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Chapter 1
Upper-Lower Bounds for the Profit
of an Inventory System Under
Price-Stock Life Time Dependent
Demand

Nita H. Shah , Ekta Patel , and Kavita Rabari

Abstract Price is the most important factor influencing demand rate based on
marketing and economic theory. Along with price, stock display is also a major
factor, as displayed stocksmay induce customers to purchasemore due to its visibility.
Moreover, the demand for perishable products depends on its freshness. However,
relatively little devotion has been paid to the influence of expiration dates despite the
fact that they are an important factor in consumers’ purchase decisions. As a result,
we develop an inventory model for perishable products in which demand explicitly
in a multivariate function of price, displayed stocks, and expiration dates. We then
formulate the model by determining the optimal selling price to maximize the total
profit by using classical optimization method with the necessary condition given by
Kuhn-Tucker. Furthermore, we discuss the optimal decisions under two scenarios:
upper bound of profit and lower bound of profit by taking holding cost as a function
of upper and lower bound respectively. Finally, a numerical example is demonstrated
along with sensitivity analysis to describe the impact of inventory parameters on the
optimal decisions.

Keywords Perishable products · Price · Stock and life time dependent demand ·
Expiration date · Lot-sizing and classical optimization method

MSC 90B05

1.1 Introduction

Inventory management for enterprises is continuously facing challenges associated
with the development, quality, design, and manufacturing of new products.

Thus the demand for new products comes and goes at a faster pace. Recently,
it is observed that customers are becoming more alert and cognizant about their
health as their standard of living gets better than earlier, so the demand for products
with a long life cycle has drastically increased in recent years. Only an increasing
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number of products are becoming subject to loss of utility, evaporation, degradation,
and devaluation because of the launch of new technology or the substitutions like
fashion and seasonal goods, electronic equipment, and so on. Even products like
durable furniture, high technology goods, medicines, vitamins, and cosmetics are
becoming victims of perishability, so managing such perishable inventory can be
very challenging. To be competitive in today’s grocery industry, there is a big task
for getting the right product to the right place at the right time in the right condition.
Determining price and order quantity jointly is recognized for perishable products
as an essential way to intensify profitability and maintain competition in the market.

It is observed that the age of perishable products has a negative impact on the
demand because of the loss of consumer’s confidence in the product quality. Hence,
in today’s market, the freshness of the product has a major effect on demand. More-
over, the expiration date is one of the major concerns to assess the freshness of a
product and could significantly affect its demand. Consequently, perishable products
have becomemore andmore significant fonts of revenue in the grocery industry. Fuji-
wara and Perera (1993) proposed an EOQ model for perishable products in which
product devalues over time by considering exponential distribution. Sarker et al.
(1997) developed an inventory model for perishable products by taking the negative
effect of age of the on-hand socks into consideration. Later, Hsu et al. (2006) estab-
lished an inventorymodel by considering expiration dates for deteriorating items. Bai
and Kendall (2008) studied optimal shelf space allocation for perishable products in
which demand is considered to be a function of displayed stock level and freshness
condition. Then, Avinadav et al. (2014) explored an inventory model for perishable
products by measuring product freshness until the expiration date. Dobson et al.
(2017) studied an EOQ model for perishable products with age-dependent demand
in which the lower and upper bound of the cycle length and profit are analyzed. After
that Chen et al. (2016) studied an inventory model for perishable products in which
demand is close to zero when it approaches its expiration date. Further, Feng et al.
(2017) extended Chen et al. (2016) model by adding a pricing strategy.

In practice, the demand for fresh products is influenced by the stock level, as
an increase in the displayed stock level attracts more customers to purchase more.
Various types of inventory models have been derived to quantify this phenomenon
in studying the optimal inventory policies. Baker and Urban (1988) proposed an
inventory model in which the demand rate is a polynomial function form depending
on the displayed stock level. Thereafter, the first EOQmodel was proposed by Urban
(1992) with non-zero ending inventory with displayed stock-dependent demand.
Then Urban and Baker (1997) derived an EOQ model in which demand is a deter-
ministic and multivariate function of price, time, and level of inventory. Teng and
Chang (2005) extended Urban and Baker (1997) model by scrutinizing the effect
of trade credit financing along with stock level. Dye and Ouyang (2005) investi-
gated an inventory model for perishable products under stock and price-dependent
demand by considering partial backlogging. Soni and Shah (2008) formulated an
inventory model in which demand is partially constant and partially dependent on
stock. One step ahead, Chang et al. (2010) scrutinized an optimal replenishment
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Table 1.1 Literature survey is exhibited in Table 1.1

Authors Demand pattern Deterioration Expiration
date

Variable
holding
cost

Price
sensitive

Stock
dependent

Agi and Soni
(2020)

✓ ✓ Instantaneous ✘ ✘

Avinadav et al.
(2014)

✓ ✘ ✘ ✘ ✘

Bai and
Kendall (2008)

✘ ✓ Instantaneous ✘ ✘

Baker and
Urban (1988)

✘ ✓ ✘ ✘ ✘

Chang et al.
(2010)

✘ ✓ Non-instantaneous ✘ ✘

Chen et al.
(2016)

✘ ✓ Instantaneous ✓ ✘

Cohen (1977) ✓ ✘ Instantaneous ✓ ✘

Dobson et al.
(2017)

✘ ✘ Instantaneous and
non-instantaneous

✘ ✓

Dye (2007) ✓ ✘ Instantaneous ✘ ✘

Dye and
Ouyang (2005)

✓ ✓ Instantaneous ✘ ✘

Feng et al.
(2017)

✓ ✓ Instantaneous ✓ ✘

Fujiwara and
Perera (1993)

✘ ✘ Instantaneous ✘ ✘

Hsu et al.
(2006)

✓ ✘ Instantaneous ✓ ✘

Maihami and
Abadi (2012)

✓ ✘ Non-instantaneous ✘ ✘

Mishra and
Tripathy
(2012)

✘ ✘ Instantaneous ✘ ✘

Mishra (2013) ✘ ✘ Instantaneous ✘ ✓

Papachristos
and Skouri
(2003)

✓ ✘ Instantaneous ✘ ✘

Sarker et al.
(1997)

✘ ✓ Instantaneous ✘ ✘

Soni and Shah
(2008)

✘ ✓ ✘ ✘ ✘

Teng and
Chang (2005)

✓ ✓ Instantaneous ✘ ✘

(continued)
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Table 1.1 (continued)

Authors Demand pattern Deterioration Expiration
date

Variable
holding
cost

Price
sensitive

Stock
dependent

Urban (1992) ✘ ✓ ✘ ✘ ✘

Urban and
Baker (1997)

✓ ✓ ✘ ✘ ✘

Wee (1999) ✓ ✘ Instantaneous ✘ ✘

Wu et al.
(2016)

✘ ✓ Instantaneous ✓ ✘

Chen et al.
(2020)

✘ ✘ Instantaneous ✘ ✘

Amiri et al.
(2020)

✘ ✘ Instantaneous ✘ ✘

Proposed
model

✓ ✓ Instantaneous ✓ ✓

policy by taking stock-dependent demand for non-instantaneous perishable products.
Mishra and Tripathy (2012) exploring inventory policy for time-dependent Weibull
deterioration, in this study shortages are allowed and partially backlogged. After
that Mishra (2013) proposed optimal inventory policies for instantaneous perishable
items with the controllable deterioration rate in which demand and holding cost are
time-dependent. Wu et al. (2016) established an inventory model for fresh produce
in which demand is a time-varying function of its freshness, displayed volume, and
expiration date.

Selling price is also a major concern to create a repeated purchasing environ-
ment in today’s competitive market scenario. In this context, Cohen (1977) proposed
an inventory model for ordering and pricing decisions by considering deterministic
price-dependent demand. After that Wee (1999) established an inventory model for
joint pricing and order quantity decision with selling price dependent demand and
partial backlogging of unsatisfied demand. Papachristos and Skouri (2003) extended
the work of Wee (1999) by taking demand as continuous, convex, and decreasing
in selling price. Dye (2007) addressed an inventory problem with decreasing price
demand in which marginal revenue is increased. In this study, demand is not affected
by product age or its freshness. More recently, Maihami and Abadi (2012) investi-
gated an inventory model in which demand is to be a function of age and price. More
recently, Agi and Soni (2020) present a deterministic model for perishable itemswith
age, stock and price-dependent demand rate. Feng et al. (2017) scrutinized pricing
and lot sizing policy for perishable items in which demand is a multivariate function
of price, freshness, and displayed stocks. Chen et al. (2020) proposed an inven-
tory model for perishable products with two self-life. Amiri et al. (2020) studied an
inventory model for perishable products in a two-echelon supply chain.
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The Remainder of the article is structured as follows: Sect. 1.2 defines nota-
tions and assumptions. Section 1.3 formulates the mathematical model. Section 1.4
provides numerical results. Sensitivity analysis is carried out in Sect. 1.5. Section 1.6
concludes the proposed model with future research directions.

1.2 Notations and Assumptions

1.2.1 Notations

These are the notations that are used throughout the article (Table 1.2).

1.2.2 Assumptions

Proposed inventory model is constructed on the following assumptions.

• Fresh produce has been affected by many factors such as temperature, humidity,
refrigeration, time in stock among others. It seems impossible to obtain an explicit
freshness of the product. However, it is well-known that fresh produce has its

Table 1.2 Notations
α Scale demand, α > 0

β Mark up, β > 0

p Selling price per unit (dollars/unit)

c Purchase cost per unit per dollar, p > c

Q The order quantity

η Price elasticity, η > 1

A Ordering cost per order (dollars/order)

h Holding cost per unit per unit time in dollars

hl Holding cost for lower bound per unit per unit time in
dollars

hu Holding cost for upper bound per unit per unit time in
dollars

m Expiration date (in months)

T Cycle time (in months)

I (t) The inventory level at time t ∈ [0, T ]

TP Total profit in dollars

TPl Total profit for lower bound in dollars

TPu Total profit for upper bound in dollars
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expiration date. To make the problem easy and tractable, we may assume the
maximum lifetime f (t) = m−t

m , 0 < t ≤ m.
• The demand rate R(p, I (t)) is assumed to be a function of price, stock, and life

time which is given by R(p, I (t)) = (α + β I (t))p−η (m−t)
m , where α is scale

demand (α > 0), β > 0 is mark-up, p is a selling price per unit, η > 1 denotes
price elasticity mark-up and m is a life time of the product.

• The inventory cycle is lower than the maximum life time of the product.
• Holding cost for lower bound is defined as hl = p

m + h
4 and for upper bound

holding cost is hu = p
m + h

2 where p is a selling price per unit m is a maximum
life time of the product and h is a constant holding cost.

• Shortages are not allowed.
• The time horizon is infinite.

1.3 Mathematical Model

In Sect. 1.3, an inventory model is developed where the product loses its freshness
with time. Initially, at time t = 0, the order quantity is Q, that reduced due to the
effect of demand which depends upon price, stock, and life time of the product and
reaches zero at time t = T .

The differential equation governing the inventory level at time t during the interval
[0, T ] is given by

dI (t)

dt
= −(α + β I (t))p−η

(
m − t

m

)
, 0 ≤ t ≤ T (1.1)

With the boundary condition I (T ) = 0. Solving the differential equation in (1.1),
we express the inventory level as follows

I (t) = −α

β
+ αe

−1
2

βp−η t(2m−t)
m

βe
−1
2

βp−ηT (2m−T )

m

, 0 ≤ t ≤ T (1.2)

Thus the order quantity could be expressed as follows:

Q = 1

2

Tα
(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηmT − 4p−ηm2

)
m2

(1.3)

Based on the above, the profit function through the cycle consists of the following
terms:
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Ordering cost per cycle

OC = A (1.4)

Purchase cost is given by

PC = cQ

= 1

2

cTα
(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηmT − 4p−ηm2

)
m2

(1.5)

Holding cost during the time interval [0, T ] is given by

HC = h

T∫
0

I (T )dt

= h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

40

αβ
(
p−η

)2
T 5

m2
− 1

8

αβ
(
p−η

)2
T 4

m

+1

3

1

β

(
α

(
1

2

βp−η

m
+ 1

2

β2
(
p−η

)2(−(2m − T )T + m2
)

m2

)
T 3

)

+1

2
α

(
−βp−η + β2(p−η)

2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2
(
p−η

)2
(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.6)

Sales Revenue

SR = pQ =
pTα

(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηmT − 4p−ηm2

)
2m2

(1.7)

So, from Eqs. (1.4)–(1.7) the total profit can be calculated by following equation

TP = 1

T
(SR − PC − HC − OA)
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TP = 1

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

1

m2

(
pTα

(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηTm − 4p−ηm2

))

− 1

2

1

m2

(
cTα

(
p−2ηT 3β − 4p−2ηT 2βm + 2p−ηTm − 4p−ηm2

))
− A

−h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

40

αβ
(
p−η

)2T 5

m2 − 1

8

αβ
(
p−η

)2T 4

m

+ 1

3

1

β

⎛
⎝α

⎛
⎝ 1

2

βp−η

m
+ 1

2

β2(p−η
)2(−(2m − T )T + m2

)
m2

⎞
⎠T 3

⎞
⎠

+ 1

2
α

(
−βp−η + β2(p−η

)2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2(p−η
)2

(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.8)

Instead of dealing with constant holding cost, the model defines the holding
in terms of expiration date and selling price, based on the holding cost, proposed
inventory system can be classified into the following two categories:

• Lower bound

Holding cost for lower bound during the interval [0, T ] is given by Chen et al. (2016)

HCl =
(
p

m
+ h

4

) T∫
0

I (t)dt

HCl =
(
p

m
+ h

4

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

40

αβ
(
p−η

)2T 5

m2 − 1

8

αβ
(
p−η

)2T 4

m

+1

3

1

β

⎛
⎝α

⎛
⎝1

2

βp−η

m
+ 1

2

β2(p−η
)2(−(2m − T )T + m2

)
m2

⎞
⎠T 3

⎞
⎠

+1

2
α

(
−βp−η + β2

(
p−η

)2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2(p−η
)2

(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.9)

The model is analyzed the lower bound for holding cost that defines the lower
range of profit function which can be calculated from Eqs. (1.4), (1.5), (1.7) and
(1.9), is given by the following equation

TPl = 1

T
(SR − PC − HCl − OA)
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TPl = 1

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

1

m2

(
pTα

(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηTm − 4p−ηm2

))

− 1

2

1

m2

(
cTα

(
p−2ηT 3β − 4p−2ηT 2βm + 2p−ηTm − 4p−ηm2

))
− A

−
(

p

m
+ h

4

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

40

αβ
(
p−η

)2T 5

m2 − 1

8

αβ
(
p−η

)2T 4

m

+ 1

3

1

β

⎛
⎝α

⎛
⎝ 1

2

βp−η

m
+ 1

2

β2(p−η
)2(−(2m − T )T + m2

)
m2

⎞
⎠T 3

⎞
⎠

+ 1

2
α

(
−βp−η + β2(p−η

)2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2(p−η
)2

(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.10)

• Upper bound

Holding cost for upper bound during the interval [0, T ] is given by is Chen et al.
(2016)

HCu =
(
p

m
+ h

2

) T∫
0

I (t)dt

HCu =
(
p

m
+ h

2

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

40

αβ
(
p−η

)2T 5

m2 − 1

8

αβ
(
p−η

)2T 4

m

+1

3

1

β

⎛
⎝α

⎛
⎝1

2

βp−η

m
+ 1

2

β2(p−η
)2(−(2m − T )T + m2

)
m2

⎞
⎠T 3

⎞
⎠

+1

2
α

(
−βp−η + β2

(
p−η

)2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2(p−η
)2

(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.11)

One can replace the holding cost taken in traditional model by the holding cost
given in Eq. (1.11). To achieve upper bound of the total profit which is calculated
from Eqs. (1.4), (1.5), (1.7) and (1.11):



10 N. H. Shah et al.

TPu = 1

T
(SR − PC − HCu − OA)

TPu = 1

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

1

m2

(
pTα

(
p−2ηT 3β − 4p−2ηT 2βm + 4p−2ηTβm2 + 2p−ηTm − 4p−ηm2

))

− 1

2

1

m2

(
cTα

(
p−2ηT 3β − 4p−2ηT 2βm + 2p−ηTm − 4p−ηm2

))
− A

−
(

p

m
+ h

2

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
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αβ
(
p−η
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m2 − 1

8

αβ
(
p−η

)2T 4

m

+ 1

3

1

β

⎛
⎝α

⎛
⎝ 1

2

βp−η

m
+ 1

2

β2(p−η
)2(−(2m − T )T + m2

)
m2

⎞
⎠T 3

⎞
⎠

+ 1

2
α

(
−βp−η + β2(p−η

)2
(2m−T )T

m2

)
T 2

β
− αT

β

+ 1

β

(
α

(
1 − βp−η(2m − T )T

m
+ 1

2

β2(p−η
)2

(2m − T )2T 2

m2

)
T

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.12)

1.3.1 Optimal Solution

The model uses classical optimization method to maximize the total profit

Step 1: Differentiate all the three profit functions derived in Eqs. (1.8), (1.10) and
(1.12) with respect to inventory parameters T and p partially.

Step 2: Solve the equations for T and p.

Step 3: Allocate the values to all the inventory parameters except decision variables.

Step 4: Substitute in all the profit functions.

1.4 Numerical Validation

This section validates the proposed model with a numerical example and managerial
insights are also given.

A = $140, α = 650, β = 3.5, η = 1.002,

m = 8months, h = $5/unit, c = $20/unit

In such condition the solution: cycle time T = 6.85months, selling price p =
$27.65 / unit and total profit is T P = $290.59.

Graphical representation in all the three cases: lower bound of total profit, total
profit, and upper bound of total profit are validated in maple 18 as shown below:
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(a) Concavity of total profit w.r.to cycle time and selling price

(b) Concavity of lower bound of total profit 

w.r.to cycle time and selling price

(c) Concavity of upper bound of total profit 

w.r.to cycle time and selling price

Fig. 1.1 Concavity of total profit

Figure 1.1 show the concavity of total profit with respect to cycle time and selling
price. Figure 1.1a is of total profit with constant holding cost. Lower bound of total
profit is presented in Fig. 1.1b. Upper bound of profit is displayed in Fig. 1.1c.

1.5 Sensitivity Analysis

Based on the result, we performed the sensitivity analysis by changing the value of
one parameter at a time by a factor of negative and positive of 10 and 20%. Effects
of such changes in each parameter on the optimal solutions are studied. Based on the
holding cost this analysis is categorized into two different cases:
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Case: 1 Lower bound

The variation in cycle time, selling price, and total profit are presented in Fig. 1.2a–
c respectively. It is observed from Fig. 1.2a that cycle time is more sensitive to
purchase cost c, expiration date m, price elasticity η and mark-up β. As purchase
cost c, expiration date m and price elasticity η increases, cycle time will increase.
Inventory parameters scale demand α, ordering cost A and holding cost h have
reasonable effects on cycle time.

Figure 1.2b, c show that with a rise in scale demand, mark-up and purchase cost,
selling price as well as total profit will increase. So it is advisable for a profitable
business. Expiration dates have a huge impact on the model. If the duration of the
expiration date is short, a business faces financial loss in terms of the reduced profit
function. Inventory parameters ordering cost A and price elasticity η plays a negative
impact on profitability. An increase in ordering cost and price elasticity reduces the
total profit. Hence, an increase is not preferable.

Case: 2 Upper bound

Figure 1.3a–c shows the change in cycle time, selling price, and total profit with
respect to other inventory parameters. Figure 1.3a shows inventory parameters scale
demand α, ordering cost A, and holding cost h have a significant effect on cycle time.
An increase in purchase cost c, price elasticity η and expiration datem increases cycle

(a) Cycle time T (b) Selling price p

(c) Total profit

Fig. 1.2 Sensitivity analysis of lower bound



1 Upper-Lower Bounds for the Profit of an Inventory System … 13

(a) Cycle time T (b) Selling price p

(c) Total profit

Fig. 1.3 Sensitivity analysis of upper bound

time. On the other hand, cycle time decreases with an increase of mark up β. From
Fig. 1.3b, it can be shown that purchase cost c, expiration datem and mark-up β have
a positive impact on selling price whereas price elasticity η has a reversible effect on
selling price. The total profit gets increased with the rise of scale demand α, ordering
cost A, holding cost h, purchase cost c and price elasticity η. Profit will decrease for
expiration datem and mark up β. The rest of the parameters have a reasonable effect
on total profit depicted in Fig. 1.3c.

Sensitivity analysis of cycle time, selling price, and total profit with lower and
upper bound is exposed in the following figures.

From Fig. 1.4a, it is observed that total profit is not affected by increasing ordering
cost in both the cases: lower bound and upper bound. In Fig. 1.4b, there is no signif-
icant change in lower bound of profit due to a change in holding cost. Figure 1.4c, d
represent the effect of change in scale demand and mark-up on total profit. In both
scenarios, the total profit increase with an increase in scale demand while total profit
gets decreases with increases in inventory parameter mark-up.
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(a) Ordering cost (b) Holding cost

(c) Scale demand (d) Mark-up

Fig. 1.4 Lower and upper bound of inventory parameters

1.6 Conclusion

In the model proposed here, we have explicitly taken the demand for a perishable
product as a multivariate function of its selling price, stock level, and expiration
date by incorporating the following facts: selling price is an important strategy for
changing the customers purchasing decision, a large quantity of displayed stock
motivates more sales and perishable product have a short life and cannot be sold after
its expiration date. Hence, managing perishable products is a key success factor for
any business to be successful. The model is analyzed analytically and graphically by
maximizing the total profit. Additionally, we have represented the lower and upper
bound of total profit by defining the function form of holding cost. A numerical
example is given to demonstrate the applicability of the model. We have performed a
sensitivity analysis to examine how each inventory parameter affects the total profit,
selling price, and cycle time. From this study, it can be observed that putting so
much stock on display has its own shortcoming such as loss due to holding cost
and expiration date. This model can further be extended by taking more realistic
assumptions like probabilistic demand rate and to strengthen the applicability of the
proposed model one can add advertising strategy and quantity discount or one can
expand this single-player local optimal solution to an integrated cooperative solution
for two players in the supply chain.
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Chapter 2
An Inventory Model for Stock
and Time-Dependent Demand with Cash
Discount Policy Under Learning Effect
and Partial Backlogging

Nidhi Handa, S. R. Singh, and Chandni Katariya

Abstract This study considers an inventory model with stock and time-dependent
demand. Stock level always plays a very vital role and affects the demand rate.
Vendors usually offer different schemes to attract more customers. In this paper, the
scheme of cash discount is working as promotional tool for increasing demand rate.
Shortages are allowed with partial backlogging and backlogging rate present in the
model is assumed as a waiting time-dependent function. To make the study more
realistic learning effect is applied on holding cost. Three cases for the allowed trade
credit period are described in the present paper. To illustrate the model numerical
example for different cases have been discussed by using Mathematica 11.3. sensi-
tivity analysis with respect to distinct parameters is carried out for the feasibility and
the applicability of the model.

Keywords Inventory model · Learning effect · Deterioration · Stock and
time-dependent demand · Cash discount · Trade credit · Partial backlogging ·
Shortages

2.1 Introduction

The role of demand is very vital while developing an inventory model, Available
stock and time are the factors that always influence the demand. Khurana and Chaud-
hary (2016) proposed an inventory model using stock and price-dependent demand
for deteriorating items under shortage backordering. Giri et al. (2017) introduced
a vendor–buyer supply chain inventory model using time-dependent demand under
preservation technology. Khurana and Chaudhary (2018) developed a deteriorating
inventory model for stock and time-dependent with partial backlogging. Bardhan
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et al. (2019) introduced a non-instantaneous deteriorating inventory model for stock-
dependent demand under preservation technology. Handa et al. (2020) worked on an
EOQ model with stock-dependent demand for trade credit policy under shortages.

Deterioration is another important factor whose part in the construction of an
inventory model is very useful. Deterioration can be defined as the reduction, or
spoilage in the original value of the product. Skouri et al. (2009) developed some
inventory policies under Weibull deterioration rate for ramp type demand. Chowd-
hury et al. (2014) formulated an inventory model for price and stock-dependent
demand. Mahapatra et al. (2017) introduced a model using deteriorating items
based on reliability-dependent demand under partial backlogging. Rastogi et al.
(2018) developed an inventory policy for non-instantaneous deteriorating items using
price-sensitive demand with partial backordering.

In the construction of an inventory model, the basic assumption is that when the
stock out situation occurs then the shortages that take place are either completely
lost or completely backlogged which is not realistic. At the arrival of the stock some
customers are interested to come back, which is known as partial backlogging. Roy
and Chaudhuri (2011) studied an inventory model using price-dependent demand,
Weibull deterioration, and partial backlogging. Kumar and Singh (2014) presented
a two-warehouse inventory model in which demand depends upon stock level under
partial backordering. Geetha and Udayakumar (2016) formulated inventory policies
for non-instantaneous deteriorating products under multivariate demand rate and
partial backorder. Khanna et al. (2017) proposed an inventory model using selling
price-dependent demand for imperfect items under shortage backordering and trade
credit. Kumar et al. (2020) studied the effect of preservation and learning on partial
backordering inventory model for deteriorating items with the environment of the
Covid-19 pandemic.

In today’s competitive market the trade credit period offered by the seller has
becomeaveryuseful incentive policy for attractingnewcustomers. Singh et al. (2016)
proposed an EOQmodel allowing stock-dependent demand under trade credit policy.
Shaikh (2017) introduced a deteriorating inventory model based on advertisement
and price-dependent demand using partial backlogging and mixed type of trade
credit. Tripathi et al. (2018) studied an inventory model for time-varying holding
cost with stock dependent demand having different. Shaikh et al. (2019) introduce a
Weibull distributed deteriorating inventory model allowing multivariate demand rate
and trade credit period.

Learning is a realistic phenomenon that occurs naturally. Generally, it is seen
that when workers accomplish the same procedure repeatedly then they learn how
to performs more efficiently such phenomenon is called learning effect. Singh et al.
(2013) presented an inventory model for imperfect products under the effect of infla-
tion and learning. Singh and Rathore (2016) formulated a reverse logistic inventory
model with preservation and inflation under learning effect. Goyal et al. (2017)
proposed an EOQ model using advertisement-based demand under learning effect
and partial backorder. Singh et al. (2020) introduced a reverse logistic inventory
model for variable production under learning effect.
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This paper represents an inventory model considering stock and time-dependent
demand, cash discount, and partial backlogging. To make the study more realistic
learning effect is applied on holding cost. Different cases for the allowed trade credit
period are also described in the model. To improve the efficiency of the model
numerical example for different cases and sensitivity analysis for distinct value of
parameters have been discussed.

2.2 Assumptions

1. Demand used in the model is a function of stock and time i.e. (δ+βt+γ E1(t)).
2. Items used in the model are of decaying nature.
3. No replacement policy is allowed for deteriorating products in whole cycle

period.
4. Shortages are considered with partial backlogging.
5. Deteriorating rate is constant.
6. Backlogging rate present in the model is assumed as a waiting time-dependent

function.
7. This model incorporates the effect of learning on holding cost.
8. Trade credit period is allowed in the model.

2.3 Notations

Notations used in the model.

E(t) level of inventory at any time t
δ, β, γ coefficients of demand
Q1 initial stock level
Q2 backorder quantity during stock out
k rate of deterioration
φ(η) rate of backlogging
η waiting time up to next arrival lot
T cycle time
u1 time at which level of inventory becomes zero
h f + hg

nλ per unit holding cost under learning effect where λ > 0
sr shortage cost per unit
d per unit deterioration cost
lr per unit lost sale cost
c purchasing cost per unit
A per order ordering cost
p selling price per unit
U.T .Px . unit time profit
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M allowed trade credit period
Ic rate of interest charged
Ie rate of interest earned
y rate of cash discount.

2.4 Mathematical Modelling

Figure 2.1 represents the behavior of inventory system with respect to time. Q1

denotes the initial inventory level at t = 0. Level of inventory depletes in the interval
[0, u1] for the reason of deterioration and demand. At t = u1, inventory level turns
into zero, and after that shortages occur with partial backlogging. The depletion of
the inventory is shown in Fig. 2.1

Differential equations of the inventory system can be represented as follows

dE1

dt
+ kE1 = −(δ + βt + γ E1(t)) 0 ≤ t ≤ u1 (2.1)

dE2

dt
= −(δ + βt) u1 ≤ t ≤ T (2.2)

Boundary equations are given as follows:

E1(u1) = E2(u1) = 0

Solution of Eqs. (2.1) and (2.2) are given by

E1(t) =
[
δ(u1 − t) + β

2

(
u21 − t2

) + (k + γ )

{
δ

2

(
u21 − t2

)

+β

2

(
u31 − t3

)}]
e−(k+γ )t 0 ≤ t ≤ u1 (2.3)

Inventory

Time

1Q

0
T

Fig. 2.1 Inventory time graph of system
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E2(t) =
[
δ(u1 − t) + β

2

(
u21 − t2

)]
u1 ≤ t ≤ T (2.4)

2.5 Associated Costs

Ordering Cost:

Ordering cost per order for the system is taken as follows:

O.Cx . = A (2.5)

Purchasing Cost:

Q1 denotes the initial inventory level at t = 0 and Q2 for the duration [u1, T ].

E1(0) = Q1 =
{
δu1 + β

u21
2

+ (k + γ )

(
δ
u21
2

+ β
u21
3

)}
(2.6)

Q2 =
T∫

u1

(δ + βt)φ(η)dt (2.7)

=
{

δ

2

(
T 2 − u21

) + β

3

(
T 3 − u31

)}
(2.8)

P.Cx . = {Q1 + Q2}c (2.9)

Hence, the purchasing cost of the system is given by

P.Cx =
{
δu1 + β

u21
2

+ (k + γ )

(
δ
u21
2

+ β
u21
3

)
+ δ

2

(
T 2 − u21

) + β

3

(
T 3 − u31

)}
c

(2.10)

Sales Revenue:

Sales revenue can be taken as follows:

S.Rx . = (Q1 + Q2)p (2.11)

S.Rx . =
{
δu1 + β

u21
2

+ (k + γ )

(
δ
u21
2

+ β
u21
3

)
+ δ

2

(
T 2 − u21

) + β

3

(
T 3 − u31

)}
p

(2.12)
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Holding Cost:

Holding cost is considered in the duration when the system holds the inventory.
Holding cost is taken as follows:

H.Cx . =
(
h f + hg

nλ

) u1∫
0

E1(t)dt (2.13)

H.Cx . =
(
h f + hg

nλ

){
δ
u21
2

+ β
u31
3

+ (k + γ )

(
δ
u31
6

+ β
u41
8

)}
(2.14)

Shortage Cost:

In the inventory system shortages occur during the stock out condition when goods
are not available to fulfil the customers demand. Shortage cost of the system is taken
as follows:

S.Cx . = sr

T∫
u1

(δ + βt)dt (2.15)

S.Cx . =
{
δ(T − u1) + β

2

(
T 2 − u21

)}
sr (2.16)

Lost Sale Cost:

In the inventory system lost sale cost is considered during the stock out condition
when some customers fulfil their demand from other places. Lost sale cost is taken
as follows:

L .S.Cx . = lr

T∫
u1

(δ + βt)(1 − φ(η))dt (2.17)

L .S.Cx . = lr

{
δ
T 2

2
+ β

T 3

6
− δu1T − βT

u21
2

+ δ
u21
2

+ β
u31
3

}
(2.18)

Deterioration Cost:

Deterioration cost is considered for those products that are deteriorated or decayed
in the system. The deterioration cost is taken as follows:

D.Cx . = d

⎧⎨
⎩E1(0) −

u1∫
0

(δ + βt)dt

⎫⎬
⎭ (2.19)
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D.Cx . = d(k + γ )

(
δ
u21
2

+ β
u31
3

)
(2.20)

2.6 Permissible Delay

Trade credit period is the useful incentive policy for attracting more customers. In
this time period vendor allows a certain time limit to retailer to pay all his dues. If the
retailer pays all his dues before the credit limit then there will be no interest charged
otherwise interest will be charged on unpaid amount. Retailer can also earn interest
on sales revenue.

Two cases for allowed trade credit period are given as follows:

Case 1: When M ≥ u1 (Fig. 2.2).

For this case vendor has enough amount to settle all his payments since the credit
limit period is more than the period of sold out all the stock. In this case, interest
charged would be zero and interest earned in the duration [0, M] is given as follows.

I.V1. = pIe

u1∫
0

(δ + βt + γ E(t))dt + (M − u1)

u1∫
0

(δ + βt + γ E(t))dt (2.21)

pIe

{
δu21
2

+ βu31
3

− γ

(
δ(k + γ ) + β

8
u41 + δu31

6
+ β(k + γ )

10
u51

− δ(k + γ )

12
u41 − (δ(k + γ )2 + β(k + γ ))

15
u51

−β(k + γ )2

9
u61

)}
+ {(M − u1)

(
δu1 + βu21

2
− γ

(
δu21
2

+ δ(k + γ ) + β

3
u31 − δ(k + γ )

u31
6

− (δ(k + γ )2 + β(k + γ ))

8
u41 − β(k + γ )2

10
u51

)}
(2.22)

Fig. 2.2 Inventory time
graph when (M ≥ u1)

M

Inventory

0
          

Time
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Fig. 2.3 Inventory time
graph when M < u1

M
0

Time

Inventory

And interest charged is given as follows:

I.C1 = 0

Case 2: When M < u1 (Fig. 2.3)

For this case, vendor has to settle all his payments before to sold out all the stock.
For interest earned and interest charged two following cases take the place:

Case 2.1: When M < u1 and

pD [0, M] + I.V2.1 [0, M] ≥ cE (0): (2.23)

For this case, vendor has enough amount to settle all his payments. Interest charged
would be zero for this case, but interest would be earned in the duration [0, M].

I.C2.1 = 0 (2.24)

I.V2.1 = pIe

M∫
0

(δ + βt + γ E(t))tdt (2.25)

= pIe

{
δM2

2
+ βM3

3
− γ

(
δ(k + γ ) + β

8
M4

+ δM3

6
+ β(k + γ )

10
M5 − δ(k + γ )

12
M4

− (δ(k + γ )2 + β(k + γ ))

15
M5 − β(k + γ )2

9
M6

)}
(2.26)

Case 2.2: When M < u1 and

pD [0, M] + I.V2.2 [0, M] < cE (0): (2.27)
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For this case, vendor has not enough amount to settle all his payments so interest
would be charged on unpaid amount. In the duration [0, M] earned interest is given
by as follows:

I.V2.2 = pIe

M∫
0

(δ + βt + γ E(t))tdt

= pIe

{
δM2

2
+ βM3

3
− γ

(
δ(k + γ ) + β

8
M4

+ δM3

6
+ β(k + γ )

10
M5 − δ(k + γ )

12
M4

− (δ(k + γ )2 + β(k + γ ))

15
M5 − β(k + γ )2

9
M6

)}
(2.28)

Interest charged on unpaid amount is given by as follows:

I.C2.2 = B.Ic (2.29)

B = cE1(0) − {pD [0, M] + I.V2.2 [0, M]} (2.30)

=
{[

c

(
δu1 + βu21

2
+ (k + γ )

(
δu21
2

+ βu31
3

)]
− p

[
δM + βM2

2

− γ

(
δM2

2
+ δ(k + γ ) + β

3
M3 + β(k + c)

4
M4 − δ(k + γ )

M3

6

− (δ(k + γ )2 + β(k + γ ))

8
M4

)
− β(k + γ )2

10
M5

)]

− pIe

[
δM2

2
+ βM3

3
− γ

(
δ(k + γ ) + β

8
M4

+ δM3

6
+ β(k + γ )

10
M5 − δ(k + γ )

12
M4

− (δ(k + γ )2 + β(k + γ ))

15
M5 − β(k + γ )2

9
M6

)]}

Case 3: When cash discount facility is given:

For this case, retailer provides cash discount at a rate of y% to settle all his dues at
the arrival of the stock. Interest earn would be

I.V3 = pIe

T∫
0

(δ + βt + γ E(t))dt (2.31)
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pIe

{
δT + βT 2

2
− c

(
δu21
2

+ δ(k + γ ) + β

3
u31 + β(k + γ )

4
u41

−δ(k + γ )
u31
6

− (δ(k + γ )2 + β(k + γ ))

8
u41

)}

Purchasing cost for this case would be

P.Cx =
{
δu1 + β

u21
2

+ (k + γ )

(
δ
u21
2

+ β
u21
3

)

+ δ

2

(
T 2 − u21

) + β

3

(
T 3 − u31

)}
c
(
1 − y

100

)
(2.32)

2.7 Unit Time Profit

Unit time profit for the system is given by as follows:

U.T .Px = 1

T
{S.Rx . − P.Cx . − H.Cx . − D.Cx .

−L .S.Cx . − S.Cx . − O.Cx . − I.C. + I.V } (2.33)

2.8 Numerical Example

Case 1: When M ≥ u1

A = 300 per/order, c = 22 Rs/unit, d = 21, k = 0.001, T = 28 days, M = 22 days,
δ = 300 units, β = 0.1, γ = 0.01, lr = 7 Rs/unit, sr = 5 Rs/unit, h f = 0.22 Rs/unit,
hg = 0.15 Rs/unit, p = 30 Rs/unit, Ie = 0.02, n = 2, λ = 0.1.

After solving Eq. (2.33) with the help of corresponding parameters optimal value
of u1 = 19.6461 days andU.T .Px = 2077.92 Rs. and optimal ordered quantity Q =
8702.17 units.

The behavior of the system forU.T .Px . is given by Figs. 2.4 and 2.5 with the help
of Mathematica 11.3.
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Fig. 2.4 Behavior of U.T .Px . with respect to u1 and Q

Fig. 2.5 Behavior of
U.T .Px . with rest to u1
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Case 2.1: When M < u1 and

pD [0, M] + I V2.1 [0, M] ≥ cE (0):

A = 300 per/order, c = 22 Rs/unit, d = 21, k = 0.001, T = 28 days, M = 17 days,
δ = 300 units, β = 0.1, γ = 0.01, lr = 7 Rs/unit, sr = 5 Rs/unit, h f = 0.22 Rs/unit,
hg = 0.15 Rs/unit, p = 30 Rs/unit, Ie = 0.02, n = 2, λ = 0.1.

After solving Eq. (2.33) with the help of corresponding parameters optimal value
of u1 = 18.5963 days andU.T .Px = 1533.71 Rs. and optimal ordered quantity Q =
8535.0 units.

The behavior of the system forU.T .Px . is given by Figs. 2.6 and 2.7 with the help
of Mathematica 11.3.
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Fig. 2.6 Behavior of U.T .Px . with respect to u1 and Q

Fig. 2.7 Behavior of
U.T .Px . with respect to u1
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Case 2.2: When M < u1 and

pD [0, M] + I V2.2 [0, M] < cE (0):

A = 300 per/order, c = 22 Rs/unit, d = 21, k = 0.001, T = 28 days, M = 17 days,
δ = 300 units, β = 0.1, γ = 0.01, lr = 7 Rs/unit, sr = 5 Rs/unit, h f = 0.22 Rs/unit,
hg = 0.15 Rs/unit, p = 30 Rs/unit, Ie = 0.02, n = 2, λ = 0.1, Ic = 0.016.

After solving Eq. (2.33) with the help of corresponding parameters optimal value
of u1 = 18.5961 days andU.T .Px = 1627.54 Rs. and optimal ordered quantity Q =
8534.97 units.

