , z − z◦〉 ≤ 0, ∀ζU
i ∈ ∂cgUi (z◦), i ∈ I.

Let δ := min{δ̄, δ̂}, from (12.6) and the definition of approximate LU -quasi-
convexity of type II, one has

〈ζ L
i , z − z◦〉 ≤ 0 < ε‖z − z◦‖,

〈ζU
i , z − z◦〉 ≤ 0 < ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, ζ L
i ∈ ∂cgL

i (z◦), ζU
i ∈ ∂cgUi (z◦), i ∈ I, which contra-

dicts our assumption.
2. Assume that z◦ is a solution of (ASVI)2. Then, for any ε > 0 sufficiently small,

for every z ∈ �, ζ L
i ∈ ∂cgL

i (z◦) and ζU
i ∈ ∂cgUi (z◦), i ∈ I, one has

(〈ζ L
1 , z − z◦〉, . . . , 〈ζ L

p , z − z◦〉) � ε‖z − z◦‖,
(〈ζU

1 , z − z◦〉, . . . , 〈ζU
p , z − z◦〉) � ε‖z − z◦‖,

that is,
(〈ζ L

1 , z − z◦〉, . . . , 〈ζ L
p , z − z◦〉) � 0,

(〈ζU
1 , z − z◦〉, . . . , 〈ζU

p , z − z◦〉) � 0.
(12.7)
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Since, each gi , i ∈ I is approximate LU -quasiconvex of type II at z◦, it follows
that each gL

i and gUi , i ∈ I are approximate quasiconvex of type II at z◦. Hence,
for all ε > 0, there exists δ̂ > 0, such that for all z ∈ B(z◦, δ̂) ∩ �, if

gL
i (z) ≤ gL

i (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζ L

i , z − z◦〉 ≤ 0, ∀ζ L
i ∈ ∂cgL

i (z◦), i ∈ I.

Similarly, if
gUi (z) ≤ gUi (z◦) + ε‖z − z◦‖, ∀i ∈ I,

then
〈ζU

i , z − z◦〉 ≤ 0, ∀ζU
i ∈ ∂cgUi (z◦), i ∈ I.

From (12.7) and the definition of approximate LU -quasiconvexity of type II, it
follows that

g(z) − g(z◦) ⊀LU ε‖z − z◦‖,

for all z ∈ B(z◦; δ) ∩ �, z �= z◦. Therefore, z◦ is an (ALUES)2 of the (NIVMPP).
3. On contrary assume that z◦ solves (ASVI)3 but not an (ALUES)3. Then, for some

ε > 0, and for all δ̄ > 0, there exists z ∈ B(z◦; δ̄) ∩ �, such that

g(z) − g(z◦) ≺LU −ε‖z − z◦‖,

that is
gL
i (z) − gL

i (z◦) < 0,
gUi (z) − gUi (z◦) < 0, ∀i ∈ I.

(12.8)

Since, each gi , i ∈ I is approximate LU -pseudoconvex of type II at z◦, it follows
that each gL

i and gUi , i ∈ I are approximate pseudoconvex of type II at z◦.Hence,
for all ε > 0, there exists δ̂ > 0, such that for all z ∈ B(z◦; δ̂) ∩ �, if

〈ζ L
i , z − z◦〉 + ε‖z − z◦‖ ≥ 0, for some ζ L

i ∈ ∂cgL
i (z◦), i ∈ I,

then
gL
i (z) − gL

i (z◦) ≥ 0, ∀i ∈ I.

Similarly, if

〈ζU
i , z − z◦〉 + ε‖z − z◦‖ ≥ 0, for some ζU

i ∈ ∂cgUi (z◦), i ∈ I,

then
gUi (z) − gUi (z◦) ≥ 0, ∀i ∈ I.
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Let δ := min{δ̂, δ̄}, from (12.8) and the definition of approximate LU -
pseudoconvexity of type II, one has

〈ζ L
i , z − z◦〉 < −ε‖z − z◦‖,

〈ζU
i , z − z◦〉 < −ε‖z − z◦‖, ∀i ∈ I,

(12.9)

for some z ∈ B(z◦; δ) ∩ � and all ζ L
i ∈ ∂cgL

i (z◦), ζU
i ∈ ∂cgUi (z◦), i ∈ I, which

contradicts our assumption. �

The following corollary is a direct consequence of Theorems 12.3.1 and 12.3.2.

Corollary 12.1 Let each gL
i , gUi : � → IR, i ∈ I be locally Lipschitz functions.

Then,

1. if each gi , i ∈ I is approximate LU-quasiconvex of type II and approximate LU-
pseudoconvex of type II at z◦ ∈ �. Let z◦ is a solution of (ASVI)1, then z◦ is also
a solution of (AMVI)1.

2. if each gi , i ∈ I is approximate LU-quasiconvex of type II and approximate LU-
pseudoconvex of type II at z◦ ∈ �. Let z◦ is a solution of (ASVI)2, then z◦ is also
a solution of (AMVI)2.

3. if each gi , i ∈ I is strictly approximate LU-pseudoconvex of type II at z◦ ∈ �.

Let z◦ is a solution of (ASVI)3, then z◦ is also a solution of (AMVI)3.

Now, to illustrate the significance of Theorems 12.3.1, 12.3.2 and Corollary 12.1,
we have the following example.

Example 12.1 Consider the following nonsmooth interval-valued multiobjective
programming problem

(P) Minimize g(z) = (g1(z), g2(z))

subject to z ∈ � ⊆ IR,

where � = [−1, 1] and g1, g2 : � → I are defined as

gL
1 (z) =

{
z3 + z, z ≥ 0,

2z, z < 0,
gU1 (z) =

{
z3 + 2z, z ≥ 0,

z, z < 0,

and

gL
2 (z) =

{
z − z2, z ≥ 0,

2z, z < 0,
gU2 (z) =

{
z + 1, z ≥ 0,

2z + ez, z < 0.

The Clarke generalized subdifferentials of g1 and g2 are given by

∂cgL
1 (z) =

⎧⎪⎨
⎪⎩
3z2 + 1, z > 0,

[1, 2], z = 0,

2, z < 0,

∂cgU1 (z) =

⎧⎪⎨
⎪⎩
3z2 + 2, z > 0,

[1, 2], z = 0,

1, z < 0,
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and

∂cgL
2 (z) =

⎧⎪⎨
⎪⎩
1 − 2z, z > 0,

[1, 2], z = 0,

2, z < 0,

∂cgU2 (z) =

⎧⎪⎨
⎪⎩
1, z > 0,

[1, 3], z = 0,

2 + ez, z < 0,

For any 0 < ε < 1, let δ = 1
10 , such that for all z, y ∈ B(0; δ) ∩ �, ξ L

1 ∈ ∂cgL
1 (z),

ξU
1 ∈ ∂cgU1 (z), ξ L

2 ∈ ∂cgL
2 (z) and ξU

2 ∈ ∂cgU2 (z), one has

〈ξ L
1 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3z2 + 1)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(3z2 + 1)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(3z2 + 1)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
2(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
k1(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, k1 ∈ [1, 2];
k1(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, k1 ∈ [1, 2],

〈ξU1 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3z2 + 2)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(3z2 + 2)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(3z2 + 2)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
k2(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, k2 ∈ [1, 2];
k2(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, k2 ∈ [1, 2],

〈ξ L
2 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 2z)(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(1 − 2z)(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(1 − 2z)(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
2(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
2(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
t1(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, t1 ∈ [1, 2];
t1(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, t2 ∈ [1, 2];

and

〈ξU2 , y − z〉 + ε‖y − z‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y − z) + ε‖y − z‖ > 0, z > 0, y > 0, y − z > 0;
(y − z) + ε‖y − z‖ < 0, z > 0, y > 0, y − z < 0;
(y − z) + ε‖y − z‖ < 0, z > 0, y ≤ 0;
(2 + ez)(y − z) + ε‖y − z‖ > 0, z < 0, y < 0, y − z > 0;
(2 + ez)(y − z) + ε‖y − z‖ < 0, z < 0, y < 0, y − z < 0;
(2 + ez)(y − z) + ε‖y − z‖ > 0, z < 0, y ≥ 0;
t2(y − z) + ε‖y − z‖ > 0, z = 0, y > 0, t2 ∈ [1, 3];
t2(y − z) + ε‖y − z‖ < 0, z = 0, y < 0, t2 ∈ [1, 3].
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Also,

gL
1 (y) − gL

1 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(y2 + zy + z2 + 1), z > 0, y > 0, y − z > 0;
y3 + y − 2z, z < 0, y > 0;
2(y − z), z < 0, y < 0, y − z > 0;
y3 + y, z = 0, y > 0,

> 0,

gU1 (y) − gU1 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(y2 + zy + z2 + 2), z > 0, y > 0, y − z > 0;
y3 + 2y − z, z < 0, y > 0;
y − z, z < 0, y < 0, y − z > 0;
y3 + 2y, z = 0, y > 0,

> 0,

gL
2 (y) − gL

2 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(y − z)(1 − z − y), z > 0, y > 0, y − z > 0;
y − y2 − 2z, z < 0, y > 0;
2(y − z), z < 0, y < 0, y − z > 0;
y − y2, z = 0, y > 0,

> 0,

and

gU2 (y) − gU2 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y − z, z > 0, y > 0, y − z > 0;
y + 1 − 2z − ez, z < 0, y > 0;
2(y − z) + ey − ez, z < 0, y < 0, y − z > 0;
y, z = 0, y > 0,

> 0.

Hence, g1 = [gL
1 , gU1 ] and g2 = [gL

2 , gU2 ] are approximate LU -pseudoconvex of type
II at z◦ = 0.
Evidently, z◦ = 0, solves (ASVI)3. Since, for any z > 0, z ∈ B(z◦; δ) ∩ �, ζ L

1 ∈
∂cgL

1 (z◦), ζU
1 ∈ ∂cgU1 (z◦), ζ L

2 ∈ ∂cgL
2 (z◦) and ζU

2 ∈ ∂cgU2 (z◦), we have

〈ζ L
1 , z − z◦〉 + ε‖z − z◦‖ = k1z + ε‖z‖ > 0, k1 ∈ [1, 2],

〈ζU
1 , z − z◦〉 + ε‖z − z◦‖ = k2z + ε‖z‖ > 0, k2 ∈ [1, 2],

〈ζ L
2 , z − z◦〉 + ε‖z − z◦‖ = t1z + ε‖z‖ > 0, t1 ∈ [1, 2],

and 〈ζU
2 , z − z◦〉 + ε‖z − z◦‖ = t2z + ε‖z‖ > 0, t2 ∈ [1, 3],
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that is
(〈ζ L

1 , z − z◦〉, 〈ζ L
2 , z − z◦〉) � −ε‖z − z◦‖,

(〈ζU
1 , z − z◦〉, 〈ζU

2 , z − z◦〉) � −ε‖z − z◦‖.

Moreover, z◦ = 0 is an (ALUES)3 of the problem (P). Since, for any ε > 0, let δ = 1
2 ,

such that for all z > 0, z ∈ B(z◦; δ) ∩ �, we have

gL
1 (z) − gL

1 (z◦) + ε‖z − z◦‖ = z3 + z + ε‖z‖ > 0,

gU1 (z) − gU1 (z◦) + ε‖z − z◦‖ = z3 + 2z + ε‖z‖ > 0,

gL
2 (z) − gL

2 (z◦) + ε‖z − z◦‖ = z − z2 + ε‖z‖ > 0,

gU2 (z) − gU2 (z◦) + ε‖z − z◦‖ = z + ε‖z‖ > 0,

that is
g(z) − g(z◦) + ε‖z − z◦‖ ⊀LU 0.

Furthermore, z◦ = 0 solves (AMVI)3. Since, for any ε > 0, sufficiently small, let
δ = 1

2 , such that for all z > 0, z ∈ B(z◦; δ) ∩ �, ξ L
1 ∈ ∂cg1(z), ξU

1 ∈ ∂cgU1 (z), ξ L
2 ∈

∂cgL
2 (z) and ξU

2 ∈ ∂cgU2 (z), we have

〈ξ L
1 , z − z◦〉 + ε‖z − z◦‖ = 3z3 + z + ε‖z‖ > 0,

〈ξU
1 , z − z◦〉 + ε‖z − z◦‖ = 3z3 + 2z + ε‖z‖ > 0,

〈ξ L
2 , z − z◦〉 + ε‖z − z◦‖ = 1 − 2z + ε‖z‖ > 0,

〈ξU
2 , z − z◦〉 + ε‖z − z◦‖ = z + ε‖z‖ > 0,

that is
(〈ξ L

1 , z − z◦〉, 〈ξ L
2 , z − z◦〉) � −ε‖z − z◦‖,

(〈ξU
1 , z − z◦〉, 〈ξU

2 , z − z◦〉) � −ε‖z − z◦‖.

12.4 Conclusions

In this chapter, we have considered a class of nonsmooth interval-valued multiobjec-
tive programming problems (NIVMPP) and certain classes of approximateMinty and
Stampacchia vector variational inequalities; namely, (AMVI)1, (AMVI)2, (AMVI)3,
(ASVI)1, (ASVI)2, and (ASVI)3. We have established the equivalence among the
solutions of these vector variational inequalities and the approximate LU -efficient
solutions; namely, (ALUES)1, (ALUES)2, (ALUES)3 of the nonsmooth interval-
valued multiobjective programming problem (NIVMPP). The numerical example
has been given to justify the significance of these results. The results of the chapter
extend and unify the corresponding results of [14, 22, 23, 30, 33] to a more gen-
eral class of nonsmooth optimization problems, namely, nonsmooth interval-valued
multiobjective programming problem (NIVMPP).
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Chapter 13
On Constraint Qualifications for
Multiobjective Optimization Problems
with Switching Constraints

Yogendra Pandey and Vinay Singh

Abstract In this chapter, we consider multiobjective optimization problems with
switching constraint (MOPSC). We introduce linear independence constraint quali-
fication (LICQ), Mangasarian–Fromovitz constraint qualification (MFCQ), Abadie
constraint qualification (ACQ), and Guignard constraint qualification (GCQ) for
multiobjective optimization problems with switching constraint (MOPSC). Further,
we introduce the notion of Weak stationarity, Mordukhovich stationarity, and Strong
stationarity, i.e., W-stationarity, M-stationarity, and S-stationarity, respectively, for
the MOPSC. Also, we present a survey of the literature related to existing constraint
qualifications and stationarity conditions for mathematical programs with equilib-
rium constraints (MPEC), mathematical programs with complementarity constraints
(MPCC), mathematical programs with vanishing constraints (MPVC), and for math-
ematical programs with switching constraints (MPSC). We establish that the M-
stationary conditions are sufficient optimality conditions for the MOPSC using gen-
eralized convexity. Further, we propose aWolfe-type dual model for theMOPSC and
establish weak duality and strong duality results under assumptions of generalized
convexity.

Keywords Switching constraints · Constraint qualifications · Optimality
conditions · Duality

13.1 Introduction

We consider the followingmultiobjective optimization problemswith switching con-
straints (MOPSC):
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(MOPSC) min ( f1(x), . . . , fm(x))

subject to : gi (x) ≤ 0, i = 1, . . . , p,

hi (x) = 0, i = 1, . . . , q,

Gi (x)Hi (x) = 0, i = 1, . . . , l.

All the functions f1, . . . , fm, g1, . . . , gp, h1, . . . , hq ,G1, . . . ,Gl , H1, . . . , Hl :
R

n → R are assumed to be continuously differentiable.
In optimal control, the concept of control switching became very important, for

details see, [13, 14, 23, 27, 35, 59, 61, 63, 67] and references therein. Mathematical
programs with switching constraints (MPSC) are related to mathematical programs
with vanishing constraints (MPVC) andmathematical programswith complementar-
ity constraints (MPCC) (see [38, 51]). Similarly, multiobjective optimization prob-
lems with switching constraints (MOPSC) are also closely related to multiobjective
optimization problems with vanishing constraints (MOPVC), see [44]. Mehlitz [42]
introduced the notions of weak, Mordukhovich, and strong stationarities for mathe-
matical programs with switching constraints (MPSC). Recently, Kanzow et al. [34]
proposed several relaxation schemes for the MPSC.

Constraint qualifications are regularity conditions for Kuhn–Tucker necessary
optimality in nonlinear programming problems. The Slater constraint qualification,
the weak Arrow–Hurwicz–Uzawa constraint qualification, the weak reverse convex
constraint qualification, the Kuhn–Tucker constraint qualification, the linear inde-
pendence constraint qualification (LICQ), the Mangasarian–Fromovitz constraint
qualification (MFCQ), the Abadie constraint qualification (ACQ), and the Guignard
constraint qualification (GCQ) are some of the important constraint qualifications
among several constraint qualifications in nonlinear programming problems (see, [1,
24, 41]). Many authors studied these constraint qualifications and found relations
for different types of optimization problems under smooth and nonsmooth environ-
ments. We refer to [9, 12, 22, 36, 37, 39, 40, 56, 57] for more details about several
constraint qualifications and relationships among them for nonlinear programming
problems and multiobjective programming problems.

Motivated by the above-mentioned works our aim is to study several constraint
qualifications and stationarity conditions of theMOPSC. The chapter is structured as
follows: We begin with some preliminary results in Sect. 13.2. Section 13.3 is dedi-
cated to the study of constraint qualifications like LICQ, MFCQ, generalized ACQ,
and generalized GCQ for the MOPSC. In Sect. 13.4, we introduce weak stationarity
(W-stationarity), Mordukhovich stationarity (M-stationarity), and strong stationar-
ity (S-stationarity) for the MOPSC. In Sect. 13.5, we establish that the M-stationary
conditions are sufficient optimality conditions for the MOPSC using generalized
convexity. In Sect. 13.6, we propose a Wolfe type dual for the MOPSC and establish
weak duality and strong duality results under assumptions of generalized convexity.
In Sect. 13.7, we discuss some future research work.
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13.2 Preliminaries

This section contains some preliminaries which will be used throughout the chapter.
Consider the following multiobjective optimization problem (MOP):

(MOP) f̂ (x) := ( f̂1(x), . . . , f̂m̂(x))

s.t. ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂, (13.1)

ĥi (x) = 0,∀i = 1, 2, . . . , q̂,

where all the functions f̂i , ĝi , ĥi : R
n → R are continuously differentiable. Set F to

be the feasible set of the MOP.
For each k = {1, . . . , m̂} ⊂ N, the nonempty sets Ŝk and Ŝ are given as follows:

Ŝk := {x ∈ R
n| ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂,

ĥi (x) = 0,∀i = 1, 2, . . . , q̂, (13.2)

f̂i (x) ≤ f̂i (x̄),∀1, 2, . . . , m̂, and i �= k},

and

Ŝ := {x ∈ R
n| ĝi (x) ≤ 0,∀i = 1, 2, . . . , p̂,

ĥi (x) = 0,∀i = 1, 2, . . . , q̂, (13.3)

f̂i (x) ≤ f̂i (x̄),∀i = 1, 2, . . . , m̂}.

The following concept of the linearized cone to Ŝ at x̄ ∈ Ŝ was introduced in [39]
for the MOP.

Definition 13.1 The linearized cone to Ŝ at x̄ ∈ Ŝ is the set L
(
Ŝ; x̄

)
given by

L
(
Ŝ; x̄

)
:= {d ∈ R

n| ∇ ĝi (x̄)
T d ≤ 0,∀i ∈ Iĝ,

∇ĥi (x̄)
T d = 0,∀i ∈ Iĥ,

∇ f̂i (x̄)
T d ≤ 0,∀i ∈ I f̂ }.

where

Iĝ := {i ∈ {1, . . . , p̂} | ĝi (x̄) = 0},
Iĥ := {1, . . . , q̂},
I f̂ := {1, . . . , m̂}.

Some of the important convex cones that play a vital role in optimization are
the polar cone, tangent cone, and normal cone. The notion of tangent cones may



286 Y. Pandey and V. Singh

be considered a generalization of the tangent concept in a smooth case to that in a
nonsmooth case.

For the sake of convenience, let us recall the definition of a well-known concept
having a crucial role to define constraint qualifications.

Definition 13.2 ([8, 58]) Let Ŝ be a nonempty subset of R
n. The tangent cone to Ŝ

at x̄ ∈ cl Ŝ is the set T
(
Ŝ; x̄

)
defined by

T (Ŝ; x̄) :=
{
d ∈ R

n|∃{xn} ⊆ Ŝ, {tn} ↓ 0 : xn → x̄,
xn − x̄

tn
→ d

}
,

where cl Ŝ denotes the closure of Ŝ.

The following definitions of constraint qualifications for the MOP are taken from
[39].

Definition 13.3 Let x̄ ∈ F be a feasible solution of the MOP. Then the linear inde-
pendence constraint qualification (LICQ) holds at x̄, if the gradients

∇ f̂i (x̄)
(
i ∈ I f̂

)
,

∇ ĝi (x̄)
(
i ∈ Iĝ

)
,

∇ ĥi (x̄)
(
i ∈ Iĥ

)
,

are linearly independent.

Definition 13.4 Let x̄ ∈ F be a feasible solutionof theMOP.Then theMangasarian–
Fromovitz constraint qualification (MFCQ) holds at x̄, if the gradients

∇ f̂i (x̄)
(
i ∈ I f̂

)
,

∇ ĥi (x̄)
(
i ∈ Iĥ

)
,

are linearly independent, and the system

∇ f̂i (x̄)
T d = 0∀i ∈ I f̂ ,

∇ ĝi (x̄)
T d < 0,∀i ∈ Iĝ,

∇ ĥi (x̄)
T d = 0,∀i ∈ Iĥ,

has a solution d ∈ R
n.

Definition 13.5 Let x̄ ∈ F be a feasible solution of the MOP. Then the Abadie
constraint qualification (ACQ) holds at x̄ if

L
(
Ŝ; x̄

)
⊆ T

(
Ŝ; x̄

)
.
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Definition 13.6 Let x̄ ∈ F be a feasible solution of the MOP. Then the generalized
Abadie constraint qualification (GACQ) holds at x̄ if

L
(
Ŝ; x̄

)
⊆

m̂⋂
k=1

T
(
Ŝk; x̄

)
.

The following concept of efficiency was introduced by Pareto [52].

Definition 13.7 Let x̄ ∈ F be a feasible solution of the MOP . Then x̄ is said to be
a local efficient solution of the MOP , if there exists a number δ > 0 such that, there
is no x ∈ F

⋂
B (x̄; δ) satisfying

f̂i (x) ≤ f̂i (x̄),∀i = 1, . . . , m̂,

f̂i (x) < f̂i (x̄), at least one i,

where B (x̄; δ) denotes the open ball of radius δ and centre x̄ .

Definition 13.8 Let x̄ ∈ F be a feasible solution of the MOP. Then x̄ is said to be
an efficient solution of the MOP, if there is no x ∈ F satisfying

f̂i (x) ≤ f̂i (x̄),∀i = 1, . . . , m̂,

f̂i (x) < f̂i (x̄), at least one i.

The following definitions and results are taken from [41].

Definition 13.9 Let f be a differentiable real-valued function definedon a nonempty
open convex set X ⊆ R

n. Then the function f is said to be pseudoconvex at x̄ ∈ X
if the following implication holds:

x, x̄ ∈ X, 〈∇ f (x̄), x − x̄〉 ≥ 0 ⇒ f (x) ≥ f (x̄).

Equivalently,

x, x̄ ∈ X, f (x) < f (x̄) ⇒ 〈∇ f (x̄), x − x̄〉 < 0.

Definition 13.10 Let f be a differentiable real-valued function defined on a
nonempty open convex set X ⊆ R

n. Then the function f is said to be quasicon-
vex at x̄ ∈ X iff the following implication holds:

x, x̄ ∈ X, f (x) ≤ f (x̄) ⇒ 〈∇ f (x̄), x − x̄〉 ≤ 0.
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13.3 Constraint Qualifications for Multiobjective
Optimization Problems with Switching Constraint

The standard constraint qualifications for nonlinear optimization problems (LICQ or
MFCQ) are always violated at every feasible point for mathematical programs with
equilibrium constraints (MPEC)(see, [65]), for mathematical programswith comple-
mentarity constraints (MPCC) (see, [60]), for mathematical programswith vanishing
constraints (MPVC)(see, [29]) and for mathematical programs with switching con-
straints (MPSC)(see,[42]).

Ye [66] introduced several constraint qualifications for the KKT-type necessary
optimality conditions involvingMordukhovich co-derivatives formathematical prob-
lems with variational inequality constraints (MPVIC). The standard Abadie con-
straint qualification is unlikely to be satisfied by the MPEC, the MPVC, and MPSC.
Flegel and Kanzow [16] introduced the modified Abadie constraint qualification
for the MPEC. Ye [64] proposed new constraint qualifications namely MPEC weak
reverse convex constraint qualification, MPEC Arrow–Hurwicz–Uzawa constraint
qualification, MPEC Zangwill constraint qualification, MPEC Kuhn–Tucker con-
straint qualification, MPEC Abadie constraint qualification. He also proved the rela-
tionship among them. For more details about several new constraint qualifications
for the MPEC, the MPCC and the MPVIC, (see, [10, 11, 18–21, 25, 26]).

Hoheisel and Kanzow [30] introduced the Abadie and Guignard constraint qual-
ifications for mathematical programs with vanishing constraints. Mishra et al.
[44] introduced suitable modifications in constraint qualifications like Cottle con-
straint qualification, Slater constraint qualification, Mangasarian–Fromovitz con-
straint qualification, linear independence constraint qualification, linear objective
constraint qualification, generalized Guignard constraint qualification for multiob-
jective optimization problems with vanishing constraints and established relation-
ships among them. We refer to [2, 28, 29, 31, 32] and references their in for more
details about constraint qualifications for the MPVC.

Recently, Ardakani et al. [3] introduced two new Abadie-type constraint quali-
fications and presented some necessary conditions for properly efficient solutions
of the problem, using convex subdifferential for multiobjective optimization prob-
lems with nondifferentiable convex vanishing constraints. Mehlitz [42] introduced
MPSC-tailored versions of MFCQ and LICQ and studied MPSC-tailored versions
of the Abadie and Guignard constraint qualification for the MPSC.

Given a feasible point x̄ ∈ S, we consider the following index sets:

Ig(x̄) := {i = 1, 2, . . . , p : gi (x̄) = 0},
α := α(x̄) = {i = 1, 2, . . . , l : Gi (x̄) = 0, Hi (x̄) �= 0},
β := β(x̄) = {i = 1, 2, . . . , l : Gi (x̄) = 0, Hi (x̄) = 0},
γ := γ (x̄) = {i = 1, 2, . . . , l : Gi (x̄) �= 0, Hi (x̄) = 0}.
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Let us define a feasible set S of MOPSC by

S := {x ∈ R
n : gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , l}.

Consider the following function:

ηi (x) := Gi (x)Hi (x),∀i = 1, 2, . . . , l (13.4)

its gradient is given by

∇ηi (x) = Gi (x)∇Hi (x) + Hi (x)∇Gi (x),∀i = 1, 2, . . . , l. (13.5)

By the definition of the index sets, we get

∇ηi (x̄) =

⎧⎪⎨
⎪⎩

Hi (x̄)∇Gi (x̄), if i ∈ α,

0, if i ∈ β,

Gi (x̄)∇Hi (x̄), if i ∈ γ,

(13.6)

For each k = 1, 2, . . . ,m, the nonempty sets Sk and S are defined as follows:

Sk := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , r,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, i �= k},

and

S := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x)Hi (x) = 0,∀i = 1, 2, . . . , r,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, }.

The following result gives the standard linearized cone to Sk, k = 1, 2, . . . ,m, at
an efficient solution x̄ ∈ S of the MOPSC .

Lemma 13.3.1 Let x̄ ∈ S be an efficient solution of theMOPSC. Then, the linearized
cone to Sk, k = 1, 2, . . . ,m, at x̄ is given by
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L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.7)

∇Hi (x̄)
T d = 0,∀i ∈ γ,

∇Gi (x̄)
T d = 0,∀i ∈ α}.

Proof Let ηi (x) = Gi (x)Hi (x),∀i = 1, 2, . . . , r . By the definitions of the index
sets and in view of Definition of the linearized cone to Sk, k = 1, . . . ,m at x̄ ∈ Sk

is given by

L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih,

∇ηi (x̄)
T d = 0,∀i ∈ α ∪ γ }.

We know that ∇ηi (x̄) = Gi (x̄)∇Hi (x̄) + Hi (x̄)∇Gi (x̄),

∇ηi (x̄)
T d = 0

implies
Gi (x̄)∇Hi (x̄)

T d + Hi (x̄)∇Gi (x̄)
T d = 0.

Since, Gi (x̄) = 0, ∀i ∈ α, and Hi (x̄) = 0, , ∀i ∈ γ , we get

L(Sk; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i ∈ I f , i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih,

∇Hi (x̄)
T d = 0,∀i ∈ γ, (13.8)

∇Gi (x̄)
T d = 0,∀i ∈ α}.

We introduce a tightened nonlinear multiobjective optimization problem (TNL-
MOP) derived from theMOPSC depending on an efficient solution x̄ ∈ S as follows

(TNLMOP) f (x) := ( f1(x), . . . , fm(x))

s.t. gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q, (13.9)

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β.

The feasible set of the TNLMOP is a subset of the feasible set of MOPSC.
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Definition 13.11 Let x̄ ∈ S be a feasible point of the MOPSC. If LICQ holds for
TNLMOP at x̄ . Then x̄ is said to satisfy LICQ–MOPSC.

Definition 13.12 Let x̄ ∈ S be a feasible point of the MOPSC. If MFCQ holds for
TNLMOP at x̄ . Then x̄ is said to satisfy MFCQ–MOPSC.

From the Definitions 13.3 and 13.4 [39] for TNLMOP, one has

LICQ =⇒ MFCQ.

Therefore,
LICQ–MOPSC =⇒ MFCQ-MOPSC.

13.3.1 A Generalized Guignard and Abadie CQ for MOPSC

For each k = 1, 2, . . . ,m, the nonempty sets S
k
and S are defined as follows:

S
k := {x ∈ R

n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m, i �= k},

and

S := {x ∈ R
n| gi (x) ≤ 0,∀i = 1, 2, . . . , p,

hi (x) = 0,∀i = 1, 2, . . . , q,

Gi (x) = 0,∀i ∈ α ∪ β,

Hi (x) = 0,∀i ∈ γ ∪ β,

fi (x) ≤ fi (x̄),∀i = 1, 2, . . . ,m}.

The linearized cone to S
k
at x̄ ∈ S

k
is given by

L(S
k; x̄) = {d ∈ R

n| ∇ fi (x̄)
T d ≤ 0,∀i = 1, . . . ,m, i �= k,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.10)

∇Gi (x̄)
T d = 0,∀i ∈ α ∪ β,

∇Hi (x̄)
T d = 0,∀i ∈ γ ∪ β}.
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L(S; x̄) = {d ∈ R
n| ∇ fi (x̄)

T d ≤ 0,∀i = 1, . . . ,m,

∇gi (x̄)
T d ≤ 0,∀i ∈ Ig,

∇hi (x̄)
T d = 0,∀i ∈ Ih, (13.11)

∇Gi (x̄)
T d = 0,∀i ∈ α ∪ β,

∇Hi (x̄)
T d = 0,∀i ∈ γ ∪ β}.

We have the following relation:

L
(
S; x̄) =

m⋂
k=1

L
(
S
k; x̄

)
. (13.12)

Definition 13.13 Let x̄ ∈ X be any feasible solution to the MOPSC. Then, aGener-
alizedAbadieConstraintQualification (GACQ) for theMOPSC, denoted byGACQ–
MOPSC, holds at x̄, if

L
(
S; x̄) ⊆

m⋂
k=1

T
(
Sk; x̄) .

The following constraint qualification gives a sufficient condition to the GACQ–
MOPVC.

