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Abstract In this paper, a robust controller for the bilateral teleoperation of a master-
slavemanipulator system is proposed. The controller is designed based on the sliding
mode controlmethodwith an adaptively tuned gain to tackle the unknownuncertainty
bounds of the system.A sliding surface, having a proportional integral derivative type
structure, is proposed which is designed as a function of the tracking error between
the master and the slave trajectory. The controller design constraints and parameter
selection criteria are derived based on the analysis of the closed-loop system. The
proposed method is validated using simulation performed for a master-slave system
with each arm having two degrees of freedom (DoF) and a constant communication
delay for position tracking of the system. The simulation shows that the controller
can handle delay of up to 2.5 s while giving satisfactory tracking performance.
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1 Introduction

In recent times due to the advancement of network communication and robotic sys-
tems, teleoperated robot manipulator systems have gained worldwide popularity in
various applications such as remote surgery, robotic rehabilitation, disaster manage-
ment, etc. In most of these applications, the manipulators are set up as master and
slave devices whose motion and interaction forces require synchronization. To estab-
lish this synchronousmotion, controllers are required in both themaster and the slave
devices. Such controller design is a challenging task since the robot manipulators are
nonlinear systems, and in addition to this, the communication channel delay adds to
the complexity of the problem.

Some recent works in the control of such bilateral system involves application of
robust control [3], fuzzy logic [10], neural networks [13], adaptive control [12], etc.
Among these methods, robust controllers, especially sliding mode controllers [4, 5],
are widely used for such systems owing to their inherent robustness and capability
to provide finite-time convergence.

In [7], an adaptive finite-time controller is proposed where a non-singular fast ter-
minal sliding mode controller is used for the bilateral manipulation. The maximum
delay bounds used in the paper is 0.7 s. In [9], a state observer-based sliding mode
controller with finite-time convergence properties are used in presence of a time-
varying delay with a maximum bound of 0.5 s, and their experimental results show
the efficacy of the controller within this delay bound. In [14], Zhao et al. proposed
an observer-based sliding mode controller with an integral sliding surface that can
tackle delays up to 200 ms in an experimental setup and presence of uncertainties. In
[8], Wang et al. have proposed an anti-jittering scheme with finite-time controller for
amaster-slave systemwith jittering delay. The literature shows that the application of
sliding mode control can significantly improve system performance. However, tack-
ling a larger delay is still an open problem, as the controller performance deteriorates
with increasing delay.

In this paper, an adaptive sliding mode control law is proposed for a teleoperated
dual manipulator system in presence of communication delay. It is assumed that
both position and velocity information are available. The controller gain is tuned
adaptively where the gain dynamics are proportional to the sliding variable. This
allows the user to operate the system in presence of an unknown bound of uncer-
tainty. Moreover, the gain adaptation eliminates the chattering in the control input.
The rest of the paper is structured as follows: in Sect. 2, the manipulator model is
introduced, and the objective of the controller is defined. In Sect. 3, the controller
design and analysis are described. The simulation results are presented in Sect. 4,
and the conclusion is given in Sect. 5.
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2 Problem Formulation

2.1 System Dynamics

The dynamics of the n-DoF master-slave manipulator system are given as follows:

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + Gm(qm) = um + τh + dm(qm, q̇m) (1a)

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) = us − τe + ds(qs, q̇s) (1b)

where m and s indicates master and the slave robots, respectively, qi, q̇i, q̈i ∈
R

n, i = m(master), s(slave) are the angular position, velocity, and acceleration
of the manipulator joints, respectively. Mi (qi ) ∈ R

n×n, i = m, n is the system iner-
tia matrix, Ci (qi, q̇i ∈ R

n×n, i = m, n represents the effects Coriolis friction and
the centrifugal forces, Gi (qi ) ∈ R

n, i = m, n is the effect of gravitational force,
ui ∈ R

n, i = m, n is the input torque in the manipulator joints, τh ∈ R
n is the torque

exerted by the operator on the master device and τe ∈ R
n is the environmental inter-

action torque affecting the slave device and di (qi, q̇i ) ∈ R
n, i = m, n are the lumped

uncertainties affecting the devices. For the current work, it is assumed that there is
no environmental or external interaction of the slave manipulator, i.e., τe = 0n×1.