The behavior of the system forU.T .Px . is given by Figs. 2.8 and 2.9 with the help
of Mathematica 11.3.
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Fig. 2.8 Behavior of U.T .Px . with respect to u1 and Q
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Fig. 2.9 Behavior of U.T .Px . with respect to u1

Case 3: When cash discount facility is given:

A = 300 per/order, c = 22 Rs/unit, d = 21, k = 0.001, T = 28 days, δ = 300 units,
β = 0.1, γ = 0.01, lr = 7 Rs/unit, sr = 5 Rs/unit, h f = 0.22 Rs/unit, hg = 0.15
Rs/unit, p = 30 Rs/unit, Ie = 0.02, n = 2, λ = 0.1, y = 0.02.

After solving this model with the help of corresponding parameters optimal value
of u1 = 18.4906 days andU.T .Px = 826.307 Rs. and optimal ordered quantity Q =
8517.72 units.

The behavior of the system for U.T .Px . is given by Figs. 2.10 and 2.11 with the
help of Mathematica 11.3.
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Fig. 2.10 Behavior of U.T .Px . with respect to u1 and Q

Fig. 2.11 Behavior of
U.T .Px . with respect to u1
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2.9 Sensitivity Analysis

Sensitivity analysis for distinct parameters are specified as follows:

Case 1: When M ≥ u1 (Tables 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6).

Case 2: When M < u1 (Tables 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12).

2.10 Observations

• Tables 2.1 and 2.7 represent the effect of a on u1 and on U.T .Pr , it is observed
that after an increment in a, value of u1 in both the tables remain unaffected while
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Table 2.1 Variation in
optimal solution for demand
parameter (δ)

% change in (δ) (%) (δ) u1 U.T .Pr .

−20 240 19.6461 2080.06

−15 255 19.6461 2079.52

−10 270 19.6461 2078.99

−5 285 19.6461 2078.45

0 300 19.6461 2077.92

5 315 19.6461 2077.38

10 330 19.6461 2076.85

15 345 19.6461 2076.31

20 360 19.6461 2075.77

Table 2.2 Variation in
optimal solution for shortage
parameter (sr )

% change in (sr ) (%) (sr ) u1 U.T .Pr .

−20 4 19.021 2171.51

−15 4.25 19.1771 2147.48

−10 4.5 19.3332 2123.87

−5 4.75 19.4896 2100.68

0 5 19.6461 2077.92

5 5.25 19.8027 2055.57

10 5.5 19.9595 2033.65

15 5.75 20.1165 2012.16

20 6 20.2737 1991.08

Table 2.3 Variation in
optimal solution for lost sale
cost parameter (lr )

% change in (lr ) (%) (lr ) u1 U.T .Pr .

−20 5.6 19.3762 2097.36

−15 5.95 19.4453 2092.38

−10 6.3 19.5132 2087.48

−5 6.65 19.5802 2082.66

0 7 19.6461 2077.92

5 7.35 19.711 2073.25

10 7.7 19.7749 2068.65

15 8.05 19.8379 2064.12

20 8.4 19.8999 2059.66

some decrement in U.T .Pr in Table 2.1 and some increment in U.T .Pr in Table
2.7 are detected.
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Table 2.4 Variation in
optimal solution for
deterioration cost parameter
(d)

% change in (d) (%) (d) u1 U.T .Pr .

−20 16.8 20.2326 2176.73

−15 17.85 20.0825 2151.48

−10 18.9 19.9347 2126.6

−5 19.95 19.7893 2102.08

0 21 19.6461 2077.92

5 22.05 19.505 2054.1

10 23.1 19.378 2032.63

15 24.15 19.2293 2007.49

20 25.2 19.0946 1984.67

Table 2.5 Variation in
optimal solution for
deterioration parameter (k)

% change in (k) (%) (k) u1 U.T .Pr .

−20 0.00096 18.3506 1869.34

−15 0.00102 18.2662 1855.59

−10 0.00108 18.1827 1841.98

−5 0.00114 18.1002 1828.50

0 0.0012 19.6461 2077.92

5 0.00126 19.636 2076.31

10 0.00132 19.6259 2074.71

15 0.00138 19.6158 2073.1

20 0.00144 19.6058 2071.5

Table 2.6 Variation in
optimal solution for interest
earned parameter (Ie)

% change in (Ie) (%) (Ie) u1 U.T .Pr .

−20 0.016 19.4902 1729.38

−15 0.017 19.531 1863.73

−10 0.018 19.5705 1935.1

−5 0.019 19.6089 2006.5

0 0.02 19.6461 2077.92

5 0.021 19.6822 2149.36

10 0.022 19.7172 2220.83

15 0.023 19.7513 2292.32

20 0.024 19.7844 2363.83
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Table 2.7 Variation in
optimal solution for demand
parameter (δ)

% change in (δ) (%) (δ) u1 U.T .Pr .

−20 240 18.5961 1300.82

−15 255 18.5961 1382.54

−10 270 18.5961 1464.21

−5 285 18.5961 1545.87

0 300 18.5961 1627.54

5 315 18.5961 1709.2

10 330 18.5961 1790.87

15 345 18.5961 1872.53

20 360 18.5961 1954.2

Table 2.8 Variation in
optimal solution for lost sale
cost parameter (lr )

% change in (lr ) (%) (lr ) u1 U.T .Pr .

−20 5.6 18.1531 1652.52

−15 5.95 18.2678 1646.06

−10 6.3 18.3798 1639.74

−5 6.65 18.4892 1633.57

0 7 18.5961 1627.54

5 7.35 18.7006 1621.64

10 7.7 18.8027 1615.87

15 8.05 18.9111 1609.75

20 8.4 19.0003 1604.7

Table 2.9 Variation in
optimal solution for
deterioration cost parameter
(d)

% change in (d) (%) (d) u1 U.T .Pr .

−20 16.8 19.4008 1717.21

−15 17.85 19.1934 1694.07

−10 18.9 18.9902 1671.42

−5 19.95 18.7911 1649.25

0 21 18.5961 1627.54

5 22.05 18.4049 1606.27

10 23.1 18.2175 1585.44

15 24.15 18.0337 1565.03

20 25.2 17.8535 1545.03
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Table 2.10 Variation in
optimal solution for shortage
cost parameter (sr )

% change in (sr ) (%) (sr ) u1 U.T .Pr .

−20 4 17.6956 1733.93

−15 4.25 17.921 1706.42

−10 4.5 18.1462 1679.52

−5 4.75 18.3712 1653.23

0 5 18.5961 1627.54

5 5.25 18.8208 1602.46

10 5.5 19.0452 1577.11

15 5.75 19.2696 1554.11

20 6 19.4937 1530.84

Table 2.11 Variation in
optimal solution for
deterioration parameter (k)

% change in (k) (%) (k) u1 U.T .Pr .

−20 0.00096 19.1732 1692.05

−15 0.00102 18.9201 1675.32

−10 0.00108 18.5521 1674.23

−5 0.00114 18.4421 1652.25

0 0.0012 18.5961 1627.54

5 0.00126 18.4121 1620.02

10 0.00132 18.2121 1518.20

15 0.00138 18.0121 1515.12

20 0.00144 17.4224 1512.12

Table 2.12 Variation in
optimal solution for interest
earned parameter (Ie)

% change in (Ie) (%) (Ie) u1 U.T .Pr

−20 0.016 18.5961 1449.16

−15 0.017 18.5961 1493.75

−10 0.018 18.5961 1538.35

−5 0.019 18.5961 1582.94

0 0.02 18.5961 1627.54

5 0.021 18.5961 1672.13

10 0.022 18.5961 1716.73

15 0.023 18.5961 1761.32

20 0.024 18.5961 1805.92



2 An Inventory Model for Stock and Time-Dependent Demand … 35

• Tables 2.2 and 2.10 represent the effect of sr on u1 and on U.T .Pr , it is observed
that after an increment in sr , some increment in u1 and some decrement inU.T .Pr
in both the tables are detected.

• Tables 2.3 and 2.8 represent the effect of lr on u1 and on U.T .Pr , it is observed
that after an increment in lr , some increment in u1 and some decrement inU.T .Pr
in both the tables are detected.

• Tables 2.4 and 2.9 represent the effect of d on u1 and on U.T .Pr , it is observed
that after an increment in d, some decrement in u1 and U.T .Pr in both the tables
are detected.

• Tables 2.5 and 2.11 represent the effect of k on u1 and on U.T .Pr , it is observed
that after an increment in k, some increment in u1 and U.T .Pr in Table 2.5 while
some decrement in u1 and U.T .Pr in Table 2.11 are detected.

• Tables 2.6 and 2.12 represent the effect of Ie on u1 and on U.T .Pr , it is observed
that after an increment in Ie, value of u1 remains unaffected in Table 2.12 while
some increment in u1 in Table 2.6 and U.T .Pr in both the tables are detected.

2.11 Conclusions

Present paper is concerned with inventory policies for variable demand under some
real-life situations like cash discount and learning effect. Shortages are also allowed
with partial backlogging and backlogging rate present in the model is assumed as a
waiting time-dependent function.All these facts togethermake this study very unique
and straight forward. To improve the efficiency of the model numerical examples for
different cases and sensitivity analysis for distinct value of parameters have been
discussed with the help of Mathematica 11.3. This Model further can be modified
for different demands, deterioration, and more cases of backlogging rate. Also, can
be extended for different realistic approaches such as inflationary environment and
preservation technology.
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Chapter 3
Impact of Inflation on Production
Inventory Model with Variable Demand
and Shortages

Nidhi Handa, S. R. Singh, and Neha Punetha

Abstract The collaboration of inflation or reverse money on the production inven-
tory system is one of the major key factors for successful supply chain management.
Here, demand rate of items is increasing with time and decreasing with proportion of
selling price which is effective strategy for the market change. The developed model
designed for shortages is considered partially backlogged where backlogging rate
is decreasing with waiting time. Considering inflation on various costs is providing
more reliable result due to real-life problem. This study presents the impact of infla-
tion on production inventory model for deteriorating items with time and selling
price-dependent demand under shortages. After that, to illustrate the model, numer-
ical example is provided and solved. At the end, sensitivity analysis is introduced to
show the validity and optimality of proposed study in order to analyse the effect of
changes of different key parameters.

Keywords Production · Deterioration · Variable demand · Shortage · Partial
backlogging · Inflation

3.1 Introduction

In production inventory system, the aim of manufacturer is to calculate the optimal
production cost with lowest price of goods. There are many factors such as demand,
production, deterioration and backlogging included in the development of inventory
models. Hsieh and Dye (2013) addressed the impact of preservation technology
on production model having fluctuating demand with time. Majumder et al. (2015)
presented a partial delay payment policy onEPQmodel under crisp and fuzzy domain
with declining market demand. A manufacturing supply chain model with two-level
trade credit policies was proposed by Kumar et al. (2015) under the effect of learning
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and preservation technology.Mishra (2016) investigated order-level inventorymodel
with quadratic demand rate andWeibull deterioration rate under partial backlogging.
Panda et al. (2018) studied two-warehouse optimal model of decaying products
having variable demand and shortages with permissible delay approach.

In past study, researcher assumed that the demand to be constant or fixed may
mislead the result. Now researcher is focusing on variable demand as like stock
dependent, price dependent, time dependent, etc. which provides accurate optimum
solution. Sometimes, costumer compromises with the quality of items they purchase
because of high price. Thus, it is very challenging task for production manufacturer
to provide good-quality products in a suitable selling price. Generally, high selling
price decreases customer’s demand.Aproductionmodel for infinite timehorizonwith
time-dependent deterioration and price-sensitive demand has been investigated by
Sharma et al. (2015). An inventory model including non-instantaneous deterioration
with learning effect was studied by Shah and Naik (2018) in which assumed demand
is price dependent. Also, Singh (2019) developed EPQ model with variable demand
and backlogging where backlogging rate depends on waiting time.

For researcher, it is significant to include deterioration into account. In inven-
tory models, deteriorating products are those items which we cannot use for future
purpose due to decay, damage or spoilage of items. Wee and Wang (1999) intro-
duced production policy with time-dependent demand for decaying goods. Molam-
ohamandi et al. (2014) investigated optimal replenishment policy of EPQ model
with shortages under permissible delay on payment for decaying items. Priyan and
Uthayakumar (2015) studied economic manufacturing problem for defective items
under imperfect production processes and reworking system. Tiwari et al. (2018)
examined vendor and buyer inventory policy of imperfect products taking carbon
emission into account. A lifetime decreasing model was studied by Singh and Rana
(2020) with variable carrying cost and lost sale.

In the development of production models, inflation plays very important role as
it affects the economy. Due to inflation, there is sustainable increase in general price
or continuous fall in time value of money. Business organization is affected due
to rapid inflation so it cannot be ignored. In production plants, inventories of raw
materials and goods are big outlay and should be completed financially. Sarkar and
Moon (2011) establishedmanufacturing productionmodel for imperfect items taking
inflation into account. Kumar et al. (2013) studied effect of inflation on order quantity
model for perishable products with lost sale. The effect of inflationary environment
on ordering model under trade credit policy for finite time horizon was examined
by Muniappan et al. (2015) in which deterioration is time dependent. Singh and
Sharma (2016) extended production quantity model for stochastic demand and over
finite time horizon. Pervin et al. (2020) developed EPQ model with collaboration of
preservation technology investment to reduce deterioration rate.

In traditional models, it is assumed that shortages are completely backlogged,
but it is not necessarily true in real-life scenario. Considering daily-life problems,
some costumers like to wait especially in shortage period until replenishment,
whereas some become restless and head elsewhere. Chang (2004) classified EPQ
model for shortages using variable lead time. He also used algebraic method to
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find the minimum total average cost. Jain et al. (2007) extended EPQ model of
decaying product for price- and stock-sensitive consumption under shortages. A
non-instantaneous inventory model was proposed by Sharma and Bansal (2017) with
learning effect and backlogging. An economic production quantity model for dete-
riorating items was studied by Khurana et al. (2018) with linear demand and partial
backlogging. Handa et al. (2020) derived EOQmodel under the effect of trade credit
policy.

3.1.1 Our Contribution

In the present study, a production inventory model for deteriorating goods with time
and price sensitive demand over a finite planning horizon under the effect of inflation
on costs has been established. Due to tough competition in the market, manufacturer
has to provide good-quality items to the customers at lowest reasonable rate. Short-
ages are permitted and partially backlogged with waiting time-dependent rate. To
minimize the optimal cost of the proposed model, it has been solved numerically.
Furthermore, to examine the stability of this problem, sensitivity analysis has been
done for different parameters. The findings suggested that the production model may
reduce the total average cost by taking inflation on account.

3.2 Assumptions

The model is supported by the following assumptions:

1. The production cycle is for finite planning horizon.
2. The demand of the items depends on time as well as on price such as

D(t, s1) = α + βt − γ s1 where α > β and γ � 1

3. The model has allowed constant rate of deterioration σ .
4. Deteriorating items are not repaired during whole cycle.
5. Inflation is allowed, and lead time is zero.
6. Shortages occur and not completely backlogged.
7. Backlogging rate is assumed to be decreasing with waiting time and given by

λ(δ) = 1 − δ

T

8. The production cycle is for finite planning horizon.
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3.3 Notations

Q1(t) Positive inventory level.
Q2(t) Maximum inventory level when shortage occurs.
K Production rate for manufacturing.
P1 Production cost per unit.
s1 Selling price.
A Acquisition cost per unit.
M Setup cost per production.
σ Rate of deterioration.
Cd Deterioration cost per unit.
C1 Inventory holding cost per unit.
S Inventory shortage cost per unit.
l Cost of lost sale per unit.
α, β Demand rate parameters where α > β.
γ Constant function of selling price.
δ Backlogging rate (constant).
r Constant rate of inflation.

3.4 Mathematical Modelling

In Fig. 3.1, production starts from t = 0. At t = 0, there is no production and demand.
Production and consumption jointly continued during [0, u1], production reaches its
maximum size at time t = u1, and it stops at this point. After that, due to combined
effect of consumption of inventory and deterioration of items, inventory depletes zero
during [u1, u2]. After that, shortages occur including partial backlogging between t
= u2 to t = T.

Time

u₁
u₂ T

Inventory level

Fig. 3.1 Inventory versus time graph
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The behaviour of inventory system with time has been specified by below-given
differential equations:

dQ1(t)

dt
= K − (α + βt − γ s1) − σQ1(t) 0 ≤ t ≤ u1 (3.1)

dQ2(t)

dt
= K − (α + βt − γ s1) − σQ2(t) u1 ≤ t ≤ u2 (3.2)

dQ3(t)

dt
= −(α + βt − γ s1) u2 ≤ t ≤ T (3.3)

Boundary conditions are as follows:

Q1(0) = 0, Q2(u1) = 0, Q3(T ) = 0

Solution of these equations with the help of boundary conditions:

Q1(t) =
[
(K − α + γ s1)

(
t + σ t2

2

)
− β

(
t2

2
+ σ t3

3

)
e−σ t

]
(3.4)

Q2(t) =
[
(α − γ s1){(u2 − t) + σ

2
(u22 + t2)}

+ β

{(
u22 − t2

2

)
+ σ

(
u32 − t3

3

)}]
e−σ t (3.5)

and Q3(t) =
[
(α − γ s1) (u2 − t) + β

2
(u22 − t2)

]
(3.6)

Maximum inventory in [0, u2]

Q1(u1) = Qm

Qm =
[
(K − α + γ s1)

(
u1 + σ

u21
2

)
− β

(
u21
2

+ σu31
2

)]
e−σu1 (3.7)

And maximum inventory in shortage period [u2, T ]

Q3(T ) = Qs

Qs =
[
(α − γ s1) (u2 − T ) + β

2
(u22 − T 2)

]
(3.8)

Total ordered quantity

Q = Qm + Qs (3.9)
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By using boundary condition

Q1(u1) = Q2(u2)

u1 = −1

σ
+

1

σ

[
1 + 2σ

K
(α − γ s1)

(
u2 + σu22

2

)]1/2

(3.10)

3.5 Cost analysis

Production cost

P.C. = P1

u1∫
0

Ke−r t dt

= P1K

(
u1 − ru21

2

)
(3.11)

Acquisition cost

A.C. = A (3.12)

Setup cost

S.C. = M (3.13)

Deterioration cost

D.C. = cd

⎡
⎣

u1∫
0

σQ1(t)e
−r tdt +

u2∫
u1

σQ2(t)e
−r tdt

⎤
⎦

= cdσ

[
(K − α + γ s1)

(
u21
2

+ σu31
6

)
− α (α − γ s1)

((
u22
2

+ σu32
3

)

−
(
u2u1 − u21

2

)
− σ

2

(
u22u1 − u31

3

))
+ β

((
u32
3

+ σu42
4

)

− 1

2

(
u22u1 − u31

3

)
+ σ

3

(
u32u1 − u41

4

)
−

(
u31
6

+ σu41
12

) )

− (r + σ)

(
(K − α + γ s1)

(
u31
3

+ σu41
8

)
− β

(
u41
8

+ σu51
5

)
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+ (α − γ s1)

((
u32
6

+ σu42
8

)
−

(
u2u

2
1

2
− u31

3

)
− σ

2

(
u22u

2
1

2
− u41

4

))

+ β

(
u42
8

+ u52
10

)
− 1

2

(
u22u

2
1

2
− u41

4

)
− σ

3

(
u32u

2
1

2
− u51

5

)))]
(3.14)

Holding Cost

H.C. = c1

⎡
⎣

u1∫
0

Q1(t) e
−r tdt +

u2∫
u1

Q2(t) e
−r tdt

⎤
⎦

= c1

[
(K − α + γ s1)

(
u21
2

+ σu31
6

)
− α(α − γ s1)

((
u22
2

+ σu32
3

)

−
(
u2u1 − u21

2

)
− σ

2

(
u22u1 − u31

3

))
+ β

((
u32
3

+ σu42
4

)
− 1

2

(
u22u1 − u31

3

)

+σ

3

(
u32u1 − u41

4

)
−

(
u31
6

+ σu41
12

))
− (r + σ)

(
(K − α + γ s1)

(
u31
3

+ σu41
8

)

− β

(
u41
8

+ σu51
5

)
+ (α − γ s1)

((
u32
6

+ σu42
8

)
−

(
u2u21
2

− u31
3

)
− σ

2

(
u22u

2
1

2
− u41

4

))

+ β

(
u42
8

+ u52
10

)
− 1

2

(
u22u

2
1

2
− u41

4

)
− σ

3

(
u32u

2
1

2
− u51

5

)))]
(3.15)

Shortage cost

S.C. = s

T∫
u2

(α + βt − γ s1)e
−r tdt

= s [ (α − γ s1)(T − u2) + β

2
(T 2 − u22)

− r { (α − γ s1)

2
( T 2 − u22) + β

3
( T 3 − u32)}] (3.16)

Lost sale cost

L .S.C . = l

T∫
u2

(1 − λ(δ)) (α + βt − γ s1) e
−r tdt

=
lδ

T
[ (α − γ s1)(T − u2) + β

2
(T 2 − u22)

− r {
(α − γ s1)

2
( T 2 − u22) + β

3
( T 3 − u32)}] (3.17)
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Now, by using Eqs. (3.11)–(3.17), the total average cost (TAC) of the proposed
model is

TAC (u2) = 1

T
[P.C. + O.C. + A.C. + D.C + H.C. + S.C. + L .S.C.]

(3.18)

3.5.1 Solution Procedure

The objective of the study is to obtain the optimal value of critical time (u2) that
minimizes the total average cost. Individual optimizationmethod is used to determine
the minimum cost per unit time of the proposed model. The value of optimal time
will be calculated by using

∂TAC

∂u2
= 0 provided

∂2TAC

∂u22
>0

3.6 Numerical Example

With the help of numerical aptitudes, the optimal value of time and optimal value
of total average cost are calculated. For the calculation, mathematical software
Mathematica 11.3 is used, and assigned values for parameters are as follows:

α = 1500 unit, β = 2.5 unit, γ = 0.02 unit, s1 = 28 rs/unit,

M = 1500 rs, P1 = 6 rs/unit, K = 1000 unit, r = 0.03, A = 10 rs,

cd = 12 rs/unit, σ = 0.06,C1 = 0.5 rs/unit, l = 7 rs/unit,

s = 5 rs/unit, δ = 0.8, T = 30 days
By considering these values, we obtained (Fig. 3.2).

Fig. 3.2 Convexity of total
average cost with respect to
u2 and T
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3.7 Sensitivity Analysis

Sensitive analysis is executed for the different parameters by assigning 15%, 10%
and 5% decrease or an increase in each of the parameters keeping all other param-
eters unchanged. The variation in total average cost and critical time with the
change in different parameters such as demand rate, deterioration rate, holding cost,
backlogging rate and inflation rate is shown in Table 3.1.

Table 3.1 Sensitive analysis with respect to different parameters

Parameter % variation Changes in parameter u2 TAC

β −15 2.125 15.5593 1497.9

−10 2.250 15.4758 1524.64

−5 2.375 15.3944 1550.76

0 2.500 15.3151 1576.28

5 2.625 15.2378 1601.23

10 2.750 15.1624 1625.64

15 2.875 15.0887 1649.53

−15 0.017 15.3159 1575.35

−10 0.018 15.3156 1575.66

−5 0.019 15.3154 1575.97

γ 0 0.020 15.3151 1576.28

5 0.021 15.3149 1576.59

10 0.022 15.3146 1576.90

15 0.023 15.3144 1577.21

−15 0.051 16.9367 1234.63

−10 0.054 16.3573 1357.96

−5 0.057 15.8182 1471.45

σ 0 0.060 15.3151 1576.28

5 0.063 14.8445 1673.43

10 0.066 14.4032 1763.76

15 0.069 13.9883 1847.99

−15 0.425 15.3477 1735.40

−10 0.450 15.3364 1682.37

−5 0.475 15.3256 1629.33

C1 0 0.500 15.3151 1576.28

5 0.525 15.3051 1523.22

10 0.550 15.2955 1470.15

15 0.575 15.2862 1417.07

(continued)
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Table 3.1 (continued)

Parameter % variation Changes in parameter u2 TAC

−15 0.680 15.3068 1569.46

−10 0.720 15.3096 1571.74

−5 0.760 15.3123 1574.01

δ 0 0.800 15.3151 1576.28

5 0.840 15.3179 1578.55

10 0.880 15.3207 1580.82

15 0.920 15.3235 1583.09

−15 0.0255 15.9151 1885.47

−10 0.0270 15.7089 1786.17

−5 0.0285 15.5090 1683.03

r 0 0.0300 15.3151 1576.28

5 0.0315 15.1270 1466.14

10 0.0330 14.9443 1352.82

15 0.0345 14.7670 1236.50

3.8 Observations

1. With the increase in the value of demand parameter beta, critical time and total
average cost are decreased.

2. As the coefficient of selling price gamma increases, critical time slightly
decreases and total average cost slightly increases.

3. With the increment in deterioration rate, the value of critical time decreases and
total average cost quickly increases.

4. On increasing the holding cost, critical time slightly decreases and total average
cost decreases.

5. When the value of backlogging rate is increasing, then critical time and total
average cost slightly increase.

6. When the value of inflation rate is increasing, then critical time and total average
cost decrease.

3.9 Conclusion

In this article, the impact of inflation on production inventory model for deteriorating
items has been introduced. This study contributes the idea of time- and price-sensitive
demandwhich is a good strategy in today’s competitive businesses. Due to fluctuating
demand, this demand policy is suitable to fulfil customer requirements. The model
follows constant deterioration which is appropriate for high deteriorating units. The
organization may only save inventory production cost by proper management of
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deteriorating items. In practical environment, considering inflation on cost is a good
policy specifically for long-term investment and forecasting. For profitable business,
including shortages and backlogging providesmore practical results.With the help of
numerical examples, total average cost of the system has been concluded. Convexity
and sensitivity have been done to check the availability and stability of the model.
This approach is appropriate to meet real-life problems. For future, researcher can
further extend this model for different rates of deterioration, trade credit policy,
two-warehouse and variable holding cost.
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Chapter 4
Effect of Credit Financing
on the Learning Model of Perishable
Items in the Preserving Environment

Mahesh Kumar Jayaswal, Mandeep Mittal, and Isha Sangal

Abstract In this article, an EOQmathematicalmodel has been developed for perish-
able items with two level trade-credit financing policy and preservation technology
under learning effect. Learning effect minimizes the holding cost and ordering cost
because the holding cost and ordering cost follow the effect of the learning. Trade
credit policy is very effective tool for seller to increase his sales. Furthers, seller gives
a fixed credit period the buyer to increase his profit and buyer gives same policy to his
customer. Some useful results determined when learning rate increases, cycle length
almost fixed and retailer’s total cost decreases and if trade-credit period increases
then cycle length and retailer’s total cost decreases due to the learning and credit
financing. Finally, the total inventory cost minimizes with respect to cycle length.
The numerical example describes the applicability of the present model.

Keywords Learning effects · EOQ · Two level trade-credit financing policy ·
Perishable items · Preservation · Deterioration

4.1 Introduction

In the field of industrial sector, there is a some problems between seller and buyer
regarding optimal profit as well as total cost from the both side and such type of
problems have been tried to short out by Adad and Jaggi (2003) with the help of
mathematical model in which has shown the effects of credit financing policy. Shinn
and Hwang (2003) calculated the maximum price for the seller as well as lot size
using the policy of credit financing. The total cost acts as major role in the inventory
system.
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An inventory model has been presented by Hung and Chung (2003) which is
the extended form of Goyal (1985) which explained how to minimize the total cost
under credit financing and payment rebate policy. A mathematical model has been
developed for best costing and batch sizing in which assuming that purchase quantity
and selling price both are different under credit financing policy when demand is a
function of selling price. The EOQ model has been developed to easy manner as
per suggested by Hung (2007) and given new idea how to find out the optimal lot
size for the seller. Luo (2007) has been proposed an inventory model for the good
coordination between seller and buyer under the credit financing policy. A stock
model has been formulated for the optimal economic order quantity as guided by
Sarmah et al. (2007) and in this model, a seller has connected to the many buyers
under the credit financing to got more profit through coordinated strategy. In recent
times, authors improved stock representation with the two-level credit policy. An
inventory mathematical representation has been improved by Hung (2003) using the
two-level credit policy and demand is stimulated as per consideration.

The research work of Huang (2003) has been investigated by Huang (2006) and
improved this model by using two-level credit financing and restricted storage space.
A stock model has been presented by Teng and Goyal (2007) for the customers
when customer used to credit policy provided by buyer during the business. The
construction of economic order quantity has been balanced by Huang (2007) which
is the extended form of Haung (2003) with the help of two-level credit financing
policy. An inventory model has improved for organization by Su et al. (2007) with
the help of credit financing policy.

A two-level credit financing model has developed by Huang and Hsu (2008) with
the help of partial credit policy. An economic order quantity formulation has been
presented by Jaggi et al. (2008) under two-level credit policy with credit dependent
demand. Jaber et al. (2008) has explained economic production quantity model for
itemswith imperfect quality subjected to learning effects. Research task of theHuang
(2007) have modified by Teng and Chang (2009) with the policy of two-level credit
financing system which is the benefit for the customers. A model has been devel-
oped by Chen and Kang (2010) for business system under two-level credit policy
with price dependent demand and conciliation situation. A lot of review article has
been provided by Shah et a1. (2010) for the inventory system under two-level credit
financing policy. Shah et al. (2012) explained an EOQ model in fuzzy environment
and trade credit. Shah et al. (2016) presented a deteriorating inventory model under
permissible delay in payments and fuzzy environment.

Wright (1936) analyzed that factor affecting the cost of airplane. The present
article combined the effect of two- level trade credit and leaning effect with preserva-
tion atmosphere. Jayaswal et al. (2019) has proposed the effects of learning on retailer
ordering policy for imperfect quality items with trade credit financing. Agarwal and
Mittal (2019) explained an inventory classification using multilevel association rule
mining. Mittal et al. (2017) represented a mathematical model on retailer’s ordering
policy for deteriorating imperfect quality items when demand and price are time-
dependent under inflationary conditions and permissible delay in payments. Jaggi
et al. (2011) proposed a credit financing for deteriorating imperfect-quality items
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under inflationary conditions. Jayaswal et al. (2021) proposed a mathematical model
with the ordering policies for deteriorating imperfect quality items with trade-credit
financing under learning effect.

4.2 Assumptions and Notations

The mathematical model is derived using following notations and assumptions.

4.2.1 Assumptions

• Replenishment rate is infinite.
• There are no shortages in this model.
• The lead-time is considered to be zero.
• Unit purchasing cost is less than the unit selling price.
• No replacement policy of perishable items during cycle length.
• Two level trade credits are allowed.

4.2.2 Notations

R Annual constant demand.
ξ Preservation cost.
A Ordering cost which follows the learning effect.
P Selling price per unit.
θ Decaying rate per unit time.
C Unit purchase cost.
h Unit holding cost which follows the learning effect.
Q Order quantity.
M The offered trade credit by the supplier to the retailer to settle the account.
N The credit financing period for customer offered by the retailer.
Ic Interest charged.
Ie Interest gained.
T Cycle length.
q(t) The inventory level in the interval, 0 ≤ t ≤ T .
K1(T ) The whole inventory level under the condition M ≤ T .
K2(T ) The whole inventory level under the condition N ≤ T ≤ M.
K3(T ) The whole inventory level under the condition N ≥ T.
T 1 Cycle length under the M ≤ T .
T 2 Cycle length under the case N ≤ T ≤ M.
T 3 Cycle length under the N ≥ T.
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4.3 Mathematical Formulation

Suppose that, q(t) is the inventory level in the interval (0 ≤ t ≤ T ). Initially, the
stock level is Q. The present stock is reducing due to demand and deterioration and
finally, it has finished at t = T . The rate of decreasing of inventory stock are given
as follows:

dq(t)

dt
+ θq(t) = −R, 0 ≤ t ≤ T (4.1)

With initial and boundary conditions

q(0) = Q and q(T ) = 0 (4.2)

the solution of Eq. (4.1) is

q(t) = R

θ

(
eθ(T−t) − 1

)
, 0 ≤ t ≤ T (4.3)

Using the Eq. (4.2), the order quantity given as

Q = q(0) = R

θ

(
eθT − 1

)
(4.4)

Now, the ordering cost per cycle,

OC = 1

T

(
C1 + C2

nβ

)
(4.5)

The holding cost per cycle,

IHC =
(
h1 + h2

nβ

)
R

θ2T

(
eθT − θT − 1

)
(4.6)

The deterioration cost per cycle,

CD = C(Q − RT ) = CR

θT
(eθT − θT − 1) (4.7)

Preservation cost, PV = ξ T (4.8)

Now the whole cost per cycle

K(T ) = 1

T
[IHC + OC + CD + PV − IE + IC]
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Regarding interest charged and interest earned, based on the length of the cycle
time T , three cases may arise:

Case-1: M ≤ T .

Case-2: N ≤ T ≤ M .

Case-3: N ≥ T .

These three cases are represented in Figs. 4.1, 4.2 and 4.3 respectively.

Case-1: M ≤ T (Fig. 4.1).

During the credit period, the retailer sells items and deposits the generated revenue
into an amount bearing account at the interest rate Ie per dollar per year.

Fig. 4.1 The total
accumulation of interest
earned when M ≤ T (Source
own)

Fig. 4.2 The total
accumulation of interest
earned when N ≤ T ≤ M
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Fig. 4.3 The total
accumulation of interest
earned when N ≥ T (Source
own)

Therefore, the interest earned per unit time is

IE1 = PIe
T

M∫

N

Rtdt = PIeR
(
M 2 − N 2

)

2T
(4.9)

The unsold items in stock are charged at interest rate Ic by the supplier at the
beginning of time T .

Therefore, the interest charged per unit time is

IC1 = CIc
T

T∫

M

q(t)dt = CIcR

θ2T

[
eθ(T−M ) − θ(T − M ) − 1

]
(4.10)

Hence, the total cost per time unit is

K1(T ) = OC + IHC + CD + PV + IC1 − IE1 (4.11)

Case 2: N ≤ T ≤ M (Fig. 4.2).

In this case, the total interest earned per unit time is,

IE2 = PIe
T

[∫ T

N
Rtdt + RT (M − T )

]

= PIeR

2T

(
2MT − N 2 − T 2

)
(4.12)

In this case, total interest charged = 0
Hence, the total cost per time unit is

K2(T ) = OC + IHC + PV + CD − IE2 (4.13)
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Case 3: N ≥ T (Fig. 4.3).

The interest earned per unit time is,

IE3 = PIeR(M − N ) (4.14)

Similar as case 2, total interest charged equal to zero.
Hence, the total cost per unit time is,

K3(T ) = OC + IHC + PV + CD − IE3 (4.15)

Hence, the total relevant cost K(T ) per unit time is,

K(T ) =
⎧
⎨

⎩

K1(T ), ifM ≤ T
K2(T ), ifN ≤ T ≤ M
K3(T ), ifN ≥ T

(4.16)

where under series approximation and assumption that θT < 1, ignoring higher
powers of θ , then we get,

K1(T ) =
(
C1 + C2

nβ

)

T
+

(
h1 + h2

nβ

)
RT

2
+ CRθT

2
+ CIcRT

2

+ CIcRM 2

2T
+ ξT

T
− CIcRM − PIeR

(
M 2 − N 2

)

2T
(4.17)

and

K2(T ) =
(
C1 + C2

nβ

)

T
+

(
h1 + h2

nβ

)
RT

2
+ ξT

T

+ CRθT

2
− PIeR

2T

(
2MT − N 2 − T 2

)
(4.18)

and

K3(T ) =
(
C1 + C2

nβ

)

T
+

(
h1 + h2

nβ

)
RT

2
+ ξT

T
+ CRθT

2
− PIeR(M − N ) (4.19)

The necessary and sufficient conditions for K1(T ) to be optimum is

dK1(T )

dT
= −

(
C1 + C2

nβ

)

T 2
+

(
h1 + h2

nβ

)
R

2
+ CRθ

2

+ CIcR

2

(
1 − M 2

T 2

)
+ PIeR

(
M 2 − N 2

)

2T 2
(4.20)
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and

d2K1(T )

dT 2
= 2

(
C1 + C2

nβ

)

T 3
+ CIcRM 2

T 3
− PIeR

(
M 2 − N 2

)

T 3
> 0 (4.21)

For the optimal cycle time T1, set
dK1(T )

dT = 0 which gives

T = T1(say) =
√√√√2

(
C1 + C2

nβ

) + RCIcM 2 + RPIe
(
N 2 − M 2

)

R
{
h1 + h2

nβ + C(θ + Ic)
} (4.22)

Now,

dK2(T )

dT
= −C1 + C2

nβ

T 2
+

(
h1 + h2

nβ

)
R

2
+ CRθ

2
+ PIeR

2
− PIeRN 2

2T 2
(4.23)

and

d2K2(T )

dT 2
= 2

(
C1 + C2

nβ

)

T 3
+ PIeRN 2

T 3
> 0 (4.24)

For the optimal cycle time T2, set
dK2(T )

dT = 0 which gives

T = T2(say) =
√√√√ 2

(
C1 + C2

nβ

) + PIeRN 2

R
(
h1 + h2

nβ + PIe + Cθ
) (4.25)

Now,

dK3(T )

dT
= −C1 + C2

nβ

T 2
+

(
h1 + h2

nβ

)
R

2
+ CRθ

2
(4.26)

and

d2K3(T )

dT 2
= 2

(
C1 + C2

nβ

)

T 3
> 0 (4.27)

For the optimal cycle time T3, set
dK3(T )

dT = 0 which gives,

T = T3(say) =
√√
√√ 2

(
C1 + C2

nβ

)

R(h1 + h2
nβ + Cθ)

(4.28)
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4.3.1 Algorithm

Step-1: Compute T1, T2 and T3 from the Eqs. (4.22), (4.25) and (4.28) with the
help of input parameters.
Step-2: IfM ≤ T1, then calculate K1(T1), otherwise go to step-3.
Step-3: If N ≤ T2 ≤ M , then calculate K2(T2), otherwise go to step-4.
Step-4: If N ≥ T3, then calculate K3(T3).
Step-5: Find corresponding cycle time and total optimal cost.

4.3.2 Numerical Example

R = 500 units, h1 = 2, h2 = 1,C1 = 30,C2 = 10, β = 0.23, θ = 0.20, ξ = 0.15 per items,

Ie = $0.14
/
$
/
year, Ip = $0.15

/
$
/
year,C = $50,M = 45

/
365 year,N = 25

/
365 year,

optimal cycle length,T ∗ = 2.7217 year andminimum total cos t

ψ1
(
T ∗) = 3253 $ per year

4.3.3 Sensitive Analysis and Discussion Part

Sensitive Analysis
The sensitive analysis has been studied on the effective parameters and retailer total
cost will be analyzed.

Managerial Insights

• From Table 4.1, if learning rate increases, cycle length almost fixed and retailer’s
total cost decreases.

• From Table 4.2, if number of shipments increases, cycle length increases
marginally and retailer’s cost decreases due to the learning effect.

• From Table 4.3, ifM increases then cycle length and retailer’s total cost decrease
due to the learning and credit financing.

