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Abstract Three-dimensional bearings-only target tracking problem is considered
in this work. To solve this problem, highly accurate nonlinear filtering algorithms
are required. This is because the nonlinearities in the noise corrupted measurements,
combined with the other uncertainties, make the estimation problem highly chal-
lenging. In this work, the extended Kalman filter (EKF), the cubature Kalman filter
(CKF), the unscented Kalman filter (UKF), and the new sigma point Kalman filter
(NSKF) are used to solve this state estimation problem. The performance criteria
chosen are root mean square error (RMSE) in position and velocity. To have a more
meaningful study, RMSE at the end of the observation period and time-averaged
RMSE after the observer manoeuvre is calculated, for varying measurement noise
and initial uncertainty.

1 Introduction

The bearings-only tracking (BOT) problem has been a popular area of research for
a sufficient period of time. In particular, it is a nonlinear filtering problem with
a goal to estimate the target states (positions and velocities) using only bearing
measurements that are corrupted with noise [1]. These measurements are obtained
by a moving platform, also called as observer, with the help of one or more sensors,
whereas the target can be a ship, an aircraft, or any mobile platform. The problem of
target tracking, which considers only bearing angles as measurements, is sometimes
referred to as bearings-only target motion analysis (TMA). The nonlinearities in
the measurement equation and the associated noises only make the problem even
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more challenging. Another significant factor is the observability. This problem is not
observable, or the filtering solution does not converge until and unless the observer
makes a manoeuvre [2].

Significant research has been conducted for BOT problem formulated in two-
dimensional space [3, 4]. Since the measurement is nonlinear, the assumption that
prior and posterior probability densities followGaussian distributionmay not be true.
Hence, for 2D BOT problems, nonlinear filters with both Gaussian as well as non-
Gaussian assumption have been implemented for the solution. For nonlinear systems,
the most widely used estimator is the extended Kalman filter (EKF) [5]. The EKF
uses the traditional Kalman filter equations and applies it to the nonlinear system by
linearising the nonlinear model [6]. In doing so, EKF proves to be computationally
efficient over other advanced Kalman filters. Later, various deterministic sampling
point filters such as the unscented Kalman filter (UKF) [7], cubature Kalman filter
(CKF) [8], cubature quadrature Kalman filter (CQKF) [9], Gauss–Hermite filter
(GHF) [10], etc., have been implemented. All these filters assume Gaussianity for
the prior and posterior density functions. Filtering accuracy and their performance
comparison are widely reported in the literature [11].

Now coming to the filters that follow non-Gaussian assumption, we have the
particle filter (PF) [12] and algorithms that make use of Gaussian sum approach [13].
Most of the nonlinear filtersmentioned abovewere implemented in theGaussian sum
approach and evaluated for solving BOT problems [11] In the majority of scenarios
described for the studyof 2DBOTproblems, itwas observed that therewas significant
track-loss associated with the estimator performance. Hence, a track-loss condition
was formulated and implemented so that the most accurate estimated values were
considered for performance analysis. It was noted that without this condition, certain
filters such as EKFdiverged or performedwith very less accuracy [4]. All theseworks
focused on tracking a target that is assumed to be following a constant velocity
motion. There are also numerous works available for tracking a manoeuvring target
with bearings-only measurements, in 2D [4].

A pseudolinear estimator for 2D case was introduced [14] to deal with the nonlin-
earity and convergence problem directly. This approach reformulates the nonlinear
bearingmeasurement into a linear form. But the disadvantagewas that the correlation
between the new form and the bearing noise leads to bias problems [15, 16]. To over-
come this bias problem, some attempts were made, which resulted in the proposal of
iterative instrumental variable estimator (IV) [17], and also a bias compensated IV
[18]. Now, these were all recursive algorithms. With respect to IV, a batch iterative
algorithm was proposed, termed as modified IV estimator [19]. Hence, from this
discussion, it is obvious that BOT problem in 2D scenarios is widely studied and
addressed.

However, there are relatively less number ofworkswhich addresses theBOTprob-
lem in 3D geometry [20–23]. Recently, much focus is on this problem, as researchers
have decided to not to ignore the depth, or the height between the target and observer.
So, the basic difference here is the addition of one more measurement, the eleva-
tion angle. Some of the nonlinear filters which were used for solving BOT problem
have already been applied for 3D geometry [24]. In [25], in addition to the prob-
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lem formulation in cartesian coordinates, tracking algorithms were developed for
modified spherical coordinates too. Robust tracking algorithms were also developed
for 3D BOT problems [26]. Similar to the PLE and IV estimators developed for 2D
geometry, the same concepts with certain modifications were applied to problem
formulation in 3D geometry [27].