Definition 13.14 Let x̄ ∈ X be any feasible solution to the TNLMOP. Then a Gen-
eralized Abadie Constraint Qualification (GACQ) for the TNLMOP, denoted by
GACQ–TNLMOP, holds at x̄, if

L (S; x̄) ⊆
m⋂

k=1

T
(
S
k; x̄

)
.

Note 13.1 The standard GACQ gives a sufficient condition for the GACQ–MOPVC
to hold. Since L

(
S; x̄) ⊆ L (S; x̄) .

The following lemma is about relationships between GACQ–TNLMOP and
GACQ–MOPSC.

Lemma 13.3.2 If the GACQ–TNLMOP holds at x̄ then the standard GACQ and the
GACQ–MOPVC both are satisfied at x̄ .

Proof We know that

S
k ⊂ Sk ∀ k = 1, 2 . . .m
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and
T (S

k; x̄) ⊂ T (Sk; x̄) ∀ k = 1, 2 . . .m.

Hence,
m⋂

k=1

T
(
S
k; x̄

)
⊂

m⋂
k=1

T
(
Sk; x̄) .

From Definition 13.14, we have

L
(
S; x̄) ⊆ L (S; x̄) ⊆

m⋂
k=1

T
(
S
k; x̄

)
⊂

m⋂
k=1

T
(
Sk; x̄) .

Therefore, GACQ–MOPSC holds at x̄ .
By Definitions 13.13 and 13.14, we obtain

GACQ–TNLMOP =⇒ GACQ–MOPSC

Now, we discuss the relationship between tangent cone T
(
S
k; x̄

)
, k=1, 2, . . . ,

m, and the linearized cone L(S; x̄).
Lemma 13.3.3 Let x̄ ∈ be a feasible solution of the MOPSC. Then we have

m⋂
k=1

clcoT
(
S
k; x̄

)
⊆ L (S; x̄) .

Proof The proof follows on the lines of the proof of Lemma 3.1 [42]. �

Definition 13.15 Let x̄ ∈ X be any feasible solution to the TNLMOP. Then a Gen-
eralized Guignard Constraint Qualification (GGCQ) for the TNLMOP, denoted by
GGCQ–TNLMOP, holds at x̄, if

L (S; x̄) ⊆
m⋂

k=1

clcoT
(
S
k; x̄

)
.

Definition 13.16 Let x̄ ∈ X be any feasible solution to the MOPSC. Then, a Gen-
eralized Guignard Constraint Qualification (GGCQ) for the MOPSC, denoted by
GGCQ–MOPSC, holds at x̄, if

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

The following result gives the relationship between the GGCQ–TNLMOP and
the GGCQ–MOPVC.
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Lemma 13.3.4 Let x̄ ∈ X be any feasible solution of the MOPVC. If the GGCQ-
TNLMOP holds at x̄, then the GGCQ–MOPVC also holds at x̄ ∈ X.

Proof Assume that x̄ ∈ X is a feasible solution of the MOPSC and GGCQ–
TNLMOP holds at x̄ , then

L (S; x̄) ⊆
m⋂

k=1

clcoT
(
S
k; x̄

)
. (13.13)

Also,
S
k ⊂ Sk ∀ k = 1, 2 . . .m

and
T (S

k; x̄) ⊂ T (Sk; x̄) ∀ k = 1, 2 . . .m.

Hence

m⋂
k=1

clcoT
(
S
k; x̄

)
⊂

m⋂
k=1

clcoT
(
Sk; x̄) . (13.14)

We always have
L

(
S; x̄) ⊆ L (S; x̄) . (13.15)

From Eqs. (13.13), (13.14) and (13.15), we get

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Therefore, GGCQ–MOPVC holds at x̄ ∈ X. This completes the proof.

In the following lemma, we derive a relationship between the GACQ–MOPSC
and the GGCQ–MOPSC.

Lemma 13.3.5 Let x̄ ∈ X be a feasible solution of the MOPSC. If the GACQ–
MOPSC holds at x̄ then the GGCQ-MOPSC is satisfied.

Proof Assume x̄ ∈ X be a feasible solution of theMOPSC and that GACQ–MOPSC
holds at x̄ . From Definition 13.13, we have

L
(
S; x̄) ⊆

m⋂
k=1

T
(
Sk; x̄) .

Since
T

(
Sk; x̄) ⊆ clcoT

(
Sk; x̄) ,
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we have

m⋂
k=1

T
(
Sk; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Which implies

L
(
S; x̄) ⊆

m⋂
k=1

clcoT
(
Sk; x̄) .

Therefore, the GGCQ–MOPSC is satisfied at x̄ . This completes the proof. �

By Lemma 13.3.5, we have

GACQ–MOPSC =⇒ GGCQ–MOPSC.

13.4 Stationary Conditions for MOPSC

The standard nonlinear programming has only one dual stationary condition, i.e.,
the Karush–Kuhn–Tucker condition, but we have various stationarity concepts for
mathematical programs with equilibrium constraints (MPEC), mathematical pro-
gram with complementarity constraints (MPCC), mathematical program with van-
ishing constraints (MPVC), and mathematical program with switching constraints
(MPSC).

Outrata [50] introduced the notion of Mordukhovich stationary point (M-
stationary) for mathematical programs with equilibrium constraints (MPEC). Scheel
and Scholtes [60] introduced the concept of strong-stationary point (S-stationary)
and Clarke-stationary (C-stationary) for the mathematical program with comple-
mentarity constraints (MPCC). Flegel and Kanzow [15] introduced the concept of
Alternatively, stationary point (A-stationary) for theMPEC. Further, Flegel andKan-
zow [17] proved that M-stationarity is the first-order optimality condition under a
weak Abadie-type constraint qualification for the MPEC.

Ye [64] introduced various stationarity conditions and obtained new constraint
qualifications for the considered MPEC. Hoheisel and Kanzow [29] introduced sev-
eral stationarity conditions for mathematical programs with vanishing constraints
(MPVC) using weak constraint qualifications. Ardali et al. [4] studied several new
constraint qualifications, GS-stationarity concepts, and optimality conditions for a
nonsmoothmathematical programwith equilibrium constraints based on the convex-
ificators. Mehlitz [42] introduced notions of weak stationary point (W-stationary),
Mordukhovich stationary point (M-stationary), strong stationary point (S-stationary)
for mathematical program with vanishing constraints (MPVC) and obtain that the
S-stationarity conditions of the MPSC equal its KKT conditions in a certain sense.
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In this section, we introduce the notion of weak stationarity, Mordukhovich sta-
tionarity, and strong stationarity, i.e., W-stationarity, M-stationarity, and S-
stationarity, respectively for the MOPSC.

The following stationarity conditions can be treated as a multiobjective analog of
the stationarity conditions for scalar optimization problem with switching constraint
introduced in [42].

Definition 13.17 (W-stationary point) A feasible point x̄ of MOPSC is called a
weak stationary point (W-stationary point) if there exists λ = (λg, λh, λG, λH ) ∈
R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0 =
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
l∑

i=1

[λGi ∇Gi (x̄) + λH
i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0.

Definition 13.18 (M-stationary point) A feasible point x̄ of MOPSC is called a
Mordukhovich stationary point (M-stationary point) if there exists λ = (λg, λh, λG,
λH ) ∈ R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0 =
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
l∑

i=1

[λGi ∇Gi (x̄) + λH
i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i λH

i = 0.

Definition 13.19 (S-stationary point) A feasible point x̄ of MOPSC is called a
strong stationary point (S-stationary point) if there exists λ = (λg, λh, λG, λH ) ∈
R

p+q+2l , and θi > 0, i ∈ {1, . . . ,m} such that following conditions hold:

0=
m∑
i=1

θi∇ fi (x̄) +
∑
i∈Ig

λ
g
i ∇gi (x̄)+

q∑
i=1

λh
i ∇hi (x̄) +

l∑
i=1

[λG
i ∇Gi (x̄) + λH

i ∇Hi (x̄)],
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∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i = 0 and λH

i = 0.

By Definitions 13.17, 13.18 and 13.19, we have

S − stationari ty =⇒ M − stationari ty =⇒ W − stationari ty.

13.5 Sufficient Optimality Conditions for the MOPSC

Mordukhovich [46] established necessary optimality conditions for multiobjective
equilibriumprogramswith equilibriumconstraints infinite-dimensional spaces based
on advanced generalized differential tools of variational analysis. Bao et al. [5] stud-
ied multiobjective optimization problems with equilibrium constraints (MOPECs)
described by generalized equations in the form

0 ∈ G(x, y) + Q(x, y),

where mappings G and Q are set-valued.
Bao et al. [5] established a necessary optimality conditions for the MOPEC

using tools of variational analysis and generalized differentiation. Mordukhovich
[48] derived new qualified necessary optimality conditions for the MOPEC in finite-
and infinite-dimensional spaces. Movahedian and Nobakhtian [49] derived a nec-
essary optimality result on any Asplund space and established sufficient optimality
conditions for nonsmooth MPEC in Banach spaces. Recently, Pandey and Mishra
[53] introduced the concept of Mordukhovich stationary point in terms of the Clarke
subdifferentials and established that M-stationarity conditions are strong KKT-type
sufficient optimality conditions for the multiobjective semi-infinite mathematical
programming problem with equilibrium constraints.

We divide the index sets as follows. Let
T+ := {i : λh

i > 0}, T− := {i : λh
i < 0}

β+ := {i ∈ β : λG
i > 0, λH

i > 0},
β+
G := {i ∈ β : λG

i = 0, λH
i > 0}, β−

G := {i ∈ β : λG
i = 0, λH

i < 0},
β+
H := {i ∈ β : λH

i = 0, λG
i > 0}, β−

H := {i ∈ β : λH
i = 0, λG

i < 0},
α+ := {i ∈ α : λG

i > 0}, α− := {i ∈ α : λG
i < 0},

γ + := {i ∈ γ : λH
i > 0}, γ − := {i ∈ γ : λH

i < 0}.
Definition 13.20 Let x̄ ∈ X be a feasible point of the MOPSC. We say that the No
Nonzero Abnormal Multiplier Constraint Qualification (NNAMCQ) is satisfied at
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x̄, if there is no nonzero vector λ = (λg, λh, λG, λH ) ∈ R
p+q+2l , such that

0 ∈
∑
i∈Ig

λ
g
i ∇gi (x̄) +

q∑
i=1

λh
i ∇hi (x̄) +

l∑
i=1

[λG
i ∇Gi (x̄) + λH

i ∇Hi (x̄)],

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

and
∀i ∈ β(x̄) : λG

i λH
i = 0.

The following theorem shows that theMOPSCM-stationary conditions are aKKT
type sufficient optimality conditions for weakly efficient solution of the MOPSC.

Theorem 13.5.1 Let x̄ ∈ X be a feasible point of theMOPSCand theM-stationarity
conditions hold at x̄ . Suppose that each fi (i = 1, . . . ,m) is pseudoconvex at
x̄, g j ( j ∈ J (x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i∈α+ ∪ β+

H ∪ β+),−Gi (i ∈ α− ∪
β−
H ), Hi (i ∈ γ + ∪ β+

G ∪ β+),−Hi (i ∈ γ − ∪ β−
G ) are quasiconvex at x̄ . If α− ∪

γ − ∪ β−
G ∪ β−

H = φ, then x̄ is a weakly efficient solution for MOPSC.

Proof Assume that x̄ is not a weakly efficient solution forMOPSC. Then there exists
a feasible point x for MOPSC such that such that

fi (x) < fi (x̄) ∀i = 1, . . . ,m.

Since each fi is pseudoconvex, we have

〈∇ fi (x̄), x − x̄〉 < 0. (13.16)

Also ηi > 0 for all i ∈ {1, . . . ,m}, we get
〈

m∑
i=1

ηi∇ fi (x̄), x − x̄

〉
< 0. (13.17)

Since x̄ is MOPSC M-stationary point, we have

−
∑
i∈Ig

λ
g
i ∇gi (x̄) −

q∑
i=1

λhi ∇hi (x̄) −
∑
α∪β

λG
i ∇Gi (x̄) −

∑
β∪γ

λH
i ∇Hi (x̄) =

m∑
i=1

ηi∇ fi (x̄).

(13.18)
By Eq. (13.17), we get
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〈⎛
⎝∑

i∈Ig
λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
∑
α∪β

λG
i ∇Gi (x̄) +

∑
β∪γ

λH
i ∇Hi (x̄)

⎞
⎠ , x − x̄

〉
> 0.

(13.19)
For each i ∈ Ig(x̄), gi (x) ≤ 0 = gi (x̄). Hence, by quasiconvexity of gi , we have

〈∇gi (x̄), x − x̄〉 ≤ 0 . (13.20)

For any feasible point x of MOPSC and for each i ∈ T−, 0 = −hi (x̄) = hi (x), by
quasiconvexity of hi , we get

〈∇hi (x̄), x − x̄〉 ≥ 0, ∀i ∈ T−. (13.21)

Similarly, we have
〈∇hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ T+. (13.22)

Also Gi (x) ≤ Gi (x̄), ∀i ∈ α+ ∪ β+
H , and Hi (x) ≤ Hi (x̄), ∀i ∈ γ + ∪ β+

G . Since all
of these functions are quasiconvex, we get

〈∇Gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ α+ ∪ β+
H , (13.23)

〈∇Hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ γ + ∪ β+
G . (13.24)

From Eqs. (13.20)–(13.24), we have

〈∇gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ Ig(x̄),

〈∇hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ T+,

〈∇hi (x̄), x − x̄〉 ≥ 0, i ∈ T−,

〈∇Gi (x̄), x − x̄〉 ≤ 0, ∀i ∈ α+ ∪ β+
H ,

〈∇Hi (x̄), x − x̄〉 ≤ 0, ∀i ∈ γ + ∪ β+
G .

Since α− ∪ γ − ∪ β−
G ∪ β−

H = φ, we get

〈∑
α∪β

λG
i ∇Gi (x̄), x − x̄

〉
≤ 0,

〈∑
β∪γ

λH
i ∇Hi (x̄), x − x̄

〉
≤ 0,

〈 ∑
i∈Ig(x̄)

λ
g
i ∇gi (x̄), x − x̄

〉
≤ 0,

〈
q∑

i=1

λh
i ∇hi (x̄), x − x̄

〉
≤ 0.

So,
〈⎛
⎝ ∑

i∈Ig(x̄)
λ
g
i ∇gi (x̄) +

q∑
i=1

λhi ∇hi (x̄) +
∑
α∪β

λG
i ∇Gi (x̄) +

∑
β∪γ

λH
i ∇Hi (x̄)

⎞
⎠ , x − x̄

〉
≤ 0,
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which contradicts (13.19). Hence, x̄ is a weakly efficient solution for MOPSC. This
completes the proof. �

Theorem 13.5.2 Let x̄ be a feasible point of MOPSC and the M-stationarity
conditions hold at x̄ . Suppose that each fi (i = 1, . . . ,m) is strictly pseudocon-
vex at x̄, gi (i ∈ Ig(x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i ∈ α+ ∪ β+

H ∪ β+),−Gi (i ∈
α− ∪ β−

H ), Hi (i ∈ γ + ∪ β+
G ∪ β+),−Hi (i ∈ γ − ∪ β−

G )arequasiconvexat x̄ . Ifα− ∪
γ − ∪ β−

G ∪ β−
H = φ, then x̄ is efficient solution for MOPSC.

Proof The proof follows the lines of the proof of Theorem 13.5.1. �

13.6 Duality

In this section, we formulate and study a Wolfe-type dual problem for the MOPSC
under the generalized convexity assumption. TheWolfe-type dual problem is formu-
lated as follows:

WDMOPSC(x̄) max
u,λ

f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λhi hi (u) +
l∑

i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e

subject to:

0 ∈
m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)], (13.25)

∀i ∈ I g(x̄) : λ
g
i ≥ 0,

∀i ∈ α(x̄) : λH
i = 0,

∀i ∈ γ (x̄) : λG
i = 0,

∀i ∈ β(x̄) : λG
i λH

i = 0,

where, e := (1, . . . , 1) ∈ R
m, λ = (λg, λh, λG, λH ) ∈ R

k+p+2l , ρ = (ρ1, . . . , ρm)

≥ 0 and
∑m

i ρi = 1.

Theorem 13.6.3 (Weak Duality) Let x̄ be feasible for MOPSC, (u, ρ, λ) feasi-
ble for WDMOPSC (x̄) and index sets Ig, α, β, γ defined accordingly. Suppose
that each fi (i = 1, . . . ,m), gi (i ∈ Ig(x̄)), hi (i ∈ T+),−hi (i ∈ T−),Gi (i ∈ α+ ∪
β+
H ∪ β+),−Gi (i ∈ α− ∪ β−

H ), Hi (i ∈ γ + ∪ β+
G ∪ β+) and−Hi (i ∈ γ − ∪ β−

G ) are
pseudoconvex at at u. If α− ∪ γ − ∪ β−

G ∪ β−
H = φ, Then,



13 On Constraint Qualifications for Multiobjective Optimization Problems … 301

f (x) ≮ f (u) +
[∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Proof Let

f (x) ≤ f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Then there exist n such that

fn(x) < fn(u) +
∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]

and

fi (x) � fi (u) +
∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)],∀i �= n.

From the Definition 13.9 and above inequality, we have

〈⎛
⎝

m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)]
⎞
⎠ , x − u

〉
< 0.

Then,

m∑
i=1

ρi∇ fi (u) +
∑
i∈Ig

λ
g
i ∇gi (u) +

q∑
i=1

λhi ∇hi (u) +
l∑

i=1

[λG
i ∇Gi (u) + λH

i ∇Hi (u)] < 0.

Which is a contradiction to the feasibility of the (u, ρ, λ) for the WDMOPSC,
therefore

f (x) ≮ f (u) +
[∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

This complete the proof. �

Theorem 13.6.4 (Strong Duality) If x̄ is a efficient solution of MOPSC, such that
NNAMCQ is satisfied at x̄ and index sets Ig, α, β, γ defined accordingly. Let fi (i =
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1, . . .m), gi (i ∈ Ig), hi (i ∈ J+),−hi (i ∈ J−),Gi (i ∈ α− ∪ β−
H ),−Gi (i ∈ α+ ∪

β+
H ∪ β+), Hi (i ∈ γ − ∪ β−

G ),−Hi (i ∈ γ + ∪ β+
G ∪ β+) satisfy the assumption of the

Theorem 13.6.3 and If α− ∪ γ − ∪ β−
G ∪ β−

H = φ. Then, there exists (ρ̄, λ̄), such that
(x̄, ρ̄, λ̄) is an efficient solution of WDMOPSC (x̄) and respective objective values
are equal.

Proof Since, x̄ is an efficient solution of MOPSC and the NNAMCQ is satisfied at
x̄ , hence, ∃ λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H ) ∈ R

p+q+2l , such that the M-stationarity conditions
for MOPSC are satisfied, that is,

0 =
m∑
i=1

ρ̄i∇ fi (x̄) +
∑
i∈Ig

λ̄
g
i ∇gi (x̄) +

q∑
i=1

λ̄hi ∇hi (x̄) +
l∑

i=1

[λ̄G
i ∇Gi (x̄) + λ̄H

i ∇Hi (x̄)].

∀i ∈ I g(x̄) : λ
g
i ≥ 0,∀i ∈ α(x̄) : λH

i = 0,∀i ∈ γ (x̄) : λG
i = 0,∀i ∈ β(x̄) : λG

i λH
i = 0.

Therefore, (x̄, ρ̄, λ̄) is feasible for WDMOPSC (x̄). By Theorem 13.6.3, from the
feasibility condition of MOPSC and WDMOPSC (x̄), we have

f (x̄) = f (x̄) +
[ ∑
i∈Ig

λ̄
g
i gi (x̄) +

q∑
i=1

λ̄h
i hi (x̄) +

l∑
i=1

[λ̄G
i Gi (x̄) + λ̄H

i Hi (x̄)]
]
e.

(13.26)
Using Theorem 13.6.3 and from Eq. (13.26), we have

f (x̄) = f (x̄) +
[ ∑
i∈Ig

λ̄
g
i gi (x̄) +

q∑
i=1

λ̄h
i hi (x̄) +

l∑
i=1

[λ̄G
i Gi (x̄) + λ̄H

i Hi (x̄)]
]
e

≮ f (u) +
[ ∑
i∈Ig

λ
g
i gi (u) +

q∑
i=1

λh
i hi (u) +

l∑
i=1

[λG
i Gi (u) + λH

i Hi (u)]
]
e.

Hence, (x̄, ρ̄, λ̄) is an efficient solution forWDMOPSC (x̄) and the respective objec-
tive values are equal. �

13.7 Future Research Work

In the future, the concept of weak stationarity, Mordukhovich stationarity, and strong
stationarity, i.e., W-stationarity, M-stationarity, and S-stationarity may be extended
for nonsmoothmultiobjective optimization problemswith switching constraint using
Mordukhovich limiting subdifferential and Michel–Penot subdifferential (see, [33,
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45, 47]). Bao et al. [6] established new weak and strong suboptimality conditions for
the general MPEC problems in finite-dimensional and infinite-dimensional spaces
that do not assume the existence of optimal solutions. Bao and Mordukhovich [7]
established necessary optimality conditions to super efficiency using variational prin-
ciples for multiobjective optimization problems with equilibrium constraints. It will
be interesting to obtain super efficiency, strong suboptimality conditions, and estab-
lished necessary conditions for nonsmooth multiobjective optimization problems
with switching constraints in the future.

Duality is an important subject in the study of mathematical programming prob-
lems as theweakduality provides a lower bound to the objective function of the primal
problem. Pandey and Mishra [54, 55] formulated a Mond–Weir-type dual problem
and established weak duality theorems, strong duality theorems under generalized
standard Abadie constraint qualification for nonsmooth optimization problems with
equilibrium constraints and semi-infinite mathematical programming problems with
equilibrium constraints, respectively. Further, Mishra et al. [43] obtained a several
duality theorems formathematical programswith vanishing constraints. Recently, Su
and Dinh [62] introduced the Mangasarian–Fromovitz-type regularity condition and
the two Wolfe and Mond–Weir dual models for interval-valued pseudoconvex opti-
mization problem with equilibrium constraints, as well as provided weak and strong
duality theorems for the same using the notion of contingent epiderivatives with
pseudoconvex functions in real Banach spaces. It will be interesting to study duality
results in real Banach spaces for nonsmooth multiobjective optimization problems
with switching constraint.
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Chapter 14
Optimization of Physico-Chemical
Parameters for the Production
of Endoxylanase Using Combined
Response Surface Method and Genetic
Algorithm

Vishal Kapoor and Devaki Nandan

Abstract Endoxylanase production by Trichoderma reesei Rut C-30 was optimized
under solid-state fermentation using a mixture of waste paper and wheat bran. Most
effective variables for the endoxylanase production in screening experiments were
incubation day, substrate ratio, solid:liquid ratio, and pH of the medium. In this
chapter, a quadratic model was developed through response surface method followed
by genetic algorithm to optimize the operational conditions for maximum endoxy-
lanase production. The predicted optimal parameter for hybrid RSM-GA was tested
and the final endoxylanase activity obtained was assessed very close to the predicted
value. Optimization leads to the enhancement of endoxylanase activity by∼2.5 fold.

Keywords Endoxylanase · Response surface method · Genetic algorithm ·
Optimization · Trichoderma ressei · Rut C-30

14.1 Introduction

Response Surface Methodology (RSM), a combination of mathematical and statisti-
cal techniques, is useful for analyzing the effects of several independent variables on
the system response without the need for a predetermined relationship between the
objective function and the variables [10, 11, 25]. Sharma and Kumar [29] applied
response surface method on plasma arc cutting to minimize dross formation rate. A
significant reduction was found in dross formation by the application of optimum
solution obtained. Danmaliki et al. [8] focused on the optimization of the experi-
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mental factors affecting adsorptive desulfurization process in a continuous flow sys-
tem using response surface methodology. A face-centered central composite design
(CCD) was used to statistically visualize the complex interactions of concentration,
column length, dosage, and flow rate on the adsorption of dibenzothiophene.

Yolmeh and Jafari [37] presented the state-of-the-art applications of RSM in the
optimization of different food processes such as extraction, drying, blanching, enzy-
matic hydrolysis and clarification, production of microbial metabolites, and formu-
lation. He concluded that the appropriate selection of RSM design, independent
variables (screening), and levels of the factors significantly influences the successful
application of RSM. Mourabet et al. [24] employed Response surface methodology
for the removal of fluoride on Brushite and the process parameters were optimized.
Four important process parameters including initial fluoride concentration, pH, tem-
perature, and B dose were optimized to obtain the best response of fluoride removal
using the statistical Box Behnken design. There had been some studies regarding
enzyme production using Trichoderma strains, a complete optimization of opera-
tional conditions for the production of the enzyme has received little attention in the
literature [13, 28]. The effects of moisture percentage, temperature, pH, inoculum,
and nitrogen source on the production of endoxylanase fromT. longibrachiatumwere
optimized through RSM [3].

The effect of incubation day, substrate ratio, solid:liquid ratio, and pH on the
production of endoglucanase by Trichoderma reesei Rut C-30 using agro-residue
were also optimized through RSM [19]. Optimization of such processes with RSM
provided great benefits in the production of endoxylanase and endoglucanase.

The traditional methods of optimization and search do not perform well over a
broad spectrum of problem domains. Traditional techniques are not efficient when
practical search space is too large [16]. Genetic algorithms (GA) are computer search
and optimization algorithms based onmechanics of natural genetic and natural selec-
tion and widely used in a wide range of problems due to their usability, ease of
operation, minimum requirements, and global perspective [18, 30]. Specific work
has shown that GA is a valuable technique for achieving optimal solutions to solve
the problems [1, 5, 6].

There is one of the drawbacks of using a GA for optimization - since there is
no guarantee of optimality, there is always the chance that there is a better chromo-
some lurking somewhere in the search space. Typically, the GA is coupled with a
local search mechanism to find the optimal chromosome in a region. So, if a hybrid
algorithm is used, the problem reduces which ensures that the GA could be run as
many times as is needed to pick out all the good regions [21]. Genetic algorithms
are good optimization methods and have the following advantages: (1) they do not
need the objective function to be continuous, convex, or unimodal, and (2) they are
very efficient due to their ability to perform parallel searches in the feasible space
and the testing of small blocks of good solutions under multiple scenarios. These
two advantages make them very suitable for optimization with RSM, particularly in
cases of discontinuity or where spaces are very constrained or irregular [2]. In the
present study, attempts have been made by employing RSM coupled GA approach to
quantitatively evaluate the individual and combined interaction effect(s) of physico-
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chemical parameters on production of endoxylanase by Trichoderma reeseiRut C-30
under solid-state fermentation using a novel mixture of waste paper and wheat bran.

14.2 Materials and Methods

14.2.1 Microorganism and Material

Trichoderma reesei Rut C-30 was obtained from Regional Research Laboratory
(RRL), Trivandrum. For stock culture maintenance, the strain was grown in 2%
(w/v) malt extract-agar slants at around 28 ◦C and sub-cultured once in 2 weeks.
Waste paper (WP) and wheat bran (WB), locally available from the market, were
used as a substrate for enzyme production. All chemicals were procured fromMerck,
India, and Sigma Co., USA.

14.2.2 Inoculum Development for Endoxylanase Production

To obtain the spores, 6-day old culture slants of T. reesei Rut C-30 was used by
adding 10 ml of sterile distilled water. The spores were scraped off with inoculating
loop, aseptically. Spores disperse evenly by agitation in a vortex-cyclomixer for 5
min. Haemocytometer was used to determine the spore count. Inoculum containing
3.6x106 spores/ml was used for subsequent fermentation.

14.2.3 Production Medium

To culture the organisms primary culture mediumwas used [9, 19]. The fermentation
medium was sterilized at 121 ◦C or 15 psi for 20 min.

14.2.4 Substrate and Solid-State Fermentation

Solid-state fermentation for enzyme production was done using well mixed auto-
claved substrate (WP and WB) (5 g) with 10 ml of modified Mandels medium [9] in
the 250-ml Erlenmeyer flasks. 0.2 ml of spore suspension was used over sterilized
substrate and mixed thoroughly. Various process parameters was studied in prelimi-
nary experiments to access their impact on enzyme production and most promising
ones (incubation day (X1) (4, 5, and 6), substrate ratio (X2) (WP : WB) (1:4, 1:5,
and 1:6), solid: liquid ratio (X3) (1:0.5, 1:1, and 1:1.5) and medium pH (X4) (4.5,
5.0, and 5.5)) were selected to asses further during statistical analysis (Table 14.1).
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Table 14.1 Independent variables and their levels in the experimental design

Independent variables Symbols Code levels

−2 −1 0 1 2

Incubation day (X1) 3 4 5 6 7

Substrate ratio (X2) 3:1 4:1 5:1 6:1 7:1

Solid : Liquid ratio (X3) 1:0 1:0.5 1:1 1:1.5 1:2

pH (X4) 4.0 4.5 5.0 5.5 6.0

14.2.5 Enzyme Extraction and Assay

Ten milliliters of 5% glycerol–water solution were used for leaching out the extra-
cellular enzyme produced by fermented biomass of T. reesei Rut C-30 in 2 h at room
temperature. The biomass was filtered with cheese cloth under pressure and filtrate
was centrifuged at 10,000 rpm at 4 ◦C for 10 min. The supernatant was used to assess
the endoxylanase activity using 1% xylan. The dinitrosalicylic acid reagent [23] was
used to determine the concentration of reducing sugar and the enzyme activity was
expressed in International Units (IU). IU was calculated as number of μ moles of
product (xylose) equivalents released per milliliter per minute.

14.2.6 Experimental Design

In order to ascribe the effect of factors on response surface in the region of investiga-
tion, a central composite design (CCD) with four factors at five levels was performed
(Table 14.1). In order to obtain ratio for factor level of substrate, the value of one
substrate (WP) and in solid: liquid ratio, solid substrate weremade constant and other
variable factors (WB and liquid medium) were entered in Design expert software.
Enzyme activity (IU/g) of endoxylanase (Y) was taken as a response from the 30
sets analyzed (Table 14.2).

14.2.7 Statistical Analysis

Response surfacemethodologymay be summarized as a collection of statistical tools
and techniques for constructing and exploring an approximate functional relationship
between a response variable and a set of design variables [35]. The response variable
was fitted by a second-order model in order to correlate the response variable to the
independent variables. The general form of the second-degree polynomial equation
is:

Yi = βo +
∑

βi xi ÷
∑

βi i x
2
i ÷

∑
βi j Xi X j (14.1)
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Table 14.2 Experimental design and results of the central composite design

Run Variables Response (Y)

X1 X2 X3 X4 Endoxylanase activity (IU/g)

Incubation
days

Substrate
ratio

Solid:liquid
ratio

pH Actual
value

Predicted
value

1 5 1:5 1:1 5.0 161.16 169.36

2 5 1:5 1:1 5.0 162.10 169.36

3 4 1:6 1:1.5 5.5 92.65 91.36

4 4 1:6 1:0.5 5.5 61.51 59.74

5 4 1:6 1:1.5 4.5 229.16 184.15

6 4 1:6 1:0.5 4.5 170.51 152.22

7 6 1:6 1:0.5 5.5 71.10 97.51

8 6 1:6 1:0.5 4.5 94.31 91.60

9 6 1:4 1:1.5 5.5 146.89 179.90

10 6 1:4 1:0.5 5.5 121.26 114.14

11 6 1:4 1:1.5 4.5 163.58 143.22

12 6 1:6 1:1.5 4.5 80.35 95.59

13 6 1:6 1:1.5 5.5 131.28 101.20

14 4 1:4 1:1.5 4.5 215.69 208.0

15 5 1:5 1:1 5.0 163.32 169.36

16 6 1:4 1:0.5 4.5 91.13 107.15

17 5 1:5 1:1 5.0 161.23 169.36

18 4 1:4 1:1.5 5.5 161.72 142.29

19 4 1:4 1:0.5 4.5 132.05 140.0

20 4 1:4 1:0.5 5.5 79.11 78.59

21 5 1:5 1:2 5.0 38.46 74.56

22 5 1:3 1:1 5.0 209.63 191.99

23 7 1:5 1:1 5.0 90.76 56.85

24 5 1:5 1:0 5.0 35.56 6.87

25 5 1:5 1:1 4.0 152.20 177.92

26 5 1:7 1:1 5.0 100.46 125.51

27 5 1:5 1:1 5.0 163.32 148.03

28 5 1:5 1:1 5.0 162.39 148.03

29 3 1:5 1:1 5.0 38.54 79.86

30 5 1:5 1:1 6.0 140.42 122.11

Here, Yi is the predicted response; Xi X j are input variables which influence the
response variable Y; β0 is the offset term; βi is the i th linear coefficient; βi i is the i th
quadratic coefficient and βi j is the i j th interaction coefficient.



