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Abstract In this paper, a nonlinear controller has been proposed for a highly
coupled 2-DoF underactuated mechanical gyroscope. The dynamics of the gyroscope
have been derived using the Euler–Lagrange equation which is transformed into a
strict feedback form. A backstepping-based sliding mode control (SMC) technique
has been applied for the proposed controller design and the control laws obtained sys-
tematically. Thereafter, a switching law containing adaptive disturbance estimation
term is derived for bounded input disturbance rejection which does not require knowl-
edge of the upper bound of uncertainty. Lyapunov stability criteria with Barbashin–
Krasvoskii theorem has been used to prove the asymptotic stability of the system.
The effectiveness of the proposed controller has been investigated in a simulation
environment with bounded matched uncertainty. A comparative study has been done
for the proposed control scheme with a conventional SMC using the Monte Carlo
simulation method. The proposed controller terminates the effect of disturbances
considered with lesser control effort and exhibits improved tracking performance.

1 Introduction

The dynamics of a mechanical gyroscope is considered as one of the most interesting
problems of mechanics [1]. Gyros find applications in attitude control of satellites
[2], scanning and tracking in combat vehicles [3], submarine inertial auto-navigating
[1], actuation of dual-arm space robots [4], underwater robots [5], anthropomor-
phic test device for two-wheeled self-balancing vehicles [6], and several more. The
3-DoF gyroscope considered herein is one of the benchmark nonlinear highly cou-
pled systems to test new control strategies [7]. It has a disc mounted inside a blue
gimbal which is in turn inside a red gimbal, these are placed inside a silver frame,
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Fig. 1 Gyroscope

four DC motors each to rotate the disc, red and blue gimbal, and silver frame, and
four high-resolution optical encoders to measure angular positions (Fig. 1).

Gyros are used in highly sophisticated systems so, to increase the tolerance for
failure of actuators and to deal with space and weight constraints leads to an underac-
tuated system. The underactuated system is a class of mechanical systems in which
degrees of freedom available is more than actuators [8]. Quanser gyroscope can be
used as an underactuated system by controlling the angular position of the red gim-
bal using DC motor at blue gimbal. In this paper, 2-DoF is considered by fixing the
external silver frame.

Next, works related to the mechanical gyroscope and underactuated systems which
has been done in the past decade are mentioned. Feedback linearization and adap-
tive control schemes have been applied to 2-DoF Quanser gyroscope for trajectory
tracking with periodic matched disturbance in [7]; sliding mode and adaptive fuzzy
control has been applied on Quanser Gyroscope for set-point tracking without any
disturbance consideration in simulation [9]; active matched disturbance rejection for
a 3-DoF gyroscope but results of internal dynamics are unavailable in [10]; sliding
mode control applied to achieve tracking problem and periodic output disturbance
rejection of a control moment gyroscope in [11]; backstepping-based nonlinear con-
trol applied for stabilizing pendubot near-equilibrium point [12]; nonlinear state
feedback control of underactuated TORA system based on backstepping approach
has been used to tackle with stabilization problems [13]; backstepping-based sliding
mode control applied to accomplish trajectory tracking application for unmanned
aerial vehicle [14]; integral backstepping-based sliding mode control has been used
for swing-up and rejection of matched and mismatched uncertainties of cart pen-
dulum system [8]; adaptive backstepping-based sliding mode controller has been
proposed for 3D flight trajectory tracking and stabilization of an unmanned aerial
vehicle [15]; adaptive backstepping control with finite time current observer has been



Backstepping-Based Nonlinear Control of Underactuated 2-DoF … 91

proposed for output voltage regulation in buck converters [16], and neuro-adaptive
backstepping control for tracking of angular velocity in buck converter-fed perma-
nent magnet DC motor [17].

