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Abstract In recent years, the self-assembly of amphiphiles has been exploited to
create nanostructures with controlled architecture andmorphology.Maneuvering the
intermolecular interactions between organicmolecules offers attractive routes to tune
the morphology of self-assembled structures. These structures can act as templates
or nanoreactors for the creation of different inorganic materials. Amphiphiles have
a significant role in regulating the nucleation and growth process of nanomate-
rials during liquid-phase synthesis. Dynamic equilibrium structures of micelles are
employed in fine-tuning the colloidal stability, size distribution, and morphology of
a variety of inorganic materials, polymers, etc. The synthesis of inorganic mate-
rials in the presence of organic additives offers nanostructured composites with
superior properties. Microemulsions are employed as nanoreactors for the synthesis
of size-controlled nanoparticles of lipids, polymers, metals, etc. The application
of block copolymers in the production and ordering of nanomaterials is gaining
increasing attention. Molecular self-assembly has become a key tool in the fabrica-
tion of a variety of materials with potential applications in biomaterials development,
as carriers for drug delivery and templates for ordered nanostructures. Thus, this
chapter focuses on the principles of the self-assembly process, its role in control-
ling the structure of materials and its applications in the emerging areas of materials
development.
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12.1 Introduction

Amphiphiles undergo spontaneous association into longer and meticulous arrange-
ments. In this process, molecular building blocks organize into a well-ordered struc-
ture, by virtue of specific mutual interactions [1, 2]. Self-assembly processes, related
to amphiphilic molecules, offer a unique platform for developing new nanoma-
terials for advanced scientific applications [3]. Nature created the maturation of
biomolecules from the primordial by self-assembly and eventually shaped a colossal
amount of complex biological systems. In biological systems, self-assembly is
omnipresent and the assembled structures have their exclusive cellular functions.
Thus, the self-assembly processes of amphiphiles have drawn significant interest
for the past few decades due to their explicit biological system mimicking compe-
tence such as assembly of proteins and lipids apace with comprehensive utilization
in biological applications. Contemporary advancements in the area of nanotech-
nology accelerated the amalgamation of elementary processes of self-association
with the progressive concept for the design of hierarchical nanostructures. Inaugu-
ration of stimuli-responsive amphiphilic assembly–disassembly mechanism grants
newmethods for producing diverse bionanotechnology applications.Hence, studying
amphiphilic self-assembly is imperative to the present effort of nanotechnology as
this process caters to the direction of creating molecular building blocks [4–7].

12.2 Self-Assembly of Amphiphiles

Amphiphiles are natural or synthesized molecules that contain two distinct parts;
namely, a hydrophilic part (water-loving, polar) designated as “head” group and a
hydrophobic part (fat-loving, ‘tail” group), which are able to aggregate into various
nanostructures [8]. In conventional amphiphiles, the fat-loving tail often consists
of a long hydrocarbon chain (either saturated or unsaturated), whereas the water-
loving head can be ionic (cationic/anionic) or nonionic in nature. Typical hydrophilic
head groups of the nonionic surfactants are polyhydroxyl or polyether units. Unlike
ionic surfactants, these surfactants do not dissociate upon dissolving in an aqueous
medium and possess a wide range of properties based on the ratio of hydrophilic-
lipophilic balance (HLB). The most common nonionic surfactants are polyglycerol
alkyl ethers, ester-linked molecules, Spans (sorbitan esters), Brij and Tweens, etc.
Cationic surfactants are composed of a positively charged headgroup and a halide
counterpart. Cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylam-
monium bromide (DTAB) are widely used cationic amphiphiles. Anionic surfactants
generally consist of negatively charged headgroups (carboxylate, sulfate, sulfonate
and phosphate) and positively charged counterparts (Na+, K+ or NH4

+ ions). Sodium
bis(2-ethylhexyl) sulfosuccinate, with the trade nameAerosol-OT (AOT) and sodium
dodecyl sulfate (SDS) are common examples of anionic surfactant. In zwitterionic
amphiphiles such as phospholipid phosphatidylcholine, the headgroups have both



12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials 477

Fig. 12.1 Structures of a few common surfactants under different categories

positive and negative charge moieties. The chemical structures of some surfactants
are shown in Fig. 12.1.

When dissolved in water, the polar head group of the surfactant interacts with the
water, whereas the nonpolar tail migrates toward the interface (either toward air or
nonpolar liquid). Thus, the interruption of cohesive energy at the interface helps the
formation of micelles, vesicles, lamellae, etc. Micelles are equilibrium assemblies of
amphiphile/ surfactant molecules dispersed in a liquid medium. Micelles are formed
when the concentration of amphiphile reaches above a threshold value known as
the critical micelle concentration (CMC). In a normal micelle, polar or ionic heads
create an outer shell in associationwithwater,whereas nonpolar hydrophobic tails are
seized in the interior. The amphiphilic molecules can also form micelles in nonpolar
organicmediums. Thesemicelle aggregates are termed as inverse or reversemicelles.
In inverse (reverse) micelles, the polar head groups are situated at the core, while the
tails extend outwards to the solventmedium. In addition tomicelles, amphiphiles help
in the formation of microemulsions which are clear and thermodynamically stable
liquid dispersions containing water, oil and surfactant. Often, in microemulsions, the
aggregates are much larger in size. There are mainly three varieties of microemul-
sions such as direct (oil dispersed in water, o/w), reversed (water dispersed in oil,
w/o), and bicontinuous. They have large liquid cores surrounded by a surfactant
monolayer which stabilizes the dispersion. The microemulsion domains are typi-
cally studied bymaking ternary-phase diagramsmainly consisting of two immiscible
liquids and a surfactant. Most of the microemulsions use water and oil as two immis-
cible liquids. The shape of micelles is mainly spherical. However, other shapes like
bilayers, ellipsoids, and cylinders also exist. In a few cases, micelles can grow very
long and entangle like long-chain polymer. The amphiphiles do not always associate
with micelles and in some cases, they associate into extended flat lamellae without
forming a closed structure (so-called lamellar structure). Closed bilayer structures are
known as vesicles which encircle an aqueous pool and are surrounded by an aqueous
solution. It composes of a bilayer of amphipathicmolecules, in which the hydrophilic
heads of the outer layer are exposed to the outer side, whereas the hydrophilic heads
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Fig. 12.2 Schematic representation of different structures formed by amphiphiles

of the inner layer make the inner hydrophilic core. The hydrophobic tails are situ-
ated in between the bilayers of two concentric circles. The schematic representation
of micelles, vesicles, and lamellae is shown in Fig. 12.2. The formation of these
self-assembled structures based on critical packing parameters is discussed in the
following section.

12.2.1 Morphological Control of Self-Assembled Structures

12.2.1.1 Surfactant Assemblies

The self-association of amphiphilic molecules results in a large variety of struc-
tures such as spherical micelles, anisotropic micelles, bilayers, vesicles, liposomes,
microemulsions, liquid crystalline dispersions, etc. The morphology of these aggre-
gates is governed by the interaction of hydrophilic and hydrophobic forces respon-
sible for the self-assembly process [9, 10]. The hydrophobic effect due to the hydro-
carbon tails favors the self-assembly process. On the other hand, the solvation of the
hydrophilic head group restricts the packing of amphiphilic molecules and hence
opposes the self-assembly. The electrostatic repulsion between the head groups
of ionic surfactants also contributes toward limiting the growth of self-assembled
structure. In general, the stability of association structures in solution depends on
the hydration of the polar head groups and insertion of the nonpolar tail in the
solvent. The amphiphile self-assemble into various supramolecular structuresmainly
due to the combined effect of various noncovalent interactions such as solvation,
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hydrogen bonding, hydrophobic effect, etc. The other important interparticle inter-
action involved in amphiphile self-assembly, specifically with ionic amphiphiles
self-assembly is denoted by the Derjaguin, Landau, Vervey, and Overbeek (DLVO)
theory [11]. This theory is the key foundation to rationalize the interfacial forces
acted among charged amphiphiles and explain their agglomeration behavior in solu-
tion [12]. Further, the geometry (size and shape) of self-assembled structures depends
on various additional factors like surfactant concentration, nature of surfactant, ionic
strength of the medium, nature of the counterion, temperature, pH and nature of
the additives, etc. The prediction of the geometry of a self-assembled structure
in a surfactant-water system was a subject of major interest in the past. Conse-
quently, some models have been proposed, which are helpful in predicting the shape
of self-assembled structures in the surfactant-water system. The morphology of self-
assemblies is satisfactorily explained by the geometric packing models [13, 14].
According to this model, the three main factors that dictate the geometry of a surfac-
tant aggregate are length (l) and the volume (v) of the hydrophobic chain and the
effective interfacial (head group) area (ao) of the surfactant molecule. For a hydro-
carbon chain, the length (l) and volume (v) of the surfactant tail can be found by the
Tanford formulae using the following equations:

v = 27.4 + 26.9n (Å)3 (12.1)

1 = 1.5 + 1.265n (Å) (12.2)

“n” represents is the number of carbon atoms in the linear alkyl chain.
The head group area of the surfactant molecule can be obtained from surface

tension (γ) data using Gibbs adsorption isotherm. Surfactants are amphiphilic in
nature and in their presence, the surface tension of water decreases due to the adsorp-
tion of molecules at the surface. A steady reduction in γ followed by a linear decrease
can be seen in the plot of γ versus log C (concentration of surfactant). Once CMC
is attained, no change in γ occurs. From the slope of the linear portion of γ versus
-logC plot, the surface excess concentration � (number of moles of surfactants per
unit area (m2) at the interface) can be determined using Gibb’s equation.