Here, the authors focus their work on solving 3D BOT problem formulated in
Cartesian coordinate system. A comparative study on the performance evaluation of
certain sigma point Kalman filters was done. NSKF [28] was a recent addition to the
sigma point Kalman filter family, which claims more accuracy than the conventional
UKF. Rather than assigning same weights to all the sigma points, NSKF assigns
more weights to the sigma points that are nearer to the mean value. The inherent
disadvantage in this formulation is the increase in the number of sigma points.

This paper deals with a 3D bearings-only target tracking scenario for which the
performance of various filters like EKF, UKF, CKF, and NSKF is studied. The filter-
ing accuracy is analysed using RMSE of resultant position and velocity. To further
analyse the accuracy, the effect of initial condition and varying measurement noise
is taken into account. The rest of the paper is organised as follows: Sect. 2 formu-
lates the 3D BOT problem in Cartesian coordinates, and the filtering algorithms are
mentioned in Sect. 3. The simulation results are discussed in Sect. 4 followed by
concluding remarks in Sect. 5.

2 Problem Formulation

The purpose of the 3D bearings-only tracking problem studied in this paper is to
accurately estimate the position and velocity of the target from bearing (β) and
elevation (ε) measurements obtained by an observer at fixed-time intervals. The
target motion is assumed to be a constant velocity motion during the observation
period. We assume that the observer’s motion is deterministic, with known position
and velocity. Figure 1 is a Cartesian coordinate frame representing the position of
the target and observer.

Let the target and observer state vector be defined as

X t
k = [

xtk ytk ztk ẋ
t
k ẏtk żtk

]T

X o
k = [

xok yok zok ẋok ẏok żok
]T

.

Now, a relative state vector is defined as

Xk = X t
k − X o

k

= [
xtk − xok ytk − yok ztk − zok ẋtk − ẋok ẏtk − ẏok żtk − żok

]t

= [
xk yk zk ẋk ẏk żk

]T
.

(1)



276 U. Asfia et al.

Fig. 1 Target–observer in
Cartesian coordinate frame
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Let the range vector be r and is defined as

r = [
xtk − xok ytk − yok ztk − zok

]T

= [
xk yk zk

]T
.

(2)

Now, the actual rangeor the slant range at any instant is defined as rk =
√
x2k + y2k + z2k .

From the target–observer geometry shown in Fig. 1, r can be expressed in terms of
β and ε as

r = r

⎡

⎣
cos ε sin β

cos ε cosβ

sin ε

⎤

⎦ .

Here, β ∈ [0, 2π ] and ε ∈ [−π
2 , π

2 ]. Moreover, the ground range or the range in x-y
plane is defined as rg = r cos ε.

2.1 Process Model

The discrete time state equation decribing the constant velocity target dynamics can
be expressed as

X t
k = Fk−1X

t
k−1 + wt

k−1, (3)
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where Fk−1 is the state transition matrix defined as

Fk−1 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

T is the sampling interval, and wt
k−1 is a zero mean Gaussian noise, uncorrelated

with X .
Now, the relative state vector dynamics using (3) and (1) is defined as [24]

Xk = Fk−1Xk−1 + wt
k−1 − X o

k + Fk−1X
o
k−1, (4)

where wt
k−1 ∼ N (0,Qk−1) and

Qk−1 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

T 3

3 qx 0 0 T 2

2 qx 0 0

0 T 3

3 qy 0 0 T 2

2 qy 0

0 0 T 3

3 qz 0 0 T 2

2 qz

T 2

2 qx 0 0 Tqx 0 0

0 T 2

2 qy 0 0 Tqy 0

0 0 T 2

2 qz 0 0 Tqz

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

.

Here, qx, qy, qz are the power spectral densities of the process noise along the X , Y ,
and Z axes, respectively. Figure 2 shows the target–observer dynamics considered
in this study. It can be seen that the target follows a constant velocity model and the
observer manoeuvre is modelled in different constant velocity phases.