As shown in the literature, recent control problems for 2-DoF underactuated gyro-
scope have considered periodic uncertainty [7] and [11]. However, control design
using a systematic approach like backstepping has not received much attention for 2-
DoF underactuated gyroscope. The possibility of unpredictable interaction of unmod-
eled dynamics of 2-DoF underactuated gyroscope and uncertainty is also not men-
tioned in any of the recent works. In this document, trajectory tracking of the red
gimbal using actuator at blue gimbal with bounded Gaussian-matched disturbance
is considered. The system considered is underactuated with actuated shape vari-
ables, and Reza Olfati-Saber [18] proposed backstepping-based nonlinear control
for underactuated systems with actuated shape variable and normal form in the strict
feedback form. The normal form of this system is not in strict feedback form, so
system equations are converted into strict feedback form using input–output lin-
earization [19] but poses another challenge of controlling the internal dynamics of
the system. Further, global asymptotic stability of the system can be ensured using
the Barbashin–Krasvoskii theorem [19]. The internal dynamics of the system are
also proved to be bounded for bounded reference tracking in this document. Due
to complex dynamics of the gyroscope including nonlinear and coupling effects,
the deviation of system variable from steady state at any instant of time the sys-
tem may collapse because of unpredictable interaction between input uncertainty
and unmodeled dynamics. Thus, the Monte Carlo simulation method with random
bounded uncertainty is used while testing the robustness of the proposed control law
and performance of the closed loop system.

In the remainder of the paper, the other sections are given as follows. The problem
statement is formulated in Sect. 2, whereas the proposed controllers are designed in
Sect. 3, and stability analysis is illustrated in Sect. 4. Section 5 presents the simulation
studies, and the conclusion is given in Sect. 6 followed by the references.

2 Problem Formulation

2.1 Dynamical Model of 2-DoF Gyroscope

The dynamic model of the underactuated gyroscope can be derived using Euler–
Lagrange’s equation [20] given as,

∂L

∂ψ
− d

dt

(
∂L

∂ψ̇

)
= τ (1)
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where L = T − V , T is the total kinetic energy and V is the total potential energy
of the system, ψ is the vector of system variables and τ is the force.

There is no potential energy in the system and the kinetic energy of the system
[1] is given as

T = 1

2

(
J (β) α̇2 + H β̇2 + C (γ̇ + α̇ sin β)2

)
(2)

where,
J (β) = A2 + (A1 + A) cos2 β + C1 sin2 β (3)

H = B1 + B (4)

A2, A1, and A are moment of inertia of red gimbal, blue gimbal, and disc about
x-axis, respectively, B1 and B are moment of inertia of blue gimbal and disc about
y-axis, respectively, and C1 and C denote moment of inertia of blue gimbal and disc
about z-axis, respectively. α, β and γ denote angular position of red gimbal, blue
gimbal, and disc about x-axis, y-axis, and z-axis, respectively [1].

Using (1) and taking ψ = [
α β γ

]T
, the system dynamics can be written in the

following form

α̈ = − C

J (β)

(
β̇ cos β (γ̇ + α̇ sin β)

) − J ′(β)

J (β)
α̇β̇ − sin β

J (β)
τ (5)

β̈ = C

H

(
α̇γ̇ cos β + α̇2 sin β cos β

)
+ J ′(β)

2H
α̇2 + 1

H
τ1 (6)

γ̈ = C

J (β)
β̇ sin β cos β (γ̇ + α̇ sin β) + J ′(β)

J (β)
α̇β̇ sin β − α̇β̇ cos β +

(
sin2 β

J (β)
+ 1

C

)
τ

(7)

where τ and τ1 are actuating torques at disc and blue gimbal, respectively, to achieve
underactuation torque at red gimbal τ2 = 0.

2.2 Control Objective

For the underactuated mechanical gyroscope, it is desired to derive a control law τ1

such that the angular position of red gimbal α tracks trajectory αd , while the angular
position of blue gimbal β remains bounded around origin. Also a controller is to be
designed, so that the disc rotates at the desired constant angular velocity γ̇ d .

Tracking error is defined as below

e = α − αd (8)
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and a control law is to be derived, so that e(t) as well as ė(t) are asymptotically stable
which can be written analytically as below
e(t) → 0 as well as ė(t) → 0 when t → ∞.

It is assumed that αd , α̇d , α̈d and
...
α d are available and bounded.

3 Control Law Design

3.1 Proportional Controller

In this section, a proportional control law τ is introduced to rotate the disc at the
desired constant angular velocity γ̇ d .