Table 4.1 Impact of learning
rate under cycle time and
whole cost per cycle (Source
own)

Learning rate β Cycle length T (Year) Retailer’s total cost
K1(T ) ($)

0.23 2.7217 3253

0.24 2.7217 3247

0.25 2.7217 3240

0.26 2.7217 3232

0.27 2.7217 3228
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Table 4.2 Impact of the
number of shipments on cycle
time and whole cost (Source
own)

Number of
shipments (n)

Cycle length
T (year)

Retailer’s total cost
K1(T ) ($)

1 2.7215 3433

2 2.7216 3347

3 2.7216 3303

4 2.7217 3274

5 2.7217 3253

Table 4.3 Impact of the
number of credit period on
cycle time and whole cost
(Source own)

Credit period
M (year)

Cycle time T (Year) Retailer’s total cost
K1(T ) ($)

30/365 2.7564 3274

35/365 2.7550 3267

40/365 2.7334 3260

45/365 2.7217 3253

50/365 2.7098 3246

• FromTable 4.4, if deterioration rate increases, cycle length decreases and retailer’s
cost decreases.

• From Table 4.5, if customer’s credit period increases then, cycle length is fixed
and retailer’s total cost increases marginally.

Table 4.4 Impact of the
decaying rate on cycle time
and whole cost (Source own)

Deterioration rate θ Cycle time T (Year) Retailer’s total cost
K1(T ) ($)

0.10 5.5126 2597

0.15 3.6497 2925

0.20 2.7217 3253

0.25 2.1673 3581

0.30 1.7991 3909

Table 4.5 Impact of the
customer’s credit period on
retailer’s cycle time and
whole cost (Source own)

Customer’s trade
credit period N

Cycle length T (year) Retailer’s total
cost K1(T ) ($)

20/365 2.7212 3253.30

24/365 2.7217 3253.40

28/365 2.7223 3253.59

32/365 2.7230 3253.76
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Table 4.6 Impact of the
preservation cost on retailer’s
cycle time and whole cost
(Source own)

Preservation cost
ξ /items

Cycle length T
(year)

Retailer’s total cost
K1(T ) ($)

0.15 2.7217 3253

1.15 2.7217 3254

2.15 2.7217 3255

3.15 2.7217 3256

• From Table 4.6, if preservation cost increases then, cycle length is fixed and
retailer’s total cost increases.

Discussion Part
In this part, we have discussed about the distinct cases and have tried to determine
as to which case should be better for this model after we procured the solution with
the assistance of the concerned algorithm. Post getting all the values from the above
three cases, we concluded that the minimum cost was given by Case 1 which is
N ≤ M ≤ T and it was beneficial due to suitable credit period which have obtained
from the algorithmand other cases are not consider due the large value of credit period
and have been analyzed from the algorithm. This case provided the optimal values
of all the parameters. The learning effect will reduce the total cost with trade-credit
policy.

4.4 Conclusion

This article developed an inventory model to determine cycle length and the corre-
sponding total cost for the buyer with the help of the two-level trade credit financing
with learning effect applied over the holding cost and the ordering cost. Eventu-
ally, we have concluded that results of this model showed that the retailer’s total
cost reduces as learning parameter value increases. When items are perishable then
preservation of the items are must to control the deterioration rate, but the total
cost increases marginally. This article reveals that the combination of trade-credit
financing and learning concept is very beneficial to get more profit in real scenario.
Findings together with mathematical analysis clearly recommended that the exis-
tence of two-level trade-credit and effect of leaning have positive effects on the total
cost. Present work can be extended such as stock depended demand, and cloudy
environment etc.
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Chapter 5
An Inventory Policy for Maximum Fixed
Life-Time Item with Back Ordering
and Variable Demand Under Two Levels
Order Linked Trade Credits

Mrudul Y. Jani, Nita H. Shah, and Urmila Chaudhari

Abstract In this chapter, an inventory policy of the item with maximum fixed life-
time is studied where two levels of trade credit depend on the order quantity. We
consider the inventory system in which the supplier is ready to give a mutually
agreed credit period to the retailer only if the order quantity purchased by the retailer
is larger than the predetermined order quantity. Moreover, to be more practical,
the retailer offers a credit limit to the customers. Here, price and time-sensitive
demand are debated under the inflationary environment over the finite time horizon.
In this study, the shortage is allowed and it is fully backordered. The main objective
is to maximize the total profit of the retailer to the fraction of the replenishment
cycle and the number of replenishments during the planning horizon. The model is
supported by numerical examples. Sensitivity analysis is carried out to derive insights
for decision-makers.

Keywords Inventory · Order linked trade credit · Inflation with time value of
money · Maximum fixed life-time · Price-sensitive demand · Shortage

5.1 Introduction

In traditional business transactions, it was assumed that the buyer must pay the
procurement cost when the products are received. However, in today’s competitive
markets most companies offer buyer various credit terms like permissible delay in
payment, cash discount, etc. to simulate sales and hence reduce inventory. Trade
credit has been widely used to boost sales and reduce default risk and attract new
customers. In a review of literature for inventory models with trade credit funding,
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Goyal (1985) was the first researcher who studied the effect of trade credit on optimal
inventory policies. Thereafter, based on the work of Goyal (1985) many researchers
developed inventorymodels under trade credit. For example, Shah (1993) considered
a stochastic inventory model for deteriorating item when a delay in payments are
permissible. Later, Aggarwal and Jaggi (1995) extended the EOQ model from non-
deteriorating items to deteriorating items. Jamal et al. (1997) further generalized the
EOQ model with trade credit to allow shortages. Then, Huang (2003) extended the
trade credit problem where the up-stream credit limit is greater than down-stream
trade credit. Also, Liao (2008) extended Huang’s model to an economic production
quantity model for deteriorating items. Subsequently, Ouyang et al. (2013) proposed
an EOQmodel in which they relaxed two assumptions of Huang’s (2003) work. Chen
et al. (2014) proposed an EOQ model under different credit terms. Shah and Jani
(2016a) expressed optimal ordering policies for two-level trade credit with quadratic
demand. Shah et al. (2018) built optimal ordering policies for deteriorating items
with permissible delay in payment options. Recently, Jani et al. (2020) determined
inventory control policies for deteriorating items under the two-level order linked
trade credit. Other articles related to this area are Rabbani et al. (2018), Mahata and
Mahata (2020), and others.

In inventory Modelling, the demand rate was taken as a constant but the common
characteristic of the articles in traditional inventory assumption of a constant demand
rate is generally valid in the mature stage of the total life of the product. Though, it
is rare in real life with this limitation Pal et al. (1993) first considered the inventory
model with stock-dependent demand. However, in real-life situations, the demand
may increase or fall with time and price also. Considering this Wee (1997) devel-
oped an inventory model for price-sensitive demand. Wu (2001) further investi-
gated the inventory model by considering the ramp type demand rate and Weibull
distribution deterioration. Jaggi et al. (2008) presented the retailer’s optimal replen-
ishment strategies for the permissible delay in payment dependent demand. Shah
et al. (2015) developed an EOQ model for price-sensitive quadratic demand. Later,
Shah et al. (2017a) studied the retailer’s optimum policies for price-credit depen-
dent trapezoidal demand. Recently, Chaudhari et al. (2020) investigated the inven-
tory model taking account of deteriorating effects, preservation, advanced payment
scheme under quadratic demand. Other articles related to this area are Bose et al.
(1995), Shah et al (2016), and others.

In many real-life situations, products deteriorate continuously such as volatile
liquids, medicines, blood banks, drugs, food, and others when kept in storage for
a long period. For such products, losses due to deterioration cannot be ignored.
Inventory problems related to deteriorating items have been studied widely in earlier
research. In this regard, Ghare and Schrader (1963) proposed an EOQ model for
an exponentially decaying item. Philip (1974) then obtained an inventory model
with a three-parameter Weibull distribution deterioration rate. Later, Raafat (1991)
provided a survey of literature on continuously deteriorating inventory policies. Sett
et al. (2012) analyzed a two-warehouse inventory model with time-dependent dete-
rioration. Sarkar et al. (2015) discussed an inventory control policy with a maximum
fixed lifetime of the product. Shah and Jani (2016b) studied an EOQ model for
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non-instantaneous deterioration items under order size dependent trade credit for
price-dependent demand. Lately, Shah et al. (2017b) built an inventory model under
three different cases, i.e., the maximum fixed life of the product, constant deteriora-
tion rate, and without deterioration rate. Recently, Gautam et al. (2020) developed
an inventory system by considering the detrimental impacts of deterioration.

Most of the inventory models that grew so far do not include inflation and the time
value of money as parameters of the system. Maybe low inflation in the economy
of the western nations before the 1970s was at the foundation of this methodology
in inventory modeling. Nowadays, inflation has become a permanent feature of the
economy throughout the world. This changing situation in the world economy didn’t
get away from the consideration of the inventory modelers. Buzacott (1975) intro-
duced the EOQ model with a uniform inflation rate for all associated costs. Ray and
Chaudhuri (1997) and Chang et al. (2009) developed an inventory model with infla-
tion. Sarkar (2012) discussed an inventory model of the finite renewal rate. Lashgari
et al. (2016) investigated an inventory control model for back-ordering and credit
limit with inflation. Shaikh et al. (2017) proposed an inventory model to consider
inflation, fully backlogged shortages with stock-dependent demand. Other papers
are related to this area are Shah et al. (2017c), Gupta et al. (2020), and others.

In this chapter, we develop an inventorymodel over a finite planning horizon, with
maximum fixed lifetime deterioration, price and time-varying demand rate, inflation,
time value ofmoney order quantity linked to delay in payment, and shortage and fully
backordering. The proposed inventory model represents one supplier-one retailer
for a two-layer of trade credit options where the supplier gives credit period to the
retailer only if the stock purchased by the retailer ismore than the pre-scheduled order
quantity. The main objective is to maximize the net current value of the retailer’s
profit. In Sect. 5.2, the notation and assumptions are recognized. Section 5.3, includes
the formulation of the mathematical model. Section 5.4 gives a sensitivity analysis
of the optimal result, it proved by the help of some numerical examples. In Sect. 5.5,
the conclusion and future work have been given.

5.2 Notations and Assumptions

5.2.1 Notations

A Setup cost ($/lot).
h Holding cost/unit/unit time (in $).
k The net rate of constant decline in inflation.
C Purchasing cost ($/unit) at time .
C(t) Ce−k t ; The unit purchasing cost at any time t ($/unit).
p Selling price ($/unit) at time t = 0 ; p > C .
p(t) p e−k t ; Selling price ($/unit) at time t .
M Supplier deals with permissible delay in payment to the retailer (in years).
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N Retailer deals with permissible delay in payment to the customer (in
years).

H Finite planning horizon (in years).
δ Shortage cost (/$/unit/timeunit).
Ic The interest rate paid by the retailer to the supplier (/$/year); Ic > Ie.
Ie Rate of interest earned by the retailer (/$/year).
Ib The interest rate paid by the retailer to the bank (/$/year) if T > M .
n Replenishments’ number (Decision Variable).
F The fraction of the replenishment cycle, in which inventory level is

positive (in years) (Decision Variable).
T H

n ; Replenishment or cycle time (in years).
t1

FH
n ; the time that inventory level reaches to zero in the jth replenishment

(in years).
m Item’s maximum fixed life (in years).
Q Order quantity in each replenishment (in units).
Qd Predetermined order quantity (in units).
I (t) Inventory’s level at any point in time t (in units).
Im The maximum inventory level (in units).
Is The maximum shortage quantity (in units).
π(F, n) Total profit of retailer for nth replenishment (in $).

5.2.2 Assumptions

1. The planning horizon is finite.
2. The inventory policy deals with a single product.
3. The shortage is allowed and it is completely backordered.
4. Demand rate, (say) R(p, t) = a − bp(t); where a > 0 is scale demand and

b > 0 is a mark-up of the selling price.
5. θ(t) = 1

1+m−t , 0 ≤ t ≤ T ≤ m is instantaneous deterioration. Where
θ(t) ≤ 1 for any time m.

6. No interest paid or received for the quantity of stuffwhich has been deteriorated
in the period of FH

n .
7. The supplier is ready to give a mutually agreed credit period M to the retailer

only if stock purchased by the retailer is larger than the prearranged order
quantity. i.e. Q > Qd .

8. The retailer pays interest rates Ib to the bank for T > M .
9. The constant inflation rate is considered with the time value of money.
10. Lead time is zero or negligible.
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5.3 Mathematical Model

Under the assumptions, the rate of inventory level I (t) at the time t during the period
[0, t1] is governed by the following differential equation (Fig. 5.1)

dI1(t)

dt
+ θ(t)I1(t) = −R(p, t), 0 ≤ t ≤ t1, (5.1)

with the boundary condition I1(0) = Im andI1(t1) = 0.

dI2(t)

dt
= −R(p, t), t1 ≤ t ≤ T, (5.2)

with the boundary condition I2(t1) = 0 andI2(T ) = −Is .
Using boundary condition I1(t1) = 0 from (5.1), one has

I1(t) = (1 + m − t)W1l

(
n

(
1 + m − t

1 + m − t1

)
+ W2(t − t1)

− bpk2

4

(
t2 − t21

))
, 0 ≤ t ≤ t1

where W1 = a − bp + bpk(1 + m)

− bpk2(1 + m)2

2
andW2 = bpk − bpk2(1 + m)

2
(5.3)

Now,with the help of the boundary condition I1(0) = Im, themaximum inventory
level is

Im = (1 + m)

(
W1 ln

(
1 + m

1 + m − t1

)
− W2t1 + 1

4
bpk2t21

)
(5.4)

Q

T=H
n

Time

Inventory Level

t=0

t1=FH
n

H

Im

Is

Fig. 5.1 Graphical representation of the inventory system Lashgari et al. (2016)
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From (5.2) with I2(t1) = 0, anyone has

I2(t) = a(t1 − t) + bp(t − t1 + k

2
(t21 − t2) + k2

6
(t3 − t31 )), t1 ≤ t ≤ T (5.5)

With the boundary condition I2(T ) = −Is , the maximum shortage level is

Is = −a (t1 − T ) − bp

(
T − t1 + 1

2
k(t21 − T 2) + 1

6
k2(T 3 − t31 )

)
(5.6)

Thus, the total ordering quantity is

Q =Im + Is

= (1 + m)

(
W1 ln

(
1 + m

1 + m − t1

)
− W2t1 + 1

4
bpk2t21

)

− a (t1 − T ) − bp

(
T − t1 + 1

2
k(t21 − T 2) + 1

6
k2(T 3 − t31 )

)
(5.7)

Relevant costs of the retailer’s total profit are as follow:

• Ordering/Setup Cost: OC = ∑n
j=0 Ae

− jkT

• Holding Cost: HC = Ch
[∑n−1

j=0 e
− jkT

∫ t1
0 I1(t)dt

]
• Purchasing Cost: PC = CQ

[∑n−1
j=0 e

− jkT
]

• Sales Revenue: SR =
[∑n−1

j=0 e
− jkT

∫ T
0 p(t)R(p, t)dt

]
• Shortage cost: SC = δ

[∑n−1
j=0 e

− jkT
∫ T
t1

−I2(t)dt
]

Since we study two levels of trade credit policies linked to order quantity. The
supplier proposes a credit limit M to a retailer if the order size is more than Qd ,
otherwise at the time of receiving an order, the retailer pays the total purchasing cost.
However, in both cases, the retailer gives trade credit N to customers. Therefore,
from the above conversation, two possible cases will arise (1) Q < Qd and (2)
Q > Qd .

Case 1: Q < Qd .

In these circumstances, the predetermined order quantity Qd is more than the
retailer’s order quantity Q. So, the supplier does not offer trade credit M to
a retailer. However, the retailer offers trade credit N to the end customers.
As an outcome retailer takes a loan from a bank at time zero and N starts
to pay back. Thus, interest payable to suppliers and banks by the retailer

are IC1 = C Ic
∑n−1

j=0 e
− jkT

(∫ t1
0 R(p, t)t dt + ∫ N

0 R(p, t)T dt
)
, and CC1 =

C Ib(
∑n−1

j=0 e
− jkT

∫ t1
0 I1(t)dt) respectively.

Hence, the total profit all over the finite planning horizon is
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π1(F, n) = SR − HC − SC − OC − PC − IC1 − CC1 (5.8)

Case 2: Q > Qd .

In this situation, the order quantity Q of the retailer is more than an order quantity
Qd . Therefore, the supplier gives trade credit M(M �= 0) to a retailer. Thus, possible
subcases are as follows:

⎛
⎜⎜⎜⎜⎜⎝

Subcase-1: M < N M < t1
Subcase-2: M < N t1 < M
Subcase-3: M > N M < t1
Subcase-4: M > N t1 < M < t1 + N
Subcase-5: M > N t1 + N < M

Subcase-1: M < N andM < t1. In this subcase, due to M < N , interest earned
to the retailer is zero. On the other hand, interest payable by the retailer to supplier
and bank are IC2 = C Ic

∑n−1
j=0 e

− jkT (
∫ t1
0 t R(p, t)dt + ∫ N−M

0 T R(p, t)dt), and

CC2 = C Ib(
∑n−1

j=0 e
− jkT

∫ t1
M I1(t)dt) respectively.

Consequently, the existing total profit for the durationof thefinite planninghorizon
is

π2(F, n) = SR − HC − SC − OC − PC − IC2 − CC2 (5.9)

Subcase-2: M < N and t1 < M. Due to t1 < M , interest payable by the
retailer to the bank is zero. Furthermore, since M < N , interest earned to the
retailer is zero. So, interest payable by the retailer to the supplier is IC3 =
C Ic

∑n−1
j=0 e

− jkT (
∫ N−M
0 R(p, t)T dt + ∫ t1

0 t R(p, t)dt).
As a result, the current total profit for the duration of the finite planning horizon

is

π3(F, n) = SR − HC − SC − OC − PC − IC3 (5.10)

Subcase-3:M > N andM < t1. In this subcase, the retailer earns interest by
selling the items and he has to pay interest to the supplier and bank as follows:

I E4 = pIe

n−1∑
j=0

e− jkT

⎛
⎝

M∫
N

R(p, t)t dt + Is(M − N )

⎞
⎠,

IC4 = C Ic

n−1∑
j=0

e− jkT

⎛
⎝

t1+N−M∫
0

R(p, t)t dt

⎞
⎠

and
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CC4 = C Ib

n−1∑
j=0

e− jkT

⎛
⎝

t1∫
M

I1(t)dt

⎞
⎠

Thus, the existing total profit for the duration of the finite planning horizon is

π4(F, n) = SR − HC − OC − PC − IC4 − CC4 + I E4 (5.11)

Subcase-4: M > N and t1 < M < t1 + N . Since t1 < M interest
payable by the retailer to the bank is zero. Furthermore, in this situation,
the retailer’s interest earns and the retailer’s interest charge to the supplier
are I E5 = pIe

∑n−1
j=0 e

− jkT (
∫ M
N R(p, t)tdt + Im(M − N )), and IC5 =

C Ic
∑n−1

j=0 e
− jkT (

∫ t1+N−M
0 R(p, t)tdt) respectively.

So, the current total profit for the duration of the finite planning horizon is

π5(F, n) = SR − HC − SC − OC − PC − IC5 + I E5 (5.12)

Subcase-5: M > N and t1 + N < M. In the current subcase, since t1 + N < M :

I E6 = pIe

n−1∑
j=0

e− jkT

⎛
⎝

M−N−t1∫
0

R(p, t)T dt + Is t1 +
t1∫

0

R(p, t)t dt

⎞
⎠

Consequently, the existing total profit for the durationof thefinite planninghorizon
is

π6(F, n) = SR − HC − SC − OC − PC + I E6 (5.13)

Hence, total profit is given by

π(F, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q < Qd π1(F, n)

Q > Qd

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M < N ,

{
π2(F, n), M < t1
π3(F, n), t1 < M

M > N ,

⎧⎨
⎩

π4(F, n), M < t1
π5(F, n), t1 < M < t1 + N
π6(F, n), t1 + N < M

Here, the model considers an algorithm for the optimum solution as follows.

Algorithm

Step 1: Evaluate ∂πi (F,n)

∂F ; ∀i = 1...6 using the Eqs. (5.8) to (5.13).

Step 2: Derive the optimumvalue ofF say(Fi ), by calculating
∂πi (F,n)

∂F = 0; ∀i =
1...6.
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Step 3: Substitute F = Fi , in πi (F, n); ∀i = 1...6 where n ∈ N, using the
Eqs. (5.8) to (5.13) respectively.

Step 4: Take n = n + 1where n ∈ N and once again calculated πi (Fi , n); ∀i =
1...6 where n ∈ N, using the Eqs. (5.8) to (5.13) respectively.

Step 5: If πi (Fi , n + 1) < πi (Fi , n) ; ∀i = 1...6 where n ∈ N, then the
optimal number of replenishments is n∗ = n and the corresponding
optimal fraction of the replenishment cycle is F∗ = Fi otherwise go to
step 2.

Step 6: Calculate the optimal cycle time T ∗ = H
n∗ .

Step 7: Calculate t∗1 = F∗H
n∗ .

Step 8: Calculate I ∗
m and I ∗

s .

Step 9: Calculate the total optimal profit πi (F∗, n∗); ∀i = 1...6.

Step 10: Calculate optimum order quantity Q∗ = I ∗
m+I ∗

s from Eq. (5.7).

5.4 Numerical Examples with Sensitivity Analysis

5.4.1 Numerical Examples

5.4.1.1 Numerical Example 1 (M > N)

Take a = 1000 units, b = 20%, A = $500 per order, C = $5 per unit, Ie =
8%/$/year, h = $0.8 per unit per unit time, Ic = 12%/$/year, p = $10 per unit, Ib
= 8\%/$/year, M = 0.15 year, k = 0.08, N = 0.06 year, δ = 4 $/unit, H = 5 years,
and Qd = 500 units.

5.4.1.2 Numerical Example 2 (M < N)

Set N = 0.2 year in Example 4.1.1.
By solving the numerical examples using themathematical softwareMapleXVIII,

we have Table 5.1 of optimal solutions.
From Table 5.1, we analyze that in the case (Q > Qd , M > N , M < t1), the

retailer’s total profit is $13,637.86 which is the maximum, optimal number of
replenishments is n∗ = 8, the optimal fraction of the replenishment cycle is
F∗ = 0.249 year, optimal cycle time is T ∗ = 0.625 year, and an optimum order
quantity is Q∗ = 636.21 units.

The concavity of the retailer’s total profit π4(F∗, n∗) for the best optimal case is
depicted in Fig. 5.2.
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Table 5.1 Optimal solutions

Cases Sub-cases Example
numbers

Total profit
($)

Decision variables

Q < Qd ** ** 1 Infeasible
solution

Infeasible solution

Q > Qd M < N M < t1 2 13,192.15 n∗ = 8

F∗ = 0.25 year

Q∗ = 636.40 units

T∗ = 0.625 year

t1 < M 2 Infeasible
solution

Infeasible solution

M > N M < t1 1 13,637.86 n∗ = 8

F∗ = 0.249 year

Q∗ = 636.21 units

T∗ = 0.625 year

t1 < M < t1 + N 1 Infeasible
solution

Infeasible solution

t1 + N < M 1 Infeasible
solution

Infeasible solution

N.B ** indicates not applicable case

Fig. 5.2 Concavity of the retailer’s total profit function
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5.4.2 Sensitivity Analysis

Sensitivity analysis of the objective function for Example 4.1.1 for various inventory
parameters is calculated in Table 5.2.

From Table 5.2, the following results are derived: It is visible that in all cases as
the scale demand a, rate of interest earned Ie, finite planning horizon H , maximum
fixed lifetime of the item m, selling price p, and length of the credit period M has a
huge positive impact on total profit π4(F∗, n∗). On the other hand by increasing M ,
this suggests that permissible delay in payment facilitates the business for both the
supplier and retailer. Since the retailer places a bigger order to the supplier which is
favorable for his business finally results in higher profit. Conversely, holding cost h,
purchasing cost C , setup cost A, a mark-up of the selling price b, interest rate Ic, net
rate of inflation k, retailer deals permissible delay in payment to a customer N , the
interest rate paid by the retailer to the bank Ib, and shortage cost δ decreases total
profit π(F, n).

5.5 Conclusion

This chapter analyses an inventory systemwith two decision variables, the fraction of
the replenishment cycle F and the replenishment number n. Supplier offers an order
quantity dependent credit limit to the retailer, and the retailer offers an unconditional
credit limit to the customers. Also, inflation and time value of money have been
considered. In this model, the shortage is allowed which is fully backordered. We
develop an algorithm to maximize the retailer’s total profit evaluating the optimal
order quantity, shortage amount, and a number of replenishments in a finite planning
horizon. This research work suggested to manager an enterprise on how to determine
the optimal order quantity and number of replenishments in various types of delay
periods under the inflation and time value of money. Current research has several
possible extensions like the model can be further generalized by stochastic demand
and preservation technology investment, quantity discounts, and take more items
at a time. Also, it can be further studied for probabilistic demand, fuzzy stochastic
demand, etc.
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Table 5.2 Sensitivity analysis

Inventory parameters Values n∗ F∗ (year) Total profit π4(F∗, n∗) ($)
A 500 8 0.249 13,502.26

550 8 0.249 13,130.75

600 8 0.249 12,759.25

C 4 8 0.290 17,718.01

4.5 8 0.268 15,601.63

5 8 0.249 13,502.26

a 800 8 0.249 10,024.89

900 8 0.249 11,763.58

1000 8 0.249 13,502.26

b 0.8 8 0.249 13,536.16

0.9 8 0.249 13,519.21

1 8 0.249 13,502.26

1.1 8 0.249 13,485.31

1.2 8 0.249 13,468.36

h 0.64 8 0.263 13,574.81

0.72 8 0.256 13,537.50

0.8 8 0.249 13,502.26

0.88 8 0.242 13,468.93

H 5 8 0.249 13,502.26

5.5 9 0.249 14,626.16

6 10 0.250 15,702.73

Ic 0.096 8 0.250 13,504.01

0.108 8 0.249 13,503.13

0.12 8 0.249 13,502.26

0.132 8 0.24 13,501.39

0.144 8 0.248 13,500.53

Ie 0.064 8 0.250 13,446.96

0.072 8 0.250 13,474.60

0.08 8 0.249 13,502.26

0.088 8 0.248 13,529.94

0.096 8 0.247 13,557.65

k 0.064 8 0.254 13,987.64

0.072 8 0.251 13,741.89

0.08 8 0.249 13,502.26

0.088 8 0.246 13,268.57

0.096 8 0.244 13,040.66

(continued)
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Table 5.2 (continued)

Inventory parameters Values n∗ F∗ (year) Total profit π4(F∗, n∗) ($)
m 0.064 8 0.247 13,495.05

0.072 8 0.248 13,498.67

0.08 8 0.249 13,502.26

0.088 8 0.250 13,505.82

0.096 8 0.250 13,509.34

M 0.12 8 0.248 13,393.77

0.135 8 0.249 13,448.17

0.15 8 0.249 13,502.26

0.165 8 0.25 13,556.05

0.18 8 0.25 13,609.54

N 0.048 8 0.249 13,538.77

0.054 8 0.249 13,520.68

0.060 8 0.249 13,502.26

0.066 8 0.249 13,483.50

0.072 8 0.25 13,464.41

Ib 0.064 8 0.249 13,502.27

0.072 8 0.249 13,50 2.26

0.08 8 0.249 13,502.26

0.088 8 0.249 13,502.26

0.096 8 0.249 13,502.25

δ 4.0 8 0.249 13,502.26

4.4 9 0.270 13,245.39

4.8 9 0.288 13,004.55

p 8 8 0.251 5303.03

9 8 0.250 9406.68

10 8 0.249 13,502.26

11 8 0.249 17,589.76

12 8 0.248 21,669.19
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Chapter 6
Inventory Policies for Non-instantaneous
Deteriorating Items with Random Start
Time of Deterioration

Nita H. Shah and Pratik H. Shah

Abstract An inventory model for non-instantaneous deteriorating items with
random start time of deterioration is investigated in this paper. For many prod-
ucts, the start time of deterioration cannot be predicted due to physical nature of
the product. In this paper, products in the inventory system are considered to be dete-
riorated at a constant rate after a certain random time of inventory received by the
retailer. Demand for the product is considered to be price sensitive. Two scenarios
viz. with preservation technology investments and without preservation technology
investments are compared to obtain retailer’s optimal policies which include optimal
cycle time, preservation cost, and selling price. The objective is to maximize total
profit of retailers with respect to cycle time, selling price, and preservation tech-
nology investments. The results indicate that use of preservation technology helps
retailers to generate more profit.

Keywords Non-instantaneous deterioration · Random start time of deterioration ·
Preservation technology · Price sensitive demand · Inventory policies
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6.1 Introduction

Product demand has been always one of the major concerns for inventory managers.
Demand for the product gets affected by various parameters such as stock, time,
selling price, quality, different promotional offers, etc. It is very essential to select
the precise demand pattern to make optimal inventory decisions. There are certain
products for which the demand pattern is very sensitive to the product price. In such
demand pattern, notable change can be observed in the product demand as the selling
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price of the product changes. Increase in selling price is useful in generating revenue
but it leads to a decrease in the demand of the product. On the other hand, reduction
in product price may attract customers to buy the product but it may be harmful for
overall profit of the firm. Deterioration is defined, in general, as spoilage, damage,
decay, perishing, fungus, or evaporation of inventory goods. Deterioration of the
product may start instant after the production process or it may start later at a certain
fixed time or random time after the production. Deterioration affects quality and/or
quality of the product that causes loss of goodwill and reduction in the profit of the
firm. Inventorymanagersmay use preservation technology to reduce the deterioration
rate of product.

Sarkar (2012) investigated an inventory model with delay in payments and time-
varying deterioration rate. Dye (2013) studied the effect of preservation technology
on a non-instantaneous deteriorating inventory model. Dye and Hsieh (2013) consid-
ered instantaneous deterioration with time-dependent demand for inventory model
to obtain optimum policies. Hsieh and Dye (2013) gave a production-inventory
model incorporating the effect of preservation technology investment where they
considered the time fluctuating demand. Shah et al. (2013) gave optimal inven-
tory policies for single-supplier single-buyer deteriorating items with price-sensitive
stock-dependent demand and order-linked trade credit. Shah et al. (2021) studied
an inventory model for instantaneously deteriorating items with use of preserva-
tion technology investments. In development of the model, they considered promo-
tional efforts to promote sales for retailer and quantity discounts from supplier to
encourage the retailer for a large order. Singh and Sharma (2013) gave a global
optimizing policy for decaying items with ramp type demand considering preserva-
tion technology investments. Mishra (2014) studied deteriorating inventory model
with controllable deterioration rate for time-dependent demand and time-varying
holding cost. Shah and Shah (2014) studied inventory model for deteriorating items
with price-sensitive stock-dependent demand under inflation. Tayal et al. (2014) and
Zhang et al. (2014) studied inventory model with preservation technology invest-
ment with different demand types for instantaneous deteriorating items. Liu et al.
(2015) gave joint dynamic pricing and investment strategy for perishable foods with
price-quality-dependent demand. Sarkar et al. (2015) investigated inventory model
with trade credit policy and variable deterioration for products with maximum life-
time. Singh and Rathore (2015) gave optimum payment policy with preservation
technology investment and shortages under trade credit. Tsao (2016) studied joint
location inventory and preservation decisions for non-instantaneous deterioration
items under delay in payments. Bardhan et al. (2019) considered stock-dependent
demand for non-instantaneous deteriorating items.

Most of the researches have been carried out considering instantaneous or non-
instantaneouswith deterministic start time of deterioration.However, this assumption
seems unrealistic. It is not possible to predict exact start time of deterioration. Rahim
et al. (2000) considered deterioration starting at a random point to study the inventory
model, however they did not consider the idea of preservation technology. Pal et al.
(2018) considered deterioration to start at random point with preservation technology
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where they considered constant demand. Tai et al. (2019) investigated joint inspection
and inventory control for deteriorating items with random maximum life time.

In this paper, an inventory model for non-instantaneous deteriorating items with
random start time of deterioration is considered.Market demand pattern is considered
to be price sensitive. Further, the products are considered to be non-instantaneous
deteriorating items with constant rate of deterioration. Retailer may invest in preser-
vation technology to reduce the deterioration rate. With consideration of all these
parameters authors aim to maximize total profit and examine optimal decisions for
retailer. A numerical example is provided to validate the mathematical model. More-
over, a sensitivity analysis has been carried out to analyze the effect of changes in
various inventory parameters on decision variables as well as the total profit, where
one inventory parameter is varied by −20, −10, 10, and 20%. Comparison of both
cases ‘with preservation’ and ‘without preservation’ have been analyzed to decide
which of them is more beneficial for the retailer.

6.2 Assumptions and Notations

Authors use the following assumptions andnotations in development ofmathematical
models.

(1) Replenishment rate is infinite and there is no lead time.
(2) The demand rate is R(p) = α − βp ; α, β > 0 where, α is scale demand and

β is price sensitivity factor.
(3) Products are considered to be non-instantaneous deteriorating with constant

rate of deterioration.
(4) Inventory model is for a single cycle [0, T ], which includes two phases: (i)

[0, x]where there is no deterioration and (ii) [x, T ]where products deteriorate
at a constant rate. The point in time x at which deterioration starts is a random
variable with positive range.

(5) There is no replacement or repair for deteriorated items in the inventory system.
(6) The proportion of reduced deterioration rate m(ξ) is a continuous, concave,

increasing function of the retailer’s capital investments ξ with m(0) = 0 and
lim

ξ→∞ m(ξ) = 1. Further, we assume m ′(ξ) > 0 to ensure that it is worth to

invest money in preservation technology andm ′′(ξ) < 0 to ensure diminishing
return from capital investments on preservation.

Following notations have been used in the development of the mathematical
model.
Decision variables:

p Selling price is $/unit.
T Cycle length of inventory.
ξ Preservation technology investment in $/unit.
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Other inventory parameters:

A Ordering cost in $/order.
c Cost price in $/unit.
h Holding cost in $ per unit per unit time.
I1(t) Inventory level during time interval [0, x].
I2(t) Inventory level during time interval [x, T ].
R(p) Price-sensitive demand rate.
x Point in time when deterioration begins, a random variable over (a, b) with

pd f f (·) and cd f F(·).
θ Deterioration rate (0 < θ < 1).
m(ξ) Proportion of reduced deterioration rate (0 ≤ m(ξ) ≤ 1).

Objective function:

Pr(T, p, ξ) Average total profit of retailer with preservation technology invest-
ments.

6.3 Mathematical Model

Graphical representation of the Inventory model is shown in Fig. 6.1.
Figure 6.1 shows structure of the inventory model. Products in the system are

considered as non-instantaneous deteriorating in nature. As per our assumption dete-
rioration starts at random time x , hence there is no deterioration in the time interval
[0, x] and inventory level decreases due to the demand only, Whereas during [x, T ]
inventory level is depleted due to combined effect of demand and deterioration.

Fig. 6.1 Graphical
representation of the
inventory model
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Corresponding inventory levels at any point of time t in respective intervals are
governed by the differential equations,

d

dt
I1(t) = −R(p), 0 ≤ t ≤ x (6.1)

d

dt
I2(t) = −R(p) − (1 − m(ξ)) · θ · I2(t), x ≤ t ≤ T (6.2)

Using the boundary condition I2(T ) = 0 and continuity of the demand function
for solving Eqs. (6.1) and (6.2) inventory levels I1(t) and I2(t) for corresponding
time interval can be obtained as below:

For 0 ≤ t ≤ x ,

I1(t) = (α − βp)

(
x − t + e(1 − m ( ξ )) θ (t−x) − 1

(1 − m(ξ))θ

)
(6.3)

And for x ≤ t ≤ T ,

I2(t) = (α − βp)

(
e(1 − m ( ξ )) θ (T−t) − 1

(1 − m(ξ))θ

)
(6.4)

The total inventory during the interval [0, T ] is as given below:

I (t) =
x∫

0

I1(t)dt +
T∫

x

I2(t)dt (6.5)

The ordering quantity is given as,

Q = I1(0) =
b∫

a

(α − βp)

(
x + e(1−m ( ξ )) θ (−x) − 1

(1 − m(ξ))θ

)
f (x)dx (6.6)

The holding cost is:

HC = h

b∫
a

⎡
⎣

x∫
0

I1(t)dt +
T∫

x

I2(t)dt

⎤
⎦ f (x)dx (6.7)

The total preservation cost is:

PTC = ξ

b∫
a

⎡
⎣

x∫
0

I1(t)dt +
T∫

x

I2(t)dt

⎤
⎦ f (x)dx (6.88)
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Total sales revenue is:

TR = p

T∫
0

R(p)t dt (6.9)

The total profit of complete inventory cycle [0, T ] is given as

Pr(T, p, ξ) = 1

T
(TR − A − cQ − HC − PTC) (6.10)

6.4 Numerical Example

Authors now illustrate the inventory model with numerical examples. The objective
is to maximize total profit of the retailer which can be obtained by differentiating
Eq. (6.10) with respect to decision variables T, p,ξ and setting them zero in order to
get solution. This is shown in the following procedure.

Step 1: Allocate values to all inventory parameters other than decision variables.
Step 2: Work out ∂ Pr

∂ξ
= 0, ∂ Pr

∂p = 0 and ∂ Pr
∂T = 0 to get optimum values of

decision variables, T p and ξ respectively.
Step 3: Substitute values of decision variables obtained above in Eq. (6.10) to get

optimum value of total profit of the retailer.
Consider the following example to validate the mathematical formulation.

Example Let A = $ 5000 per order, a = 5 days, b = 10 days, c = $ 30 per unit, h =
$ 5/unit/day, θ = 0.2, α = 300, β = 2. Demand R(p) = α −βp units/day. Authors
have considered the reduced deterioration rate m(ξ) = 1 − e(−k·ξ); where k = 0.06
is the simulation coefficient representing the change in the reduced deterioration rate
per unit change in capital (Dye 2013). Moreover, authors assume the probability

density function of x, f (x) =
{ 2x

b2−a2 ; a ≤ x ≤ b
0 ; otherwise

where a = 5 ≤ x ≤ 10 = b,

with mean μ = 7.7777 and standard deviation σ = 1.4163. The form of pd f is
selected in such a way that probability of product will start deteriorating, increases
with time.

By following the procedure mentioned above to get the optimal values of all
the decision variables, optimal values of decision variables and the total profit are
obtained as mentioned in Table 6.1 for both scenarios with preservation and without
preservation.

Concavity of the profit function can be seen from the following graphs in Fig. 6.2.
Figure 6.2 shows concavity of the profit function with preservation technology

investments. Figure 6.2a represents concavity of the profit function with respect to
selling price and cycle time, Fig. 6.2b shows that profit function is concave with
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Table 6.1 Optimal values for the inventory model

Decision
variables

Preservation cost (ξ) Retail price (p) Cycle time (T )
(days)

Total profit

With
preservation
technology
investment

$4.33 $85.73 28.89 $119, 187

Without
preservation
technology
investment

NA $88.48 20.46 $77, 169

Fig. 6.2 Concavity of profit function with respect to decision variables (with preservation)

respect to cycle time and preservation cost and Fig. 6.2c depicts concavity of profit
function with respect to selling price and preservation cost. Thus, Fig. 6.2 assures
the concavity of profit function with respect to all the decision variables.

Next, authors proceed to determine the sensitivity of total profit of retailer, preser-
vation technology cost, cycle time, and selling price with respect to change in other
inventory parameters by −20, −10, 10, and 20% as shown in Table 6.2.