2.2 Measurement Model

The measurement model involving the bearing and elevation angle is defined as

zk = h(Xk) + vk , (5)
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Fig. 2 3D BOT scenario

where

h(Xk) =
[
βk

εk

]
=

⎡

⎢
⎣

tan−1( xkyk
)

tan−1
(

zk√
xk 2+yk 2

)

⎤

⎥
⎦ .

Here, vk = [v1,k v2,k ]T is a zero mean white Gaussian noise with covariance matrix
Rk , that is vk ∼ N (0,Rk), Rk = diag(σβ

2, σε
2). Here, σβ and σε are the standard

deviations of error in bearing and elevation angles, respectively.

3 Recursive Bayesian Algorithms

Even though certain batch estimation algorithms have been proposed recently for 3D
BOT problem [27], we resort to the implementation of three recursive deterministic
sampling point filters. They are the cubature Kalman filter (CKF), unscented Kalman
filter (UKF), and the recently proposed new sigma point Kalman filter (NSKF). In
addition to this, the extended Kalman filter is also implemented. In this section,
Bayesian filtering, the formulation of these filtering algorithms, and their implemen-
tation with respect to the problem considered are discussed.

3.1 Bayesian Approach to Filtering

Suppose the discrete state-space process andmeasurement models are represented as
in (4) and (5). InBayesianfiltering, the unknown states andparameters to be estimated
are assumed as randomvariables that follow a particular probability distribution. This
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probability distribution is termed as prior probability density. The prior information
regarding the states to be estimated is combined with the measurements received, via
a conditional density function of the states, given the measurements. This probability
density function (pdf) is usually termed as posterior probability density function.

In this framework, the two steps involved in calculating the prior and posterior
pdfs are the time update step and the measurement update step.

Time update step: The prior pdf, p(Xk |z1:k−1), is obtained using the Chapman–
Kolmogorov equation

p(Xk |z1:k−1) =
∫

p(Xk |Xk−1)p(Xk−1|z1:k−1)dXk−1. (6)

Measurement update step: The measurement at time instant k, zk and the prior
pdf is used to obtain the posterior pdf using Bayes’ rule

p(Xk |z1:k) = p(zk |Xk)p(Xk |z1:k−1)∫
p(zk |Xk)p(Xk |z1:k−1)dXk

. (7)

When the process or measurement model becomes nonlinear, the integrals become
intractable, and we need to look for suboptimal solutions. This is due to the fact
that prior and posterior pdfs may not be Gaussian anymore. To overcome this, one
approach is to approximate them with Gaussian distribution and take the mean as a
point estimate.Under this assumption, the prior and posterior pdfs can be expressed as
p(Xk |z1:k−1) = N (X̂k|k−1,Pk|k−1) and p(Xk |z1:k) = N (X̂k|k ,Pk|k). The posterior
mean X̂k|k is the estimated value of state X .

3.2 Extended Kalman Filter

The extended Kalman filter is an immediate extension of the Kalman filter to nonlin-
ear state estimation problems. The nonlinear process and measurement models are
linearised, and then the Kalman filter equations are used. In this problem, since the
process model is linear, the same Kalman filter equations for the time update step
can be implemented. But for the nonlinear measurement model, a corresponding lin-
earised model has to be computed in the measurement update step. With a suitable
assumption of the posterior estimate X̂k−1|k−1 and covariance matrix Pk−1|k−1 at time
k − 1, the recursive algorithm can be given as

X̂k|k−1 =Fk−1X̂k−1|k−1 − X o
k + Fk−1X

o
k−1

P̄k|k−1 =Fk−1Pk−1|k−1F
T
k−1 + Q
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Now, the measurement update step involves the formation of Jacobian matrix fol-
lowed by innovation covariance and Kalman gain, given as

Hk =∂h(X̂k|k−1)

∂X̂k|k−1

Sk =HkP̄k|k−1H
T
k + Rk

Kk =P̄k|k−1H
T
k S

−1
k

Then, the posterior mean and covariance are found out as

X̂k|k =X̂k|k−1 + Kk [zk − h(X̂k|k−1)]
Pk|k =P̄k|k−1 − KkSkK

T
k

3.3 Unscented Kalman filter

Unscented Kalman filter (UKF)[7] was the first suboptimal filter that introduced the
concept of numerical integration of the intractable integrals using a set of determin-
istic points and weights. The major advantage over the already existing EKFwas that
the algorithm was derivative free. It proved to be more accurate and less sensitive to
initial condition mismatch when compared with the EKF. The main concept was to
implement the numerical approximation using the unscented transformation.