Linearizing (7) about γ̇ = 0 and keeping β = 0, β̇ = 0 to obtain differential
equation as follows

γ̈ = 1

C
τ (9)

Proportional controller with gain K p mentioned below will force γ̇ (t) → γ̇ d as
t → ∞.

γ̈ = K p

C

(
γ̇ − γ̇ d

)
(10)

Solution of above first-order linear differential equation is

γ̇ (t) = γ̇ d
(

1 − e− K p
C t

)
(11)

It is evident from the above equation that with K p > 0 γ̇ (t) → γ̇ d as t → ∞.

3.2 Backstepping-Based Sliding Mode Controller

Sliding mode control consists of two modes, and they are reaching mode and sliding
mode. The sliding surface design should be done cautiously since phase trajectories
on hitting the sliding mode region reaches the origin as per the dynamics of sliding
surface [21].

Order of sliding surface depends on relative degree of output of the system [9] and
from (5) comment on relative degree cannot be made since τ1 is not appearing explic-
itly in (5). Hence, taking derivative of (5) w.r.t ′t ′ and considering the proportional
controller mentioned in Sect. 3.1, reduced system dynamics are
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...
α = f1

(
ψ, ψ̇, ψ̈

) + b1
(
ψ, ψ̇

)
τ1 (12)

β̈ = f2
(
ψ, ψ̇

) + 1

H
τ1 (13)

where

f1
(
ψ, ψ̇, ψ̈

) = − C

J (β)

[
f2 cos(β) (γ̇ + α̇ sin β) + β̇ cos β (γ̈ + α̈ sin β)

] − J ′(β)

J (β)
f2α̇

+ β̇2 (α̇ cos 2β − γ̇ sin β) − J ′′(β)J ′(β) − J ′(β)2

J (β)2 α̇β̇2 − J ′(β)

J (β)
β̇α̈

−
(
J (β)τ̇ sin β + τ β̇ cos β − τ sin ββ̇ J ′(β)

)
J (β)2 − f1β̇ J ′(β)

J (β)

b1
(
ψ, ψ̇

) = − C

J (β)H

(
cos β (γ̇ + α̇ sin β) + J ′(β)α̇

)

f2
(
ψ, ψ̇

) = C

H

(
α̇γ̇ cos β + α̇2 sin βcosβ

)
+ J ′(β)

2H
α̇2

From (12), it can be concluded that relative degree of the system is three.
The basic requirement to apply a backstepping-based sliding mode controller to

any system is that the system should be in strict feedback form [18].
Taking state variables as

X = [α, α̇, α̈]T (14)

The system dynamics in (12), (13) can be written in strict feedback form as below

ẋ1 = x2 (15)

ẋ2 = x3 (16)

ẋ3 = f1
(
ψ, ψ̇, ψ̈

) + b1
(
ψ, ψ̇

)
(τ1 + τd) (17)

leaving below internal dynamics of the system to be dealt separately.

β̈ = f2
(
ψ, ψ̇

) + 1

H
(τ1 + τd)

where, τd is matched uncertainty.

Step 1: Control variable and Lyapunov candidate in terms of control variable is
chosen as below

e1 = x1 − xd
1 (18)

V1 = 1

2
e2

1 (19)
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Step 2: Time derivative of V1 is V̇1 = e1ė1 and ė1 = x2 − ẋ1
d , virtual control law

x2 = −k1e1 + ẋ1
d will stabilize the e1 subsystem, so defining stabilizing function

as ρ2 = −k1e1 + ẋ1
d and error between the virtual control law and the stabilizing

function is defined as
e2 = x2 − ρ2 (20)

V̇1 = e1
(
x2 − ẋ1

d
)

= e1
(
e2 + ρ2 − ẋ1

d
)

V̇1 = −k1e2
1 + e1e2 (21)

Now, a new Lyapunov function is chosen for subsystem e2 as follows

V2 = V1 + 1

2
e2

2 (22)