312 V. Kapoor and D. Nandan

Table 14.3 List of used GA parameters

S. No. Parameter Value

1. Population size 100

2. Length of chromosome 40

3. Selection operator Roulette method

4. Crossover operator Single point operator

5. Crossover probability 0.9

6. Mutation probability 0.01

The second-order polynomial coefficients were calculated using the statistical
software Design-Expert 10.0 (Stat-Ease, Inc., Minneapolis, USA). The data obtained
from RSM on endoxylanase production were subjected to the analysis of variance
(ANOVA). Statistical significance of the model equation was determined by Fisher’s
test value, and the proportion of variance explained by the model was given by
the multiple coefficients of determination, R squared (R2) value. It also includes
Student’s t-value for the estimated coefficients and the associated probabilities p(t).
For each variable, the quadratic models were represented as contour plots (2D).

14.2.8 Genetic Algorithm

The general optimization procedure using a genetic algorithm is shown in Fig. 14.1.
For this reason, the software formulation was made using an objective function from
RSM and the various functions of the GA toolbox on the MATLAB platform so that
the GA can generate a population set that could reproduce and cross among itself in
order to create the best possible solution for a given number of generations.

The program is executed after the program formulation has been completed in
order to obtain optimized process parameters for the desired response endoxylanase
production. The parameters used for GA are shown in Table 14.3. The fitness param-
eter is enzyme activity of endoxylanase obtained by RSM.

The practical constraints imposed during the Friction Stir Welding (FSW) oper-
ations are stated as follows:

Parameter bounds:

• Incubation day
I DL ≤ I D ≤ I DU (14.2)

where IDL and IDUare the lower and upper bounds of incubation day, respectively.
• Substrate ratio

SRL ≤ SR ≤ SRU (14.3)

where SRLandSRUare the lower and upper bounds of substrate ratio, respectively.
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Fig. 14.1 General
optimization procedures for
genetic algorithm

• Solid liquid ratio
SLRL ≤ SLR ≤ SLRU (14.4)

where SLRL and SLRU are the lower and upper bounds of solid: liquid ratio,
respectively.

• pH
pHL ≤ pH ≤ pHU (14.5)

where pHL and pHU are the lower and upper bounds of pH, respectively.
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14.3 Results and Discussion

On the basis of initial results of endoxylanase production, the boundary limits of
each variable were determined (Table 14.1). Data from the 30 sets were analyzed to
yield regression equation and regression coefficient (R2). The response Y was fitted
with second-order polynomial equation (14.6).

Y (endoxylanase activity) = 158.70 − 5.75X1 − 16.62X2 + 16.92X3 − 13.95X4

− 19.92X2
1 + 2.68X2

2 + 26.83X2
3 + 0.50X2

4 − 6.92X1X2 − 6.98X1X3 + 24.60X1X4

− 8.02X2X3 − 7.77X2X4 − 0.076X3X4 (14.6)

Perturbation plot (Fig. 14.2) shows the comparative effects of all the physico-
chemical components on endoxylanase activity. In Fig. 14.2, a steep curvature in
incubation days and solid: liquid ratio curve shows that the response of endoxylanase
activity was very sensitive to these factors. The relatively flat lines of substrate ratio
and pH shows insensitivity of the responses to change in these two components of
the medium.

This regression equation is used as the fitness function for GA. The parameters
used for GA are shown in Table 14.3. The result obtained by RSM is considered as
an initial solution for performing GA. The fitness parameter is enzyme production

Fig. 14.2 Perturbation plots
for endoxylanase activity by
Trichoderma reesei Rut
C-30; (A) Incubation day,
(B) Substrate ratio, (C)
Solid:Liquid ratio, and (D)
pH
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Table 14.4 Optimum results and confirmation test

Method
applied

Optimum parameter Response
parameter

Actual
Value

% Error

ID SR SLR pH

RSM 4 6 1.5 4.5 184.15 202.37 9.003

RSM+
GA

4 6 1.5 4.5 207.42 2.49

Table 14.5 ANOVA analysis for responses (Y) endoxylanase activity (IU/g)

Source Sum of squares DF Mean
square

F-value Prob >F

For Y

Model 62089.05 14 4434.93 4.24 0.0054

Residual 14650.70 14 1046.48

Lack of fit 14647.22 10 1464.7 1686.34 <0.0016

Pure error 3.47 4 0.87

R2 = 0.8091

Adeq. precision =
8.344

for both RSM and Hybrid RSM-GA methods. Results obtained by both methods are
shown in Table 14.4.

The statistical significance of the model equation was evaluated by the F-test
for analysis of variance (ANOVA). The ANOVA statistics for the response Y is
shown in Table 14.5. The results of the quadratic model indicated that this could be
used to navigate the design space. Table 14.5 evinces that the prob >F-values for
the endoxylanase production is lower than 0.05 indicating that the quadratic model
was significant. The coefficient of determination (R2) that was found to be close to
1 (0.809 for Y) also advocated a high correlation between observed and predicted
values. The “lack of fit test” compares the residual error to the “Pure Error” from
replicated experimental design points. The p-value, lesser than 0.05, for the response
indicates that lack of fit for the model was significant. Adequate precision measures
the signal to noise ratio and a ratio greater than 4 is desirable. The adequate precision
was 8.344. The high values of adequate precision demonstrated that the model is
significant for the process (Table 14.5).

Usually, it is essential to ensure that the selected model provides an adequate
approximation to the real system. By applying the diagnostic plots such as the pre-
dicted versus actual value plot, the model adequacy can be judged. The correlation
coefficient between actual and predicted values for Y was 0.809. This R2 value illus-
trates good agreement between the calculated and observed results within the range
of experiment.
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Table 14.6 Endoxylanase production using agro-residue from fungal strains

S. No. Xylanase
activity

Microorganism Agro
substrate

Optimum physical
conditions

References

1. 92 IU/ml Trichoderma
reesei Rut
C-30

Rice straw pH 4.8; incubation
temperature (29 ◦C);
incubation period (5
days)

[7]

2. 4.62 U/ml Trichoderma
viride

Maize straw Incubation period
(14–17 days); pH
3.5–4.0; incubation
temperature (25 ◦C);
substrate concentration
(5%)

[15]

3. 43.8 U/ml Penicillium
sp. SS1

Wheat bran,
rice bran and
sawdust

Incubation period (4
days); pH 9.0;
incubation temperature
(50 ◦C)

[4]

4. 1906.5 U/ml Aspergillus
niger

Palm leaf Inoculum concentration
(1 ml); incubation
temperature (28 ◦C);
moisture level (70%)

[26]

5. 14.44 U/ml Scytalidium
thermophilum

Soy flour – [17]

6. 42.5 U/g Aspergillus
niger

Barley bran Incubation temperature
(35 ◦C); pH 5.5;
moisture level (75%)

[33]

7. 51.43 U/ml Penicillium
glabrum

Brewer’s
spent grain

pH 3.0; incubation
temperature (60 ◦C)

[20]

8. 73.09 U/ml Trichoderma
viride

Pineapple
peel

pH 7.5; incubation
temperature (28 ◦C);
substrate concentration
(2%)

[12]

9. 73.0 U/ml Aspergillus
fumigatus
RSP-8

Sorghum
straw

pH 5.0–9.0; inoculum
concentration
(0.5–2.0%); incubation
temperature (26–34 ◦C);
substrate concentration
(0.5–3%)

[27]

10. 202.37 U/ml Trichoderma
reesei Rut
C-30

Wheat bran,
waste paper

Incubation period (4
days); pH 4.5;
incubation temperature
(50 ◦C); inoculum
concentration (0.2 ml)

Current
study
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Fig. 14.3 Endoxylanase activity profile under the optimal conditions suggested by the model.
endoxylanase activity: substrate ratio = 1:6, solid: liquid ratio = 1:1.5, and pH = 4.5

Fig. 14.4 Contour plot for
the effect of solid: liquid
ratio x incubation day on
endoxylanase activity. Not
plotted variables are fixed at
zero level in the graph

Experimental run 5 (Table 14.2) shows the highest endoxylanase activity (229.16
IU/g). The activity was obtained at incubation day (4), substrate ratio (1WP: 6WB),
solid: liquid ratio (1:1.5), and pH (4.5). The time of the highest endoxylanase activity
(4 days) corresponds to the mid-stationary growth phase which is in agreement with
findings by Liu et al. [22], who reported optimum cultivation time for endoxylanase
activity of Trichoderma viride in SSF between 4 and 5 days. The highest endoxy-
lanase activity was found from the cultivation of mixed substrates of WP: WB in
(1:6) ratio. This result was similar to the Thygesen et al. [34] and Singh et al. [31, 32]
in which cultivation on agro-residual substrate was the favorable operating parame-
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ter for the enhancement of the endoxylanase and α-amylase levels by T. reesei Rut
C-30 and Streptomyces sp. MSC702, respectively. The favorable solid: liquid ratio
for maximum endoxylanase activity reported in this study is mainly at mid or low
levels (1:1.5) of solid: liquid ratio. Gervais andMolin [14] also reported that moisture
content in SSF plays a crucial factor for the success of the process. The optimum
enzyme production was approximately at pH 4.5. Further increase in pH had no sig-
nificant effect on the production of endoxylanase. The results obtained in low pH are
in accordance with the results obtained by Colina et al. [7] who reported the highest
xylanase activity by T. reesei Rut C-30 growing on rice straw at pH 4.8 and also
by Xiong et al. [36] who reported the highest activity of xylanase-I at 4.0 pH. The
highest activity experimentally obtained in the present study according to the CCD
was ∼2.5-fold higher than the activity obtained under conditions previously used in
our laboratory (88.2 IU/g at 4 days, substrate ratio 1:5, solid: liquid ratio 1:1 and pH
4.8).

A validation of the model is given in Fig. 14.3, which shows the cultivation of
T. reesei Rut C-30 for the endoxylanase production under optimal conditions of
substrate ratio (1:6), solid: liquid ratio (1:1.5), and pH (4.5). The maximum endoxy-
lanase activity obtained was 202.37 IU/g in 4 days. In this case, the model predicted
endoxylanase activity of 184.15 IU/g in 4 days. The experimental value was found
to be 9.8% higher than the predicted value, confirming the closeness of the model
to the experimental result. To study the interaction between all the four components
three dimensional curves were plotted. Combined effect of incubation day and solid:
liquid ratio on endoxylanase production is shown in Fig. 14.4 as a contour plot. The
endoxylanase activity tends to be the highest within the range of incubation days 4–5
and solid: liquid ratio 1.1–1.5. Incubation day played a critical role in fungal growth
and it also showed a very strong interaction with solid: liquid ratio. Pairing the other
factors produced a flat response surface showing that these factors had no significant
effect on endoxylanase activity.

In the present study, we found that the high production of endoxylanase can be
achieved by T. reesei Rut C-30, using a mixture of agricultural residues as substrate.
Although many microorganisms have been reported to produce endoxylanase under
solid-state fermentation, T. reesei Rut C-30 was found to have such activity appre-
ciably in the present study. The optimized xylanase activity in the present study was
comparatively higher from most of the earlier reported fungal species using low-
value crude agriculture-based raw materials as a substrate and could be considered
for vast biotechnological applications (Table 14.6). While differences observed in
the production through various fungal strains are basically owing to the critical fer-
mentation parameters and nature of substrates which determined xylanase catalytic
activity.
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14.4 Conclusion

In this work, evidences have been found to determine the optimal growth conditions
for the production of endoxylanase by T. reesei Rut C-30 in SSF using response sur-
face method and Hybrid RSM-GAmethod. The maximal activity of the enzyme pro-
ducedwas 202.37 IU/g for endoxylanase,whenoptimized conditionswere employed.
The enzyme activity predicted by the model at optimal conditions agreed fittingly
with experimental data, thus confirming the model validity. The results obtained
by hybrid RSM-GA are more accurate on the confirmation test. Hybrid RSM-GA
method could be a powerful optimization for estimating optimal response of endoxy-
lanase production by T. reesei Rut C-30. This study is expected to facilitate further
work on the purification of the endoxylanase produced by T. reesei Rut C-30.

Acknowledgements We would like to thank the anonymous referees for their suggestions, which
improved the original version of the chapter.
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Chapter 15
Optimal Duration of Integrated Segment
Specific and Mass Promotion Activities
for Durable Technology Products: A
Differential Evolution Approach

A. Kaul, Anshu Gupta, S. Aggarwal, P. C. Jha, and R. Ramanathan

Abstract Promotion is carried out by firms for effective communication with poten-
tial customers so that response is achieved at different levels namely, awareness,
interest, evaluation, trial, adoption, and market growth for the products. Firms have
limited financial resources and time tomarket any of their products. Promotion activ-
ities on the other hand show diminishing returns. It is imperative for firms to use their
resources judiciously and use scientific methods for related decisions. In this chapter,
we propose an optimization model to determine the optimal duration of a promotion
campaign for durable technology products marketed in a segmented market with an
integrated segment-specific and mass promotion strategy. The proposed model at
the same time incorporates the growth in the market potential due to promotional
activities. There is limited scholarly research available in this domain and aspects of
promotion and marketing environment considered in this study are not considered
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in any other research. Solution methodology based on nature-inspired optimization
algorithm differential evolution is proposed, given the NP-hard nature of the pro-
posed model and the suitability of the method to solve problems with real-valued
decision variable with convergence to a global solution. A real-life case study is
presented to illustrate model application, and test and compare performance with a
similar recent study developed on the assumption of static market size. The proposed
model shows fair results over the comparative study.

15.1 Introduction

Promotion is an important element of the marketing mix used by firms to commu-
nicate with the target markets to create awareness, build interest, and disseminate
information about the features and the value delivered by the product(s). Promotion
also serves to stimulate buying decisions of potential customers, product reinforce-
ment, and expand the size of the potential customer base [1]. While planning for
promotion, a firm is required to focus on several aspects such as budgeting for the
promotion, identification of forms and types of promotion channels, resource allo-
cation, and strategies to be adopted in the different channels and time and duration
of the promotion. In the literature, several scholars have discussed and conducted
studies related to these aspects see [2–6]. In relation to time and duration of the
promotion, mainly three types of promotion strategies are used, namely, continuous,
flighting, and pulsing [7]. The correct strategy to be followed depends on several
factors such as the type of product, availability of promotion resources, and the com-
petitor’s strategy. Products which fall in the category of durable technology have
a typical Product Life Cycle (PLC) characterized by a bell-shaped curve, wherein
the actual shape is dependent upon product type and other marketing variables [8,
9]. Irrespective of the type of promotion strategy used by a firm all products in this
category follow a set pattern where they reach the maturity stage subsequent to the
introduction and growth, after which inevitably sales decline continuously, leading to
the end of PLC. The marginal return from promotion is a decreasing function of time
which is likely to become negligible towards the end of the lifecycle [3, 10–12]. This
makes it essential to study the PLC and determine the optimal time for which promo-
tion activities must be continued. This study aims to analyze the optimal duration of
promotion started at the launch phase of the PLC for a durable technology product
with respect to the continuous promotion strategy. Increasing heterogeneity in the
customer preferences owing to the availability of several product choices, differ-
ences in the disposable income levels, access to information, and emergence of new
retail formats calls for segmentation of the potential market into smaller homoge-
neous segments [13, 14] and conducting promotion targeted to those segments [14].
Availability of several choices for a product also increases the competition among
the firms offering these products. The firms competing in this kind of market try to
create product differentiation in the perception of their potential customers through
promotion and try to gain competitive advantage. For every segment, the promo-
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tion plan is tailored to cater to the preferences of the segment, termed as Below the
Line (BTL) promotion. While BTL promotion customized for segments, serves to
target the segment potential, firms also conduct Above the Line (ATL) promotion
comprising the promotion activities that are largely non-targeted and conducted with
an objective of wider reach and focused on building the brand. Promotion channels
such as national television, print media, and online advertising which have a wider
reach are among the preferred channels for ATL promotion activities, while local
media including local television, print, sponsorships, brand activation, and in-store
promotions are some of the preferred channels for BTL promotion activities [15–17].
A promotion strategy that uses a combination of ATL and BTL promotion activities
is termed as Through the Line (TTL) promotion [2, 15]. Many of the firms in present
times adopt a TTL promotion strategy with the allocation of promotion resources
among the ATL and BTL activities varying across industries and firms. ATL promo-
tions are expected to influence the brand value of a firm along with a wider reach to
the audience. Largely as a result of the influence of ATL promotions and to a lesser
extent due to BTL promotions, the firms also try to reach and influence a larger
potential market. Promotion is carried out not only to target the potential market but
also influence the size of the target market [1, 15, 18, 19]. It is expected that as the
products move through their PLC adoption, the size of the potential market will grow
[16].

There is a fair amount of literature on issues relating to timing and duration of
promotion [20–23]. In this study, we have developed a profit optimization model
to determine the duration of a continuous promotion carried out with TTL strategy
simultaneously considering the growing market potential and tested through a real-
life case study of a durable technology product. To the best of our knowledge there is
no research in the literature that addresses these aspects [21, 22, 24]. The proposed
model is developed on the innovation diffusion model given by [16] which analyzes
the adoption growth of the product under consideration using the TTL promotion
strategy. There are other innovation diffusion models [23] that consider the diffusion
of innovation under the TTL promotion strategy; however these models assume that
the size of the potential market is static and remains constant over the PLC. The
study of [16] has proposed two models considering growing market size (dynamic),
one assuming linear and the other assuming exponential market growth, respectively.
The authors have called the growing market size a dynamic nature of the market.

In this study, the solution methodology based on nature-inspired optimization
algorithm Differential Evolution (DE) is used to solve the optimization models con-
sidering the NP-hard nature of the proposed model. DE algorithms are a class of
nature-inspired optimization algorithms that can be used to solve models involving
real-valued decision variables with faster convergence and certainty of global solu-
tion [25–27]. The model is tested with a real-life application and the results are also
compared to a previous study by [28].

The chapter is organized as follows: in Sect. 15.2, the detailed background of the
study through review of literature is discussed and the research gap is highlighted
along with the contribution of our study. In Sect. 15.3, conceptual framework and
model development is discussed. In Sect. 15.4, the solutionmethodology is described.
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In Sect. 15.5, a real-life case study is presented to validate the application of the theo-
retical model. The results and discussions are presented in Sect. 15.6. Themanagerial
and theoretical implications of the model are highlighted in Sect. 15.7. Section15.8
concludes the chapter and provides the future scope of research in this field.

15.2 Literature Review

Over the years, researchers have attempted to study the various aspects related to
the development of promotion strategies including the time dimension of promotion
planning. One of the initial studies in this direction is by [29], where the author pro-
posed a dynamic optimization model to determine the optimal long-run equilibrium
level of advertising using the sales advertising response model by [30]. The findings
suggested that the level of advertising is a non-monotone function of the rate of decay
parameter. Reference [31] followed a two-stage approach to make an assessment of
the promotion policy in medium and long terms for mature product categories. In
this research, authors studied the long-term effects of different types of advertising
and promotion orientation (price and non-price) on consumers’ price sensitivity in
the packaged food industry. The results showed that the size of consumer popula-
tion sensitive to price and promotion increases over time. Increased expenditure on
promotion may not achieve long-term trends in terms of market share. Mahajan and
Muller [10] conducted a comparative analysis between the pulsing and continuous
advertising strategies. The research determined the optimal timing and number of
pulses for a particular data setting. The findings of the study suggested that a shaped
advertising response function is preferable in case of the pulsing strategy. In line with
the results of the above studies, several researchers discussed the diminishing effect
of returns of advertisement expenditure as an important phenomenon in determining
the level and timing of advertisements [3, 11, 12]. Smith [32] discussed that product
differentiation as well as market segmentation are important for a successful market-
ing strategy. The study also highlighted consideration of cost as an important factor
in determining the level of product differentiation and segmentation. In marketing
literature, several studies discuss the fact that market segmentation facilitates man-
agement of the consumer heterogeneity and that promotion strategies in segments
are to be customized to the needs of the segment [33–36]. The researchers have also
highlighted the implementation issues in segmentation strategy for promotion such
as those related to cost, financial and market benefits, practical constraints, etc., and
suggested the use of a structured procedure and planning. Jobber [37] studied the
effectiveness of BTL promotions. The study discussed that when the sale of products
is conducted in large supermarkets which stock several product choices for buyers it
becomes important for marketing firms to invest in BTL promotions for local sales
along with ATL promotions. Schultz [2] discussed the growth of BTL promotion
activities by marketers in the United States. The study highlighted that traditionally
firms used ATL promotion to manage brands through the traditional media, however
with the growth of sales promotion the use of BTL promotion activities has increased.
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Over the years, marketers have used different combinations of ATL and BTL promo-
tions known as TTL promotion strategies customized to their products and markets
[38, 39]. Burrato et al. [40] conducted a study that analyzed the advertising of new
products in segmented markets and developed a profit optimization model based
on advertising intensity in segments and goodwill created. The study assumed two
types of advertising—mass advertising that influences the entire market and creates
an effectiveness spectrum and target advertising for segments. Jha et al. [23] proposed
an innovation diffusion model to describe the adoption level of durable technology
products over the PLC incorporating the effect of a TTL promotion strategy. The
study assumed that the market share of such products remains constant over the PLC
and also ignored the repeat purchase behavior like similar studies in this area such
as [41]. The marketing literature discusses that along with creating awareness and
motivating a targetmarket for purchase decision effective promotion brings growth in
the size of the target market and develops customer loyalty [42]. Aggarwal et al. [16]
incorporated these aspects in their study and proposed diffusion models considering
dynamic market size and repeat purchasing behavior. Given the different promotion
strategies available; it is noteworthy that firms do not have infinite resources. The
resources both in terms of time and finances are limited in nature. Firstly, considering
the diminishing returns of promotion over the product life cycle firms are required to
determine the time up to which the product is to be marketed [3, 11, 12]. Secondly,
according to the literature on technology substitution in marketing in the case of
durable technology products firms constantly innovate and introduce new products
before their earlier products become obsolete to remain competitive. It is important
for firms to introduce new products at a strategic time such that the time to market the
new product matches or exceeds the industry target and they are able to make desir-
able returns from the previous products [43]. Once the new products are introduced
the earlier products diffuse in the market mainly through word of mouth effects and
price promotions. Thus it is essential to determine the duration of direct promotion
and the optimal resources to be utilized in promotion [44–46]. Various authors have
proposed different strategies for the determination of the duration of different forms
of promotion. Aggarwal and Vaidyanathan [47] in their research conducted two stud-
ies. In the first study for fast-moving consumer goods, authors determined that short
duration (time-limited promotion) has a greater impact on the purchase of products as
compared to long-term promotions (time-independent promotion). The second study
in relation to durable technology products discussed that limiting the validity of the
promotion has an impact on purchase behavior. The discussion by Esteban-Bravo et
al. [21] focused on the frequency and interval of promotions. The researchers high-
lighted the importance of planning for non-price promotions from the point of view
of the duration. The objectives were to maximize the profit taking into account the
decay in economic returns with time. The authors proposed a dynamic optimization
model to determine the optimal duration of a promotion campaign assuming that
customer decision follows a state-dependent Markov process at the aggregated level.
Cetin [20] proposed a mathematical model to establish the optimal time duration of
an advertising campaign for a technology innovation such that the profit is maxi-
mized. The revenue is taken as a function of adoption level, measured using a pure
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external influence adoptionmodel, fixed cash flow of advertising cost, and fringe cost
independent of time. Beltov et al. [22] aimed to study the price promotions, time,
and duration of promotion for sales in retail stores. A dynamic optimization model is
proposed assuming two competitive brands under retail sales and price promotions
are implemented on one brand at a time. Devlin et al. [48] discussed the effect of time-
limited price promotions on consumers. An experimental comparative assessment is
made to assess the effect of time-limited price and non-time-limited price promotions
on consumers, which helped in future decision making. Results show that no direct
relationship exists between time-limited promotions and purchase behavior. Lin and
Lin [24] discussed a model in which they establish the duration of the promotion
campaign before reaching a steady-state assuming two competitive products in the
market. AMarkovian profit maximization model is proposed integrating entropy and
diffusion theory. The study contributes by implementing the theoretical theories to
model the problem for a case of the canned coffee market in Taiwan. Some of the
models cannot be generalized. Duran et al. [49] developed a model to determine the
optimal stopping time of seasonal ticket sales for a sports and entertainment event
and start time of single event ticket sales. It was assumed that demand follows a
Poisson process. The objective was to maximize the profit resulting from the sales
of the tickets so that sufficient demand for the seasonal tickets is achieved giving
adequate time for the sale of single tickets. Similar to the study of Cetin [20] that uses
a pure external influence model for determining optimal duration for a technological
innovation, Aggarwal et al. [44] developed an optimization model based on a mixed
influence model. The use of mixed influence model is supported as social influence
affects product adoption significantly along with the promotion activities as many
adopters wait to see the response from the social influences before adopting the prod-
uct. The proposed solution methodology uses DE algorithm to solve the model. The
study by Lo et al. [50] looked at the problem of optimal duration from the point of
view of determining the time frame of promotion (time-lapsed and time to go) for
group buying deals for the tourism and hospitality industry similar to Duran et al.
[49] using analysis of covariance. The combined effect of time lapsed and time to go
helps to achieve the optimum sales of group-buying deals given a 5-day promotional
period. Through this study restaurateurs and group-buying websites can determine
the ideal time for promotion duration to generate sales. Danaher et al. [51] in their
research focus on the effect of mobile-coupons (m-coupons) on the response of the
customers. The response is considered in terms of time, place at which the coupons
are delivered, and the duration for which the coupons are valid. It is observed that
the length of expiration must be shortened to persuade urgent purchase. Although
m-coupons exist, the traditional coupons still dominate over the m-coupons. Kaul et
al. [28] studied the optimal duration of promotion campaign for durable technology
products promoted in a segmented market under the TTL promotion strategy. The
objective of the proposed model is to maximize the profits based on adoption level
using amixed influence diffusionmodel under the TTL strategy proposed by Jha et al.
[23]. The authors assumed that market size remains constant (static) throughout the
PLC and ignore the growth of market due to promotion. The proposed study caters
to this research gap by developing an optimization model for determining the opti-
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mal duration of promotion of durable technology products under the TTL promotion
strategy considering a growing potential market. The proposed optimization model
is an NP-hard problem due to the complex non-linear mathematical form of the dif-
fusionmodel used to describe the product adoption level. For a given problem having
functions with mathematical forms for which it is difficult to establish mathematical
nature (convexity), and involve multiple parameters and variables, it is important to
decide a suitable method for handling such a problem. Nature-inspired optimization
algorithms, also called soft computing algorithms, find applications when the global
optimization methods are not applicable. In the literature, several soft computing
algorithms and their versions are available. This research uses DE algorithm because
the algorithm can handle real-valued decision variables, shows faster convergence, is
easy to implement and computations are simple, fast, and reliable. The algorithm can
be implemented without knowing the mathematical nature of the functions involved
in the model [25, 26, 52, 53]. From the basic DE method by Storn and Price [25]
to the various new hybrid versions as discussed by Das and Suganthan [27], there
has been a significant development in research in relation to the DE algorithm. Storn
and Price [25] discussed the differential evolution approach for non-linear and non-
differentiable continuous space functions. The authors established that the method
converges fasterwithmore certainty compared to several well-known and established
global optimization methods. Liu and Lampinen [54] discussed the new version of
the differential evolution algorithm for fuzzy logic controllers for adapting to the
search parameters for mutation and crossover operations. The experimental results
have been shown for standard test functions and showed the superiority of the new
algorithm. Das et al. [55] discussed the case of the performance of the DE algorithm
for the case when the fitness functions are noisy and continuously changing. The
authors have proposed two improved DE algorithms for achieving the global optima
for noisy functions. Das and Suganthan [27] discussed an extensive literature for
the period 1995–2010 on the different variations in DE and the various applications
which have been studied. Tasgetiren et al. [56], presented a Discrete DE (DDE)
algorithm for solving the no-wait flowshop scheduling problems. Tasgetiren et al.
[57] used DDE algorithm to obtain the solution of the single machine total weighted
tardiness problem with sequence-dependent setup times. The DE algorithm is use-
ful to find a global optimal solution for highly non-linear and non-convex problems
(Tsafarakis) [58].

15.2.1 Literature Gap and Research Motivation

Initial studies in the area of promotion duration are discussed from the point of
view of pulsing, see Mahajan and Muller [10]; Balakrishnan and Hall [11]; Sethi
[29] or price promotions [22]. Some others have considered the specific cases of
duration for the validity of different types of promotion coupons and their effects
on the purchase intentions of the potential adopters [51]. In other cases, the time
limits on the duration of the promotions and the effects on purchase are considered
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[47, 50]. There has been an emphasis on the fact that, as time progresses, there is
a diminishing effect on the marginal rate of return due to promotion. Therefore, it
becomes imperative for marketers to analyze the duration for which the promotion
must be continued so that the promotion remains lucrative for them. Several authors
have underscored the importance of finding out the optimal time and duration for a
promotion with respect to different products or markets [20, 21, 24, 44]. Though
there has been research to determine the optimal duration of promotion in the extant
literature, there is limited research that has considered the segmented nature of the
market. As discussed earlier, segmentation of the potential market is increasingly
carried out bymarketers as an important element of promotionmix so as to customize
the positioning of their products in the various segments. It allows the development
of promotional mix with respect to segments and targets the potential segment with
segment-specific promotion strategy along with promotion carried out by means of
mass media catering to the mass market, known as TTL promotion strategy [15, 17,
44]. Distinguishing features of this research are as follows:

• Profit optimization models are proposed to determine the optimal length of the
promotion period for durable technology products over the PLC.

• The proposed model is developed considering the market segmentation strategy
followed by marketers currently to increase the effectiveness of its promotion
activities. Under the segmented promotion strategy, given the individualistic pref-
erences and increasing heterogeneity of customers in targetmarkets, the promotion
activities are customized to cater to smaller segments along with mass promotions
for brand establishment and accelerate market growth. Though the marketing lit-
erature discuses such integrated TTL promotion activities, the analytical studies
are very limited in this area.

• The model incorporates the coefficient of growth in segment potentials due to the
effect of promotion. The proposed study seems to be considering this aspect in
promotion duration studies for the first time. The earlier studies in this area are
based on static market size assumption.

• The proposed model finds practical application to study the effectiveness of both
ATL and BTL promotion strategies, evaluation and allocation of resources among
ATL and BTL promotions, facilitates decisions related to duration of promotion
activities, and decisions related to new product introductions and technology sub-
stitutions.

• The proposedmodels are tested on real-life data using nature-inspired optimization
algorithmDE to solve themodels, comparedwith previous research, and sensitivity
with respect to resource availability is conducted on the decision variable.