Both the master and slave manipulators are assumed to have the same structure,
and the manipulator matrices are as follows [11]:

Mi (qi ) =
[
(m1i + m2i )l

2
1i + m2i l

2
2i + 2m2i l1i l2i cos(q2i ) m2i l

2
2i + m2i l1i l2i cos(q2i )

m2i l
2
2i + m2i l1i l2i cos(q2i ) m2i l

2
2i

]
(2a)

Ci (qi, q̇i ) =
[−2m2i l1i l2i q̇2i sin(q2i ) −m2i l1i l2i q̇2i sin(q2i )

m2i l1i l2i q̇1i sin(q2i ) 0

]
(2b)

Gi (qi ) =
[
(m1i + m2i )gl1i sin(q1i ) + m2i gl2i sin(q1i + q2i )

m2i g sin(q1i + q2i )

]
(2c)

The manipulator Jacobian is

Ji (qi ) =
[−l1i sin(q1i ) − l2i sin(q1i + q2i ) −l2i sin(q1i + q2i )
l1i cos(q1i ) + l2i cos(q1i + q2i ) l2i cos(q1i + q2i )

]
(3)

where i = m(master), s(slave).
State Space Representation
The nominal form of the manipulator dynamics described in (1a) and (1b) without
considering the unknown uncertainties can be rewritten as
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q̈m =M−1
m (qm)[−Cm(qm, q̇m)q̇m − Gm(qm) + τh + dm(qm, q̇m)]

+M−1
m (qm)um (4a)

q̈s =M−1
s (qs)[−Cs(qs, q̇s)q̇s − Gs(qs) + ds(qs, q̇s)] + M−1

s (qs)us (4b)

Considering the state variables for the system as x1i = qi ∈ R
n, x2i = q̇i ∈ R

n,
i = m, s the dynamics for the master and the slave manipulator in the state space
form can be written as follows:

ẋ1i =x2i
ẋ2i = fi (x1i, x2i ) + gi (x1i, x2i )ui (5)

where i = m, s, xi = [xT
1i x

T
2i ]T ∈ R

2n are the state variables and

fm =M−1
m (qm)[−Cm(qm, q̇m)q̇m − Gm(qm) + τh] ∈ R

n

gm =M−1
m (qm) ∈ R

n

fs =M−1
s (qs)[−Cs(qs, q̇s)q̇s − Gs(qs)] ∈ R

n

gs =M−1
s (qs) ∈ R

n

Some assumptions for the considered master-slave manipulator set are as follows:

Assumption 1 All the joints of both the manipulator are revolute.

Assumption 2 The parametric uncertainty and the external disturbances are
bounded, i.e.,

|dm(qm, q̇m)| ≤ d̄m (7a)

|ds(qs, q̇s)| ≤ d̄s (7b)

where d̄m and d̄s are real valued and absolute value and inequality are taken element-
wise.

Assumption 3 The external forces applied to the devices by the user are bounded,
which means,

|τh(t)| ≤ ρ, ρ ∈ R
n (8)

Here, absolute value and inequality are taken element-wise.

Assumption 4 The manipulator joint position, velocity, and accelerations are
bounded owing their the mechanical structures and the actuator limits, i.e.,
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|qi (t)| ≤ q̄ i , q̄ i ∈ R
n (9a)

|q̇i (t)| ≤ ˙̄qi , ˙̄q i ∈ R
n (9b)

|q̈i (t)| ≤ ¨̄qi , ¨̄q i ∈ R
n (9c)

Here, absolute value and inequality are taken element-wise.

Assumption 5 There are no interaction with the external environment by the slave
manipulator.

Some important properties of the robot manipulator are [6]

Proposition 1 The inertia matrix is bounded, symmetric, and positive definite, and
due to assumption (1), the bounds can be expressed as follows:

m0i In ≤ |Mi (qi )| ≤ m1i In (10)

m̄0i In ≤ |M−1
i (qi )| ≤ m̄1i In (11)

μmin||x||2 ≤ xT Mi (qi )x ≤ μmax||x||2 (12)

where i = m, n, x ∈ R
n is an arbitrary vector and 0 < μmin < μmax ∈ R and In is

an n × n identity matrix.