Suppose that the integral to be approximated is of the form

I(X ) =
∫

h(X )pX (X ) dX

whereX is a random variable that is assumed to follow a Gaussian density pX (X ) ∼
N (X̂,P). Now, since I(X ) is not a tractable one, a numerical approximation with
the help of unscented transformation is defined as

I(X ) �

2n+1∑

i=1

wih(X̂i), where n is the order of the system.

Here
X̂1 = X̂

X̂i = X̂+ (√
(n + κ)P

)
i, i = 1, . . . , n

X̂i = X̂− (√
(n + κ)P

)
i, i = 1, . . . , n and

w1 = κ

n + κ
, wi = 1

2(n + κ)
, for i = 1, . . . , 2n.

(8)
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3.4 New Sigma Point Kalman Filter

In UKF, the sigma point equal to mean is given the maximum weight, whereas all
other sigma points are assigned equal weights. In [28], this weight assignment was
revisited because of the fact that the sigma points which are nearer to the mean value
should have higher probability of occurrence. Accordingly, a new sigma point trans-
formation was formulated where sigma points closer to the mean were given more
weights when compared to the sigma points that are further away from mean. This
new transformation also took care of the criteria that first two moments are matched
exactly. Taking the same assumption above, X ∼ N (X̂,P), the new transformation
is defined as

X̂1 = X̂, w1 = 1 −
∑n

i=1 αi

2(
∑n

i=1 αi + b)

X̂i+1 = X̂+
√∑n

i=1 αi + b

mαi
Si, wi+1 = mαi

4(
∑n

i=1 αi + b)
, i = 1, . . . , n

X̂i+1 = X̂−
√∑n

i=1 αi + b

mαi−n
Si−n, wi+1 = mαi−n

4(
∑n

i=1 αi + b)
, i = n + 1, . . . , 2n

X̂i+1 = X̂+
√ ∑n

i=1 αi + b

(1 − m)αi−2n
Si−2n, wi+1 = (1 − m)αi−2n

4(
∑n

i=1 αi + b)
, i = 2n + 1, . . . , 3n

X̂i+1 = X̂−
√ ∑n

i=1 αi + b

(1 − m)αi−3n
Si−3n, wi+1 = (1 − m)αi−3n

4(
∑n

i=1 αi + b)
, i = 3n + 1, . . . , 4n.

(9)

Here, S is defined such that SST = P, and Si and Pi denote the ith column of S and P,
respectively. The variable α is defined as αi = |<Xi,Pi>|

‖Xi‖2‖Pi‖2 . b is a real constant such

that b > { 14 max (mαi) − 1
2

∑n
i=1 αi}, and m is chosen as m ∈ (0.5, 1).

Ifwe represent the total number of sigmapointswithN , then from this transforma-
tion, the value ofN becomes 4n + 1. But in case of the UKF, value ofN = 2n + 1.
Compared to the UKF, NSKF has an advantage of having two tuning parameters, b
and m. The algorithm for implementing UKF and NSKF for the 3D BOT problem is
given below.

4 Simulation Results

The simulation and results comprise a performance comparison of EKF, UKF, CKF,
and NSKF for 1000 Monte Carlo runs. The entire tracking scenario is implemented
and simulated in MATLAB software. The initial parameter values required for gen-
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Algorithm 1: For UKF and NSKF

Initialise X̂k−1|k−1 and Pk−1|k−1

X̂k|k−1 = Fk−1X̂k−1|k−1 − X o
k + Fk−1X o

k−1

P̄k|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q

Calculate X̂i using (8) or (9), i = 1, · · · ,N
Zi,k|k−1 = h(X̂i)

ẑk = ∑N
i=1 wiZi,k|k−1

Pzk = ∑N
i=1 wi[Zi,k|k−1 − ẑk ][Zi,k|k−1 − ẑk ]T + Rk

PXkzk = ∑N
i=1 wi[X̂i − X̂k|k−1][Zi,k|k−1 − ẑk ]T

Kk = PXkzk P
−1
zk

X̂k|k = X̂k|k−1 + Kk [zk − ẑk ]
Pk|k = P̄k|k−1 − KkPzk K

T
k

Table 1 Target and observer initial parameters

Parameters Value

Initial target position
[
138/

√
2 138/

√
2 9

]
(km)

Initial target speed (s) 0.297 (km/s)

Target course −135 (◦)
Elevation angle 0.415 (◦)
Initial observer position

[
0 0 10

]
(km)

Initial observer speed (s) 0.297 (km/s)

erating the scenario shown in Fig. 2 are given in Table 1. Here, target and observer
initial position in the three coordinates are given. The resultant velocity of the target
and observer is given, which is used for finding the velocities in the three coordinate
axes. From Fig. 2, it should be noted that target position in Z position is decreasing.
The bearing angle β is calculated with reference to the Y -axis.