Table 6.2 characterizes sensitivity analysis of decision variables and total profit
with respect to change in other inventory parameters. Table 6.2 shows that total profit
is very responsive to the parameters a, b, h, α, β, θ and k. Parameters A and c have
negligible outcome on profit. Increase in a, b, α and k results in increase in total
profit. On the other side, the total profit decreases with increase in the parameters
h, β and θ . Similarly, the sensitivity of preservation cost can be seen in the Table 6.2.
Preservation cost increases with increase in the parameters a and β, while increase
in the parameters b, c, h, α, θ and k reduces preservation technology investments.
There is ignorable effect of change in A on preservation cost. Moreover, cycle time
is very sensitive to the parameters a, b, k, α, β and θ . Other parameter’s effect is
negligible to the cycle time. Cycle time increases with increase in a, b and α while
it decreases with increase in h, k, β and θ . Selling price is very responsive to all the
parameters except A. It can be observed that with respect to increase in c and α,
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Table 6.2 Impact of change in various inventory parameters on decision variables

Inventory
parameters

Decision
variables

Percentage change in various inventory parameters

−20% −10% 0 10% 20%

Ordering
cost/order (A)

T 28.8989 28.8993 28.8998 28.9002 28.9007

P 85.7328 85.7333 85.7338 85.7343 85.7348

ξ 4.3315 4.3303 4.3291 4.328 4.3268

Profit 119,222 119,205 119,187.2 119,170 119,153

Lower limit of
deterioration
interval (a)

T 28.4 28.65 28.8998 29.16 29.42

P 85.94 85.84 85.7338 85.62 85.51

ξ 4.283 4.309 4.3291 4.343 4.351

Profit 116,375 117,754 119,187.2 120,666 122,181

Upper limit of
deterioration
interval (b)

T 27.82 28.36 28.8998 29.43 29.96

P 86.46 86.09 85.7338 85.4 85.09

ξ 4.72 4.53 4.3291 4.12 3.9

Profit 112,115 115,669 119,187.2 122,655 126,061

Cost price/unit
(c)

T 28.9033 28.9015 28.8998 28.8981 28.8964

P 85.714 85.724 85.7338 85.744 85.754

ξ 4.355 4.342 4.3291 4.316 4.304

Profit 119,275 119,231 119,187.2 119,143 119,099

Holding cost/unit
(h)

T 30.2 29.54 28.8998 28.28 27.67

P 86 85.86 85.7338 85.6 85.47

ξ 5.45 4.89 4.3291 3.77 3.2

Profit 123,528 121,329 119,187.2 117,101 115,069

Preservation
efficiency scale
(k)

T 29.71 29.21 28.8998 28.63 28.36

P 88.13 86.68 85.7338 85.03 84.47

ξ 10.82 6.75 4.3291 2.7 1.52

Profit 113,572 116,932 119,187.2 120,673 121,587

Constant demand
rate co-efficient
(α)

T 28.38 28.57 28.8998 29.26 29.61

P 70.2 77.89 85.7338 93.65 101.6

ξ 7.34 5.47 4.3291 3.53 2.93

Profit 70,199 93,026 119,187.2 148,768 181,832

Selling price
dependent
demand rate
co-efficient (β)

T 29.79 29.3 28.8998 28.6 28.41

P 105.59 94.54 85.7338 78.59 72.73

ξ 2.68 3.45 4.3291 5.35 6.59

Profit 159,716 137,025 119,187.2 104,809 92,968

Natural
deterioration rate
(θ)

T 34.14 31.23 28.8998 26.99 25.4

P 86.72 86.2 85.7338 85.32 84.95

ξ 4.75 4.54 4.3291 4.13 3.94

Profit 136,578 126,966 119,187.2 112,744 107,306
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Fig. 6.3 Sensitivity of selling price with respect to cost price and holding cost (with preservation
and without preservation)

selling price also increases. On the other side, increase in a, b, h, β, θ and k result
in decrease in the selling price. It can be observed from the graph that Total profit
and cycle time do not respond significantly to the change in A. Profit and cycle time
both increases with increase a, b and α. On the other hand, increase in c, h, β and θ

results in decrease in both the profit and cycle time.
The retailer should wisely decide the investment amount for preservation tech-

nology to reduce the deterioration rate so as the total cost does not increase and
the total profit can be maximized. Sensitivity analysis of selling price, cycle time,
and total profit with preservation technology investments and without preservation
technology investments is shown in following Figs. 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and
6.9.

Figure 6.3 shows that selling price is equally sensitive with respect to cost price
in both situations. Increase in cost price gives rise to increase in selling price, which
is slightly less in with preservation compared to without preservation case. Simi-
larly, increase in holding cost results the hike in selling price. Selling price without
preservation case remains higher than the preservation technology.

Figure 6.4 shows that selling price increases with increase in α and decreases with
an increase in β. This is clearly reflected in the graph above. It can be noted that
selling price in with preservation case is slightly less than the selling price in without
preservation case.

Figure 6.5 depicts sensitivity of cycle time with respect to cost price and holding
cost. First graph represents effect of change in cost price on cycle time and second

Fig. 6.4 Sensitivity of selling price with respect to demand components (with preservation and
without preservation)
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Fig. 6.5 Sensitivity of cycle time with respect to cost price and holding cost (with preservation and
without preservation)

graph shows effect of change in holding cost on cycle time. In both scenarios ‘with
preservation’ and ‘without preservation’ the cycle time remains almost the samewith
increase in cost price, while cycle time decreases with increase in holding cost in both
cases. Cycle time remains higher in preservation case compared to no-preservation.

Figure 6.6 characterizes the change in cycle timewith respect to change in demand
components. Cycle time increases with increase in α. Cycle time remains higher in
preservation case compared to without preservation because the preservation tech-
nology let the product last for a longer time. On the other side, increase in β results
into decrease in the cycle time.

Figure 6.7 represents the effect of change in total profit with respect to cost
price and holding cost. First graph represents effect in total profit due to increase in
cost price and second graph shows effect of increase of holding cost on total profit.

Fig. 6.6 Sensitivity of cycle time with respect to demand components (with preservation and
without preservation)

Fig. 6.7 Sensitivity of total profit with respect to cost price and holding cost (with preservation
and without preservation)
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Fig. 6.8 Sensitivity of Total Profit with respect to demand components (with preservation and
without preservation)

Fig. 6.9 Sensitivity of Total Profit and Cycle Time with respect to deterioration (with preservation
and without preservation)

Increase in the costs associated with inventory results in decrease in total profit which
is clearly reflected in both graphs. The total profit in preservation is higher than profit
with no preservation.

Figure 6.8 shows how the total profit changes with respect to change in demand
components. Total profit increases with the increase in α and decreases with increase
in β in both the scenario ‘with preservation’ and ‘without preservation’. Total profit
is higher in preservation technology case compared to no-preservation case.

Figure 6.9 depicts how the change in the deterioration rate affects the total profit
and the cycle time. First graph shows change in total profit with respect to increase in
deterioration rate. Here it can be noticed that with increase in the rate of deterioration
total profit decreases. However in ‘with preservation’ due to preservation technology
the decrease in total profit is lower compared to ‘without preservation’ case. Second
graph denotes the change in cycle time with respect to increase in deterioration.
With increase in the deterioration rate, the cycle time decreases in both scenarios.
Due to preservation technology the decrease in ‘with preservation’ is less than that
in ‘without preservation’.

6.5 Conclusion

Authors have studied non-instantaneous deteriorating products with random start
time of deterioration with preservation technology investments. Demand of the
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product is considered to be price sensitive. Study of the model includes comparison
of ‘with preservation investments’ and ‘without preservation investments’ through
the graphs and detailed analysis has been carried out. The model is validated through
numeric example. Sensitivity analysis has been carried out to check the effect of
different parameters on decision variables. It is observed from the study that invest-
ments in preservation technology give better profit than the non-preservation tech-
nology case. However, the retailer needs to take care of investments in preservation
technology because it helps in reducing the deterioration rate but the higher amount
of investments can increase the capital cost and decrease the total profit.

Acknowledgements Authors thank DST-FIST file # MSI-097 for technical support to department
of mathematics.
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Chapter 7
An Inventory Model for Deteriorating
Items with Constant Demand Under
Two-Level Trade-Credit Policies

Nita H. Shah , Kavita Rabari , and Ekta Patel

Abstract In today’s competitive market, inventory management is a difficult job
for every business enterprises. Objects are getting deteriorate after some period of
time and result into economic loss. Keeping this in mind, this inventory model is
for perishable objects where the rate of deterioration is considered to be constant
with a constant demand rate. To reflect the real-life situation, the model explores
a two-level trade-credit policy, i.e. the supplier offers certain credit period to the
retailer and simultaneously the retailer permits a permissible delay in payment to
the consumers that helps to increase the demand. If the retailer clears its entire
amount during the end of first credit period, then the retailer can utilize it to earn
interest. Moreover, if the retailer fails to clear the account by the end of first period,
then he/she is allowed to pay off the balance after first credit period or by the end
of second credit period. Here, the financial loans can be reduced through constant
demand and interest earned. This paper uses a classical optimization method and
calculated several numerical examples to elaborate the model. Convexity of cost
function is proved through graphs. The objective of the paper is to minimize the total
cost with respect to the inventory cycle time. At last, sensitivity analysis is done to
study the effects of varying inventory parameters on decision variable and optimal
solution.

Keywords Constant deterioration · Constant demand rate · Two level
trade-credit · Cycle time · Sensitivity
MSC 90B05

7.1 Introduction

With the rapid development of competition and technology between the business
enterprises, companies are feeling the necessity of inventory models as a decision-
making device for developing their business effectively. It is well-known fact that a
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general model always represents an enhanced outcome in provisions of maximizing
the profit or minimizing the total cost. The traditional inventory models are based
on the fact that a retailer has to pay as soon as he received the product. However,
this may not be correct. In real-life situations, it is common to observe that the
supplier will offer certain time period to the retailer to settle the account. The term
is known as trade-credit policy. The company often uses this policy to promote
the products. Generally, if the amount is paid before the permissible period, the
interest charge is zero and the retailer can use the sale revenue to earn interest.
Nevertheless, if the retailer is not able to pay off the amount within the permissible
period, an interest is charged by the supplier. This brought up economic advantage
to the retailers as they can make some interest from the proceeds. Hence, this model
develops a two-level credit policy to reflect a real-life situation. Also, items like
fruits, vegetables, dairy products, etc. are perishable with time. It results in loss of
marginal values of products, loss of profit and loss of goodwill that lead to reduce
the usefulness of the product. Therefore, deterioration plays a vital role and cannot
be ignored. Together with rate of deterioration, demand is also one of the factors that
influence the sale a lot. Here, in this model instead of taking demand dependent on
some specific parameters, to establish model for general cases, the demand rate is
considered to be constant. By keeping this in mind, an inventory model is developed
with constant demand and deterioration rate. This paper calculates the inventory
cycle time where total cost is minimized with respect to decision variables. The
paper is structured as follows: Sect. 7.2 is literature review. In Sect. 7.3, notations
and assumptions are introduced that are used in proposedmodel. The inventorymodel
is formulated in Sect. 7.4. Section 7.5 contains computational algorithm. Section 7.6
describes several numerical examples together with sensitivity analysis with respect
to inventory parameters. At last, Sect. 7.7 provides conclusion with future scope.

7.2 Literature Review

The trade-credit policy is widely used in inventory models to increase the sale of
commodities and to attract more customers. Teng and Chang (2009) developed an
EPQ model for two-level credit policy and develop some appropriate results for
obtaining optimal solution. Wu et al. (2014) proposed a model for deteriorating
items having date of expiration with two-level credit policy. They proved not only
the existence of optimal cycle time and trade credit but also the uniqueness of the
solution under some numerical examples to modify the problem. Cheng and Kang
(2010) developed an integrated model with delay in payment. The model considers
vendor–buyer and buyer–customer relationship and presented a price-negotiation
scheme to allocate the increased amount of profit. Chung et al. (2014) established
an economic production quantity model for exponentially perishable objects under
two-level credit periods. The objective is to determine optimal replenishment policy
to minimize the relevant cost. Teng et al. (2013) provided a linear non-decreasing
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demand function of time under permissible credit period. Sarkar et al. (2015) intro-
duced a model for variable deterioration with fixed lifetime products. In this model,
numerical examples are illustrated with graphical representation. Sarkar et al. (2013)
developed a model for perishable objects where the demand is considered to be time
dependent. The objective is to maximize the total profit. Shah et al. (2013) proposed
an inventory model with non-instantaneous deteriorating item. In this model, the
demand rate is assumed to be a function of selling price and advertisement of an item.
Chung (2011) developed an inventory model for two-level credit period policy. The
condition that interest charged should be greater than the interest earned is relaxed in
this model. Tsao et al. (2011) focused on the production problem under credit policy
and reworking of imperfect items. Sang and Tripathi (2012) proposed an EOQmodel
for deteriorating items with constant demand. The production rate is demand sensi-
tive. Due to continuous demand, shortages occurred and are completely backlogged.
Srivastava and Gupta (2007) developed an infinite time-horizon inventory model
for perishable objects assuming constant and time-dependent demand rate. Khanra
et al. (2011) developed an EOQmodel for deteriorating item with trade-credit policy
where the demand is time dependent. Sarkar and Sarkar (2013) introduced a model
for deteriorating item under stock-dependent demand. They consider backlogging
rate and deterioration as time-varying function. Mishra et al. (2013) gave an inven-
tory model for deteriorating items having time-dependent demand and holding cost.
The model permits partial backlogging due to shortages.

Tripathi and Mishra (2012) developed an inventory model for constant demand
and constant deterioration rate under trade credit. Skouri et al. (2011) proposed a
model for ramp-type demand rate where the deterioration rate is constant and the
unsatisfied demand is partially backlogged. The model allows permissible delays in
payment to attract the customers. Shah (2017) developed a three-layered integrated
inventory model for perishable objects under two-level trade-credit policy having
quadratic demand. Lio et al. (2018) developed a two-level trade-credit policy for
finding feasible order quantity. Cardenas et al. (2020) proposed an EOQ model for
nonlinear stock-dependent holding cost in which stock-dependent demand is to be
considered. Tiwari et al. (2020) analysed an optimal ordering policy for deteriorating
items by assuming complete backlogging. Yang (2004) developed an EOQ model
using quantity discount. Li (2014) suggested an optimal control production model
under permissible tradable emission. Yang (2019) studied an inventory model for
deteriorating items under two-level trade credit with limited storage capacity. This
model extends the existing literature of inventory models for deteriorating objects.
As with credit periods, deteriorõation is the key factor that influences the objective
function directly.
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7.3 Notations and Assumptions

The model is formulated using following notations and assumptions.

Notations

R Constant demand rate

θ Constant rate of deterioration

h Inventory holding cost per unit (dollars/unit)

C Purchase cost per unit (dollars/unit)

p Selling price per unit (dollars/unit)

M The first credit period by the supplier to the retailer’s without spare charges

N Second credit period with an interest of I2, where N > M

A Ordering cost per order(dollars/order)

Ic1 Interest charge per unit per year during time interval [M, N ] (dollars/year)
Ic2 Interest charge per unit per year during time interval [N , T ] (dollars/year)
Ie Interest earned per unit per year (dollars/year)

T Cycle time (in years)

I (t) Inventory level during time [0, T ]
TC(T ∗) Total cost per year (dollars/year)

W1
p
C M + pIe

2C N 2

W2
p
C N + pIe

2C

(
M2 + (N − M)2

)

Assumptions

• Demand rate for object is constant with time.
• Shortages are not permissible.
• Replenishment rate is infinite.
• For M > T , the rate of interest charge is zero and the retailers earn some interest

on sales revenue by the time M.
• For M ≤ T , different cases are possible. Initially, if the retailer clears the account

byM , the interest charge is zero and he/she can earn interest of Ie on sales revenue
throughout the cycle time T . Secondly, if the retailer is unable to pay up to M or
before time period N , then the supplier charges an interest of Ic1 on the retailer
and also utilizes the sales revenue to clear the unpaid amount. Lastly, if the retailer
pays after time period N , an interest of Ic2 is charged on retailer.

7.4 Mathematical Model

In this section, themodel is formulated for two-level trade-credit policies for constant
demand and deterioration rate. Initially at t = 0, the production rate is Q given by
R
θ

(
eθT − 1

)
, where the demand is considered to be constant, i.e. R. During time
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interval [0, T ], the inventory level decreases due to the effect of deterioration and
customer’s consumption rate and reaches zero at the end of cycle time t = T .

The differential equation of the inventory system for the time [0, T ] is given by

dI (t)

dt
= −θ I (t) − R (7.1)

Using boundary condition I (T ) = 0, the inventory level is

I (t) = R

θ

(
eθ(T−t) − 1

)
(7.2)

The order quantity Q is obtained using initial condition I (0) = Q and is given
by

Q = R

θ

(
eθT − 1

)
(7.3)

The costs comprising of the total annual cost are listed below:

• Ordering cost (OC) = A
T

• Holding cost (HC) = h
T

T∫

0
I (t)dt

• Related to the last two assumption, there are four different cases with respect to
interest earned and interest charged per year

Case 1: T ≤ M .
Following Liao et al. (2018), in this case, the credit period M is greater than the

cycle time T , and the retailers sold out all the products before the permissible credit
period. So, the interest charge on retailer is zero.

Interest charge (IC1) = 0.
There are two different elements for the interest earned as mentioned bellow:
Firstly, the interest earned by the retailer during time interval [0, M] is

Interest earned (IE11) = pIe
T

T∫

0
Rtdt .

Secondly, the interest earned during time [M, T ] is

Interest earned (IE12) = 1
T

(
pIeRT + pRT 2 I 2e

2

)
(M − T ).

Therefore, the total interest earned is given by
Interest earned

(IE1) = IE11 + IE12 = pIe
T

T∫

0
Rtdt + 1

T

(
pIe RT + pRT 2 I 2e

2

)
(M − T ).

Case 2: M < T ≤ W1.
Here, as T ≤ W1 it means the retailers clear all its account up to M . Hence, the

interest charge is zero.
Interest charge (IC2) = 0.
There are three different elements for interest earned as follows:
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Firstly, interest is earned by the retailer on sales revenue during time [0, M].

Interest earned (IE21) = pIe
T

M∫

0
Rtdt .

Secondly, the retailer earns interest on sales revenue due to the sale up to cycle
time T .

Interest earned (IE22) = pIe
T

T−M∫

0
Rtdt .

Lastly, the interest earned by the retailer on the sales revenue during time [M, T ].

Interest earned (IE23) = Ie
T

(

p
M∫

0
Rdt + pIe

M∫

0
Rtdt − CRT

)

(T − M).

So, the total interest earned in this case is given by
Interest earned

(IE2) = IE21 + IE22 + IE23 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

pIe
T

M∫

0

Rtdt + pIe
T

T−M∫

0

Rtdt

+ Ie
T

⎛

⎜
⎝p

M∫

0

Rdt + pIe

M∫

0

Rtdt − CRT

⎞

⎟
⎠(T − M)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎠

Case 3: W1 < T ≤ W2.
Here, asW1 < T that is, the sales revenue achieved by the retailer is less than the

purchase cost up to time period M . Also, T ≤ W2 which means the retailer decides
to decrease the loan amount by the demand and sales revenue and decides to clear
its entire purchase amount up to N or before that. The unpaid balance is given by

Unpaid balance (U1) = CQ − p
M∫

0
Rdt − pIe

M∫

0
Rtdt .

Charges applied on unpaid balance with an interest rate of IC1 for time M .

Interest charge IC3 = IC1U 2
1

pQ

T−M∫

0
I (t)dt .

Interest earned for this case is as follows:
Firstly, Interest earned by retailers on sales revenue for time [0, M] is.
Interest earned (IE31) = pIe

T

M∫

0
Rtdt .

Secondly, the retailer uses the sales revenue to gross interest throughout the time
from

M + U1
pα to T . So, interest earned is given by

Interest earned (IE32) = pIe
T

T∫

M+ U1
Rp

Rtdt .

Hence, the total interest earned is given by

Interest earned (IE3) = IE31 + IE32 = pIe
T

M∫

0
Rtdt + pIe

T

T∫

M+ U1
Rp

Rtdt .
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Case 4: W2 < T .
Here in this case, the retailer is unable to clear the account at M and decided to

pay it after N .
For interest charges, there are two different elements as follows:
Firstly, the supplier charges an interest of I1 on unpaid balance U1 during time

[M, N ] is
Interest charged (IC41) = Ic1(N−M)U1

T .
Secondly, charge on the unpaid balance with rate of Ic2 at time period N . Unpaid

balance is

Unpaid balance (U2) = CQ − pIe
M∫

0
Rtdt − pIe

N−M∫

0
Rtdt − p

M∫

0
Rdt −

p
N−M∫

0
Rdt , the interest charge

Interest charge (IC42) = Ic2U 2
2

pQ

T∫

N
I (t)dt .

The total interest charge is

Interest charge (IC4) = IC41 + IC42 = Ic1(N−M)U1
T + Ic2U 2

2
pQ

T∫

N
I (t)dt .

The interest earned is given by

Interest earned (IE4) = pIe
T

M∫

0
Rtdt .

The total annual cost related to the different cases is mentioned below:

TC1(T ) = (OC + HC + IC1 − IE1), for T ≤ M (7.4)

TC2(T ) = (OC + HC + IC2 − IE2), for M < T ≤ W1 (7.5)

TC3(T ) = (OC + HC + IC3 − IE3), for W1 < T ≤ W2 (7.6)

TC4(T ) = (OC + HC + IC4 − IE4), for W2 < T (7.7)

where total cost is given below. Here T ∗
i denotes the optimal cycle time for TCi (T )

on T > 0 if T ∗
i exists for i = 1 to 4.

TC(T∗) = max{TC1(T
∗
1 ),TC2(T

∗
2 ),TC3(T

∗
3 ),TC4(T

∗
4 )} (7.8)

Here,

TC(T ∗
1 ) = max{TC1(T ) : 0 < T ≤ M} (7.9)

TC(T ∗
2 ) = max{TC2(T ) : M < T ≤ W1} (7.10)



98 N. H. Shah et al.

TC(T ∗
3 ) = max{TC3(T ) : W1 < T ≤ W2} (7.11)

and

TC(T ∗
4 ) = max{TC4(T ) : W2 ≤ T } (7.12)

7.5 Computational Algorithm

The model uses classical optimization method. The goal is to minimize the total cost
for the inventory model. The algorithm is based on the preceding steps.

Step 1: Assign numerical values to the inventory parameters.
Step 2: Compute first-order partial derivative for

TC1(T ),TC2(T ),TC3(T ),TC4(T ) with respect to the decision variable T and
equating them to zero.

∂TC1(T )

∂T
= 0,

∂TC2(T )

∂T
= 0,

∂TC3(T )

∂T
= 0,

∂TC4(T )

∂T
= 0 (7.13)

An optimal value of decision variable is T obtained using Eq. (7.13). Hence, the
total cost for all the cases can be solved using Eqs. (7.4) to (7.7), and the optimal total
annual cost is the one that is satisfied by Eq. (7.8) that also satisfies the respective
condition.

Step 3: Convexity of total annual cost is confirmed by means of graphs.

7.6 Numerical Example and Sensitivity Analysis

Example 1 For α = 9000, C = $4/unit, p = $20/unit, θ = 0.1, h = $2/unit/year,
A = $200/order, Ie = $0.11/$/year, Ic1 = $0.14/$/year, Ic2 = $0.20/$/year, M =
0.15 year, N = 0.2 year. Using the above procedure, the optimal decision variable is
T ∗
1 = 0.103 year that gives TC(T ∗) = $916.31.

Example 2 For α = 400, C = $40/unit, p = $50/unit, θ = 0.2, h = $38/unit/year,
A = $156/order, Ie = $0.04/$/year, Ic1 = $0.05/$/year, Ic2 = $0.06/$/year, M =
0.12 year, N = 0.15 year. Using the above procedure, the optimal decision variable
is T ∗

2 = 0.140 year that gives TC(T ∗) = $2145.23.

Example 3 For α = 120,C = $13/unit, p = $14/unit, θ = 0.2, h = $4/unit/year, A=
$8/order, Ie = $0.04/$/year, Ic1 = $0.05/$/year, Ic2 = $0.09/$/year, M = 0.15 year,
N = 0.17 year. Using the above procedure, the optimal decision variable is T ∗

3 =
0.170 year that gives TC(T ∗) = $83.88.
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Example 4 For α = 80,C = $13/unit, p = $13.001/unit, θ = 0.02, h = $4/unit/year,
A = $0.8/order, Ie = $0.005/$/year, Ic1 = $0.0051/$/year, Ic2 = $0.0052/$/year, M
= 0.05 year, N = 0.05001 year. Using the above procedure, the optimal decision
variable is T ∗

4 = 0.070 year that gives TC(T ∗) = $22.55.

Convexity of optimal solutions through graphs is shown below:

Convexity of Example 1 Convexity of Example 2

Convexity of Example 3 Convexity of Example 4

Also, some numerical results depending on the different cases are discussed below
in Table 7.1.

A sensitivity analysis is done that represents the impact of changing inventory
parameters by−20%,−10%,+10% and+20% on decision variable and on the total
cost. Here, an analysis is performed for the fourth case as it includes all the cases.

Following results are being observed through Table 7.2.

• The more will be the demand rate, less will be the optimal cycle time and larger
will be the total cost. Here, the increase is not beneficial as it increases the total
cost.
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Table 7.1 Optimal solutions for different cases with data

Parameters
and decision
variable

1 2 3 4 5 6

α 9000 120 104 400 190 198

C 4 13 25 40 45 44

p 20 14 26 50 45.001 44.0001

θ 0.1 0.2 0.025 0.2 0.01 0.01

h 2 4 6 38 7 7

A 200 8 10 156 10 10

Ie 0.11 0.04 0.01 0.04 0.0075 0.00005

IC1 0.14 0.05 0.012 0.05 0.01001 0.0100005

IC2 0.20 0.09 0.015 0.06 0.010011 0.0100051

M 0.15 0.15 0.10 0.12 0.114 0.12001

N 0.2 0.17 0.12 0.15 0.11401 0.12009

W1 0.761 0.162 0.104 0.151 0.11405 0.12001

W2 1.007 0.184 0.125 0.188 0.11406 0.12009

T T ∗
1 = 0.103 T ∗

3 = 0.17 T ∗
4 = 0.10 T ∗

2 = 0.14 W ∗
2 =

0.11406
W ∗

1 =
0.12009

Optimal solutions

TC(T∗) 916.31 83.88 11.38 2145.23 159.7 166.5

• With an increase in purchase cost, the demand for the products due to high rate
decreases that influences the cycle time. The cycles’ time increases, and it is
obvious that the total cost increases. Therefore, the increase is not advisable.

• Increase in selling price reduces the total cost. So, the change is acceptable.
• Higher deterioration rate forces the retailer to invest more. The change is not

preferable as it increases the optimality cost.
• The impact is negative as holding cost and ordering cost are the key factors that

directly influence the budgets of a company.With an increase in these parameters,
the total cost increases.

• An increase in the total cost decreases with a decrease in cycle time.
• With an increase in parameters, total cost increases.
• Credit periods help to boost the products demand.Here, the increase is not sensible

as it increases the total cost.

7.7 Conclusion

The paper develops an inventory model for constant demand and constant rate of
deterioration. The model considers objects that are getting expired, spoilt and deteri-
orated with respect to time. It plays a crucial role in environment of marketplace, and
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Table 7.2 Sensitivity analysis

Parameters Values of parameters T Optimal solutions TC(T∗)

α 32 0.264 59.12

36 0.253 61.98

40 0.243 64.64

44 0.235 67.13

48 0.228 69.48

C 23 0.243 64.64

25.3 0.234 66.31

27.6 0.226 67.96

p 23.4 0.237 66.00

26 0.243 64.64

θ 0.016 0.2432 64.62

0.018 0.2431 64.63

0.02 0.2430 64.64

h 3.6 0.246 62.68

4 0.243 64.64

4.4 0.240 66.57

4.8 0.237 68.49

A 8 0.229 56.17

9 0.236 60.47

10 0.243 64.64

Ie 0.18 0.2431 64.64

0.198 0.2427 64.39

0.216 0.242 64.13

Ic1 0.167 0.244 64.21

0.185 0.243 64.64

Ic2 0.152 0.249 64.16

0.171 0.246 64.41

0.19 0.243 64.64

M 0.072 0.2428 63.05

0.08 0.2426 61.52

N 0.108 0.236 64.46

0.12 0.243 64.64
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the loss that occurs due to that cannot be ignored. The marginal insight shows that
higher deterioration rate forces the retailer to spend more. So, it is always prefer-
able to invest more in reducing the rate of deterioration. Also, permissible credit
period helps to boost the demand. This model considers a two-level credit period.
The model evaluates the optimal cycle time under different cases while minimizing
the total cost. The sensitivity analysis shows that the total relevant cost is sensitive to
selling price and credit periods. A small change in these parameters highly fluctuates
the total cost. The model uses classical optimization method for solution procedure.
The present work can be expanded in different ways. One can consider demand to be
time dependent or stock dependent with variable deterioration rate having variable
holding cost. For smooth business, the companies may offer discounts to attract the
customers. To control the rate of deterioration, preservation technology investments
are made.
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Chapter 8
Supply Chain Coordination
for Deteriorating Product with Price
and Stock-Dependent Demand Rate
Under the Supplier’s Quantity Discount

Chetan A. Jhaveri and Anuja A. Gupta

Abstract In this research paper, optimal ordering and pricing strategy for deteri-
orating products is developed when demand of a product depends on selling price
and stock availability. Without supply chain coordination, the buyer makes policy to
maximize its own profit which may not be beneficial to the vendor. Vendor can offer
quantity discount as an incentive to encourage buyer to participate in the coordi-
nated strategy. To coordinate the vendor–buyer decisions, two coordination policies
are presented in this paper. First, coordinated supply chain strategy is developed to
show that integrated supply chain can get higher channel profits. Later, coordinated
supply chain with quantity discount strategy is derived and the total profits under the
two policies are compared. The numerical example demonstrates that the vendor–
buyer coordination along with quantity discount results in an extra total profit and
hence it is significant to consider the coordinated vendor–buyer supply chain strategy
with quantity discount. Sensitivity analysis is carried out to understand the effect of
various key parameters on the optimal solution.

Keywords Price-dependent demand · Stock-dependent demand · Deterioration ·
Supply chain coordination · Quantity discount · All-units quantity discounts

8.1 Introduction

Supply chain management can be explained as the systematic coordination of all the
business processes like procurement of raw material, selection of vendor, product
design, inventory management, manufacturing, and end-customer delivery. Supply
chain management has been defined by Lambert et al. (1998) as the coordination
of key business processes starting from raw material procurement till end-customer
delivery of the product or service in such a way that it adds value to the customers
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as well as all the other stakeholders of the organization. A supportive relationship
between the buyer and supplier would include mutual trust, sharing information,
resource, and profit. This strong relationship is essential so as to have a successful
supply chain network (Yang 2004). As a result, a mutually beneficial environment
is created between the parties by increasing their joint profits that help the buyer in
providing a faster response to the customer demand.

Supply chain coordination is an integral part of an organization, which is used to
coordinate and focus on all the relevant resources on the supply chain thus optimizing
the use of the available resources and capabilities involved in the overall supply
chain. According to Yang (2004), there is rise in the attention given for coordinating
the supply chain in organizations due to reasons like depletion in the resources,
increase in competition, globalization trend, increasing costs, faster response times,
and decreasing product life cycles. Increasing the speed at which materials move in
the supply chain would help to reduce the stock level, which would further lead to
cost savings for the company.

Nowadays retail stores display a wide array and variety of products of various
color, brand, price, and flavor. This is because the companies have observed that a
broader collection of products help them to attract more customers into purchasing
them. Thus, demand for product is influenced by display stock and does not remain
constant. Practically not all the products in the market can have a constant demand,
hence it arises the need for development of inventory controlmodels to tackle variable
demands. In the past, studies have been done on inventory and pricing strategies
for price-dependent demand and supplier’s quantity discount schemes. Also, it is
observed that product’s price as well as its stock-display level affects its demand. It
is believed that a large pile of stock display of a particular product in the supermarket
will influence customers to purchase it as compared to a product that has a small pile
on display.

Retail price of a product has a direct relationship with the demand rate while an
inverse relationship with quantity discount price. In order to motivate buyers while
making purchasing decisions, often lower costs per unit of goods or materials are
offered when purchased in larger quantities. Thus quantity discount is offered by the
vendors to persuade buyers into purchasing larger quantities. In the last few years,
ecommerce has revolutionized the entire retail industry with the use of quantity
discount schemes.

The main goal of this research study is to illustrate the importance of a coordi-
nated supply chain while managing the inventory for deteriorating products having
both price as well as stock-dependent demand rate considering the quantity discount
scheme of supplier. This has been done by developing a mathematical model for
a supply chain system, which is further explained using a numerical illustration to
investigate themanagerial implication. The second section of this paper contains rele-
vant literature review. Third section includes the mathematical modeling towards the
research objective. This section also explains various assumptions and parameters
used formodelling. Solution algorithm and a numerical example have been presented
in sections four and five respectively. Finally concluding remarks and suggestions
for the analyzed model have been provided in the last section.
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8.2 Literature Review

In this section, various relevant literatures have been discussed and classified based
on the type of inventory models.

8.2.1 Inventory Models Considering Variable Demand

Most of the products in the market have a variable demand that is affected by many
factors like price, availability, discounts, quality, and stock at display. Thus, there
is a need to formulate models based on such factors to manage the inventory so
that situations such as over-stocking and under-stocking don’t arise. Sarker et al.
(1997) have developed a model to achieve the optimal lot-size and order-level for a
certain type of goods having varied demand due to decline in quality level. In this
model authors have considered two cases wherein they have considered demand to
be constant as well as dependent on the stock level. Various other researches have
been done where demand depends on the stock, time, or price. Such literatures have
been discussed further in this section.

8.2.2 Inventory Models Assuming Price Dependent Demand

For the price-sensitive demand, Li et al. (1996) developed a lot-for-lot joint pricing
policy and discussed the benefits obtained as a result of coordination between the
buyer and supplier. For the items having linear price function for demand,Wee (1997)
came up with an optimal replenishment policy with an objective to maximize the
net profit. For the products having constant demand rate, Wee (1998) came up with
lot-for-lot discount pricing policy. But neither of these papers considered integrating
quantity discount policy with the price-sensitive demand. Qin et al. (2007) developed
inventory models with price sensitive demand rate in a coordinated supply chain
system. Alfares and Ghaithan (2016) extended the research by Alfares (2015) by
considering the price-dependent demand to the existing model.

8.2.3 Inventory Models with Stock-Dependent Demand

Large pile of stock is kept in the display in the supermarket to attract more customers
into buying that product mainly because of the variety, visibility, and popularity.
Also, it is observed that a low stock display would give out the perception of the
product being of low quality or less sold. Thus it can be said that the demand rate
for certain types of goods is influenced by the level of stock kept in display in the
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supermarkets. Stock-dependent consumption rate inventory model was developed
by Gupta and Vrat (1986). Their model was anchored on the initial order quan-
tity demand rate instead of the immediate inventory level requirements. Teng and
Chang (2005) derived an economic production quantity (EPQ) model to show the
dependence of demand rate for specific types of items on selling price per unit and
on-display stock with an objective to maximize the profit as well. Goyal and Chang
(2009) derived a model to identify the optimal ordering quantity for the buyer as the
demand rate depends on the display stock level. Mandal and Phaujdar (1989), Datta
and Pal (1990), Urban (2005), Hou and Lin (2006), Chang et al. (2010), Datta and
Paul (2001), Sajadieh (2010) have developed and analysed various inventory models
considering stock-dependent demand.

8.2.4 Deteriorating Products

As most of the physical products are deteriorating over time, in the recent years,
the maintenance of inventories for deteriorating items have received much attention
from several researchers. When the utility or usefulness of an item decreases through
ways of evaporation, spoilage, or decay; it is known as deterioration of an item.
Deterioration may happen during usual period of storage for several products like
electronic components, chemicals, drugs, foods, films, etc. Hence, the loss occur due
to deterioration of item cannot be ignored. Thus, deterioration of physical goods in
the inventory system is a very realistic feature and several researchers realized the
necessity to take this fact into consideration while developing inventory models. Giri
et al. (1996) developed an inventory model by considering demand for deteriorating
items to be stock dependent with a constant rate of deterioration. An objective of this
studywas tomaximize the total profit and find out the appropriate number of orders in
the finite planning horizon. Yang andWee (2000) presented policies for deteriorating
items having constant demand rate. Lee and Dye (2012) formulated a deteriorating
inventory model having stock-dependent demand. The objective of this model was
to know the strategies for optimal replenishments along with maximizing the total
profit per unit time. A lot of models for deteriorating items and stock-dependent
demand rate in the literature have aimed towards minimizing the inventory costs,
but Pando et al. (2018) has considered the rate of deterioration per unit time to be
constant part of inventory level with an objective to maximize the total profit per
unit time. To study more on deteriorating items literatures can be reviewed from the
research done by Raafat (1991), Wee (1999), Yang and Wee (2005) and Sarkar et al.
(2013).
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8.2.5 Supply Chain Coordination

With the increased market competition in the present global markets, organizations
are compelled to closely work in collaboration with their suppliers and immediate
customers. It is also observed that through better coordination of the supply chain,
stocks across the supply chain can be more efficiently managed. In the lack of coor-
dination in the supply chain, each player will act independently to maximize their
profit. Thismay not be the beneficial to the other players of the chain and hence it may
result in poor performance of the entire supply chain. The supply chain coordination
between the vendor and buyer was first studied by Clark and Scarf (1960); wherein it
was assumed that buyer is the sole decision maker of the entire ordering process and
hence the solution obtained from such models were not economical for the vendor.
Enumerable studies have been done on supply chain coordination. In most cases the
resulting profits are distributed equally among supplier and retailer, thus benefiting
both the entities. There should be a proper flow of information among the parties in
order to have successful supply chain coordination. If one of the parties has better
information than others, that might turn out to be his strategic advantage, and might
use that information to gain cooperation from other parties. In such cases, the less
informed parties try to offer incentives so as to provoke the other party to disclose his
private information. The information shared by the parties affects themanagers while
decision-making. Thus in order to avoid these situations, there should be a mutual
flow of information among the parties to maintain the supply chain coordination.
Researchers like Goyal and Gupta (1989), Vishwanathan (1998) have come up with
inventory models that are applicable to such kind of problems that involve supply
chain coordination between vendor and buyer.

8.2.6 Inventory Models with Quantity Discount

Researchers recognized that quantity discounts on selling price can provide economic
advantages like lower unit purchase cost and lower procurement costs for both vendor
and buyer. Some researchers investigated the integrated buyer-vendor inventory prob-
lems considering quantity discounts. A fixed order quantity decision model consid-
ering the discounting scheme was developed by Lal and Staelin (1984) to benefit
the buyers. Vendor oriented optimal quantity discount policy to maximize vendor’s
profitwith no additional cost to the buyer, was studied bymany researchers;Monahan
(1984) was amongst those early researchers. Monahan’s model was generalized and
taken further by Lee and Rosenblatt (1986); who developed a fixed order quantity
decision model with a discounting scheme that would benefit the buyers. To find
out replenishment interval and discount price for any desirable negotiation factor
an algorithm was developed by Chakravarty and Martin (1988). Joglekar (1988) has
commented on thework done byMonahan (1984) and then explained themodel using
a numerical illustration.This algorithmwas a scheme to build up amutual cost sharing
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scheme between buyers and sellers. A simple approach has been proposed by Goyal
and Gupta (1990) to identify the optimal order quantity when discounts are offered
by the vendor on larger purchases by the buyer. To determine an optimal pricing and
replenishment strategy, Weng and Wong (1993) developed a general discount model
considering all-unit quantity. For their model Weng and Wong considered demand
to be price sensitive. Vendor’s quantity discount was considered by Weng (1995) in
another study from the point of view of cutting down vendor’s operating cost along
with increasing buyer’s demand. Burwell et al. (1997) developed an inventory model
for price-dependent demand considering all-unit quantity discount with an objective
to determine the selling price and the optimal lot size. This model by Burwell et al.
(1997) wasmodified by Chang (2013) with an objective to maximize the profit and to
determine the accurate optimized values for the lot size and the selling price. Various
other inventory models have been developed by Li and Huang (1995), Corbett and
Groot (2000), Qi et al. (2004), Li and Liu (2006), Transchel andMinner (2008), Datta
and Paul (2001), Zhan et al. (2014), Yin et al. (2015), Alfares and Ghaithan (2016)
considering the quantity discount offered by the vendor to the buyer. A manager can
use order size-based quantity discounts to achieve channel coordination. Very few
inventory models have been developed in the recent literature considering quantity
discount scheme. Thus, in this paper, the authors have considered quantity discount
as one of the parameters that affects supply chain coordination for deteriorating
products while determining the demand rate.