Proposition 2 The manipulator system is passive which means

xT
(
1
2
Ṁi (qi ) − Ci (qi, q̇i )

)
x = 0,∀x �= 0, x ∈ R

n. (13)

2.2 Objective

The purpose of this research is to establish a synchronizedmotion between themaster
and the slave manipulator when a motion is created in the master manipulator by
applying an external force, and the slave manipulator has to follow the trajectory of
the master manipulator.

The position tracking errors are defined as

em(t) =qm(t) − qs(t − h) (14a)

es(t) =qs(t) − qm(t − h) (14b)

The velocity tracking errors are defined as

ėm(t) =q̇m(t) − q̇s(t − h) (14c)

ės(t) =q̇s(t) − q̇m(t − h) (14d)
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Fig. 1 Block diagram of the tele-operated bi-directional master-slave manipulator

The detailed block diagram of the teleoperated bi-directional master-slave manip-
ulator is shown in Fig. 1. An external force Fh(t) will be applied to the master
manipulator such that τh(t) = JT

m (qm)Fh(t) that will create a motion in the master
manipulator. The movement of the master manipulator is transmitted to the slave
manipulator which is expected to follow the motion of the master robot arm. It is
assumed that there is no environmental interaction in the slave manipulator side,
i.e., τe(t) = 0. The transmission channel between the master and the slave side is
assumed to have communication delays. Thus, the objective is to design robust feed-
back controllers for both master and slave manipulators such that the motion created
in the master manipulator by the external force is synchronously followed by the
slave manipulator in presence of the communication delay, and the resulting system
is stable. Thus, the objectives can be summarized as the following points:

1. The motion of the master will be directed by the external force Fh(t) applied
by the operator, and this motion will be followed by the slave manipulator. Only
the position and velocity information from the master side will be transmitted
to the slave side.

2. The tracking errors ėm(t) and ės(t) should converge to zero.

3 Controller Design

A sliding mode controller with adaptive gain and a sliding surface having the propor-
tional integral derivative (PID) structure will be designed for the above-mentioned
system. Due to the communication delay, at any time instant on both the master and
slave sides, the delayed information of the other side is available. Hence on both
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sides, the tracking error will be considered as the difference between the current
information and the delayed information from the other side.

3.1 Sliding Surface Design

The position tracking errors are defined as

em(t) =qm(t) − qs(t − h) (15a)

es(t) =qs(t) − qm(t − h) (15b)

The velocity tracking errors are defined as

ėm(t) =q̇m(t) − q̇s(t − h) (16a)

ės(t) =q̇s(t) − q̇m(t − h) (16b)

On both sides, a variable σi (t), i = m, s is defined as follows

σi (t) = ėi (t) + C1ei (t) (17)

where C1 = diag{c1 j }, j = 1, . . . , n is a user-defined positive definite matrix, i =
m, s.

Thus, the sliding surface for the master manipulator is defined as

sm(t) =ėm(t) + C2

t∫
0

σm(θ)dθ . (18)

where C2 = diag{c2 j }, j = 1, . . . , n is a user-defined positive definite matrix and
A is a diagonal matrix with diagonal elements ≤ 1, such that ||A|| ≤ 1.

The sliding surface for the slave manipulator is defined as

ss(t) =ės(t) + C2

t∫
0

σs(θ)dθ . (19)

Analysis of the Sliding Mode Dynamics: The stable dynamics of the sliding sur-
faces, sm(t) = 0 and ss(t) = 0, will make sure that the tracking error for the master,
and slave manipulator motions converges to zero, i.e., objective (2.2) is satisfied.
Considering the sliding surface defined for the master manipulator in (18) and using
(17), (15a) and (16a), the dynamics of the sliding surface can be defined as follows:
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sm(t) = 0 (20)

ėm(t) + C2em(t) + C1C2

∫
em(t)dt = 0 (21)

Considering z1 = ∫
em(t)dt , z2 = em(t), the dynamics of (21) can be written as

follows:

ż1 =z2
ż2 =−C2z2 − C1C2z1 (22)

The dynamics represented by (22) can be rendered stable with the proper selection
of controller parameters C1 and C2. Thus, it shows that when sm(t) = 0 is stable, the
surface dynamics will cause z1 and z2 to converge to zero, which again using (17)
leads to σi to converge to zero.