15.3 Conceptual Framework and Model Development

The conceptual framework of the proposed study is shown in Fig. 15.1.
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Fig. 15.1 Research framework

15.3.1 System of Notations

S Number of market segments
i Index for segments; i = 1, 2, . . . , S

Ni (.) Expected number of potential adopters in i th segment by time t
N i Expected initial market size in i th segment by time t

N (.) Expected total potential adopters by time t
bi , βi Diffusionmodel parameters for external and internal influence in i th segment
xi (t) Instantaneous rate of promotion in the i th segment
Xi (t) Cumulative segment specific promotion efforts in i th segment by time t
X (t) Cumulative mass promotion efforts by time t
Ni (.) Expected number of adopters in i th segment by time t
Ri (t) Revenue earned in i th segment by time t
Ci (t) Variable cost incurred in i th segment by time t
FCi Fixed cost in i th segment
ai Fixed cash flow on promotion per time unit in i th segment
A Fixed cash flow on mass promotion per time unit

ωi ′, ωi ′′ Unit sale, cost price of the product in the i th segment
ωi Profit per unit in the i th segment; (ωi = ωi ′ − ωi ′′ )
αi Coefficient of mass promotion in i th segment ; αi ∈ [0, 1)
gi Coefficient of dynamic market size in i th segment; gi ∈ [0, 1)
N ∗
i Minimum market share to be achieved in i th segment

N ∗ Minimum market share to be achieved in total market
r Present value factor
Z Promotion budget

φ(t) Profit function
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15.3.2 Model Development

Thus, the model is developed as follows:

1. A durable technology product is considered, promoted in a market divided into
S homogeneous segments. The product diffuses in the market with time and
follows a typical PLC described by four stages—introduction, growth, maturity,
and decline. The product is promoted to spread the awareness, accelerate the
adoption, and increase market potential. The marginal revenue due to promotion
decreases on account of diminishing returns that call for a trade-off between
adoption level achievable and the promotion expenditure. Profit maximization in
such a case can be achieved while determining the extent of promotion duration.

2. Adoption growth is governed by the external (due to promotion) and internal
influences (word of mouth) over time.

3. The product is marketed in each segment using a targeted BTL promotion strategy
tailored for segments according to the segment characteristics and promotion
media preferences. The segment-driven promotion strategies are supported with
ATL promotion strategy formass promotion to cater to thewider potential market.

4. With the spread of product awareness due to promotion, internal influences, and
other factors such as population growth and economic changes the market poten-
tial grows in each segment.

5. Firms have finite promotion resources to spend.
6. The total profit realized from all the segments by any time (say t) is calculated

as the difference between revenue obtained from adoption by time t and the
expenditure on fixed costs and mass and segmented promotions.

The profit function based on above considerations is formulated as follows:

max φ(t) =
S∑

i=1

e−r t (Ri (t) − Ci (t) − ai (t)) − FCi − AX (t)e−r t

=
S∑

i=1

e−r t (ωi ′Ni (Xi (t)) − ωi ′′Ni (Xi (t), X (t)) − ai Xi (t)) − FCi − AX (t)e−r t

=
S∑

i=1

e−r t (ωi Ni (Xi (t), X (t)) − ai Xi (t)) − FCi − AX (t)e−r t

In equation (1), Ni (Xi (t), X (t)) represents the adoption level of the product by
time t satisfying assumptions (1–4). The adoption measurement model proposed in
Aggarwal et al. [16] satisfies diffusion environment defined in assumptions (1–4),
in which is developed on the assumption that the rate of adoption with respect to
promotional effort intensity is proportional to the remaining number of non-adopters
for durable technology products marketed in the segmented market under internal
and external influences. The external influence is the result of joint effect of mass and
segment-specific promotion activities. The authors proposed different mathematical
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functions to describe the promotional intensity functions and to describe the growth
ofmarket potential. The adoptionmodels in Aggarwal et al. [16] are briefly described
below.

DiffusionModel 1 (M1):Assumesmarket size growsexponentially in response
to the external and internal influences, i.e.

Ni (Xi (t), X (t)) = Nie
(gi Xi (t)+αi Xi (t)) (15.1)

The adoption model is given as

Ni (Xi (t), X (t)) = Nibi
bi + gi

[
egi (Xi (t)+αi X (t)) − ebi (Xi (t)+αi X (t))

1 + βi e−bi (Xi (t)+αi X (t))

]
∀(i = 1, 2, . . . , S)

(15.2)
Diffusion Model 2 (M2): Assumes the market size grows linearly in response to
the external and internal influence, i.e.

Ni (Xi (t), X (t)) = Ni gi (Xi (t), αi (X (t))) (15.3)

The adoption model is given as

Ni (Xi (t), X (t)) =
Ni

1 + βi e−bi (Xi (t)+αi X (t))

[
gi (Xi (t) + αi X (t)) + (1 − e(−bi (Xi (t)+αi X (t)))))

(
1 − gi

bi

) ]
,

(15.4)

∀ i = 1, 2, . . . , S. In this study, we assume that the product adoption level in seg-
ments can be described according to diffusion models M1 and M2. The study by
Aggarwal et al. [16] assumes that given the dynamic nature of the potential market,
the nature of adoption in each segment follows a similar mathematical form with
different parameter values. For determining the promotion duration, we can con-
tinue with the assumption and use either model M1 or M2 for all the segments in
the profit maximization model. On the other hand, the best-fit dynamic market size
adoption model could be established for each segment, which is then used in the
profit optimization model. The results are presented for all cases in the case study
section.

In the literature, mathematical functions are proposed to describe the promo-
tion effort expenditure as a function of time assuming instantaneous rate of pro-
motion expenditure is proportional to the available balance of promotion resources.
Under this assumption exponential (μi (1 − e−γi t )), Rayleigh (μi (1 − exp(−γi

t2

2 ))),
Weibull (μi (1 − exp(−γi tmi ))), and logistic (

μi

1+γi (e(−γi t))
) forms of promotion effort

functions were proposed with usual meaning of notations [16]. We assume the seg-
ment specific as well as mass promotion effort functions are described by one of
the above best-fit forms estimated from the data collected. The parameters of adop-
tion growth models and Promotion Effort Functions (PEFs) can be estimated from
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the observed adoption and promotion expenditure data for some initial periods or
past data of similar products. The values of cost and sales price, parameters of fixed
cash flow on differentiated and mass promotions, and fixed cost in each segment are
provided by the firm. Substituting the values of the parameters, the profit function
can be optimized to obtain the optimal value of promotion duration. The optimal
value of promotion duration as determined from profit function (1), which imposes
no restriction on the promotion effort expenditure. Further, it is observed that the
firm has limited financial resources available. In such a case, a constrained profit
optimization model is defined as budgetary restrictions as given in constraint (15.5)
below:

S∑

i=1

ai Xi (t) + AX (t) ≤ Z (15.5)

The potential customers in every segment possess unique characteristics, each seg-
ment responds uniquely to the external and internal influences in terms of product
adoption. Product diffusion may be fast in some segments and comparatively slower
in other segments. Profit maximization under budgetary restrictions could result in
a solution such that a high market potential is captured in segments with higher
adoption rates and relatively low in segments with a slow response to the diffusion
process. The firm may want to ensure a certain minimum market share that it might
want to achieve in the respective segments and the market as a whole. Under such
a situation additional constraints on the minimum level of adoption to be attained
in each segment could be imposed along with the constraint on the minimum level
of combined adoption attainable by the optimal time. Equations (15.6) and (15.7)
below defines these constraints, respectively.

Ni (Xi (t), X (t)) ≥ N ∗
i ∀ i = 1, 2, , S (15.6)

S∑

i=1

Ni (Xi (t), X (t)) ≥ N ∗ (15.7)

Additional constraints can be imposed on the proposed models depending on a spe-
cific application such as budgetary restrictions on aparticular segment and/or strategy.

15.4 Solution Methodology

The adoption growth models as well as PEFs in the objective function are described
by non-linear functions. The constraints in the proposedmodel are in the form of non-
linear inequalities. Due to the non-linear nature of component functions, the overall
objective function is a complex non-linear function. The convexity of the proposed
optimization model is difficult to establish. Nature-inspired optimization algorithms
[62] are widely studied, successfully used, and accepted methods in the recent years
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for solving optimization models. Researchers have developed methods in this class
of solution methodology that converge to a nearly global solution. We propose to
use DE algorithm as methodology to solve the models formulated in this study. The
proposition is supported from the literature wherein the authors Price and Storn [26]
established that themethod is suitable to solve non-linear optimization problemswith
real-valued decision variables. The algorithm converges faster with more certainty
compared to several well-known and established global optimization methods. The
step-by-step approach to solve the proposed model using DE algorithm is given in
Appendix A. Solving an optimization model with DE requires the value of several
parameters of the methodology apart from the model parameters. The literature of
DE has discussed the values of the model parameters and based on the studies we
have chosen the values (for details on DE algorithm and determining values of its
parameters reader can refer to [52, 59, 60, 62].

In the literature (refer Storn and Price [26]; Ali and Törn [61], Vesterstrom and
Thomsen [62] it is suggested that F which is the scaling factor lies in the range
F ∈ [0.5, 1.2]; Cr defined as crossover probability lies in the range Cr ∈ [0.8, 1];
N P = 10 ∗ D (size of population) and D is defined as the dimension of the model,
equal to the number of decision variables, here D = 1 (corresponding to t = duration
of promotion). The chosen values of the parameters in the current study are taken as
F = 0.7,Cr = 0.9 and the roulette wheel process is used for selection of the base
vector. The size of the population in the case is taken to be N P = 15, 15 � 10 ∗ D.
The DE algorithm is coded on the DEVC++ on an Intel(R) Core(TM) i3 CPU@2.13
GHz, 2 GB RAM, Windows 7 operating system for solving the case study.

15.5 Case Study

15.5.1 Data Description

In this section, we validate and test the performance of the proposed model through
numerical illustrations. The results of case illustrations are also compared to a similar
studyKaul et al. [28] for verification of results and establishing the performance of the
proposed model. The models proposed in Kaul et al. [28] are developed assuming a
static market size under an integrated segment-specific and mass promotion strategy.
The adoption data of a new durable technology product marketed in four segments
with respect to mass and segment-specific promotion (TTL) over a period of an
initial 24 months is used. The data and parameters of the model are adopted from the
studies [16, 28]. Estimates of the parameters of the adoption models (M1 and M2;
equation 3 and 5, respectively) are taken fromAggarwal et al. [16] and the remaining
parameters of the objective function (equation 1) are taken from (Kaul et al.) [28].
The data is shown in Table 15.1.

The results are computed based on the proposed model for three different cases
and compared with [28]. The cases are described in Table 15.2 as illustrations 1–
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4. In illustrations 1 and 2 diffusion models (M1 and M2), respectively, describes
the adoption level in all segments. In illustration 3, the best-fit dynamic market
size models are taken for measuring the adoption level in all segments. The best-fit
adoption model is determined based on the Mean Square Errors (MSE) of estimates
reported inAggarwal et al. [16] and calculated using the non-linear regressionmodule
in SPSS software [63]. It may be noted here that the form of the promotion effort
function is also based on the best-fit model from the models described in Sect. 15.2.
Illustration 4 corresponds to the optimization model for promotion duration in Kaul
et al. [28] used to draw comparison.

15.6 Results and Discussions

The unconstrained profit maximization model is solved for all the illustrations as
given in Table 15.1 usingDE algorithmwith parameter values discussed in Sect. 15.4.
The results are as shown in Table 15.3.

It can be seen from Table 15.3 that optimal duration of promotion campaign
for illustrations 1–4 (refer Table 15.2) is 46.97, 35.68, 46.74, and 37.76 months
,respectively. Comparing the results of the proposed model with the study Kaul et
al. [28], it can be seen that in case of illustrations 1 and 3 corresponding to the
adoption measurement models with exponential market growth in each segment and
best-fit models, respectively, higher expected profits are achievable. That is the study
Kaul et al. [28] underestimates the profit. However, the expected profit achievable in
illustration 2 underestimates the results. The underestimation in this case is accounted
for by the assumption of linear growth model for market size, that doesn’t fit well on
the data under consideration. Further continuing the promotion for optimal times as
shown in Table 15.3, raises the requirement of promotion budget, which is at a much
higher level as compared to the proposed budget of INR160 million. To control the
promotion spending budgetary restriction of INR160 million as given in constraint
(6) is imposed on the model and solution is obtained as given in Table 15.4.

The optimal promotion duration (t*) determined under a budgetary constraint of
INR160million is 24.19months for all the illustrations. This could be attributed to the
similar mathematical nature of the models. However, the results in Table 15.4 shows
significant variation in the expected adoption level achievable and expected profit
between the models, with the highest profit of INR 21,081,102,172 corresponding to
illustration 1 (exponential market growth model in adoption measurement model).
The profit achievable according to Kaul et al. [28] is INR 13,411,166,872 at the level
of INR 160 million expenditure in promotion which clearly shows underestimation
of results as expected with the optimization model Kaul et al. [28] developed on the
assumption of static market size. The results of unconstrained as well as constrained
models with budgetary restriction show that the results of the Kaul et al. [28] model
underestimates the results for the data under consideration. This suggests that the
proposed model performs better than the Kaul et al. [28] model for the case under
consideration. Further, the application of the proposed model is explored imposing
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Table 15.1 Parameters of the model

Segment S1 S2 S3 S4 Mass
promotion

Sales price (in
INR)

457000 468000 446000 453700 4 million

Variable cost
(in INR)

388000 403000 378200 393500 4 million

Unit
promotion
cost (in INR)

1300000 1020000 1820000 1720000 4 million

Fixed cost 40 million 40 million 40 million 40 million

Proposed
promotion
budget

160 million

Present value
factor

0.02

Parameters of diffusion model (M1)

Ni 41330 66633 57232 162318

bi 0.123077 0.428514 0.476789 0.336248

βi 31.7 176.76 220.09 396.09

αi 0.339 0.2 0.213 0.24

gi 0.0453 0.0662 0.0509 0.015

MSE 1128.17 5690.43 8144.91 143545.00

Parameters of diffusion model (M2)

Ni 98435 94427 50631 154853

bi 0.116946 0.445413 0.481654 0.296856

βi 58.91 259.51 208.54 399.71

αi 0.25 0.2 0.2 0.33

gi 0.0597 0.05 0.0964 0.0202

MSE 59571.97 7242.82 5787.91 113393.58

Best-fit PEF Weibull Exponential Exponential Exponential Exponential

PEF parameters

μi 41.56 14.66 12.27 33.41 77.89

γi 0.0034 0.0265 0.0274 0.0155 0.01485

mi 1.72 1 1 1 1

Source Aggarwal et al. [16]; Kaul et al. [28]
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Table 15.2 Description of numerical illustrations

Diffusion model used to describe the adoption level in segments

Segments Illustration 1 Illustration 2 Illustration 3 Illustration 4

S1 Proposed model
with model M1 to
describe adoption
level (equation 3)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Proposed model
with model M1 to
describe adoption
level (equation 3)

Results of Kaul et
al. [28] for
comparison of
results

S2 Proposed model
with model M1 to
describe adoption
level (equation 3)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Proposed model
with model M1 to
describe adoption
level (equation 3)

Results of Kaul et
al. [28] for
comparison of
results

S3 Proposed model
with model M1 to
describe adoption
level (equation 3)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Results of Kaul et
al. [28] for
comparison of
results

S4 Proposed model
with model M1 to
describe adoption
level (equation 3)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Proposed model
with model M2 to
describe adoption
level (equation 5)

Results of Kaul et
al. [28] for
comparison of
results

additional restrictions. Restriction of budget to INR 160 million cuts down the per-
centage adoption level achievable by t∗ = 24.19 months. For example in illustration
1, the expected percentage adoption level by t∗ = 24.19 months in segments S1–
S4 is 28.85%, 55.79%, 65.59% and 81.57% respectively and total adoption level
is 51.97% compared to 73.03, 86.6, 90.34, and 95.72% in segments and 83.64%
in total according to the unconstrained model. Similar results are obtained for the
other cases as shown in Tables 15.3 and 15.4. Referring to earlier discussion in Sect.
15.3, firms may also set the minimum adoption level to be achieved in each segment
with constraint (15.6) as well as restriction on the total market share (constraint
(15.7)). The budget restriction and minimum achievable market size restrictions are
contradictory in nature and may lead to infeasibility of the optimization model. DE
provides a compromised solution in case of infeasibility. Here we also present the
sensitivity analysis on the proposed model (for illustration 1–3) with different values
of budget constraint (15.5). For sensitivity analysis of Kaul et al. [28] model (illus-
tration 4) reader may refer to original study. The budget is increased by 5% of the
previous value in the iterations of the sensitivity analysis. The results of sensitivity
are illustrated graphically here only for illustration 1 in Fig. 15.2. Fig. 15.2 shows
the expected adoption levels (in %) achievable in each segment and total market
for different values of budget for illustration 1. Further Fig. 15.3 shows the com-
parative analysis of the profits achievable for illustrations 1–3 for different levels of
budgetary restrictions. Figure15.4 shows the corresponding percentage change in
profit for every 5% increase in the budget. From Fig. 15.2 it can be inferred that the
expected adoption level and profit increase on increasing the promotion resources
for all the illustrations (1–3). However, Fig. 15.4 depicts that the increase in profit is
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Table 15.3 Results of unconstrained model

Optimal
promotion
duration (t∗)
(in months)

Segment Expected
adoption level
by t∗

Expected %
adoption level
by t∗

Expected level
profit (in INR)

Expected
promotion
expenditure
(in INR)

Illustration 1

46.97 S1 312,586.10 73.08

46.97 S2 193,319.29 86.6

46.97 S3 124,237.80 90.34

46.97 S4 231,767.01 95.72

Total 861,910.20 83.64 21,822,746,005 262,826,610

Illustration 2

35.68 S1 195,326.94 57.45

35.68 S2 122,547.35 73.38

35.68 S3 88,169.16 73.90

35.68 S4 176,384.89 75.93

Total 582,428.36 67.83 18,365,804,761 218,675,849

Illustration 3

46.74 S1 310,914.14 73.08

46.74 S2 192,631.71 86.61

46.74 S3 114,052.53 86.42

46.74 S4 226,380.30 90.94

Total 843,978.69 82.04 21,465,844,625 262,018,777

Illustration 4

37.76 S1 200,350.11 69.57

37.76 S2 155,113.23 99.05

37.76 S3 102,743.12 96.04

37.76 S4 179,509.19 80.39

Total 637,715.64 82.30 19,317,800,000 227,722,672

at a decreasing rate due to the diminishing rate of return of promotion activities. The
sensitivity analysis provides insight to the decision-makers in deciding an optimal
level of spending on promotion and the time duration of promotion activities. The
figures have been presented for some of the illustrations; results for other illustrations
can be observed similarly and not shown here because of similarity in results.

Further results are obtained by imposing the restriction in constraints (15.6) and
(15.7), setting N ∗

i = 50% and N ∗ = 60% to obtain a trade-off between the budget
and the market size aspiration restrictions for the proposed models. Detailed results
for this case are shown in Table 15.5. The results for all models are obtained compro-
mising budget and the market share aspiration constraints are satisfied. Here, again
the proposedmodel with exponential market growth in adoptionmeasurement model
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Fig. 15.2 Sensitivity analysis for profit model in illustration 1

Fig. 15.3 Comparative analysis for profit achievable for illustration 1–3

Fig. 15.4 Analysis for
marginal change in profit for
illustration 1
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Table 15.4 Results with budget constraint (Z = INR 160 Million)

Optimal
promotion
duration (t∗) (in
months)

Segment Expected
adoption level by
t∗

Expected %
adoption level by
t∗

Expected profit
(in INR)

I Illustration 1

24.19 S1 123,407.11 28.85

24.19 S2 124,531.78 55.79

24.19 S3 90,203.028 65.59

24.19 S4 197,524.19 81.57

Total 535,666.09 51.97 21,081,102,172

I Illustration 2

24.19 S1 73,077.17 21.49

24.19 S2 56,336.93 33.73

24.19 S3 41,323.40 34.63

24.19 S4 71,581.24 30.81

Total 242,318.75 28.22 9,490,825,709

I Illustration 3

24.19 S1 123,407.11 29.00

24.19 S2 124,531.79 55.99

24.19 S3 41,323.40 31.31

24.19 S4 71,581.24 28.76

Total 360,843.53 35.07 14,364,236,054

I Illustration 4

24.19 S1 70,060.29 24.33

24.19 S2 131,832.95 84.18

24.19 S3 70,634.27 66.02

24.19 S4 66,150.18 29.62

Total 338,677.70 43.70 13,411,166,872

gives the best performance at the same level of promotion expenditure and duration
of promotion.

15.7 Managerial and Theoretical Implications

• Profit maximization for the firm by obtaining optimal duration of the promotion
campaign: As firms do not have unlimited financial resources which they can
invest on the promotion of products, they need to decide the optimal duration
of the promotion campaign such that the profit is also maximized. Apart from
the constraint on financial resources, there is also a diminishing rate of return of
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Table 15.5 Results of unconstrained model

Optimal
promotion
duration (t∗)
(in months)

Segment Expected
adoption level
by t∗

Expected %
adoption level
by t∗

Expected
profit (in INR)

Expected
promotion
expenditure
(in INR)

Illustration 1

34.74 S1 212,810.92 50.00

34.74 S2 156,759.12 70.23

34.74 S3 106,638.00 77.55

34.74 S4 214,235.80 88.48

Total 690,443.85 66.99 22,195,628,124 214,415,302

Illustration 2

34.74 S1 186,296.84 54.79

34.74 S2 118,214.72 70.78

34.74 S3 85,082.75 71.31

34.74 S4 169,631.34 73.02

Total 559,225.66 65.13 17,961,953,101 214,415,302

Illustration 3

34.74 S1 212,810.93 50.02

34.74 S2 156,759.12 70.48

34.74 S3 85,082.75 64.47

34.74 S4 169,631.35 68.14

Total 624,284.15 60.68 20,125,768,054 214,415,302

promotion. The promotion efforts cease to have an effect after a certain amount
of time and it becomes futile to continue the promotion campaign. Through the
proposed model the expected time and financial resources the firm needs to invest
for the promotion of its product in case of durable technology products can be
determined.

• Trade-off between budget and market aspiration level: The proposed model and
solution methodology allows decision-maker to conduct sensitivity analysis at
different levels of budget and market share aspirations and take an appropriate
decision rather than getting a fixed solution.

• Flexibility tomodify themodel with respect to a particular nature ofmarket growth
and promotional effort function. The proposed model is not limited to the use of
market growth and PEFs discussed in the study. A generalized optimization is
developed that can easily be modified according to more mathematical forms of
these functions with respect to a specific situation.

• Comparative analysis between models of literature: A comparison is made of the
proposed model with a recent model in the literature to test the performance of the
proposed model for real-life situations. The comparative model Kaul et al. [28]
was developed on the adoption measurement model that assumes static market
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size. It was expected that with this assumption results would be underestimated.
The results show that the proposed model developed on the adoption model with
exponential market growth performs better than the Kaul et al. [28] model for the
chosen case study establishing the performance of the proposed model.

• Application of nature-inspired optimization algorithm Differential Evolution: The
proposed research comes under the category of an application research of DE
algorithm in the class of nature-inspired optimization. Themethodology presented
in the paper finds implication for academic researchers and practitioners to apply
the method in practice and future research.

15.8 Conclusion and Future Scope

The study proposes a profit optimization model to determine the optimal duration of
promotion for durable technology products marketed in segmented market under an
integrated BTL and ATL promotion strategy. In recent time, this integrated strategy
is increasingly followed by the marketers. Through BTL promotion activities firms
target segment potentials and with ATL promotion strategy the objective is to target
mass market along with influencing the market size. The model is developed on a
recent adoption measurement model that describes the adoption level of PLC under
an integrated ATL and BTL strategy along with incorporating the market growth
due to promotions. There are limited studies incorporating the effect of an integrated
promotion strategy in the literature. The proposed model is tested on a real-life case
study and results are compared with a similar study that is developed on an adoption
measurementmodel to describe the adoption levelwith an assumptionof staticmarket
potential. The assumption of static market size is not realistic as the firms carry out
promotions not only to spread product awareness and motivate purchase decision
but also to establish the brand and stimulate market growth. The proposed model
thus finds more practical application compared to similar studies available in the
literature. The results of the case study also prove the performance of the proposed
model. Further, the model development is carried out adding constraints with an
incremental approach. The decision-makers can easily add and remove constraints
with respect to a particular situation. Nature-inspired optimization methodology,
differential evolution algorithm adds further flexibility in the model by allowing
sensitivity of results for different constraints and levels of restrictions. The immediate
scope of further research identified in the study is to test the model performance with
other soft computing algorithms and conduct sensitivity of DE parameters. Future
research can explore the development of adoption measure model based on other
forms of market growth and promotional effort functions and show applicability of
these models for determining the optimal duration.

Acknowledgements The authors would like to express their gratitude to the referees for the valu-
able comments.
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Fig. 15.5 Steps of Differential Evolution

Appendix (Steps of Differential Evolution)

See Fig. 15.5.
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Chapter 16
A Secure RGB Image Encryption
Algorithm in Optimized Virtual Planet
Domain

Manish Kumar

Abstract The primary aim of this chapter is to provide an optimized, secure RGB
image encryption algorithm using 4D hyper-chaotic system inVirtual Planet Domain
(VPD).We have constructed a newkeyspace, and it shows that the keyspace can resist
brute force attacks infeasible.We have tested the proposed algorithm on standard test
images. We have successfully verified the robustness of the proposed algorithm by
using commonly known attacks such as the differential, cropped, noise, and entropy
attacks. Finally, we compared the proposed technique with existing algorithms, and
the data (shown in tables) confirms that the proposed algorithm is competitive and
can resist exhaustive attacks efficiently.

16.1 Introduction

With advances in the digital era, communication between devices has become more
prominent. In today’s world of cut-throat competition, there is always a better tech-
nique available round the clock with new encryption schemes enabling secure trans-
mission of image data through a network. Every day we transfer much important
information over the Internet; data mostly comprise images. Images have become
one of the most useful information carriers, which is often used for military, med-
ical science, biometric authentication, and online personal photographs [38]. The
most widely known chaos theory was first introduced by Edward Lorenz in 1963
and states chaos when the present determines the future. However, the approximate
present does not approximately determine the future. It means that a small change in
initial conditions would lead to complete desperate outcomes. From the past decade,
many chaos-based image encryption techniques have been proposed [2, 3, 9, 11, 13,
14, 16–19, 21, 24, 26–29, 31, 33, 39, 40, 43–45]. Chaos-based cryptography has
received significant attention because of noise-like signals, ergodicity, mixing and
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sensitivity to initial conditions, which are often connectedwith those of good ciphers,
such as confusion and diffusion. One can find a very close relationship between the
chaos system and in terms of diffusion and sensitivity to initial conditions, as well
as randomness. To generate the random number sequence, author in [31] used the
1D chaotic map. The technique in [9] describes an algorithm for the rapid numer-
ical application of the class of linear operation to arbitrary operation by using the
orthogonal wavelet transform, and due to restriction of the only 1D case provides
small keyspace. The security limitation of the 1D chaotic cryptography leads to the
nonlinear chaotic map, which uses tangent function and algorithm and iterated many
times to provide a high level of security. However, the keystream becomes less sen-
sitive to see [19]. In [39], the authors have suggested that the 1D chaotic map renders
small keyspace and weak security. The shuffling process of the image in [33] offers
the real-time secure 3D chaotic map, with XOR and modulo operator, and can resist
brute force to some extent as compared to fast encryption technique [21] with limited
keyspace [29].

The challenges faced in chaos-based encryption have gained much attention to
researcher’s, to invent secure image encryption techniques [2, 3, 27, 28]. In [26],
an encryption algorithm is based on the Lorenz system. Aiming at the protection of
information many image encryption techniques have been evolved [11, 14, 40, 44].

The two basic concepts of the cryptosystem are confusion and diffusion [45], the
chaotic map generates the pseudo-randomized sequence in [43]. In the first step,
confusion was achieved by scrambling the image pixel, and likewise, diffusion was
achieved bymodifying scrambled pixel values forming the cipher image. Commonly
used chaotic maps (i.e., Logistic, Tent, Sine, and so on) suffer from nonlinear dis-
tribution. In [18], the authors claim that the discrete chaotic map provides difficulty
in the permutation stage of an image. Further, in [13, 17], the algorithm proposed
works only on square images. In order to overcome the drawback of the conventional
permutation-only-type image cipher, the authors have introduced a new significant
diffusion effect in permutation procedure through a two-stage bit-level shuffling
algorithm [16]. A bunch of encryption schemes [7, 10, 25, 36, 37, 41] have ended
up being extremely weak and show deep security flaws that make them sensitive to
various attacks. The keyspace generated from low-dimensional chaotic map gives a
shorter periodicity.

In order to overcome the abovementioned flaws, we have proposed a new, secure
encryption scheme using 4D hyper-chaotic system in the VPD domain. A new for-
mula for a keyspace is derived in such a way that it resists commonly known attacks.
The proposed algorithm provides a secure platform for lossless data transmission.

The rest of the work is organized as follows: in Sect. 16.2, we discussed the key
generation process by using the TLBO algorithm on the 4D hyper-chaotic system. A
virtual planet encoding and decoding scheme is explained.We have elaborated on the
proposed optimized encryption algorithm in Sect. 16.3. In Sect. 16.4, the proposed
algorithmhas been testedwith standard test images, and the security analysis has been
performed successfully. In Sect. 16.5, a comparison between the proposed algorithm
with the methods given in [1, 4–6, 8, 12, 15, 19, 20, 22, 29, 30, 35, 42] has been
done. In Sect. 16.6, conclusion drawn from the present work is mentioned.
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16.2 Optimized 4D Hyper-chaotic System and Virtual
Planet Domain

16.2.1 4D Hyper-chaotic System

A4Dhyper-chaotic systemprovides chaotic behaviorwith aminimumof twopositive
Lyapunov exponents. The main highlighting feature of the 4D hyper-chaotic system
is the sensitive dependence on the initial conditions and the parameters. In the pro-
posed algorithm, one can use any 4D hyper-chaotic system to generate keyspace.
For simulation purposes, we have used a 4D Rössler hyper-chaotic system to gen-
erate keyspace. The Rössler 4D hyper-chaotic system has been given in Eq. (16.1).
The chaotic behavior of this system exists for the initial conditions x = −10, y =
−6, z = 0, w = 10 and the control parameters a = 0.25, b = 3, c = 0, d = 0.05,
and e = 0.0025 as shown in Fig. 16.1. The sensitivity plots for this system are given
in Fig. 16.2.

Fig. 16.1 3D phase portraits of 4D hyper-chaotic system (16.1) in a xyz-plane, b yzw-plane, c
zwx-plane, d wxy-plane
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Fig. 16.2 Key sensitivity plots for the small change in x, y, z, and w sequences: a x =
10 and x� = 10.000000000000001, b y = −6 and y� = −6.000000000000001, c z = 0 and
z� = 0.000000000000001, and d w = 10 and w� = 10.000000000000001, e x = 10 and
x� = 10.0000000000000001, f y = −6 and y� = −6.0000000000000001, g z = 0 and z� =
0.0000000000000001, and h w = 10 and w� = 10.0000000000000001
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ẋ = x + e(−y − z)
ẏ = y + e(x + ay + w)

ż = z + e(b + xz)
ẇ = w + e(−cz + dw)

⎫
⎪⎪⎬

⎪⎪⎭

(16.1)

16.2.2 Teaching–learning-Based Optimization (TLBO)
Algorithm

The teaching–learning-based optimization algorithmwas first proposed by Rao et al.
in [34], which simulates the process of teaching–learning in the classroom. The main
concept ofTLBO is to reach toward the best solution and leave from theworst solution
in every iteration, as proposed in sequence, which only needs the common controlling
parameters and do not need any specific parameters. The TLBO algorithm is widely
accepted by researchers working in the optimization field. We are not exploring the
TLBO algorithm in more detail, but we may refer to see [48]. In this method, the
population consists of learners in a class, and design variables are courses offered. The
process of working of TLBO is divided into two parts: Teacher Phase and Learner
Phase. The Teacher Phase means learning from the teacher, and the Learner Phase
means learning through the interaction between learners. The above optimization
method yields parameters of the 4D hyper-chaotic system that lead to the lowest
correlation among adjacent pixels or the highest entropy in the encrypted image.

16.2.3 Virtual Planet Domain Encoding Process

Motivated from [23], we have used a virtual planet encoding scheme to provide
a high level of security to the proposed algorithm in terms of commonly known
attacks (such as Brute force, cropping, known plain image, cipher image, differential
attacks).