According to the Gibbs relationship, at constant temperature, the surface
tension γ and the surface excess (�) for a single surfactant component can be simply
expressed as follows:

dγ
/
d logC = −2.303�RT (12.3)

where C, R, and T represent the surfactant concentration, gas constant, and absolute
temperature, respectively.

The area per molecule can be obtained from �, by using the relation,

Area permolecules (ao) = 1
/
�NA

(
m2

)
(12.4)
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or 1018
/
�NA

(
nm2

)
(12.5)

where NA is Avogadro’s number. For ionic surfactants having carboxylate, sulfate,
headgroups, etc., the area per surfactant is usually in the range of 0.4 nm2, while
for nonionic surfactants it is much higher (1–2 nm2). Israelachivili and coworkers
[14] suggested that the geometry of aggregated structures formed in the solution
is a resultant of the optimum packing of molecules into aggregates. The optimum
packing of surfactants into a surfactant assembly can be defined by a dimensionless
parameter known as the critical packing parameter. The critical packing parameter
(N) depends on the length (l) and volume (v) of the hydrophobic part, and the effective
head group area (ao) of the surfactant molecule.

N = v
/
ao1 (12.6)

The packing parameter for different geometries of aggregates is different as
per simple geometric calculations. For instance, the volume and surface area of
a spherical micelle of radius, R and aggregation number, N can be expressed as

4
/
3πR3 = Nv (12.7)

4πR2 = Nao (12.8)

Here v and ao are the volume and headgroup area of the single surfactantmolecule.
Since the maximum radius of a spherical micelle can be the length of the

hydrocarbon part, l. by rearranging the Eqs. 12.5 and 12.6, we get

R = 3v
/
ao ≤ 1 (12.9)

or in in the form of packing parameter, we can write it as

v
/
ao1 ≤ 1

/
3 (12.10)

Therefore, if the value of N is less than 1/3, the aggregates will preferably result
in spherical geometry. In a similar manner, if the packing parameter is calculated
for cylindrical geometry, N will be between 1/3 and 1/2, while for curved bilayer or
vesicles, it is 1/2. For flat bilayers, the packing parameter approaches 1, whereas, for
reverse micelles, the value of N is > 1.

In the case of vesicles, bilayers etc., there is another factor known as curvature
energy, which is very crucial in controlling the geometry of the aggregates. As per
the model of Helfrich [15], the free energy (F) per unit area (A) of a bilayer is related
to the bilayer curvature by the equation

F
/
A = 1

/
2κs(c1 + c2 − cs)

2 (12.11)
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where c1 and c2 represent two principal curvatures of the bilayer and cs represents
spontaneous curvature. The rigidity of the bilayer is related toκs , the bendingmodulus
which is of the order of kβT,where kβ is Boltzmann constant. The different aggregate
structure which can be anticipated from the packing parameter is shown in Fig. 12.3.

It is worth mentioning that the packing considerations of the surfactant molecule
are built in the spontaneous curvature of the bilayers. For instance, if the interac-
tion between the polar head groups of the surfactant results in a smaller packing
area as compared to the hydrophobic tail interactions, the surfactant monolayer will
tend to curve in such a way that the polar headgroups are on the inner side of the
monolayer. On the other hand, if the interaction between the headgroups leads to
the larger packing in comparison to the tail–tail interaction, the polar headgroups
arrange themselves on the outer side of the monolayer.

Fig. 12.3 Different aggregate structures which can be predicted from critical packing factor
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12.2.1.2 Block Copolymer

The concept of amphiphile can be extended to macromolecular polymer-based
amphiphiles by linking hydrophilic/hydrophobic polymer blocks. Block copolymers
are mainly macromolecular compounds having two or more chemically dissim-
ilar blocks conjugated to each other by covalent bonds. These materials exhibit
amphiphilic character when the two blocks show different polarities [16]. The inves-
tigation of self-assembly characteristics of these compounds is an interesting research
area to explore due to their rich structural polymorphism and different applications
such as lithography for microelectronics, photovoltaics, drug delivery, nanostructure
formation, etc. [16–19]. Further, block copolymer self-assembly can produce well-
ordered structures of different morphologies such as spheres, cylinders, lamellae,
vesicles, bicontinuous structures, and many other complexes or hierarchical assem-
blies [20]. Depending on the absolute and relative block lengths, the nature and
architecture of the blocks, these copolymers form a diverse set of nanostructures
that range from discrete micelles to vesicles to even gel-forming continuous network
structures [16]. Recent progress in the synthesis route facilitate the preparation of
block copolymers with desired molecular weights, compositions and architectures
[16]. Like conventional surfactants, the self-assembly of these compounds in an
aqueous medium is entropy driven arising out of gain in entropy due to destruction
of water structures around the hydrophobic blocks [16].

Figure 12.4 shows a typical phase diagram of a block copolymer–water two-
component system.At low and very high block copolymer concentrations normal and
reverse micelles are formed. Liquid crystalline structures with different microstruc-
tures are formed at copolymer concentrations in between these two extremes [21].
Micelles formed are usually core–shell types with the core comprising hydrophobic
blocks and the corona comprising the hydrophilic blocks.

Self-assembly behavior of many of these block copolymers is strongly dependent
on temperature because of the differential solubility of the different blocks [22].
The solubility of the blocks in general decreases with an increase in temperature
and they show phase separation at characteristic temperatures called cloud points
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Fig. 12.4 Typical phase diagram of a block copolymer–water two-component system
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[22]. Besides, micellar structural changes from spherical to rod-like or to disk-like
shapes or to layered vesicle-like structures are also observed on approaching the
phase separation temperatures [23]. These are attributed to changing critical packing
parameters of the self-assembled structures as a function of temperature. Some of
the block copolymers also exhibit critical behavior because of the onset of micellar
attractive interaction and resulting micellar cluster formation on the verge of phase
separation [24].

Self-assembly characteristics of block copolymers inwater are also sensitive to the
presence of additives that modulate the solubility characteristics of the blocks. Water
structure making salts, hydrophobic solvents and solvents like glycerol increases
the hydrophobicity of the copolymers and promotes the formation of aggregates
[25]. Water structure breaking salts and solvents like ethanol, on the other hand,
have disrupting influence on the self-assembled structure formation [25]. Triblock
copolymers like Pluronics form a rich set of self-assembled structures in water-block
copolymer–oil three-component systems [21].

12.2.2 Kinetics of Micellization of Amphiphiles

The primary requirement for the formation of self-assembly of amphiphile is the
lowest free energy state at equilibrium. Generally, the self-assembly of the struc-
ture of amphiphile has lower entropy than the individual counterparts. Thus, the
self-assembly of amphiphilic molecules is governed by the interfacial energy of the
micellar core with solvent and the conformational distortion energy of the soluble
chains and the favorable increase in entropy of the solvent molecules. Micelles
are generally considered as spherically aggregated inert structures of amphiphile
molecules. However, they are in dynamic equilibrium with individual amphiphile
which is continuously replaced among bulk and micelles. Further, the micelles
themselves undergo dissolution and reforming. Therefore, there are two relaxation
processes occurred inmicelle solutions [26]. The fast relaxation process of relaxation
time, τ1 (order of microseconds) is related to the exchange of amphiphile monomers
among micelles and the surrounding bulk phase through the collision process. The
second slow relaxation time, τ2 (in the order of milliseconds to minutes) is asso-
ciated with the process of complete disruption of micelles. The micellar relaxation
kinetics are dependent on the concentration of micelle, temperature, and pressure of
the micellar solution. A schematic illustration of the two relaxation times, τ1 and τ2
related to micelle formation is shown in Fig. 12.5.