Step 3: As done in earlier step, choosing stabilizing function ρ3 = −e1 − k1ė1 +
ẍ1

d − k2e2 and error e3 = x3 − ρ3, V̇2 will be as given below

V̇2 = −k1e2
1 − k2e2

2 + e2e3 (23)

ė3 = f1
(
ψ, ψ̇, ψ̈

) + b1
(
ψ, ψ̇

)
(τ1 + τd) + (1 + k1k2)ė1 + (k1 + k2)ë1 − ...

x1
d

(24)
Derivative of e3 contains input to the system, so now the sliding surface will be
chosen as below

s = e3 + c1e2 + c2e1 (25)

order of sliding surface is (n − 1) where (n) is relative degree, c1 and c2 are positive
constants and can be chosen as per the required dynamics of the sliding surface and
Lyapunov candidate for final step is as follows

V3 = V2 + 1

2
s2 (26)

Step 4: Using (23), (24), (25), and ė2 = ë1 + k1ė1 time derivative of V3 is

V̇3 = −k1e2
1 − k2e2

2 + e2e3 + s( f1
(
ψ, ψ̇, ψ̈

) + b1
(
ψ, ψ̇

)
(τ1 + τd)

+(k1 + k2 + c1)ë1 + (1 + k1k2 + c1k1 + c2)ė1 − ...
x1

d
)

(27)

The constant plus proportional rate reaching law [21] given below will be used to
design control law

ṡ = −Qsgn(s) − K s (28)

Using conventional sliding mode design law given in (28), control law is as follows
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v = −
(
−

...
xd

1 + (k1 + k2 + c1)ë1 + (1 + k1k2 + c1k1 + c2)ė1 + Qsgn(s) + K s
)

(29)
and

τ1 = 1

b1
(
ψ, ψ̇

) (v − f1
(
ψ, ψ̇, ψ̈

)
) (30)

control law (30) will achieve our control objective that is e1(t), ė1(t) → 0 as
t → ∞ and can reject bounded continuous matched disturbances by choosing Q
appropriately.

3.3 Adaptive Estimation of Matched Disturbance

For given matched disturbance τd , d̂ estimates the disturbance and estimation error
d̃ is defined as below

d̃ = b1
(
ψ, ψ̇

)
τd − d̂ (31)

A Lyapunov candidate is chosen as below to deduce the adaptive estimation law

V4 = V3 + 1

2γ
d̃2 (32)

where γ is the adaptation gain.
Updating (29) with estimation term gives updated control law as below

v = −
(
−

...
xd

1 + (k1 + k2 + c1)ë1 + (1 + k1k2 + c1k1 + c2)ė1 + d̂ + Qsgn(s) + K s
)

(33)
Using (27), (30), (33) V̇4 is as follows

V̇4 = −k1e2
1 − k2e2

2 + e2e3 + s(b1
(
ψ, ψ̇

)
τd − d̂ − Qsgn(s) − K s) − 1

γ
d̃ ˙̂d

= −k1e2
1 − k2e2

2 + e2e3 + s(d̃ − Qsgn(s) − K s) − 1

γ
d̃ ˙̂d

= −k1e2
1 − k2e2

2 + e2e3 + s(−Qsgn(s) − K s) − 1

γ
d̃(

˙̂d − γ s)

Adaption law [22] given below and control law (33) achieves control objective by
choosing Q, K and γ appropriately.

˙̂d = γ s (34)
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4 Stability Analysis

Assumption 1: It is assumed that the desired trajectory xd
1 , and its first derivative ẋ1

d ,
second derivative ẍ1

d , and third derivative
...
x1

d are available and bounded.
Assumption 2: τ̄d is the known upper bound for b1

(
ψ, ψ̇

)
τd , i.e., τ̄d > b1

(
ψ, ψ̇

)
τd ,

where τd is the matched uncertainty.

4.1 Without Disturbance Estimation

V3(e1, e2, s) = 1

2
e2

1 + 1

2
e2

2 + 1

2
s2 (35)

V3(0, 0, 0) = 0 and V3(e1, e2, s) > 0, ∀ e1, e2, s �= 0 (36)

||x || → ∞ =⇒ V3(e1, e2, s) → ∞ (37)

Lyapunov function V3 given in (35) satisfies (36), (37), and if V̇3(e1, e2, s) < 0,
∀ e1, e2, s �= 0, then by invoking Barbashin–Krasovskii theorem, it can be inferred
that e1(t), e2(t), s(t) are globally asymptotically stable at origin.