In the literature, several research studies on inventory models were found to
be developed for quantity discount and stock-dependent demand while considering
supply chain coordination between the vendor and the buyer. There were alsomodels
on deterioration, variable demand and price dependent demand, but not a single
model has considered all these factors simultaneously. Thus in this research paper,
the authors have developed an inventory model for deteriorating products with stock
and price dependent demand rate considering quantity discount scheme offered by
suppliers to the buyer with the presence of supply chain coordination between the
two parties. Table 8.1 summarizes the literatures reviewed for this paper on the basis
of various features.

8.3 Mathematical Modelling and Analysis

Following assumptions are used to derive the mathematical models in this paper:

(a) The rate of replenishment and lead time are considered to be instantaneous and
constant respectively.

(b) The rate of demand decreases linearly with retail price of the product.
(c) All-unit quantity discount is offered by the vendor to the buyer.
(d) The buyer and the vendor share their complete information with each other.
(e) Shortage is not permitted.
(f) A sole unit having a steady deterioration rate is considered.
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Table 8.1 Summary of literature review based on various features

Authors Supply chain
coordination

Price-dependent
demand

Stock-level
dependent
demand

Quantity
discounts

Deterioration

Alfares (2015) ✓ ✓

Alfares and
Ghaithan
(2016)

✓ ✓

Chakravarty
and Martin
(1988)

✓

Chang et al.
(2010)

✓ ✓

Chang (2013) ✓ ✓

Clark and
Scarf (1960)

✓

Corbett and
De Groote
(2000)

✓ ✓

Datta and Pal
(1990)

✓

Datta and Paul
(2001)

✓ ✓

Dye and Yang
(2016)

✓ ✓

Giri et al.
(1996)

✓ ✓

Gupta and
Vrat (1986)

✓

Goyal (1977) ✓

Goyal and
Gupta (1989)

✓

Goyal and
Chang (2009)

✓

Hou and Lin
(2006)

✓ ✓ ✓

Joglekar
(1988)

✓

Lal and
Staelin (1984)

✓ ✓

Lambert et al.
(1998)

✓

(continued)
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Table 8.1 (continued)

Authors Supply chain
coordination

Price-dependent
demand

Stock-level
dependent
demand

Quantity
discounts

Deterioration

Lee and
Rosenblatt
(1986)

✓

Lee and Dye
(2012)

✓ ✓

Li and Huang
(1995)

✓ ✓

Li et al.
(1996)

✓ ✓

Li and Liu
(2006)

✓ ✓

Mandal and
Phaujdar
(1989)

✓ ✓

Monahan
(1984)

✓

Pando et al.
(2018)

✓ ✓

Qi et al.
(2004)

✓ ✓

Qin et al.
(2007)

✓ ✓ ✓

Raafat (1991) ✓

Sajadieh et al.
(2010)

✓ ✓

Sarkar et al.
(2013)

✓ ✓

Sarker et al.
(1997)

✓ ✓

Teng and
Chang (2005)

✓ ✓ ✓

Transchel and
Mirner (2008)

✓ ✓

Urban (2005) ✓

Viswanathan
(1998)

✓

Wee (1997) ✓ ✓

Wee (1998) ✓ ✓ ✓

Wee (1999) ✓ ✓ ✓

(continued)
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Table 8.1 (continued)

Authors Supply chain
coordination

Price-dependent
demand

Stock-level
dependent
demand

Quantity
discounts

Deterioration

Weng and
Wong (1993)

✓ ✓

Weng (1995) ✓ ✓

Yang and Wee
(2000)

✓ ✓

Yang (2004) ✓ ✓ ✓

Yang and Wee
(2005)

✓ ✓

Yin et al.
(2015)

✓ ✓

Zhang et al.
(2014)

✓ ✓

Source own

(g) Deterioration of the units will be considered only after they enter the inventory.
(h) The deteriorated units cannot be repaired or replaced.
(i) Carrying cost will be applied only to the good units.
(j) Supply chain system with single buyer and single vendor is considered.

In this paper, three different cases have been discussed. The vendor–buyer collab-
oration and quantity discount have not been considered in the first case, while in the
second case vendor–buyer integration without quantity discount has been consid-
ered. Finally in the third case, buyer-vendor integration as well as quantity discount
have been considered simultaneously.

Following parameters related to the vendor are considered for the research:

Ivi(t) Level of stock for case i, i = 1, 2, 3

Cv Setup cost, $ per cycle

Cvb Fixed cost to process each buyer’s order

Pv Unit cost for the vendor

Fv Cost of carrying inventory in percentage per year and per dollar

TCvi Total cost per year for case i, i = 1, 2, 3

TPvi Total profit per year for case i, i = 1, 2, 3

Sv Extra profit sharing for case 3 as compared to case 1 (Sv = TPv3 − TPv1)
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Other parameters related to the buyer are as follows:

Ibi(t) Level of Inventory for case i, i = 1, 2, 3

Cb Buyer’s ordering cost, $ per order

Pbi Purchase price per unit for the buyer for case i, i = 1, 2

Fb Cost of carrying inventory in percentage per year and per dollar

TCbi Total cost per year for case i, i = 1, 2, 3

TPbi Total profit per year for case i, i = 1, 2, 3

Sb Extra profit sharing for case 3 as compared to case 1 (Sb = TPb3 − TPb1)

Following are the variable parameters:

Tbi Replenishment period for the buyer for case i, i = 1, 2, 3

ni Number of replenishments from the vendor to the buyer per cycle for case i

Tvi Replenishment period for the vendor for case i, i = 1, 2, 3

Pm Retail price for end customer

d Price-dependent demand rate per year

Pb3 Purchase unit price for the buyer for case 3

Other parameters related to buyer and the vendor are as follows:

a Scale parameter for demand rate

b Price–dependent parameter for demand rate

β Stock-dependent selling rate parameter

θ Constant rate of deterioration of on-hand-inventory

TCi Total cost per annum (TCvi and TCbi) for case i

TPi Total profit per annum (TPvi and TPbi) for case i

γ Vendor and buyer’s extra profit sharing negotiation factor for extra profit sharing

The inventory level decreases due to the demand and constant deterioration of
available stock. Differential equation for inventory system of buyer can be presented
as

dIbi (t)

dt
+ θ Ibi (t) = −(α + β Ibi (t)), 0 ≤ t ≤ Tbi (8.1)

The boundary condition will take place when Ibi(Tbi) = 0.
The buyer’s inventory level using Spiegel (1960) is

Ibi (t) = α

θ + β

(
e(θ+β)(Tbi−t ) − 1

)
(8.2)
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Case 1: Supply chain system with the absence of both channel coordination and
quantity discount.

The total cost for the system is,

TCb1 = Buyer’ s order cost + Inventory carrying cost + Buyer’s purchasing cost

TCb1 =
[
Cb + Pb1Fb1

Tb1∫
0
Ib1(t)dt + Pb1 Ib1 (0)

]
/Tb1

TCb1 =
[
Cb + Pb1Fb1

(
α

(θ+β)2

)(
e(θ+β).Tb1 − (θ + β)Tb1 − 1

) + Pb1
(

α
θ+β

)(
e(θ+β).Tb1 − 1

)]

Tb1
(8.3)

The three terms in Eq. (8.3) represents cost of ordering, holding cost, and the cost
of purchasing, respectively. Using Taylor series approximation, e(θ+β)Tb1 in Eq. (8.3)
is replaced by 1 + (θ + β)Tb1 + ½ ((θ + β)Tb1)2 + 1/

3! ((θ + β)Tb1)3, for (θ +
β)Tb1 << 1. In Taylor series the fourth term’s percentage error is

(θ+β)3T 3
b1

3!
1 + (θ + β)Tb1 + (θ+β)2T 2

b1
2! + (θ+β)3T 3

b1
3!

For the small value of (θ +β)Tb1, the percentage error is very small. It will be even
smaller for term higher than four. Hence the term four and onwards are neglected
from equation.

The approximated total cost of buyer is,

TCb1
∼=

[
Cb

Tb1
+ Pb1 × Fb1 x

α

2
× Tb1 + Pb1 × α

(
1 + (θ + β)

2
Tb1

)]

(8.4)

According to the model’s assumption; the demand rate has a linearly decreasing
function of the retail price while an increasing function of stock-dependent selling
rate.

d = α + β Ib1(t) (8.5)

where, α = a − bPm .

Buyer’s total profit can be calculated by deducting his total cost from his total
sales revenue

TPb1 = (Sales revenue per time unit) − TCb1

Now,
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SR = Pm
Tb1

Tb1∫
0
(α + β Ib1(t)dt)

SR = Pm
Tb1

[
αTb1 + βα

(θ + β)2

(
e(θ+β)(Tb1) − (θ + β)Tb1 − 1

)]

Using Taylor’s series approximation;

SR = Pm × α

(
1 + βTb1

2

)

TPb1 = Pm × α

(
1 + βTb1

2

)
− TCb1 (8.6)

We get the following results by taking first derivatives of TPb1 with respect to Tb1

and Pm, and equating these equations to zero.

∂TPb1
∂Tb1

= 0 (8.7)

∂TPb1
∂Pm

= 0 (8.8)

The optimal values of Tb1 and Pm which are denoted by T ∗
b1 and P∗

m , will be
derived numerically as the solutions obtained in Eqs. (8.7) and (8.8) are not in a
closed form.

By using Eqs. (8.4) and (8.5) buyer’s optimal total cost is derived for (θ + β)Tb1

<< 1 as follows:

TC∗
b1

(
T ∗
b1, P

∗
m

)

∼=
[
Cb

T ∗
b1

+ Pb1 × Fb ×
(
a − bP∗

m

)

2
× T ∗

b1 + Pb1 × (
a − bP∗

m

) ×
(
1 + (θ + β)

2
T ∗
b1

)]

(8.9)

The replenishment period for the vendor can be calculated as

Tv1 = n1T
∗
b1, (8.10)

where n1 represents the positive integer.
The inventory level for the vendor is

Iv1(t) = α

θ + β

[
e(θ+β)(n1T ∗

b1−t) − 1
]
, (8.11)

where
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0 ≤ t ≤ n1T
∗
b1 .

As shown in Eq. (8.11) there is an exponential decrease in the inventory level of
the vendor. Using Eqs. (8.11) and (8.2), vendor’s annual total cost can be derived as
follows:

TCv1 = 1

n1T ∗
b1

[

Cv + n1Cvb + PvFv

(
n1T ∗

b1∫
0

Iv1(t)dt − n1
T ∗
b1∫
0
Ib1(t)dt

)

+ Pv Iv1(0)

]

TCv1
∼= Cv + n1Cvb

n1T ∗
b1

+ PvFvα(n1 − 1)T ∗
b1

2
+ Pvα

[
1 + (θ + β)

2
n1T

∗
b1

]
(8.12)

In Eq. (8.12), the first two terms are costs related to the ordering, the next term is
saw-tooth shape inventory holding cost while the last term represents costs related
to purchasing.

T Pv1 = (Sales revenue per time unit) − TCv1 Annual total profit for the vendor
is

TPv1 = Pb1 I ∗
b1(0)

T ∗
b1

− TCv1 ≈ Pb1α

(
1 + (θ + β)

2
T ∗
b1

)
− TCv1 (8.13)

Here, Pb1α
(
1 + (θ+β)

2 T ∗
b1

)
is the approximated sales revenue for the vendor.

Total profit of vendor presented in Eq. (8.13) is a function of a one variable n1. For
the vendor’s total profit, the optimal policy can be formulated as

Maximize TPv1(n1) for n = 1, 2, 3, . . . . (8.14)

As n1 is a discrete integer, the following conditionmust be satisfied for the optimal
value of n1, which is denoted by n∗

1:

TPv1
(
n∗
1 − 1

) ≤ TPv1
(
n∗
1

) ≥ TPv1
(
n∗
1 + 1

)
(8.2.15)

Vendor–buyer system’s total profit can be derived using the following equation,
when quantity discount and buyer-vendor coordination is not considered

TP1 = TPb1
(
T *
b1P

*
m

) + TPv1
(
n∗
1

)
(8.16)

In case 1, each player makes strategic decisions independently, without consid-
ering vendor-buyer coordination. The total annual profit without coordination
presented in Eq. (8.16) is a function of multiple decision variables Tb1, Pm and n1.
Buyer first optimizes the decision variables Tb1 and Pm; whereas vendor optimizes
the decision variable n1.

Case 2: Supply chain system considers channel coordination without vendor’s
quantity discount
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The aim of vendor-buyer coordination is to maximize total channel profit by
sharing profit, cost, demand, and stock-related information. This coordination also
supports in responding to the customer demand quickly.

Based on Eqs. (8.4) and (8.12), following are the total costs for buyer and vendor,
respectively

TCb2 =
[
Cb

Tb2
+ Pb2 × Fb2 × α

2
× Tb2 + Pb2 × α

(
1 + (θ + β)

2
Tb2

)]

(8.17)

TCv2 = Cv + n2Cvb

n2Tb2
+ PvFvα(n2 − 1)Tb2

2
+ Pvα

[
1 + (θ + β)

2
n2Tb2

]
(8.18)

The sum of Eqs. (8.17) and (8.18) represents the coordinated total cost. Based on
Eqs. (8.6) and (8.13), following are the profits for buyer and vendor respectively

TPb2 = (Sales revenue per time unit) − TCb2

where,

SR = Pm
Tb2

[
α.Tb2 + βα

(θ + β)2

(
e(θ+β)(Tb2) − (θ + β)Tb2 − 1

)]

Using Taylor’s series approximation, SR can be expressed as,

SR = Pm × α

(
1 + βTb2

2

)

Thus,

TPb2 = Pm × α

(
1 + βTb2

2

)
− TCb2 (8.19)

TPv2 = Pb2 Ib2(0)

Tb2
− TCv2 ≈ Pb2α

(
1 + (θ + β)

2
Tb2

)
− TCv2 (8.20)

The total coordinated profit is TP2 = TPb2 + TPv2.
Now the objective is to maximize the total coordinated profit,

i.e., Max TP2(Tb2, Pm, n2) = TPb2
(
Tb2, Pm

) + TPv2
(
n2

)
(8.21)

In case 2 vendor-buyer coordination is considered. Joint optimization has been
done for the three decision variables Tb2, Pm and n2 rather than optimizing
independently as done in case 1.
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Case 3: Supply chain system when vendor–buyer coordination and quantity
discount are considered simultaneously.

In quantity discount scheme, the discount price, Pb3 is smaller than the unit price,
Pb1 offered in case 1 and 2. Following equation represents the lot size per shipment
Q for the buyer:

Q = Ib3(t = 0) = α

θ + β

(
e(θ+β)(Tb3) − 1

)
(8.22)

The delivery quantity from vendor to the buyer per annum can be derived as
follows:

Ib3(0)

Tb3
= α

Tb3(θ + β)

(
e(θ+β)(Tb3) − 1

) ≈ d

(
1 + (θ + β)

2
Tb3

)
(8.23)

Likewise, following are the annual total cost for buyer and vendor respectively:

TCb3
∼=

[
Cb

Tb3
+ Pb3 × Fb3 x

α

2
× Tb3 + Pb3 × α

(
1 + (θ + β)

2
Tb3

)]

(8.24)

TCv3 = Cv + n3Cvb

n3Tb3
+ PvFvα(n3 − 1)Tb3

2
+ Pvα

[
1 + (θ + β)

2
n3Tb3

]

+ (Pb1 − Pb3)

(
1 + (θ + β)

2
Tb3

)
(8.25)

When the vendor offers a quantity discount, there is an additional cost which is
shown as the last term in Eq. (8.25). Following is the total profit of buyer and vendor
respectively:

TPb3 = Sales revenue per time unit(SR) − TCb3 (8.26)

TPv3 = Pb3 Ib3(0)

Tb3
− TCv3 = Pb3.α

(
1 + (θ + β)

2
Tb3

)
− TCv3 (8.27)

The difference between TPb3 and TPb1 is the buyer’s extra profit, denoted by Sb
is shown below:

Sb = TPb3 − TPb1 (8.28)

The vendor’s extra profit is the difference between TPv3 and TPv1, defined by Sv.

Sv = TPv3 − TPv1 (8.29)
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The uncoordinated total profit in case 1 (TP1) is less than the coordinated total
profit in case 2 (TP2), also the coordinated total profit in case 3 (TP3) is greater
than that of TP2; hence it can be said that TP3 is greater than TP1. This relationship
between the total profit of case 3 and case 1 for both the vendor and the buyer, denoted
as Sb and Sv is defined as:

Sv = γ Sb, γ ≥ 0, (8.30)

where, γ = negotiation factor.
When the negotiation factor γ = 0, all the extra profit is given to the buyer. When

γ = 1, all the extra profit is distributed equally between the buyer and vendor. While
if γ > 1, all extra profit is given to the vendor. Following is the optimization problem
for case 3:

Maximize TP3(Tb3, Pm, n3) = TPb3(Tb3, Pm) + TPv3 (n3) (8.31)

Here, TP3 is the function of the three variables n3, Tb3 and Pm .

8.4 Solution Procedure

For case 1, value of n1 is to be determined such that TP1 presented as Eq. (8.16) can
be maximized. Here Tb1 and Pm are optimized by buyer first and then variable n1 is
optimized by the vendor such that Eqs. (8.14) and (8.15) are satisfied.

For case 2, value of n2 is to be determined such that TP2 (8.21) can be maximized.
Following procedure can be used to derive n2 i.e. the number of delivery per order,
as it is a discrete variable:

(a) Given a range of n2 values, first with respect to Pm and Tb2 obtain the partial
derivative of TP2 and equate them to zero; for a given range of n2 values. For
each n2, Pm(n2) and Tb2(n2) are the optimal value of Pm and Tb2 respectively.

(b) Derive n2*, the optimal value of n2, such that

TP2
(
Tb2

(
n∗
2 − 1

)
, n∗

2 − 1, Pm
(
n∗
2 − 1

)) ≤ T P2
(
Tb2

(
n∗
2

)
, n∗

2, Pm
(
n∗
2

))

≥ T P2
(
Tb2

(
n∗
2 + 1

)
, n∗

2 + 1, Pm
(
n∗
2 + 1

))

For case 3, Eq. (8.31) has to be maximized to determine the value of decision
variable n3. In order to maximize the total profit TP3; find partial derivatives of TP3
with respect to Tb3 and Pm need to be set equal to zero as shown below:

∂TP3
∂Tb3

= 0 (8.32)
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∂TP3
∂Pm

= 0 (8.33)

In case 3, quantity discount is offered to the buyer, thus solution procedure in
case 3 is different than that in case 2. While applying the procedure, the solution
obtained from Eqs. (8.31) to (8.33) must be rounded up. The values of Pm , Tb3
and TP3(Pm, Tb3) should be rounded to the nearest two decimals, while the order
quantity, Q should be rounded to the nearest integer.

For case 3, Eq. (8.31) has to be maximized to determine the value of n3. Following
procedure will be used to derive the value of n3 in case 3. Given a range of n3 values,
first find the partial derivative of TP3 with respect to Tb3 and Pm . Equate these
equations to zero and solve to get the value of Tb3 and Pm .

Step 1: For a given range of n3 values, optimal values of Tb3 and Pm can be
obtained using the following procedure:

a. Put TP3max = 0 and j = J
b. Solve for Pm and Tb3 after replacing all the given values (a, b, β, θ ,) and Pb3 =

cj in Eqs. (8.32) and (8.33). Obtain order quantity Q from Eq. (8.22).
The obtained solution will be feasible ifQ lies in the correct purchase cost range
i.e. q j−1 ≤ Q < q j . To calculate TP3(Pm, Tb3) put the optimal values of Tb3
and Pm in Eq. (8.31). Set TP3max = TP3(Pm, Tb3) if TP3(Pm, Tb3) > TP3max.
Next, go to step (e).
The obtained solution is not feasible if order quantityQ does not fall in the right
purchasing cost range. In that case, follow step (c).

c. Since value ofQ is obtained in step (b) does not fall in the range q j−1 ≤ Q < q j ,
it is not a feasible quantity. To take advantage of price discount the order quantity
must be at price break i.e. Q = q j−1. Substitute this value of Q in the equation
of Pm (see appendix).
Solve for Tb3 by substituting Q = q j−1, Pb3 = c j and other given values (a, b,
β, θ ) along with Pm into Eq. (8.32). To calculate TP3 j (Pm, Tb3) put the values
of Q = q j−1 and the corresponding values of Tb3 and Pm obtained above into
Eq. (8.31). Set TP3max = TP3 j (Pm, Tb3) if TP3 j > TP3max. Go to step (d).

d. Set j = j − 1 if j ≥ 2 and go to step (b).
Follow step (e) if j = 1.

e. The obtained solution is the feasible solution associated with TP3max. By spec-
ifying the optimal values of Tb3, Pm, TP3 j (Pm, Tb3), the obtained solution can
be defined for a given value of n3. This ends the process.

Step 2:
n∗
3 is the optimal value of n3 which can be derived by satisfying following

condition:

TP3
(
Tb3

(
n∗
3 − 1

)
, n∗

3 − 1, Pm
(
n∗
3 − 1

)) ≤ TP3
(
Tb3

(
n∗
3

)
, n∗

3, Pm
(
n∗
3

))

≥ TP3
(
Tb3

(
n∗
3 + 1

)
, n∗

3 + 1, Pm
(
n∗
3 + 1

))
(8.34)
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8.5 Numerical Example

The solution procedure discussed in the previous section can be explained through
the following numerical example. Data which are considered to illustrate the derived
model and the proposed algorithm are as follows:

Scale parameter, a = 2000.
Price-dependent parameter, b = 33.
Stock-dependent selling rate parameter, β = 0.03.
Carrying cost for vendor, in percentage per annum per dollar, Fv = 0.2
Setup cost for vendor, Cv = $6000.
Fixed cost for vendor to process each order placed by buyer, Cvb = $100.
Unit cost for vendor, Pv = $20.
Carrying cost for buyer, in percentage per annum per dollar, Fb = 0.2
Buyer’s ordering cost, Cb = $100.
Purchased unit price for buyer without price discount, Pb1 = Pb2 = $33.
Deterioration rate, θ = 0.05.
Negotiation factor, γ = 0 or 1.
As per the model assumption, all-unit discount scheme is being offered by the

vendor to the buyer wherein the buyer gets discount based on the quantity purchased
by him.

Following is the price range, based on which per unit cost for the buyer can be
determined:

No. of units Cost per unit

q1 0–299 c1 33

q2 300–599 c2 31.5

q3 More than 599 c3 30

The computational results are presented in Table 8.2. The annual demand, buyer’s
unit purchase price and replenishment period, number of replenishments fromvendor,
the optimum retail price of product, and associated total annual profit for buyer and
vendor for all the three cases are presented in Table 8.2.

The number of replenishments for case 1, i.e,. supply chain without integration
is n = 9; the associated retail price and buyer’s replenishment period are $47.30 and
0.2413 years are also shown in Table 8.2. The corresponding annual demand for the
product is 441 units. The total annual profit for buyer and vendor are $5450 and
$213 respectively. The total annual profit for the supply chain without integration is
$ 5663.

For case 2, when supply chain coordination is considered, the optimal values of
the decision parameters retail price and buyer’s replenishment period are $43.34 and
0.6533 years. The number of replenishment from vendor to buyer ‘n’ is 3 and the
annual demandof the product is 575units. The total annual profit for buyer andvendor
are $4262 and $2300 respectively. The optimal value of coordinated channel’s total
annual profit is $6562. The total annual profit for the coordinated channel is $899
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is higher than the total profit of supply chain without coordination. Due to channel
coordination vendor profit is increased from $213 to $2300 whereas buyers profit is
declined from $5450 to $4262. Since coordination in the supply chain is beneficial
to vendor only, buyer would not like to participate in the coordinated strategy and
resist to share the information.

To encourage the buyer to participate in the channel coordination, vendor may
offer quantity discount and can share profit benefit with the buyer; which is earned
due to coordination strategy. When supply chain coordination and quantity discount
are considered simultaneously, the channel’s annual total profit is increased to $6629
with the optimal unit discounted purchase price of $31.50. The percentage of extra
total profit (PETP3) is 17.06% which is higher than 15.87%, the percentage of extra
total profit (PETP2) when coordination is considered without discount policy.

From Table 8.2, it can be observed that the vendor can earn greater profits by
the adoption of an appropriate discount strategy. The increase in the channel annual
total profit from case 1 to case 3 is $ 966 ($6629–$5663). Due to supply chain
coordination, in case 2 and case 3; vendor’s extra profit Sv is increased by $2087 and
$1826, whereas buyer’s extra profit Sb is negative as profit is decreased by $1188
and $860 respectively. If all extra profit earned in case 3 is offered to the buyer (i.e.
negotiation factor γ = 0), then buyer and vendor’s annual total profit will be $5556
and $1073, which is higher than case 1, where coordination and quantity discount are
not considered in supply chain system. Adoption of coordination along with quantity
discount policy is beneficial to both vendor and buyer.

The numerical results obtained through the above solution procedure shows that
TPn is strictly concave in Tb and Pm (Fig. 8.1). Hence, the local maximum value
of objective function obtained here from proposed solution procedure is indeed the
global maximum solution.

8.5.1 Sensitivity Analysis

The relative impact of various parameters on the optimal solution obtained in case
3 is studied through sensitivity analysis. The sensitivity analysis is performed by
changing value of each given parameters by −20%, −10%, +10%, and +20%,
taking one parameter at a time and keeping the value of other parameters unchanged.
The results of the sensitivity analysis are given in Tables 8.3, 8.4, 8.5, 8.6 and 8.7. The
results of the sensitivity analysis show the impact of changes in the key parameters
on the decision variables Pm, n3, d, Pb3, Tb3, TP1, TP2 and TP3.

From the results shown in Table 8.3, it is observed that PETP3 changes signifi-
cantly in the range 9% to 49%, when the price-sensitive parameter b changes. The
change in b and PETP3 is positively correlated. This indicates that when b increases,
it is more significant to consider coordination strategy with price discount (Fig. 8.2).

It can be observed from Tables 8.4 and 8.5, when Cv, Cb and Cvb increases, total
annual profit decrease but PETP3 increases. Hence, it is very important to take into
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Fig. 8.1 Concavity of total profit function. Source own

Table 8.2 The optimal
solution at various cases
when θ = 0.05

Case i i = 1 i = 2 i = 3

Pm 47.30 43.34 43.35

d 441 575 578

Pbi 33 33 31.50

ni 9 3 2

Tbi 0.2413 0.6533 0.9599

TPbi 5450 4262 4590

TPvi 213 2300 2039

TPi 5663 6562 6629

PETPi – 0.1587 0.1706

PETPi: Percentage of extra total profit for case i compared to case
1;
PETPi = (TPi − TP1)/TP1
Source own

account both the integration and the quantity discount when the costs related to order
processing for the player of supply chain increase.

From Table 8.6, we can see that total annual profit decreases significantly, and
PETP3 increases when rate of deterioration θ increases. This shows that supply chain
coordination with quantity discount strategy is advisable when rate of deterioration
increases over the time period.
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Table 8.3 Sensitivity analysis for price-dependent parameter b

b Pm d Pb3 n3 Tb3 TP1 TP2 (PETP2) TP3 (PETP3)

26.4 50.70 671 30 2 0.9103 12,177 13,099 (7.57%) 13,276 (9.03%)

29.7 46.58 625 30 2 0.9378 8487 9400 (10.78%) 9564 (12.69%)

33 43.35 578 31.5 2 0.9599 5663 6562 (15.87%) 6629 (17.06%)

36.3 40.72 529 31.5 2 0.9995 3479 4352 (25.09%) 4409 (26.73%)

39.6 38.54 479 31.5 3 0.7195 1786 2617 (46.53%) 2668 (49.38%)

Source own

The results shown in Table 8.7 indicate that with increase in the stock-dependent
selling rate parameter β, PETP3 increases significantly. Hence, it is preferable to
adopt coordinationwith discount policywhen stock-dependent selling rate parameter
β increases.

As price-sensitive parameter b, rate of deterioration θ and CV increases, demand
decreases significantly whereas if stock-dependent selling rate parameter β, Cvb

and Cb increases, demand also increases. The effect of stock-dependent selling rate
parameter β is more significant on Tb3 and n. Retail price of product is more sensitive
to price-sensitive parameter b,Cvb andCb as compared to other parameters (Figs. 8.3
and 8.4).

8.6 Conclusions

This study presents coordinated supply chain system with variable demand rate and
a variable unit purchase cost. In this study, more realistic model parameters like
stock-dependent selling rate and deterioration are considered in deriving the model.
A model has been derived, and an efficient solution procedure has been discussed to
determine the optimal unit retail selling price and replenishment cycle. The impact
of price-sensitive parameter b, deterioration, stock-dependent selling rate on total
annual profit, demand of product, and retail selling price are reported. The results
indicate that supply chain coordination with quantity discount increases the extra
total profit gain of about 17.06%.

Supply chain coordination helps in optimizing the overall system rather than
its individual players and not only increases total annual profits but also reduce
variability in demand and inventory level, resulting in more efficient supply chain.
The result of sensitivity analysis shows that the effects of price-sensitive parameter,
stock-dependent selling rate and deterioration on the total annual profit are very
significant, and hence cannot be ignored while deriving the supply chain model.
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Table 8.5 Sensitivity analysis for Cvb and Cb

Cvb,
Cb

Pm d Pb3 n3 Tb3 TP1 TP2 (PETP2) TP3 (PETP3)

80,
80

43.29 577 31.5 3 0.6516 5769 6624 (14.82%) 6680 (15.79%)

90,
90

43.34 578 31.5 2 0.9566 5712 6593 (15.42%) 6650 (16.42%)

100,
100

43.35 578 31.5 2 0.9599 5663 6562 (15.87%) 6629 (17.06%)

110,
110

41.80 629 30 2 0.9319 5613 6532 (16.37%) 6619 (17.92%)

120,
120

41.93 625 30 2 0.9383 5564 6505 (16.91%) 6610 (18.80%)

Source own

In this study, the problem of simultaneously determining a pricing and ordering
strategy for deteriorating product is addressed. Themodels can be applied for efficient
supplier management in system like super market and stationery stores to determine
optimal ordering and pricing policy. Retailer can use this model to optimize this retail
unit price and inventory control variables.

The above model can be extended by considering different form of demand rate
like nonlinear function of inventory level or retail price. Also, consideration of short-
ages, permissible delay in payment in the model can help to extend the model further.
Additionally, this model can be extended further for deteriorating product with a
two-parameter Weibull distribution.
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Table 8.7 Sensitivity analysis for stock-dependent selling rate parameter β

β Pm d Pb3 n3 Tb3 TP1 TP2 (PETP2) TP3 (PETP3)

0.024 43.2902 576 31.5 3 0.6595 5701 6581 (15.44%) 6637 (16.42%)

0.027 43.3039 576 31.5 3 0.6588 5682 6572 (15.66%) 6628 (16.65%)

0.03 43.35 578 31.5 2 0.9599 5663 6562 (15.87%) 6629 (17.06%)

0.033 43.49 582 30 1 1.8780 5644 6553 (16.11%) 6665 (18.09%)

0.036 43.50 584 30 1 1.8893 5625 6552 (16.48%) 6702 (19.15%)

0.05 43.5491 590 30 1 1.9451 5533 6566 (18.67%) 6880 (24.34%)

Source own

Fig. 8.2 PETP2 and PETP3
versus price-sensitive
parameter. Source own
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Appendix

From Eq. (8.22), Pm can be expressed as a function at Q and Tb3 as follows:

Q = Imb = (a − b.Pm)Tb3[1 + (θ + β)Tb3] (Using Taylor series approximation)

Using above equation, Pm can be expressed as:

Pm = 1

b

⎡

⎣a − Q

Tb3
(
1 + (θ+β)Tb3

2

)

⎤

⎦
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Chapter 9
An Integrated and Collaborated Supply
Chain Model Using Quantity Discount
Policy with Back Order for Time
Dependent Deteriorating Items

Isha Talati, Poonam Mishra, and Azharuddin Shaikh

Abstract Nowadays entrepreneurs need to examine the different ways to grow and
survive in this competitive environment. Coordination among the players and the use
of appropriate promotional tools can reduce the total cost of supply cost. In this we
have studied the effect of quantity discount on independent as well as integrated sce-
nario. Here we have considered time-dependent demand for time-dependent deterio-
rating items with a fixed lifetime under shortages. A numerical example is presented
to support this inventorymodel. The proposedmodel is useful to the decision-making
of the supply chain associated with Drugs, Cosmetics, FMCGs, etc.

Keywords Integrated inventory model · Time dependent demand · Time
dependent deterioration · Fix life time product · Shortages · Quantity discount ·
Inspection policy

MSC 90B85 · 90C26

9.1 Introduction

For any business, it is very difficult to grow and survive in this competitive world. In
this scenario co-ordination among business players can reduce the total cost of supply
chain and hence can increase over all supply chain profit. Goyal (1976) firstly devel-
oped integrated model for supplier-customer. Banerjee (1986) optimized integrated
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inventory supply chain model for purchaser and vendor. Goyal and Gunasekaran
(1995) and Rau et al. (2006) generalized this model for deteriorating items and
three-echelon supply chain. Chung and Cárdenas-Barrón (2013) formulated inte-
grated inventory model for deteriorating items under two-level trade credit. Further,
Shah et al. (2015) optimized selling price and order quantity with price sensitive and
trended demand. Talati and Mishra (2019) optimized cycle time and quantity using
analytical and genetic approach.

In classical EOQ model constant demand rate was taken implicitly. In realistic
situation demand rate is always not a constant function. It is varying with respect to
time. The fundamental result in EOQ with time varying demand pattern was derived
by Donaldson (1977). Dave and Patel (1981) generalized this model for deteriorat-
ing items. Wee and Wang (1999) considered time varying demand and formulated
a variable production policy. Mishra and Singh (2011) minimized inventory cost in
which the demand and holding cost is depending on time under partial backlogging.
FurtherMishra et al. (2013) generalized this model for time varying deterioration. To
enjoy better profit on large quantities, manufacturer offers quantity discount to that
retailer which accelerates overall demand and gives a win-win situation to both par-
ties. Firstly, Monahan (1984) had increased vendor’s profit by incorporating quantity
discount policy. Further, this model extended by Chang et al. (2010) for the dete-
riorating items. Duan et al. (2010) used quantity discount and proved theoretically
that it reduced the total inventory cost.This model was extended with more realistic
assumptions by different researchers like Ravithammal et al. (2014), Ravithammal
et al. (2014b), Pal and Chandra (2014), Sarkar (2016), Mishra and Talati (2018) etc.

In classical model, inventory depletes due to demand only. But in the real world,
inventory of deteriorating units depletes with demand as well as deterioration. Ghare
and Schrader (1963) pioneer derived EOQmodel for exponential deteriorating items.
Philip and Covert (1973) formulated model for time dependent deteriorating items.
Thismodel further generalized by Philip (1974). In real world, some of the items have
their expiry date. Thus, items deterioration rate is proposal to time and maximum
life of product. Chen and Teng (2014) took maximum life of product in account and
optimized order quantity of retailer under trade credit. Wu et al. (2014) extended
this model for two level trade credits. Teng et al. (2016) formulated model for time
varying deteriorating items which has a fix life time and optimized order quantity
under advanced payment. In this model,Wu et al. (2017) examined effect of advance-
cash-credit scheme. Shah (2017) explained EOQmodel for fix life time products and
optimized order profit, selling price, cycle time and quantity under order linked trade
credit. Mishra and Talati (2017) analysed problem for time dependent deteriorating
items with fix life time and derived integrated optimal policy under random input.
Jani et al. (2020) formulated inventory control policies for item that deteriorate with
respect to time under two level order linked trade credit. Shah and Naik (2020)
derived inventory model for deteriorating items with time-price backlog dependent
demand.
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9.2 Notations and Assumptions

9.2.1 Notations

9.2.1.1 Inventory Parameters Related to Manufacturer

m1 Order multiple in Model-1
m2 Order multiple in Model-2
Ccd Inspection cost per delivery (Variable)
Ci f Inspection cost $/product lot (Fix)
D Time dependent demand
Am Set up costs ($)
a Constant part of demand
Ciu Inspection cost $/unit time inspected (/unit)
b Variable part of demand which vary with time
P Production rate
ρ Capacity utilization
hm Holding cost/unit/annum
Qm(t) Economic order quantity per cycle
L The maximum life time of a product (in year)
TCm Total cost for Model-1
TCwm Total cost in a Model-2

9.2.1.2 Inventory Parameters Related to Retailer

n Order multiple Model-1
λ Order multiple in Model-2 and λQr (t) as the new quantity
π Back order cost
Ar Ordering costs ($)
hr Holding cost/unit/annum
B(λ) Discount given by manufacturer if the retailer agree with change their order
k Back order rate for Model-1
k

′
Back order rate for Model-2

Qr (t) Economic order quantity per cycle
TCr Retailer’s total cost in a Model-1
TCqr Retailer’s total cost in a Model-2
TC System total cost in a Model-1
TCq System total cost in a Model-2
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9.2.2 Assumptions

1. In this model we have considered the supply chain of single manufacturer and
single retailer.

2. Quantity discount being offered by manufacturer to the retailer if retailer agrees
to change his order quantity by the fixed order quantity.

3. Shortages are allowed.
4. The back order rate is considered as a decision variable for the retailer.
5. The demand rate is linear function of time D = a + bt : a, b > 0.
6. The fix life products are deteriorating with respect to time and are defined as

θ(t) = 1
1+L−t .

7. Three-level inspections take place to check the defectiveness of products at the
manufacturer’s end.

8. Production rate is constant.
9. We have considered instantaneous replenishment and negligible lead time.

9.3 Model Formulation

In this section, we have considered manufacturer produce items in one-set-up but
ships after a fixed time through multiple deliveries (single-set-up-multiple delivery
(SSMD)). The shortages are considered for the retailer with the back order rate k.
As per the scenario, we have formulated the following two models:

Model-1: Without quantity discount: No quantity discount being offered by man-
ufacturer to retailer.

Model-2: With quantity discount: Quantity discount being offered by manufac-
turer to retailer as he agrees to change the order as per the manufacturer production.