Hadgiivanova et al. [27] demonstrated a new free-energy-based theoretical
approximation to the kinetics of amphiphile micellization, where the different stages
of aggregation are considered as constrained path ways on a single free energy land-
scape. They have identified three stages of micelle formation such as nucleation,
growth, and relaxation steps of well-separated time. The first stage is involved with
homogeneous nucleation of micelles, which are dependent on the concentration of
surfactant, rate of nucleation, and critical size of nuclei. The first stage is much longer
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Fig. 12.5 Schematic illustration of the two relaxation times, τ1 and τ2 for an amphiphile solution
above CMC (reproduced with permission A. Patist et al., Colloids Surf. A: Physicochem. Eng.
Asp. 176 (2001) 3–16, Copyright © 2001 Elsevier Science B. V. [26]

than the other two as it is an activated process. The growth stage is diffusion limited
for the concentration of surfactant slightly higher than CMC and it is either diffusion
limited or kinetically limited for higher concentrations. Depending on the surfactant
concentration, the micelle size may be either bigger or smaller than its equilibrium
size at the end of the growth stage. In the relaxation stage, micelles relax to the
equilibrium size by fission (a decrease in aggregate size) or fusion (an enhancement
in aggregate concentration) process.

Kinetics of formation of block copolymer self-assembled aggregates is slower
by a few orders of magnitude than that of ionic surfactants owing to their higher
molecular mass [28]. Many of the aqueous block copolymer systems thus exhibit
time-dependent micellar structural changes and even leads to the formation of kineti-
cally arrestedmetastable systems [29, 30]. Quite expectedly such tendencies increase
with an increase in hydrophobicity and molecular weight of the copolymers making
their kinetics of aggregate formation increasingly sluggish.

12.3 Principle of Nanomaterials Synthesis

The nanostructured materials deal with the property-decisive phenomenon that
happens in typically the size range of 1–100 nm. The most important part to be
focused on is to what the accord between their structures and compositions is, and
how their interface supervises the property of the material as a whole [31]. Mainly
two different types of methods are often used for producing nanostructures. The first
one is the bottom-up method where the material is manufactured from atomic or
molecular species through chemical reactions, which enables the particles to grow
in size to produce nano-sized structures. These nanostructures can sometimes form
in parallel and be nearly identical, with no long-range order. [32, 33]. An opposite
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approach is to break a bulk material into smaller pieces using chemical, mechanical
or other forms of energy, called the top-down method [34]. In this, lithographic tech-
niques are used to design materials. Materials science desires a handy policy to link
these two approaches and to permit the production of materials with a satisfactory
resolution [35, 36]. There are many instances of self-assembly connecting top-down
and bottom-up constructions [37]. However, bottom-up self-assembly is surprisingly
beneficial because it grants the accumulation of structures too small to bemanipulated
independently into the ordered arrangements or patterns. Researchers have developed
varieties of soft-chemical approaches based on bottom-up self-assembly to formu-
late nanoparticles of well-defined composition, shape, and size. These soft-chemical
approaches for the preparation of nanomaterials include the coprecipitation method,
sol–gel process, hydrothermal synthesis, high-temperature reactions, microwave
irradiation synthesis and polyol method, sonochemical synthesis, microemulsion,
etc. [38–40]. In all these synthesis methodologies, the formation of nanoparticles
undergoes two important processes, namely nucleation and growth.

12.3.1 Nucleation

In soft-chemical approaches, the nucleation process kicks off the evolution of a
new phase from a solution. The atoms or molecules of the reactants reshuffle into a
cluster of products, which has the ability to grow irreversibly to a macroscopically
bigger size. The cluster or group is entitled as a nucleus or critical nuclei [41].
When nucleation occurs without the presence of foreign particles or crystals in the
solution, it is termed as homogeneous nucleation. On the other hand, if the nucleation
is induced by the existence of any foreign particles in the solution, it is termed as
heterogeneous nucleation. These two together are termed as primary nucleation. In
contrary to primary nucleation, secondary nucleation comes into the picture when
crystals of the same substance induce nucleation.

The main driving force behind nucleation and subsequent growth of a crystal is
supersaturation. This depends on the chemical potential of a molecule in solution
(μs) and that in the bulk of the crystal phase (μc) as follows:

�μ = μs − μc (12.12)

Thus, using thermodynamics we can write from Eq. (12.12):

�μ = kβT ln S (12.13)

where T is the absolute temperature, k is the Boltzmann constant and S is the super-
saturation ratio [42]. The solution is termed as supersaturated, when�μ > 0, thereby
confirming the possibility of nucleation and/or growth, whereas �μ < 0 suggests
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that the solution is under saturated and dissolution will take place. Now, this super-
saturation ratio can have different forms based on the system under consideration.
The mathematical expression for the degree of supersaturation is given below:

S = �anii
�anii,e

(12.14)

where ni is the number of ith ions in the molecule of the crystal, and ai and ai,e are
the activities of the ith species in supersaturated solution and in equilibrium state,
respectively.

Now, let us look at the thermodynamics of homogeneous nuclei formation.
Figure 12.6 shows the (a) free energy diagram for nucleation explaining the exis-
tence of a “critical nucleus” and (b) a representative plot of nucleation rate, J as a
function of supersaturation, S showing critical supersaturation. The total free energy
of nanoparticles is the summation of the bulk free energy (�Gv) and surface free
energy (�GS), as shown in Fig. 12.6a [43]. Thus, for a spherical particle with surface
energy γ , radius r, and the free energy of the bulk crystal Gv, the total free energy
�G is given by Eq. 12.5. The bulk free energy (�Gv) depends on the degree of
supersaturation and is given by Eq. 12.16, where kβ is Boltzmann’s constant, S is the
supersaturation ratio and V is its molar volume.

�G = 4πr2γ + 4

3
πr3�Gv (12.15)

�Gv = −kβT ln(S)

V
(12.16)

The surface free energy and crystal free energy are always positive and negative,
respectively. Thus, amaximum free energy can be foundwhich a nucleuswill surpass
to produce a stable nucleus. This critical value of radius can be obtained by equating
the first derivative of �G with respect to r equal to zero. The critical radius which
indicates theminimumsize atwhich a particle can form in the solutionwithout getting
dissolved is given in Eq. 12.18. It is evident from the equation that the possibility of
nucleation in a given system increases with the increase in supersaturation as critical
radius decrease [44].

�Gcrit = 4

3
γπr2cri t = �Ghomo

cri t (12.17)

rcri t = − 2γ

�Gv

= 2γ V

kβT ln S
(12.18)

The rate of nucleation, J which is defined as the number of nuclei formed per unit
time per unit volume is expressed by an Arrhenius-type equation (Eq. 12.19) with
the activation barrier equal to �Gcrit:



12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials 487

Fig. 12.6 a Schematic representation of the free energy diagram for nucleation explaining the
existence of a “critical nucleus” and b a representative plot of nucleation rate, J as a function of
supersaturation, S showing critical supersaturation

J = Ae−�Gcrit/kβT (12.19)

From a representative plot of J as a function of S (Fig. 12.6b), we can clearly see
that up to a certain value of supersaturation, nucleation rate is essentially zero and
then it starts increasing exponentially from there. This critical supersaturation (Δμc)
point describes the allegedly metastable zone showing crystal growth can advance
without having collateral nucleation.

Equation 12.17 and 12.18 have shown us that the �Gcrit and rcri t both are highly
dependent on the surface free energy parameter, i.e., γ . Thus, any change in this
parameter will have a certain effect on the nucleation process. Presence of foreign
substances decreases the value of �Gcrit and rcri t at constant supersaturation and
making nucleation more favorable [45]. Decrease in γ also declines the value of crit-
ical supersaturation, thus making the heterogeneous nucleation much more feasible
than homogeneous nucleation at low supersaturated states. Now, this reduction in
surface free energy is maximum when the foreign substance and the crystallizing
substance are identical which leads to secondary nucleation.

12.3.2 Growth

Crystal growth is another intricate process where an atom or molecule is deposited
over the surface of the crystal, which leads to the increase of size. This growth
process can either be reaction limited or diffusion limited. Most of the cases have
shown to be diffusion controlled only where temperature and concentration gradient
has played a major role in defining the rate of growth as the new material is added to
the surface of the particle [46]. There are various theories of nucleation and growth
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of nanoparticles available in the literature. We will be discussing a few here to get
an overall idea about the same.