3.2 Control Law

Slidingmode control laws for both themaster and slavemanipulator will be designed
as follows:

ui =ueq(i) + usw(i) (23)

where i = m, s. Here ueq(i) is the equivalent control which will maintain the sliding
dynamics and usw(i) is the switching control which brings the system dynamics to
the sliding surface and compensates for any deviations occurring due to disturbances
or change of references.

It is important to note that sensing the angular acceleration is expensive and
taking derivative of the velocity signal to obtain the acceleration leads to a highly
noisy signal, often unusable. Moreover, using such a noise corrupted and delayed
acceleration signal in the control law can cause unnecessary complications in the
control input such as the rise of the unaccounted high-frequency dynamics which
can prove to be harmful to the system. Hence, while designing the control law,
q̈s(t − h) is assumed to be unavailable and considered as uniformly zero.

The control law for the master manipulator is as follows:

um(t) =Mm(qm)
[−Kmsign(sm(t)) − Wsm(t) − C2σm(t)

]
(24)

+Cm(qm, q̇m)q̇m + Gm(qm) (25)

where Km = diag{kmi } and Wm = diag{wmi }, i = 1, . . . , n are positive definite
matrices of the controller gains.

One important point to note here is that, since the interaction force in the slave side
is considered to be zero, hence there is no requirement of including any compensatory
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term in the master controller for the slave side interaction forces. However, there is
an external force applied to the master manipulator. The movement of the master
manipulator is commanded by this force, and hence, its inclusion in the slave manip-
ulator controller is necessary for the proper depiction of the transmitted dynamics.
Thus, the controller for the slave manipulator has the same structure as the master
manipulator controller apart from the extra term for the applied force (delayed signal)
in the master arm as follows:

us(t) =Ms(qs)
[−Kssign(ss(t)) − Wsss(t) − C2σs(t)

]
+Cs(qs, q̇s)q̇s + Gs(qs) + τh(t − h) (26)

where Ks = diag{ksi } andWs = diag{wsi }, i = 1, . . . , n are positive definite matri-
ces of the controller gains.

3.3 Closed-Loop System

The closed-loop systems during the reaching phase resulting from the application of
the control laws (25) and (26) to (1a) and (1b), respectively, are as follows

q̈m(t) =−K sign(sm(t)) − Wsm(t) − C2σm(t) + M−1
m (qm)τh(t)

+M−1
m (qm)dm(qm, q̇m) (27a)

q̈s(t) =−K sign(ss(t)) − Wss(t) − C2σs(t) + M−1
s (qs)τh(t − h)

+M−1
s (qs)ds(qs, q̇s) (27b)

Considering the following candidate Lyapunov Function

Vs =1

2
(sTmsm + sTs ss) (28)

V̇s =sTm
[
q̈m − q̈s(t − h) + C2σm

] + sTs
[
q̈s − q̈m(t − h) + C2σs

]
=sTm

[ − Kmsign(sm) − Wmsm + M−1
m (qm)τh(t) − q̈s(t − h)

+M−1
m (qm)dm(qm, q̇m)

] + sTs
[ − Kssign(ss) − Wsss

+M−1
s (qs)τh(t − h) − q̈m(t − h) + M−1

s (qs)ds(qs, q̇s)
]

=−|sm|T km − sTmWmsm + sTmM
−1
m (qm)τh(t) − sTmq̈s(t − h)