16.2.4 Virtual Planet Domain Encoding Process

Motivated from [23], we have used a virtual planet encoding scheme to provide
a high level of security to the proposed algorithm in terms of commonly known
attacks (such as Brute force, cropping, known plain image, cipher image, differential
attacks).
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16.2.4.1 Planet Encoding

The RGB image consists of three-channel matrices, namely, red channel, green chan-
nel, and the blue channel. The RGB image is encrypted using the planet domain. The
first pixel of every channel matrix is taken out as location (1,1,1) for red channel
pixel, (1,1,2) corresponds to the second channel pixel, and lastly (1,1,3) corresponds
to the third channel pixel. Each planet of the coding domain is uniquely represented
by a set of a 3-bit binary number, as explained in the block diagram of encoding
(as shown in Fig. 16.3). Now we take every channel pixel value and convert it to an
8-bit binary number, which constitutes and defines the 3-bit grouped binary number,
which gives the planet order used by rule-20075 as discussed in Table16.1.

16.2.4.2 Virtual Planet Diffusion Scheme

To diffuse the entire RGB image in the virtual planet domain, we use the sequence U
which was obtained through the generated keyspace. Now, we sort the key sequence
U to get the XOR table, which depicts the XOR operation performed between every

Fig. 16.3 Block diagram for pixel-wise encoding

Table 16.1 40320 rules of virtual planets
3-bit binary
number

Rule-
20075

Rule-
18936

Rule-
37241

Rule-
26765

Rule-
10559

Rule-
37604

Rule-
17256

Rule-
19188

Rule-
34438

Rule-
20462

Rule-
4265

000 Ur Ne Ur Ma Ea Sa Sa Ne Ne Ve Me

001 Ma Ea Ma Ea Ve Ea Ma Ju Sa Sa Ur

010 Ju Ur Ve Ve Me Ma Ur Ur Ur Ne Ne

011 Me Me Ne Ju Ma Ve Me Me Ju Ea Ma

100 Ne Sa Ju Ur Ne Ne Ne Ea Ea Me Ju

101 Sa Ma Ea Me Ju Ur Ve Sa Ve Ma Sa

110 Ea Ve Sa Ne Sa Ju Ju Ve Me Ju Ve

111 Ve Ju Me Sa Ur Me Ea Ma Ma Ur Ea
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Table 16.2 Virtual planet encoding schemes

Virtual planet Ur (000) Ma
(001)

Ju (010) Me
(011)

Ne
(100)

Sa (101) Ea (110) Ve (111)

Scheme 1 178 187 166 174 191 180 199 179

Scheme 2 170 200 168 199 192 181 187 122

Table 16.3 Planet diffusion

row/col Ur Ma Ju Me Ne Sa Ea Ve

Ur=000 178 187 166 174 191 180 199 179

Ma=001 187 178 174 166 180 191 179 199

Ju=010 166 174 178 187 199 179 191 180

Me=011 174 166 187 178 179 199 180 191

Ne=100 191 180 199 179 178 187 166 174

Sa=101 180 191 179 199 187 178 174 166

Ea=110 199 179 191 180 166 174 178 187

Ve=111 179 199 180 191 174 166 187 178

encoded planet by using the Rule-20075, as shown in Table16.3. For instance, any
planet (represented by a 3-bit number) can be encoded to a new decimal number
between 0 and 255 by either Scheme 1 or Scheme 2, and the process is shown in
Table16.2 as follows:

Ur corresponds to 000 is encoded as 178, Ma corresponds to 001 is encoded as
187, Ju corresponds to 010 is encoded as 166, Me corresponds to 011 is encoded as
174, Ne corresponds to 100 is encoded as 191, Sa corresponds to 101 is encoded as
180, Ea corresponds to 110 is encoded as 199, and Ve corresponds to 111 is encoded
as 179. We sort the key sequence V to get the XOR table, which depicts the XOR
operation performed between every encoded planet by utilizing Rule-20075 and 178
encoded as 170, 187 encoded as 200, 166 encoded as 168, 174 encoded as 199, 191
encoded as 192, 180 encoded as 181, 199 encoded as 187, and 179 encoded as 122
(described in Table16.2).

16.2.4.3 Virtual Planet Transform

On extracting numbers from the sequence, we generate an array that helps to form a
key, used to transform theplanet using this key, and thefinal output is now transformed
and has substantially increased entropy.

16.2.4.4 Virtual Planet Decoding

We initialize a matrix for a dummy image of the size compatible with the size of
the plane RGB image. The new 2D matrices obtained have columns that are divided
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by 8 to get the exact number of columns like that of the plane image, and “3” is
on account of three channels. The elements of the decoded image are extracted by
comparing them with the encoded domain, and its equivalent binary representation
is fed into the transpose of the matrix. Finally, we convert binary to decimal, and
then all the planes are extracted and reshaped to get the RGB planet cipher image.

16.3 Proposed Encryption and Decryption Algorithm

The proposed encryption and decryption process is explained in a detailed manner
in the following subsections. Further, encryption and decryption results are shown
in Fig. 16.5.

16.3.1 Encryption Procedure

The flowchart of the proposed encryption process is shown in Fig. 16.4 and encryp-
tion results are provided in Fig. 16.5. The process of each step is explained as follows:

Step 1: The selection of best initial parameters for the 4D hyper-chaotic system is
made by using the TLBO algorithm keeping in the view that it provides the
lowest correlation among adjacent pixels or the highest entropy.

Step 2: Iterate Eq. (16.1) by using initial parameters obtained from Step 1 for
(x, y, z, w), with n0 times consistently to stay away from the unsafe result
of the transitional procedure.

Step 3: To bring all values of each sequence in the range [0, 255], we apply modulo
256 operations on each sequence and round it off to the nearest integer.

Step 4: Perform bit-wise XOR between the first two hyper-chaotic sequences (x , y)
and the last two hyper-chaotic sequences (z, w) to produce two sequences
U and V, respectively.

Step 5: Read the three channels of the RGB image, mark the index, and accordingly
shuffle all the three channels.

Step 6: Define the virtual planet domain using rule-20075 in terms of a 3-bit binary
number.

Step 7: Take the pixel value of the shuffled image of size (m×n×3) obtained from
Step 2, which is a 3-bit binary number group to an 8-bit binary number so
that the whole image is converted to the image of size (m×n×8).

Step 8: Sort the key sequence U using VPD scheme 1 as given in Table16.2 and
diffuse the image with respect to the planet rule used above in Step 5.

Step 9: Sort the key sequence V using VPD scheme 2 as given in Table16.2 and
diffuse the image with respect to the planet rule used above in Step 5.

Step 10: Sort the key sequence V and displace the image pixels with respect to the
VPD used.

Step 11: Now get the RGB encrypted image by dividing the column by 8.
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Fig. 16.4 Block diagram for encryption

16.3.2 Decryption Procedure

The decryption process is carried out in a reverse manner.

16.4 Statistical Analysis

Compressing a picture is entirely different from compressing raw binary information.
Of course, the general-purpose compression can be used to compress images. More-
over, the results would be optimal. This is due to the applied statistical analysis of an
image that may be exploited by the encryption algorithm significantly designed for it.
Also, a number of the finer details within the image may be sacrificed for saving a lot
of information measure. The images have to be reproduced once decompressed. Two
of the error metrics properties used to compare the compression techniques are the
Mean Square Error (MSE) and, therefore, the Peak Signal-to-Noise Ratio (PSNR).
The statistical properties of pictures are set by the priority of adapting secondary
conducts like filtering, restoring, cryptography, and form recognition to the image
signal. The essential techniques are enforced to suppress noise or increase a weak
signal.
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Fig. 16.5 Encryption and decryption results by using the Rule-20075: a plane Lena image, b cipher
Lena image, c perfectly decrypted Lena image, d plane Baboon image, e cipher Baboon image,
f perfectly decrypted Baboon image, g plane Peppers image, h cipher Peppers image, i perfectly
decrypted Peppers image, j plane Zelda image, k cipher Zelda image, and l perfectly decrypted
Zelda image
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16.4.1 Mean Square Error

The MSE of each RGB component is a measure of similarity between the plane and
the decrypted image. A low value of MSE testifies the efficiency of the algorithm to
regenerate the encoded image by showing how far residuals are from the regression
line data points. The formula for the same is given by

MSE = 1

M × N

∑

m

∑

n

[| f (m�x, n�y) − f0(m�x, n�y)|2] ,

Where�x and�y are the pixel sizes, f and f0 are the intensities of the decrypted
and plane image separately that demonstrate the MSE of the plane image and the
decrypted image parts.

16.4.2 Peak Signal-to-Noise Ratio

It is used to measure the quality of reconstruction of lossy and lossless compres-
sions like the ones we are using, which involve wavelet packet transform and planet
encoding. Any kind of error introduced during the transform becomes the noise for
the input signal data. The formula for PSNR is given by

PSN R = 10 × log10
256 × 256

MSE
.

It is generally related to the MSE values and a higher value would normally
correspond to the higher quality of image decryption, Table16.4 represents the MSE
and PSNR between the plane image and decrypted image.

Table 16.4 MSEandPSNRbetween the plain image and decrypted image of Lena, Baboon, pepper,
and Zelda

RGB elements of image MSE PSNR

Red 0 ∞
Green 0 ∞
Blue 0 ∞
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Fig. 16.6 Histogram plots: a plane Lena red component, b cipher Lena red component, c decrypted
Lena red component, d plane Lena green component, e cipher Lena green component, f decrypted
Lena green component, g plane Lena blue component, h cipher Lena blue component, i decrypted
Lena blue component
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Fig. 16.6 (continued)

16.4.3 Histogram Analysis

An image is a very distinct structure that makes perfect sense for a human being,
and it does not mean that a computer can understand and process the image in
the same way. In this case, we can transform the image in different ways, which
are more reliable for the machine and can extract different features, one of these
representations is a histogram. The histogram of an image shows the significant
characteristic to analyze the statistical feature, which gives the pixel distribution for
an image, Fig. 16.6, showing the histogram for various RGB images and the cipher
images. To prevent a histogram analysis attack, it is necessary to confirm that the
distribution of the cipher image must hide the redundancy of the plain image and
should not leak any data pertaining to the plain image or the connection between
plain image and the cipher image.
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16.4.4 Correlation Analysis

The correlation analysis is performed to know the boundedness of the adjacent pix-
els. Every pixel in the plain image in horizontal, vertical, and diagonal directions
possesses high correlation with tightly packed pixel values as shown in Fig. 16.7.
The vertical and horizontal correlation is performed over 10,000 points and diago-
nal correlation is plotted over 1,000 points. For an effective encryption algorithm,
the pixel correlation of the cipher image should have scattered pixel distribution as
shown in Fig. 16.7. To express such correlation analysis, the correlation coefficients
are calculated by (16.2) and values presented in Table16.5 reveal that the proposed
algorithm is good in terms for the correlation coefficient.

rxy = cov(x, y)√
Dx

√
Dy

,

cov(x, y) = E [(x − E(x))(y − E(y))] ,

E(x) = 1

L

L∑

i=1

xi ,

Dx = 1

L

L∑

i=1

(xi − E(x))2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.2)

16.4.5 Cropping Analysis

The cropping analysis is performedon the cipher image to ensure the robustness of the
algorithmwhile transferring the encrypted image to other ends on the communication
channel over the network. Figure 16.8a, c, e, g shows the encrypted image is cropped
to 50% and the respective decrypted images give some amount of perceptual data
(i.e., partial image can be recovered).

16.4.6 Pixel Sensitivity and Key Sensitivity

Any marginal change in a single value of the pixel of an encrypted image results
in an entirely distorted decrypted image that can be easily witnessed in Fig. 16.9. It
is in relation to the complexity of the encryption and decryption algorithm and the
particular importance of every pixel value, even in a large image.

Similarly, any change in the key also results in an entirely distorted image, as
shown in the figure, which can be easily witnessed in the following plot. The robust-
ness of any cryptography systems mainly depends on the keyspace. Regardless of
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Fig. 16.7 Correlation plots: Diagonal correlation a plane red plane, b plane green plane, c plane
blue plane, d cipher red plane, e cipher green plane, f cipher blue plane, Horizontal correlation g
plane red plane, h plane green plane, i plane blue plane, j cipher red plane, k cipher green plane, l
cipher blue plane, Vertical correlation m plane red plane, n plane green plane, o plane blue plane,
p cipher red plane, q cipher green plane, r cipher blue plane
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Fig. 16.7 (continued)

Table 16.5 Correlation coefficient for different test images

Image Channel Horizontal correlation Vertical correlation Diagonal correlation

Plane
image

Cipher
image

Plane
image

Cipher
image

Plane
image

Cipher
image

Zelda Red 0.9948 4.019e-06 0.9672 2.094e-06 0.9924 1.408e-06

Green 0.9718 2.881e-06 0.8949 5.934e-06 0.9860 1.181e-06

Blue 0.9965 7.934e-06 0.9562 2.521e-06 0.9810 7.934e-06

Lena Red 0.9678 6.123e-06 0.9712 1.153e-06 0.9783 2.807e-06

Green 0.9591 3.729e-06 0.9906 2.005e-06 0.9651 2.452e-06

Blue 0.9996 6.103e-06 0.9293 4.080e-06 0.9183 6.135e-06

Baboon Red 0.8930 1.194e-06 0.9301 1.045e-06 0.7040 7.158e-06

Green 0.8854 3.006e-06 0.8499 1.822e-06 0.5708 8.115e-06

Blue 0.8766 0.175e-06 0.8807 1.779e-06 0.8024 1.724e-06

Pepper Red 0.9663 2.552e-06 0.9612 1.237e-06 0.9375 1.041e-06

Green 0.9720 2.071e-06 0.9722 7.026e-06 0.9662 2.406e-06

Blue 0.9309 4.278e-06 0.9542 3.241e-06 0.9305 1.100e-06

Flower Red 0.9682 1.008e-06 0.9851 2.523e-06 0.9692 1.094e-06

Green 0.9666 9.784e-06 0.9660 1.106e-06 0.9389 8.127e-06

Blue 0.9791 5.571e-06 0.9713 3.482e-06 0.9392 9.466e-06
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Fig. 16.8 Cropping analysis plots: a Lena red plane, b encrypted Lena red plane, c decrypted Lena
red plane, d Lena green plane, e encrypted Lena green plane, f decrypted Lena green plane, g Lena
blue plane, h encrypted Lena blue plane, i decrypted Lena blue plane
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Fig. 16.9 Key sensitivity plots: a plane image,b cipher image (x0 = −10.000000000000001, y0 =
−6, z0 = 0, and w0 = 10), c cipher image (x0 = −10, y0 = −6.000000000000001, z0 = 0, and
w0 = 10),d cipher image (x0 = −10, y0 = −6, z0 = 0.000000000000001, andw0 = 10), e cipher
image (x0 = −10, y0 = −6, z0 = 0, and w0 = 10.000000000000001)

however robust and elegant, the formula can be. If the key is poorly chosen or the key
size is just too small, the cryptosystemmay be broken. In the proposed technique, the
key consists of n key sequences, i.e., x1, x2, x3, x4, x5, x6, x7, x8, . . . , xn as shown
in Fig. 16.4. Every xn yields to four key parameters x , y, z, w of 4D hyper-chaotic
system. To assess the key sensitivity, we tend to perform the encryption with keys
(x�= − 10.000000000000001, y�= − 6.000000000000001, z�=0.0000000000000
01, and w� = 10.000000000000001) to form x1 by keeping the other respective
parameter as constant. The cipher images for initial parameters with added 1015

values are shown in Fig. 16.9.
The encryption is performed by adding the 1015×4 to all the key sequences individ-

ually. The overall keyspace includes the 40302 possibilities of planet rules and hyper-
chaotic key sensitivity for xn is 1060 × 1060 × · · · × 1060 (n times)=1060n . To choose
U and V key streams from the xn sequences we have (4n − 1) ! distinct options. So
the overall keyspace is of variable size given by 40302 × (4n − 1) ! × 1060n , which
is large enough to resist the possible brute force attacks.

For simulation purpose, we take n = 1 for which the key size is (3) ! × 1060 ×
40302 = 2.41812e + 65 ≈ 1065.
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16.4.7 Robustness Against Known Plain-Image and Chosen
Cipher-Image Attacks

The cipher image is also known as encrypted information as it is comprised of
plain-image information in encoded form (i.e., unreadable form without knowing
the exact cipher to decrypt image). The reverse of encryption is turning out the
cipher information to plain image (Table 16.6).

16.4.7.1 Known Plain-Image Attack

In addition to a brute force attack, another standard attack is known as a known plain-
image attack. In this attack, the attacker has a copy of a plain image and a cipher
image. It allows the attacker to analyze the relationship between the plain image and
the cipher image. It would be unusual for an attacker to have information, and there
is some compromise that has already occurred to fetch the original plain image. An

Table 16.6 Keyspace
compared with existing
techniques

Technique Keyspace

[19]
1045

[29]
2128

[1]
296

[4]
2203

[5]
10112

[6]
1030

[8]
2260

[12]
236

[15]
2230

[20]
1070

[22]
10124

[30]
2157

[35]
280

[42]
10114

Proposed algorithm 40302 × (4n − 1) ! × 1060n
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Fig. 16.10 Robustness
against attacks: a
Plain-image attack, b
cipher-image attack

adversary can figure out the frequency distribution for pixel patterns in the cipher
image. The more sophisticated algorithm makes a constant level in the frequency
distribution of cipher images so that patterns are not revealed to get any information
for the plain image. However, the known plain-image attacks can work on simpler
algorithms. Figure 16.10a shows that the proposed algorithm is free from this attack.

16.4.7.2 Cipher-Image Attack

Cipher-image attack is attacking model for crypt-analysis which gathers the infor-
mation by obtaining the decryption by chosen cipher image from these pieces of
information with a goal to acquire the secret key. By the formal definition of Elga-
mal cryptosystem [32] is semantically secure under the chosen cipher-image attack.
Figure16.10b demonstrates that the proposed algorithm is free from this attack.

16.4.8 Differential Analysis

The differential analysis is very prominent in evaluating and comparing the similar-
ities between any two images.

N PCR =
∑N

i=1

∑M
j=1 D(i, j)

N × M
× 100. (16.3)

If C1(i, j) = C2(i, j) then D(i, j) = 0. Otherwise D(i, j) = 1.

U AC I =
∑N

i=1

∑M
j=1

|C1(i, j)−C2(i, j)|
255

N × M
× 100, (16.4)
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Table 16.7 NPCR and UACI for different images

Zelda Lena Baboon Pepper Barbara

NPCR UACI NPCR UACI NPCR UACI NPCR UACI NPCR UACI

99.6138 33.4710 99.61331 33.5300 99.6151 33.4804 99.6036 33.4890 99.6088 33.4653

where C1 and C2 are cipher images before and after one pixel change in original
image. NPCR and UACI values for different test images are shown in Table16.7.

16.4.8.1 Statistical Test for NPCR

From [46], we can demonstrate the proposed algorithm is good by using statistical
test for NPCR. Suppose we have two cipher imagesC1 andC2 of size 512 × 512 × 3
each, then hypotheses (H0 and H1) with significance level α for N (C1,C2) are

H0 : N (C1,C2) = μN , (16.5)

H1 : N (C1,C2) < μN . (16.6)

Reject H0, if N (C1,C2) < N ∗
α , otherwise accept H0, where

N ∗
α = μN − φ−1(α)σN =

(
F − φ−1(α)

√
F

MN

)

F + 1
, (16.7)

μN = F

F + 1
, (16.8)

σ 2
N = F

(F + 1)2MN
, (16.9)

where F is the largest pixel value in the original image.
Observe fromTable16.8, N (C1,C2)values forBaboon,Lena, andPeppers exceed

N ∗
α values for α = 0.05, 0.01, and 0.001. So we can accept the null hypothesis (H0).

Hence, the NPCR values confirm that the proposed algorithm is good.

16.4.8.2 Statistical Test for UACI

Likewise, again from [46], we can demonstrate the proposed algorithm is good by
using statistical test for UACI. Assuming that, we have two cipher images C1 and
C2 of size 512 × 512 × 3 each, then hypotheses (H0 and H1) with significance level
α for U (C1,C2) are
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Table 16.8 Statistical test for NPCR

Testing cipher image F = 255

μN σN N∗
0.05 N∗

0.01 N∗
0.001

Numerical values 99.6094 0.0122 99.5893 99.5810 99.5717

Zelda (99.6138) PASS PASS PASS

Lena (99.61331) PASS PASS PASS

Baboon (99.6151) PASS PASS PASS

Peppers (99.6036) PASS PASS PASS

Barbara (99.6088) PASS PASS PASS

H0 : U (C1,C2) = μU , (16.10)

H1 : N (C1,C2) < μU . (16.11)

Reject H0, if U (C1,C2)(U ∗+
α ,U ∗−

α ), otherwise accept H0, where

U ∗+
α = μU + φ−1(α/2)σU , (16.12)

U ∗−
α = μU − φ−1(α/2)σU , (16.13)

μU = F + 2

3F + 3
, (16.14)

σ 2
U = (F + 2)(F2 + 2F + 3)

18(F + 1)2MNF
, (16.15)

Table 16.9 Statistical test for UACI
Testing cipher
image

F = 255

μU σU U∗+
0.05/U

∗−
0.05 U∗+

0.01/U
∗−
0.01 U∗+

0.001/U
∗−
0.001

Numerical
values

33.4635 0.0462 33.3730/33.5541 33.3445/33.5826 33.3115/33.6156

Zelda
(33.4710)

PASS PASS PASS

Lena
(33.5300)

PASS PASS PASS

Baboon
(33.4804)

PASS PASS PASS

Peppers
(33.4890)

PASS PASS PASS

Barbara
(33.4653)

PASS PASS PASS
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Table 16.10 Information entropy for different standard images

Information entropy

Image Zelda Lena Baboon Pepper Barbara Tulip

Plain image 7.6587 7.4958 7.7621 7.70473 7.71537 7.662

Cipher
image

7.9997 7.9998 7.9997 7.9996 7.9997 7.9998

Notice from Table16.9,U (C1,C2) values for Baboon, Lena, and Peppers belong
to the interval (U ∗+

α ,U ∗−
α ) for α = 0.05, 0.01, and 0.001. So we can accept the null

hypothesis (H0). Hence, the UACI values confirm that the proposed algorithm is
good.

16.4.9 Information Entropy

The information entropy for a gray image or RGB images is outlined as follows:

H(s) =
2N−1∑

i=0

p(si ) log2

(
1

p(si )

)

, (16.16)

where N is that the range of bits to represent the pixel value, si represents the proba-
bility of image pixels, log represents the base log of 8-bit image, and the theoretical
value tends to be eight. Table16.10 shows the information entropy values of different
images. For an information source with 2N states, H(s) = N bits.

16.4.10 Efficiency of Proposed Encoding Technique

The shuffling process in DNA encoded domain discussed in [47] fails when every
pixel is same (i.e., either 0, or 85, or 170 or 255) which reveals the secret keys. For
instance, if we take R = Ri j , G = Gi j , and B = Bi j layers and let the binary repre-
sentation of one pixel (say R11, B11, and G11) from each layer be r1r2r3r4r5r6r7r8,
g1g2g3g4g5g6g7g8, and b1b2b3b4b5b6b7b8, respectively. If we design our proposed
algorithm based on [47], then attack is possible if all planets in encoded image are
equal, i.e., r1g1b1 = r2g2b2 = r3g3b3 = · · · = r8g8b8 for all pixels. So there are eight
possible pictures that are ∀i, j , [Ri j ,Gi j , Bi j ] = [0 0 0], [0 0 255], [0 255 0], [0 255
255], [255 0 0], [255 0 255], [255 255 0], [255 255 255]. However, in our proposed
encoding scheme, we have introduced a series of complex diffusion processes that
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Table 16.11 Run time for the algorithm in seconds for image of size 512 × 512 × 3

Image Key generation Encryption Decryption

Lena 3.100102 10.703014 12.955467

resist against vulnerabilities of chosen plain/cipher-image attacks. The encrypted
images for abovementioned eight pictures are demonstrated in Fig. 16.11.

16.4.11 Run Time of the Algorithm

This section provides the run time of every phase (i.e., key generation, the run time
for the encryption phase, and the run time for the decryption phase). It is elaborated
in Table16.11 which is performed on Windows 10 Pro and on MATLAB 2018a.

16.5 Comparison

There exist several hyper-chaotic-based image encryption techniques in the litera-
ture.We draw the comparison between some of the existing algorithms and proposed
algorithm, as shown in Table16.12 on the basis of some performance analysis param-
eters. For a secure cryptosystem, the huge keyspace is required, which is highlighted
in Table16.6. For the encryption algorithm to be robust, we proposed a large keyspace
of variable size based on the possible selection of key streams from the generated n
number of hyper-chaotic sequences. The correlation coefficients of neighboring pix-
els of plain image and cipher image are compared with other techniques, as listed in
Table16.12. The information entropy of cipher is very close to 8, which clearly states
the randomness of cipher and its unpredictability is guaranteed. NPCR is about 99%,
and the UACI is about 33%, which predicts the encryption algorithm is sensitive to
any change in the plain image.

16.6 Conclusion

A new, robust, and optimized secure encryption algorithm has been proposed by
using a 4D hyper-chaotic system in VPD. A new formula for keyspace has been
designed to protect algorithms from commonly known attacks, as can be seen in
Sect. 16.4. The proposed algorithm has been tested and verified successfully on stan-
dard RGB images (Zelda, Lena, Baboon, Pepper, and Barbara). The value presented
in Table16.6 reveals that the proposed algorithm has better keyspace and also user-



16 A Secure RGB Image Encryption Algorithm … 373

Fig. 16.11 ∀i, j [Ri j ,Gi j , Bi j ]: a [0,0,0], b encrypted [0,0,0], c [0,0,255], d encrypted [0,0,255],
e [0,255,0], f encrypted [0,255,0], g [255,0,0], h encrypted [255,0,0], i [0,255,255], j encrypted
[0,255,255], k [255,0,255], l encrypted [255,0,255], m [255,255,0], n encrypted [255,255,0],
o [255,255,255], p encrypted [255,255,255]
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friendly. The data presented in Table16.12 suggests that the proposed algorithm is
superior to other existing algorithms. Further, the efficiency of the proposed algo-
rithm can be viewed from Fig. 16.11. Hence, the proposed algorithm can opt for the
secure transmission of RGB images effectively.
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Table 16.12 Comparison table
Techniques Horizontal correlation Vertical correlation Diagonal correlation NPCR UACI Entropy

Plain
image

Cipher
image

Plain
image

Cipher
image

Plain
image

Cipher
image

[19]
0.9240 –0.158 0.9561 –0.0653 0.9265 0.03231 – – –

[29]
0.9765 0.0445 0.9796 0.0284 0.9502 0.0206 99.600 33.40 –

[1]
0.9471 –0.0159 0.9665 –0.0195 0.8985 0.0135 99.629 28.50 7.9975

[4]
0.9341 0.0041 0.9634 0.0036 0.9402 0.0027 25.000 19.00 –

[5]
0.9535 0.0095 0.9616 0.0106 0.9503 0.0048 – – 7.9891

[6]
0.9603 –0.0030 0.9257 0.0085 0.9055 0.0003 99.5956 33.60 7.9912

[8]
0.9574 0.0038 0.9399 0.0023 0.9183 0.0004 41.9620 33.25 7.9968

[12]
0.9176 0.01183 0.9541 0.00016 0.9020 0.0148 50.300 25.20 –

[15]
0.9537 0.0047 0.9792 0.0030 0.9245 0.0047 99.5100 33.45 7.9997

[20]
0.9241 –0.0142 0.9524 –0.0074 0.9017 –0.0183 – – –

[22]
0.9700 –0.0043 0.9409 0.00141 – – 99.6048 33.50 7.9890

[30]
0.9411 –0.0003 0.9702 0.0014 0.9153 0.0001 99.600 33.54 –

[35]
0.9187 0.005230 0.9557 0.00612 0.8877 –

0.007312
99.61 33.48 7.9981

[42]
0.9721 –0.0029 0.9739 –0.0017 0.9705 0.0004 99.59 33.45 7.9971

Proposed
algorithm

0.9877 5.3183e-
06

0.9394 2.4126e-
06

0.9864 3.7980e-
06

99.613 33.53 7.9998
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Chapter 17
Identification and Analysis of Key
Sustainable Criteria for Third Party
Reverse Logistics Provider Selection
Using the Best Worst Method

Jyoti Dhingra Darbari, Shiwani Sharma,
and Mark Christhian Barrueta Pinto

Abstract Growing environmental issues, social concerns, enforced regulations and
intense competition havemotivated electronic companies to inculcate Reverse Logis-
tics (RL) practices in action for sustainable Reverse Supply Chain (RSC). Due to
lack of expertise and the heavy costs associated with the setting up of reverse logis-
tics system, RL practices are widely embraced by most companies through Third
Party Reverse Logistics Providers (3PRLPs). Due to the dependency of companies
on 3PRLPs, the evaluation and selection of 3PRLP is a matter of strategic concern
and requires critical decision-making. The main challenge in this regard that the
companies face is to identify the appropriate criteria for assessing the performance
of 3PRLP under a sustainable environment. In this sense, the main intent of the cur-
rent study is to provide a systematic framework for an electronics company to (i)
identify the most relevant 3PRLP performance evaluation criteria under three sus-
tainability dimensions namely, economic, environmental and social, (ii) extract the
most influential list of sustainable criteria and (iii) determine the weights of impor-
tance of the influential criteria. In order to attain this objective, a decision-making
model is proposed in which firstly, the economic, environmental and social criteria
are derived from an extensive literature survey. Secondly, Delphi technique is used to
shortlist the most influential criteria. Thirdly, the Best Worst Method (BWM) is used
to determine the importance of the shortlisted criteria. The result analysis shows that
environmental sustainability is the primary focus of the companies for the imple-
mentation of RL, contrary to the assumption that economic performance is always
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the major motivation. ‘Quality’, ‘RL Practices’ and ‘Health and Safety’ are accorded
the highest ranking under economic, environmental and social dimensions, respec-
tively. The proposed model can assist electronic companies in determining the most
important criteria for sustainable 3PRLP selection for outsourcing RL activities.

17.1 Introduction

The process of Reverse Logistics (RL) involves activities aimed at the appropriate
backward flow of products which are considered as reached their end-of use/end-of-
life stage by the consumers [40]. Rogers and Tibben-Lembke [83] defines RL as, ‘the
trend of design, schedule, planning, controlling and warehousing and also informa-
tion for returned products in reverse flow of classical supply chain in order to recover
value and get the competitive advantage’. Figure17.1 provides a schematic view of
the forward and reverse flow of goods and the activities involved in a generic Supply
Chain (SC). RL has gained immense attention in the past two decades as a result
of the environmental sensitization of consumers and governments. For businesses,
RL proves to be a key strategy in managing a sustainable SC [32]. Companies are
inclined towards RL nowadays due to decrease in availability of raw materials and
consequently rise in their prices [46]. The specific activities of RL such as repair,
remanufacture, refurbish help gain monetary benefits in terms of reselling of refur-
bished products while recycling, disassemble and proper disposal help in reducing
the ill effects of the dumping of unused products [103]. Moreover, the backward
channel provides opportunities of jobs to various marginalized workers, specifically
in developing nations such as India, Bangladesh and Taiwan. Hence, all the three
dimensions of sustainability are covered naturally under the umbrella of RL activities
[48, 101].

Most logistics systems fail to manage the concurrent flows as they have different
necessities and are managed under different constraints [27]. The forward flow is
customer demand driven, while the reverse flow is driven by the quantity of products
returned. Each RL process requires a different considered focus, hence companies
need to plan and design RL network which is an uphill task [34]. Additionally in RL
the amount of returned products is uncertain, the backward flow is untimely and the
condition of the products is unknown, which adds further complexity in scheduling
and planning the RL activities [89]. Organizations, particularly, in India, although
are legally bound to implement RL but do not have a suitable structure in place.
There are many hindering factors such as lack of knowledge, lack of government
support, lack of awareness amongst consumers and other financial and organizational
constraints [75]. Consequently, most organizations prefer outsourcing the complex
task of managing RL activities to reduce the cost of implementation, for streamlining
the recovery and redistribution process and for focusing on their core competencies
[2, 28].