(a) LaMer mechanism
The inaugural idea of nucleation and growth was given by LaMer [47] where
he separated the nucleation and growth into two different stages (Fig. 12.7). He
investigated the preparation of sulfur sols from the decomposition of sodium
thiosulphate and proposed two distinct steps where nucleation is the formation
of free sulfur from thiosulphate and growth is the formation of sulfur sols. The
full process is further fractioned into three parts. (A) at first, the concentration
of the free monomer is raised in solution, (B) the second part is the “burst
nucleation” that reduces the free monomer concentration and at this point,
nucleation is almost arrested due to very low monomer concentration, (C)
the third portion is diffusion mediated growth in the solution. Changes in the
reactant concentration during all three stages are depicted in Fig. 12.7 [48, 49].

(b) Ostwald ripening
In 1900 another theory was published to describe the growth phenomenon of
crystal in solution which was termed as Ostwald ripening [50]. In his theory,
he described the crystal growth where smaller particles are being consumed by
larger particles and the main cause behind this is the solubility of nanoparticles
in size-dependent manner. Greater solubility and the surface energy of smaller
nanoparticles in solution enforce them to redissolve and grow larger ones even
larger. A detailed mathematical explanation of Ostwald ripening is described
by different research groups [51, 52]. Digestive ripening is basically just the

Fig. 12.7 Schematic illustration of the changes in reactant concentration as per LaMer mechanism
of nucleation and growth
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opposite of Ostwald ripening where larger particles redissolve and smaller
particles grow [53].

(c) Finke–Watzky mechanism
Another mechanism was proposed for describing nucleation and growth of
nanoparticles which is called as the Finke–Watzky two-step mechanism. In
this nonclassical process, nucleation and growth both occur simultaneously
[54]. This model fits well in various systems including the synthesis of iridium,
platinum, ruthenium, and rhodium [55–57].

12.3.3 Role of Surfactants in Nanomaterials Synthesis

Irrespective of the synthesis approach, the preparation of nanomaterials always
comprises nucleation and growth processes. The separation between them is tremen-
dously difficult in the aqueous-based chemical synthesis approaches. The polydis-
persity of nanoparticles is remarkably decreased when nucleation and growth steps
are well separated, which is extremely difficult to achieve. As far as thermodynamics
is concerned, without any stabilizer the agglomeration of smaller particles in solu-
tion is inevitable. This agglomeration can take place at any stage of synthesis and
thus making it a subject of investigation. Mainly two kinds of stabilization can be
imparted to nanoparticles. First, electrostatic stabilization by means of repulsion
between charged species at the surface and secondly, steric stabilization by virtue of
surface fictionalization or capping the surface by long-chain moieties such as surfac-
tants and polymers [58]. The second one is quite common and mostly followed due
to its easy fabrication and chemical stability in a wide pH range [59].

Various surfactantmolecules are used for the stabilization of nanoparticles in solu-
tion and the prevention of nanoparticles aggregation in solution by forming robust
coating around the particles during synthesis or post-synthesis process. In addition
to this, surfactant amphiphiles are also used as templates or nanoreactors for the
synthesis of different shaped controlled nanoparticles [60]. The tuning of the nucle-
ation process with the assistance of surfactant amphiphiles has a significant degree
of control over the size distribution of the synthesized nanoparticles. Therefore,
nanoparticles synthesis by surfactant self-assembly has been extensively used due to
its superior ability in controlling the structural morphology and size of nanoparticles
[61–63]. Specifically, nanoparticles–amphiphiles soft interactions are accountable
for nanoparticles functionalization, colloidal and chemical stability procedures.
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12.4 Self-Assemblies as a Template for Nanomaterials
Synthesis

12.4.1 Surfactant Assisted Synthesis

Self-assembly process is ubiquitous in nature. There are several examples in
living organisms, where the self-assembly process fabricates unique structures. For
example, in bones, teeth, spines, shells, etc., the biomineralization takes place through
a self-assembly process on a protein scaffold. In these structures, the organic template
and inorganic minerals interact at molecular level and results in the structures with
remarkable properties in spite of having very soft templates and brittle minerals
as the constituting elements. The use of synthetic templates, inspired by nature is
evolving as one of the promising routes for the fabrication of novel materials with
controlled architecture inspired by nature. Recently, there is a growing interest in
the preparation of hollow inorganic nanomaterials having well-defined geometrical
features because of their characteristic properties such as controlled geometry and
pore size, low density, huge specific area, and high mechanical and thermal stability.
Owing to their fascinating properties, these hollow nanomaterials have tremendous
potential for diverse technological applications ranging from everyday materials and
processes, medical and health care, energy applications, electronics, and information
technology applications to environmental remediation. A number of materials have
been involved in pharmaceutical formulations, cosmetics, paint industry, catalysis,
as well as for dyes and ink. The geometrical parameters of nanostructures including
size, shape, composition, architecture, and surface area are some of the most impor-
tant parameters to define various important properties of inorganic nanomaterials.
Hence a lot of efforts have been made to exploit the fabrication of well-defined inor-
ganic nanostructures using various methods involving physical as well as chemical
routes. The involvement of sacrificial templates such as polymeric nanoparticles,
self-assembled structures, etc., in the fabrication of nanomaterials with controlled
size, morphology, and surface properties have also emerged as a growing field.

The self-assembly templatingmethod has revolutionized the fabrication of smaller
well-defined hollow nanomaterials having diameters in the nanometer range. Self-
assemblies of amphiphilic molecules are one of the most promising templates to
synthesize nanomaterials having defined architecture and high surface area. As
discussed above, the self-association of amphiphilicmolecules such as ionic/nonionic
surfactants results in different structures and the morphology of these self-assembled
structures is decided by a number of factors including, surfactant concentration,
temperature, and nature of surfactant molecule as well as additives, if any. Self-
assembled structures are dynamic in nature and are very receptive to the changesmade
in the constituting solutions. Hence, their microstructure and properties can be tuned
easily by changing the concentration of surfactant, addition of inorganic electrolytes
or organic additives as well as by varying the pH and temperature of the medium. For
example, in the case of ionicmicelles, the addition of inorganic electrolytes decreases
intermicellar repulsion as it screens the charge at the micelle surface. This changes



12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials 491

the packing parameter, which in turn changes the morphology of the aggregates.
Organic hydrotropes (hydrotropes are used to solubilize hydrophobic compounds
in water medium by means other than micellar solubilization) are very effective in
inducing the morphological changes in ionic aggregates by decreasing the surface
charge at the micellar surface. The swelling of the micelles also takes place due to
the solubilization of organic additives in the hydrophobic cores of the aggregates.
Similarly, the change in the temperature of the solution results in the alteration of
the head group area of the ionic and nonionic surfactants. As a consequence, the
packing parameter of the surfactant changes and results in a change in the size and
shape of the aggregates [64–69]. Hence, one of the major advantages of using self-
assemblies as templates is that the morphology and porosity of the materials can be
tuned to the desired extent by tuning the parameters affecting the microstructure of
self-assemblies. Amphiphilic block copolymers have also been broadly employed for
designing hollow nanostructures and ordered mesoporous materials. The polymeric
micelles have a core composed of a hydrophobic block of copolymers and corona
made up of the hydrophilic group of copolymers. The core of the micelles acts as a
template of the hollow nanostructures and corona acts as a reservoir of the inorganic
precursors [70].

The synthesis of inorganic materials, such as silica, titania, alumina, hydrox-
yapatite, metal oxide, metal phosphate, etc., using self-assembled structures as a
template, has been a topic of tremendous importance [71]. There are several reports
in which the employment of self-assembly during synthesis has resulted in materials
with controlled geometry, and defined porous structure and are found to be very
promising for diverse applications. MCM-41, belonging to the family of silicates
is a well-known porous material with very high surface areas of the order of 1000
m2/g with a pore size ranging from 2 to 20 nm and ordered arrays of cylindrical
mesopores with very regular pore morphology [72]. During the synthesis of MCM-
41, the hexagonal arrays of rod-like micelles of cationic surfactant, cetyltrimethy-
lammonium bromide are employed as a template. The synthesis of material takes
place at the surface of the templates and during calcination, the organic template
is removed leaving a highly ordered porous material. Due to the large surface area
of these materials, the possibility of reactant molecules reacting with the catalyst
surface increases. These materials are widely used for catalytic applications. Since,
the discovery ofmesoporousmolecular sieves byKuroda et al., known asKSW-1 [73]
and FSM-16, [74] and by Exxon Mobil, called M41S [72] a great deal of attention
has been given to the investigation of mesoporous silica materials due to their wide
range of applications. Recently, hollow silica spheres (HSS) with significant inner
spaces, high specific surface area, mesoporous structure, and amorphous shell were
synthesized using cetyltrimethylammonium bromidemicelles as a soft template. The
compositemembranepreparedbymixingHSSwithwaterbornepolyurethane showed
improved water vapor permeability, water resistance, and mechanical performance
[75]. In another study, hollow silica nanospheres with a highly uniform size were
prepared using amicellar templatewith a core–shell-corona architecture composedof
a triblock copolymer, poly (styrene-b-2-vinyl pyridine-b-ethylene oxide). The empty
space in the hollow particle could be regulated by the size of the core regulated by
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the chain length of the polystyrene block, while the shell thickness of nanospheres
could be tuned by altering the concentration of the inorganic precursors [76].