9.3.1 Model-1: Without Quantity Discount

9.3.1.1 Manufacturer’s Total Cost

Here we have considered constant production rate. So the manufacturer on hand
inventory at any instantaneous time t is shown in Fig. 9.1 and it’s defined by the
following differential equation

dQm(t)

dt
+ 1

1 + L − t
Qm(t) = P; 0 ≤ t ≤ T (9.1)
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Fig. 9.1 Inventory position for manufacturer

Using boundary condition Qm(T ) = 0 we get the solution of differential equa-
tion (9.1)

Qm(t) = −P ln |1 + L − T

1 + L − t
|(1 + L − t) (9.2)

The initial quantity at t = 0 is

Qm(0) = −P ln |1 + L − T

1 + L
|(1 + L) (9.3)

The basic costs are
(a) Setup cost: Here we have considered SSMD model and we have taken constant
set up cost so we get

SCm = Am (9.4)

(b) Holding cost: Here we have calculated the manufacturer’s inventory per cycle
by taking difference of accumulated level of retailer and manufacturer. Thus, the
manufacturer’s holding cost for average inventory per unit time is given by

HCm = hm

[
(m1 − 1)(1 + P

D
) + P

D

] T∫
0

Qm(t)dt (9.5)

Solving Eq. (9.5) we get

HCm = −Phma11[(m1 − 1)(1 + ρ) + ρ] (9.6)

where
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a11 = ln |1 + L − T |
(
T + TL − T 2

2

)

− (1 + L)2

2

(
ln |1 + L| − 1

2

)
+ (1 + L − T )2

2

(
ln |1 + L − T | − 1

2

)

(c) Inspection cost: Inspection cost consists of three various costs: fix inspection
cost/lot, variable inspection cost/delivery and fix inspection cost/unit. Hence we get

ICm = −a + bt

Pa11

(
Ccd − Pa11Cimu + 1

m1
Ci f

)
(9.7)

where

a11 = ln |1 + L − T |
(
T + T L − T 2

2

)

− (1 + L)2

2

(
ln |1 + L| − 1

2

)
+ (1 + L − T )2

2

(
ln |1 + L − T | − 1

2

)

Hence, manufacturer total cost

TCm(m1) = 1

T
(SCm + HCm + IC(m))

= 1

T
(Am − Phma11[(m1 − 1)(1 + ρ) + ρ]

− a + bt

Pa11

(
Ccd − Pa11Cimu + 1

m1
Ci f

)

= 1

T

{
− (a + bt)Civ f

Pa11m1
− Phma11m1(1 + ρ) + Phma11

− (a + bt)Ccd

Pa11
+ (a + bt)Civv + Am

}
(9.8)

TCm(m1) = a21
m1

+ a22m1 + a23 (9.9)

where

a21 = − (a + bt)Cimu

T Pa11
; a22 = − Phma11(1 + ρ)

T
;

a23 = Phma11
T

− (a + bt)Ccd

T Pa11
+ (a + bt)Ci f

T
+ Am

T

Therefore manufacturer’s total cost can be written as
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Min TCm(m1) = a21
m1

+ a22m1 + a23

Subject to m1t ≤ L (9.10)

m1 ≥ 1

The optimum value of m1 is given by

m1 =
√
a21
a22

=
√

(a + bt)Ci f

P2hma211(1 + ρ)
(9.11)

If m∗
1 is the optimum value of m1, then we get

m∗
1 = max

{√
(a + bt)Ci f

P2hma211(1 + ρ)
, 1

}

m∗
1 ≥ 1 (9.12)

So the optimal cost for manufacturer with respect to m1 is

TCm(m1) = 2
√
a21a22 + a23

Theorem If L ≥ ψ then

m∗
1 = max

{√
(a + bt)Ci f

P2hma211(1 + ρ)
, [] L

ψ

}
≥ 1

where ψ = Qm

(a+bt) ; m
∗
1 be the optimum of (9.8) and []x is the least integer greater

than or equal tox. L ≥ ψ Is to ensure that m∗
1 ≥ 1.

Proof Since TCm(m1) is strictly convex in m1 we have

d2TCm

dm2
1

= 2a21
Tm3

1

≥ 0

As shown in (9.10)m∗
1 is an optimum of equation of (9.8). Substitute t = Qm

a+bt in the
first constraints of Eq. (9.8), then the following inequality we get

m1
Qm

a + bt
≤ L
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Consider m∗
12 = L

Qm
a+bt

≥ 1 because L ≥ ψ

Therefore optimum shipment =m∗
1 ifm

∗
1 ≤ m∗

12 =m
∗
12; otherwise. Where TCm(m1)is

a convex function. ∴ If L ≥ ψ then

m∗
1 = max

{√
(a + bt)Ci f

P2hma211(1 + ρ)
, [] L

ψ

}
≥ 1

�

9.3.1.2 Retailer’s Total Cost

The on hand inventory of retailer is deplete with time dependent demand D and
deterioration rate θ(t)Hence, as shown in Fig. 9.2 the instantaneous state of inventory
at any instant of time t is described by the following equation

dQr (t)

dt
+ 1

1 + L − t
Qr (t) = −D(t); 0 ≤ t ≤ 1 − k (9.13)

Using boundary condition Qr (1 − k) = 0 we get solution of differential equation
(9.12)

Qr (t) =
[
{ ln|1 + L − t

L + k
|(a + b(1 + L))} + b(t − 1 + k)

]
[1 + L − t] (9.14)

The initial condition at t=0 is

Qr =
[{

ln|1 + L

L + k
|(a + b(1 + L))

}
+ b(k − 1)

]
[1 + L] (9.15)

The basic costs are (a) Ordering cost: Here we consider constant ordering cost so

OCr = nAr (9.16)

Fig. 9.2 Inventory position for retailer
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(b) Holding Cost: The holding cost for retailer’s inventory level in the interval(0,1-k)
is given by

HCr = hr

∫ 1

0
Qr (t)dt (9.17)

So,

HCr = hr [(a + b(1 + L))(1 − k − (1 + L)ln|(L + k)(1 − L)|)] −
[
b

2
(1 − k)2

]

(c) Back order Cost: The retailer’s inventory level in the interval is given by

BCr = π

∫ k

0
Qr (t)dt (9.18)

So,

BCr = π {[(a + b(1 + L))((k − 1 − L) ln |1 + L − k|) − k ln |L + k| + (1 + L)

ln |1 + L|] +
[
bk

(
3k

2
− 1

)]}
(9.19)

Thus retailer’s total cost is

TCr (k) = 1

T
(OCr + HCr + BCr ) (9.20)

Subject to k > 0

So the integrated total cost

TC(m1, k) = TCm(m1) + TCr (k) (9.21)

9.3.2 Model-2: With Quantity Discount

In this model manufacturer requests the retailer to change his order size by a fix
factor and offers retailer a quantity discount and retailer accept the offer. Thus the
manufacturer and retailer new quantities are λm2Qm and λar respectively.

9.3.2.1 Manufacturer’s Total Cost

Here manufacturer requests the retailer to change his current order size by a factor
λ(> 0). Retailer accepts this offer and get quantity discount by discount factor B



142 I. Talati et al.

(λ). In this scenario the total cost for the manufacturer is

TCwm(m2) = 1

T
1/T (Am − Phma11λ[(m2 − 1)(1 + ρ) + ρ]

− (a + bt)

Pλa11
(Cio − Pa11Cimu + 1

m2
Cimp) + D(t)B())

Thus the optimization problem can be formulated as

min TCqm(m2) (9.22)

subject to m2t ≤ L ,m2 ≥ 1

nAr + λhr
{
[(a + b(1 + L))(1 − k

′ − (1 + L) ln |(L + k
′
)(1 − L)|)]

−
[
b

2
(1 − k

′
)2

]}
+ λπ

{
[(a + b(1 + L))((k

′ − 1 − L) ln |1 + L − k
′ |) − k ln |L + k

′ |

+(1 + L) ln |1 + L|] +
[
bk

′
(
3k

′

2
− 1)

]}
− TCwr (m2, k

′
) ≤ D(t)B(λ) (9.23)

In Eq. (9.21), the first constraint of optimization problem represents that items are
not overdue before they are used, and the third constraint term DB(λ) represents
compensation given by the manufacturer to the retailer to change the order.

9.3.2.2 Retailer’s Total Cost

According to the agreement between manufacturer and retailer, the retailer changes
his order quantity. Thus the total cost for retailer with new quantity and quantity
discount is

TCqr(k
′
) = 1

T

{
nAr + λhr

{
[(a + b(1 + L))(1 − k

′ − (1 + L) ln |(L + k
′
)(1 − L)|)]

−[b
2
(1 − k

′
)2]

}
+ λπ

{
[(a + b(1 + L))((k

′ − 1 − L) ln |1 + L − k
′ |)

−k ln |L + k
′ | + (1 + L)ln|1 + L|] +

[
bk

′
(
3k

′

2
− 1)

]}

−TCwr (m2, k
′
) ≤ D(t)B(λ)

}
(9.24)

So the optimization problem can be formulated as

min TCqr (k
′
)
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Table 9.1 The optimal solution for without quantity discount optimization model

Optimal Independent scenario Integrated scenario

Order size 1.69 1.23

Back order rate 0.1835 0.1658

Total cost Independent scenario Integrated scenario

Manufacturer’s total cost 10388.10 10220.21

Retailer’s total cost 2070.16 1825.36

Total supply chain cost 12458.27 12045.57

subject to k
′ ≥ 0

Thus the joint cost for quantity discount scenario is

TCq(m2, k
′
) = TCqm(m2) + TCqr (k

′
)

9.4 Computational Algorithm

1. Set all parameters values in mathematical model.
2. Find optimal m∗

1 and k∗ from ∂TC
∂m1

and ∂TC
∂k simultaneously and obtain manufac-

turer and retailer total cost for integrated scenario. (Model-1: Without quantity
discount)

3. Find optimal m∗
2 and k

∗from ∂TCw
∂m2

and ∂TCw

∂k ′ simultaneously and obtain manufac-
turer and retailer total cost for joint scenario. (Model-2: With quantity discount).

9.5 Numerical Example

In this section numerical example is given. Consider a = 400, b = 50, t = 0.5 year,
= 0.1,Ccd = 1$/delivery,Cimu = 0.02$/unit,Ci f = 20$/lot, T = 0.7year, hm = 2$/unit,
L = 3 years, n = 5, Ar = 2000$, Am = 10000$, P = 500, π = 5$, hr =2$/unit
We have optimized this model using analytical method by MAPLE18. We get some
computational results for Model 1 and Model 2 as shown in Tables9.1 and 9.2
respectively.

In independent scenario of Model 1, the convexity of manufacturer’s total cost
and retailer’s total cost are shown in Figs. 9.3 and 9.4 respectively.
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Table 9.2 The optimal solution for with quantity discount optimization model

Optimal Independent scenario Integrated scenario

Order size 5.37 5.23

Back order rate 0.1731 0.1584

Total cost Independent scenario Integrated scenario

Manufacturer’s total cost 9441.66 8536.23

Retailer’s total cost 1408.91 1345.25

Total supply chain cost 10850.57 9881.48

Fig. 9.3 Convexity of manufacturer’s cost for Model-1

Fig. 9.4 Convexity of retailer’s cost for Model-1
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In integrated scenario of Model 1, the convexity of integrated total cost is given
below.

∣∣∣∣∣
∂2TC
∂k2

∂2TC
∂k∂m1

∂2TC
∂k∂m1

∂2TC
∂m2

1

∣∣∣∣∣ = 0.26352 × 103

and ∂2TC
∂k2 = 0.4039621 × 103 ≥ 0.

In independent scenario of Model 2, the convexity of manufacturer’s total cost
and retailer’s total cost are shown in Figs. 9.5 and 9.6 respectively.

In integrated scenario of Model 2, the convexity of integrated total cost is given
below.

∣∣∣∣∣
∂2TC
∂k ′ 2

∂2TC
∂k ′

∂m2
∂2TC

∂k ′
∂m2

∂2TC
∂m2

2

∣∣∣∣∣ = 2.26352 × 102 > 0

and ∂2TC
∂k ′ 2 = 0.6039621 × 103 ≥ 0.

Observations

• From Table9.1 we have noticed that in the integrated scenario manufacturer total
cost, retailer total cost and back order rate reduce as compare to independent
scenario.

• It is clear from Table9.2 that in the integrated scenario all costs and back order
rate reduce as compare to independent scenario.

• By comparing Tables9.1 and 9.2 we have observed in with co-ordination model
manufacturer total cost, retailer total cost and back order rate reduce in both inde-
pendent and integrated scenario.

9.6 Conclusion

This model is for items that deteriorating with respect to time but in fixed lifetime L
under the time-dependent demand. The effect of quantity discount is demonstrated in
theModel-2. From the numerical example, it is clear that the quantity discount policy
reduces the back order rate, the total cost for the individual as well as the joint cost
of the whole system. The convexity of the total cost function with respect to optimal
order quantity and back order rate are studied graphically and mathematically in
isolated as well as the integrated scenarios. Our result can help a retailer to decide to
agree or disagree to change the order as per the manufacturer production because it
reduces back order rate as well as the total cost. Hence, it increases in profit.
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Fig. 9.5 Convexity of retailer’s cost for Model-1

Fig. 9.6 Convexity of retailer’s cost for Model-1
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Chapter 10
A Wine Industry Inventory Model
for Deteriorating Items
with Two-Warehouse Under LOFO
Dispatching Policy Using Particle Swarm
Optimization

Ajay Singh Yadav, Neha Chauhan, Navin Ahlawat, and Anupam Swami

Abstract This article develops a deterministic inventorymodel for thewine industry
for item spoilagewith two storage systems and a time-dependent demandwith partial
bottlenecks. The inventory is transferred to OW according to the RWBulk Discharge
model and transport costs are considered negligible. The decline in the two camps
is constant, but different due to the different storage methods. Use of particle swarm
optimization as part of theLOFOshipping policy. The cost of ownership is considered
constant up to a certain point in time and increases.Optimization of the particle swarm
with different population sizes is second-hand to get to the bottom of the model. In
this particle swarm optimization, a compartment of the best children is incorporated
in the parent population for the next generation, and the size of that subset is a
percentage of the size of their parent set. The digital sample is presented to make
obvious the development of Modusland for corroboration. The kindliness analysis is
performed separately for each parameter.
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10.1 Introduction

The classicmodels of wine industry inventories aremainly urbanizedwith the unique
storage structure. In the earlier period, researchers have done a lot of investigation
on inventory management in the wine industry and inventory management organi-
zation for the wine industry. The wine industry’s inventory management and control
system focuses primarily on issues and issues in the supply chain. To this end, produc-
tion units (manufacturers of end products), sellers, supplier, and retailer require raw
materials, finished products for prospect supply and demand on the market and at
the customer. conventional models assume that demand and maintenance costs are
invariable and that goods are delivered immediately when needed under an infinite
supply policy. However, many scientists have suggested that over time, demand may
change over time due to price and other factors, and that storage costs may change
over time and other factors. Many models have been developed with different time-
dependent needs inmind, with andwithout failures. All models that take into account
fluctuations in demand in response to stock levels in the wine industry assume that
the cost of ownership is constant throughout the cycle of stocks in the wine industry.
Studies of stockmodels in thewine industry often assume unlimited storage capacity.
In crowded markets such as supermarkets, corporate markets, etc., storage space for
items may be limited. Another case of insufficient storage space can occur when
you decide to buy a large number of items. This may be due to an attractive whole-
sale discount, or when the cost of purchasing goods exceeds the cost of inventory in
another wine industry, or when the demand for goods is very high or very high for the
goods in question. seasonal production is high, such as crop yields or problems with
regular supplies. In this case, these items cannot be stored in an existing warehouse
(your warehouse, OW for short). Therefore, in order to store excess items, you must
find another warehouse (rented warehouse, abbreviated RW), which may be a short
distance from EW or a little out of the way due to the unavailability of a nearby
warehouse. is rented on a rent basis.

Particle swarm optimization is initiated from a population of random solutions
and a randommeasure is assigned to each possible solution. Possible solutions, called
particles, are blown through the problem area. Each particle follows its coordinates
in the problem area, which indicate the best solution or suitability to date. The value
of fitness is also recorded. This value is called pbest. The next best value recorded
by the global version of PCA is the best total value and position of particles in
the population so far. This value is called the best. Therefore, the particle changes
velocity with each step andmoves in the direction of Pbest andGbest. This is a global
version of PSO, where in addition to Pbest, each particle obtains the best solution
called Nbest or Lbest from the local topological environment of the particles, this
process is known as the local version of PSO.
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10.2 Associated Works

Demand was believed to be a fluctuating function of time and that the backlog of
unmet demand was a decreasing function of waiting time. Yadav and Swami (2018a,
2019a; Yadav et al. 2020d) “A model with a partial backlog in production inven-
tory and lot size with time-varying operating costs and female decline”. “Integrated
supply chain model for material spoilage with linear demand based on inventory in
an inaccurate and inflationary environment”. “A flexible volume two-stage model
with fluctuating demand and inflationary holding costs”. Yadav et al. (2016, 2017a,
2019b, 2020a, e; Yadav and Swami 2018b) “Supply chain inventory model for two
warehouses with soft IT optimization”. “Multi-objective optimization for the stock
model of electronic components and the degradation of double-bearing elements
using a genetic algorithm”. “An inflation inventory model for spoilage under two
storage systems”. “Chemical industry supply chain for warehouses with distribution
centers using the Artificial Bee Colony algorithm". Management of the supply chain
for electronic components of industrial electronics development for warehouses and
their environmental impact using the particle swarm optimization algorithm”. “Cost
method for reliability considerations for the LOFO inventory model with warehouse
for chemical industry”. Pandey et al. (Yadav et al. 2020b) “An analysis of the inven-
tory optimization of the marble industry based on genetic algorithms and particle
swarm optimization”. Malik et al. (Yadav et al. 2020c) “Security mechanism imple-
mented in gateway service providers”. Yadav et al. (2020f, g, h, i, j) “proposed the
supply chain management of the National Blood Bank Center for the application
of blockchain using a genetic algorithm”. “Provided drug industry supply chain
management for blockchain applications using artificial neural networks”. “Sug-
gested the red wine industry to manage the supply chain of distribution centers using
neural networks”. “A supply chainmanagement for the rosé wine industry for storage
using a genetic algorithm. “Providing supply chain management for the white wine
industry for warehouses using neural networks”. Chauhan and Yadav (Yadav et al.
2017b, 2020k) “proposed a stock model for commodity spoilage where demand
depends on two stocks and stocks using a genetic algorithm”. “Provide a car inven-
tory system for inflation based on demand and inventory with a two-way distribution
center using a genetic algorithm”. Yadav et al. (2017c, 2020l, m, n, o; Yadav and
Swami 2019c) “A method for calculating the reliability of the LIFO stock model
with bearings in the chemical industry”. “A Ensuring the management of the supply
chain of electronic components for the development of the electronics industry in
warehouses and the impact on the environment using the particle swarm optimization
algorithm”. “FIFO in Electrical Component Industry Green Supply Chain Inventory
Model with Distribution Centers Using Particle Swarm Optimization”. “LIFO in
Automotive Components Industry Green Supply Chain Inventory Model with Bear-
ings using Differential Evolution”. “FIFO & LIFO in the Industry Green Supply
Chain Inventory Model for Hazardous Substance Components with Storage using
Simulated Annealing”. “Health inventory control systems for blood bank storage
with reliability applications using a genetic algorithm”. Sana (Sana 2015, 2020)



152 A. S. Yadav et al.

“Price competition between green and non-green products in the context of a socially
responsible retail and consumer services business magazine”. “An EOQ model for
stochastic demand for limited storage capacity”. Moghdani et al. (2020) “Fuzzy
model for economic production quantitywithmultiple items andmultiple deliveries”.
Haseli et al. (2020) “Basic criterion for themulti-criteria decision-makingmethod and
its applications”. Ameri et al. (2019) “Self-assessment of parallel network systems
with intuitionistic fuzzy data: a case study”. Birjandi et al. (2019) “Assessment and
selection of the contractor when submitting a tender with incomplete information
according to the MCGDMmethod”. Gholami et al. (2018) “ABC analysis of clients
using axiomatic design and incomplete estimated meaning”. Jamali et al. (2018)
“Hybrid Improved Cuckoo SearchAlgorithm andGenetic Algorithm to SolveMarko
Modulated Demand”.

10.3 Assumption and Notations

“The mathematical model of the inventory model for two lager industries of article
breakdown is based on the following scores and assumptions”

Notations

CA = “cost of ordering under LOFO dispatching policy”.

ℵow = “The ability of OW under LOFO dispatching policy”.

ℵrw = “The ability of RW under LOFO dispatching policy”.

TLn = “The length of replenishment cycle under LOFO dispatching policy”.

Qmax = “Maximum wine industry Inventory level per cycle to be ordered”.

TL1 = “The time up to which wine industry inventory vanishes in RW”.

TL2 = “The time at which wine industry inventory level reaches to zero in OW and
shortages begins”.

ω = “Definite time up to which holding cost is constant under LOFO dispatching
policy”.

Now = “The holding cost of time per unit in OW under LOFO dispatching policy”.

Nrw = “The holding cost of time per unit in RW under LOFO dispatching policy”.

η0 = “Data collection from RW to OW under LOFO dispatching policy”.

η = “Software Maintenance from RW to OW under LOFO dispatching policy”.(
LIFO
�
RW

)
= “wine industry inventory in RW of the level”.
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(
LIFO
�

OW(i)

)
= “wine industry inventory in OW of the level where, i = 1, 2”.

(
LIFO
�
S

)
= “wine industry inventory level at time t inwhich the product has shortages”.

(λ + λ0) = “Cost of Deterioration in RW under LIFO dispatching policy”.

(λ1 + λ2) = “Cost of Deterioration in OW under LIFO dispatching policy”.

NPc = “Cost of Purchase per unit of items under LIFO dispatching policy”.

NLc = “Cost of opportunity of time per unit under LIFO dispatching policy”.

NSc = “Cost of shortages of time per unit under LIFO dispatching policy”.

IB = “Maximum amount of wine industry inventory backlogged under LIFO
dispatching policy”.

IL = “Amount of inventory lost under LIFO dispatching policy”.

Dc(LIFO) = “Data collection cost given by~A1 η0 where A1 > 0”.

SMc(LIFO) = “Software Maintenance cost given by A0 η where A0 > 0”.

TC
L [{TL2, TLn}(LIFO)] = “The total relevant wine industry inventory cost per unit

time of inventory system under LIFO dispatching policy”.

Assumption

1. D(t) = Demand rate where D(t) =
[

δ0 if t = 0

δ0 + (δ1 + δ2)t if t >0

]

2. Nrw = “we have k a time moment before which holding cost is constant”.

where Nrw =
[
Nrw if t <ω

Nrwt if t >ω

]

10.4 Wine Industry Inventory Model Mathematical
Formulation and Analysis

“During the time interval, (0, TL1) the stock in RW decreases due to demand and
deterioration and is governed by the following differential equation”:

d

(
LIFO
�
RW

)
(t)

dt
=
[
−{δ0 + (δ1 + δ2)t} −

(
(λ + λ0)

(
LIFO
�
RW

)
(t)

)]
0 < t < TL1

(10.1)
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“In the time interval (0, TL2) the stock level decreases in EV decrease only due
to deterioration and is determined by differential equation”

d

(
LIFO
�
OW1

)
(t)

dt
=
[
−(λ1 + λ2)

(
LIFO
�
OW1

)
(t)

]
0 < t < TL1 (10.2)

“During the time interval (TL1, TL2) the stock level in EV decreases due to both
demand and deterioration, and is determined by the following differential equation”

d

(
LIFO
�
OW2

)
(t)

dt
=
[
−{δ0 + (δ1 + δ2)t} −

(
(λ1 + λ2)

(
LIFO
�
OW2

)
(t)

)]
TL1 < t < TL2

(10.3)

“Now at t = TL2 the stock level disappears and the shortages arise in the
time interval TL2, TLnTL2 = TLn a fraction of the total shortages is withheld and
the shortage quantity is delivered to the customers at the beginning of the next
replenishment cycle. The deficits are determined by the differential equation”

d

(
LIFO
�
S

)
(t)

dt
= [− f {δ0 + (δ1 + δ2)t}] TL3 < t < TLn (10.4)

“At the time t = TLn the replenishment cycle is restarted. The aim of the model
is to keep the total inventory costs as low as possible through the relevant costs”.

“Now the stock level is given at different time intervals by solving the above
differential equations (10.1)–(10.4) under boundary conditions”

(
LIFO
�
RW

)
(TL1) = 0;

(
LIFO
�
OW1

)
(0) = ℵow

(
LIFO
�
OW2

)
(TL2) = 0;

(
LIFO
�
S

)
(t2) = 0

Therefore Differential Eq. (10.1) gives

(
LIFO
�
RW

)
(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
δ0

(λ + λ0)
+ (δ1 + δ2)

(λ + λ0)
2 ((λ + λ0)TL1 − 1)e(λ+λ0)(TL1−t)

]

−
[

δ0

(λ + λ0)
+ (δ1 + δ2)

(λ + λ0)
2 ((λ + λ0)t − 1)

]
⎫⎪⎪⎬
⎪⎪⎭

(10.5)

(
LIFO
�
OW1

)
(t) = ℵowe

−(λ1+λ2)TL1 (10.6)
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(
LIFO
�
OW2

)
(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
δ0

(λ1 + λ2)
+ (δ1 + δ2)

(λ1 + λ2)
2 {(λ1 + λ2)TL2 − 1}e(λ1+λ2)(TL2−t)

]

−
[

δ0

(λ1 + λ2)
+ (δ1 + δ2)

(λ1 + λ2)
2 ((λ1 + λ2)t − 1)

]
⎫⎪⎪⎬
⎪⎪⎭

(10.7)
(

L I FO
�
S

)
(t) = f

[
δ0(TL2 − t) + (δ1 + δ2)

2
(T 2

L2−t2)

]
(10.8)

Now at t = 0,

(
LIFO
�
RW

)
(0) = ℵrw therefore Eq. (10.5) yield

ℵrw =

⎡
⎢⎢⎣

(
(δ1 + δ2)

(λ + λ0)
2 − δ0

(λ + λ0)

)

+
(

δ0

(λ + λ0)
+ (δ1 + δ2)

(λ + λ0)
2 ((λ + λ0)TL1 − 1)e−(λ+λ0)TL1

)
⎤
⎥⎥⎦ (10.9)

“Maximum amount of inventory backlog during shortage period (t = TLn) is
given by”

IB = −
(
LIFO
�
S

)
(TLn)

= f

[
δ0(TLn − t) + (δ1 + δ2)

2
(T 2

Ln−t2)

]
(10.10)

“Quantity of inventory lost during a period of shortages”

L I = (1 − I B) =
[
1 − f

{
δ0 (TLn − t) + (δ1 + δ2)

2
(T 2

Ln−t2)

}]
(10.11)

“The maximum stock that can be ordered is given as”

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ℵow +

⎧⎪⎪⎨
⎪⎪⎩

(
(δ1 + δ2)

(λ + λ0)
2 − δ0

(λ + λ0)

)

+
[

δ0

(λ + λ0)
+ (δ1 + δ2)

(λ + λ0)
2

]
((λ + λ0)TL1 − 1)e(λ+λ0)TL1

⎫⎪⎪⎬
⎪⎪⎭

+ f

{
δ0(TLn − TL2) + (δ1 + δ2)

2
(TLn − T 2

L2)

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10.12)

“Now continuity at t = (TL1) shows that

(
L I FO
�

OW1

)
(TL1) =

(
L I FO
�

OW2

)
(TL1) therefore

from Eqs. (10.6) and (10.7) we have”



156 A. S. Yadav et al.

[
(δ1 + δ2)(λ1 + λ2)

2T 2
L2 − δ0(λ1 + λ2)

2TL2

−((λ1 + λ2)
2(ℵow + Z) + (δ1 + δ2) − δ0(λ1 + λ2)

)
]

= 0 (10.13)

where Z =
{

δ0
(λ1+λ2)

+ (δ1+δ2)

(λ1+λ2)
2 ((λ1 + λ2)TL1 − 1)

}
e−(λ1+λ2)TL1

“Which is quadratic in (TL2) and further can be solved for (TL2) in terms of (TL1)
i.e”.

TL2 = ϕ(TL1) (10.14)

where ϕ(TL1) = −δ20 (λ1+λ2)
4±√

D
2(δ1+δ2)(λ1+λ2)

2

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ20(λ1 + λ2)
4

+4(δ1 + δ2)(λ1 + λ2)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ1 + δ2) − δ0(λ1 + λ2)

+(λ1 + λ2)
2

⎡
⎢⎢⎢⎢⎢⎣

ℵow+⎛
⎜⎜⎝

δ0

(λ1 + λ2)

+ (δ1 + δ2)

(λ1 + λ2)
2
{(λ1 + λ2)TL1 − 1}

⎞
⎟⎟⎠e−(λ1+λ2)TL1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

“Subsequently, the total relevant inventory cost per cycle includes the following
parameters”:

1. “Ordering cost under LOFO dispatching policy”

CA(L I FO) = NCA

2. The present worth holding cost = HC

Case-1: When ω < TLn and 0 ≤ ω < TL1 in RW

Hc(LIFO) =

⎡
⎢⎢⎢⎣

ω∫
0
Nrw

(
LIFO
�
RW

)
(t)dt + TL1∫

k
Nrwt

(
LIFO
�
RW

)
(t)dt

+ TL1∫
0
Now

(
LIFO
�
OW1

)
(t)dt + TL2∫

TL1
Now

(
LIFO
�
OW2

)
(t)dt

⎤
⎥⎥⎥⎦

Case-2: When ω > TLn

Hc(LIFO) =
[
TL1∫
0
Nrw

(
LIFO
�
RW

)
(t)dt + TL1∫

0
Now

(
LIFO
�
OW1

)
(t)dt + TL2∫

tL1
Now

(
LIFO
�
OW1

)
(t)dt

]
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“Holding cost for Case -1”

Hc(LIFO) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nrw

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ0TL1ω + (δ1 + δ2)T
2
L1ω − (δ1 + δ2)ω

2

2(λ + λ0)

− (δ1 + δ2)T 2
L1

3(λ + λ0)
+ δ0T

3
L1 + (δ1 + δ2)T

4
L1

− δ0ω

(λ + λ0)
− (δ1 + δ2)TL1ω

2 − δ0TL1ω
2

−(δ1 + δ2)T
2
L1ω

2 + (δ1 + δ2)TL1ω2

(λ + λ0)

+ δ0ω
2

(λ + λ0)
+ (δ1 + δ2)ω

3

3(λ + λ0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Now

⎛
⎜⎜⎝

ℵowTL1 + (δ1 + δ2)T 2
L2

(λ1 + λ2)
− (δ1 + δ2)TL1TL2

(λ1 + λ2)

+ (δ1 + δ2)T 2
L1

2(λ1 + λ2)
− (δ1 + δ2)T 2

L2

2(λ1 + λ2)

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.15)

“Holding cost for Case -2”

Hc(LIFO) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nrw

⎛
⎜⎝

δ0T
2
L1 + (δ1 + δ2)T

3
L1

+ (δ1 + δ2)T 2
L1

(λ + λ0)
− (δ1 + δ2)T 2

L1

2(λ + λ0)

⎞
⎟⎠

+Nrw

⎛
⎜⎜⎝

ℵowTL1 + (δ1 + δ2)T 2
L2

(λ1 + λ2)
− (δ1 + δ2)TL1TL2

(λ1 + λ2)

+ (δ1 + δ2)T 2
L1

2(λ1 + λ2)
− (δ1 + δ2)T 2

L2

2(λ1 + λ2)

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.16)

3. “The present worth of shortages cost”

Sc(LIFO) = NSc f

⎛
⎜⎜⎜⎜⎜⎜⎝

δ0T 2
Ln

2
− δ0T 2

L2

2
+ (δ1 + δ2)T 3

Ln

6

− (δ1 + δ2)T 3
L2

6
− δ0t1T + δ0T

2
L2

− (δ1 + δ2)T 2
L2TLn

2
+ (δ1 + δ2)T 3

L2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.17)
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4. “The present worth opportunity cost/Lost sale cost”

Lc(LIFO) = NLc

⎛
⎜⎜⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎜⎜⎜⎝

δ0T 2
Ln

2
− δ0T 2

L2

2
+ (δ1 + δ2)T 3

Ln

6

− (δ1 + δ2)T 3
L2

6
− δ0TL1TLn + δ0T

2
L2

− (δ1 + δ2)T 2
L2TLn

2
+ (δ1 + δ2)T 3

L2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.18)

5. “Present worth purchase cost”

Pc(LIFO) = NPc

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ℵow +
(

(δ1 + δ2)

(λ + λ0)
2 − δ0

(λ + λ0)

)

+
{

δ0

(λ + λ0)
+ (δ1 + δ2)

(λ + λ0)
2 (δ0TL1 − 1)e−δ0TL1

}

+ f

{
δ0(TLn − TL2) + (δ1 + δ2)

2

(
T 2
Ln−T 2

L2

)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10.19)

6. “The data collection cost is given asunder LOFO dispatching policy”.

Dc(LIFO) = A1η0 (10.20)

7. “The Software Maintenance cost is given asunder LOFO dispatching policy”.

SMc(LIFO) = A0η (10.21)

“Therefore total relevant wine industry inventory cost per unit per unit of time is
denoted and given by.

Case-1

TC
L [{TL2, TLn}(L I FO)]

=
[
CA(L I FO) + Hc(L I FO) + Sc(L I FO)

+Lc(L I FO) + Pc(L I FO) + Dc(LIFO) + SMc(LIFO)

]
(10.22)

Case-2

TC
L [{TL2, TLn}(L I FO)]

=
[
CA(L I FO) + Hc(L I FO) + Sc(L I FO)

+Lc(L I FO) + Pc(L I FO) + Dc(LIFO) + SMc(LIFO)

]
(10.23)



10 A Wine Industry Inventory Model for Deteriorating Items … 159

10.5 Particle Swarm Optimization

1. “Partition the region which contains the optimal solution”.
2. “Initialize all pheromone trails with the same amount of pheromone and

randomly generate a feasible solution”.
3. “Ant movement according to the pheromone trails to produce feasible

solution”.
4. “Repeat the third step for a given number of ants”.
5. “Pheromone update according to the best feasible solution in the current

algorithm iteration”.
6. “Repeat the third to fifth steps for a given number of cycles or a terminate

criterion”.
7. “Report the best solution”.

10.6 Numerical Analysis

The following data, randomly selected in the respective units, were used to find
the optimal solution and verify the model of the three actors, the manufacturer,
the distributor, and the retailer. The data are provided as δ0 = 601, NCA = 1601,
ℵrw = 3001, ℵow = 3011, δ1 = 7.01, δ2 = 5.01,Now = 61,Nrw = 71,NPc = 1701,
(λ + λ0) = 0.013, (λ1 + λ2) = 0.104, NSc = 261, ω = 1.57, f = 0.05,A0 = 1.26,
η = 1.66, A1 = 1.46, η0 = 2.66 andNLc = 301. The values of the decision variables
are calculated for themodel separately for two cases. Computationally optimalmodel
solutions are given inTable 10.1.Actual valuesmust be adjusted to the specificACOA
through experience and trial and error. However, some default settings are mentioned
in the literature. Population size= 160, number of generations= 1100, crossing type
= colon, crossing rate = 1.7, mutation types = bit flip, mutation rate = 0.017 per
bit, because point crossing is used instead of one transition point by two slices cross
rate is can be reduced to a maximum of 1.60.

10.6.1 Numerical Comparison Between Two Cases
of the Model

Using the same value of the parameter from the numerical example, we obtain the
total cost of the relevant inventory of the wine industry model for two cases, as
shown in Table 10.1. The table shows that this model immediately deteriorates and
partially lags in case 1. If the cost of ownership in RW vary over time, this is the most
expensive condition. In case 2, where the cost of ownership does not vary according
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Table 10.1 Wine industry model for two cases

Case Cost function TL1 TL2 TLn Total
relevant
cost

Particle
swarm
optimization

1 TC
L [{TL2, TLn}(LIFO)] 6.47477 66.7057 74.6487 175,649 7.5649

2 TC
L [{TL2, TLn}(LIFO)] 7.71647 75.7460 77.9896 61,046.6 4.6568

to the length of the cycle, the model is the most flexible and meets the most favorable
conditions. The mathematical software Geogebra is used.

10.7 Sensitivity Analysis

See Tables 10.2 and 10.3.