Outsourcing of RL activities has its own challenges and choosing a reliable and
sustainable Third Party Reverse Logistics Provider (3PRLP) is a daunting task. The
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associated financial as well as operational impact along with the long-term effect
of the partnership needs to be recognized [102]. Accordingly, the organization may
choose to outsource all or some of its RL activities. Consequently, 3PRLP selec-
tion process sometimes involves choosing a single 3PRLP and other times choosing
multiple 3PRLPs. Moreover, the outsourcing may be done under partial or full col-
laboration with 3PRLPs [24]. The strategic decision of choosing the 3PRLP, the
activities to be outsourced and the nature of the partnership must be based on a
critical analysis of the operational, financial, sustainable capabilities of the reverse
logistics provider by the Reverse Supply Chain (RSC) managers.

Within the context of 3PRLP evaluation and selection process, identification of
appropriate criteria of evaluation is of prime importance as they echo the organiza-
tion’s requirements and expectations from the partnershipwith the 3PRLP. In addition
to the traditional criteria such as cost, quality, flexibility and responsiveness, assess-
ing the capabilities of 3PRLPs with regard to environmental and social concerns has
become imperative for organizations focusing on managing sustainable SC practices
[11, 15, 31]. Clearly, unlike the evaluation criteria for forward logistics provider,
which is more economically driven, the evaluation criteria of 3PRLP must include
environmental and social performance indicators. Hence, 3PRLP evaluation process
requires a more detailed list of attributes and criteria, most of which may be difficult
to quantify and involves a more difficult process of data collection [39]. Moreover,
the filtration of the criteria to extract the most significant ones and the sorting of
the criteria in the order of their weights of importance are essential parts of the
3PRLP selection process. Selection of criteria ideally should be company specific,
case specific and industry specific as they impact the decision selection of 3PRLPs.
Moreover, the process of selection of performance criteria for 3PRLP evaluation
with sustainable perspective is dominated by the presence of conflicting opinions of
different stakeholders of the SC of the organization, which adds to the complexity
in the decision-making environment. Multiple-criteria decision-making (MCDM)
techniques promise to be very effective in this regard for simultaneously evaluat-
ing various criteria based on sustainability dimensions in group decision-making
environment [63].

Although there has been ample research on the need for outsourcing to 3PRLPs for
achieving a sustainable RSC and the type of criteria to be considered for evaluation
of 3PRLPs, however, most of these studies are theoretical in nature. Very few studies
have developed mathematical models for the identification and selection of criteria
in a systemized manner. This study focuses on identification and selection of key
performance criteria for the evaluation of 3PRLPs based on all three dimensions
of sustainability, by developing a decision-making model for an electronic company
based in India. The companyXYZ is looking for a partnership venture with a suitable
3PRLP with the aim of achieving a sustainable RSC. In the first stage, an exhaustive
list of criteria based on economic, environmental and social dimensions is prepared
through an extensive literature survey. The criteria are identified specifically for
the evaluation of 3PRLPs who are providing services in the electronics industry.
In order to extract the most relevant criteria as per the company’s requirements,
Delphi technique is employed to gather opinions of the Decision Makers (DMs)
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Fig. 17.1 Flow of physical goods for forward and reverse logistics [1, 95, 104]

through a structured questionnaire and semi-structured interviews. The data analysis
of the information gathered through the Delphi technique helps in the first level of
filtration of the criteria. In the second stage, Best Worst Method (BWM) technique is
employed to rank the importance of economic, environmental and social dimensions
and also to rank the criteria under the three dimensions of sustainability as per the
decision-making team.

The remainder of this chapter is organized as follows: Sect. 17.2 provides literature
review on the need for outsourcing in RL and the importance of sustainability related
factors for evaluation and selection of 3PRLP. Section17.3 explains the proposed
methodologydeveloped for the identification, evaluation and selection of criteriawith
regard to all the three dimensions of sustainability. The application of the proposed
methodology is presented in Sect. 17.4. Section17.5 provides the result discussion
of the study. Section17.6 concludes the paper and includes suggestions for future
research scope.

17.2 Literature Review

The focus of the study is on the analysis of key sustainable criteria for the evaluation
of third-party logistics provider in RL. The literature review presented in this section
discusses the work done by researchers over the years in that direction. The literature
review section is divided into three sections: Sect. 17.2.1 discusses the need for
outsourcing in RL in SC; Sect. 17.2.2 demonstrates the plethora of work with regard
to identification, evaluation and selection of sustainable performance criteria for
provider selection in RL; Sect. 17.2.3 highlights the research gap and provides the
significant contribution of the present study.
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17.2.1 Outsourcing in Reverse Logistics

Forward logistics in SC refers to all activities with regard to the flow of product
and information from the suppliers to the customers for satisfying customer’s needs
and meeting their expectations [16]. Contrary to this, RL refers to all activities of
SC aimed at managing the reverse flow of returned product from the consumption
point to the origin point for the purpose of capturing value and proper disposal
[83]. However, it does not imply that RL is just reversing the forward logistics [31,
64]. RL faces many complexities and its effective implementation requires suitable
RL network configuration to carry the broad range of activities such as collection,
sorting, inspection, disassembly, remanufacture, recycling and disposal [35]. Due to
the lack of knowledge and infrastructure, most firms prefer to outsource RL activities
to specialized 3PRLP for advantages such as reduced costs, advanced technology
and better performance [4]. However, the problem of third party provider selection
faces greater complexity for outsourcing activities related to RL in comparison to
traditional forward logistics because of the major difference in their scope of work
and expertise [41]. Even the most successful third-party logistics providers are not
able to manage the reverse flow of products efficiently and effectively [27]. 3PRLPs
must be specialized in handling the value-added activities for the reverse flow of
returned products [2]. They must be well equipped to carry these activities following
proper environmental guidelines [8]. Therefore, dependency of the firms on 3PRLPs
is huge in terms of achievement of sustainable business practices [19]. Due to these
differentiators with regard to the objective of outsourcing, 3PRLPs play a strategic
role in aiding firms to attain sustainable competitive advantage, government support
and customer satisfaction [40]. Hence, suitable 3PRLP selection for outsourcing
in RL is a crucial decision for RSC managers and has emerged as an important
research area [102].

17.2.2 Sustainable Performance Criteria for Provider
Selection in Reverse Logistics

The decision of provider selection, while considering complete or partial outsourcing
of the RL activities, needs the development of a comprehensive conceptual frame-
work based on various performance metrics [1, 26]. The framework is broadly influ-
enced by the set of criteria and the evaluation approach [105]. Identification of an
appropriate set of performance criteria is a critical stage of the decision-making
process, as it significantly impacts the evaluation rankings of the alternatives [13].
Hence, 3PRLP selection problem must be characterized by exhaustive research on
the selection of performance criteria of evaluation of 3PRLPs. In the literature, tradi-
tional economic criteria such as cost of services, financial position, asset ownership
are considered essential criteria by most authors [6, 77, 87]. Further, process-based
criteria such as resource capacity, network capacity, skilled manpower, service capa-
bility, flexibility and quality of service have always been considered important for
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evaluation of 3PRLPs [50, 95]. Moreover, 3PRLPs offering complete RL services
must be equipped with advanced equipment, specialized infrastructure and secure
IT and tracking system [2]. Most organizations seek to implement RL for pursuing
sustainability goals as RL activities majorly cover all sustainability dimensions [59,
74, 96, 100]. Hence, sustainability performance metrics of 3PRLPs are extremely
important for a effective RSC [3, 19]. A review of research on 3PRLP evaluation
and selection demonstrates that evaluation criteria based on all three dimensions
of sustainability—economic, environmental and social—are dominant in the recent
literature [12, 15, 31]. However, there is a lack of studies focusing on the critical
analysis of 3PRLP evaluation criteria and development of mathematical models for
selection of criteria with regard to industry specific requirements.

17.2.3 Research Contribution

The literature analysis presented above demonstrates that sustainability related fac-
tors are essential for the evaluation of 3PRLPs. However, none of the studies have dis-
cussed all the performance evaluation criteria in a systematic way. It is evident from
the above discussion that most of the studies with regard to developing 3PRLP evalu-
ation criteria are based on the triple bottom approach. The motivation of researchers
is more on developing models for the evaluation of 3PRLPs while less emphasis
is laid on the systematic identification and selection of the key criteria. Moreover,
most of the studies focusing on the need for developing the criteria for evaluation of
3PRLP are based on theoretical findings and lack development of analytic models.
This gap is considered in the study. Most importantly, organizations need to consider
the criteria which match their requirements [73]. In this direction, this chapter aims
to develop a 3PRLP selection model for an Indian electronics company for the selec-
tion of key evaluation criteria identified from the plethora of criteria in the literature
and practice. The novelty of the study is to provide a systematic framework for an
electronics company to achieve the following objectives:

1. To identify a broad set of 3PRLP sustainable performance evaluation criteria
through an extensive literature survey.

2. To prioritize the key sustainable criteria based on deliberations amongst the team
of experts from an electronics company using Delphi technique which is very
effective in managerial decision-making.

3. To determine the rank of importance of the key criteria under each sustainability
dimension using BWM, an efficient MCDM technique.

17.3 Methodology used for Selection and Evaluation
of Criteria

The selection process of 3PRLP ideally must involve a thorough evaluation of the
performance of 3PRLPs based on key criteria based on all three sustainability dimen-
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sions. Hence, the focus of the study is to develop a systematic model which can pro-
vide guidance to the case company in (i) identifying the most relevant 3PRLP perfor-
mance evaluation criteria under three sustainability dimensions namely, economic,
environmental and social, (ii) extracting the most influential list of sustainable crite-
ria and (iii) determining the weights of importance of the influential criteria. In order
to attain this objective, a decision-making model is proposed, in which, firstly, the
economic, environmental and social criteria are derived from an extensive literature
survey. Secondly, Delphi technique is used to shortlist the most influential criteria.
Thirdly, in accordance with the above evaluated results, BWM is used to determine
the importance of the shortlisted criteria. The steps of the proposed methodology are
described in the following sections:

17.3.1 Identification of Criteria

For the purpose of evaluation of 3PRLP, identification of relevant criteria is carried
out with the aid of an extensive research analysis of studies on 3PRLP evaluation.
On the basis of the broad literature review, a total of thirteen economic criteria and
eleven environmental and eleven social criteria are identified. The relevant criteria
have been briefly described in Tables17.1, 17.2 and 17.3.

17.3.2 Delphi Technique for Identification of Key Sustainable
Criteria for 3PRLP Evaluation

The Delphi technique is used with consideration to varying outlooks of DMs in
evaluating the importance of each criterion under the three dimensions considered in
this study namely, economic, environmental and social. The decision-making team
included 7 members of the company each with a minimum experience of six years.
They were designated as Manager Supply Chain Operations, Manager Business
Operations, Manager Human Resources, Senior Manager Information and Security,
General Manager CSR and Sustainability, Chief Financial Officer.

The Delphi technique can be elaborated in the following steps [60]:

Step 1: The principal step is to identify the possible criteria for each of the three
dimensions through a broad literature review. For our evaluation, we have
thirteen criteria for the economic dimension, and eleven criteria each for
environmental and social dimensions, respectively.

Step 2: Post the identification of the criteria, the DMs scrutinize each and every
criterion based on the sustainability impact they put on outsourcing the
logistics. The dependency amongst the identified criteria is also checked.
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Table 17.1 Economic criteria for evaluation of 3PRLP

Notation Criteria Description References

1 Cost Per unit cost of RL processes-collection,
inspection, storage, disassembly,
remanufacturing, disposal, service and other
associated logistics costs

[37, 47, 57,
85, 95]

2 Reputation and
market share

It refers to the opinion of the customers about
how well the logistics organization is
satisfying their needs

[4, 95, 99]

3 Delivery and
services

Reliability of quality assurance in carrying
out recovery process, documentation and
transportation

[4, 56, 99]

4 Technological
expertise

Investment in strong technical development
ability to implement RL activities, level of
advanced equipment

[4, 41, 76]

5 Geographical reach Geographical location, distribution coverage,
market coverage

[5, 71, 91]

6 RL capacity Financial capacity to invest in all RL
operations, network capacity, transport
capacity, specialized infrastructure

[4, 44, 47,
66, 92]

7 Financial
stability/position

RSC performance, mutual commitment
towards business needs, market share,
liquidity, profitability

[4, 7, 14, 37,
38, 57]

8 Management
capability

Warehouse management, transportation
management, manpower, capacity of facilities

[30, 38, 62,
90]

9 Technique level Range of services, inventory management,
manpower planning, space utilization,
resource allocation, demand forecasting,
equipment handling

[30, 38, 62]

10 Service capability Quality service, configuration flexibility,
adaptation to change in market

[4, 17, 23,
45, 51, 58,
76, 90]

11 Communication
and IT system

Investment in logistics information system, IT
and information security system

[4, 7, 49, 62]

12 Relationship Mutual commitment, trust and fairness,
channel relationship

[44, 94]

13 Strategic fit Attitude, ability to match its resources and
capabilities with opportunities in the external
environment

[22]
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Table 17.2 Environmental criteria for evaluation of 3PRLP

Notation Criteria Description References

1 Reverse logistics Developing efficient logistics system for
carrying all RL practices such as collection,
sorting, recycle, remanufacture and
redistribution with emphasis on maximizing
value creation

[2, 18, 20,
80, 88]

2 Green design Use of environmentally-efficient logistics
system, green design of facilities to factor in
short-term as well as long-term impact on the
environment

[47, 77]

3 Environmental
management
practices

Monitoring of environmental level of RL
activities, environmental credentials earned,
employee training

[11, 25, 33,
54, 95]

4 Pollution
prevention

Measures adopted and efforts made for
reduction, elimination, or prevention of
pollutant emissions

[10, 22, 52]

5 Resource
consumption

Reduction in the consumption of
resources-energy, raw material and water

[10, 22, 25,
52, 54, 78]

6 Degree of
closure/safe
recycling

Impact of recycling on the outside
environment

[21, 70]

7 Pollution control Waste minimisation and reduction of carbon
footprint in every stage of the SC

[10, 22, 25,
54]

8 Green practices Green technology, green packaging using
bio-degradable materials, employees training

[98]

9 Customer
satisfaction

Matching degree of customer expectation
regarding environment safety

[16]

10 Environmental
protection
compliance and
commitment

ISO compliance, respect for environmental
protection laws and environmental policies,
commitment and alignment towards
environmental objectives

[9, 38, 61]

11 Disposal capability Capability of disposal of wastes in order to
protect environment

[53, 55, 78,
93]

Step 3: Post analysis, the criteria are ranked on basis of their importance which
is assessed through a developed questionnaire with the panel of experts.
The DMs rank the criteria on the following scale: ‘very poor’-1, ‘poor’-2,
‘medium’-3, ‘good’-4 and ‘very good’-5.

Step 4: The specified ranks are then collected and the mean of the ranks for each
criteria is calculated. Further, normalization is done to obtain the final rank-
ing.

Step 5: The top six out of thirteen economic criteria, five out of eleven environmental
criteria and four out of eleven social criteria are selected as per the DMs
opinion.
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Table 17.3 Social criteria for evaluation of 3PRLP

Notation Criteria Description References

1 Cooperation with
government
agencies

Compliance with various ILO laws relating to
employee welfare and compliance with
government employment law

[62]

2 Stakeholder
satisfaction

Health, education, housing, security, grants
and donations, supporting community
projects and economic welfare and growth

[22]

3 Employment
practices

Building relationship with the staff,
employment compensation, and flexible
working arrangements

[10, 22, 25,
54, 95]

4 Health and safety Respect for policies with regard to employee
health and safety, workplace safety, security
and safety procedural complains

[10, 36, 63]

5 Employment
stability

Career development, employee contracts [20, 29, 34,
63]

6 Local community
influence/publicity

Promotions for betterment of society [10, 38]

7 Supporting
education

Educating people about importance of reuse,
recycle, remanufacture

[2]

8 Equity labour
sources

Policies towards labour equity [22, 38]

9 Corporate image Market reputation, image among public [67, 72, 79]

10 Job opportunities Opportunities for employment by the
organization

[22, 43, 68,
69, 86]

11 Value to customer Consumer education, customer satisfaction
and responsiveness

[63]

17.3.3 Best Worst Method for Ranking of Key Sustainable
Criteria for 3PRLP Evaluation

The BWM technique was developed by Rezaei, 2015 and has since been applied to
numerous multi-criteria-based modelling problems [42, 84, 97]. The major advan-
tages of using BWM over other multi-criteria-based evaluation techniques are: (i)
the number of pairwise comparisons is less resulting in less time, cost and effort; (ii)
it results in better consistency of the judgement matrix.

Consider the set of ‘k’ criteria {C1,C2, . . . ,Ck} and the set of ‘m’ DMs
{DM1, DM2, . . . , DMm}. The BWM technique to find the weights of importance of
the ‘k’ criteria is briefly described below [81]:

Step 1: Each DM is asked to select his/her best (most desirable) and the worst (least
desirable) criteria.
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Let Ci
B be the best criteria and Ci

W be the worst criteria of the i th DM
(i = 1, 2, . . . ,m).

Step 2: For each DM, the preference of the best criteria over the other criteria is
calculated.
A numerical scale of 1–9 is used in this study, where a value of ‘1’ represents
equal preference and a value of ‘9’ represents the extreme preference of the
best criteria over the other criteria. This results in the Best-to-Others (BO)
vector given by

{aiB1, aiB2, . . . , aiBk}

Where, aiB j indicates the preference of the best criteria over j th criteria.
Also, aiB j � 1 ∀ j = 1, 2, . . . , k and aiBB = 1.

Step 3: For each DM, the preference of each criterion with the worst criteria is
calculated. This results in the Others-to-Worst (OW) vector given by

{ai1W , ai2W , . . . , aikW }

Where,aijW indicates the preference of the j th criteria over theworst criteria.
Also, aijW � 1 ∀ j = 1, 2, . . . , k and aiWW = 1.

Step 4: Calculate the optimal weights (vi
1, v

i
2, . . . , v

i
k) of the criteria as per the

judgement of i th DM. The objective is to ascertain the optimal weights
of the criteria in order to minimize the maximum of the absolute differences
|vi

B − aiB jv
i
j | and |vi

j − aijWvi
W | for j = 1, 2, . . . , k.

Step 5: Formulate the min-max model as follows [82]:
minmax

j
{|vi

B − aiB jv
i
j |, |vi

j − aijWvi
W |}

Subject to
k∑

j=1
vi
j = 1

vi
j � 0 ∀ j = 1, 2, . . . , k

Step 6: Using αi to denote the maximum absolute difference, formulate the follow-
ing equivalent linear model for calculating weights of criteria as per the i th
DM [82]:
min αi

Subject to
|vi

B − aiB jv
i
j | � αi ∀ j = 1, 2, . . . , k

|vi
j − aijWvi

W | � αi ∀ j = 1, 2, . . . , k
k∑

j=1
vi
j = 1

vi
j � 0 ∀ j = 1, 2, . . . , k

αi can be considered as an indicator of the consistency of the comparisons.
Its value close to zero shows a high level of consistency. The reliability
of the model also relies on the value of αi . The greater the value, the less
reliable the comparisons are [65].
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Step 7: Solve the linear model of BWM to get the optimal weights.
Let the optimal solution of model formulated in Step 6 be given by
(vi

1
∗
, vi

2
∗
, . . . , vi

k
∗
) and the optimal objective value be αi ∗.

Step 8: Calculate the final weights w1, w2, . . . , wk of criteria by taking average of
the optimal weights obtained for each DM as follows:

w j =

m∑

i=1
vi
j
∗

m
∀ j = 1, 2, . . . , k

17.4 Application of the Proposed Methodology

17.4.1 Identification of Key Criteria Using Delphi Technique

The objective of using the Delphi technique is to select the most important criteria
according to theDMs froma list of thirteen criteria in economic dimension and eleven
in environmental and social dimensions respectively. The criteria must be shortlisted
on the basis of their importance in evaluating the capabilities of 3PRLPs in sustainably
managing the RL operations. The Delphi technique aids in identifying the critical
criteria, the inter-dependency amongst the criteria and the irrelevant criteria as per the
DMs opinions and end goals. Henceforth, the key sustainable criteria are extracted
as shown in Fig. 17.2.

This has resulted in finalization of six key economic criteria: (1) Financial Per-
formance (FNP) refers to the financial capability of the 3PRLP in providing the
RL services at minimum cost and its mutual commitment towards achieving liquid-
ity and profitability for organization; (2) Resource Capacity (RCP) which refers to
the capacity of the 3PRLP to invest in RL operations, facility development and other
infrastructure development; (3)Quality (QL) corresponds to the quality of the service
provided by the 3PRLP and the quality of the final remanufactured product, recov-
ered parts and material; (4) Assets Management (ASSM) refers to management of the
facilities and vehicles, transportation activities, manpower engaged by the 3PRLP;
(5)Technology Innovation (TI) incorporates the ability of the 3PRLP to invest in tech-
nical development in order to fulfil the RL service level, provide information security
system for a better communication between the facilities and advanced components
and equipment for better working conditions; (6) Optimization Capabilities (OPC)
refers to the technique level and the range of services provided by the 3PRLP. It
also includes the inventory management, space utilization, demand forecasting and
equipment handling skills of 3PRLP.

The evaluation of eleven environmental criteria usingDelphi technique resulted in
clustering the criteria and identifying five key criteria with the aim towards selecting
3PRLP who will be able to carry RL activities with reduced environmental degra-
dation. The five combined environmental criteria are (1) RL Practices (RLP) which
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Fig. 17.2 Key sustainable criteria for 3PRLP evaluation

includes developing efficient logistics system by 3PRLP for carrying all RL activities
such as collection, sorting, recycling, remanufacture and redistributionwith emphasis
on maximizing value creation and minimizing the deterioration of the environment.
RLP also includes the capability of disposal of wastes in order to protect the environ-
ment; (2) Green Level (GRL) of 3PRLP is measured in terms of the green practices
adopted by the 3PRLP such as green packaging using biodegradable materials and
training of employees is an unavoidable practice for the safety of the environment.
It also involves green design of 3PRLP’s facilities to factor in short-term as well as
long-term impact on the environment; (3)EnvironmentalManagement System (EMS)
refers to the commitment and alignment of 3PRLP towards the environmental objec-
tives of the organization. Its compliance towards the environmental protection laws
and environmental policies. Its efforts towards reduction of carbon footprint in every
stage of the RSC; (4) Pollution Prevention and Control (PP&C) relates to measures
adopted and efforts made by 3PRLPs for reduction, elimination, or prevention of
pollutant emissions; (5) Resource Consumption (RCN) refers to the ability of 3PRLP
to reduce the consumption of resources such as energy, raw material and water.

Eleven social criteria are evaluated and combined in the following four key criteria:
(1) Human Resource Policies (HRP) which is to check compliance of 3PRLP with
various ILO laws related to employeewelfare and transparency towards labour equity.
Compliance and transparency with regards to employment laws is very important as
most RL activities in India are still conducted in an unorganized manner involving
women and children to work in hazardous conditions; (2) Stakeholder Empowerment



390 J. D. Darbari et al.

(STE) refers to the contribution of 3PRLP towards educating and empowering its
stakeholders. It also refers to the ability of the 3PRLP to respond effectively towards
company’s and customer requirements; (3) Employment Practices (EMP) refers to
how effectively 3PRLP has managed to build relationship with staff. Additionally,
it also includes the attitude of 3PRLP towards employment compensation, flexible
working arrangements and career development; (4) Health and Safety (H&S) refers
to the policies adopted by 3PRLP to ensure the safety of the employees, provide
security, and maintaining an environment friendly workplace for the health of the
employees.

17.4.2 Evaluation of Key Sustainable Criteria Using Best
Worst Method

Next, the BWM technique is utilized to prioritize the key performance criteria under
the triple bottom line approach and reduce the existence of inconsistency of DMs.
Four BWM models are formulated—Model 1 is for finding the rank of importance
of the three sustainability dimensions viz. economic, environmental and social.
Table17.4 below provides the weights of each dimension obtained from solving
model 1 on the basis of preferences given by DM 1. It can be seen from Table17.4
the value of α1 for model 1 is 0.045, which is closer to zero. Hence, the evaluation
of DM1 is consistent.

Similarly, evaluation of weights of the other six DMs are determined and the final
average weights of the three sustainability dimensions are calculated. The result is
shown graphically in Fig. 17.3. It can be seen that the environmental dimension gains
the highest averageweight with the economic dimension following at second number
and the social dimension achieves the third rank.

BWM technique is also used for evaluating the criteria under the three sustain-
ability dimensions as illustrated in Fig. 17.2. The results of the three BWM models
are presented in Tables17.5, 17.6 and 17.7. Table17.5 represents the weights of the
top six shortlisted economic criteria obtained from solving model 2 on the basis of
preferences given by DM 1. The value of α1 for model 2, in this case, is 0.094, which
means the comparison of criteria for DM1 is consistent.

Table 17.4 BO and OW vectors and weights of sustainability dimensions derived from model 1
(DM 1)

Criteria Best/BO Worst/OW Weight

Economic 2 4 0.332

Environmental 1 6 0.571

Social 7 1 0.097

α1 0.045
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Fig. 17.3 Graphical representation of weights of sustainability dimensions

Similarly, evaluation of weights of the other six DMs are determined and the
final average weights of the criteria under economic dimension are calculated. The
result is shown graphically in Fig. 17.4. The top six amongst the thirteen criteria in
the descending order of their average weights are; ‘Quality’ (QL) (0.375), ‘Finan-
cial Performance’ (FNP) (0.234), ‘Resource Capacity’ (RCP) (0.156), ‘Technology
Innovation’ (TI) (0.094), ‘Optimization Capabilities’ (OPC) (0.094) and ‘Assets
Management’ (ASSM) (0.047).

Table17.6 represents the weights of the top five shortlisted environmental criteria
obtained from model 3 on the basis of preferences given by DM 1. The value of α1

for model 3 is obtained as 0.095, which shows the comparison is consistent for DM1.
Similarly, evaluation of weights of the other six DMs are determined and the final

average weights of the criteria under environmental dimension are calculated. The
result is shown graphically in Fig. 17.5. The top five criteria in descending order of
their average weights are: ‘RL Practices’ (RLP) (0.437), ‘Environmental Manage-
ment System’ (EMS) (0.266), ‘Green Level’ (GRL) (0.133), ‘Pollution Prevention
and Control’ (PP&C) (0.106), ‘Resource Consumption’ (RCN) (0.057).

Table17.7 represents theweights of the top four shortlisted social criteria obtained
from model 4 on the basis of preferences given by DM 1. The value of α1 for model
4 is 0.044, the consistency ratio is very close to zero, hence the result is reliable.

Similarly, evaluation of weights of the other six DMs are determined and the final
average weights of the criteria under social dimension are calculated. The result is
shown graphically in Fig. 17.6. In today’s era, an organization needs to have respect
for policies with regard to employee health and safety, workplace safety, security and
safety procedural compliance. Hence, it must also give emphasis on the same aspects
while evaluation of 3PRLP. The criteria in the descending order of their average
weights are; ‘Health and Safety’ (H&S) (0.485), ‘Employment Practices’ (EMP)
(0.265), ‘Human Resource Policies’ (HRP) (0.176), ‘Stakeholder Empowerment’
(STE) (0.074).
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Table 17.5 BO and OW vectors and weights of economic criteria derived from model 2 (DM 1)

Criteria Best/BO Worst/OW Weight

FNP 2 5 0.252

RCP 3 3 0.178

QL 1 6 0.381

ASSM 7 1 0.037

TI 5 3 0.081

OPC 5 4 0.071

α1 0.094

Table 17.6 BO and OW vectors and weights of environmental criteria derived from model
3 (DM 1)

Criteria Best/BO Worst/OW Weight

RLP 1 6 0.384

GRL 4 4 0.213

EMS 2 5 0.284

PP&C 5 3 0.094

RCN 7 1 0.025

α1 0.095

Table 17.7 BO vector, OW vector and weights of social criteria derived from model 4 (DM 1)

Criteria Best/BO Worst/OW Weight

HRP 3 3 0.211

STE 6 1 0.062

EMP 2 4 0.186

H&S 1 6 0.541

α1 0.044

Fig. 17.4 Graphical representation of weights of economic criteria
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Fig. 17.5 Graphical representation of weights of environmental criteria

Fig. 17.6 Graphical representation of weights of social criteria

17.5 Result Discussion

The sustainability criteria shortlisted usingDelphi technique are evaluated under each
dimension using BWM. Next, the weights of importance of the three dimensions of
sustainability are derived using BWM. The results of the four BWM models have
been presented in Tables17.4, 17.5, 17.6 and 17.7. Table17.4 provides the weights
of each dimension obtained from solving model 1. It can be seen that the environ-
mental dimension gains the highest weight with the economic dimension following
at second number and the social dimension achieves the third rank. The environmen-
tal dimension being ranked first is reflective of the DMs opinion that the primary
objective of the organization in choosing to outsource to 3PRLP is to manage the
returned flowof products and associated activities in an environmentally safemanner.
The second rank of economic dimension shows that financial performance and RL
associated costs hold importance for bringing profit to the organization. The social
dimension is ranked third, which implies that workplace safety and employment
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practices although important for the company, are not given more importance than
environmental and economic aspects.

Table17.5 shows the top six amongst the thirteen economic criteria. ‘QL’ plays
an important role in outsourcing to 3PRLP as the quality of the recycled material,
refurbished product and quality service are important for creating value for customers
and which is the idea behind RL. Also, it can be seen from Table17.4 that the
environmental dimension ranks first which shows that for the company, the focus is
on ‘RLP’ for the environmental gains in terms of quality recovery of products and
materials. Further, in outsourcing logistics, an important concern for the organization
is that 3PRLP is mutually committed towards its business needs. In this context,
‘FNP’ has hence been ranked second, which refers to the ability of the 3PRLP to gain
economic benefits from RSC performance for the organization. Next, ‘RCP’ which
ranks third measures the capability of 3PRLP to invest in RL network operations
and specialized infrastructure. The criteria ‘TI’ and ‘OPC’ hold the same level of
importance. Both criteria have relevance in measuring the ability of 3PRLP to invest
in strong technical development and efficiently manage RSC processes.

Table17.6 represents the weights of the top five shortlisted environmental criteria
obtained from model 3. Due to increase in environmental pollution, stakeholders
demand for reduction of carbon footprint in every stage of the RSC. This justifies the
obtained rankings of the criteria based on judgments of the DMs. ‘RLP’ is the highest
ranked criteria under the environmental dimension. In RL, sustainability is of utmost
importance and for that 3PRLP must focus on execution of all ‘RLP’ efficiently and
enhancement of safe recycling and disposal capability. Ranked second is ‘EMS’, as
the company is strict about compliance towards environmental policies. Hence, it
wants to associate with 3PRLP who actively monitors the environmental level of
their ‘RLP’ and adheres to all the environmental protection laws and environmental
policies. ‘GRL’ is ranked third, which measures the capability of 3PRLP to focus
on the green design of facilities to factor in short-term as well as long-term impact
on the environment, in order to enhance the environmental performance of the RSC
network.

Table17.7 represents theweights of the top four shortlisted social criteria obtained
from model 4. The criteria ‘H&S’ has received the first rank, which shows that the
company is concerned towards not only maintaining safety standards for their orga-
nization, but also expect the same from the 3PRLP. Ranked second is ‘EMP’, which
means the 3PRLP must have the ability to contribute towards career development
of their employees while also providing opportunities to the local people for the
development of regional sustainability. Ranked third is ‘HRP’ as compliance with
various ILO laws relating to employee welfare is needed in RL. It is essential as
many unorganized sectors use unscientific methods to recycle and recover full value
from the returned products.