Porous hydroxyapatite has attracted increasing interest because of its biocompat-
ibility, bioactivity, osteointegration, osteoconductivity, and composition similarity
with human bones and teeth. Hydroxyapatite is an inorganicmaterial belonging to the
apatite group, which is comprised of calcium, phosphate, and hydroxide. The chem-
ical formula of hydroxyapatite is Ca5(PO4)3(OH), which is commonly written as
Ca10(PO4)6(OH)2 suggesting the presence of two entities in the crystal unit cell. Bone
is a hybrid structure comprised of inorganic needle-shaped carbonated and calcium-
deficient hydroxyapatite nanocrystals and the organic part is mainly composed of the
collagen matrix. The collagen matrix controls the nanoscale structure of hydroxyap-
atite and dictates its properties. Inspired by biomineralization, a great deal of attention
has been paid by the chemists to the biomimetic synthesis of hydroxyapatite having
controlled dimensional, morphological, and architectural features by using nanos-
tructured self-assemblies as templates. The involvement of synthetic polymers and
surfactant assemblies similar to that of collagen matrix during synthesis of hydrox-
yapatite could mimic biomineralization and leads to materials with characteristic
morphology and porosity. Due to its excellent properties, synthetic hydroxyapatite
has been extensively used in a range of biomedical applications including repairing
and regeneration of damaged bones, as a filler for bone defects, and to replace ampu-
tated bones and as a bone graft. Hydroxyapatite has also been applied as a coating
material to prosthetic implants in order to provide biocompatibility and bioactivity
to implants.

The morphology and porosity of hydroxyapatite play an important role in making
it a suitable material for biomedical applications. The presence of pores in hydrox-
yapatite supports the in-growth of bone tissue and full assimilation with the bones.
Recently, porous hydroxyapatite is also being considered as a potential carrier for
various molecules such as drugs, osteogenic agents, etc., which are used in treating
bone infection, diseases, etc. There are several reports, which show the prepara-
tion of hydroxyapatite with controllable properties and porous structure using self-
assemblies as templates. Stupp and coworkers employed ordered nanofibrous self-
assemblies of peptide amphiphiles [77, 78] as nucleating centers for the mineral-
ization of hydroxyapatite. They have also synthesized apatite-based materials using
homopolymer poly(amino acids) and synthetic polyelectrolytes [79]. Self-assemblies
of surfactants, as well as block copolymers, have been found very promising in
dictating the geometry and porosity of hydroxyapatite. The usage of spherical
micelles of cationic surfactant cetrimide as a template during synthesis resulted
in spherical particles of hydroxyapatite, while in the presence of rod-like micelles
of cetyltrimethylammonium bromide, the hydroxyapatite nanoparticles formed were
rod-shaped [80–82]. Similarly, well-aligned hydroxyapatite nanorods were formed
due to the templating by hexagonal liquid crystalline phase of a nonionic surfactant,
Triton X-100, [83]. Several groups have also prepared hydroxyapatite nanostructures
using self-assemblies as a template for drug delivery applications. Calcium-deficient
hydroxyapatite hollow nanorods having mesopores on their surface were prepared
using P123 and tween-60 as templates. The nanorods showed enhanced protein load
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and sustained release behavior with a cumulative release of 84.2% over a period of
72h [84]. In another study, hydroxyapatite hollownanoparticles (HAHNPs) prepared
using core–shell micelles composed of pluronic P123 and Tween-60 showed much
higher drug loading for vancomycin drug as compared to nanoparticles prepared
in the absence of micelles. In the presence of citric acid used as a cosurfactant,
the morphology of the HA HNPs changed from nanospheres to nanotubes and the
drug loading efficiency improved further due to the presence of a layer of citrate
molecules on the hydroxyapatite surface [85]. An anticancer drug paclitaxel loaded
in hydroxyapatite-collagen composites showed enhanced toxicity toward highly
metastatic MDA-MB-231 cells in comparison to that of poorly metastatic MCF-
7 cells through in-vitro studies. However, the collagen-containing free paclitaxel in
the absence of hydroxyapatite was nontoxic toward both the cancer cells suggesting
that hydroxyapatite-collagen composite could be employed as a promising drug
carrier for paclitaxel [86]. The textural properties of hollow mesoporous carbonated
HApmicrosphere (CHAM) fabricated using sodium dodecyl sulfate (SDS) mediated
precipitation can be controlled by changing the concentration of SDS. The CHAMs
showed excellent biodegradability, high loading efficiency for cis-diammineplatinum
(II) dichloride and a pH-dependent sustained release of drug. In vitro studies showed
that drug-loaded CHAMs have high toxicity toward human squamous cell carcinoma
[87].

Mesoporous “transitionmetal oxides” in particular, titania (TiO2) have also drawn
the attention due to the their intrinsic optical and electronic properties. The meso-
porous titania shows extraordinary performance in applications such as photocatal-
ysis and optical devices, which has made it to play a substantial role in solar-energy-
based photovoltaic devices. Similarly, the high surface area, larger pore volume,
and ordered pore structure of mesoporous TiO2 make them desirable for various
applications. For example, mesoporous TiO2 (anatase phase) is highly desirable in
photovoltaic applications as the photoanodes as high surface area mesoporous TiO2

maximizes the dye-loading capacity and results in high photovoltaic efficiency [87].
There are several reports presenting the surfactant template-assisted synthesis of
mesoporous TiO2 [88]. Several liquid-crystalline phases of ionic/nonionic surfac-
tants are being employed as a template during the synthesis of mesoporous TiO2

[89].

12.4.2 Block Copolymer Mediated Nanomaterial Synthesis

Numerous nano-sized self-assembled structures that are formed by block copolymers
are good templating agents for generating nanostructured materials with desired and
tunable structural properties. Various types of nanostructures formed by using these
materials as templates are discussed here. Of late, block copolymer micellar systems
are the preferred choice over those of classical surfactants for use as nanocontainers
to formmetal nanoparticles because of their better kinetic stability and a more robust
core-corona structure, which provide better stability to the nano particles against
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Ostwald ripening [16, 90, 91]. By incorporating coordination properties in the consti-
tuting blocks, we can also induce selectivity in nano particle formation [16, 90, 91].
When physically adsorbed onmetal nanoparticles, these block copolymers can stabi-
lize them and in addition, can facilitate their integration into different systems where
hydrophobic surface poses a problem [92]. Some block copolymers act as reductants
thus avoiding the use of environmentally hazardous reagents and thematerial proper-
ties can be tuned by simply changing the composition of the block copolymers [93].
The presence of block copolymers like Pluronic F127 helps in promoting the forma-
tion of nanonetwork and dendritic metal structures with tunable surface properties
[94]. In these cases, the copolymer used at a concentration below its CMC indicating
that the formation andgrowthofmetal nanostructure occurred along the unaggregated
free copolymer chains. Finally, metal nanoparticles formed and dispersed in block
copolymer three-dimensional liquid crystalline structures can make nanocomposite
materials with suitable mechanical, optical, and electrical properties [95, 96].

According to IUPACnotation, amesoporousmaterial consists of pores with diam-
eters in the range of 2–50 nm. Apart from silica, which is the most commonly used
material for this, other materials like alumina, carbon niobium, tantalum, titanium,
zirconium, cerium, and tin too reported to formmesoporous structure [97, 98].Meso-
porousmaterials have tremendous applications in drugdelivery, catalysis, biosensing,
ion exchange, optics, and photovoltaics. Block copolymers are widely used to form
mesoporous oxides because of their nontoxic and biodegradable nature.