For eachMonte Carlo run, the target is assumed to start at a position defined by the
initial measurement received. According to this measurement, a suitable assumption
for range r, target speed s, bearing, and elevation angle is considered. Here, these
values are mentioned in Table 2. The variables in the process noise, defined for
calculating process noise covariance matrix Q, are taken as qx = qy = 0.01m2/s3

and qz = 10−4m2/s3. The motion of the observer is deterministic and moves in a
plane parallel to the X-Y plane at a fixed height of 10 km.
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Table 2 Parameters for defining X̂0|0 & P0|0
Parameter Mean Standard deviation

Range (km) 150 13.6

Speed (m/s) 258 41.6

Bearing heading (rad/s) β + π π/
√
12

Elevation heading (rad/s) 0 π/60

4.1 Filter Initialisation

All the filters in this paper are initialised using the method given in [24] with the
parameters shown in Table 2. The relative state is initialised depending on the first
measurement of bearing and elevation angle and the prior range estimate of the target.
The r ∼ N (r, σr

2) is the prior range estimate of the target, with r as the assumed true
initial range of the target from the observer. The true initial bearing and elevation
measurement estimate are β̂1 and ε̂1 with headings α1 and γ 1, respectively. Also,
s ∼ N (s, σs

2) is the initial speed estimate for the target.
The initial estimate (X̂0|0) for relative state vector is given as [24]

X̂0|0 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

r η1,0(ε̂1, σε
2) η0,1(β̂1, σβ

2)

r η1,0(ε̂1, σε
2) η1,0(β̂1, σβ

2)

r η0,1(ε̂1, σε
2)

s η1,0(γ 1, σγ
2) η0,1(α1, σα

2) − ẋo1

s η1,0(γ 1, σγ
2) η1,0(α1, σα

2) − ẏo1

s η0,1(γ 1, σγ
2) − żo1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

,

whereη1,0(μ, σ 2) = cosμ exp(−σ 2/2) andη0,1(μ, σ 2) = sinμ exp(−σ 2/2). Also,
(ẋo1, ẏ

o
1, ż

o
1) is the initial velocity components of the observer state vector.

Let P be the covariance matrix, whose (i, j)th element is represented as Pi,j. The
upper triangular nonzero elements of the covariance matrix P are [24]

P11 =(σr
2 + r2) η2,0(ε̂1, σε

2) η0,2(β̂1, σβ
2) − r2 η21,0(ε̂1, σε

2) η20,1(β̂1, σβ
2)

P12 =(σr
2 + r2) η2,0(ε̂1, σε

2) η1,1(β̂1, σβ
2) − r2 η21,0(ε̂1, σε

2) η1,0(β̂1, σβ
2) η0,1(β̂1, σβ

2)

P13 =[(σr2 + r2) η1,1(ε̂1, σε
2) − r2 η1,0(ε̂1, σε

2) η0,1(ε̂1, σε
2)] η0,1(β̂1, σβ

2)

P22 =(σr
2 + r2) η2,0(ε̂1, σε

2) η2,0(β̂1, σβ
2) − r2 η21,0(ε̂1, σε

2) η21,0(β̂1, σβ
2)

P23 =[(σr2 + r2) η1,1(ε̂1, σε
2) − r2 η1,0(ε̂1, σε

2) η0,1(ε̂1, σε
2)] η1,0(β̂1, σβ

2)

P33 =(σr
2 + r2) η0,2(ε̂1, σε

2) − r2 η0,1(ε̂1, σε
2)

P44 =(σs
2 + s2) η2,0(γ 1, σγ

2) η0,2(α1, σα
2) − s2 η21,0(γ 1, σγ

2) η20,1(α1, σα
2)
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P45 =(σs
2 + s2) η2,0(γ 1, σγ

2) η1,1(α1, σα
2) − s2 η21,0(γ 1, σγ

2) η1,0(α1, σα
2) η0,1(α1, σα

2)