+sTmM
−1
m (qm)dm(qm, q̇m) − |ss|T ks − sTs Wsss

+sTs M
−1
s (qs)τh(t − h) + sTs M

−1
s (qs)ds(qs, q̇s) (29)

where k = [km1 km2 . . . kmn]T with kmi being the diagonal elements of Km and
ks = [ks1 ks2 . . . ksn]T with ksi being the diagonal elements of Ks Since
M−1

m (qm), M−1
s (qs), τh, q̈m and q̈s are bounded as per the assumptions (1)–(3)
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the following inequalities can be derived:

sTmM
−1
m (qm)τh(t) ≤ m̄1m|sm|Tρ (30a)

sTmq̈s(t − h) ≤ |sm|T ¨̄qs (30b)

sTmM
−1
m (qm)dm(qm, q̇m) ≤ m1m|sm|T d̄m (30c)

sTs M
−1
s (qs)τh(t − h) ≤ m̄1s|ss|Tρ (30d)

sTs q̈m(t − h) ≤ |ss|T ¨̄qm (30e)

sTs M
−1
s (qs)ds(qs, q̇s) ≤ m1s|ss|T d̄s (30f)

Using (30) in (29), the following is derived

V̇s ≤−|sm|T km − sTmWmsm + m̄1m|sm|Tρ + |sm|T ¨̄qs + m1m|sm|T d̄m
−|ss|T ks − sTs Wsss + m̄1s|ss|Tρ + |ss|T ¨̄qm + m1s|ss|T d̄s

≤−|sm|T (km − m1mρ − ¨̄qs − m1md̄m) − sTmWmsm

−|ss|T (ks − m1sρ − ¨̄qm − m1s d̄s) − sTs Wsss (31)

Thus from (31), if the switching gains for the controller are large enough to satisfy

km > m1mρ + ¨̄qs + m1md̄m (32a)

ks > m1sρ + ¨̄qm + m1s d̄s (32b)

then, the time derivative of CLF Vs will satisfy the following

V̇s ≤−sTmWmsm − sTs Wsss ≤ 0 (32c)

which indicates that the sliding surface can be reached in finite time, and the state tra-
jectories can be maintained there for the subsequent times. From (32), the robustness
of the controller will increase with higher values of the switching controller gains
Ki , i = m, s, but this high value produces a significant amount of chattering in the
control law. This is a compromise at which the robustness of the SMC is achieved.

3.4 Gain Adaptation

The robustness of the sliding mode controller lies in its gain value Ki . However,
this robustness is achieved at the expense of high chattering and thus higher energy
utilization at the input. Although chattering reduction can be achieved by replacing
the signum function of the sliding mode controller with a smoother approximation, it
often causes deterioration in the controller performance.One very effectivemethodof
maintaining controller robustnesswhile reducing chattering is the use of an adaptively
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tuned gain for the SMC which automatically reduces the controller gain once the
states approach steady-state thus eliminating unnecessary use of input energy. The
adaptive tuning of the gain with a leakage term [2] is defined as follows

˙̂k(t) =�(|si (t)| − ε k̂(t)) (33)

k̂(t) =
t∫

0

˙̂k(s)d(s) (34)

where i = m, s and k̂(t) = [k̂ j (t)], j = 1, . . . , n and K in the control law is replaced
with K̂ (t) = diag{k̂ j (t)}, j = 1, . . . , n. � = diag{γ j }, γ j > 0, j = 1, . . . , n and
ε = diag{ε j }, ε j > 0, j = 1, . . . , n are user defined parameters.

3.5 Analysis

A new CLF is now defined as follows in order to analyze the system with the adap-
tively tuned gain:

V =Vs + 1

2

∑
i=m,s

k̃Ti �−1 k̃i

=1

2

∑
i=m,s

sTi si + 1

2

∑
i=m,s

k̃Ti �−1 k̃i (35)

where k̃i = k̂i − ki , i = m, s and 0 < ki < ∞, ki ∈ R
n, i = m, s is the arbitrary

value to which the adaptively tune gain converges to.
The following Lemma will be used in the further analysis

Lemma 1 For real vectors k̃i , k̂,ki > 0, i = m, s and positive definite diagonal

matrix ε ∈ R
n×n, if k̃i = k̂i − ki then k̃

T
i ε k̂i ≥ 1

2 k̃
T
i ε k̃i − kTi εki

Proof The proof can be found in [1], page 111.