Traditionally, top-down lithographic techniques were used to form structural
patterns at nanoscale. Thesemethods are expensive and are inherently slow in pattern
writing. Bottom-up self-assembly processes involving block copolymers are thus
being considered as a suitable alternative to these traditional methods. Selective
etching of one block from the self-assembled structures formed in block copolymer
films can be used to form templates for making nanopatterns of magnetic and metal
nanoparticles for application in photovoltaics, biosensing, etc. [99].

12.5 Microemulsions as Nanoreactors for Synthesis
of Nanomaterials

Schulman et al. proposed the word microemulsion in 1959 [100]. It is a special
case of reverse micelles. Reverse micelles are formed when surfactant molecules are
dispersed in organic solvents [101]. These spherical aggregates having polar head
groups pointed toward the core can also be formed in presence of water molecules.
However, larger aggregates are generally appeared in presence of water molecules.
If the water to surfactant ratio is greater than 15 (W° > 15), then aggregates formed
contain a large amount of water molecules, which are termed as microemulsions
[102]. Microemulsions are easily differentiated from emulsions through their trans-
parency, low viscosity, and thermodynamic stability. Microemulsions consist of two
immiscible liquid (oil and water) phases, where one phase is dispersed in the other



12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials 495

by an interfacial film of surfactant molecules. In microemulsions, both immiscible
phases are brought into a macroscopically homogeneous and thermodynamically
stable single phase with the help of interfacial surfactants film accumulated at the
oil–water interface. Microemulsion contains at minimum three components, such
as water (a polar phase), oil (a nonpolar phase), and a surfactant. In many cases, a
cosurfactant or cosolvent is added to form a microemulsion. Based on the content of
these components and hydrophilic-lipophilic balance (HLB) value, themicrodroplets
exist in the form of oil-swollen micelles dispersed in water as oil-in-water (O/W)
microemulsion (Fig. 12.8a) or water-swollen micelles dispersed in oil as for water-
in-oil (W/O) microemulsion, also known as reverse microemulsion (Fig. 12.8b). It is
well established that theW/Omicroemulsions are formed when surfactants with low
HLB values (3–6) are used, whereas the formation of O/Wmicroemulsions occurred
with surfactants with high HLBs (8–18). On the other hand, microdomains of oil
and water are interdispersed within the system in case of bicontinuous microemul-
sion (Fig. 12.8c). Among these, nano-sized water droplets dispersed in an oil phase
have been extensively studied as nanoreactors for aqueous reactions wherein particle
formation takes place and size of the droplets decide the size of nanoparticles as
well as their polydispersity [103–106]. Other factors such as surface-active agent,
the concentration of aqueous reactants, and temperature played important role in
controlling of particles size.

The formation of microemulsion in a three-component system of water, oil, and
surfactant can be depicted as shown in Fig. 12.9. Water-in-oil microemulsion can
be prepared by dispersing water in a hydrocarbon-based continuous phase and posi-
tioned to the oil apex of the triangular phase diagram of water/oil/surfactant. In
this region, thermodynamically guided surfactant molecules self-assembled to form
reverse micelles. However, these micelles are in dynamic equilibrium with indi-
vidual amphiphiles. They frequently collide through Brownian motion and merge to
produce dimers, which may exchange contents and then separated. Thus, the inor-
ganic/organic precursor loaded inside the micelles mixed thoroughly. This exchange
process is central to the synthesis of nanoparticles in the core of reverse micelles.

Fig. 12.8 a Schematic illustration of water-in-oil (W/O) microemulsion, b oil-in-water (O/W)
microemulsion, and c bicontinuous microemulsion
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Fig. 12.9 A hypothetical
phase diagram of a
microemulsion system
comprising of oil (O), water
(W), and surfactant +
cosurfactant (S)

Thus, the reverse micelles mainly act as “nanoreactors” and offer the desired condi-
tion for controlled nucleation and growth of particles [107]. In the latter stages of
growth, the surfactant layer forms a robust coating on the surface of nanoparticles;
thereby reduce the nanoparticle aggregation through steric stabilization [108].

The first step of nanoparticle synthesis in a microemulsion is the reaction between
the reactant and the precipitating agent or the two reactants trapped in the core of the
microemulsion. There are mainly two approaches for the synthesis of nanoparticles
using microemulsion; “Single microemulsion method” and “Double microemulsion
method” [109]. Nanoparticle production in a single microemulsion method can be
either “energy triggering” or “one micro emulsion plus reactant” method. In the
energy triggering method, the reaction is started by applying a triggering agent into
the single microemulsion having a precursor. For instance, Kurihara et al. used pulse
radiolysis and laser photolysis to trigger the synthesis of gold nanoparticles in water-
in-oilmicroemulsions [110]. In the second approach, the reaction is started directly by
introducing one reactant into the microemulsion containing another reactant, i.e., in
one microemulsion plus reactant method. In the double microemulsion methods, two
reactants that are dissolved in the aqueous nanodroplets of two different microemul-
sions are permitted to mix through the fusion–fission events. Thus, this method
mainly depends on the fusion–fission events between the nanodroplet as shown in
(Fig. 12.10).

In general, reactants exchange and mixing occur through the collision of water
droplets inmicroemulsion.The reactants exchange takes placevery fast andprecipita-
tion reaction occurs in the nanodroplets, followed by subsequent nucleation, growth,
and coagulation process to form final nanoparticles. Rauscher et al. [111] demon-
strated a typical time-dependent study of the precipitation reaction of CaCO3 in the
microemulsion system.

Various metal, magnetic, and semiconductor nanoparticles were successfully
prepared by using microemulsion methods. Among the metallic nanoparticles, plat-
inum, palladium, iridium, and rhodium nanoparticles were successfully synthesized
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Fig. 12.10 Fusion and
fission processes in
microemulsion-mediated
nanoparticles synthesis

A B

AB

from the microemulsions method [112]. For example, Pal et al. [113] synthesized
Pt nanoparticles (<5 nm) by reducing H2PtCl6 using NaBH4 in w/o microemul-
sions of water/TritonX-100/cyclohexene/1-hexanol. Martı́nez-Rodrı́guez et al. [114]
prepared of shape-controlled Pt nanoparticles using a water-in-oil microemulsion
method. They have reported that the shape/surface morphology of Pt nanoparti-
cles is dependent on the concentration of HCl in the water phase of microemul-
sion. Chen et al. [115] synthesized palladium nanoparticles by reducing Pd salt
in aerosol-OT (AOT)/isooctane microemulsion using hydrazine. Kurihara et al.
[110] prepared Au nanoparticles by reducing chloroauric acid in w/o microemul-
sions and reported many advantages of nanoparticles synthesis in the microemul-
sion method than those in homogeneous solutions. Mihaly et al. synthesized
bare and thiol-coated Au nanoparticles through microemulsion assisted photore-
duction method using ternary water/Brij 30/n-heptane system [116]. Barnickel
and Wokaum [116] successfully prepared Ag and Au colloidal nanoparticles
by reduction of AgNO3 and HAuCl4 in a dodecyl heptaethyleneglycolether and
hexane microemulsions. Qiu et al. [117] reported the preparation of spherical Cu
nanoparticles in SDS/isopentanol/cyclohexane/water microemulsions with NaBH4.
Bimetallic alloy nanoparticles of Cu-Pt and Pd-Au were also prepared in water-in-
oil (w/o) microemulsions of water/CTAB/isooctane/n-butanol through the simulta-
neous reduction of H2PtCl6 and CuCl2 using hydrazine at room temperature [118,
119]. Metallic magnetic nanoparticles were also prepared by using microemulsion
methods. For instance, Duxin et al. [120] obtained body-centered cubic α-Fe using
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anionic surfactants (AOT), whereas Wilcoxon and Provencio [121] prepared face-
centered cubic α-Fe using nonionic surfactant (nonylphenol polyethoxylate). Tanori
et al. [122] developed magnetic mixed metals (alloys) by using mixed metal precur-
sors in the microemulsion method. Xia et al. [123] discussed the formation of Ag–
Ni core–shell nanoparticles by reducing AgNO3 and of Ni(NO3)2 using NaBH4

in water/polyoxyethylene (4) nonylphenol and polyoxyethylene (7) nonylphenol/n-
heptane W/O microemulsions. Highly monodispersed ultra-small magnetic oxide
nanoparticles were also prepared microemulsions method [124–127]. For instance,
Inouye et al. prepared magnetic iron oxide nanoparticles by oxidation of Fe2+