P46 =[(σs2 + s2) η1,1(γ 1, σγ
2) − s2 η1,0(γ 1, σγ

2) η0,1(γ 1, σγ
2)] η0,1(α1, σα

2)

P55 =(σs
2 + s2) η2,0(γ 1, σγ

2) η2,0(α1, σα
2) − s2 η21,0(γ 1, σγ

2) η21,0(α1, σα
2)

P56 =[(σs2 + s2) η1,1(γ 1, σγ
2) − s2 η1,0(γ 1, σγ

2) η0,1(γ 1, σγ
2)] η1,0(α1, σα

2)

P66 =(σs
2 + s2) η0,2(γ 1, σγ

2) − s2 η20,1(γ 1, σγ
2),

where

η2,0(μ, σ 2) =[sinh σ 2 + cos2 μ exp(−σ 2)] exp(−σ 2)

η0,2(μ, σ 2) =[sinh σ 2 + sin2 μ exp(−σ 2)] exp(−σ 2)

η1,1(μ, σ 2) = cosμ sinμ exp(−2σ 2).

Since P is a symmetric matrix, the property that Pij = Pji gives the lower triangular
elements of the covariance matrix. Hence, P0|0 is defined as

P0|0 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

P11 P12 P13 0 0 0
P12 P22 P23 0 0 0
P13 P32 P33 0 0 0
0 0 0 P44 P45 P46

0 0 0 P45 P55 P56

0 0 0 P64 P56 P66

⎤

⎥⎥⎥⎥⎥
⎥
⎦

.

4.2 Performance Criteria

Twomeasures of performance using rootmean square error (RMSE) are used to com-
pare the various filters. RMSE was calculated for the target states, which were found
out from the estimated relative states and from the deterministic observer values. We
found out the RMSE for both resultant position as well as for the resultant velocity.
The first measure defined was the RMSE for position and velocity averaged from the
end of the last observer manoeuvre to the end of observation or simulation period.
The final RMSE for position and velocity at the end of the simulation period was
considered to be the second measure of performance. These statistics are computed
by averaging over 1000 realisations, for bearing and elevation measurement noise
standard deviations of 0.057◦, 0.65◦, 0.8◦, and 1◦. The effect of increase in initial
uncertainty on filter accuracy is also studied. The expression for RMSE in position
is given as

RMSEk =
√√√√ 1

M

M∑

j=1

[(xt j,k − x̂tj,k)
2 + (yt j,k − ŷtj,k)

2 + (zt j,k − ẑtj,k)
2]
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where k andM denote the total number of time steps and Monte Carlo runs, respec-
tively. A similar expression for RMSE in velocity was implemented for the study.
As compared to the 2D BOT scenarios widely available in the literature, the 3D
scenario considered in this study did not incur any track-loss. Hence, the need for
implementing any track-loss condition for performance analysis is ruled out.

4.3 Performance Comparison

For simulation, the sampling time is considered as T = 1 s, and the total observation
period lasted for T = 210 s. The tracking performance of NSKF is shown in Fig. 3
for a single run. The estimated target path is plotted along with the truth target path
and the observer path in this figure. It is observed that the NSKF accurately tracks
the target.

RMSE in position and velocity is plotted in Figs. 4 and 5 to compare the estimation
accuracy of various filters. From these figures, it can be observed that all filters
performed with comparable accuracy. The results are shown in Tables 3 and 4. For
the particular target–observer scenario discussed in the paper, it can be seen that all
the filters give comparable results. The effect of increase in the measurement noise
can be seen in the increase of the RMSE value at the final time for both position
and velocity resulting in lower filter accuracy. From Table 3, when the measurement
noise is low (i.e. standard deviation is 0.057◦), EKF gives comparable response. For
higher measurement noise standard deviations (i.e. 1◦), it can be seen that NSKF
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Fig. 3 Estimated and truth target path in X -Y plane
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performs with slightly higher accuracy. However, in the case of RMSE in velocity
fromTable 4 EKF andNSKF, both have comparable accuracy for lowermeasurement
noise. But with the increase in measurement noise, NSKF in comparison with other
filters performs with slightly better accuracy. It should be also noted that, when the
noise in bearing and elevation angles is increased from 0.057◦ to 1◦, the error in
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Table 3 RMSE in position

Final RMS position error (km)