Next, conditions will be established such that V̇3 < 0, from (27), (29), (30) V̇3

can be written as

V̇3 = −k1e2
1 − k2e2

2 + e2e3 + s(b1
(
ψ, ψ̇

)
τd − Qsgn(s) − K s)

= −k1e2
1 − k2e2

2 + e2e3 − K s2 − s(Qsgn(s) − τ̄d)

= −k1e2
1 − k2e2

2 + e2e3 − K (e3 + c1e2 + c2e1)
2 − (Q||s||1 − sτ̄d)

Let E = [e1 e2 e3]T , putting ||s||1τ̄d in place of sτ̄d and since ||s||1 ≥ ||s||p for any
p > 1, V̇3 can be now written as

V̇3 < −ET P E − ||s||1(Q − τ̄d) (38)

where, P =
⎡
⎣k1 + K c2

2 K c1c2 K c2

K c1c2 k2 + K c2
1 K c1 − 1

2
K c2 K c1 − 1

2 K

⎤
⎦

Matrix P will be positive definite if its principal minors are positive definite and
choosing Q such that Q > τ̄d will satisfy the following condition

V̇3 < 0 (39)
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Hence, it can be concluded that with appropriate values of c1, c2, k1, k2, K and Q
control problem of tracking for the red gimbal subsystem can be stabilized globally
asymptotically.

4.2 With Disturbance Estimation

V4(e1, e2, s, d̃) = 1

2
e2

1 + 1

2
e2

2 + 1

2
s2 + 1

2γ
d̃2 (40)

Conditions (36) and (37) are also satisfied by V4, next conditions will be deduced,
so that V̇4 < 0, from (30), (32), (33) and (34)

V̇4 = −k1e2
1 − k2e2

2 + e2e3 − K (e3 + c1e2 + c2e1)
2 − Q||s||1 (41)

V̇4 = −E T P E − Q||s||1 (42)

Matrix E and P are same as that in the previous subsection and choosing c1, c2, k1,
k2 and K such that P is a positive definite matrix will stabilize the error dynamics
globally asymptotically. It can be observed that Q > 0 is a very mild condition to
be followed unlike in earlier subsection which required exact knowledge of upper
bound of matched disturbance. Here, knowledge of upper bound of disturbance is
not required to decide control parameters.

4.3 Blue Gimbal Subsystem

Next stability analysis of the blue gimbal subsystem will be studied with the consid-
eration that angular position of the red gimbal is tracking the desired trajectory αd

and the disc is rotating at the required angular velocity γ̇ d .
From (5) β̇ can be written as

β̇ = − J (β)α̈d

C γ̇ d cos β + C α̇d sin β cos β + J ′(β)α̇d
(43)

Linearizing about β = 0, β̇ = 0

β̇ − p1α̈
d α̇dβ = p2α̈

d (44)
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where

p1 = (A2 + A1 + A)(C + 2(C1 − A1 − A))

(C γ̇ d)2

p2 = − A2 + A1 + A

C γ̇ d

Linearized dynamics of the angular position of blue gimbal is first-order linear dif-
ferential equation and can be solved using the integrating factor method.

Integrating factor = e−φ(t), where φ(t) = ∫
p1α̈

d α̇d dt

β(t) = eφ(t)

t∫
0

e−φ(t) p2α̈
d dt (45)

φ(t) = p1

2 ((α̇d)2(t) − (α̇d)2(0)) and approximating e−φ(t) ≈ 1 − φ(t)

β(t) = eφ(t)
[

p2((α̇
d)(t) − (α̇d)(0)) − p1 p2

6
((α̇d)3(t) − (α̇d)3(0))

]

+eφ(t)
[ p1 p2

2
(α̇d)2(0)((α̇d)2(t) − (α̇d)2(0))

] (46)

It can be deduced from (46) that β(t) will be bounded for bounded α̇d(t).