Table 10.2 Sensitivity analysis in relation to all rates

δ0 TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

551 7.49618 74.1910 84.6198 640,800

601 7.51756 75.5790 85.0507 647,858

751 7.55006 79.7147 86.5811 651,940

451 7.44771 71.0971 87.4559 674,165

401 7.41651 69.7714 87.7677 670,564

651 7.1946 66.4114 84.7116 616,654

δ1 + δ2 TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

1.55 7.46488 69.4764 81.6867 647,476

1.60 7.45465 66.6486 79.4710 648,950

1.75 7.41861 59.8867 74.7741 667,695

1.45 7.48785 76.4417 87.6679 671,776

1.40 7.49601 80.8751 90.8861 664,674

1.65 7.50961 91.9646 99.1066 600,468

NCA TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

6651 7.47477 76.7066 84.6498 677,664

6801 7.47478 76.7071 84.6709 677,666

7651 7.47479 76.7098 84.6546 677,676

6751 7.47477 76.7045 84.6475 677,660

(continued)
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Table 10.2 (continued)

δ0 TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

6601 7.47475 76.7045 84.6475 677,660

851 7.47475 76.7009 84.6471 677,616

NSc TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

671 7.47605 57.0777 67.6067 678,686

701 7.47715 57.7166 67.0670 678,844

771 7.47967 57.9477 61.8675 640,167

661 7.47764 56.7148 65.0649 676,875

601 7.47178 51.8417 65.9866 675.887

161 7.46675 49.5406 70.9774 671,657

NLc TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

611 7.47468 56.6869 44.6606 677,576

661 7.47459 56.6604 44.6717 677,566

151 7.47477 56.5964 44.7056 677,771

96 7.47486 56.7678 44.6771 677,671

86 7.47494 56.7501 44.6654 677,761

56 7.47561 56.8169 44.1899 677,868

ω TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

1.771 7.56077 78.6187 91.7017 651,770

1.971 7.56961 84.4808 99.7418 666,740

6.411 7.77079 91.8567 616.8710 716,688

1.441 7.47617 67.1097 77.0706 664,166

1.681 7.79751 61.8680 70.6908 611,566

0.801 7.71061 49.5857 54.5768 76,565.8

NPc TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

1651 7.59686 57.9587 55.6051 640,618

1801 7.70547 55.1471 56.0761 646,667

6651 7.01070 58.7766 58.6698 649,574

1751 7.75049 51.7789 57.1999 674,868

1601 7.6189 59.9767 56.0506 671,945

751 6.76710 45.1799 57.8856 661,981

Now TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

61 7.46764 69.6488 81.9610 647,077

71 7.45096 66.9546 79.9066 648,606

91 7.41078 60.4577 75.6674 661,955

51 7.48546 76.6148 86.9845 671,789

(continued)
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Table 10.2 (continued)

δ0 TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

41 7.49519 80.7077 90.6418 665,519

71 7.51657 98.4068 91.7874 607,176

Nrw TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

86.1 7.77176 74.7006 46.7956 646,706

90.1 7.68116 75.8104 48.4778 646,798

116.1 7.06749 79.9776 54.0750 659,476

67.1 7.5951 71.0109 41.9746 676,718

60.1 7.77747 69.1967 79.5458 667,578

77.1 4.79647 66.6479 70.8174 609,706

(λ + λ0) TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

0.0141 7.48566 71.0670 46.1171 677,746

0.0151 7.49444 69.5881 40.6887 670,418

0.0191 7.51704 66.6776 76.0787 666,777

0.0111 7.46111 74.6911 46.7690 646,616

0.0101 7.44745 77.0818 49.8010 647,756

0.0061 7.77759 88.6679 54.4048 674,561

(λ1 + λ2) TL1 TL2 TLn TC
L [{TL2, TLn}(L I FO)]

0.0151 7.46516 86.0676 76.9065 676,687

0.0161 7.45647 89.1559 79.4509 168,687

0.0611 7.47479 97.6484 46.5066 617,490

0.0161 7.48558 69.1746 71.4646 647,601

0.0111 7.49781 65.7941 68.5791 649,575

0.001 7.54760 56.0107 18.7006 675,946

10.8 Conclusions

In this article,we have proposed a deterministic inventorymodel for thewine industry
with two warehouses to break down items with linear demand as a function of time
and with variable holding costs depending on the duration of the order cycle, in
order to minimize the total inventory. cost of wine. as part of the shipping policy for
LOFO particle swarm optimization. Bottlenecks are allowed and partially delayed.
Two different cases have been discussed, one with variable holding costs throughout
the cycle period and the other with constant holding costs throughout the cycle, and
it is noted that during the variable holding costs the total inventory costs of the wine
industry are much higher than in the other case. Use of particle swarm optimization
as part of the LOFO shipping policy. Also, the proposed model is very useful for
items that deteriorate a lot. Because as the deterioration rate in both warehouses
increases, the overall inventory costs of the wine industry decrease. As part of the
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Table 10.3 Sensitivity analysis with PSO

Function Algorithm Best Worst Mean Standard deviation

δ0 PSO 0.10608 14.0900 64.6098 040,800

δ1 + δ2 PSO 0.16488 19.4664 60.6806 043,436

NCA PSO 0.16466 10.6060 64.0498 046,604

NSc PSO 0.16468 60.6809 84.0600 036,160

NLc PSO 0.16601 63.0333 83.6066 038,080

ω PSO 0.10063 68.6083 80.6003 030,630

NPc PSO 0.10608 14.0900 64.6098 040,800

Now PSO 0.16488 19.4664 60.6806 043,436

Nrw PSO 0.16466 10.6060 64.0498 046,604

(λ1 + λ2) PSO 0.16468 60.6809 84.0600 036,160

(λ + λ0) PSO 0.16601 63.0333 83.6066 038,080

LOFO Shipping Directive, it uses Particle Swarm Optimization. This model can be
further expanded to include other degradation rates, probabilistic demand models,
and other realistic combinations using particle swarm optimization.
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Chapter 11
Integrated Lot Sizing Model
for a Multi-type Container Return
System with Shared Repair Facility
and Possible Storage Constraint

Olufemi Adetunji , Sarma V. S. Yadavalli, Rafid B. D. Al-Rikabi,
and Makoena Sebatjane

Abstract Containerisation has made global trade faster, more efficient, and safer,
but it also comes with the challenge of container repositioning due to the imbalance
between the container demand and supply in ports. This balancing act is necessary,
not only at the aggregate level, but also the demands for the different types and
sizes must be considered. In such system, we have containers that are returned after
use, some of which are directly reused, some repaired and reissued, and some new
ones purchased to make up for lost or badly damaged ones for each type and size of
containers involved. There is, therefore, the need to have a model to plan the quantity
and timing of the replenishment process for all the container varieties involved in an
integratedmanner. This paper develops a lot sizingmodel for a system in which these
diverse types of containers are reusedwith the repair done in a common facility before
they are reissued where necessary. A solution algorithm was devised by exploiting
the structure of the problem, and a numerical example was provided to illustrate how
to solve the problem using the algorithm. The solution is considered fit for ports
management institutions that need to manage container return and repair systems in
an integrated manner.

Keywords Lot sizing · Genetic algorithm · Container repositioning · Reparable
inventory · Containerisation · Container return

11.1 Introduction

The advent of global supply chain management has changed the scale and scope of
logistics. Driven by revolution in transportation, information technology, and change
in the fiscal policies of many countries, many organizations have embraced global
supply chain management, and ports have become central in making this a reality.
Also, central to these port operations is the use of container as this makes handling
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of global trade items easier, safer, and more secure. An attendant problem that arises
due to containerization is the management of empty containers that have been used
to move goods across global and local destinations. There is usually the need to
reposition many of these containers due to general imbalance in container demand
and supply across most ports of the world.

A port hardly has a balanced container supply and demand. Most ports usually
experience either surplus or shortage of containers depending on whether they are
more import or export biased. This is common in most countries as some ports are
closer to the industrial hubs and tend to ship out more items while some are closer
to trading areas and bring in more containers. This often leads to situations where
there is always the need to handshake between some surplus and other shortage ports
within or between economies,which involves containermovement and repositioning.

In this chapter, we consider a problem of container management in a port such that
once containers are sent out, not all containers will return. A portion of the containers
become lost or damaged and becomes unusable. Among the returned containers, a
portion can be returned to service immediately (maybe after cleaning) while some
other returned containers need to be fixed in the repair facility before they can be re-
issued for use. The returned containers that are damaged but reparable are fixed and
somemore containers are bought from vendor to make up for the lost or permanently
damaged containers. The cycle is then continuously repeated.

In such ports, there are many types of containers that need to be managed simul-
taneously. When balancing container demand and supply, it is important to not only
meet the aggregate number of the required containers, but also the appropriate mix of
each of the different types of containers (e.g. different sizes, and special requirements
like reefers vs dry containers). The containers share repair facility and storage space.
Management needs to decide howmuch space is allotted to each container type in the
storage area. This is because storing containers in the port is not free and charges may
be dependent on container types. There is the need to provide appropriate storage
space for each container type and for all the containers. In addition, at the container
repair facility, there may be equipment for repairing the containers that need to be
set up depending on which type of containers is to be repaired. There is the need to
schedule when to repair each container and how much of each type to repair in a
cycle, so as to guarantee the varietal availability of containers. In addition, there is a
need to decide when to buy top-up containers and how many to buy. Decision also
needs to be made for repositioning of containers from surplus areas to areas of need.
All these need to be jointly managed.

This cycle is shown in Fig. 11.1 where there is a demand at the rate, D, for
containers per unit time. Of this demand, only a proportion, x , of the containers
issued comes back for reuse. It is assumed x is close to 1, and this is reasonable
for most container management systems. When the containers return, a proportion
of the returned containers needs to be repaired before they can be put back to use.
This proportion is y of the returned containers. Hence, the total number of returned
containers is quantity x .D, of which x .y.D go into repair while (1− y).x .D is avail-
able to be reused immediately. There is also the need to buy some more containers,
(1−x).D, tomakeup for the quantity thatwill not return for reuse in either serviceable
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Fig. 11.1 Container flow cycle with possible repair

or repairable form. A serviceable means the returned container can be immediately
put to reuse without the need for any repair work, while the repairable return state
means the returned container needs to first undergo some form of repair work before
it can be put back into reuse. The lot size quantity for the containers procured each
time is denoted by Qp. When the containers are collected (repositioned), the lot size
for each batch transferred is Qr . When the repair is to be inducted, the lot size for
a batch of repair is QR . The objective is to find the best lot size quantities, Qp, Qr

and QR to minimize the total cost.
While container return systems can be classified as some form of the general

return logistics problem, different reverse logistics systems exhibit some different
behaviors, and such need to reflect in the modeling. Not much work has been seen
in lot sizing of container return systems. Most reverse logistics models take their
general form from those of repairable items, hence, inherited their assumptions as
well. Schrady (1967) is a seminal work in this field. He distinguished between the
continuous supplement policy and the substitution policy. While the replenishment
triggers differ in the two cases, both however, assumed that the value of the ‘Ready-
For-Issue’ (RFI) items is higher than that of ‘Non-Ready-For-Issue’ (NRFI) items,
probably up to the order of five to one. The implication is that the RFI items are first
utilized before the NRFI are considered in order to minimize the total holding cost.
The thought here is, however, more like Koh et al. (2002) where consumption occurs
simultaneously from both return and new items, and this is discussed next.

In the container repair problem presented, the management has to decide on the
top-up procurement batch size, the return collection batch size, and the in-house
repair batch size simultaneously. This presents a three-echelon problem as opposed
to the two of the traditional repairable inventory system. In addition, the classic
repairable inventory system assumes that items are returned continuously but drawn
down during each repair batch. The draw down appears as steps in such models.
In this problem, it is more realistic in the port’s container management case that
containers are considered to be returned in batches, and there is a continuous draw
down for repair and reuse. This repair process has two phases: the phase where
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there is both repair and use of containers in which there is a gradual increase in
inventory position (i.e. positive slope), followed by a use-only phase, which is a
gradual decrease (negative slope). This is typical of all production-inventory systems.
All these are shown in Fig. 11.2 for a single type of container. The topmost graph
is that of top-up procurement with batch quantity, Qp, being gradually consumed.
There are some m ≥ 1 integer cycles of return per single cycle of procurement.
This is shown in the sub-graph “return cycles without repair” in Fig. 11.2. The
returned containers are brought back in batch size Qr . This graph looks so because
the serviceable return containers are available for use immediately, and those that
have just been repaired are also available for use immediately. All useable containers
of a particular type are stored together where they may be issued, whether purchased,
returned in usable form, or repaired and ready for re-use.

The sub-graph “repair cycles” in Fig. 11.2 shows the behavior of inventory of
each inducted batch of repair. It should be noted that the height of this graph is Imax,R

and not QR because of simultaneous repair and use in the first phase of the inventory.
There are n ≥ 1 integer repair cycles for each return cycle. The sub-graph “return
cycles with repair” in Fig. 11.2 maps the inventory position of the returned reparable
return containers, a proportion of the returned quantity Q,r that is gradually drawn
down for repair in batches of size QR , repeated n times until it reaches zero. Hence,
there are n cycles of repair in a single cycle of return and m · n cycles of repair in a
single cycle of procurement, so, if the cycle time of container repair is T , the cycle

Fig. 11.2 Inventory-time graphs for procurement, return and repair
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Fig. 11.3 Integrated common repair cycle for a 3-container repair system

time for container collection (repositioning) will be n · T , and that for procurement
would be m · n · T . It can also be seen that also be seen that Qr · y = nQR .

While Fig. 11.2 shows the container stock position for a single type of container,
the problem here considers more than one type of container, so, Fig. 11.2 would
need to be overlaid for all types of containers involved. Since the cycle for repair
integrates all types of containers because of shared repair and storage capacity, only
the repair cycle diagram for a three-container system with a common repair centre
is shown in Fig. 11.3 (without any loss of generalization). It indicates the common
cycle time, T , that they all maintain in order to sequence the continuous repair cycle
to accommodate each container type. This would be further discussed in the model
development section. There is provision for a small setup (or changeover) time, S,
for the repair of a batch of each type of container.

The sections in this paper are now summarised. The first section which is just
concluded presents the introduction, where the problem background is provided,
and the description of the problem is given. The next section is a brief review of the
pertinent extant literature in order to identify the context of the solution provided.
Following this is the section on model development where the integrated optimal lot
sizing formula for this multi-echelon, multi-item return problem is developed. This
is followed by a section presenting solution algorithm followed by an illustration
of its use with numerical examples. The last section concludes, summarising the
objectives and value of this work.
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11.2 Literature Review

Containerization has had significant impact on global transportation and operations
of ports, hence Rodrigue and Notteboom (2009) surmised it had the same effect on
shipment as what the jet plane had on travel. Levinson (2016) said containerization
has made the world smaller and economies bigger; moreover, it is a main catalyst of
globalization. This method of movement of goods has flourished particularly in this
dispensation of globalization as production of many items became regional while
their consumption remains global (Yu et al. 2018). This regionalization and global-
ization made it necessary to find ways to move many items across borders efficiently
and convenientlywith little damage to products, and hence, containerization (Vodjani
et al. 2013). Containerisation makes shipping more efficient and convenient as it
greatly reduces handling and packing problems of materials shipped across borders.
Most global goods movement has been via the use of container. A 2009 research
by Lloyd’s marine indicated that 75% by volume and 60% by value of global trade
utilizes maritime transport for their movement, while 52% of maritime transport is
by containers (Lee and Song 2016). This gives an indication of the volume of global
goods moved via containers.

Containerisation has, however, come with its own challenges and the imbalance
of shipment of containers is the main one. The demand for and supply of containers
in all locations (ports and hinterland) are hardly equal, and this difference can be
huge. Even at a global level, the difference in quantity of containers shipped and
received between two destinations could be more than 100% of the other side as
shown in Gencer (2019). This usually necessitates the need to reposition containers
from places of surplus to places of deficit. Kuzmicz and Pesch (2019) stated that
20% of the global container movement and 40–50% of landside movement involves
EmptyContainer Repositioning (ECR). About 56%of the 10–15 years lifespan of the
container is also said to usually be spent either being stacked or being repositioned.
Shintani et al. (2019) reported that the cost of annual global repositioning of empty
containers is estimated at about USD 20 billion. This has prompted research into
repositioning, including use of innovations like foldable and combinable containers.

The growth of container shipment has also led to growth in fleet and ship sizes for
many carriers in the maritime business. Poo and Yip (2019) noted that the carrying
capacity of container ships in the world has increased six-fold from 3.17 million
in 1990 to 18.9 million in 2014. In addition, the maximum ship size has progres-
sively increased from 4300 Twenty-Foot Equivalent Units (TEUs) in 1988 to 18,000
TEUs in 2015. Samsung Heavy Industry are currently manufacturing mega ships
with capacity to carry 20,000 TEUs. While this development has aided the use of
containers for shipment globally, it has further aggravated the imbalance between
container supply and demand, thereby necessitating further repositioning.

Lee and Song (2016) classified research areas in container management into six
main categories of strategic, tactical, and operational importance with ECR classified
mainly as operational but with huge interface with the other areas. They also stated
that current research in ECR seeks to answer two inter-related questions of: quantity,
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which seeks to determine the level of containers to maintain in a location or move
between two locations; and cost, which is about how much it costs to reposition
containers for subsequent shipments.Within this scope of work, most research seems
to have studied capacity deployment, sizes of shipping vessels, design of shipping
networks, routing of vessels, and creation of shipping schedules Poo and Yip (2019).

Researchers have reported a general lack of focus on the landside section of
container shipping and repositioning with more work done in the long haul or
maritime section. Kolar et al. (2018), as part of their findings in a qualitative study,
concluded that there has been general negligence of the study of the dynamics of
container movement in the hinterland. They surveyed practitioners in the shipping
industry in the Central and Eastern Europe (CEE) region and realized that most
models proposed hitherto have focused heavily on the maritime side. Sterzik and
Kopfer (2013) noted that while the total volume moved inland is much lower than
the maritime movement, the unit cost of movement on land is far much higher than
the maritime, hence deserves attention in container repositioning. They classified all
land movements as either outbound full, outbound empty, inbound full, or inbound
empty. They proposed a Mathematical Programming (MP) model for the Inland
Container Transportation (ICT) problem considering both resource utilization and
container allocation in the hinterland and solved it using Tabu search heuristic. Gusah
et al. (2019) also mentioned the sparseness of work in the landside of container repo-
sitioning problem and presented an agent-based simulation model of urban-based
goods movement in Melbourne, Australia. Furio et al. (2013) is another recent study
that has focused mainly on movement of containers considering the implication of
street turns as containers are moved inland.

Another area that seems not to have had much work generally in ECR is lot sizing
of repositioned containers. Lee and Song (2016) discussed inventory management
from container perspective in comparison to that of other products and four main
differences were mentioned. Firstly, while for most products the inventory item is
consumed, for the container it is more like an equipment used and reused as part of
another process. Secondly, while inventory is purchased directly and used for many
items, the inventory of containers may be owned, leased, or a combination of both.
The third is that container inventory is a 2-waymanagement problem unlike a typical
product which is a single-way problem. The fourth difference is consequent to the
third, which is that the container system is more like a return logistics system. These
characteristics affect how the container inventory system is modeled. The focus is
not so much on the price of purchase but the operational cost, and the model is an
adaptation of most return logistics inventory models.

The classic model on which most return logistics lot sizing model seems to have
been built is the model of Schrady (1967). He presented a model for managing a
repairable inventory system in which there are two items: one consisting of items
waiting to be repaired, called the Non-Ready for Issue (NRFI) items, and the other
containing Ready for Issue (RFI) items. He presented two policies: the continuous
supplementing policy and the substitution policy and focussed more on the latter.
He considered a case where not all items issued are returned for repair, hence there
is a need to procure some new items to supplement the repairable items returned.
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He developed a closed form solution that can be used to determine the timing and
quantity of lot sizes for each of these two items. Many authors have since modified
Schrady’s work. A notable one for the context of this paper is Mabini et al. (1992),
which presented a multi-item production-return process in which the reparable items
share capacity for repair. They also developed models to lot-size the repairable items
optimally following the substitution policy of Schrady. Koh et al. (2002) is another
relevant work in that they considered that both returned items and new items are
mixed and simultaneously consumed because they are similar. This represents how
containers behave better than Shrady’s in that repaired items are not so distinct from
procured items and their consumption cycles are, thus, not necessarily separated
during consumption. Another similar work in this wise is that of Cohen et al. (1980)
in that returned items can be returned directly to service. In the work presented here,
a container return situation is considered where some of the returned containers
are put straight back to reuse while some would need to be repaired before reuse
and there is also a need to procure some because a proportion is lost. In addition,
there are different types of containers in the system, and these different types need
to be repaired using a shared facility with finite capacity, thus, planning this repair
individually may lead to cycle time overlaps, which is undesirable.

11.3 Model Development

This section presents the development of the total cost and optimal lot size functions.
The derivation starts by stating the important assumptions of the model, followed by
the notations adopted in the development, and then the model derivation.

11.3.1 Model Assumptions

The following assumptions were made in the derivation of the model:

• There are multiple types of containers.
• Themonetary value of new stock and repaired items does not affect the operational

value and cost of the containers, hence the holding cost for both can be assumed
to be the same.

• The demand rate for each type of container is fixed and is known.
• The return rate of each container type is fixed and is known.
• The damage rate for each type of container is fixed and is known.
• The rate of container attrition (loss or irreparably damaged) is much smaller than

the rate of return, and consequently, it is reasonable to assume the replenishment
cycle is at least as large as the return cycle. This makes it possible to assume that
there could be one or more return cycle in a single procurement cycle.
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• The demand for RFI containers is fulfilled from all types of sources of RFI
(procured, return without repair, or repaired) in a random manner and there is no
particular selection preference. This is reasonable because the state of purchase,
returned or repair does not confer any advantage on a container. It is selected only
for its functionality (serviceability). This makes it possible to assume that they all
run out together.

11.3.2 Notations

The following notations were adopted:

j is an index for types of containers managed at the port, j = 1, 2, . . . k
r is a subscript denoting returned containers
p is a subscript denoting purchased containers
R is a subscript denoting repaired containers
Dj is the annual demand rate for container type j
Pj is the annual repair rate (repair capacity) for container type j
x j is the proportion of container type j returned to the port from points of use,

either in serviceable or repairable form. The proportion 1 − x j either does
not return or is returned as being non-serviceable and non-repairable

y j is the proportion of the returned container type j that needs repair in order
to return to serviceable condition after arriving at the port. The proportion
x j (1 − y j ) of the original container issued can be reused on return without
any need for any significant repair activity, while the proportion x j y j needs
to be repaired before it can be reissued for reuse

Kr j is the fixed cost of returning a batch of useful container type j from point of
use

Kpj is the fixed cost of ordering a new batch of container type j to make up for
lost or irreparably damaged containers

KRj is the fixed cost of setting up the repair centre for a batch of container type j
to be repaired from the reparable containers contained in the lot of returned
containers

h j is the holding cost per unit per year of keeping a container type j . This cost
may be dependent only on the type of container but not on the state of repair
of the container

m j is the number of container return cycles per single cycle of procurement for
a container type j,m j ≥ 1 and integer

n j is the number of container repair cycles per single cycle of return for a
container type j , n j ≥ 1 and integer

C is the aggregate capacity for storage of all the different types of containers in
the port terminal

u j the storage space requirement for a unit of container type j
S j is the time taken to set up the repair centre for a batch of container type j to

be repaired from among the batch of returned containers
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t j is the operational time taken to repair a batch of container type j , (without
considering set up)

T is a common repair cycle time for all containers
Q∗

r j is the optimum return quantity for container type j
Q∗

pj is the optimum replenishment order quantity for container type j
Q∗

Rj is the optimum repair quantity for container type j
T ∗ is the optimum common repair cycle time for all containers.

11.3.3 Model Derivation

Consider a multi-item return container management system discussed (see Introduc-
tion). The first focus will be on the dynamics of a single container system out of the
k types of containers in circulation, indexed with j . The demand for the container
per unit time (say per year) is Dj . The management arranges for the timely return
of the containers to continue to service customers. Only a proportion, x j , of the total
number of containers put into circulation is returned to the port where it is needed
to be re-used. Of these returned containers, a proportion of the returned container,
y j , needs to be repaired before it can be put back into use. After repair, the repaired
container is as good as new operationally and can go back to use, such that at the
steady-state, the entire proportion x j of returned containers can be put back to use
again. The portion not returned, (1 − x j ), is procured to make up the demand, Dj ,
again. At the repair centre, there is a set up time, Sj , necessary to set up the centre for
the repair of the container type j , and the container can be repaired at a rate Pj per
unit time (also say per year). The inventory cost of managing this system comprises
of the cost of each of the three subsystems, i.e. purchase, serviceable and reparable
units. This is presented next for any container type, j .

For the procurement cycle shown in the topmost layer of Fig. 11.2, the total
inventory cost rate for management of the container is

(1 − x j )Dj K pj

Q pj
+ Qpjh j

2
(11.1)

For the return container subsystem, the total containers returned is split into two:
the portion that can go back into recirculation without repair given by quantity
Qr j (1 − y j ), and the portion that needs to be repaired in predetermined batches,
QRj , given by the quantity Qr j y j . The fixed cost for this portion is obvious and is
the first term of Eq. 11.2. The holding cost, however, consists of two parts. The first
part is the returned container that can go back into circulation without repair, given
by the second layer of the diagram from top, and the layer that needs to be repaired
and is gradually drawn down in batches of QRj , the third layer from top. There is
a relationship between this third layer and the repair layer (bottom layer). Only the
holding cost of the portion not needing repair is represented for now and is given by
the second term of Eq. 11.2.
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x j D j Kr j

Qr j
+ Qr j (1 − y j )h j

2
(11.2)

The final (bottom) layer of the Figure is the repair echelon. The fixed repair cost
is obvious and would be included later. For the holding cost, the inventory position
of the repairable containers in a full return cycle is shown in the two lower levels of
Fig. 11.2 (layers 3 and 4 from top). Layer 3 is the position of the reparable containers
gradually going into repair drawn in repair batches, and layer 4 is the inventory
position of the inducted batches of repair for the container type, j . The holding cost
for layer 3 is the time weighted average of this layer, i.e. aggregate inventory divided
by total time. The proportion of return quantity needing repair, Qr j y, is gradually
drawn down in repair batches of size QRj . This forms a pattern in which the first
draw is a triangle, followed by a series of trapezia. The height of both the triangle
and the trapezia is QRj . From this, it can be seen that the total inventory position per
return cycle for layer 3 (from top) of Fig. 11.2 is

n j QRj

2Pj
+ QRj

D j x j y j

k−1∑

i=1

i (11.3)

The cycle time for the return cycle can also be determined by multiplying the
number of repair cycles per return cycle, n j , and the cycle time for a single repair,
hence,

n j QRj

D j x j y j
(11.4)

Dividing the total inventory per return cycle (Eq. 11.3) by the cycle time (Eq. 11.4),
yields the layer’s average inventory per unit time, thus

QRjh j

2

[(
n j − 1

) + Dj x j y j
Pj

]
(11.5)

For the repair layer (layer 4), it can be seen that it is simply an equivalent of a
production-inventory system in which there are two phases in a cycle; in the first
phase, there is a joint repair and withdrawal of containers and in the second, there
is a pure withdrawal period after repair is suspended. The entire cost for the repair
subsystem, (layers 3 and 4) can, therefore be written as

x j y j D j KRj

QRj
+ QRjh j

2

(
1 − Dj x j y j

Pj

)
+ QRjh j

2

[(
n j − 1

) + Dj x j y j
Pj

]
(11.6)

Equation 11.6 is the form of the cost function for the repair layers (layers 3 and 4
from the top) for the general repairable container system described in the problem,
even when the holding cost is different for RFI and NRFI containers. The first term is
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the set up cost now included, the second term is the holding cost due to the repaired
containers (layer 4) and the third term is the holding cost due to the containers waiting
to be repaired (layer 3). If the holding cost of the repaired and repairable terms are
considered different, this difference is indicated in that the h j terms in Eq. 11.6
are differentiated as say h j,1 and h j,2 where h j,1 may be the holding cost rate for
the RFI containers and h j,2 the holding cost rate for the NRFI containers. In the
current derivation, however, it is assumed there is no need for such differentiation for
containers and as such, h j,1 = h j,2 = h j . This makes the cost function simpler by
combining the holding cost terms (second and third terms) in Eq. 11.6 which leads
to

x j y j D j KRj

QRj
+ n j QRjh j

2
(11.7)

One more benefit of the assumption of common holding cost is to be realized
later when designing the solution procedure. If the holding cost is the same for both
the repairable and repaired containers for a container type and the repair cycle is
integrated, the optimum cost is readily found at n j = n = 1.

Adding Eqs. 11.1, 11.2 and 11.7 to derive the total cost rate function for the
inventory system yields

(1 − x j )Dj K pj

Q pj
+ Qpjh j

2
+ x j D j Kr j

Qr j
+ Qr j (1 − y j )h j

2

+ x j y j D j KRj

QRj
+ n j QRjh j

2
(11.8)

It can still be assumed that there could be one or more return cycles in a single
procurement cycle, m j ≥ 1, and one or more repair cycles in a single return cycle,
n j ≥ 1. With this, the relationship between the quantities per batch of procured,
returned, and repaired containers relative to the repair cycle time can be written as

Qpj = m jn j (1 − x j )DjTj (11.9)

Qr j = x jn j D j Tj (11.10)

QRj = x j y j D j Tj (11.11)

Adding Eqs. 11.9–11.13 yields

Q j = DjTjn j
[
x j + m j

(
1 − x j

)]
(11.12)

Substituting Eq. 11.12 into Eq. 11.8 and summing over all container types yields
the cost function for the multi-type container system as shown in Eq. 11.13.
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k∑

j=1

1

Tj

[
Kpj

m jn j
+ Kr j

n j
+ KRj

]
+

k∑

j=1

[
DjTjh jn j

2

[
m j

(
1 − x j

) + x j
]]

(11.13)

Since all containers share a common repair facility that needs to be set up for the
repair of each type of container, it is important that the repair of each of these types
of containers be completed within a repair cycle. All types of container varieties are
catered for in this cycle, and this is a condition for the feasibility of the solution as
it prevents cycle overlaps. It then becomes necessary to replace the individual cycle
times for each container, Tj , by a common cycle time, T . If the cycle times are inte-
grated this way, it also becomes pertinent that the individual number of repair cycles
per return cycle,n j , be replaced by a common number of repairs, n. Equation 11.13,
therefore, becomes

1

T

k∑

j=1

[
Kpj

m jn
+ Kr j

n
+ KRj

]
+ Tn

2

k∑

j=1

[
Djh j

[
m j

(
1 − x j

) + x j
]]

(11.14)

The diagram for the common repair cycle for all container types is shown in
Fig. 11.3. For this cycle to be feasible, there is the constraint that all setups and
repairs for all containers must be completed within each repair cycle time, T . This
is represented as

∑

j

S j +
∑

j

t j ≤ T (11.15)

The operational repair time (i.e. excluding set up time) for a repair batch of
container j , t j , can be expressed as

t j = QRj

Pj
(11.16)

Also define, ρ j , the utilization level for the repair resource based on container j
to be

ρ j = Dj

Pj
(11.17)

Using Eq. 11.16 with Eqs. 11.11 and 11.17, one can rewrite Eq. 11.15 as

T ≥
∑

j S j

1 − ∑
j x j y jρ j

(11.18)

There is also the possibility of having insufficient space to store the containers
at the port. The quantity of return containers that is repositioned in addition to the
quantity purchased and the current containers under repair could be limited by the
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storage space and not the capacity to repair the damaged returned containers. This
constraint can be expressed as

k∑

j=1

Q ju j ≤ C (11.19)

Substituting Eq. 11.12 for Q j in Eq. 11.19 with Tj = T ∀ j yields

T ≤ C

n
∑n

j=1 Dj
[
(x j + m j

(
1 − x j

)]
u j

(11.20)

The general problem becomes that of minimizing the cost function, Eq. 11.14,
subject to the two constraints, Eqs. 11.18 and 11.20. In solving this problem, it can be
seen that Eqs. 11.18 and 11.20 represent the upper and lower bounds for any feasible
cycle time. This becomes the approach to exploit in solving the problem and would
be discussed later.

Optimizing Eq. (11.14) with respect to T while ignoring the constraint yields

T ∗ =

√√√√√
2

∑k
j=1

[
Kpj

m j n
+ Kr j

n + KRj

]

n
∑k

j=1

[
Djh j

[
m j

(
1 − x j

) + x j
]] (11.21)

To solve Eq. 11.21, it should be observed that m j and n values are also unknown,
and the problemwould have to be solved iteratively. This can be solved through some
numerical approaches or some other search techniques, including random search
solutions. Once the values of m j s and n that optimize the cycle time have been
determined for each of the container types, one needs to check the solution for
feasibility using Eqs. 11.18 and 11.20. If the constraints are violated, one needs
to determine the new cycle time that would be feasible based on either Eq. 11.18
or Eq. 11.20, depending on which one is violated. Once the cycle time is deemed
acceptable, the optimal lot size for each of the containers for the return, purchase,
and repair lots can be calculated from Eqs. 11.9 to 11.11.

Alternatively, to include the impact of the two constraints on the objective func-
tion, one can create a Lagrangian function including the two constraints and solve.
This leads to a series of simultaneous equations involving the differentiation of the
Lagrangian with respect to the cycle time for each j , with respect to the first and
second Lagrange variables, and with respect to the common number of repairs per
return cycle. This may be computationally tedious, and even so, there would still be
the need to iterate over m j .
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11.3.4 Proof of Optimality

To check if the cycle time determined in Eq. 11.21 minimizes the cost functions, it
suffices to check the hessian function of Eq. 11.15, which is given by Eq. 11.22. It
can be seen that this function is positive definite since all terms are positive non-
zero values. It can, therefore, be concluded that Eq. 11.21 provides a minimum for
Eq. 11.14.

1

T 3

k∑

j=1

[
Kpj

m jn
+ Kr j

m j
+ KRj

]
(11.22)

11.4 Solution Algorithm

The solution procedure iteratively finds the best feasible solution within the search
space until a better one could not be found, or it finds a reasonable infeasible solution
as a bound on the cost value and from there seeks out a close feasible solution on the
constraint boundary (Fig. 11.4).

The solution exploits the fact that all repaired items must have a common cycle
time so that every container type is repaired during each repair cycle, hence, only
needs to iterate over a single n for all containers and not n j for each container j as
discussed earlier. It starts by fixing the value of n at 1 and uses the solver to search
for the best combinations ofm j at n = 1. It proceeds to n = 2 and iterates. If a better
result is obtained, the solution at n = 2 is kept as the best. The iteration continues
until the solution starts to deteriorate or becomes infeasible. If the best was found
before it becomes infeasible, then it keeps the best feasible solution it has found.
If it moves to an infeasible region before it starts to deteriorates, there is the need
to check for the better between the last feasible solution found and the boundary
solution close to the infeasible region. To find the boundary solution close to the
infeasible region, the n and m j combinations obtained as the last feasible solution
is used with the repair cycle time set to the boundary cycle time T determined from
Eqs. 11.18 or 11.20, depending on which one led to the infeasibility of the solution.
The choice of the best cycle time and number of repair cycle per return cycle is made
based on the better of these last two candidate solutions.

11.5 Numerical Examples

Two numerical examples were proposed to demonstrate the use of the algorithm
to find solution for the problem. The first problem (numerical example) is a 3-
container problem and the second is a 6-container problem. The storage capacity
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Fig. 11.4 Solution algorithm flow chart

are C = 350000 f t3 and C = 2000000 f t3 respectively for the 3- and 6-container
problems while the other problem parameters are also presented in Tables 11.1 and
11.2 respectively. The optimal solutions for these two problems are presented in
Table 11.3 with n = 1 as part of the solution. This n value is understandable since
the holding cost, repair cycle time and the number of repair cycle per return cycles
have been standardized. Sensitivity analysis was done for the result obtained for
the 6-container problem only as shown in Table 11.4. This is without any loss of
generality, but only to avoid unnecessary repetition.

The following observations from the sensitivity analysis are noteworthy:
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Table 11.1 Input parameters for the 3-container problem

j 1 2 3

u j ( f t3/containers) 20 15 10

Dj (containers/year) 150 000 20000 25000

Pj (containers/year) 18 000 24 000 30 000

x j 0.9 0.8 0.8

y j 0.2 0.3 0.25

Kr j ($) 10 000 8000 7000

Kpj ($) 15 000 12 000 10 500

KRj ($) 20 000 16 000 14 000

h j ($/year) 50 40 30

S j (years) 0.02 0.018 0.016

Table 11.2 Input parameters for the 6-container problem

j 1 2 3 4 5 6

u j ( f t3/containers) 50 35 25 20 15 10

Dj (containers/year) 1000 5000 10 000 100 000 25 000 50 000

Pj (containers/year) 1250 6250 12 500 120 000 30 000 60 000

x j 0.9 0.8 0.75 0.75 0.7 0.85

y j 0.15 0.16 0.18 0.15 0.17 0.2

Kr j ($) 10 000 7000 5000 4000 3000 2000

Kpj ($) 15 000 12 000 11 250 10 500 9750 9000

KRj ($) 20 000 15 000 13 000 8000 7000 5000

h j ($/year) 50 40 30 20 10 5

S j (years) 0.015 0.0135 0.012 0.0105 0.009 0.0075

Table 11.3 Solution to the 3- and 6-container problems

Total cost (TC) Common cycle time (T ) Number of return cycles
per procurement cycle
(m j )

Example 1 (3 containers) 706 222.34 0.2973 2; 1;1

Example 2 (6 containers) 951 619.67 0.2937 8; 3; 2; 1; 1;1

• For all the different parameter settings tested the number of repair cycles per
return cycle (n) remained constant at 1 as expected.

• None of the changes tested with respect to the storage capacity for all container
types (C) had any effects on the total inventorymanagement cost (TC), the number
of return cycles per procurement cycle (m j ) and the common cycle time (T ). This
is because in the example tested, the storage capacity constraint, given in Eq.
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Table 11.4 Sensitivity analysis for the 6-container problem

Parameters % change Total cost
(TC)

% change Common
cycle time (T )

% change Number of
return cycles
per
procurement
cycle (m j )

Kr j −50 897 234.87 −5.71 0.2765 −5.86 9; 3; 2; 1; 1;1

−25 924 839.40 −2.81 0.2850 −2.96 9; 3; 2; 1; 1;1

+25 977 650.24 +2.74 0.3017 +2.74 8; 3; 2; 1; 1;1

+50 1 003 005.48 +5.40 0.3096 +5.40 8; 3; 2; 1; 1;1

Kpj −50 877 157.34 −7.82 0.2816 −4.13 6; 3; 2; 1; 1;1

−25 915 845.55 −3.76 0.2866 −2.40 7; 3; 2; 1; 1;1

+25 985 598.43 +3.57 0.3037 +3.41 9; 3; 2; 1; 1;1

+50 1 018 408.69 +7.02 0.3134 +6.69 10; 3; 2; 1;
1;1

KRj −50 827 609.51 −13.03 0.2547 −13.30 10; 3; 2; 1;
1;1

−25 891 793.37 −6.29 0.2748 −6.43 9; 3; 2; 1; 1;1

+25 1 007 839.27 +5.29 0.3111 +5.91 8; 3; 2; 1; 1;1

+50 1 060 544.25 +11.47 0.3319 +13.02 7; 3; 2; 1; 1;1

h j −50 672 896.72 −29.29 0.4153 +41.42 8; 3; 2; 1; 1;1

−25 824 126.81 −13.40 0.3391 +15.47 8; 3; 2; 1; 1;1

+25 1 063 943.14 +11.80 0.2627 −10.56 8; 3; 2; 1; 1;1

+50 1 165 491.31 +22.47 0.2398 −18.57 8; 3; 2; 1; 1;1

S j −50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

−25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

u j −50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

−25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

C −50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

−25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+25 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1

+50 951 619.67 0 0.2937 0 8; 3; 2; 1; 1;1
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(11.20), was not violated by any of the percentage changes yet. Consequently, the
solution remained intact because C has no direct effect on TC and T when the
storage capacity constraint is not violated since the optimal values are determined
using Eqs. (11.15) and (11.21) respectively.

• Changing the holding costs (h j ) had significant effects on both TC and T but not
onm j . As expected, TC increased with increasing holding costs and T decreased
with increasing holding costs. That the m j values are not significantly affected
by changes to the holding cost is likely because (1− x j ) is small and nuances the
effects with the changes on m j except when such changes are very significant.

• Changes to both storage space requirement for a single container type (u j ) and
the duration of time required to set up a repair centre (Sj ) did not have any effects
on m j and T . Similar to C , both parameters (i.e. u j and Sj ) have no direct effect
on the expressions for TC and T , as given in Eqs. (11.15) and (11.21), when the
storage capacity constraint (in the case of u j ) and the repair time constraint (in
the case of Sj ) are not violated. They only start affecting the optimal solution
when those constraints are violated and for this particular example, none of the
percentage changes tested resulted in a violation of the two constraints.

• Changes to all three fixed costs (i.e.Kr j , Kpj andKRj ) resulted in significant effects
on TC , m j and T . The resulting effects followed the same general pattern, the
total cost and the cycle time increase with increasing fixed costs. This result is
not surprising because the objective of the solution is to minimize costs and if the
fixed costs are increased, the solution responds by reducing the number of setups
(or orders placed) and this is achieved by increasing the order quantity (which
means fewer setups) and thus the cycle time is increased as well. While all three
fixed costs showed the same general response pattern, the degree of sensitivity
differed among them, with KRj being the most sensitive and Kr j being the least
sensitive parameter among the three. Kr j is expected to be the most sensitive
because it is neither divided by n norm j , while Kpj should have been the least
sensitive if n is greater than 1. The effect of n dividing Kpj is however not really
seen on Kpj because n = 1.

11.6 Conclusion

Amodel of multi-type container return management in which some of the containers
are repaired in a facility with shared repair capacity and limited storage capacity
was presented. The cost function for the economic quantities to purchase, collect
and repair were derived for the joint return system and the constraining equations
for the cycle times (upper and lower bounds) based on repair and storage capaci-
ties were derived. The lot sizing functions cannot be solved in closed form, hence,
an algorithmic solution was proposed. The algorithm iteratively seeks the optimal
combination of return numbers for a given number of repair until a turning point or
the first point of infeasibility is obtained. From this, either the latest feasible solution
observed or the boundary region solution near the infeasible solution is selected as
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the optimal. Themodel and solution approachwould be useful for a portmanagement
authority seeking to optimize the cost of managing empty containers in a complex
environment.
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Chapter 12
Inventory Management Under Carbon
Emission Policies: A Systematic
Literature Review

Arash Sepehri

Abstract As the emission of carbon dioxide has resulted inmany issues in the global
environment, controlling carbon emission has become a high priority for govern-
ments. One of the sectors engaged with carbon emission is inventory management.
A lot of activities in inventory systems such as purchasing, warehousing, and trans-
porting the items lead to emitting carbon. Therefore, governments have ruled policies
tomitigate the emissions in inventory systems and develop sustainable supply chains.
Despite the importance of this issue, no attempts have beenmade to study and address
the vital role of different policies in controlling carbon emissions in review progress.
This paper provides a systematic literature review to analyze the impact of carbon
emission policies on inventory systems. 75 papers have been extracted from the
most relevant academic and research databases and the results have been analyzed
and synthesized. By classifying and introducing different carbon policies applicable
in inventory systems, this paper introduces the policies that make effort to restrict the
emissions. Finally, theoretical and managerial insights and extensive opportunities
for future research are outlined.