salts in an AOT/isooctane system. Lu et al. developed a water-in-oil microemul-
sion route for synthesizing of Fe3O4 nanoparticles using different kinds of surfac-
tant, n-heptane, and n-hexanol [126]. Liu et al. preparedCoFe2O4 nanoparticles using
sodium dodecylbenzenesulfonate microemulsions in presence of hydrazine [127].
Other magnetic oxides such as MnFe2O4, (Mn,Zn)Fe2O4, (Ni, Zn)Fe2O4, ZnFe2O4,
Ca0.5Sr0.5MnO3, and BaFe12O19 were also prepared by various research groups using
microemulsion methods [125, 128–131]. In addition, different non-magnetic metal
oxide nanoparticles such as Fe2O3, SiO2, ZrO2, TiO2, and GeO2 were also devel-
oped using this method [132–141]. For instance, Esquena et al. [133] prepared SiO2

nanoparticles by addition of Si(OC2H4)4 to the solubilized aqueous ammonia solu-
tion in AOT and ployoxyethylated nonulphenyl ether W/O microemulsions. Li et al.
[140] prepared TiO2 nanoparticles by microemulsion-mediated hydration method
having well-controlled structure and high photoactivity. Geng et al. [135] prepared
zirconia nanoparticles in water-in-oil microemulsions of water/cyclohexane/Triton
X-100/hexyl alcohol. Han et al. [137] developed size-controlled NiO nanoparticles
in W/O microemulsion of Triton X-100/n-hexanol/cyclohexane/water. The reverse
microemulsion process is also used for the preparation of core–shell nanoparticles. In
this synthesis process, the thickness of the shell is usually tuned by different reaction
conditions such as time, temperature, concentration of precursor, etc. [142, 143].

A large variety of semiconductor nanoparticles including CdS, ZnS, PbS, CuS,
Cu2S, and CdSe [144–150] were successfully prepared through the microemulsion
route. For instance, Agostiano et al. [144] prepared CdS nanoparticles bymixing two
microemulsions formed by cetyltrimethylammonium bromide (CTAB), pentanol,
n-hexane, and water having Cd(NO3)2 and Na2S. Petit et al. [145] prepared CdS
nanoparticles in AOT and triton reverse micelles having cadmium lauryl sulfate
and cadmium AOT surfactants. Manyar et al. [149] fabricated ZnS nanoparticles
using four-component “water in oil” microemulsions containing CTAB, cosurfactant
(pentanol or butanol), n-hexane, and water. Ethayaraja et al. [151] synthesized CdS-
ZnS core–shell semiconductor nanoparticles using different water-in-oil microemul-
sions and demonstrated a two-stage mechanism for the preparation of core–shell
nanoparticle.

Organic nanoparticles such as whey protein and polymer nanoparticles were
synthesized by the microemulsion method. Zhang and Zhong [152] synthesized
whey protein nanoparticles with higher heating stability by using microemulsions as
nanoreactors. Guo et al. [153] investigated polymerization of styrene in microemul-
sion of SDS/pentanol/water adding water soluble (potassium peroxodisulfate) as



12 Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials 499

well as oil soluble (2,2′-azoisobutyronitrile) initiators. Palani et al. [154] explored
the polymerization of methyl methacrylate (MMA) through MMA/ethylene glycol
dimethacrylate/water microemulsion using acylamide as amphiphile. Microemul-
sion systems were also employed to synthesize organic nanoparticles of choles-
terol, Rhovanil, retinol, Rhodiarome etc. [155, 156]. In an interesting review,
Margulis-Goshen and Magdassi [157] discussed various approaches used to prepare
organic nanoparticles from microemulsions. Microemulsion not only served as
nanoreactors for particle formation but also prevent the agglomeration of nanopar-
ticles as surfactants form a robust coating on particle surface when the particle size
reaches that of the water pool.

Microemulsions served as good candidates for drug delivery. Microemulsions are
found to improve the therapeutic efficacy of drug molecules and minimize the toxic
side effects. It offers several other benefits such as increased absorption, long shelf
life, improved clinical potency, decreased toxicity, and ease of preparation and admin-
istration. Specifically, the administration of drug molecules through microemulsions
is easier for children and adults who have difficulty in swallowing powder or tablet
forms of drugs. Thus, microemulsions have been widely used as carriers for the
delivery of drug molecules through the oral route. Further, microemulsions have a
low viscosity which makes their administration by an intravenous route much easier.
Microemulsions are also used for transdermal drug delivery because of their higher
solubilization capacity for both hydrophobic and hydrophilic drugs. For example,
antifungal hydrophobic agents such as miconazole, ketoconazole, and itraconazole
have been delivered via microemulsions-based formulation [158].

12.6 Langmuir–Blodgett Approach for Mesostructured
Composites and Thin Films

In today’s material science and electronic industries, suitable organic materials in
their structured and organized states are of prime importance, as downsizing inor-
ganic material beyond a certain point changes their properties completely. In this
respect, Langmuir–Blodgett (LB) technique provides the desired control on the order
at the molecular level. Hence, it is a potential technique for the construction of
future organic as well as inorganic materials (from organic precursors) for various
applications as the molecular orientation and packing can be highly controlled by
using various organic amphiphilic molecules with suitably designed architecture and
functionality.

Irving Langmuir [159] developed experimental and theoretical concepts which
form the basis for the modern understanding of sizes and shapes of molecules
in monolayers and their orientation at the interface. He has demonstrated that
amphiphilic molecules (having hydrophilic and hydrophobic groups) accumulate on
the water surface and form a monolayer where the hydrophilic group (e.g., -COOH,
-NH2, -OH) immersed in the water surface and hydrophobic group (long-chain
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hydrocarbon) remains above the surface. His early work concentrated on floating
monomolecular layer (Langmuir films) at the air–water interface. Later in 1919
under his guidance, Katherine Blodgett [160] had been able to develop, a technique
to transfer the monomolecular film from a water surface onto a solid substrate. This
is universally known as Langmuir–Blodgett technique. Around 1965 Hans Kuhn
[161] and his colleagues began work on the organization of monolayers and their
spectroscopic and other physical properties.

The most common technique for studying Langmuir monolayer has been to
measure pressure-area isotherm, which is the change in surface pressure as a func-
tion of surface area per molecule at a constant temperature. When a long amphiphilic
molecule such as fatty acid dissolved in a volatile solvent is spread onto the water
surface, the solvent evaporates and molecules remain dispersed as a layer at the air–
water interface. By the addition of the surface-active reagent (fatty acid or amine)
the surface tension of the water is lowered. The monomolecular layer of the surface-
active reagent on the surface of the water exerts a film pressure (π), depending on
the surface concentration, such that π = γ0 − γ where, γ0 = surface tension of the
pure water and γ = surface tension of the monolayer covered water.

The pressure area (π − A) isotherm of the monolayer of amphiphilic molecule
(fatty organic compound) at the air–water interface (Langmuir films) frequently show
features suggesting phase transition [162]. Figure 12.11 shows the (a) schematic of
surface pressure-area isotherm of a long-chain fatty acid (e.g., stearic acid) with
their various phases, (b) different packing of the molecules in monolayer at various
phases, and (c) multilayer structure of the molecules after the collapse at the air–
water interface. If a solution of stearic acid is spread on the water surface, surface
pressure area isotherm shows various phases, i.e., gas, liquid and solid which has an
analogy with the pressure–volume isotherms in three dimensions. In the gas phase
(at very low surface pressures), the molecules are almost flat on the water surface.
The steepest part of the π −A isotherm is associated with a solid and closed-packed
region. The intermediate pressure region has been identified as the liquid phase with
the hydrophobic hydrocarbon chains start to interact with each other and being lifted
away from the water surface. Beyond the closed packed region for a smaller area
per molecule, there is collapse and molecules may be forced out of the monolayers.
The value of the collapse pressure for a simple fatty acid can be in excess of 50
mN/m which would be equivalent to about 200 atm [163] when extrapolated to three
dimensions.

Figure 12.12 shows (a) schematic of LB trough and (b) surface pressure area
isotherm of arachidic acid measured using the LB method. When the monolayer
on the water surface is compressed with the barrier, the monolayer can be either
expanded, partly expanded, or close-packed state at the air–water interface depending
on the surface pressure. The structure of the monolayers depends on the nature of
the subphase especially for films of fatty acids (or amines) under ionizing conditions
when the ionized head group is complexed to its counter cation (or anion). This factor
is important in understanding the nature of multilayer LB films as the dissociation
of the fatty acid carboxylic group or fatty amine group in presence of different
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Collapse of monolayer

(a)

(b) (c)

Fig. 12.11 a Schematic of surface pressure area isotherm of a long-chain fatty acid (e.g., stearic
acid) with their various phases, b different packing of the molecules in monolayer at various phases
and c multilayer structure of the molecules after the collapse at the air–water interface

Fig. 12.12 a Schematic of LB trough and b surface pressure area isotherm of arachidic acid
measured using LB trough
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multivalent cation or anionic complexes in the subphase depends on the pH of the
solution.