A comparative ranking of weights of the three dimensions of sustainability for
3PRLP evaluation and within each dimension the importance of criteria as per the
DMs has been shown graphically in Fig. 17.7. It gives a clear picture to the RSC
managers regarding howmuch emphasismust be laid on the criteria for the evaluation
of 3PRLP for achieving sustainability.
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Fig. 17.7 Graphical representation of the importance of criteria under each sustainability dimension

17.6 Conclusion

Concerning the result analysis, the conclusion of the study is presented. The iden-
tification of key performance criteria for 3PRLPs is complex. This research has
attempted an integrated MCDM model, which combines Delphi and BWM tech-
niques to evaluate and select the appropriate key performance criteria for the selection
of sustainable 3PRLPs. The proposed model is applied in the electronic industry to
check the applicability and validity of the model. From the list of sustainable criteria
derived from a broad literature review, few are shortlisted and weighted in order to
acquire the main aspects for the assessment of sustainable performance of 3PRLPs.
Delphi technique has been applied for the first level of screening of the criteria which
is based on the results of various levels of questionnaires sent to a panel of experts and
choosing the most prominent criteria of economic, environmental and social dimen-
sions according to the DMs. The criteria have been shortlisted on the basis of their
importance in evaluating the sustainable performance of 3PRLPs. Post the Delphi
technique, the inter-dependent key criteria have been clubbed together to acquire a
smaller number of criteria to ease the complexity of the decision-making. Next, the
methodology involves the BWM technique to prioritize the key performance criteria
under the triple bottom line approach. Four BWMmodels have been formulated. First
model is for finding the rank of importance of the three sustainability dimensions
viz. economic, environmental and social. Next, three BWM models are utilized to
find the rank of importance of all criteria under each sustainability dimension. The
result of model 1 shows that the environmental dimension has achieved the highest
preference since the motivation behind RL is to achieve reduce the negative impact
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of the SC activities, and hence environmental sustainability is the foremost responsi-
bility of the 3PRLPs. The importance of environmental dimension justifies the DMs
outlook on the criteria selection. As per the result derived frommodel 2,QL and FNP
have been the topmost key performance criteria under the economic dimension. QL
is of great importance as the quality of service and product is of high significance for
a customer, whereas FNP refers to the economic benefits for the company from the
RL operations. Value for customers and economic benefits have been the idea behind
RL. The result of model 3 yields RLP and EMS as the top two criteria under environ-
mental dimension. This ascertains that reduction of carbon footprint and compliance
towards environmental policies in RSC are the major goals towards sustainability.
Lastly, model 4 solved for social dimension yields H&S and EMP as the top two
social criteria. It is justifiable as safety and opportunity for employees is a major con-
sideration for the organization and hence expect the same from 3PRLP. The obtained
results validate that the integrated decision-making model proposed in the study suc-
cessfully addresses the sustainable performance criteria selection problem. The final
list of criteria derived in the study along with their rank of importance, sustainable
3PRLP selection problem can prove to be very useful in sustainable 3PRLP selection
problem. There are a few limitations of the study. The criteria identified in the study
broadly covers all the sustainable aspects of the evaluation of 3PRLPs. However, the
study is limited to electronic industries. Further, the criteria selection is based on the
opinions of the DMs of a specific industry which can vary when applied to other
case studies. However, it has a lot of scope for modification by researchers and prac-
titioners with regard to the change in the decision-making environment. This study
can also be expanded by incorporating the risk dimension, as risk is an important
factor to be taken under control while performing the RL. Risk factors like financial
risk, operational risk and organizational risk can be considered while selecting the
3PRLPs.
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Chapter 18
Efficiency Assessment Through Peer
Evaluation and Benchmarking: A Case
Study of a Retail Chain Using DEA

Anshu Gupta, Nomita Pachar, and Mark Christhian Barrueta Pinto

Abstract Retail industry in developing countries like India has observed immense
growth in the past two decades and has marked a significant position in the global
retail market due to technological advancements, globalization, rise in customer
expenditure, emergence of multiple retail formats and increasing interest of investors
in this sector. The growth in the retail sector is coupled with intense competition,
shrinking revenues and rising expenditure on promotional activities, drawing atten-
tion of the decision-makers towards efficient operations. It is imperative to develop
a robust approach for efficiency measurement for retail stores to support planning
and implementation of efficient operations and expand the supply chain capabilities.
The existing literature for retail stores efficiency assessment has mostly considered
the self-appraisal approach, limiting its practical application due to inherent issues
of total weight flexibility and pseudo-efficiency. In this study, we have presented
an approach for efficiency assessment of retail stores through peer evaluation using
the cross-efficiency models of Data Envelopment Analysis (DEA) to address these
issues. The study also identifies pseudo-efficient stores using the concept ofmaverick
index and defines benchmarks for all inefficient stores including maverick stores for
developing improvement strategies. A case study of Indian electronic retail chain is
presented to demonstrate the application.
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18.1 Introduction

Indian retail industry has inhabited a phenomenal position in global retail ranking
with its emergence as a dynamic industry, accounting for more than 10% of GDP
and around 8% employment in the country [12]. Fostered by high market potential
and low economic risk, the retail sector has witnessed enhanced profitability in the
highly competitive and ever-changingmarketplace. Competitiveness and complexity
are continuously soaring in this industry due to overabundance of consumer choice,
fast changing technology and blooming of multi-format retailing [41]. To survive
in the competitive marketplace and meet the challenges of today’s business envi-
ronment, retailers are evolving continuously with improved operational efficiency
and supply chain capabilities [18, 20]. Retail chains can manage the flow of goods
in an efficient and effective way by ensuring availability of the right product in the
right place at the right time and satisfying constantly changing market demand [40].
Sustained performance and continuous improvement are key for long-term sustain-
ability of any business including the retail trade. Along with devising strategies in
this direction it is imperative for the retail firms to develop an approach for efficiency
measurement scientifically. An efficiency measurement approach is useful for busi-
nesses, for monitoring and evaluating the performance of its several business units
and its stakeholders accounting the input resource utilization to yield well-defined
outputs [30]. When a business involves multiple comparable units such as stores in
a retail chain in such a case apart from measurement of efficiency of the individ-
ual units (commonly known as Decision-Making Units (DMUs)), firms also need to
identify the best practices group [46] for benchmarking the inefficient units. In this
direction, our study presents a data envelopment analysis (DEA)-based efficiency
measurement approach through peer assessment of multiple stores of an electronic
retail (ER) chain. Further benchmarking reference sets are derived using multiple
correlation clustering (MCC) to help decision-makers deal with the inefficiencies of
the inefficient and pseudo-efficient DMUs in comparison to the best performers.

DEA and some of its extensions including cross-efficiency DEA model are well-
accepted approaches for relative efficiency measurement of comparable DMUs [15].
Several characteristics of DEA and cross-efficiency DEA model encourage the use
of this methodology for efficiency measurement of a group of retail stores operated
by a centralized management. These include—(1) measurement of efficiency based
on multiple dimensions of performance, (2) objective assessment of efficiency as
no subjective scoring is required form the decision-maker or based on qualitative
criteria, (3) dimensions of performance measured on non-homogeneous scales can
be included and (4) input and output (I/O) dimensions could be differentiated which
is beneficial for further use of the results for devising improvement strategies [5, 16].
Introduced from the seminal work of Charnes, Cooper and Rhodes [6] (commonly
called as CCR model), the traditional CCR model provides the relative efficiencies
of DMUs in comparison to others based on self-appraisal assuming constant return
to scale. The CCR [6] model is then extended by Banker, Charnes and Cooper [3]
(commonly called as BCC model) under variable return to scale assumption. The
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conventional approach has two major issues—(1) it does not provide a ranking for
the best performers in the set of DMUs under consideration [14] and (2) the problem
of pseudo-efficient DMUs [39]. Given the characteristic of total weight flexibility
in the conventional model several DMUs may be identified as efficient gaining the
highest level of efficiency (equal to 1) leading to the issue of pseudo-efficient DMUs
and also the requirement of ranking the efficient units [5]. The self-evaluation model
could not eliminate unrealistic weights without collecting the weight restriction from
decision-makers [27]. The cross-efficiencymodel helps to overcome these issues [14,
27, 28].

The idea of self/peer-evaluation is often related with the performance assessment
of an individual as in personnel management. However, the application of cross-
efficiency through peer evaluation is not limited to people and has been used in the
literature in different contexts such as for measuring the efficiency of nursing homes,
coastal cities, public procurement and portfolio selection [16, 27, 28, 36]. Studies in
the literature have discussed the efficiency evaluation of retail stores applying DEA
models. Most of these studies are based on the conventional DEA models (CCR or
BCC), there is no notable article in the literature in the context of retail stores, in
general, and an Indian electronic retail chain, in particular. Our study presents an
application of the cross-efficiency DEA models for objective efficiency evaluation
of stores of an Indian electronic retail chain. Further our study also identifies the
pseudo-efficient stores and benchmarks for improvement of inefficient as well as
pseudo-efficient stores.

Structure of the remaining chapter is as follows: Sect. 18.2 elaborates the relevant
review of literature; Sect. 18.3 defines the problem of the study; Sect. 18.4 explains
the methodology; the results and findings are discussed in Sect. 18.5 and Sect. 18.6
demonstrates the conclusion.

18.2 Literature Review

The focus of the study is to analyse the peer efficiency of retail stores of an Indian
ER chain based on DEA through peer evaluation. The existing studies related to
efficiency evaluation in retail have generally considered conventional DEA (self-
appraisal) approaches ignoring the peer evaluation. Our manuscript considers this
issue and presents a DEA-basedmethodology for evaluating peer efficiency of multi-
ple retail stores. DEA is a well-known technique and the conventional model of self-
appraisal has two formulations: CCR [6] and BCC [3]; various theoretical extensions
have been discussed in the literature for different contexts including cross-efficiency
[36], super efficiency [2], attractiveness [37], variable benchmark model [11] and
slack-based model [7]. These models have been widely employed in different fields
including transport [4], banking [8], retail [24] and health [23] in the literature. The
efficiency evaluation in the retail sector based on basic DEA has been explored by
some researchers [17, 22, 24, 25, 44]. The following paragraph provides a glimpse
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of the last 10 years of research related to performance evaluation in retail based on
basic DEA.

Yu and Ramanathan [44] evaluated Chinese retail organization’s economic effi-
ciency based on two inputs (carpet area and staff) and two outputs (profit and sales)
employing CCR DEA model. Authors used Malmquist Productivity Index (MPI)
to examine the changes in efficiency with respect to different years for the period
2000–2003 and the influence of environmental variables applying bootstrapped Tobit
Regression (TR). Gupta and Mittal [21] measured the productivity of grocery retail
firms located in National Capital Region (NCR), India through CCR model of DEA,
based on six inputs (store area, check points, SKUs, number of employees, employees
cost and working hours) and two outputs (sales and customers conversion ratio). Lau
[26] investigated the retail distribution network’s efficiency measurement approach
as an alternative to conventional optimization approach using transportation cost as
I/O defined in terms of sales data in the basic DEA model. Pande and Patel [32]
examined cost efficiency of retail stores of a pharmacy company in NCR, India
and derived the effect of footfalls, sales and operating expenses on efficiency using
the TR model. Gandhi and Shankar [17] followed the approach of [44] and mea-
sured the economic efficiency of Indian retail firms of the period 2008–2010. In a
similar study, Xavier et al. [43] presented efficiency analysis for retail stores of a
clothing retail firm of Portugal. Ko et al. [25] demonstrated the measurement of effi-
ciency for a household retail chain in Korea and examined the effect of competitive
environment and assortment on efficiency values using the TR model. Gupta et al.
[22] demonstrated DEA-based methodology for analytical selection of performance
dimensions and efficiency measurement of multiple retail stores with a case study of
an Indian ER chain again based on the CCR model. It is evident that the major focus
of the researchers for efficiency measurement related to retail sectors remained on
the conventional models employing self-appraisal models.

As discussed in the introduction section, the DEA self-appraisal model has some
practical issues limiting the application of the models including—no ranking of effi-
cient DMUs and pseudo-efficiency. To deal with these issues, Sexton et al. [36]
proposed an extension of the basic DEA model which is known as a cross-efficiency
approach for measuring peer efficiency of DMUs based on multiple I/O. Cross-
efficiency models provide a solution to the issue of unrealistic weights without col-
lecting prior information on weight constraints and also provide unique ranking of
all DMUs [14, 27, 28]. Doyle and Green [14] proposed extension of the concept of
cross-efficiency and developed aggressive and benevolent formulations considering
secondary objectives for resolving ambiguity, and also discussed the concept of mav-
erick index to deal with the issue of pseudo-efficiency. Higher values of this index
indicate overestimation of efficiency of the concerned DMU through self-appraisal.
The concept of cross-efficiency in DEA has gained a lot of attention by researchers
and practitioners [1, 16, 34, 36]. This section reviews and identifies gaps in literature
and highlights the contributions of our study.

Talluri and Sarkis [39] illustrated the use of cross-efficiency approach in DEA
for evaluating layout of cellular manufacturing systems with two inputs (number of
workers and number of machines) and three outputs considered as average (flow
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time, work in process levels and labour utilization). Sarkis [34] presented an analy-
sis of different DEA ranking techniques (basic DEA model, cross-efficiency model,
super efficiency model, ranked efficiency, radii of classification rankings) and Mul-
tiple Criteria Decision-Making (MCDM) methods (PROMETHE, ELECTRE and
SMART). A case study of solid waste management of Finland is used with five
inputs (cost, health effects, global effects, surface water releases and acidificative
releases) and three outputs (employees, technical feasibility and resource recovery).
The results demonstrated that judgement of DMUs in the DEA technique provided
the better results than given by the MCDM techniques. Adler et al. [1] reviewed the
ranking approaches in the DEA which are cross-efficiency, maverick index, super
efficiency, benchmarking, multivariate statistical techniques, ranked inefficient units
through proportional inefficiency. The results of analysis are demonstrated through
a numerical illustration of a nursing home as given in [36]. Braglia et al. [5] pre-
sented an approach of the efficiency evaluation based on cross-efficiency of Iranian
steel plants with 5 inputs and 12 outputs. Further, authors computed the maverick
index for determining pseudo-efficiency plants and also employed cluster analysis for
benchmarking. Talluri and Narasimhan [38] proposed a framework to identify sup-
pliers for strategic sourcing and calculated efficiency scores of suppliers by using the
DEA model. Authors also conducted the peer evaluation of suppliers to overcome
the weight flexibility issue of CCR model. Liang et al. [27] extended the model
of cross-efficiency that was given by [14] and introduced an alternative secondary
goal in cross-efficiency evaluation. The model was illustrated through a numerical
example. It selected 13 open coastal cities and 5 special economic zones in 1989 of
China based on two inputs and three outputs. Yu et al. [45] measured the SC per-
formance based on different information sharing scenarios through cross-efficiency
DEA approach. The result of the study demonstrated that sharing demand informa-
tion is the most efficient scenario for efficient supply chains. Falagario et al. [16]
presented a decision-making tool for selecting the best supplier using aggressive and
benevolent formulations of cross-efficiency in DEA. The validity of the approach is
supported through a case study of an Italian public procurement agency with two
inputs and two outputs which are execution time and price, and enhancement plants
and free maintenance after post-delivery, respectively. Lim et al. [28] proposed a
strategy for selecting the portfolio by using DEA cross-efficiency technique. Fur-
ther this study addressed the variation in cross-efficiencies through mean variance
framework. The applicability of the approach is demonstrated through Korean stock
market with nine inputs and seven outputs. Wu et al. [42] proposed the idea of sat-
isfaction degree in cross-efficiency technique through a max min mode and gave
two algorithms to solve the models. Liu et al. [29] evaluated the eco-efficiency of 23
coal-fired power plants of China using a cross-efficiency approach and considered the
idea of undesirable output in the model. Omrani et al. [31] evaluated the energy effi-
ciency of 20 zones of Iranian transportation sector with five inputs and four outputs
based on cross-efficiency and cooperative game approach. Chen et al. [9] assessed
environmental efficiency with undesirable outputs of China during 2006–2015 using
DEA cross-efficiency approach. Further, authors proposed the three strategies which
are environmental protection, economic development and win-win strategies based
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on the objective of decision-makers. Goswami and Ghadge [19] developed a DEA-
based model considering undesirable and desirable outputs for evaluating supplier
efficiency and also measured the cross-efficiency to accomplish peer evaluation.
Authors demonstrated the validity of the approach through application of Hyundai
Steel Company.

It is noticeable from the above Review of Literature (ROL) that there are ample
number of studies that discussed issues related to peer efficiency measurement with
different applications. However, the application in the context of retail is limiting.

18.2.1 Contribution of the Study

From the ROL, it is evident that the concept of peer evaluation is explored by a lot
of researchers in the literature with diverse applications; however, application of the
efficiency measurement approach through peer evaluation is yet to be explored in
the context of the retail sector as demonstrated in Table18.1. With respect to the
case study in consideration the decision-makers were interested in exploring the
relative efficiency assessment though peer evaluation and comparison with the CCR
efficiency.

1. In the literature, peer evaluation of efficiency measurement is discussed with
respect to various fields and different countries [9, 16, 28, 29, 31] while no

Table 18.1 Existing gap in the literature
Studies Methodology Application of

retail sector
Indian case study

Cross-efficiency Maverick index Benchmarking

Talluri and Sarkis
[39]

√ √ √ × ×

Sarkis [34]
√ × × × ×

Adler et al. [1]
√ √ √ × ×

Braglia et al. [5]
√ √ √ × ×

Talluri and
Narasimhan [38]

√ × × × ×

Liang et al. [27]
√ × × × ×

Yu et al. [45]
√ × × × ×

Falagario et al. [16]
√ × × × ×

Lim et al. [28]
√ × × × ×

Liu et al. [29]
√ × × × ×

Omrani et al. [31]
√ × × × ×

Chen et al. [9]
√ × × × ×

Goswami and
Ghadge [19]

√ × × × ×

Our study
√ √ √ √ √
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significant study exists for peer evaluation for efficiency assessment in the retail
sector and in particular related to Indian retail context.

2. Another limitation of the existing research is that the discussion of pseudo-
efficient DMUs and determination of benchmarks for further improvement of
inefficient units are explored limitedly [5, 14, 39]. In this manuscript, through
comparison of CCR and aggressive (and benevolent) efficiency, we have also
identified the pseudo-efficient units and have computed benchmarks for further
improvement of inefficient units as well as for pseudo-efficient units.

Considering these arguments specific contributions of the our study are as follows:

1. The study assesses the efficiency of retail stores of an Indian electronic retail
chain based on peer appraisal through different models of cross-efficiency and
compares the results.

2. Cross-efficiency assessments are compared with the CCR efficiency using Mav-
erick index to identify pseudo-efficiency such that improvement strategies may
be devised for inefficient as well as pseudo-efficient stores.

3. Benchmarking reference sets are derived using MCC to determine the closest
benchmarks for all inefficient stores.

18.3 Problem Definition

The case company in focus is an Indian ER chain that offers a large assortment
of consumer electronic goods [22]. The retail chain manages several stores spread
over Delhi NCR area. For efficacious management of the retail chain, the decision-
maker is looking for an effective analytical approach for continuous monitoring of
the performance of the stores and devises strategies to enhance their performance.
The performance of the stores depends on several factors such as size of the store,
location and number of personnel and product assortment. The study presents a
cross-efficiency-based DEA approach for efficiency assessment through peer eval-
uation. Subsequently, pseudo-efficient units are identified and benchmark sets are
determined for all inefficient and pseudo-efficient stores. The case study discussed
here presents the results based on analysis of data related to 24 stores selected for
demonstration of results by the decision-maker.

18.4 Methodology

The assessment of efficiency using DEA is conducted identifying the performance
measures as I/O, and efficiency is defined by the ratio weighted sum of output and
input. In the basic CCR model of DEA [6], each DMU is enabled to propose its
own weights in order to maximize its outputs with respect to certain constraints
on the inputs of all the DMUs [10]. In this scenario, a unit under evaluation may
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achieve the status of an efficient unit through a set of I/O weights wherein some
I/O achieves nearly zero value and few or just single inputs and outputs get signif-
icant non-negative value. A retail store consumes several inputs such as monetary
expenses on day-to-day operations, inventory cost, promotional expenses, store area
and number of staff to generate outputs in the form of sales and customer satisfaction.
Computation of efficiencywith positiveweights only for some I/O limits the practical
applications of the classical DEAmodel leading to the problem of pseudo-efficiency.
Since the cross-efficiencymodel enables peer evaluation of efficiency and overcomes
this problem, this study uses the cross-efficiency model of DEA [36] along with the
aggressive and benevolent formulations [14] for assessment efficiency of a group of
retail stores. Following the efficiency assessment pseudo-efficient DMUs are iden-
tified using Maverick index and benchmarking sets are determined based on MCC
[14].

18.4.1 Cross-Efficiency Assessment

The classical model of cross-efficiency assessment enables computation of efficiency
through peer appraisal by a two-stage process. In the first stage (known as the ‘self-
appraisal’ stage), for each DMU its CCR efficiency score [6] is computed. In the
second stage, efficiency scores are calculated for each DMU using the weights of the
other DMUs, resulting in the computation of a Cross-Efficiency Matrix (CEM) (as
shown in Fig. 18.1). The efficiency of a DMU is then calculated by aggregation of
efficiency scores computed in the second stage. In the CEM, the element at i th row
and j th column is the efficiency of DMU j with the optimal weights of DMU i. The
diagonal of the CEM represent the CCR efficiency for each DMU. The mathematical
formulation of the model is as follows. Assuming there are n DMUs consuming m
inputs to generate s outputs, the i th input of j th DMU (j = 1, 2, . . . , k, . . . , n) rep-
resented by xi j and r th output of j th DMU denoted by yr j . The basic formulation of
cross-efficiency evaluation is the input-oriented CCR DEAmodel [6] for computing
optimal weights of I/O. In the first stage, the weights of kth DMU are computed
using the following CCR DEA model:

θk = max
∑s

r=1 urk yrk
s.t.

∑m
i=1 vik xik = 1

∑s
r=1 ur j yr j − ∑m

i=1 vi j xi j ≤ 0 ∀ j

ur j , vi j ≥ 0

(M1)

where ur j is the weight associated with r th output of j th DMU and vi j is the weight
associated with i th input of j th DMU. The solution of themodel (1) provides optimal
values of the I/O weights and efficiency value of DMU k. Using the optimal solution
of stage 1 the cross-efficiencies of DMU l for all l = 1, 2, . . . , n can be calculated
from the following equation in stage 2:
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θkl =
∑s

r=1 u
∗
rk yrl∑m

i=1 v∗
ik xil

(M2)

where u∗
rk and v∗

rk denote optimalweights ofDMU k according tomodel (M1). Cross-
efficiency of lth DMU is calculated by averaging the efficiency over row/columns as
depicted in Eq. (1).

θl = 1

n − 1

∑n
k=1,k �= j θkl,∀l (1)

Along the rows each θkl is interpreted as efficiency that DMU k accords to DMU
l ∀ j, averaging over rows is DMU k’s average appraisal of peers against which it
would like to compare itself and along the columns θkl represent the peer appraisal
of DMU l and averaging down column l is the average peer appraisal of DMU l.

Cross-efficiency scores obtained from the basic DEA (as in stage 2) are often not
unique as it depends on which of the optimal solutions of the linear programming
model of CCRDEAmodel is employed, again limiting the usefulness of the approach
[27]. To deal with this issue, Doyle and Green [14] proposed aggressive and benevo-
lent formulation of cross-efficiency. In the aggressive approach, DMU k determines
weights that minimize efficiency of peers and the benevolent approach maximizes
the efficiency of DMU k and also the efficiency of peers. These formulations are as
follows:

min
∑s

r=1 ur
∑n

j=1, j �=k yr j (M3)

or

max
∑s

r=1 ur
∑n

j=1, j �=k yr j (M4)

s.t.
∑m

i=1 vi
∑n

j=1, j �=k xi j = 1 (2)
∑s

r=1 ur yrk − θk
∑m

i=1 vi xik = 0∀k (3)
∑s

r=1 ur yr j − ∑m
i=1 vi xi j = 0∀ j; j �= k (4)

ur , vi ≥ 0 (5)

The objective functions (M3) and (M4) are the secondary objective functions of
the cross-efficiencymodel and represent the aggressive and benevolent formulations,
respectively, along with the constraints (2)–(5).

18.4.2 Maverick Index

Maverick index represents the deviation between CCR and cross-efficiency [36] and
is a measure of the deviation when moving from self-appraisal to the corresponding
peer appraisal, i.e. the Maverick index for DMUk is defined as

Mk = θkk − θk

θk
(18.1)
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Fig. 18.1 Cross-efficiency matrix

where θkk and θk are the CCR and cross-efficiency, respectively, of DMU k. A DMU
may become efficient during self-evaluation while obtaining low efficiency in peer
evaluation. Higher value of maverick index indicates that an efficient DMU is over-
estimated because of poor discrimination.

18.4.3 Identification of Benchmarks

Benchmarking is a technique employed by organizations for improvement of the
low performers in comparison to the best performers. Benchmarking measures the
performance of a low-performing unit against the best-performing unit [35]. The
benchmarking approach based on classical DEA has some limitations. Firstly, the
inefficient DMUs and their corresponding reference sets may not be similarly inher-
ent, and may represent an unachievable target for inefficient DMUs [39]. Secondly,
benchmarking set for pseudo-efficient could not be determined. In the literature,
researchers have discussed benchmarks for the inefficient/pseudo-DMUs through
the cluster analysis [5, 35, 39].

Here we have used the Multiple Correlation Clustering (MCC) method devel-
oped by [13] to form benchmarking clusters. It is a technique based on an iterative
procedure that partitions the set of DMUs in two subsets; these subsets are further
segregated until homogeneity is obtained between DMUs. The steps for MCC are as
follows:

1. The correlationmatrix is computed based on the cross-efficiencymatrix ofDMUs.
2. If the values of the correlations in step 1 are close to +1 or −1 (approximation

taken up to a suitable precision) go to step 3 otherwise compute higher order
correlation matrices until a correlation matrix with all values +1/−1 is obtained.

3. Dataset is partitioned based on negative and positive correlations to form two
clusters of DMUs.
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4. Steps 1–3 are repeated until one of the condition is satisfied.

a. The resultant correlation matrix has all values close to +1 implying the units
in consideration are alike.

b. The maximum number of possible iterations is reached.
c. The number of units in the partitioned matrix is too small to further divide into

separate clusters.

This MCC approach has several characteristics that favours its application for clus-
tering including—the method can form clusters of highly intercorrelated units, can
detect even small noise signals from large noise, missing data could be inferred
from higher order correlations and is impervious to multicollinearity [35]. Within
each cluster, the DMU with the highest cross-efficiency score can be considered
as a benchmark for the other members of the same cluster. The methodology is
demonstrated in the following section with a case study.

18.5 Case Study

This section demonstrates application of the cross-efficiency model for estimating
the efficiency of 24 stores of an ER chain. Through ROL and discussion with the
decision-maker key I/O performance measures to be used for efficiency computation
are identified. The study considers the five inputs: operating expenses [43], average
inventory cost [32], number of employees [25], promotional expenses [22] and store
size [32]; and two outputs: profits [17] and customer satisfaction [22] to compute the
peer efficiency of an ER chain’s 24 stores. Rescaled data is obtained from the case
organization. The results presented here are computed using the ‘MultiplierDEA’
package [33] in R software on the PC with 4GB RAM and intel Core i3-5020U CPU
@ 2.20GHZ.

18.5.1 Analysis and Results

The values of the CCR, cross (CE), aggressive (AE) and benevolent (BE) efficiency
are computed using the data obtained from the organization for I/Omentioned above,
using models (equations) (M1), (M2), (M3) and (M4), respectively. The efficiency
values, maverick indices (MI) and ranking of the stores obtained using these models
are listed in Table18.2.

According to the CCR model, retail stores R3, R4, R15, R17 and R20 have the
perfect efficiency score of 1, while if we compare the results of efficiency values of
the four different models, store R4 attains the highest efficiency according to all the
models and could be considered as leader in terms of its performance. The low value
of the maverick indices for this store also supports its leader status. The results are
also consistent for the stores R3 and R20 that attain the II and III highest values of
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efficiency, respectively, in all models along with low values of maverick index. Low
value of the maverick index reasserts the performance of these stores as high value of
this index is indicative of the pseudo-efficient status of a productive unit. Store R21
though did not attain perfect efficiency in CCR model is ranked above the store R15
due to the higher value of maverick index associated with R15. The retail store R17
is also efficient according to the self-appraisal model while it has attained 7th rank
through peer appraisal, again this could be attributed to the pseudo-efficiency issue.
The store has been overestimated due to poor discrimination associated with the
CCR model as represented by the maverick index for the store. The cross-efficiency
models surface the pseudo-efficient units and hence could provide better results for
benchmarking in terms of providing benchmarks for the pseudo-efficient as well as
inefficient stores.

The results of cross-efficiency are used as input for the MCC to form the clusters
of alike stores wherein a store having highest efficiency in a cluster acts as benchmark
for other stores in that group. Comparing the I/O measures of a low-performing unit
with the best performer, decision-makers can devise strategies for improvement of the
inefficient units. The benchmarks are defined through the MCC clustering approach
as described in the methodology section. First-order and higher order correlations
are computed using the CEM to obtain correlation values close to ±1 and I level
clusters are obtained as shown in Fig. 18.2. Further clusters are derived following the
stopping criteria of MCC and a total of six clusters of stores are obtained. Within a
cluster the store with highest efficiency acts as the closest benchmark [39] for the
other stores. Retail store R15 is benchmark for R1, R12 and R17 in the I cluster
(C1); store R10 is benchmark for R11 in II cluster (C2); store R4 is benchmark for
stores R7, R14, R18 and R24 in III cluster (C3); R3 is benchmark for R2, R13, R16
and R22 in C4; R6 is benchmark for R5, R8, R19 and R23 in C5 and store R20
is benchmark for R21 in C6. This analysis gives realistic insights to management
for forming improvement strategies for inefficient/maverick stores. For the maverick
retail store R17, the closest benchmark is the store R15. Similarly we can define
benchmarks for all pseudo-efficient stores following this method. It may be noted
here that if benchmarking reference sets are defined based on the CCR efficiency [22]
then benchmarks for maverick stores could not be defined and hence DEA efficiency
measures could not be used to define the improvement strategies for these stores.
Further the results of MCC can also be used for stepwise benchmarking [5]. For
example, R11 can benchmark R10 in step one following incremental improvement
strategies and later it can follow a higher order benchmark.

Following implications can be drawn based on the analysis and results presented
above:

1. Rapid growth of the retail industry in developing economies like India has fueled
tough competition in the market with several players striving to capture a notable
size of market share and attain a competitive positioning. Firms in the market
are required to devise strategies for gaining competitive advantage and nour-
ish their businesses for long-term sustainability and remain profitable. In order
to achieve these goals, decision-makers are required to focus on continuous
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Fig. 18.2 Clusters for benchmarks

improvement of its products and processes, improving supply chain capabili-
ties and adding more value for its potential customers [18]. It is imperative for the
firm to devise improvement strategies and monitor their performance. The for-
mulation and implementation of effective improvement strategies require firms to
follow robust methods of performance measurement and identification of weak-
nesses, strengths and opportunities. DEA is a widely accepted and practically
implemented methodology in this context and has been developed for different
contexts. The existing literature related to efficiency measurement related to retail
trade mostly considers the assessment of efficiency through self-appraisal (CCR
model of [6]). The self-appraisal approach has some of the inherent issues such
as overestimation of efficiency leaving to pseudo-efficient DMUs, poor discrim-
ination and non-uniqueness of I/O weights. The peer assessment of efficiency
based on cross-efficiency DEA models helps to resolve these issues. Our study
discusses the application of the cross-efficiency DEA models in relation to retail
and the case study provides a guideline for application for the practitioners.