Keywords Inventory management · Carbon emission policy · Systematic literature
review

12.1 Introduction

The terms greening or environmental consideration in the business refer to regu-
lating the environmental considerations for the stakeholders to satisfy the expec-
tations and decrease relevant costs (Gupta 1995). In addition, industrialization has
led to increases in demand for resources and leads to an increase in human-caused
carbon emissions (Panayotou 1993; Jia et al. 2020). Therefore, a conflict between
sustainability and economic growth is raised (Gupta 1995). In December 1997,
the adoption of the Kyoto protocol became an important achievement to adjust
the carbon emissions to avoid their impact on climate changes (Oberthür and Ott
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1999). The term “sustainable development” indicates a contribution of social and
economic considerations along with environmental ones (Pope et al. 2004). Opera-
tions management is mainly concentrated on achieving a trade-off between sustain-
ability considerations and the profit obtained (Kleindorfer et al. 2005). Supply chains
are emphasizing sustainability considerations from the initial steps in the supply chain
such as purchasing raw materials to the final processes such as customer delivery
(Linton et al. 2007; Seuring and Müller 2008; Bansal et al. 2018; Iqbal and Sarkar
2020,2019). In addition, green operations are engaged with inventory and production
systems and they relate to all aspects of an inventory or a production system such as
manufacturing, remanufacturing, transporting, usage, handling, and waste manage-
ment (Srivastava 2007). Green operations in inventory and production systems are
classified in Fig. 12.1.

One of the most challenging environmental concerns in inventory management
is greenhouse gases (GHG) emission and carbon dioxide is one of the major gases
emit due to inventory and production operations which lead to an increase in global
warming (Bonney and Jaber 2011). As different collaborators are engaged in an
inventory system, it won’t be plausible to mitigate the emissions from the entire
inventory system without coordination (Benjaafar et al. 2012). Moreover, concerns
from the consumers about carbon dioxide emissions have been increased in recent
years and their tendency to purchase the items from manufacturers that produce
sustainable products has been intensified (Walker et al. 2014). Therefore, the firms
concentrate on identifying a trade-off between environmental considerations and
the costs related to inventory systems (Dekker et al. 2012). In this regard, various
policies are regulated to control the emissions of greenhouse gases by restricting or
encouraging manufacturers (Wee and Daryanto 2020).

Despite the importance of carbon emission regulations in inventory systems, no
research has been made to address the importance of carbon emissions in inven-
tory systems directly in the context of a literature review. To fill this gap, this paper
proposes a systematic literature review on the impact of carbon emission considera-
tions on inventory management. The relevant papers are exposed using the research
methodology presented in Sect. 12.2. Section 12.3 provides statistical analysis for
the papers identified based on classifying them into different categories. Section 12.4
discusses carbon emission policies and the employment of each policy in inventory
models. Then, the findings are discussed and summarized in a table to categorize the
papers is provided in Sect. 12.5. Finally, theoretical and managerial contributions
and research gaps recognized in our study are provided in Sect. 12.6.
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12.2 Research Methodology

In this paper, a systematic literature review (SLR) is applied to collect, synthesize,
and analyze the relevant papers. In order to carry out the SLR, (1) suitable search
keywords are defined, (2) relevant literature on the topic is identified, and (3) analysis
on the literature is performed (Kamble et al. 2018). Numerous relevant papers have
been worked on the impacts of carbon emissions on inventory systems. To have
access to a wide variety of papers and present an appropriate analysis, papers from
the Google Scholar, Scopus, and Web of Science databases were selected. Papers
mainly from renowned publications were synthesized and reviewed (Nguyen et al.
2018). The structure below is based on the three-step structure presented by Tranfield
et al. (Tranfield et al. 2003) and developed for our elaboration (see Fig. 12.2).

In the first step, we have chosen Scopus, Google Scholar, and Web of Science
as our main databases to find the papers. In the second step, we mainly defined the
most relevant keywords applicable to our topic to provide an unbiased paper search
process. The relevant keywords selected are divided into two distinct categories:

Category 1: Inventory management, Inventory control, Lot sizing, Economic
order quantity, Economic production quantity, Production management, Production
control.

Category 2: Carbon emission policy, Carbon emission regulation, Carbon trade,
Carbon cap, Carbon tax, Carbon offset, Carbon investment, Sustainability.

The paper selection in the third step is performed using one keyword from each
category and then the contribution of different words from both categories at a time.

In the fourth step, duplicate papers that were found in more than one contribution
of twokeywords fromboth categorieswere eliminated.Moreover, the relevancyof the

Fig. 12.2 Systematic literature review. Source own
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papers to the topic is analyzed and the unrelated models to inventory management
are removed from the papers. In the fifth step, we provided a discussion on the
statistics and we defined different carbon emission policies and their applications.
We proposed a summary of the classification of the papers and we concluded the
discussion in the seventh step. Finally, 75 papers were selected from the searching
progress.

12.3 Descriptive Statistics

12.3.1 Year Wise Publications

In order to illustrate the trend of the number of papers published in recent years, we
studied papers from (2011–2020) and we divided this period into two-year intervals
(see Fig. 12.3). The number of papers published is dramatically increased in the last
ten years. A considerable upward trend is shown in all intervals. In conclusion, the
increasing trend in the number of papers published shows the importance of this
subject.

12.3.2 Contributions by Journals

The contribution made by different journals is analyzed. Journal of Cleaner Produc-
tion has the highest number of publications with 28 papers and followed by the
International Journal of Production Economics with 10 papers. A summary of this
contribution is exposed in Fig. 12.4.

The authors contributed to the papers reviewed in this study are extracted from
the reviewing process. The most important researchers with the highest numbers of
papers they have contributed to them in this study are shown in Fig. 12.5.

Fig. 12.3 Year wise publications. Source own
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12.3.3 Contributions by Countries

The authors’ affiliations with different countries are extracted and it is illustrated
that China and Taiwan are the countries with the highest paper contribution. Canada
and the United States are next on this list. An increase in the variety of countries
considers carbon emission reduction in inventory systems is exposed (see Fig. 12.6).
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12.3.4 Distribution of Carbon Emission Causes

Carbon emissions take place because of ordering, warehousing, purchasing, setup,
transportation, and other operations and events related to inventory management.
Warehousing is the most important cause of emitting carbon in inventory systems.
The summary of the distribution of the most important causes of carbon emission is
exposed in Fig. 12.7.
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Fig. 12.7 Distribution of carbon emission causes. Source own
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12.3.5 Distribution of Carbon Emission Policies

Carbon tax and carbon cap-and-trade are two important policies that can have a
significant influence on mitigating carbon emissions. The most important policies
utilized to mitigate the carbon emissions in inventory systems are shown in Fig. 12.8.

12.3.6 Distribution of Demand Functions

The most important demand functions utilized in inventory models reviewed in this
research are shown in Fig. 12.9. The most frequent demand function is the constant
rate demand and the second frequent demand function is price-dependent demand.
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12.4 Literature Review

Hua et al. (2011) first took carbon emission into consideration in inventory models
under carbon cap-and-trade regulation. This paper was elaborated by Bouchery et al.
(2012) and Hovelaque and Bironneau (2015) by considering carbon tax policy and
Arslan and Turkay (Hua et al. 2011) by considering carbon offset policy. The main
difference between (Bouchery et al. 2012) and (Hovelaque and Bironneau 2015)
is the carbon emission-dependent demand considered by Hovelaque and Bironneau
(2015). Chen et al. (2013) considered purchasing operation as another source of
emissions. Jaber et al. (2013) developed a model and considered manufacturing as
the main source of carbon emissions and emissions can be reduced using reduction
technologies. Their work was extended by Krass et al. (2013) and Lou et al. (2015)
by considering a price-dependent demand. Transportation and shortage are other
sources of emissions (Bazan et al. 2015b; Konur 2014; Battini et al. 2014; Bozorgi
et al. 2014; Gurtu et al. 2015). Toptal et al. (2014) extended (Jaber et al. 2013)
considering storage, holding, and purchasing inventory as main sources of emissions
simultaneously. Alongside manufacturing, remanufacturing (Bazan et al. 2015a) and
setup (He et al. 2015) can be another cause of emissions. Chang et al. (2015) proposed
a manufacturing and remanufacturing model under carbon reduction investment.
Dye and Yang (2015) added permissible delay in payment to sustainable inventory
models considering a credit-dependent demand and this work was followed by Qin
et al. (2015) which developed a credit and emission-dependent demand. Schaefer
and Konur (2015) developed a model under uncertain demand which is followed
by Chen et al. (2016). Some papers considered other factors as the main causes of
emission such as deterioration (Rout et al. 2020; Huang et al. 2018) and shortage
(Konur et al. 2017; Schaefer and Konur 2015). Developing models for defective
items is another novelty considered in many papers (Rout et al. 2020; Sarkar et al.
2016, 2018; Datta 2017; Shu et al. 2017; Kazemi et al. 2018; Tiwari et al. 2018).
Afterward, many papers developed inventory models under carbon cap-and-trade
(Lu et al. 2020; Liao and Deng 2018a; Battini et al. 2018; Mishra et al. 2020b; Halat
and Hafezalkotob 2019; Rout et al. 2020; Cao et al. 2017; Dong et al. 2016; Xu et al.
2016a, b,2017, 2018; Marklund and Berling 2017; Sabzevar et al. 2017; Shu et al.
2017; Tsao et al. 2017; Wang et al. 2017; Yang et al. 2017; Aljazzar et al. 2018; Bai
et al. 2018, 2019; Turki et al. 2018; Heydari and Mirzajani 2020), carbon tax (Konur
et al. 2017; Ji et al. 2017; Mishra et al. 2020a; Tang et al. 2018; Rout et al. 2020;
Sarkar et al. 2016, 2018a, b; Dong et al. 2016; Xu et al. 2016b; Bouchery et al. 2017;
Datta 2017; Tsao et al. 2017; Aljazzar et al. 2018; Darom et al. 2018; Huang et al.
2018; Kazemi et al. 2018; Liao and Deng 2018b; Lin 2018; Taleizadeh et al. 2018,
2020; Tiwari et al. 2018; Zhou et al. 2018; Aliabadi et al. 2019; Daryanto et al. 2019;
Jabbarzadeh et al. 2019; Li and Hai 2019; Shi et al. 2019, 2020; Bai et al. 2020;
Datta et al. 2020; Wangsa et al. 2020), carbon offset (Lu et al. 2020; Tang et al. 2018;
Halat and Hafezalkotob 2019; Rout et al. 2020), and carbon reduction investment
(Ji et al. 2017; Lu et al. 2020; Mishra et al. 2020a,b; Battini et al. 2018; Tang et al.
2018; Sarkar et al. 2016; Cao et al. 2017; Dong et al. 2016; Xu et al. 2016a; Datta
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2017; Yang et al. 2017; Bai et al. 2018, 2019,2020; Shi et al. 2019; Datta et al. 2020;
Kang et al. 2020; Wang and Hui 2020).

12.5 Carbon Emission Policies

As we discussed in previous sections, this paper aims to study different carbon
emission regulations in inventory management. Different policies are discussed as
follows.

12.5.1 Carbon Cap

For firms that have high carbon emissions in their operations, a carbon cap is allocated
by the government to reduce emissions as much as possible (Chen et al. 2013; Bazan
et al. 2015b). Carbon cap policy usually exposes as a constraint in an inventorymodel
that restricts the total carbon emissions to a specific cap (Konur et al. 2017). The
objective is to find the minimum total inventory costs (Konur et al. 2017; Konur
2014; Schaefer and Konur 2015; Ghosh et al. 2017) or to find the maximum total
profit (Qi et al. 2017). An illustration of the carbon cap policy is provided as follows.

Objective: max Total profit

or: min Total cost

Subject to: CE ≤ Z (12.1)

where CE is the total carbon emissions and Z is the carbon cap.

12.5.2 Carbon Tax

The carbon tax is one of the most frequent policies regulated by the government
to mitigate carbon emissions (Ghosh et al. 2017; Bouchery et al. 2012). A tax is
considered for the total carbon emissions that genera9te a carbon emission cost
(Jaber et al. 2013; Hovelaque and Bironneau 2015; Ji et al. 2017). An indication of
the carbon tax policy is proposed as follows

δ(CE) (12.2)

where δ is the carbon tax and CE is total carbon emissions.
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12.5.3 Carbon Cap-And-Trade

Carbon cap-and-trade is an encouraging policy regulated by the governments for the
firms (Hua et al. 2011; Arslan and Turkay 2013). This policy considers a carbon
cap for the firms and if the firms’ emissions stand less than the carbon cap, they
can buy the surplus of the cap and accumulate revenue (Lu et al. 2020; Mishra et al.
2020a). This policy allows the firms to earn more profit due to restricting their carbon
emissions (Liao and Deng 2018a; Toptal et al. 2014). The income from the selling
of surplus carbon allowance will be calculated with the carbon tax rate (Battini
et al. 2018; Mishra et al. 2020b). Then, the revenue obtained will be added to the
objective function if the optimal profit is the objective or it will be subtracted from
the objective function if the optimal cost is the objective. An illustration of the carbon
cap-and-trade policy is prepared as follows

δ(Z − CE) (12.3)

where δ is the carbon tax, Z is the carbon cap, and CE is total carbon emissions.

12.5.4 Carbon Offset

The carbon offset policy is regulated to object to the carbon cap-and-trade policy
(Dye and Yang 2015). The main aim of this policy is to decrease carbon emissions
as much as possible (Tang et al. 2018; Halat and Hafezalkotob 2019). Following this
policy, the firms are not allowed to sell their surplus allowance more emissions leads
to and the higher the carbon tax imposed on the firms (Lu et al. 2020; Rout et al.
2020). The carbon emission cost function is shown as follows.

δ(CE − Z) (12.4)

where δ is the carbon tax, Z is the carbon cap, and CE is total carbon emissions.

12.5.5 Carbon Reduction Investment

Carbon reduction investment is an approach employed by the firms to decrease carbon
emissions as much as possible in the long-term (Jaber et al. 2013; Toptal et al. 2014).
Following this approach, some filters and sensors can be purchased by the firms to
recognize the carbon emissions and decrease emissions (Lou et al. 2015; Sarkar et al.
2016). Moreover, carbon reduction investment will be added to the inventory costs
(Tang et al. 2018; Cao et al. 2017). Also, a decreasing function such as f (ξ) will
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be multiplied by the carbon emissions function to decrease the emissions (Mishra
et al. 2020a, b). The carbon emission function considering reduction investment is
exposed as follows

δ(CE) f (ξ) (12.5)

where δ is the carbon tax, CE is total carbon emissions, and f (ξ) is the carbon
reduction investment function which is a decreasing function ( f ’(ξ) < 0).

12.5.6 A Sample Mathematical Model

In this section, we propose the first mathematical model proposed by Mishra et al.
(2020a) as a sample. In this paper, the annual costs related to carbon emissions are
defined as follows.

Annual carbon reduction investment: GT I = GT
T = G

Total allowable carbon emissions: CA = δZ

The carbon emission associated with setup cost: SCEC = δeA
T

The carbon emission associated with holding the inventory: HCEC = δeOBSbDT
2

The carbon emission associated with disposing of the obsolete items: OBSEC =
δeHaαDT

2

The carbon emission associated with manufacturing CPEC = δeM DT
T = δeM D

The carbon emission associated with remanufacturing E ICS = δeR DT
T = δeRD.

Therefore, the total profit function under a carbon cap-and-trade policy is
calculated as follows

T P = Relevant inventory costs

+ δ[Z − (SCEC + HCEC + OBSEC + CPEC + E ICS)] (12.6)

12.6 Summary

According to the abovementioned discussions on the importance of carbon emis-
sion policies in inventory management systems, all the 75 papers studied for this
research are classified according to the carbon policies they attended, the causes of
carbon emissions in the inventory system they studied, the demand function type
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Table 12.1 Notations

Notation Description

I Maximum amount of inventory (unit/year)

δ Carbon tax ($/kg)

Z Carbon cap (kg)

eA Carbon emissions unit associated with setup cost (kg/year)

eH Carbon emissions unit associated with holding the inventory (kg/year)

eOBS Carbon emissions unit associated with disposing of the obsolete items (kg/year)

eM Carbon emissions unit associated with manufacturing (kg/year)

eR Carbon emissions unit associated with remanufacturing (kg/year)

α Inventory obsolescence rate (%)

a Obsolete inventory weight in the warehouse (kg/unit)

b Space required for each unit of product (meters/unit)

Source own

they considered, the existence of deteriorating or defective items, trade credit policy,
and allowable shortages. The papers are summarized in Table 12.1 (Table 12.2).

12.7 Concluding Remarks

In today’smarket, environmental considerations are attending by the firms because of
governmental and non-governmental pressures and consumers tend to use the items
that are manufactured in sustainable ways. In general, all the regulations are making
effort to eliminate carbon emissions from the inventory systems.

This paper proposed a systematic literature review that emphasized the role of
carbon emission regulations on inventory management systems. By analyzing 75
papers related to this topic, a classification of different aspects of a paper such as
the reasons for carbon emission, the policies regulated, and the demand function
utilized is derived. The outcome of these findings is summarized in statistical anal-
yses. In addition, different carbon emission policies are proposed and their roles and
employments as a part of the mathematical models are identified.

There are few works attended carbon emissions due to setup, remanufacturing,
shortage, and deterioration. Moreover, carbon cap and carbon offset policies are
the ones that can be utilized in future works. Regarding the demand function type,
the demand functions that are stock-dependent, credit-dependent, and promotional
effort-dependent are scarce in the literature.

For future research, considering items with different deterioration rates such as
items with maximum lifetime or stochastic deterioration can add value to themodels.
Another novelty can be using the items with defective items. Investing in reducing
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different relevant costs such as setup cost is another new value that can be added to
the future works.
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Chapter 13
Application of Triangular Fuzzy
Numbers in Taking Optimal Decision

M. Kuber Singh

Abstract We shall discuss the application of triangular fuzzy numbers in the main
classes of decision-making problems. In order to measure the attribute importance
when individuals make a decision or evaluate the alternatives, the weight is one of
the most useful tools. The problem is to select the best system from a set of finite
systems X1, X2, X3, … Xn associated with a set of objectives G1, G2, G3, … Gm

having varying degrees of importance. The selector gives his decision as to how
well the alternatives satisfy the objectives in linguistic terms such as fair, good, very
good, poor, etc. The objectives have different priorities given in fuzzy terms such as
important, very important, less important, etc. and an aggregation is then performed
using triangular fuzzy numbers. The final decision is the intersection of the given
goals according to Zadeh and Bellman (Manage Sci 17:140–164, 1970). The model
is based on the use of triangular fuzzy numbers. This model is applied to transport
networks having varying degrees of importance available in the study area on bus
priority and non-bus priority. This paper explores use of triangular fuzzy numbers in
taking optimal decision.

Keywords Fuzzy set · Linguistic terms in fuzzy environment · Fuzzy numbers ·
Triangular Fuzzy numbers

AMS Classification (2010) 03E72

13.1 Introduction

Uncertainty may arise due to unclear information about the problem, or which is
ambiguity. The fuzzy numbers and fuzzy values are widely used inmany applications
for representing uncertain information. The uncertainty arising due to vagueness can
be studied by using fuzzy set theory. In 1965, Lotfi A-Zadeh propounded the concept
of fuzzy set theory. The selection of best system from a set of finite number of systems
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had been performed by using the concept of fuzzy set. Zadeh (1965) introduced the
idea of fuzzy numbers as being convex and normal fuzzy set. Zadeh’s extension
principle (Zadeh andBellman 1970; Zadeh, 1978) is used formathematical operation
on real numbers and can be extended to the ones defined on fuzzy numbers. There are
many researchers who have made important contribution to theory of fuzzy numbers
and its applications. Some of them are Dubois et al. (1978, 1980), Kaufmann (1975),
Kaufmann and Gupta (1985), and Nguyen (1978).

The optimal selection is the one that satisfies multiple goals having different
objectives given in fuzzy terms. The aggregation of the priorities of these objectives
is then conducted using fuzzy numbers. Zimmermann (2001) discussed the concept
of the fuzzy set theory and its applications. Many applications of fuzzy set theory can
be found in Zimmerman (2001). Fuzzy numbers are mostly applied to data analysis
and decision-making. In particular, triangular fuzzy numbers are commonly used in
applications and it is also easy to handle the difficulty. Kumar and Karmaker (2003)
proposed optimal system selection using Fuzzy numbers. The concept of triangular
intuitionistic fuzzy numbers (TIFN) is introduced by Feng et al. (2010). Kuchta
(2010) proposed the use of fuzzy numbers in practical project planning and control.
Gil-Lafuente and Merigó (2010) proposed decision-making techniques in political
management. A new method for comparing fuzzy numbers base fuzzy probabilistic
preference is introduced by Zhang et al. (2014). Prangishvili et al. (2015) intro-
duced application of fuzzy sets in solving some problems of management. Brindha-
vanam and Rosario (2017) considered a fuzzy comparisonmethod for a deterministic
inventory model.

13.2 Urban Transport

Transport system currently available has shown us a lot of problems with respect
to the increasing traffic. Accidents and other problems with regard to road transport
are increasing day by day. Until and unless we bring forward a solution to it, it
is going to be difficult for us to travel efficiently in the near future. As number
of vehicles have increased, there is a lot of congestion in the streets nowadays.
Accident rates are increasing day by day, and then there is also the problem of
parking spaces. Hence we need to give more attention to how highway transportation
is being operated and model a solution for better geometric design, capacity, traffic
regulation, parking facilities, etc. Speed is a major characteristic of traffic and its
measurement is important for our study. Speed is the rate of movement of traffic and
is expressed in metric units in kilometers per hour. We also need to observe the flow,
which is defined as the volume of traffic using the road in a given interval of time and
it is expressed in vehicles per hour or vehicles per day. By understanding the flow
characteristics we can determine if a particular road is handling traffic at its capacity
or not. If the traffic is heavy, it leads to traffic congestion which results in lower travel
speed. Lower speeds in turn lead to economic loss because of time lost by the people
traveling by the vehicles and higher operational cost of vehicles. Traffic congestions
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also lead to environmental pollution. Volume count is a key aspect to understand the
need for improving the transport facilities for a particular road network. By observing
the traffic flow data in the past years and also predicting the future traffic flow from
the data, we can build the required transportation model.

Travel is mainly used for transporting goods and people. Number of people trav-
eling at a particular time also plays a major role. We need to find out the average rate
of people traveling. The average occupancy then can be used for many calculations.
The total number of persons traveling then can be calculated using the number of
vehicles and average occupancy of each vehicle. The loss in terms of hours due to
the traffic can be found out. Transportation is mostly for movement of goods and
passengers. The modern civilization owes a great deal to ease of transportation and
communication. For a country to move forward, a good transportation system is
very important. Transportation plays a major contributor to the economic, industrial,
social, cultural development of the country. The demand for transport is increasing
day by day due to the rise in population and economic progress.

The development of a place is dependent upon the physical, social, and insti-
tutional infrastructure. Indian cities currently seem to consist mostly of personal
transport. But we need to reduce personal transport and instead give importance to
public transport. This means we need to increase both quantity as well as quality
of public transport and its effective use. Rise in population in Indian cities has led
to substantial increase in transport demand. This in turn has caused a high level of
pollution in overloaded streets. But the public transport haven’t changed much in the
last few decades in terms of numbers or management. This has only made people
dislike public transport and instead choose their personal transport. Until and unless
we make public transport safer and efficient, we will not be able to make a major
improvement in the transport domain. (Singh 2005).

13.3 Passenger Transport Services

Means of passenger transport may be categorized as (i) City bus service (ii)
Intermediate transport services.

CityBus Services: These days the city bus transportation has becomemost used in
themajority of all cities, town and semi-urban areas.Mini-buses are also used for brief
distances within the cities to alleviate congestion throughout peak hours. Economical
and low-cost service may be a necessity for the poor and middle-class families.
Correct rules and regulations for smooth functioning of city buses must be provided.
It includes (i) correct parking system for the buses in operation within the city or
alternative routes. (ii) Regulation in fare rates by the government/authority from time
to time. (iii) Proper maintenance of routes to make it convenient for the bus operators
to perform their duties well. (iv) Recognition to the bus transport operators and
improving their service conditions, safeness and necessary infrastructure, etc. Bus-
priority system has inconvenience if the roads are not built properly and consumers



222 M. K. Singh

take due benefits with intermediate transport services if the price issue is identical
and take longer.

Intermediate Transport Services: It is the system opposite to the bus priority
system where bus services do not seem to be considered favorable. The utilization of
auto-rickshaws for brief distance transportation of passengers and goods is on the rise
in all cities and towns ofmany states. Every kind of intermediate transport services are
able to operate in the city. Proper rules provided should include the following (i) Offer
proper parking for any sort of intermediate transport serviceswithin the city. (ii) Offer
recognition to the organizations/associations of such operators etc. In spite of rise in
auto ownership in the country, the role of bus transportation in moving the people in
Indian cities cannot be opposed. Buses do not need any expensive infrastructure and
can begin the services the day they are acquired. City bus operations anywhere in the
world are financially not usable. Economists showed how returns on investment in
public transport ought to be calculated to take into account not solely of the balance of
operating revenue and expenditure but also the indirect benefits made by an efficient
public transport system. It is these indirect benefits to the community as a whole, and
not only for passengers, that justify public authority intervention in public transport
finance. Other than this, the ecologists have shown another justification for public
contribution towards public transport considering its importance in resolving the
present inconveniences to the society of uncontrolled personal traffic ensuing into
unendurable pollution and use of already scarce urban space. In reality, some of the
western nations like Switzerland, Germany, and Italy consider public transport as a
valuable resource in nature conservation and every country concerned has developed
its own individual solutions.

Sadly India has not developed any future specific scheme of bus grant for the city
bus operations, with the result several of the city buses are in a very poor mechanical
condition with small amount of money either for replacement of fleet or addition to
the present fleet. In reality, rather than giving grant, the authorities of a number of the
Indian city services like Delhi and Calcutta have taken the straightforward route of
choosing for personal vehicles rather than subsidizing public transport corporations.
Private bus operators, particularly small fleet owners, cause chaotic conditions on
the already congested roads. Therefore, the best alternative still remains a public
transport efficiently operated with support and grant from the state. Finance for grant
may come from increased road tax for cars and two-wheelers. The present tax rate
for personalized vehicles in India is just too low for using the expensive services
like street lighting, traffic lights, etc. In brief, there is no short way to overcome
the current chaotic condition is India aside from increased road tax, levy of parking
charges, etc. on motorists. The amount so collected, however, ought to be completely
spent for upgrading the public transport systems.
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13.4 Methodology

(a) Concepts of fuzzy numbers

If x is a universe of discourse and x be any particular element of X, then a fuzzy
set Ã in X is a set of ordered pairs Ã = {x, μ Ã(x)}, x ∈ X where μ Ã(x) is termed
membership function of x in Ã. We shall assume that μ Ã(x) : X → [0, 1] with
value 1 and 0 representing respectively full membership and non-membership in
the fuzzy set Ã. The height h( Ã) of a fuzzy set Ã is the largest membership grade
obtained by any element in the set. A fuzzy set Ã of a set X is said to be normal
fuzzy set iff μ Ã(x) = 1 for at least one x ∈ X. A fuzzy set Ã of a set X is convex if
μ Ã(x)[βx1 + (1 − β)x2) ≥ min

{
μ Ã(x1), μ Ã(x2)

}
, ∀ x1, x2 ∈ X and β ∈ [0, 1].

A fuzzy set is called a fuzzy number if it Satisfied the two properties:

(i) μ Ã(x) = 1, for at least one x ∈ R
(ii) Every ordinary subset Ãα = {

x, μ Ã(x) ≥ α
}
, α ∈ [0, 1] is convex.

(b) Triangular fuzzy numbers.

A fuzzy number Ã is a triangular fuzzy number (TFN) which is denoted by
(a1, a2, a3), (a1 ≤ a2 ≤ a3) if its membership function μ Ã is given by;

μ Ã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x < a1
x−a1
a2−a1

a1 ≤ x ≤ a2
a3−x
a3−a2

a2 ≤ x ≤ a3
0 x < a3

Each fuzzy number can be represented by its α − cuts. α − cuts of each fuzzy
number are closed intervals of real numbers for all real α ∈ [0, 1]. A TFN can also
be represented by α − cuts.

Thus for all α ∈ [0, 1].

Aα = [(a2 − a1)α + a1,−(a3 − a2)α + a3]
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Ordinary number (Defuzzyfication) is given by Ã = a1+2a2+a3
4 .

Arithmetic operations on triangular fuzzy numbers are summarized as follows.
Suppose Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) are two given triangular fuzzy
numbers. Then.

(1) Sum of two TFN: The addition of Ã and B̃ is

Ã(+)B̃ = (
a1,a2,a3

)
(+)

(
b1,b2,b3

) = (
a1 + b1, a2 + b2,a3 + b3

)

where a1, a2, a3, b1, b2, b3, are any real numbers.
(2) Difference of two TFN: The Subtraction of Ã and B̃ is

Ã(−) B̃ = (a1, a2, a3)(−)(b1, b2, b3) = (a1 − b3, a2 − b2, a3 − b1)

where a1,a2,a3,b1,b2,b3, are any real numbers.
(3) Multiplication of two TFN: Multiplication of Ã and B̃ is

Ã(×) B̃ = (a1, a2, a3)(×)(b1, b2, b3) = (a1b1, a2b2, a3b3)

where a1,a2,a3,b1,b2,b3, are any non-zeropositive real numbers.
(4) Division of two TFN: Division of Ã and B̃ is

Ã
B̃

= ( a1b3
, a2
b2

, a3
b1

). Where a1, a2, a3, b1, b2, b3, are any non-zero positive real
numbers.

For multiplication, division, maximum and minimum operations of TFNs cannot
be used The computation can be done using confidence interval at each level α.

Maximumoperation of TFNs ⇒ Ã(∪)B = (a1 ∪ b1, a2 ∪ b2, a3 ∪ b3)

Minimumoperation of TFNs ⇒ A(∩)B = (a1 ∩ b1, a2 ∩ b2, a3 ∩ b3)

Let G̃1, G̃2, G̃3 . . . ., G̃n be the n objectives and C̃1, C̃2, C̃3 . . . , C̃m be m
constraints. Then the resultant decision is the intersection of the given objec-
tives G̃1, G̃2, G̃3 . . . ., G̃n and the given constraints C̃1, C̃2, C̃3 . . . , C̃m . Then D̃ =
G̃1 ∩ G̃2 ∩ G̃3 ∩ . . . ∩ G̃n ∩ C̃1 ∩ C̃2 . . . ∩ C̃m and correspondingly μD =
min

{
μG1 , μG2 , μG3 , . . . μGn , μC1 , μC2 , . . . μCm

}
.

13.5 Analysis with TFNs

When there is a set of finite alternativesX1,X2,X3,………..,Xn and a set of objectives,
G1, G2, G3,……….Gm having varying degrees of importance then the problem is to
select the best alternative. However, the selector gives his decision as to how well
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the alternatives satisfy the objectives in linguistic terms. The steps of the procedure
are briefly outlined as follows (Kumar and Karmaker 2003).

(a) Express the Fuzzy terms/linguistic terms given by the decision maker as
triangular fuzzy numbers say as R̃t1 , R̃t2 , . . . . . . . . . . . . R̃tn

(b) Express most important objective, important objective, less important, not all
important, etc. as triangular fuzzy numbers as t̃1, t̃2, . . . . . . ..t̃m

(c) Let us find relative weights by finding the ratio of each triangular fuzzy number
with the composite triangular number i.e. if

t̃1 = (p1, p2, p3), t̃2 = (q1, q2, q3), . . . . . . . . . . . . . . . . t̃m = (r1, r2, r3)

are m triangular fuzzy number(TFN), then the composite TFN is given by

T̃ = t̃1 + t̃2 + ... + t̃m

T̃ = (p1 + q1 + . . . + r1, p2 + q2 + . . . + r2, p3 + q3 + . . . + r3)

Then relative weights are given by

w1 = t̃1(:)T̃
w2 = t̃2(:)T̃
. . . . . . . . . . . . . . .

wm = t̃m(:)T̃

Operation of division on TFNs does not necessarily give a TFN. So, we can
approximate the results as

W∗
1 =

(
p1

p1 + q1 + . . . . . . + r1
,

p2
p2 + q2 + . . . . . . + r2

,
p3

p3 + q3 + . . . . . . + r3

)

Similarly, we find W ∗
2 ,W ∗

3 , .........W ∗
m .

(d) Find the normal ordinary number corresponding to each relative weight say if
Ã = (a1, a2, a3) is a triangular fuzzy number, then its normal ordinary number
is given by

Â = a1 + 2a2 + a3
4

.

Let W̃1, W̃2, .............., W̃m be the corresponding normal ordinary number.
(e) Let us calculate
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GŴ1
1 = {R̃Ŵ1

11 , R̃Ŵ1
21 , ...............R̃Ŵ1

n1 }
GŴ2

2 = {R̃Ŵ2
12 , R̃Ŵ2

22 , ..............R̃Ŵ2
n2 }

.......................................................

GŴm
m = {R̃Ŵm

1m , R̃Ŵm
2m , ...............R̃Ŵm

nm }

Then resultant decision model is.

D = GŴ1
1 ∩ GŴ2

2 ∩ . . . . . . . . . ∩ GŴm
m .

Where decision D is a fuzzy subset of potential systems.
(f) Let us find the normal ordinary numbers corresponding to the Triangular Fuzzy

numbers thus obtained and Carry out linear ordering of the normal ordinary
numbers and choose system X i having highest normal ordinary number.

13.6 Applications

Under different routing and scheduling systems.
Let X1and X2 be a set of alternatives or systems where X1 represents Bus

priority system in the city and X2 represents non-bus priority system. Let there be
five objectives G1, G2, G3, G4 and G5 to be satisfied by each alternative where:

G1 Given mode should have a cost which is feasible to the commuters.
G2 Given mode should have time minimization.
G3 Given mode should be less pollution in the environment.
G4 Given mode should be feasible to the commuters in the summer and winter

season.
G5 Given mode should be good looking and comfortable.

• Further, it is given that G1 is the most important objective, G2 is a very important
objective, G3 is important objective, G4 is the less important objective, and G5

is not so important objective. There is a single decision-maker who has to decide
which alternative is to be purchased. The decision-makers find it easier to express
his viewpoint about these alternatives, as to how best they satisfy the objectives
in linguistic terms as X1 satisfies:G1 very well,G2 poorly,G3 very well, G4 fairly
well and G5 Extremely well. X2 satisfies: G1 fairly well, G2 Extremely well, G3

very poorly.G4 poorly, G5 fairly well

We now express these linguistic terms and the linguistic terms associated with
the importance of the objectives as triangular fuzzy numbers [Tables 13.1 and 13.2]
(Zadeh 1976) (Figs. 13.1 and 13.2).

Adding t̃1, t̃2, t̃3, t̃4, t̃5 we get (2.0, 2.7, 3.2) as the cumulative triangular fuzzy
number. Then approximate relative weights are calculated as:
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Table 13.1 The
corresponding fuzzy numbers
for the Linguistic terms

Linguistic terms/fuzzy terms (TFN)

More poorly (0, 0,0.3)

Poorly (0, 0.3, 0.5)

Well (0.2, 0.5, 0.8)

Very well (0.5, 0.7, 1)

Extremely well (0.7, 1, 1)

Table 13.2 The
corresponding fuzzy numbers
for the objectives

Linguistic terms/fuzzy terms Triangular fuzzy numbers(TFN)

Most important (0.7, 0.9, 1) = t̃1

Very important (0.6, 0.8, 0.9) = t̃2

Important (0.4, 0.5, 0.6) = t̃3

Less important (0.2, 0.3, 0.4) = t̃4

Not so important (0.1, 0.2, 0.3) = t̃5

Fig. 13.1 Representation of Triangular fuzzy numbers for different objectives of varying degrees

w̃1 =
(
0.7

3.2
,
0.9

2.7
,

1

2.0

)
= (0.21875, 0.33333, 0.5)

w̃2 = (0.1875, 0.2962, 0.45), w̃3 = (0.125, 0.1851, 0.3),

w̃4 = (0.0625, 0.111, 0.2)

w̃5 = (0.03125, 0.0740, 0.15)

Associated ordinary numbers corresponding to these relative weights are given as
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Fig. 13.2 Representation of Triangular fuzzy numbers of linguistic terms satisfied by different
alternatives

w1 = 0.21875 + 2 × 0.3333 + 0.5

4
= 0.346175,

w2 = 0.307475, w3 = 0.1988, w4 = 0.121125,

w5 = 0.0823125,
3∑

i=1

wi = 1

Next, let us find

Gw1
1 = {

(0.5.0.7, 1)0.346(0, 0.3, 0.5)0.346
}

= {(0.786, 0.883, 1)(0, 0.659, 0.786)}
Gw2

2 = {
(0, 0.3, 0.5)0.307(0.7, 1, 1)0.307

}

= {(0, 0.690, 0.808)(0.896, 1, 1)}
Gw3

3 = {
(0.5, 0.7, 1)0.198(0, 0, 0.3)0.198

}

= {(0.871, 0.931, 1)(0, 0, 0.787)}
Gw4

4 = {(0.2, 0.5, 0.8)0.121(0, 0.3, 0.5)0.121
= {(0.832, 0.919, 0.973)(0, 0.864, 0.919)}

Gw5
5 = {

(0.7, 1, 1)0.082(0.2, 0.5, 0.8)0.082
}

= {(0.971, 1, 1)(0.876, 0.944, 0.981)}

Now

G = Gw1
1 ∩ Gw2

2 ∩ Gw3
3 ∩ Gw4

4 ∩ Gw5
5 = {(0, 0.690, 0.808)(0, 0, 0.786)}
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Associated ordinary number(Bus priori t y system) = 0 + 2 × 0.690 + 0.808

4
= 0.547

Associated ordinary number(Non - Bus priori t y system) = 0 + 2 × 0 + 0.786

4
= 0.196

13.7 Conclusion

The associated ordinary numbers corresponding to these triangular fuzzy numbers
are given as D= (0.547, 0.196).Since the associated ordinary number corresponding
to X1 is the highest, system X1 is superior to system X2 i.e. Towns/cities providing
bus priority system for the passengers traveling from place to place within the city
have better than intermediate transport system (auto/taxi/car etc.). By considering
the factors of traveling cost, less pollution affect, travel time it can be concluded
that the commuters have advantages in Bus priority system than that of non- Bus
priority system. To ensure Bus priority system, the following steps should be taken
up a) improvement of roads, widening of roads should be taken up as top priority
b) proper Bus parking should be provided outside the main business area and c)
Permitted to run with limited stopping time.
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