Taking time derivative of V , and using (32c), (33), and Lemma (1) , the following
can be derived
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V̇ ≤ −
∑
i=m,s

sTi Wi si +
∑
i=m,s

(
k̃Ti �−1 ˙̃ki

)

≤ −
∑
i=m,s

sTi Wi si +
∑
i=m,s

(
k̃Ti �−1�(|si | − ε k̂i )

)

≤ −
∑
i=m,s

sTi Wi si +
∑
i=m,s

(
k̃Ti |si | − k̃Ti ε k̂i )

)

≤ −
∑
i=m,s

sTi Wi si +1

2

∑
i=m,s

(
k̃Ti ε k̃i − kTi εki

)

≤ −
∑
i=m,s

sTi Wi si −1

2

∑
i=m,s

kTi εki + 1

2

∑
i=m,s

k̃Ti ε k̃i

≤ −
∑
i=m,s

λmin(Wi )sTi si −
∑
i=m,s

λmin(�ε)kTi �−1ki + 1

2

∑
i=m,s

|k̃Ti ε k̃i |

≤ − η

( ∑
i=m,s

sTi si +
∑
i=m,s

kTi �−1ki

)
+ 1

2
ξk

≤ − 2ηV + 1

2
ξk (36)

where λmin(A) indicates the minimum eigenvalue of matrix A,
η = min(λmin(Wi ), λmin(�ε)), i = m, s and 1

2ξk = 1
2

∑
i=m,s k̃

T
i ε k̃i , i = m, s. Thus

for V (0) >
ξk
4η and

ξk
4η < 1, V (t)will be a decreasing function, indicating the stability

of the system.

4 Simulation Results

The proposed controllers (25), (26) are tested via simulation for the bilateral master-
slave operation of two 2DoF manipulators having identical structures as given in
(2).

A Cartesian force, as shown in Fig. 2, is applied to the end-effector of the master
manipulator. The resultant joint motions are transmitted to the slave manipulator
where the aim is to synchronize with the motion of the master manipulator. The
parameters of the manipulators are as follows: m1i = m2i = 1 kg, l1i = l2i = 1 m,
g = 9.81 kgm/s2.

The controller gains used in the simulation are C1 = 2, C2 = 0.001. The param-
eters for the adaptive law for the gain are � = 100, ε = 0.1, W = 2.

The controller can withstand a communication delay up to 2.5 s, beyond which its
performance deteriorates with the given control parameters. Parametric uncertainty
in the form of a 0.01kg deviation of the nominal mass of the manipulator joints
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Fig. 2 External force applied by the user

Fig. 3 End-effector trajectory
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Fig. 4 Input torques

from the actual mass is considered. Moreover, a uniform random noise having limits
±0.0001rad is added to the measurements of positions.

From Fig. 3, it can be observed that despite the 2.5 s delay, the slave manipulator
is following the trajectory of the master manipulator with sufficient accuracy which
is also reflected in Fig. 6 which shows the joint angular position error between the
master and the slave. From Fig. 4, it is clear that the input torques for all the joints
in both master and slave manipulator do not suffer from any high magnitude, high-
frequency chattering, unlike the conventional sliding mode controllers. This can be
attributed to the adaptively tuned gain as shown in Fig. 8, which is initially high when
the system error is high, and as the tracking error converges to zero, the gain also
converges to a small value (Figs. 5 and 7).
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Fig. 5 External torques on master manipulator

Fig. 6 Tracking error
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Fig. 7 Adaptively tuned
gain K

Fig. 8 Sliding surface
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5 Conclusion

The proposed adaptive sliding mode controller for bilateral telemanipulation with a
delay has a simple structure that is easy to implement. In presence of uncertainty and
a delay of up to 2.5 s, the controller shows good performance without any require-
ments of re-tuning its parameters. The primary analysis regarding the stability of the
controller shows that it is robust and can be used evenwhen uncertainty bounds (para-
metric and external disturbances) are unknown. This can be attributed to the adaptive
tuning of the switching gain of the controller, which increases with increasing track-
ing error and vice versa. Thus, under steady-state conditions, the gain remains at a
very low value which prevents the unnecessary use of input energy and also pre-
vents high amplitude and high-frequency chattering. Future work for the proposed
method is to perform further analysis to gain detailed information regarding the
delay tolerance of the system, and the same research can be extended to multilateral
telemanipulation.
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