Measurement noise

Standard deviation (◦)
Filter 0.057 0.65 0.8 1

EKF 0.626 4.932 5.467 5.979

UKF 0.671 4.968 5.483 5.955

CKF 0.634 4.951 5.482 5.946

NSKF 0.631 4.948 5.477 5.944

Time-averaged RMS position error (km)

Measurement noise

Standard deviation (◦)
Filter 0.057 0.65 0.8 1

EKF 0.900 6.710 7.859 9.293

UKF 0.983 6.821 7.995 9.450

CKF 0.906 6.802 7.993 9.441

NSKF 0.903 6.787 7.979 9.226

Table 4 RMSE in velocity

Final RMS velocity error (km/s)

Measurement noise

Standard deviation (◦)
Filter 0.057 0.65 0.8 1

EKF 0.0063 0.0491 0.0539 0.0578

UKF 0.0067 0.0494 0.0538 0.0575

CKF 0.0063 0.0492 0.0538 0.0575

NSKF 0.0063 0.0491 0.0537 0.0575

Time-averaged RMSE in velocity (km/s)

Measurement noise

Standard eviation (◦)
Filter 0.057 0.65 0.8 1

EKF 0.0099 0.0566 0.0618 0.0662

UKF 0.108 0.0572 0.0622 0.0665

CKF 0.010 0.0570 0.0622 0.0667

NSKF 0.0099 0.0570 0.0622 0.0660

Table 5 RMSE in position with varying P0|0
Final RMS position error (km)

Filter P = 1.5 * P P = 2 * P P = 3 * P

EKF 6.247 7.012 8.217

UKF 6.171 6.775 7.731

CKF 6.169 6.785 7.858

NSKF 6.204 6.835 7.970

Time-averaged RMS position error (km)

Filter P = 1.5 * P P = 2 * P P = 3 * P

EKF 9.072 9.799 10.912

UKF 9.176 9.727 10.569

CKF 9.177 9.710 10.681

NSKF 9.212 9.760 10.815

RMS position shifted from 631 m to 5.9 km. This indicates a significant decrease in
the accuracy of the nonlinear filters implemented.

The initial covariance matrix was computed as P = ν × P0|0 where the value
of ν = 1.5, 2, 3 to analyse the effect of initial uncertainty. Here, the measurement
standard deviation for bearing and elevation angle was set to be 1◦. From Tables 5
and 6, it can be seen that EKF in comparison with NSKF shows more error with the
increase in the uncertainty. But still, it cannot be considered as a significant increase
in estimation accuracy, as it is comparable.
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Table 6 RMSE in velocity with varying P0|0
Final RMSE in velocity (km/s)

Filter P = 1.5 * P P = 2 * P P = 3 * P

EKF 0.0618 0.0690 0.0820

UKF 0.0609 0.0663 0.0765

CKF 0.0608 0.0664 0.0779

NSKF 0.0612 0.0669 0.0790

Time-averaged RMSE in velocity (km/s)

Filter P = 1.5 * P P = 2 * P P = 3 * P

EKF 0.0678 0.0740 0.0839

UKF 0.0679 0.0734 0.0807

CKF 0.0680 0.0732 0.0815

NSKF 0.0684 0.0737 0.0827

5 Conclusion

This paper presents a comparative study of certain nonlinear sigma point Kalman
filters for solving the problem of 3D bearings-only target tracking. The filters used
were EKF, UKF, CKF, andNSKF. The filtering accuracy is analysed using the RMSE
in both position and velocity. From the RMSE, we focused on two criteria: (1) RMS
error in position and velocity at the final simulation time step (2) the time-averaged
RMS position and velocity error, after the end of observer manoeuvre. To make it
more meaningful, the two criteria were evaluated by increasing the measurement
noise standard deviation in bearing as well as elevation angles. It is observed that
the accuracy of all filters decreases with the increase in measurement noise, but at a
similar rate without any significant difference. A very small increase in accuracy was
observed for the sigma point filters when compared to the EKF.Wewould also like to
emphasise the fact that these results are valid only for the particular tracking scenario
considered, and not a generalised one for 3D BOT problems. Except for highly
nonlinear scenarios (where the rate at which the bearing angle rate is very high)[11],
we expect the filters to perform in a similar fashion as described in the paper. An
attempt was made to evaluate the two criteria with varying initial uncertainty. Here
also, comparable results were obtained for sigma point filters with respect to the
EKF.
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