2. In the direction of devising strategies for improvement and identifying opportu-
nities for improvement, benchmarking is an effective approach. High-performing
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Table 18.2 Efficiency scores of the retail stores

Retail
stores

CCR Conventional CE model Aggressive model Benevolent model

CE MI Rank AE MI Rank BE MI Rank

R1 0.794 0.702 0.131 16 0.683 0.162 16 0.706 0.124 18

R2 0.842 0.668 0.260 23 0.649 0.297 23 0.696 0.210 20

R3 1.000 0.885 0.130 2 0.872 0.147 2 0.905 0.104 2

R4 1.000 0.993 0.007 1 0.974 0.027 1 1.000 0.000 1

R5 0.798 0.704 0.134 15 0.689 0.158 15 0.711 0.122 16

R6 0.817 0.726 0.125 12 0.709 0.152 12 0.739 0.105 13

R7 0.851 0.717 0.187 14 0.704 0.209 13 0.725 0.174 14

R8 0.757 0.700 0.081 17 0.682 0.109 17 0.710 0.066 17

R9 0.868 0.737 0.178 10 0.720 0.205 9 0.757 0.147 10

R10 0.832 0.699 0.190 18 0.673 0.236 18 0.719 0.156 15

R11 0.741 0.662 0.119 24 0.645 0.149 24 0.677 0.095 24

R12 0.973 0.760 0.280 8 0.742 0.311 8 0.757 0.286 9

R13 0.878 0.798 0.100 6 0.775 0.133 6 0.805 0.091 6

R14 0.818 0.736 0.111 11 0.717 0.141 10 0.742 0.103 11

R15 1.000 0.820 0.220 5 0.802 0.247 5 0.819 0.221 5

R16 0.853 0.739 0.154 9 0.713 0.196 11 0.758 0.125 8

R17 1.000 0.781 0.280 7 0.762 0.313 7 0.778 0.285 7

R18 0.762 0.674 0.131 21 0.656 0.161 21 0.684 0.115 23

R19 0.739 0.680 0.087 19 0.660 0.119 20 0.696 0.062 21

R20 1.000 0.830 0.205 3 0.810 0.235 3 0.833 0.201 3

R21 0.978 0.823 0.188 4 0.806 0.214 4 0.827 0.183 4

R22 0.837 0.670 0.249 22 0.650 0.288 22 0.696 0.203 19

R23 0.832 0.723 0.151 13 0.702 0.186 14 0.742 0.122 12

R24 0.741 0.679 0.091 20 0.663 0.118 19 0.691 0.072 22

productive units of an organization can act as benchmarks for low performers,
wherein an inefficient/maverick DMU can follow an efficient unit to gain com-
petitiveness [39]. Our study presents the MCC method to form clusters of homo-
geneous units and determines the closest benchmark targets for inefficient units.
The clustering method for deriving the benchmarking set also finds implications
for incremental benchmarking [5].

3. The results of the study can also be used for devising strategies for optimal real-
location of the centralized resources of an organization according to efficiency
targets. Organizations can also use the ranking of DMUs obtained using the cross-
efficiency assessment for further decision-making.
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18.6 Conclusion

The Indian retail industry has boomed enormously in the past two decades, con-
tributing to the growth of the nation’s economy and creating several employment
opportunities. While several factors such as globalization, technology advancements
and emergence of multiple retail formats have contributed to the growth of the indus-
try, it has also attracted new entrants in the market intensifying competition. Thus,
retail firms are required to focus more than ever on their competitive positioning,
efficient operations and improvement. A robust method for measuring and monitor-
ing performance is an important prerequisite in this direction. This chapter presents
an application of the cross-efficiency DEA models for peer assessment of efficiency
of stores of a retail chain with an application of an electronic retail chain. Efficiency
measures are computed using the conventional CCR, cross-efficiency, aggressive
and benevolent models, and comparison is drawn between different measures. The
concept of maverick index is used to identify themaverick stores and benchmarks are
obtained for all inefficient/maverick stores based on multiple correlation clustering.
Application of the peer assessment methodology proposed in the study is validated
with a single case study of an electronic retail chain. To overcome this limitation,
future research should extend the applications for other retail firms and industry sec-
tors. Another limitation of the study is that benchmark clusters are determined using
the MCC method to establish the consistency of results one need to triangulate the
results with other methods. The future work in this area can focus on identifying the
dimensions for improvement for inefficiency stores and develop optimizationmodels
for centralized distribution of resources.
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Chapter 19
Spherical Search Algorithm: A
Metaheuristic for Bound-Constrained
Optimization

Rakesh Kumar Misra, Devender Singh, and Abhishek Kumar

Abstract This chapter is based on a recently published paper [9] of authors of this
chapter in which a method for solving bound-constrained non-linear global opti-
mization problems has been proposed. The algorithm obtains a sphere and then
generates new trial solutions on its surface. Hence, this algorithm has been named
as Spherical Search (SS) algorithm. This chapter starts with an introduction to the
SS algorithm and then discusses different components and steps of the algorithm,
viz., initialization of population, the concept of a spherical surface, the procedure of
generation of trial solutions, selection of newpopulation using greedy selection, stop-
ping criteria, steps of the algorithm, and space and time complexity of the algorithm.
Then, the algorithm has been applied to solve 30 bound-constrained global optimiza-
tion benchmark problems of IEEE CEC 2014 suite and the results of the spherical
search algorithm on these benchmark problems have been compared with the results
of variants of well-known algorithms such as particle swarm optimization, genetic
algorithm, covariance matrix adapted evolution strategy, and Differential Evolution
on these problems to demonstrate its performance. Further, the SS algorithm has
been applied to solve a model order reduction problem, an example of a real-life
complex optimization problem.

Keywords Spherical search algorithm · Real-life optimization problems · Bound
constrained optimization problem · Optimization algorithm · Global optimization

Nomenclature

N ∈ N Number of solutions in a population, Pop.
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k ∈ N Iteration index.
D ∈ N Dimension of search space.
x̄i (k) ∈ R

(D×1) i th solution from Pop at kth iteration.
ȳi (k) ∈ R

(D×1) Trial solution corresponding to x̄i (k).
z̄i (k) ∈ R

(D×1) Search direction corresponding to x̄i (k).
A(k) ∈ R

(D×D) An orthogonal matrix at kth iteration.
c̄(k) ∈ R

(N×1)
>0 A step-size control vector at kth iteration.

c(k)
i ∈ R>0 i th element of step-size control vector c̄(k) corresponding to x̄i (k).
B(k) A binary diagonal matrix consisting of elements of binary vector

b̄(k) at kth iteration.
b̄(k) A binary vector of dimension D.
b(k)
i Element of b̄(k) corresponding to x̄i (k).

19.1 Introduction

In the literature, different optimization algorithms have been proposed to solve
complex real-life global optimization problems. It has been experienced that meta-
heuristics are efficient and effective as compared to the deterministic algorithm for
solving complex real-life global optimization problems. The advantages of meta-
heuristics are as follows. Meta-heuristics are algorithms are simple; they do not need
derivatives of the objective function, can be easily applied to a variety of problems
with minor changes in its structure, and have in-built ability to avoid local minima.
However, as per No-Free-Lunch theorem [17] there cannot exist a universal method
capable of solving all the problems efficiently.

There are two classes of meta-heuristics, viz., single-agent based and population
based. Population-based meta-heuristics start with multiple initial solutions which
improve over iterations. These algorithms explore large search space in each iter-
ation and during exploration they keep sharing information among the individual
solutions of the population and hence can avoid local minima; however, they need
more function evaluations per iteration as compared to the single-agent class ofmeta-
heuristics. As per the source of inspiration, meta-heuristics can be classified into two
categories: (i) Evolutionary Algorithms (EAs) [4, 8, 13, 15, 16, 19] and (ii) Swarm-
Based Algorithms (SAs) [3, 6, 7, 11, 18]. For a meta-heuristic to have improved
performance, it must strike balance between two major characteristics, exploration
and exploitation. To achieve the required balance, various parameters are introduced
in a meta-heuristics. These parameters need to be tuned employing some rule-of-
thumb operations which may make a particular meta-heuristic to perform better for a
particular class of problems. The spherical search algorithm is having single parame-
ter which is self-adaptive (i.e., it does not need tuning) due to which it gives improved
performance for most of the problems. Further, the spherical search algorithm has
very good balance between exploration and exploitation, is rotation-invariant, is able
to map the contour of search space, and maintains high diversity during its run.
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19.2 Spherical Search Optimization Algorithm [9]

This section develops the mathematical framework of the SS algorithm. In the SS
algorithm, the search space is a vector space in which each candidate solution is
represented as a vector.

Search space is assumed to be of D-dimension. In this search space, a target
direction is decided using individual location and a target location. In every iteration,
SS algorithm creates a (D − 1)-spherical boundary keeping the target direction as
its main axis. Trial solutions corresponding to each individual are generated on the
surface of the spherical boundary. Figure19.1 demonstrates the idea of spherical
boundary for a two-dimensional search space. The figure illustrates the different
components of SS algorithm related to spherical boundary as listed below:

• −: 1-spherical boundary for each of individual.
• �� : target location.
• �: individual location.
• O: trial location.

In Fig. 19.1, for each individual vector, trial solutions are generated on the 1-spherical
boundary. Fitness of the trial solutions are evaluated on the basis of the objective
function and better locations pass on into the next iteration.

When target location of an individual is far-off, resulting (D − 1)-spherical bound-
ary is large and the trail solutions naturally explore the search space.Whereas in case
of nearby target, the resulting (D − 1)-spherical boundary is small, which results in
the exploitation of the search space. This phenomenon creates a balance of explo-
ration and exploitation in the spherical search algorithm.

For every iteration, best solution is the location with the best fitness value. The
iterations continue until either function evaluations become equal to the maximum
number of function evaluations or the solution does not update for a specified number
of iterations.

Flowchart of the SS algorithm is given in Fig. 19.2. Different steps of the flowchart
are explained in the following subsections.

19.2.1 Initialization of Population

Let us assume that Pop(k) is population at kth iteration.

Pop(k) = [x̄1(k), x̄2
(k), . . . ¯xN (k)]. (19.1)

In this population, each of the element, x̄i (k), is a D-dimensional vector representing
a D−dimensional point (solution) in search space as follows:

x̄i
(k) = [x (k)

i1 , x (k)
i2 , . . . x (k)

i D ]T . (19.2)
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For k = 0, xki j is initialized randomly within the limit (0, 1] using rand(0, 1] which
generates random number from uniform distribution keeping the initialization values
between xhj (upper bound) and xl j (lower bound) of j th element as follows:

x0i j = (xhj − xl j ) ∗ rand(0, 1] + xl j (19.3)

19.2.2 Spherical Surface and Trial Solutions

As spherical search algorithm is a population-based optimization algorithm, in every
iteration, new potential solutions are computed. Some of these potential solutions
may become part of the population in the next iterations.

For each solution, a (D − 1)-spherical boundary is generated as an intermediate
step toward evaluation of potential new solution.Method of generating these potential
new solutions called as trial solutions, ȳi , has been demonstrated on a 2-D search
space in Fig. 19.3 where locus of ȳi is shown as (D − 1)-spherical boundary which
becomes a circle (1-sphere) having diameter of ci z̄i in case of 2-D search space. In this
case, search direction, z̄i , passes through the center of (D − 1)-spherical boundary.
Method to evaluate z̄i has been discussed in subsequent sections.

Trial solutions, ȳi , for kth iteration are obtained using following expression:

ȳi
(k) = x̄i

(k) + c(k)
i P (k)

i z̄i
(k). (19.4)

Value of ȳi k is decided with the help of a projection matrix Pi .
Search direction, z̄i (k), should be such that i−th solution moves toward the bet-

ter solutions. Calculation of search direction has been graphically demonstrated in

Fig. 19.3 Demonstrating the solution update scheme of SS algorithm in 2-D search space [9]



426 R. K. Misra et al.

Fig. 19.3 which shows that two random vectors, r1 and r2, along with a target point (a
vector), x̄t , need to be conceived and used in the following manner to obtain search
direction, z̄i (k).

z̄i
(k) = (x̄t

(k) + r̄ (k)
2 − r̄ (k)

1 ) − x̄i
(k). (19.5)

Vectors r1 and r2 are two random solutions from the population.
In SS algorithm, to calculate the search direction, z̄i (k), two methods, namely,

towards-rand and towards-best have been used. The former implements exploration
component and the latter implements the exploitation component in the algorithm.
To strike a balance between the exploration and exploitation, population is sorted in
the decreasing order of their fitness values and then the population is divided into
two parts. First part of the population containing better solutions is used to evaluate
the search direction, z̄i (k) for i th solution at kth iteration implementing towards-rand
in the following manner:

z̄(k)
i = x̄ (k)

pi + x̄ (k)
qi − x̄ (k)

ri − x̄ (k)
i , (19.6)

where pi , qi , and ri are randomly selected integer values between 1 and N such that
pi �= qi �= ri �= i . When this equation is compared with Eq. (19.5), then x̄ pi corre-
sponds to the target points x̄t and difference term (x̄q − x̄r ) corresponds to r̄2 − r̄1
which is an approximation of distribution of difference of solutions in a popula-
tion and helps algorithm maintain solution diversity iteration-by-iteration avoiding
convergence to local minima.

The second part of population is used to evaluate the search direction, z̄i (k) for i th
solution at kth iteration implementing towards-best in the following manner:

z̄(k)
i = x̄ (k)

pbesti
+ x̄ (k)

qi − x̄ (k)
ri − x̄ (k)

i , (19.7)

where x (k)
pbesti

is a solution selected randomly from top p best solutions out of pop-
ulation at iteration k and corresponds to the target points x̄t when compared with
(Eq.19.5). Here also, difference term (x̄q − x̄r ) corresponds to r̄2 − r̄1.

So far evaluation of z̄i has been discussed; however, to evaluate ȳi as per Eq. (19.4),
besides z̄i , ci , and projection matrix, Pi also need to be evaluated.

In Eq. (19.4), projection matrix, P = A′Bi A, which is a symmetrical matrix
returns projections of ci z̄i + x̄i by linearly transforming it and thereby creating a
(D − 1)-spherical boundary. A being an orthogonal matrix produces infinite number
of combinations whereas b̄i being a binary vector can produce only finite number of
combinations. Figure19.4 plots locus of 10,000 randomly generated samples out of
all possible projections of point (1, 1) given by projection matrix, P , on a 2-D search
space which is a circular ring of diameter

√
2 having center at (0.5, 0.5).

In the beginning of every iteration, following two terms are initialized randomly
(i) an orthogonal matrix, A, such that AA′ = I and (ii) binary diagonal matrix, Bi

such that 0 < rank(Bi ) < D. A step-size control vector, c̄(k), consists of N step-
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Fig. 19.4 Illustrating the
locus of projection of point
(1,1)[9]
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size control parameter at kth iteration. Element c(k)
i is a step-size control parameter

corresponding to i th trial solution and is calculated randomly in range of [0.5 0.7] at
the start of kth iteration. This range has been decided by experimentation.

19.2.3 Selection of New Population for Next Iteration

Each of the solutions, x̄i , of the population, Pop(k), is updated using greedy selection
procedure in the following manner:

x̄i
(k+1) =

{
ȳi (k), if f (ȳi (k)) ≤ f (x̄i (k))

x̄i (k), otherwise
(19.8)

Here, f (ȳi (k)) is the objective function value of trial solution ȳi (k), and f (x̄i (k)) is
objective function value of solution x̄i (k) at kth iteration.

19.2.4 Stopping Criteria

The algorithm terminates when either the function evaluations, FEs, become equal
to the specified maximum number of function evaluations, FEmax , or the solution
does not update for a specified number of iterations.
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19.2.5 Steps of Spherical Search Algorithm

The pseudocode of the SS algorithm is shown in Algorithm4 and the steps are given
below:

• Step 1 (Line 2): Initialize the population Pop and calculate objective function for
each solution of Pop.

• Step 2 (Line 3): Calculate parameters: ci .
• Step 3 (Line 5): Calculate the orthogonal matrix, A.
• Step 4 (Line 7): Calculate matrix B for each solution vector of population, Pop.
• Step 5 (Lines 8 to 12): Calculate the search direction for each solution vector of
population, Pop.

• Step 6 (Line 13): Calculate trial solution for each solution vector of population
Pop.

• Step 7 (Line 16): Update the population using greedy selection procedure.
• Step 8 (Line 18): The best solution of population is selected on the basis of
minimum objective function value as best solution.

• Step 9 (Line 19): If the stopping criterion is met then go to Step 10 else go to
Step 3.

• Step 10: Return the best solutions.

1: procedure SPHERICAL SEARCH ALGORITHM
2: Initialize the Population, Pop
3: ci ← rand[0.5, 0.7]
4: while FEs < FEmax do
5: A ← ComputeOrthogonalMatrix()
6: for i = 1 to N do
7: Bi ← ComputeBinaryVector()
8: if i < 0.5 ∗ N then
9: z̄i ← TowardsRand(i)
10: else
11: z̄i ← TowardsBest(i)
12: end if
13: ȳi ← x̄i + ci A′Bi Az̄i
14: f (ȳi ) ← ObjectiveFunction(ȳi )
15: FEs ← FEs + 1
16: x̄i ← GreedySelection(x̄i , ȳi )
17: end for
18: Pop ← Sort(Pop)
19: best solution ← Pop(i)
20: end while
21: end procedure

Algorithm 4: SS Algorithm
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19.2.6 Space and Time Complexity of SS Algorithm

The space complexity of SS algorithm, i.e., maximum amount of space required
during the optimization process, is O(N × D), where N is the size of population
Pop and D is the dimension of solution space. Various steps of SS algorithm and
their time complexities are as follows:

1. Initialization of population: O(N × D).
2. Calculationof objective functionof each solution:O(FEmax × D)=O(Maxiter ×

N × D).
3. Calculation of orthogonal matrix: O(Maxiter × D × log(D)).
4. Calculation of trial solutions: O(Maxiter × N ).

Hence, the overall time complexity of SS algorithm is
O(Maxiter × N × D × log(D)) = O(FEmax × D × log(D)).

19.2.7 Validation of Performance of SS on Benchmark
Problems

In general practice before applying to real-world problems, new algorithms are tested
on the artificial problems, called benchmark problem, to analyze the effectiveness and
efficiency with comparison to existing popular algorithms. The main reason behind
that is the cost of implementation of the artificial problems is lower than real-life
problems. In this chapter, problems of IEEE CEC 2014 benchmark suite [10] have
been selected to test the performance of SS algorithm. Problems of this benchmark
suite are hard to solve and characteristics of these problems closely resemble with
real-life problems [10]. Four popular algorithms, viz., Particle Swarm Optimization
(PSO) [7], Genetic Algorithm (GA)[16], Covariance Matrix Adaptation Evolution
Strategy (CMAES) [5], and Differential Evolution (DE) [15] are selected for com-
parative analysis of performance of SS algorithm on the problems of IEEE CEC
benchmark suite. To demonstrate the statistical differences between the performance
of SS algorithmandother algorithms,Wilcoxon’s signed rank test at 0.05 significance
level has also been implemented and reported.

Table19.1 shows the results of all algorithms on 30 problems of IEEE CEC 2014
benchmark suite. For each of the benchmark problems, the outcomes of Wilcoxon’s
signed rank test for SS algorithm as compared with each of the other four algorithms
are presented in columns indicated as “W .” The symbols “+,” “=,” and “−” used in
Table19.1 mean that performance of SS algorithm is better, comparable, or worse,
respectively, as compared to the chosen algorithm. The summary of Wilcoxon’s
signed rank test is also reported at the bottom of this table for each of the four
algorithms chosen for comparison. It is seen from Table19.1 that the performance
of SS algorithm is significantly better than PSO, GA, CMA-ES, and DE on 25, 19,
22, and 14 problems out of 30 problems, respectively. However, the other algorithms
perform better than SS algorithm on 4, 12, 8, and 13 problems, respectively.
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It can be concluded from above analysis that the performance of SS algorithms
is better than the other existing popular algorithms on benchmark problems of IEEE
CEC 2014 suite.

19.3 Application to Real-Life Complex Optimization
Problems: Model Order Reduction

To demonstrate the effectiveness of the SS algorithm on real-life complex optimiza-
tion problems, problem of Model Order Reduction (MOR) has been chosen as a
representative problem.

Order reduction of a high-order linear time-invariant dynamic Single-Input and
Single-Output system (SISO) applying SS algorithm is considered in this chapter.
Following n-order SISO system having transfer function, G(s), is considered for
order reduction.

G(s) = N (s)

D(s)
=

∑i=n−1
i=0 ai si∑n
i=0 bi s

i
, (19.9)

where ai and bi are the known parameters of the system. The objective in a MOR
problem is to obtain a lower order (reduced order) model of a given SISO system
preserving its important characteristics. It is expected that the step response of the
reduced order model should match the step response of the original SISO system
as closely as possible while minimizing Integral Square Error (ISE) and Impulse
Response Energy (IRE). Reduced order model of the given SISO system (19.9) may
be expressed as follows:

R(s) = Nr (s)

Dr (s)
=

∑r−1
i=0 a

′
i s

i∑r
i=0 b

′
i s

i
, (19.10)

where r is the order of reduced model and r ≤ n; a′
i and b

′
i are the parameters of the

reduced order model which shall be determined using SS optimization algorithm.
ISE is an error index expressed in terms of the time-domain unit step response of

the original system, y(t), and time-domain unit step response of the reduced order
system,yr (t), which can be expressed mathematically as follows:

I SE =
∫ ∞

−∞
{y(t) − yr (t)}2dt. (19.11)

The IRE of any system G(s) is expressed in terms of its corresponding time-domain
unit impulse response, g(t), which can be mathematically represented as follows:

I RE =
∫ ∞

−∞
g(t)2dt. (19.12)
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Table 19.2 Comparison of performance of SS with other existing methods for test systems G1(s),
G2(s),G3(s), andG4(s) (a0, a1, a2, and a3 are unknownparameters of reduced system, ISE: integral
square error, IRE: impulse response energy, OFV: objective function values, NA: not available)

Original SS MBDE DE FBDE LICLDE ABC

a0 G1(s) 8.0319E+01 7.2524E+01 2.2082E+02 8.5335E+01 1.0132E+02 4.8500E+02

a1 3.0175E+02 2.5251E+02 3.5012E+04 4.6230E+02 8.6789E+02 5.0000E+04

a2 9.9107E+01 8.9583E+01 1.2295E+03 1.1366E+02 1.6941E+02 4.1870E+03

a3 3.0175E+02 2.5251E+02 3.5012E+04 4.6230E+02 8.6789E+02 5.0000E+04

ISE 1.5834E−03 1.5932E−03 4.4376E−03 1.7827E−03 3.9344E−03 1.1626E−02

IRE 3.4068E+01 3.4068E+01 3.0766E+01 3.4069E+01 3.4069E+01 3.2862E+01 3.4061E+01

OFV 1.5845E−03 5.2531E−02 4.4495E−03 1.7891E−03 2.1960E−02 1.1738E−02

a0 G2(s) −5.2651E−03−4.5958E−032.9600E−02 −1.9500E−023.1800E−02

a1 1.1902E−01 8.2605E−02 2.1750E−01 2.8840E−01 4.0074E+00

a2 5.9424E+00 4.0210E+00 1.2395E+01 NA 1.4981E+01 1.3741E+01

a3 4.4631E+00 3.0989E+00 8.1560E+00 1.0820E+01 1.5028E+02

ISE 1.2141E−06 1.5581E−07 1.4514E−05 NA 4.3242E−06 5.3450E−04

IRE 2.6938E−04 2.6938E−04 2.7643E−04 2.6931E−04 NA 2.6925E−04 3.9253E−03

OFV 3.2702E−06 1.2927E−02 1.3525E−04 NA 2.4327E−04 8.7210E−01

a0 G3(s) 8.1133E−01 7.5984E−01 1.0759E+00 7.8530E−01 2.0340E−01

a1 2.6718E+00 2.9433E+00 9.5670E+00 2.9490E+00 8.9940E+00

a2 2.9469E+00 3.1529E+00 9.4527E+00 NA 3.1515E+00 7.9249E+00

a3 2.7927E+00 3.0799E+00 1.0000E+01 3.0823E+00 9.4008E+00

ISE 3.3766E−02 3.3701E−02 3.6423E−02 NA 3.3797E−02 3.5014E−02

IRE 5.4537E−01 5.4537E−01 5.3763E−01 5.4536E−01 NA 5.4548E−01 5.4551E−01

OFV 3.3770E−02 4.0849E−02 3.6426E−02 NA 3.3901E−02 3.5143E−02

a0 G4(s) 1.7324E+01 1.4887E+01 2.0000E+01 1.7322E+01 1.7203E+01 1.7387E+01

a1 5.3681E+00 4.7852E+00 5.6158E+00 5.3660E+00 5.3633E+00 5.3743E+00

a2 7.0261E+00 5.9883E+00 9.2566E+00 7.0240E+00 6.9298E+00 7.0910E+00

a3 5.3681E+00 4.7852E+00 5.6158E+00 5.3660E+00 5.3633E+00 5.3743E+00

ISE 8.0670E−04 4.0564E−03 3.7296E−02 8.0759E−04 9.0631E−04 8.5412E−04

IRE 2.1739E+01 2.1739E+01 1.8903E+01 2.1910E+01 2.1740E+01 2.1740E+01 2.1695E+01

OFV 8.0670E−04 7.3829E−02 4.1203E−02 8.4123E−04 9.2726E−04 1.8614E−03

In this chapter, the objective function, which is to be minimized, has been defined as
follows in terms of both, I SE and I RE .

f = I SE + |I RE − I REr |
I RE + I REr

, (19.13)

where I SE is the error index calculated byEq. (19.11), I RE and I REr are calculated
by Eq. (19.12) for the original system and reduced order system, respectively.



434 R. K. Misra et al.

19.3.1 Reduced Second-Order Model

High-order system, defined in Eq. (19.9), can also be represented as follows in terms
of its eigenvalues (poles) λ1, λ2,…, λn .

G(s) = bn−1sn−1 + bn−2sn−2 + · · · + b0
(s − λ1)(s − λ2) . . . (s − λn)

. (19.14)

The unit step response of the above system can be determined after a partial fraction
of G(s)

s in the following manner:

Y (s) = G(s)

s
= k0

s
+ k1

s − λ1
+ k2

s − λ2
+ · · · + kn

s − λn
, (19.15)

where ki are real constants (residues).
Time-domain unit step response of Y (s) can be obtained in the following manner by
taking inverse Laplace transformation of Eq. (19.15).

y(t) = L −1{Y (s)} = k0 + k1e
λ1t + k2e

λ2t . . . kne
λn t =

n∑
i=0

ki e
λi t . (19.16)

Here, first term, k0, is the steady-state response of the system. Let us consider that
reduced order system is desired to be a system of second order as follows:

R(s) = a0s + a1
a2s2 + a3s + a4

. (19.17)

Equation (19.17) may also be written in terms of eigenvalues as follows:

R(s) = a0s + a1
(s − μ1)(s − μ2)

, (19.18)

where μ1 and μ2 are eigenvalues of the desired reduced order system. The step
response of reduced system in Laplace transform domain shall be given as follows:

Yr (s) = R(s)

s
= k ′

0

s
+ k ′

1

s − μ1
+ k ′

2

s − μ2
, (19.19)

where k ′
0, k

′
1, and k2’ are real constants. Step response in time domain shall be as

follows:
yr (t) = k ′

0 + k ′
1e

μ1t + k ′
2e

μ2t , (19.20)

where k ′
0 is the steady-state response of reduced order system. Condition for perfectly

matched steady-state responses of original system and reduced model is given by
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k0 = k ′
1

a4 = a′
0a1
b′
0

. (19.21)

Hence, the second-order MOR optimization problem has three unknown variables,
[a0, a1, a2]. These values of these variables must be obtained in such a manner that
the objective function given in (19.13) is minimized.

19.3.2 Test Systems, Results, and Discussions

SS algorithm has been applied on following four test systems to study the effective-
ness of performance:

G1(s) = 8169.13s3 + 50664.97s2 + 9984.32s + 500

100s4 + 10520s3 + 52101s2 + 10105s + 500
, (19.22)

G2(s) = s + 4

s4 + 19s3 + 113s2 + 245s + 150
, (19.23)

G3(s) = 4.269s3 + 5.10s2 + 3.9672s + 0.9567

4.3992s4 + 9.0635s3 + 8.021s2 + 5.362s + 1
, (19.24)

G4(s) = 18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3 + 222088s2 + 185760s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3 + 118124s2 + 109584s + 40320
. (19.25)

All these systems have different real poles. SS algorithm has been employed to obtain
corresponding reduced second-order systems by minimizing the objective function
defined in Eq. (19.13) in terms of ISE and IRE of original and reduced order systems.
The results obtained by applying the SS algorithm for all four systems have been
compared with four popular differential evolution-based algorithms reported in the
literature, viz., Memory-Based Differential Evolution algorithm (MBDE) [12], Clas-
sical Differential Evolution (DE) [15], Fitness-Based Differential Evolution (FBDE)
[14], Cognitive Learning in Differential Evolution (LICLDE) [1], and Artificial Bee
Colony (ABC) [2]. Some of the parameters of SS algorithms like population size,
independent runs, and stopping criterion are set according to LICLDE algorithm.

The best-known parameters of the reduced second-order system obtained by all
algorithms are reported in Table19.2. The best-reported parameters as per the objec-
tive function given in Eq. (19.13) are given in boldface in Table19.2. The unit step
responses and impulse responses of the original system and corresponding reduced
order systems obtained using SS algorithms and five popular differential evolution-
based algorithms considered in this chapter are shown in Figs. 19.5, 19.6, 19.7, and
19.8, respectively, for four test systems given in Eqs. (19.22–19.25).

From Table19.2, it can be observed that for test systems G1 − G4, objective
function values achieved by SS algorithm are significantly less than those obtained
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Fig. 19.5 Comparison of step and impulse responses of test system G1(s) a Step response of orig-
inal test system G1(s) and its reduced systems obtained by different methods, b Impulse response
of original test system G1(s) and its reduced systems obtained by different methods
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Fig. 19.6 Comparison of step and impulse responses of test system G2(s) a Step response of orig-
inal test system G2(s) and its reduced systems obtained by different methods, b Impulse response
of original test system G2(s) and its reduced systems obtained by different methods
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Fig. 19.7 Comparison of step and impulse responses of test system G3(s) a Step response of orig-
inal test system G3(s) and its reduced systems obtained by different methods, b Impulse response
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Fig. 19.8 Comparison of step and impulse responses of test system G4(s) a Step response of orig-
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using other four algorithms. However, the ISE for test system G3 obtained by SS
algorithm is greater than the ISE obtained by MBDE, but IRE for this system is far
better than the MBDE. So, objective function value for test system G3 is better than
MBDE. Moreover, the step response and impulse response of the reduced second-
order systemare closely lying on the curves of original systems.On these test systems,
SS algorithm outperforms all the other four algorithms for MOR problems. Thus,
SS algorithm can be treated as a better method to solve MOR problems.

19.4 Conclusion

This chapter discussed recently developed optimization algorithm known as Spheri-
cal Search (SS) algorithm. The experimental results show that SS algorithm provides
superior result onmost of the benchmark problems compared to state-of-the-artmeta-
heuristics. Further, this algorithm has been tested onModel Order Reduction (MOR)
problemwhich is a representative of real-life complex optimization problems. On the
basis of the results obtained from all experiments and comparisons of characteristics
with other algorithms, following conclusions can be drawn:

1. SS algorithm has single parameter, step-size control parameter, which is self-
adaptive, and this algorithm is easy to implement for solving most of the uncon-
strained optimization problems. No problem-specific tuning of parameters is
required in SS algorithm.

2. The quality and accuracy of obtained solutions, the rate of convergence, efficiency,
and effectiveness of SS algorithm are better as compared to the state-of-the-art
meta-heuristics.

3. It is expected that, due to its projection property, SS algorithm can avoid local
minima.
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