5 Simulation Results

In this section of the document, the simulation results of the backstepping-based
sliding mode controller with disturbance estimation (DEBSMC) are compared with
conventional backstepping-based sliding mode controller (CBSMC) with matched
uncertainty using plant parameters (Table 1), and controller parameters (Table 2).

Profile of uncertainty is given in Fig. 3b which takes into account coulomb, static,
viscous, and stribeck friction. Matched uncertainty is taken as below

τd = − 1

σ
√

2π
e− 1

2 (
x−μ

σ )
2

(47)

where μ = 0, σ = 2 and x = [−2.5, 2.5] is random gaussian variable.
Reference trajectory to be tracked is taken as:

αd = (2 + 25 sin(2π f1t) + 3 cos(2π f2t))(in deg.), where f1 = 0.05H z and f2 =
0.025H z. γ̇ d=34 rad/s.

To reduce chattering effect, tan h has been used instead of sgn [9].
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Table 1 Moment of inertia of Quanser gyroscope

Subsystem of
gyroscope

Moment of inertia (in kgm2) about

x-axis y-axis z-axis

Red gimbal 0.00762058 0.02879104 0.02344554

Blue gimbal 0.00388552 0.00744682 0.00555680

Flywheel disc 0.00284584 0.00563843 0.00284582

Table 2 Controller parameters

Proportional controller constant: K p = 1

Sliding surface constants: c1 = 4.2, c2 = 9

Switching control law constants

For conventional BSMC: K = 1, Q = 130

For DEBSMC: K = 1, Q = 1, γ = 20

Backstepping control other constants: k1 = 3, k2 = 60
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Fig. 2 Angular position with matched uncertainty of the a red gimbal, b blue gimbal

From Fig. 2a, it can be said that the proposed controller has been able to reject
the input uncertainty and able to track the desired trajectory, Fig. 2b shows that the
angle β is bounded and the proportional controller is able to keep the disc rotating
at the desired angular velocity which can be seen in Fig. 3a. Figure 4 shows that the
control input is almost same in steady state for both the controllers but chattering in
the proposed control law is less and can be observed in Fig. 5.

Graphically, it can be observed that both the controllers can stabilize the system
asymptotically but information regarding the range of the tracking error and where
the error is concentrated most of the time in steady state is absent, so to test and
compare among the controllers, Monte Carlo simulation method is used, the system
is simulated for 40,000 instants of time, and histogram of the tracking error is plot-
ted. The control input RMS is also computed to get the exact value in steady state
considering all 40,000 instants of time.
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Fig. 3 a Angular velocity of the disc, b matched uncertainty profile
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Fig. 4 Control input with matched uncertainty for a conventional BSMC, b BSMC with disturbance
estimation
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Fig. 5 Sliding surfaces with matched uncertainty for a conventional BSMC, b BSMC with distur-
bance estimation
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Fig. 6 Histogram of tracking error for a conventional BSMC, b BSMC with disturbance estimation

Table 3 Monte Carlo simulation results

Control law Mean tracking error
(in degrees)

Control input rms (in Nm)

CBSMC 0.2162 0.1717

DEBSMC 0.1215 0.1602

It can be observed from Fig. 6 that the tracking error is near zero at most of
the instants of time for the proposed controller while it is shifted from zero for
conventional BSMC. Also from Table 3, control input is marginally lesser for the
proposed controller.

6 Conclusion

A backstepping-based nonlinear robust controller for underactuated 2-DoF gyro-
scope system has been designed and validated in the simulation environment in this
paper. Proposed control law with disturbance estimation does not require knowledge
of the upper bound of matched disturbance and can stabilize the system globally
asymptotically while upper bound should be known to stabilize the system for con-
ventional law. Possibility of singularity problem in control input because of internal
dynamics, i.e., the angular position of blue gimbal, has been removed by keeping it
bounded, and it is well documented in the stability section of this paper. Monte Carlo
simulation method is used to compare the proposed control law with conventional
law, which shows tracking error is closer to zero at most instants of time for the
proposed controller than for conventional one with lesser control effort.
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