R-COOH + H2O → R-COO−, R-NH3 + H2O → R-NH4
+ (where R is the long

hydrocarbon chain).
In order to form LB multilayer films (Fig. 12.13), a suitable substrate is passed

through a compressed monolayer, at a controlled speed to deposit layer by layer
on the substrate from the air–water interface. The nature of subsequently deposited
layers depends on the surface quality and composition of the substrate. The surface
pressure is kept constant during the deposition. The first monolayer is deposited onto
a hydrophilic substrate when the substrate rises up through the air–water interface.
From the subsequent dipping, two more monolayers are deposited on the first mono-
layer. The deposition made in a head-to-head and tail-to-tail configuration is referred
to as Y-type. There are twomore deposition modes X and Z, where deposition occurs
as the substrate is being inserted into the subphase or only as the substrate is being
removed through air–water interface, respectively. The deposition process can be
quantified through transfer ratio (TR) which is given by

TR = Area of the monolayer removed from the surface at constant pressure

Area of substrate immeresed in water

To investigate the orientation of the molecules and structure of LB films, various
analytical techniques such as X-ray diffraction, Fourier transform infrared spec-
troscopy, X-ray photoelectron spectroscopy, and atomic force microscopy have been
used.

It is vital to understand the nature of the stacking of the monolayers in the multi-
layer LB films in order to obtain the physical–chemical basis for the structure.

Fig. 12.13 aDeposition ofmultilayers byLangmuirBlodgett techniquebvarious type of deposition
mode
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Fig. 12.14 X-ray diffraction pattern of 29 monolayers LB film of cadmium arachidate (C20 fatty
acid) indicating 00 l reflections obtained with Cu Kα radiation (λ = 1.5405 Å). The film was
deposited at a constant surface pressure of 30 mN/m using CdCl2 solution (20–4 M, pH = 6.5)

Evidence for themultilayer structuremay be obtained directly fromX-ray diffraction
studies of these films. Figure 12.14 represents the diffraction pattern of a multilayer
Cd-arachidonate film showing the characteristic odd–even intensity oscillations of
the 00 l reflections. The d value obtained from the 00 l lines using Bragg’s law
equation is 55.6 Å, which is close to the value of bilayer thickness with hydrocarbon
chains and themetal ions. The unit-cell c-parameter of LB films ofmetal salts of fatty
acid changes by ~5.0 Å if the carbon atoms in the fatty acid are doubled [164]. The
projected C–C distance along the c-axis is 1.25Å obtained for all trans configurations
assuming a perpendicular orientation of the chains, a tetrahedral angle between the
carbon atoms and a C–C distance of 1.54 Å.

Initially, Langmuir–Blodgett technique was used for depositing organic
amphiphilic molecules. Pure organic multilayer LB filmwasmade by charge transfer
complexes such as molecular electron donor, tetrathiafulvalene and acceptor, tetra-
cyanoquinodimethane derivatives. These films are conducting in nature. Conducting
polymers based on polycarbazole, polyaniline, polypyrrole, and polythiophene were
organized byLB technique.Metal ion incorporation in the LBfilm is known for stabi-
lizing of Langmuir monolayer in presence of divalent metal ions such as Cd, Pb, Mn,
etc. Organometallic compounds like ferrocene, metal porphyrin, and metal phthalo-
cyanine have been organized by the LB technique [165]. The inorganic–organic
hybrid materials such as polyoxometallates incorporated in dimethyldioctadecylam-
monium can be prepared in a layered structure by the LB technique. These hybrid
materials have a great impact in areas of catalysis, medicine, etc.

Langmuir monolayers, due to their simple two-dimensional nature, have been
employed as templates that facilitates the crystallization of organic and inorganic
materials [166–168]. Functional groups of amphiphilic molecules of Langmuir
monolayer act as nucleation or/and growth centers, which control the morphology
and orientation of crystal-axis of the crystals grown. Using Langmuir monolayer as
a template, the oriented crystals of various inorganic salts such as NaCl, CaCO3,
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BaSO4, SrSO4, ice, CdS, PbS, and silver propionate have been successfully grown
at the air–water interface. Crystals of Prussian blue analogues are difficult to grow
in bulk. However oriented crystals of magnetic Prussian blue analogues have also
been deposited at the air–water interface using octadecyl amine (ODA) monolayer
as the template. Protonated amine head groups of ODA monolayer acted as the sites
for the growth of oriented crystalline film of Prussian blue analogues.

Figure 12.15 shows schematically the growth of oriented crystallization of nickel
(II) hexacyanoferrate (III) (NiHCF) in an LB trough at the air–water interface under
the ODA monolayer. Initially, when ODA is spread on a (1.5 × 10–4) M NiCl2
solution, a stable monolayer is formed. A few drops of concentrated K3Fe(CN)6
solution were put through a micro syringe to the NiCl2 forming greenish-yellow
crystalline film of NiHCF after sixteen hours at the water interface. This crystalline
film is transferred to a solid substrate by LB technique and from the X-ray diffraction
studies, parallel alignment of the {100} crystal plane of Ni-hexacyanoferrate to the
ODA surface has been observed [166]. Similar to NiHCF crystallization, growth of
cobalt (II) hexacyanoferrate (III) (CoHCF) single crystals and other transition metal
hexacyanochromates was observed under the Langmuir monolayer [167, 168]. Other
crystals of the Prussian blue family which are generally difficult to grow in the bulk,
can be grown at the air–water interface using the ODA monolayer as the template.

Langmuir–Blodgett (LB) technique has been used for preparing ultrathin metal
oxides recently [169–175] as an alternative method for metal oxide thin film forma-
tion. Usually, by LB technique, a uniform and ordered thin films of various organic
materials based on amphiphilic molecules are prepared. To make metal oxide thin

Fig. 12.15 Schematic illustration of oriented crystallization of Prussian blue analogue, nickel (II)
hexacyanoferrate (III) under Langmuir monolayer
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Fig. 12.16 Schematic of metal oxide thin film preparation by using LB technique

films, initially uniform and ordered multilayer LB films of metal salts of amphiphilic
molecules are deposited on substrates and then decomposed by heating in the pres-
ence of oxygen. Metal ions form thin oxides on the substrate after the dissociation of
the salts, decomposition/desorption of long hydrocarbon chain while heating. Thin
films of metal oxides such as SnO2, TiO2, WO3, and PdO [169–175] have been
prepared by deposition of multilayer films of their corresponding anionic salt and
ODA complex, from the air–water interface and subsequent decomposition of multi-
layer LB films (Fig. 12.16). These metal oxide films prepared from LB precursors
have been used for gas sensing, photosensitization, and electrochromism [171–175].

12.7 Conclusions and Future Perspectives

Amphiphiles molecules have a strong affinity to self-assemble in selective solvents
into various structures including lamellae, micelles, and vesicles. Diverse morpholo-
gies with an internal feature in the nanometer-length scale can be produced by the
assembly of small molecules. Such association is occurred by various noncovalent
interactions and hence can be modified by varying the environmental conditions
such as solvent dielectric constant, pH, temperature, ionic strength, etc. This offers
an attractive strategy to develop nanomaterials with tailored properties. The prin-
ciple of self-assembly process and guiding rules to control the morphology of the
assemblies is provided in this chapter. Various of liquid-phase synthesis methodolo-
gies of nanomaterials, and the role of amphiphiles in controlling the nucleation and
growth process of nanoparticles has also been addressed in detail. The dynamics
of these equilibrium structures and their influence on material synthesis are also
presented. Applications of a variety of amphiphilic assemblies such as micelles,
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microemulsions, block copolymers, etc. inmodulating themicrostructure of nanopar-
ticles are discussed. The role of amphiphiles in developing thin-film materials with
controlled thickness and internal structure using Langmuir–Blodgett approach is
being discussed. In summary, self-assembly has been recognized as a novel route for
the development of nanomaterials. The future of nanotechnology lies in the large-
scale production of materials with controlled structure and order over multiple length
scales, and self-assembly could play a promising role in realizing this goal.
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